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A REVIEW OF AN OPTIMAL DESIGN PROBLEM FOR A PLATE
OF VARIABLE THICKNESS∗

JULIO MUÑOZ† AND PABLO PEDREGAL‡

Abstract. We revisit a classic design problem for a plate of variable thickness under the model
of Kirchhoff. Our main contribution has two goals. One is to provide a rather general existence result
under a main assumption on the structure of the tensor of material constants. The other focuses on
providing a minimal number of additional design variables for a relaxation of the problem when that
assumption on the tensor of elastic constants does not hold. In both situations, the cost functional
can be pretty general.
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1. Introduction. The problem of the optimal design of a plate of variable thick-
ness under Kirchhoff’s model can be stated as finding the optimal, symmetric profile

h : Ω ⊂ R2 → R,

where Ω is supposed to be the midplane with respect to which the plate is symmetric,
so that it minimizes the value of the compliance functional

I(h) =

∫
Ω

f(x)u(x) dx,

where f is the vertical load over the plate, and u is the vertical displacement in
equilibrium which is obtained from the profile h by solving the equation of equilibrium

∑
i,j,k,l

∂2

∂xi∂xj

(
h3 (x)Mijkl

∂2u (x)

∂xk∂xl

)
= f (x)

in Ω, supplemented with clamped boundary conditions around ∂Ω by demanding
u = ∇u = 0 over ∂Ω. Here the fourth-order tensor M encloses the various material
constants for the type of elastic material the plate is made of. In addition, there
should be some other constraints on the admissible profiles so that the problem is
meaningful. On the one hand, we assume that there is a minimum and a maximum
height for h so that

0 < h− ≤ h(x) ≤ h+
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and h−, h+ are given parameters. On the other hand, we must limit the amount of
material that can be used so that∫

Ω

h(x) dx ≤ V |Ω|

and h− < V < h+.
This problem has received some attention over the years in two different directions.

First, it was noticed long ago that, at least in some situations, this problem is not well-
posed in the sense that there might not exist optimal profiles (see [6], [7]). Today, this
is a well-understood fact. It is typically associated with some lack of convexity, often
taken in a suitable broad sense. This direction was further pursued and explored from
the horizon of finding a minimal relaxation in the sense of using a minimal number
of generalized design variables (see [5], [9]). Several later works emphasized this
perspective and proved various types of results always trying to minimize in various
ways the number of design variables needed to describe minimizing profiles. In many
of these contributions, Young measures associated with minimizing profiles were used
in one way or another (see [1], [3], [4], [11], [15]). Second, in some other situations,
existence of optimal profiles has been shown despite the fact of the just-mentioned
difficulties (see [14], [16], [17]), coming to a situation where it is not completely clear
when, depending on the ingredients, one can trust existence results or else anticipate
highly oscillating optimal profiles. Another point in many of these works is that the
only cost functional considered is the compliance written before, along with some
other variants of order zero (no derivatives of u).

The aim of our contribution here is twofold. First, we examine the structural
ingredients of the problem that enable an existence result, and how existence of op-
timal profiles is compromised when such requirements are not fulfilled. As we will
see, this is basically related to the structure of the tensor M of material constants
so that the existence of optimal profiles for this problem depends (for many relevant
cost functionals) on the elasticity properties of the material we use to manufacture
the plate. Second, we would like to be able to examine more general cost functionals
and not just the compliance. We will give results for much more general objective
functionals in both existence as well as nonexistence cases.

Let F (x, u, λ, ξ, h) : Ω×R×R2×M2×2×R → R be a given integrand, continuous
in the variables (u, λ, ξ, h) and measurable in x (here M2×2 is the space of the 2 × 2
real matrices). Define

I(h) =

∫
Ω

F (x, u(x),∇u(x),∇2u(x), h(x)) dx,

where u solves ∑
i,j,k,l

∂2

∂xi∂xj

(
h3(x)Mijkl

∂2u(x)

∂xk∂xl

)
= f(x) in Ω,

u(x) =
∂u(x)

∂n
= 0 on ∂Ω,

Specifically, we consider the following optimal design problem:

Minimize I(h)

subject to h− ≤ h(x) ≤ h+ in Ω,

∫
Ω

h(x) dx ≤ V |Ω| .
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The main structural assumption to distinguish between existence and nonexis-
tence of optimal solutions for this optimal design problem refers to the material tensor
M . We will say that M is decomposable if

M = M1 ⊗M2,

where Mi are positive definite, second-order tensors (matrices). Notice how in this
case the equilibrium equation basically reduces to the biharmonic operator. In this
situation, we have a general existence result.

Theorem 1. Suppose that M = M1 ⊗ M2, i.e., M is decomposable, and the
integrand F in the cost functional I is such that the functions

ξ ∈
{
M2×2 :

c

M2 · ξ
> 0

}
�→ F

(
x, u, λ, ξ,

c

(M2 · ξ)1/3

)
and

(ξ, z) ∈
{
M2×2 : M2 · ξ = 0

}
× R �→ min

h∈[h−,z]∩Q
F (x, u, λ, ξ, h)

are convex for any constant c and fixed (x, u, λ). Then there are optimal profiles for
the associated optimal design problem for the plate.

A corollary worth stating covers many situations of interest.
Corollary 2. Suppose that the integrand F does not depend on ξ and h, and M

is decomposable. Then for any such F (even nonconvex), the corresponding optimal
design problem admits optimal solutions.

Explicit cases like the compliance F = f(x)u (x) are covered with this corollary.
But also examples like F = g(x)u (x), F = |∇u (x)|2, etc., can be treated through
this result as well.

When the tensor M is not decomposable, the situation is drastically different. In
many cases, this fact is responsible for the lack of optimal solutions and the analysis is
much more complex. See the references cited above. In the particular situation where
we assume that the profile h is a function of x1 alone, so that h(x) = h(x1), and
the tensor M is that of an orthotropic material, a relaxed formulation of the problem
can be pursued. It has been a principal goal over the years to find a minimal full
relaxation of this problem, that is, one which requires the least number of additional
design variables. For the compliance functional, the best result we know of has been
obtained in [4] (also in [15] within a more general framework). Here, by revisiting
some of our own old ideas [11], we are able to show that this same result holds true
even for much more general functionals. Recall that M for orthotropic materials is
defined in terms of two main material parameters: Young’s modulus E, and Poisson’s
ratio r, so that the nonvanishing components of M are

M1111 = M2222 =
2

3

E

1 − r2
, M1122 = M2211 =

2

3

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3

E

1 + r
.

Theorem 3. Let admissible profiles depend only on x1, M corresponding to an
orthotropic material, and let the integrand for the cost functional

F (x, u, λ) : Ω × R × R2 → R
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be measurable in x ∈ Ω and continuous (not necessarily convex) in the pairs (u, λ).
Consider the optimal design problem

Minimize in (θ, h) : J(θ, h) =

∫
Ω

F (x, u(x),∇u(x)) dx

subject to

θ ∈ [0, 1], h ∈ [h−, h+],∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V |Ω| ,

and where u solves∑
i,j,k,l

∂2

∂xi∂xj

(
M ijkl

∂2u

∂xk∂xl

)
= f in Ω,

u =
∂u

∂n
= 0 on ∂Ω,

and the nonvanishing components of M depend on the design variables through for-
mulae

M1111 =
2

3
c(x)

E

1 − r2
, M2222 =

2

3
m(x)E +

2

3
c(x)

Er2

1 − r2
,

M1122 = M2211 =
2

3
c(x)

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3
m(x)

E

1 + r
,

m(x) = θ(x)h3
+ + (1 − θ(x))h3(x),

c(x)−1 = θ(x)h−3
+ + (1 − θ(x))h(x)−3.

This problem is a full relaxation of the initial optimal design problem in the sense

inf
h

I(h) = min
(θ,h)

J(θ, h).

The relevance of this result is in the fact that only one additional design variable,
θ (a certain weight), is required to produce a full relaxation of the problem, and this is
so for a rather huge class of cost functionals and not only for the compliance. We will
later provide further details as to how one is to interpret these pairs (θ, h) in terms
of sequences of profiles for the original problem.

This work includes another three sections. The second one contains the full proof
of Theorem 1 as well as some observations on some explicit examples. Section 3 covers
a brief, elementary discussion on the structure of the material tensor M . Finally,
the last section is devoted to the proof of Theorem 3. We will also dwell on the
interpretation of the proposed relaxed formulation in terms of the ingredients of the
original optimal design problem.

2. Existence results. It is our aim to study a type of design problem for plates
whose state equation has the format

div
(
div

(
h3(x) (M1 ⊗M2)∇2u (x)

))
= f (x) in Ω.(1)
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It is assumed that f ∈ L2 (Ω) is the applied vertical load, Ω is a smooth bounded
domain in R2 that represents the midplane of the plate, h ∈ L∞ (Ω) is the design
variable, and the tensors Mi are assumed to be positive and symmetric. To this
equation we add the boundary conditions

u (x) =
∂u (x)

∂n
= 0 on ∂Ω(2)

(clamped plate). We assume further natural constraints on the feasible designs by lim-
iting the height of the thicknesses and the amount of material: the set H of admissible
designs is defined as

H =

{
h ∈ L∞ (Ω) : h(x) ∈ [h−, h+]

.
= Q a.e. x ∈ Ω, V (h)

.
=

∫
Ω

h(x)dx ≤ V

}
(3)

(V , 0 < h− < h+ are given positive constants). Associated with this state equation,
we consider the general optimization problem

min
h∈H

{
L(h)

.
=

∫
Ω

F
(
x, u,∇u (x) ,∇2u (x) , h (x)

)
dx

}
,(4)

where u solves (1)–(2) and F is a given integrand such that

F : (x, u, λ, ξ, h) ∈ Ω × R × R2 × M2×2 ×Q → R = R ∪ {+∞} .

F is measurable in x and continuous in (u, λ, ξ, h).
Our goal is the optimization problem that consists of looking for an admissible h

and the corresponding displacement u, the only weak solution of problem (1)–(2) in
the Sobolev space H2

0 (Ω) (the subspace of H2(Ω) under the constraints (2)), which
minimizes the objective functional L defined in (4). We denote this problem by (P).

For the study of the above minimization problem, we shall consider a new equiva-
lent variational problem. The underlying idea is to use the differential expression (1)
in order to define a new objective functional subject to a set of constraints which are
easier to deal with. The construction of this equivalent problem is performed in an
elementary way [13]:

1. We introduce an auxiliary function u0: the solution of the elliptic problem

−div(M1∇u0) = f, u0 ∈ H1
0 (Ω) .(5)

2. Equations (1) and (5) give

div div(h3 (M1 ⊗M2)∇2u) + div(M1∇u0) = 0,

which is equivalent to writing

div
(
M1∇(h3 [div (M2∇u)]) + M1∇u0

)
= 0(6)

or even

div
(
M1∇(h3

[
M2 · ∇2u

]
) + M1∇u0

)
= 0,(7)

i.e.,

div (M1∇v) = 0,(8)

where

v = h3 div (M2∇u) + u0 = h3M2 · ∇2u + u0.(9)



6 JULIO MUÑOZ AND PABLO PEDREGAL

3. The new optimization problem, denoted by (EP), is described as follows. The
new integrand for the cost functional is

ϕ (x, u, λ, ξ, v, z) = min
h̃∈Q

{
F
(
x, u, λ, ξ, h̃

)
: v = h̃3 (M2 · ξ) + u0 (x) , z ≥ h̃

}
,

understood as taking the value +∞ whenever the set of admissible h’s is
empty, and the objective functional to be minimized in the variables (u, v, z)
is

J(u, v, z) =

∫
Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
dx,

under the constraints

u ∈ H2
0 (Ω) , v ∈ H1 (Ω) , div(M1∇v) = 0, z ∈ L∞ (Ω) ,

∫
Ω

z(x)dx = V.

Proposition 4. The two optimization problems (P) and (EP) are equivalent in
the following sense: for any admissible pair (h, u)1 for (P) there is a triplet (u, v, z)
admissible for (EP) such that

L(h) ≥ J(u, v, z).

Conversely, for any admissible triplet (u, v, z) for (EP), there is an admissible pair
(h, u) for (P) and

L(h) = J(u, v, z).

In particular, if (u, v, z) is optimal for (EP), then

h(x) =

(
v (x) − u0 (x)

M2 · ∇2u (x)

) 1
3

whenever M2 · ∇2u (x) �= 0, and

h(x) = arg min
h̃∈Q

{
F
(
x, u(x),∇u (x) ,∇2u (x) , h̃

)
: z (x) ≥ h̃

}
otherwise, is an optimal profile for (P).

Proof. The proof is almost straightforward. We include some details for the
convenience of the reader.

Let (h, u) be admissible for (P), so that problem (1)–(2) holds. We consider u0

(solution of (5)), and

v (x) = h3 (x)
(
M2 · ∇2u (x)

)
+ u0 (x) .

By following the construction explained above v solves (8) and the classical regularity
results on elliptic systems ensure that v is in H2 (Ω). We select z verifying

z (x) ≥ h (x) , z(x) ∈ Q, and

∫
Ω

z(x)dx = V.(10)

1Here (h, u) is said to be admissible in the sense that for any h ∈ H we find the only solution u
of problem (1)–(2).
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Then for any x ∈ Ω,

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
= min

h̃∈Q

{
F
(
x, u,∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) , z (x) ≥ h̃

}
≤ F

(
x, u,∇u (x) ,∇2u (x) , h(x)

)
.

It is clear that our triplet, (u, v, z), is admissible for (EP) and J(u, v, z) ≤ L(h).
Let (u, v, z) now be admissible for (EP). The multifunction H given by

arg min
h̃∈Q

{
F
(
x, u(x),∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) z (x) ≥ h̃

}
is measurable and takes closed set values. Then H admits a measurable selection (see
[10, Thm. 2.23]) and we can select a measurable function h such that h(x) ∈ Q, and
for any x ∈ Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
= min

h̃∈Q

{
F
(
x, u (x) ,∇u (x) ,∇2u (x) , h̃

)
: v (x) = h̃3

(
M2 · ∇2u (x)

)
+ u0 (x) , z (x) ≥ h̃

}
= F

(
x, u (x) ,∇u (x) ,∇2u (x) , h (x)

)
.

Moreover, by definition we have v (x) = h3 (x)
(
M2 ·∇2u (x)

)
+u0 (x), z (x) ≥ h (x) ∈

Q. This is enough to fulfill the state equation

div div(h3 (M1 ⊗M2)∇2u) = f (x) ,

the bound on the volume ∫
Ω

h(x)dx ≤
∫

Ω

z(x)dx = V ,

and the equality I(u, v, z) = L(h, u).
We can now establish the existence of optimal solutions for (EP).
Theorem 5. Assume that the two functions

ξ ∈
{
M2×2 :

c

M2 · ξ
> 0

}
�→ F

(
x, u, λ, ξ,

c

(M2 · ξ)1/3

)
and

(ξ, z) ∈
{
M2×2 : M2 · ξ = 0

}
× R �→ min

h∈[h−,z]∩Q
F (x, u, λ, ξ, h)

are convex for any constant c and fixed (x, u, λ). Problem (EP),

inf
(u,v,z)

J(u, v, z)
.
=

∫
Ω

ϕ
(
x, u (x) ,∇u (x) ,∇2u (x) , v (x) , z (x)

)
dx,

where

ϕ (x, u, λ, ξ, v, z) = min
h∈Q

{
F (x, u, λ, ξ, h) : v = h3 (M2 · ξ) + u0 (x) , z ≥ h

}
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under the restrictions

u ∈ H2
0 (Ω) , v ∈ H1 (Ω) , div(M1∇v) = 0, z ∈ L∞ (Ω) ,

∫
Ω

z(x)dx = V ,

has optimal solutions.
Proof. Let (uj , vj , zj) be a minimizing sequence for (EP). As we have seen in the

proof of Proposition 4 we can build the corresponding sequence hj such that

div div(h3
j (M1 ⊗M2)∇2uj) = f (x) , uj ∈ H2

0 (Ω).

Then we can ensure that uj is uniformly bounded in H2(Ω). This sequence converges
to u weakly in H2

0 (Ω) and, consequently, uj and ∇uj converge strongly in L2(Ω)
to u and ∇u, respectively. On the other hand, by elliptic theory, div(M1∇vj) = 0
implies vj converges almost everywhere to a function v ∈ H1 (Ω) verifying the same
elliptic equation (see [16] for a very neat proof in the case of the Laplacian), so
that vj converges strongly to v. Finally, notice that because ϕ (x, u, λ, ξ, v, z) =
ϕ (x, u, λ, ξ, v, h+) if zj ≥ h+, we may assume without lost of generality that hj ≤
zj ≤ h+. Then zj converges to some z in L∞ (Ω) weak-�, and this limit must satisfy∫
Ω
z(x)dx = V .
On the basis of these remarks, it remains to prove that ϕ is jointly convex in (ξ, z)

for fixed (x, u, λ, v). To do that, it is enlightening to rewrite ϕ as⎧⎪⎪⎨⎪⎪⎩
F

(
x, u, λ, ξ,

(
v−u0(x)
M2·ξ

)1/3
)
, M2 · ξ �= 0, z ≥

(
v−u0(x)
M2·ξ

)1/3

∈ Q,

minh∈[h−,z]∩Q F (x, u, λ, ξ, h), M2 · ξ = 0, v = u0(x),

+∞ else

and discuss the convexity by considering two main cases:
1. v �= u0(x): in this case ϕ is given by⎧⎨⎩F

(
x, u, λ, ξ,

(
v−u0(x)
M2·ξ

)1/3
)
, M2 · ξ �= 0, z ≥

(
v−u0(x)
M2·ξ

)1/3

∈ Q,

+∞ else.

This is a convex function of (ξ, z), as the set where it is finite is convex, and,
by hypothesis, the function on such a set is also convex. Checking this is
elementary but a bit tedious.

2. v = u0(x): in this situation we have

ϕ(x, u, λ, ξ, v, z) =

{
minh∈[h−,z]∩Q F (x, u, λ, ξ, h), M2 · ξ = 0,

+∞ else.

This is again convex by our main structural assumption on F .
The proof of Theorem 1 is a direct consequence of Theorem 5 and Proposition 4.
The generality of the cost functional permits us to associate with the state

equation a huge class of optimization problems. We give some examples of such
densities: the compliance case F = f (x)u (x) or some other typical densities like
F = g(x)u (x), F = |∇u (x)|2, or the identification-type problem F = |u(x)−ud(x)|2+
|∇u(x) −∇ud(x)|2, where ud ∈ H1 (Ω) is the observed deflection of the plate. Also,
F = F1 (x, u,∇u), where F1 is continuous on the last two variables (but not necessarily
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convex) or F = F2

(
x, u,∇u,∇2u

)
, where F2 is continuous on the last three variables

and only convex in the ∇2u variable, are densities for which the existence is ensured.
Even with F = F1 (x, u,∇u) + F3(h) or F = F2

(
x, u,∇u,∇2u

)
+ F3(h), where F3 is

any convex and nondecreasing function (F1 and F2 as above), the existence of optimal
classical minimizers is guaranteed.

3. The structure of the tensor M . We have seen so far that the possibility
of decomposing the tensor M as the tensor product of two matrices is the crucial
ingredient for having existence of optimal profiles. This will be so for special types of
materials. In many sources from mechanics this is assumed as part of the model. See
[2], [8]. Indeed, the equilibrium equation for the plate is often taken as

DΔ2u = f,

where the coefficient D is the so-called flexural rigidity or the bending stiffness given
by

D =
Eh3

12(1 − r2)
,

where h is the (constant) thickness of the plate, and E and r are, as before, Young’s
modulus and Poisson’s ratio. When h is nonconstant, then the equation of equilibrium
must be written in the form

DΔ(h3Δ) = f.

This time

D =
E

12(1 − r2)
.

Within this sort of model, the tensor M is clearly decomposable with M1 and M2

multiples of the identity. In these cases, we can apply Theorem 1 to ensure the
existence of optimal profiles.

The case of orthotropic materials is, however, very different. In fact, an ortho-
tropic tensor is not decomposable.

Proposition 6. An orthotropic tensor is never decomposable.
The proof is elementary and well known to specialists. Indeed, by writing a

fourth-order tensor as a 4× 4 matrix in an organized way, we realize that the matrix
corresponding to a orthotropic material is of the form

4

9

E4

(1 − r2)(1 + r)2

⎛⎜⎜⎝
1 0 0 r
0 1 1 0
0 1 1 0
r 0 0 1

⎞⎟⎟⎠ .

If such an M were decomposable, this matrix would have to be a rank-one matrix,
which is easily seen not to be the case.

4. Design with a nondecomposable tensor. We investigate in this section
the same design problem for the plate under the assumption that the tensor of elastic
constants is not decomposable so that Theorem 1 is not applicable. Indeed, it is
well known, as indicated in the introduction, that in this situation nonexistence of an
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optimal profile may result, as the creation of highly oscillatory stiffeners may favor
the overall rigidity of the plate.

As before, the goal is to choose the half-thickness h and its corresponding deflec-
tion u, which minimizes an integral functional L = L(h, u) given by

L(h, u) =

∫
Ω

F (x, u(x),∇u(x)) dx,(11)

where F is assumed to be measurable in x = (x1, x2) and continuous on the variables
u and ∇u.

The class of materials is restricted by imposing an orthotropic condition, namely,
the nonzero components of Mijkl are

M1111 = M2222 =
2

3

E

1 − r2
,

M1122 = M2211 =
2

3

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
E

3(1 + r)
,

where r and E stand for the Poisson ratio and the Young modulus, respectively. By
our comments in the preceding section, this tensor is not decomposable.

We analyze this problem under the simplification that the thickness depends just
on one variable h(x) = h (x1) for any x1 in the interval

(a, b)
.
= {x1 : there exists x2 ∈ R such that (x1, x2) ∈ Ω} .

The design criterion is to minimize L among all the plates whose half-thickness
h satisfies all the constraint indicated above. In other words, the aim is to solve

min
h∈H

L,(12)

where

H =

{
h ∈ L∞(a, b) : h− ≤ h(x1) ≤ h+ a.e. x1 ∈ (a, b),

∫
Ω

h (x1) dx1dx2 ≤ V

}
.

(13)

Here h−, h+, and V are as before.
As indicated before, it is widely recognized that the principle described in (12)–

(13) may have no solution. At least, Theorem 1 cannot be applied. This fact suggests
performing a relaxation of the design problem to understand the nature of minimizing
sequences of profiles. This entails defining a new admissibility set H containing H,
and an extension L of L such that

inf
H

L = min
H

L.(14)

It is interesting to notice that by introducing the relaxation minH L, we are con-
sidering a problem whose solutions provide information about minimizing sequences
of (12). However, it is important to look for the (full) relaxation, which introduces a
minimal number of additional design variables. Ideally, just one more variable would
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be optimal. For the compliance functional, this was shown to be the case in [4] by
making use of optimality conditions. We will prove that this is the case for many
more cost functionals by revisiting some our our previous ideas on this problem [11].

The starting point for a relaxation is the lemma by Murat [12] and Tartar [18]
related to H-convergence. It explains why the cubic-average and the harmonic cubic-
average play an important role in the relaxation for this problem. This lemma is
only valid under our assumption of profiles depending only on x1. The reader can
consult [5] for a detailed proof of this result.

Lemma 7. Let
{
M (r)

}
be a sequence of orthotropic tensors bounded uniformly

by (d,D), i.e.,

d |t|2 ≤
∑
i,j,k,l

M
(r)
ijkltijtkl,

∣∣∣∣∣∑
ij

M
(r)
ijkltij

∣∣∣∣∣ ≤ D |t| for every k, l.

Suppose that M (r) = M (r) (x1) and(
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
1111

)−1

,(
M

(r)
1122

)(
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
1122

)(
M

(∞)
1111

)−1

,(
M

(r)
2222

)
−
(
M

(r)
1122

)2 (
M

(r)
1111

)−1 ∗
⇀

(
M

(∞)
2222

)
−
(
M

(∞)
1122

)2 (
M

(∞)
1111

)−1

,

M
(r)
1212

∗
⇀ M

(∞)
1212.

If u(r) are the solutions of the equilibrium equation for the clamped plate with tensor
M (r), and u(∞) is the solution corresponding to M (∞), then u(r) ⇀ u(∞) in H2

0 (Ω).
Because of the structure of the components of an orthotropic tensor, it is elemen-

tary to check that for a given sequence of designs {hj}, if we define (in a unique way)
the pair (h, θ) by putting

h3
j

∗
⇀ θh3

+ + (1 − θ)h3,

h−3
j

∗
⇀ θh−3

+ + (1 − θ)h−3
(15)

for θ ∈ [0, 1], h ∈ [h−, h+], and

M1111 =
2

3
c

E

(1 − r2)
,

M2222 =
2

3
mE +

2

3
c

Er2

1 − r2
,

M1122 = M2211 =
2

3
c

Er

1 − r2
,

M1212 = M1221 = M2112 = M2121 =
1

3
m

E

(1 + r)
,

(16)

where m and c denote the cubic average and the harmonic cubic-average of the pair
(θ, h), respectively,

m = θh3
+ + (1 − θ)h3,

c =
(
θh−3

+ + (1 − θ)h−3
)−1

,
(17)

then



12 JULIO MUÑOZ AND PABLO PEDREGAL

L(hj , uj) → L(θ, h),

where

L(θ, h) =

∫
Ω

F (x, u,∇u) dx

and u is the solution of the plate equation corresponding to the tensor M . Notice
that weak convergence in H2

0 (Ω) implies strong convergence in H1(Ω).
This discussion suggests defining a relaxation as an optimization problem for pairs

(θ, h) in

H = {(θ, h) : 0 ≤ θ ≤ 1, h− ≤ h ≤ h+}

with cost

L(θ, h) =

∫
Ω

F (x, u,∇u) dx,

where as above u is the solution of the equilibrium plate problem for tensor M ob-
tained from (θ, h) through the cubic-average and the harmonic cubic-average as in
(16) and (17).

This would essentially be the proof of Theorem 3 except for the fact that the
parameter V has not entered into our discussion. In fact, minimizing sequences of
admissible designs must comply with∫

Ω

hj(x) dx ≤ V,

and we have not told how this parameter V enters into the relaxation. How is V to
restrict further the pairs in H?

We observe that admissible pairs in H come from the weak convergence of se-
quences

(
h3
j , h

−3
j

)
. In order to relate hj to

(
h3
j , h

−3
j

)
, we will look for a function G so

that

h = G(h3, h−3), h ∈ [h−, h+],

and extend it by putting

G
(
θh3

+ + (1 − θ)h3, θh−3
+ + (1 − θ)h−3

)
= θh+ + (1 − θ)h.

If G so defined turns out to be convex, then by the weak convergences in (15),

lim
j→∞

∫
Ω

hj(x) dx = lim
j→∞

∫
Ω

G
(
h3
j (x), h−3

j (x)
)
dx

≥
∫

Ω

G
(
θ(x)h3

+ + (1 − θ(x))h(x)3, θ(x)h−3
+ + (1 − θ(x))h(x)−3

)
dx

=

∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx,

(18)

so that we have ∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V.
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We then add this volume constraint to feasible pairs in H:

H =

{
(θ, h) : 0 ≤ θ ≤ 1, h− ≤ h ≤ h+,

∫
Ω

[θ(x)h+ + (1 − θ(x))h(x)] dx ≤ V

}
.

After the previous remarks, the full proof of Theorem 3 has been reduced to
proving the convexity of the mapping G described above. This convexity property for
G was proved in [11] (proof of Theorem 4.1). It is a nice, geometric argument, which
we do not include here for the sake of brevity. It has nothing to do with the rest of
the analysis in this work. One can also find in that paper how to recover admissible
sequences of designs which are minimizing for the original problem from optimal pairs
in H. This can be done in an elegant way by using Young measures associated with
such sequences of designs.
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1. Introduction. In this paper we discuss the primal-dual active set method
for variational problems with simple constraints in function space or in R

n. Let us
consider the quadratic programming problem⎧⎪⎨⎪⎩

minx∈Z
1
2 〈Ax, x〉Z − 〈a, x〉Z

subject to φ ≤ x ≤ ψ,

(1.1)

where a ∈ Z, A ∈ L(Z) is a self-adjoint operator, and Z = R
n or Z = L2(Ω), endowed

with the usual Hilbert space structure and the natural ordering, where Ω is a domain
in R

d. We assume that (1.1) admits a unique solution denoted again by x. If x
is a regular point [MZ] with respect to the constraints in (1.1), then there exists a
Lagrange multiplier μ ∈ Z such that

Ax + μ = a,

μ = max(0, μ + c (x− ψ)) + min(0, μ + c (x− φ)),
(1.2)

where c > 0 is a fixed constant and max, min are interpreted pointwise a.e. in Ω if
Z = L2(Ω) and coordinatewise if Z = R

n. The second equation in (1.2) constitutes
the complementarity condition associated with the inequality constraint in (1.1) [IK1].
We note that in iterative methods such as sequential quadratic programming or second
order augmented Lagrangian methods, quadratic optimization problems with linear
constraints must be solved which take the form of (1.1). The primal-dual active set
method that will be analyzed in this paper is an efficient technique for solving (1.2).
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While (1.2) is derived from (1.1) with A self-adjoint, this assumption is not essential
in the remainder of this paper and we therefore drop it unless it is explicitly specified.
If φ = −∞ or ψ = ∞, then (1.2) reduces to the unilaterally affine constraint case.

The primal-dual active set method uses the complementarity condition

μ = max(0, μ + c (x− ψ)) + min(0, μ + c (x− φ))

as a prediction strategy. Based on the current primal-dual pair (x, μ), the updates
for the active and inactive sets are determined by

I = {μ + c(x− ψ) ≤ 0} and A = {μ + c(x− ψ) > 0},

where {μ+ c(x− ψ) ≤ 0} is the abbreviation for {t : μ(t) + c(x(t)− ψ(t)) ≤ 0}. This
leads to the following Newton-like method.

Primal-dual active set method.

(1) Initialize x0, μ0. Set k = 0.
(2) Set Ik = {μk + c(xk −ψ) ≤ 0 ≤ μk + c(xk −φ)}, A+

k = {μk + c(xk −ψ) > 0},
A−

k = {μk + c(xk − φ) < 0}.
(3) Solve for (xk+1, μk+1)

Axk+1 + μk+1 = a,

xk+1 = ψ in A+
k , xk+1 = φ in A−

k , and μk+1 = 0 in Ik.

(4) Stop, or set k = k + 1 and return to (4).
It was shown in [HIK] that the above algorithm can be interpreted as a semi-

smooth Newton method for solving (1.2), and sufficient conditions were given for its
local superlinear convergence. For related results in finite dimensions we refer to
[FK], for example. The emphasis in this paper lies on providing sufficient conditions
for global convergence without a globalization strategy such as a line search or a
trust region method. This is motivated by the fact that global convergence was
observed in many applications; see, e.g., [HIK, KR]. It appears to be difficult to find
conditions which precisely describe this phenomenon. However, diagonal dominance
and a structure which is close to the M-property appear to enhance this kind of
unconditional convergence with respect to the initial condition.

We now describe the contributions of this paper. In section 2 we present mo-
tivating examples for the function space formulation of (1.1). We also consider the
case where, in addition to the simple inequality constraints, equality constraints and a
more general inequality constraint are present. A sufficient condition for the reduction
of such problems to (1.1) is presented. Sufficient conditions for global convergence
without globalization strategies of unilaterally constrained problems with arbitrary
initialization are presented in section 3. In section 4 we analyze bilaterally constrained
problems. Nonlinear problems are considered in section 5. As mentioned above, the
primal-dual active set method converges for important practical problems without
the necessity of introducing a globalization scheme. Of course, we cannot expect
that this is universally true. Therefore, in section 6 we also consider a globalization
strategy which can be utilized if the primal-dual active set strategy with full steps
does not provide sufficient decrease. In particular we provide a sufficient condition,
which guarantees that the direction supplied by the primal-dual active set strategy
serves as a descent direction, and we describe alternative choices for obtaining descent
directions.



16 KAZUFUMI ITO AND KARL KUNISCH

2. Applications. Here we provide two motivating examples for studying the
primal-dual active set strategy for (1.1) in function space. In Example 2.3, moreover,
we consider a more general class of problems and their reduction to the form given
by (1.1).

Example 2.1. Let us consider an optimal control problem with Ω̂ ⊂ Ω as the
control domain, Ω a bounded domain in a finite dimensional space, and Z = L2(Ω̂):⎧⎪⎨⎪⎩

minu∈X
1
2

∫
Ω
|y − ȳ|2 dx + α

2 |u|2X

subject to − Δy = Bu, y = 0 on ∂Ω, and φ ≤ u ≤ ψ,

where α > 0, ȳ ∈ L2(Ω), φandψ ∈ Z, and B ∈ L(Z,L2(Ω)) is the extension-by-zero
operator of the identity from Ω̂ to Ω. This problem can be formulated as (1.1), without
equality constraint (E = 0), by setting

A = αI + B∗(−Δ)−2B and a = B∗(−Δ)−1ȳ,

where Δ denotes the Laplace operator with homogeneous Dirichlet boundary con-
ditions. In this example A is an additive perturbation of a multiple of the identity
operator, a situation which we shall return to in section 3. Note that A is also well
defined from Lp(Ω̂) to Lp(Ω̂) for any p ≥ 1. Moreover if B and B∗ are positivity
preserving, then A is positivity preserving, and discretizations of A have the property
that off-diagonal elements are decaying at an α-dependent rate.

Example 2.2. Similarly we can consider the time-dependent problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minu∈X
1
2

∫ T

0

∫
Ω
|y − ȳ|2 dx dt + α

2 |u|2X

subject to d
dty = Δy + Bu,

y(0, ·) = y0, y = 0 on (0, T ) × ∂Ω, and φ ≤ u ≤ ψ,

with Z = L2(0, T ;L2(Ω̂)) = L2((0, T ) × (Ω̂)), ȳ and y0 ∈ L2(Ω), φ and ψ ∈ Z, α > 0,
and B ∈ L(Z,L2(0, T ;L2(Ω))) is the extension-by-zero operator of the identity from
(0, T ) × Ω̂ to (0, T ) × Ω. Again A = αI + (( d

dt − Δ)−1B)∗( d
dt − Δ)−1B is positivity

preserving if B and B∗ are positivity preserving, and off-diagonal elements of canonical
discretizations of A are decaying at an α-dependent rate.

Example 2.3. Here we consider the quadratic programming problem⎧⎪⎨⎪⎩
minx∈X

1
2 〈Ax, x〉X − 〈a, x〉X

subject to Ex = b, φ ≤ Gx ≤ ψ,

(2.1)

where a ∈ X,A ∈ L(X) is a self-adjoint operator in the real Hilbert space X,
E ∈ L(X,W ), G ∈ L(X,Z), with W a real Hilbert space, and Z is as in (1.1). We
assume that (2.1) admits a unique solution, denoted again by x. If x is a regular point
[MZ] with respect to the constraints in (2.1), then there exists a Lagrange multiplier
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(λ, μ) ∈ W ∗ × Z such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ax + E∗λ + G∗μ = a,

Ex = b,

μ = max(0, μ + c (Gx− ψ)) + min(0, μ + c (Gx− φ)),

(2.2)

where c > 0 is a fixed constant as above.
We now derive sufficient conditions which allow us to transform (2.2) into (1.2).

In a first step we assume that

G is surjective, range(G∗) ⊂ kerE, Ex̄ = b, where x̄ ∈ (kerE)⊥.(2.3)

Note that (2.3) implies that G : N(E) → Z is surjective. If not, then there exists
a nonzero z ∈ Z such that (z,Gx)Z = (G∗z, x)X = 0 for all x ∈ kerE. If we let
x = G∗z, then |x|2 = 0 and z = 0, since G∗ is injective. Let PE denote the orthogonal
projection in X onto kerE. Then (2.2) is equivalent to

Ax̂ + G∗μ = PE(a−Ax̄), μ = max(0, μ + c (Gx̂− (ψ −Gx̄),

E∗λ = (I − PE)(a−A(PE x̂ + x̄)),

with A = PEAP ∗
E and x = x̂+ x̄ ∈ kerE +(kerE)⊥. The first of the above equations

is equivalent to the system

(I − PG)A((I − PG) x̂ + PG x̂) + G∗μ = (I − PG)PE(a−A x̄),

PG A((I − PG) x̂ + PG x̂) = PG PE (a−A x̄),
(2.4)

where PG = I −G∗(GG∗)−1G is the orthogonal projection in kerE ⊂ X onto kerG.
Since G∗ is injective, the first equation in (2.4) is equivalent to

(GG∗)−1GA(G∗(GG∗)−1y + x2) + μ = (GG∗)−1GPE(a−A x̄),

where y = Gx1 for x1 ∈ kerE ∩ (kerG)⊥, x2 ∈ kerG ∩ kerE, and x̂ = x1 + x2. Let

A11 = (GG∗)−1GAG∗(GG∗)−1, A12 = (GG∗)−1GAPG, A22 = PGAPG

and

a1 = (GG∗)−1GPE(a−Ax̄), a2 = PGPE(a−Ax̄).

Then (2.4) is equivalent to the following equation in Z × (kerE ∩ kerG):(
A11 A12

A∗
12 A22

)(
y
x2

)
+

(
μ
0

)
=

(
a1

a2

)
.(2.5)

Let us summarize the discussion so far. If A ∈ L(Z) and (2.3) holds, then (2.5),
together with

μ = max(0, μ + c(y − (ψ −Gx̄))),(2.6)
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and E∗λ = (I − PE)(a − A(x̂ + x̄)) are equivalent to (2.2), where x = x̂ + x̄, with
x̂ = x1 + x2 ∈ kerE, x2 ∈ kerE ∩ kerG, x1 ∈ kerE ∩ (kerG)⊥, y = Gx1.

Note that the system matrix in (2.5) is positive definite if A restricted to kerE
is positive definite.

Let us now further assume that

A22 is nonsingular.(2.7)

Then (2.5), (2.6) are equivalent to

(A11 −A12A
−1
22 A

∗
12)y + μ = a1 −A12A

−1
22 a2(2.8)

and (2.6), which is the desired form (1.2). In the finite dimensional case, (1.2) admits
a unique solution for every a ∈ R

n, if and only if A is a P-matrix (see [BP, Theorem
10.2.15]). Recall that A is called a P-matrix, if all its principal minors are positive.
In view of the fact that the reduction of (2.5) to (2.8) was achieved by taking the
Schur complement with respect to A22, it is also worthwhile to recall that the Schur
complement of a P-matrix (resp., M-matrix) is again a P-matrix (resp., M-matrix); see
[BP, page 292]. If one does not carry out the reduction step from (2.5) to (2.8), then
the coordinates corresponding to x2 can be treated as inactive ones in the algorithm
and the convergence analysis that we carry out for (1.2) remains valid for (2.5)–(2.6).

Let us specify the primal-dual active set method for the extended problem (2.2).
Primal-dual active set method (extended problem).
(1) Initialize x0, μ0. Set k = 0.
(2) Set Ik ={μk+c(Gxk−ψ) ≤ 0 ≤ μk+c(Gxk−φ)}, A+

k = {μk+c(Gxk−ψ) > 0},
A−

k = {μk + c(Gxk − φ) < 0}.
(3) Solve for (xk+1, λk+1, μk+1)

Axk+1 + E∗λk+1 + G∗μk+1 = a,

Exk+1 = b,

Gxk+1 = ψ in A+
k , Gxk+1 = φ in A−

k , and μk+1 = 0 in Ik.

(4) Stop, or set k = k + 1 and return to (2).
Applying the algorithm for the extended system to (2.2), or utilizing the primal-

dual algorithm for the reduced system (1.2), results in algebraically equivalent systems
if (2.3) holds. The relationship between the two approaches is given by

xk+1 = xk+1
1 + xk+1

2 + x̄, where xk+1
1 ∈ kerE ∩ (kerG)⊥, xk+1

2 ∈ kerE ∩ kerG,

Gxk+1
1 = y, μ = 0 in Ik, yk+1 = ψ −Gx̄ in A+

k , yk+1 = φ−Gx̄ in A−
k ,

and (2.4) holds with (y, x2) = (yk+1, xk+1
2 ).

3. Diagonally dominated class: Unilateral case. In this section we discuss
the global convergence of the primal-dual active set method in the unilateral case,
i.e.,

Ax + μ = a, μ = max(0, μ + c(x− ψ)).(3.1)

For the convenience of the reader we recall the algorithm for this case.
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Primal-dual active set method (unilateral problem).

(1) Initialize x0, μ0. Set k = 0.
(2) Set Ik = {μk + c(xk − ψ) ≤ 0}, Ak = {μk + c(xk − ψ) > 0}.
(3) Solve for (xk+1, μk+1)

Axk+1 + μk+1 = a,

xk+1 = ψ in Ak, and μk+1 = 0 in Ik.

(4) Stop, or set k = k + 1 and return to (4).

Here we abbreviate A+
k by Ak. Sufficient conditions for global convergence were

established in [HIK] for the finite dimensional case Z = R
n. The sufficient condition

we discuss here is more general. It is related to diagonal dominance of A and will
imply that

M(xk+1, μk+1) = max

(
β

∫
Ω

(xk+1 − ψ)+ dx,

∫
Ω

(μk+1)− dx

)
with β > 0 acting as a merit functional for the primal-dual algorithm, i.e., M(xk+1,
μk+1) ≤ ρM(xk, μk), for some ρ < 1. Here we set φ+ = max(φ, 0) and φ− =
−min(φ, 0). Note that by step (3) of the algorithm we have

M(xk+1, μk+1) = max

(
β

∫
Ik

(xk+1 − ψ)+ dx,

∫
Ak

(μk+1)− dx

)
.(3.2)

The natural norm associated with this merit functional is the L1(Ω)-norm, and
consequently we assume that

A ∈ L(L1(Ω)), a ∈ L1(Ω), and ψ ∈ L1(Ω).(3.3)

The analysis of this section can also be used to obtain convergence in the Lp(Ω)-norm
for any p ∈ (1,∞), if the norms in the integrands of M are replaced with | · |p-norms
and the L1(Ω)-norms below are replaced with Lp(Ω)-norms as well.

The results also apply for Z = R
n. In this case the integrals in (3.2) must be

replaced with sums over the respective index sets.

We assume that there exist constants ρi, i = 1, . . . , 5, such that for all partitions
A and I of Ω and for all φA ≥ 0 in L2(A) and φI ≥ 0 in L2(I),

|[A−1
I φI ]−| ≤ ρ1 |φI |,

|[A−1
I AIAφA]+| ≤ ρ2 |φA|

(3.4)

and

|[AAφA]−| ≤ ρ3 |φA|,

|[AAIA
−1
I φI ]−| ≤ ρ4 |φI |,

|[AAIA
−1
I AIAφA]+| ≤ ρ5 |φA|.

(3.5)
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Here | · | denotes the L1(Ω)-norm and AI = RIAEI , AIA = RAAEI , where EI :
L1(I) → L1(Ω) is the extension-by-zero operator and RI : L1(Ω) → L1(I) the
restriction operator from Ω to I. The remaining symbols are defined by analogy.
Assumption (3.4) requires in particular the existence of A−1

I . By a Schur-complement
argument with respect to the sets Ik and Ak this implies existence of a solution to
the linear systems in step (3) of the algorithm for every k.

Theorem 3.1. If (3.3), (3.4), (3.5) hold and ρ = max(β ρ1+ρ2,
ρ3

β +ρ4+ ρ5

β ) < 1,
then M is a merit function for the primal-dual algorithm of the reduced system, and
limk→∞(xk, μk) = (x∗, μ∗) in L1(Ω) × L1(Ω), with (x∗, μ∗) a solution to (3.1).

Proof. Let δx = xk+1 − xk and δμ = μk+1 − μk. Then,

AAk
δxAk

+ AAk,Ik
δxIk

+ δμAk
= 0,

AIk
δxIk

+ AIk,Ak
δxAk

− μk
Ik

= 0.
(3.6)

For every k ≥ 1 we have (xk+1 −ψ)+ ≤ (xk+1 − xk)+ on Ik and (μk+1)− = (δμ)− on
Ak. Therefore

M(xk+1, μk+1) ≤ max

(
β

∫
Ik

(δxIk
)+,

∫
Ak

(δμAk
)−

)
.(3.7)

From (3.6) we deduce that

δxIk
= −A−1

Ik
(−μk

Ik
) + A−1

Ik
AIkAk

(−δxAk
),

with μk
Ik

≤ 0 and δxAk
≤ 0. By (3.4) therefore

|(δxIk
)+| ≤ ρ1|μk

Ik
| + ρ2|δxAk

|

= ρ1

∫
Ik∩Ak−1

|(μk
Ik

)−| + ρ2

∫
Ak∩Ik−1

(xk − ψ)+

≤
(
ρ1 +

ρ2

β

)
M(xk, μk).

(3.8)

Similarly by (3.6),

δμAk
= AAk

(−δxAk
) + AAkIk

A−1
Ik

(−μk
Ik

) −AAkIk
A−1

Ik
AIkAk

(−δxAk
).

Since δxAk
≤ 0 and μk

Ik
≤ 0, we find by (3.5)

|(δμAk
)−| ≤ ρ3|δxAk

| + ρ4|μk
Ik
| + ρ5|δxAk

| ≤
(
ρ3 + ρ5

β
+ ρ4

)
M(xk, μk),(3.9)

and therefore

M(xk+1, μk+1) ≤ max

(
βρ1 + ρ2,

ρ3 + ρ5

β
+ ρ4

)
M(xk, μk) = ρM(xk, μk).

Thus, if ρ < 1, then M is a merit functional. Furthermore M(xk+1, μk+1) ≤
ρkM(x1, μ1). Together with (3.8), (3.9), and (3.6) it follows that (xk, μk) is a Cauchy
sequence. Hence there exists (x∗, μ∗) such that limk→∞(xk, μk) = (x∗, μ∗) and
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Ax∗ + μ∗ = a, μ∗(x∗ −ψ) = 0 a.e. in Ω. Since (xk −ψ)+ → (x∗ −ψ)+ as k → ∞ and
limk→∞

∫
Ω
(xk+1 − ψ)+ = 0 it follows that x∗ ≤ ψ. Similarly one argues that μ∗ ≥ 0.

Thus, (x∗, μ∗) is a solution to (3.1).
Concerning the uniqueness of solutions to (3.1), assume that A ∈ L(L2(Ω)) and

that (Ay, y)L2(Ω) > 0 for all y ∈ L2(Ω) with y �= 0. Assume further that (x∗, μ∗) and
(x̂, μ̂) are solutions to (3.1) with x̂− x∗ ∈ L2(Ω). Then (x̂− x∗, A(x̂− x∗))L2(Ω) ≤ 0
and therefore x̂− x∗ = 0.

Remark 3.1. In the finite dimensional case the integrals in the definition of M
must be replaced with sums over the active/inactive index sets. If A is an M-matrix,
then ρ1 = ρ2 = 0 and ρ < 1 if ρ3

β + ρ4 + ρ5

β < 1. This is the case if A is diagonally
dominant in the sense that ρ4 < 1 and β is chosen sufficiently large. For such a matrix
A the property ρ < 1 is stable under additive perturbations, which are not necessarily
M-matrices.

Remark 3.2. Consider the infinite dimensional case with A = αI + K, where
α > 0, K ∈ L(L1(Ω)), and Kφ ≥ 0 for all φ ≥ 0. This is the case for the operators in
Example 2.1, as can be argued by using the maximum principle. Let ‖K‖ denote the
norm of K ∈ L(L1(Ω)). For ‖K‖ < α and any I ⊂ Ω we have A−1

I = 1
αII−

1
αKIA

−1
I ,

and hence ρ1 ≤ ‖K‖
α(α−‖K‖) . Moreover ρ3 = 0. The conditions involving ρ2, ρ4, and ρ5

are satisfied with ρ2 = ‖K‖
α−‖K‖ , ρ4 = ‖K‖2

α(α−‖K‖) , and ρ5 = ‖K‖2

α−‖K‖ , and ρ < 1 if α is

sufficiently large.

4. Diagonally dominated class: Bilateral constraints. The primal-dual
active set method for the bilateral constraint case was given in section 1. We now
provide sufficient conditions for its global convergence. Analogously to section 3 we
select the merit function M as

M(xk+1, μk+1) = max

(∫
Ik

((xk+1 − ψ)+ + (xk+1 − ϕ)−) dx,

∫
A+

k

(μk+1)− dx +

∫
A−

k

(μk+1)+ dx

)
.

(4.1)

In the finite dimensional case the integrals must be replaced with sums over the respec-
tive index sets. We note that step (3) of the algorithm implies the complementarity
property

(xk − ψ)(xk − ϕ)μk = 0 a.e. in Ω.(4.2)

As in the previous section the merit function involves L1-norms and accordingly
we aim for convergence in L1(Ω). We henceforth assume that

A ∈ L(L1(Ω)), a ∈ L1(Ω), ψ and ϕ ∈ L1(Ω).(4.3)

Below, ‖ · ‖ denotes the norm of operators in L(L1(Ω)). The following conditions
will be used: There exist constants ρi, i = 1, . . . , 5, such that for arbitrary partitions
A ∪ I = Ω we have

‖A−1
I ‖ ≤ ρ1,

‖A−1
I AIA‖ ≤ ρ2

(4.4)
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and

‖AA − c I‖ ≤ ρ3,

‖AAIA
−1
I ‖ ≤ ρ4,

‖AAIA
−1
I AIA‖ ≤ ρ5.

(4.5)

We further set ρ = 2 max( max(ρ1, ρ2,
ρ2

c ),max(ρ3 + ρ5, ρ4),
ρ3+ρ5

c ).
Theorem 4.1. If (4.3), (4.4), (4.5) hold and ρ < 1, then M is a merit func-

tion for the primal-dual algorithm applied to (1.2) and limk→∞(xk, μk) = (x∗, μ∗) in
L1(Ω) × L1(Ω), with (x∗, μ∗) a solution to (1.2).

Proof. For δx = xk+1 − xk and δμ = μk+1 − μk we have

AA+
k
δxA+

k
+ AA+

k Ik
δxIk

+ AA+
k A−

k
δxA−

k
+ δμA+

k
= 0,

AIk
δxIk

+ AIkA+
k
δxA+

k
+ AIkA−

k
δxA−

k
− μk

Ik
= 0,

AA−
k
δxA−

k
+ AA−

k Ik
δxIk

+ AA−
k A+

k
δxA+

k
+ δμA−

k
= 0

(4.6)

with

μk
A+

k

⎧⎪⎨⎪⎩
> 0 on A+

k−1 ∩ A+
k ,

= 0 on Ik−1 ∩A+
k ,

> c (ψ − ϕ) on A−
k−1 ∩ A+

k ,

(4.7)

μk
Ik

∈

⎧⎪⎨⎪⎩
[c(ϕ− ψ), 0) on A+

k−1 ∩ Ik,
0 on Ik−1 ∩ Ik,
(0, c(ψ − ϕ)] on A−

k−1 ∩ Ik,
(4.8)

μk
A−

k

⎧⎪⎨⎪⎩
< c (ϕ− ψ) on A+

k−1 ∩ A−
k ,

= 0 on Ik−1 ∩A−
k ,

< 0 on A−
k−1 ∩ A−

k ,

(4.9)

δxA+
k

⎧⎪⎨⎪⎩
= 0 on A+

k−1 ∩ A+
k ,

< 0 on Ik−1 ∩A+
k ,

= ψ − ϕ < μk

c on A−
k−1 ∩ A+

k ,

(4.10)

δxA−
k

⎧⎪⎨⎪⎩
= ϕ− ψ > μk

c on A+
k−1 ∩ A−

k ,

> 0 on Ik−1 ∩A−
k ,

= 0 on A−
k−1 ∩ A−

k .

(4.11)

From (4.2)

(xk+1
Ik

− ψIk
)+ ≤ (δxIk

)+ and (xk+1
Ik

− ϕIk
)− ≤ (δxIk

)−.(4.12)
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This implies that

M(xk+1, μk+1) ≤ max

(∫
Ik

|δxIk
| ,

∫
A+

k

(μk+1)− +

∫
A−

k

(μk+1)+

)
.(4.13)

From (4.6), (4.4), (4.8), (4.10), and (4.11) we have

|δxIk
| ≤ ρ1|μk

Ik
| + ρ2|δxAk

|

≤ ρ1(|(μk
Ik∩A+

k−1
)−| + |(μk

Ik∩A−
k−1

)+|) + ρ2(|δxA+
k
| + |δxA−

k
|)

≤ ρ1(|(μk
Ik∩A+

k−1
)−| + |(μk

Ik∩A−
k−1

)+|)

+ ρ2

(
|(xk − ψ)+A+

k ∩Ik−1
| + 1

c
|(μk

A+
k ∩A−

k−1
)+| + |(xk − ϕ)−A−

k ∩Ik−1
|

+
1

c
|(μk

A−
k ∩A+

k−1
)−|

)
.

This implies

|δxIk
| ≤ 2 max

(
ρ1, ρ2,

ρ2

c

)
M(xk, μk).(4.14)

From (4.6) furthermore

μk+1
Ak

− (μk
Ak

− cδxAk
) = g,(4.15)

where g = (cI −AAk
)δxAk

−AAkIk
A−1

Ak
AIkAk

δxAk
. By (4.7) and (4.10), we have

μk
A+

k
− c δxA+

k
≥ 0.

Similarly by (4.9) and (4.11), we have

μk
A−

k
− c δxA−

k
≤ 0.

Consequently

|(μk+1

A+
k

)−| + |(μk+1

A−
k

)+| ≤ |gAk
| ≤ (ρ3 + ρ5)|δxAk

| + ρ4|μIk |

≤ 2 max

(
ρ4, ρ3 + ρ5,

ρ3 + ρ5

c

)
M(xk, μk).

(4.16)

By (4.13), (4.14), and (4.16)

M(xk+1, μk+1) ≤ 2 max
(

max
(
ρ1, ρ2,

ρ2

c

)
,max

(
ρ4, ρ3 + ρ5,

ρ3 + ρ5

c

))
M(xk, μk).

It follows that M(xk+1, μk+1) ≤ ρkM(x1, μ1), and if ρ < 1, then M(xk, μk) → 0
as k → ∞. From the estimates leading to (4.14) it follows that xk is a Cauchy
sequence. Moreover μk is a Cauchy sequence by (4.6). Hence there exist (x∗, μ∗)
such that limk→∞(xk, μk) = (x∗, μ∗). By Lebesgue’s bounded convergence theorem,
and since M(xk, μk) → 0, it follows that ϕ ≤ x∗ ≤ ψ. Clearly Ax∗ + μ∗ = a
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and (x∗ − ψ)(x∗ − ϕ)μ∗ = 0 by (4.2). This last equation implies that μ∗ = 0 on
I∗ = {ϕ < x∗ < ψ}. It remains to show that μ∗ ≥ 0 on A∗,+ = {x∗ = ψ} and μ∗ ≤ 0
on A∗,− = {x∗ = ϕ}. Let s ∈ A∗,+ be such that xk(s) and μk(s) converge. Then
μ∗(s) ≥ 0. If not, then μ∗(s) < 0 and there exists k̄ such that μk(s)+c(xk(s)−ψ(s)) ≤
μ∗(s)

2 < 0 for all k ≥ k̄. Then s ∈ Ik and μk+1 = 0 for k ≥ k̄, contradicting μ∗(s) < 0.
Analogously one shows that μ∗ ≤ 0 on A∗,−.

We now specialize to perturbations A which are additive perturbations of a mul-
tiple of the identity operator.

Theorem 4.2. Assume that A = cI + K with K ∈ L(L1(Ω)) and ‖K‖ < c,

and that (4.3), (4.4), (4.5) are satisfied. If ρ̄ = 2 max( max(‖K‖
c ρ1, ρ2),max(ρ3 +

ρ5, ρ4),
ρ3+ρ5

c ) < 1, then the conclusions of the previous theorem are valid.
Proof. We follow the proof of Theorem 4.1 and eliminate the overestimate (4.12).

Let P = {xk+1
Ik

− ψ > 0} ∩ Ik. We find

xk+1 − ψ

⎧⎪⎨⎪⎩
≤ δxP∩Ik−1

on P ∩ Ik−1,
= δxP∩A+

k−1
on P ∩ A+

k−1,

δxP∩A−
k−1

+ (ϕ− ψ)P∩A−
k−1

on P ∩ A−
k−1.

This estimate, together with A−1 = 1
c I −

1
cKA−1, implies that∫

Ik

(xk+1 − ψ)+ ≤
∫
P

δx +

∫
P∩A−

k−1

ϕ− ψ

≤
∫
P

A−1
Ik

μk
Ik

−
∫
P

A−1
Ik

AIkAk
δxAk

+

∫
P∩A−

k−1

ϕ− ψ

=
1

c

∫
P

μk
Ik

+

∫
P∩A−

k−1

ϕ− ψ − 1

c

∫
P

KIk
A−1

Ik
μk
Ik

−
∫
P

A−1
Ik

AIkAk
δxAk

≤ −1

c

∫
P

KIk
A−1

Ik
μk
Ik

−
∫
P

A−1
Ik

AIkAk
δxAk

,

and hence ∫
Ik

(xk+1 − ψ)+ ≤ ‖K‖
c

ρ1|μk
Ik
| + ρ2|δxAk

|.

An analogous estimate can be obtained for
∫
Ik

(xk+1 − ϕ)−, and we find∫
Ik

(xk+1 − ψ)+
∫
Ik

(xk+1 − ϕ)− ≤ ‖K‖
c

ρ1|μk
Ik
| + ρ2|δxAk

|.

We can now proceed as in the proof of Theorem 4.1.
Example 4.1. We apply Theorem 4.2 with A = I +K ∈ L(L1(Ω)). By Neumann

series arguments we find ρ̄ = 2 max( γ
1−γ ,max(γ + γ2

1−γ ,
γ

1−γ )) = γ
1−γ , where γ = ‖K‖,

and ρ̄ < 1 if ‖K‖ < 1
3 . If A = I + K is replaced with A = cI + K, then ρ̄ < 1 if

γ < c
2c+1 , in case c ≥ 1, and ρ̄ < 1 if c2

c+2 , in case c ≤ 1.

Example 4.2. Consider the finite dimensional case A = I +K ∈ R
n×n, where R

n

is endowed with the �1-norm. Again Theorem 4.2 is applicable and ρ̄ < 1, if ‖K‖ < 1
3 ,

where ‖ · ‖ denotes the matrix-norm subordinate to the �1-norm of R
n. Recall that

this norm is given by the maximum over the column sums of the absolute values of
the matrix.
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5. Nonlinear case. In this section we consider the nonlinear complementarity
problem

x ∈ C, (f(x), y − x)Z ≥ 0 for y ∈ C = {y ∈ Z : y ≤ ψ}(5.1)

or equivalently,

f(x) + μ = 0, μ = max(0, μ + x− ψ),(5.2)

where f maps L2(Ω) into itself and is C1 from L1(Ω) to itself. In this case step 3 of
the primal-dual active set method is given by the following:

(3) Solve for (xk+1, μk+1)

f ′(xk)(xk+1 − xk) + f(xk) + μk+1 = 0,

xk+1 = ψ on Ak, μk+1 = 0 on Ik.
(5.3)

Let the pair (x0, μ0) satisfy (x0 − ψ)μ0 = 0 (pointwise).
Throughout this section we assume that (5.3) admits a solution (xk+1, μk+1) ∈

L1(Ω) × L1(Ω), for every k ≥ 0. We further assume that (3.4)–(3.5) hold and that

‖A−1
I ‖ ≤ ρ̂1, ‖A−1

I AIA‖ ≤ ρ̂2, and ‖AAIA
−1
I ‖ ≤ ρ̂4,(5.4)

with A = f ′(x) for all x ∈ B(x0, r) and all partitions A∪I = Ω. Here B(x0, r) denotes
the open ball with center x0 and radius r. Let A0 = f ′(x0). Then, δx = x1 − x0 and
δμ = μ1 − μ0 satisfy

A0
A0

δxA0
+ A0

A0I0
δxI0

+ δμA0
+ (f(x0) + μ0)A0

= 0,

A0
I0
δxI0 + A0

I0A0
δxA0 − μ0

I0
+ (f(x0) + μ0)I0 = 0.

Since x0−ψ > 0 on A0 and μ0 ≤ 0 on I0, δx = ψ−x0 < 0 on A0 and δμ = 0−μ0 ≥ 0
on I0. Referring to the arguments in the proof of Theorem 3.1, it follows from (3.4)–
(3.5) and (5.4) that

|δxI0 | ≤ ρ̂1

∫
I0

(|μ0| + |(f(x0) + μ0)|) dx + ρ̂2 |(x0 − ψ)A0
|,

|(δxI0)
+| ≤ C1 = ρ1

∫
I0

|μ0| dx + ρ2

∫
A0

|x0 − ψ| dx + ρ̂1 |(f(x0) + μ0)I0 |,

|(δμA0)
−| ≤ C2 = (ρ3 + ρ5)|(x0 − ψ)A0 | + ρ4|μ0

I0
| + |(f(x0) + μ0)A0 |

+ρ̂4 |(f(x0) + μ0)I0 |.

(5.5)

Thus,

|x1 − x0| ≤ C3 = ρ̂1|μ0
I0
| + (ρ̂2 + 1) |(x0 − ψ)A0 | + ρ̂1 |(f(x0) + μ0)I0 |,

M(x1, μ1) ≤ max(β C1, C2).
(5.6)

Next, for k = 1, 2, . . . , let Ak = f ′(xk) and δx = xk+1 − xk, μ = μk+1 − μk, and note
that

Ak
Ak

δxAk
+ Ak

AkIk
δxI1 + δμAk

+ ΔAk
= 0,

Ak
Ik
δxIk

+ Ak
IkAk

δxAk
− μk

Ik
+ ΔIk

= 0,
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where Δ = f(xk)− f(xk−1)− f ′(xk−1)(xk − xk−1). We now assume that there exists
γ such that for xk, xk−1 ∈ B(x0, r)

|Δ| = |f(xk) − f(xk−1) − f ′(xk−1)(xk − xk−1)| ≤ γ |xk − xk−1|.

Again, from (3.4)–(3.5) and (5.4)

|δxIk
| ≤ ρ̂1

(∫
Ik

|μk| dx + |ΔIk
|
)

+ ρ̂2

∫
Ak

|xk − ψ| dx,

|(δxIk
)+| ≤ ρ1

∫
Ik

|μk| dx + ρ2

∫
Ak

|δx| dx + ρ̂1 |ΔIk
|,

|(δμAk
)−| ≤ (ρ3 + ρ5)

∫
Ak

|xk − ψ| dx + ρ4

∫
Ik

|μk| dx + |ΔAk
| + ρ̂4 |ΔIk

|.

Thus,

|xk+1 − xk| ≤
(

1

β
+ ρ̂1 +

ρ̂2

β

)
M(xk, μk) + γρ̂1 |xk − xk−1|,

M(xk+1, μk+1) ≤ ρM(xk, μk) + 2ρ̂1 γ max(β ρ̂1, 1, ρ̂4)
|xk − xk−1|

2ρ̂1
,

(5.7)

where we used∫
Ak

|xk − ψ| dx ≤
∫
Ik−1

|xk − ψ| dx and

∫
Ik

|μk| dx ≤
∫
Ak−1

|μk| dx,

and ρ is defined as in Theorem 3.1.
If we set

ω = max

(
ρ + 2ρ̂1γ max(β ρ̂1, 1, ρ̂4),

1

2
+

1 + ρ̂2

2βρ̂1
+ γρ̂1

)
,(5.8)

then

max

(
|xk+1 − xk|

2ρ̂1
,M(xk+1, μk+1)

)
≤ ω max

(
|xk − xk−1|

2ρ̂1
, M(xk, μk)

)
.(5.9)

Hence if ω < 1 and xj ∈ B(x0, r), for j ≤ k, then

max

(
|xk+1 − xk|

2ρ̂1
,M(xk+1, μk+1)

)
≤ ωk max

(
|x1 − x0|

2ρ̂1
, M(x1, μ1)

)
and thus,

|xk+1 − x0| ≤ 1

1 − ω
max( |x1 − x0|, 2ρ̂1 M(x1, μ1) ).(5.10)

Let C1, C2, C3 be as defined in (5.5)–(5.6), and assume that

2ρ̂1

1 − ω
max

(
β C1, C2,

C3

2ρ̂1

)
≤ r.(5.11)
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Then it follows from (5.6) and (5.10) that |xk+1 − x0| ≤ r, and thus by induction in
k we have xk ∈ B(x0, r) for all k ≥ 1 and (5.9) holds for all k. Hence xk is Cauchy,
and by (5.3) μk is a Cauchy sequence as well. It follows that lim(xk, μk) converges
to a limit (x∗, μ∗) in L1(Ω)×L1(Ω). As in the proof of Theorem 3.1 one argues that
(x∗, μ∗) satisfies (5.2). Moreover from (5.9)

|xm − xk| ≤
m−1∑
j=k

|xj+1 − xj | ≤
m∑

j=k+1

ωj−k max(|xk − xk−1|, 2ρ̂1 M(xk, μk))

≤ ω

1 − ω
max(|xk − xk−1|, 2ρ̂1 M(xk, μk)),

and therefore

|xk − x∗| ≤ ω

1 − ω
max(|xk − xk−1|, 2ρ̂1 M(xk, μk)).(5.12)

In summary we obtain the following.

Theorem 5.1. Given (x0, μ0) and r > 0, we assume that (3.4)–(3.5) and (5.4)
hold with A = f ′(x) for all x ∈ B(x0, r) and all partitions A ∪ I = Ω, and that for
x, y ∈ B(x0, r)

|f(x) − f(y) − f ′(x)(x− y)| ≤ γ |x− y|.

Suppose further that ω < 1, with ω as defined in (5.8), that (x0, μ0) satisfies (x0 −
ψ)μ0 = 0, and that (5.11) holds. Then (xk, μk) converges in L1(Ω) × L1(Ω) to a
solution (x∗, μ∗) of (5.2), and (5.12) holds.

Remark 5.1. If f is C2, then γ can be chosen proportionally to r. Thus, referring
to the choice of A discussed in Remark 3.1, we can choose r > 0 sufficiently small
and β sufficiently large so that ω < 1 provided that ρ < 1, where ρ is as defined in
Theorem 3.1. Alternatively, referring to the situation in Remark 3.2 we have ω < 1
provided that ρ < 1, and r and ρ̂2 are sufficiently small.

6. Globalization. In this section we consider the globalization of the primal-
dual algorithm for the unilateral constraint case in the finite dimensional case, i.e.,
X = R

d. The extension to the bilateral case is straightforward. The variational
inequality (5.1) is equivalent to (5.2), i.e., F (x, μ) = 0, where

F (x, μ) =

⎧⎨⎩
f(x) + μ,

max(0, μ + (x− ψ)) − μ = max(−μ, x− ψ),

where we set c = 1. We introduce

θ(x, μ) = |F (x, μ)|2

as a merit function. If we let

A = {μ + (x− ψ) > 0}, I1 = {μ + (x− ψ) = 0}, and I2 = {μ + (x− ψ) < 0},
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then the directional derivative of F is given by

F ′((x, μ); d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′(x)δx + δμ,⎛⎜⎜⎜⎜⎝
δx on A

−δμ on I2

max(−δμ, δx) on I1

⎞⎟⎟⎟⎟⎠
with d = (δx, δμ). Here and throughout this section we assume that f ∈ C1(Rd,Rd).
We find that

1

2
θ′(x, μ; d) = −|f(x) + μ|2 + ((x− ψ), δx)A + (μ, δμ)I2 − (μ,max(−δμ, δx))I1

if the direction d = (δx, δμ) satisfies

f ′(x)δx + δμ + f(x) + μ = 0.

This implies that

1

2
(|f(x) + μ|2)′(d) = (f(x) + μ, f ′(x; δx) + δμ) = −|f(x) + μ|2.

We assume that the following assumptions (6.1)–(6.4) are satisfied:

S = {(x, μ) ∈ R
d × R

d : θ(x, μ) ≤ |F (x0, μ0)|} is bounded.(6.1)

There exists σ̄, b > 0 such that for all (x, μ) ∈ S there is a direction d = (δx, δμ)
depending on (x, μ) such that

f ′(x)δx + δμ + f(x) + μ = 0,
θ′((x, μ); d) ≤ −σ̄θ(x, μ), and |d| ≤ b |F (x, μ)|.(6.2)

θ is subdifferentiably regular for all x ∈ S, i.e.,
θo(x; d) = θ′(x; d) for all d ∈ R

d.
(6.3)

Moreover we assume the following closure property:

If (x, μ) → (x̄, μ̄) and d = d(x, μ) → d̄, then θ′((x̄, μ̄); d̄) ≤ −σ̄θ(x̄, μ̄).(6.4)

In (6.3) above the Clarke generalized directional derivative θo(x; d) of θ at x in the
direction d is defined by

θo(x; d) = lim sup
y→x, t→0+

θ(y + t d) − θ(y)

t
.

In (6.4) the direction d = d(x, μ) is chosen according to (6.2), but d̄ need not be
related to (x̄, μ̄).
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Algorithm.

(i) Let β, γ ∈ (0, 1), and σ ∈ (0, σ̄).
(ii) Apply the primal-dual active set method to determine (xk+1, μk+1):

f ′(xk)(xk+1 − xk) + f(xk) + μk+1 = 0,

xk+1 = ψ on Ak, μk+1 = 0 on Ik.

If |F (xk+1, μk+1)| < γ |F (xk, μk)| and |(xk+1, μk+1) − (xk, μk)| ≤ b|F (xk, μk)|, set
k = k + 1 and skip (iii).

(iii) Let dk be a descent direction for θ at (xk, μk) according to (6.2) and set
αk = βmk , where mk is the first positive integer m for which

θ((xk, μk) + βm dk) − θ(xk, μk) ≤ −σβm θ(xk, μk).

Set (xk+1, μk+1) = (xk, μk) + αk dk, k = k + 1, and go to (ii).
Theorem 6.1. Suppose that f : R

d → R
d is C1.

(a) Assume (6.1)–(6.4) hold. Then, the sequence {xk} generated by the algorithm
is bounded, |F (xk+1, μk+1)| < |F (xk, μk)|, for all k ≥ 0, and each accumulation point
(x∗, μ∗) of {(xk, μk)} satisfies F (x∗, μ∗) = 0.

(b) Moreover if for one such accumulation point

|h| ≤ c |F ′(x∗, μ∗;h)| for all h ∈ R
d,(6.5)

then the sequence (xk, μk) converges superlinearly to (x∗, μ∗).
Proof. The proof follows from Theorem 2.1 in [IK2].
In [IK2] the reduced form of F (x, μ) = 0, which is given by

−f(x) = max(0,−f(x) + x− ψ),

is analyzed. In this case the new active set is determined on the basis of Ã =
{−f(xk) + xk − ψ > 0}. If the full step is taken, then this differs from the new
active set A used in this paper in that μk = −f ′(xk−1)(xk − xk−1) − f(xk−1) is
replaced with −f(xk).

For related results on globalization of semismooth Newton methods applied to
linear and nonlinear complementarity problems, we refer to [HP] and [DFK].

6.1. Descent directions. We turn to a discussion of directions which are de-
scent directions satisfying (6.2)–(6.4). As for (6.3) we recall from [C] that convex
locally Lipschitz continuous functions are subdifferentiably regular, and thus we con-
centrate on (6.2) and (6.4).

The direction d = (δx, δμ) defined by the primal-dual active set method satisfies

f ′(x)δx + δμ + f(x) + μ = 0, δx + x− ψ = 0 on A, δμ + μ = 0 on I,(6.6)

where we suppress the iteration index k. To estimate θ′ observe that

((x− ψ), δx)A + (μ, δμ)I2 − (μ,max(−δμ, δx))I1

= −|x− ψ|2A − |μ|2I2
− (μ,max(−δμ, δx))I1

.

If δμ + δx ≤ 0 on I1, then

−(μ,max(−δμ, δx))I1 = (μ, δμ)I1 = −|μ|2I1
.
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If δμ + δx > 0 and δμ ≤ 0 on I1, then

−(μ,max(−δμ, δx))I1 = −(μ, δx)I1 ≤ −|μ|2I1
.

Hence if

{δμ + δx > 0} ∩ {δμ > 0} ∩ I1 = ∅,(6.7)

then

θ′((x, μ), (δx, δμ)) ≤ −2 |F (x, μ)|2,

and thus d = (δx, δμ) defined by (6.6) satisfies the first condition in (6.2). Note that
if (x, μ) = (xk, μk) is chosen according to the primal-dual active set strategy without
a subsequent line search, then μk = xk − ψ = 0 and (δμ)k+1 = 0 on (Ik)1. In this
case, (6.7) reduces to the assumption that {xk+1 > ψ} on (Ik)1. As for the second
condition in (6.2), let RI : R

d → R
|I| denote the restriction matrix from R

d to the
coordinates of active indices, and set AI(x) = RIf

′(x)RT
I . If ‖(AI(x))−1‖ ≤ K for a

constant K independent of x ∈ S and the combination of inactive indices I, then a
Schur complement argument shows that the second condition in (6.2) holds.

Turning to the closure property (6.4), let (x, μ) → (x̄, μ̄) and d(x, μ) → d̄ =
(δx, δμ). As a consequence of the assignment on the active and inactive sets as
expressed in (ii) of the algorithm, we have

(x̄ + δx− ψ)(μ̄ + δμ) = 0.(6.8)

Let Ā = {x̄−ψ + μ̄ > 0}, Ī1 = {x̄−ψ + μ̄ = 0}, and Ī2 = {x̄−ψ + μ̄ < 0}. We shall
give a sufficient condition which guarantees that θ′((x̄, μ̄), d̄) ≤ −2 |F (x̄, μ̄)|2. The
estimates on Ā and Ī2 are simple, and we turn to Ī1. We assume that

{δμ + δx < 0} ∩ {δx < 0} ∩ I1 = ∅ and

{δμ + δx > 0} ∩ {δμ > 0} ∩ I1 = ∅.
(6.9)

If δμ + δx ≤ 0 on I1, we have

−(μ̄,max(−δμ, δx))I1
= (μ̄, δμ)I1

.

If moreover the second factor in (6.8) is 0, then

−(μ̄,max(−δμ, δx))I1
= −|μ̄|2I1

,

as desired. Otherwise (x̄ + δx− ψ) = −μ̄ + δx = 0, and hence

−(μ̄,max(−δμ, δx))I1 = (μ̄, δμ)I1 = (δx, δμ),

and by (6.9)

−(μ̄,max(−δμ, δx))I1 ≤ −|δx|2I1
= −|μ̄|2I1

.

The case δμ + δx > 0 can be treated analogously and we arrive at θ′((x̄, μ̄), d̄) ≤
−2 |F (x̄, μ̄)|2, as announced.
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So far we provided sufficient conditions which guarantee that the direction given
by the primal-dual active set strategy can serve as a descent direction. We proceed
by describing alternative methods for selecting descent directions d. This will allow
us to circumvent an assumption of types (6.7) and (6.9) at the expense of solving a
nonlinear equation.

We commence by defining the function G((x, μ); d), with d = (δx, δμ) as follows:

G((x, μ); d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′(x)δx + δμ,⎛⎜⎜⎜⎜⎝
δx on S1 = A ∩ {μ ≥ 0}

−δμ on S2 = I2 ∩ {x ≤ ψ}

max(−δμ, δx) on S3 = (A ∩ {μ < 0}) ∪ (I2 ∩ {x > ψ}) ∪ I1.

⎞⎟⎟⎟⎟⎠ .

Note that for a full step based on the primal-dual active set strategy without a sub-
sequent line search we have S1 = A and S2 = I2 since (x− ψ)μ = 0. This structure
is not maintained if the line search of step (iii) is used.

The mapping G((x, μ); d) is a quasi-directional derivative of F (x, μ) in the sense
that

(1) (F (x, μ), F ′((x, μ); d)) ≤ (F (x, μ), G((x, μ); d)) for all (x, μ) ∈ S and d =
(δx, δμ);

(2) G((x, μ), td) = tG((x, μ); d) for t ≥ 0 and all (x, μ) ∈ S and d;
(3) lim((x,μ),d)→((x̄,μ̄),d̄) (F (x, μ), G((x, μ); d)) ≥ (F (x̄, μ̄), G((x̄, μ̄); d̄)).

In fact, to verify (1) note that on (A ∩ {μ < 0}) ∪ (I2 ∩ {x > ψ}) we have max(−μ,
x− ψ) > 0, and thus

(max(max(−μ, x− ψ),−δμ), (max(−μ, x− ψ), δx))
≤ (max(−μ, x− ψ),max(−δμ, δx)).

Hence we obtain

(F (x, μ), F ′((x, μ); d)) ≤ (F (x, μ), G((x, μ); d)).

Property (2) is obvious. Next suppose that (x, μ) → (x̄, μ̄), d → d̄. For indices i such
that (μ̄ + x̄− ψ)i �= 0, we have

G((x, μ); d)i → G((x̄, μ̄); d̄)i.

For indices i such that (μ̄ + x̄ − ψ)i = 0 the case x − ψ > 0, μ > 0 (and analogously
x−ψ < 0, μ < 0) for infinitely many (x, μ) in a neighborhood of (x̄, μ̄) is trivial since
in this case (F (2)(x̄, μ̄))i = 0. We need to examine two more cases. First, for i such
that (μ + x − ψ)i > 0 and μi ≥ 0, we have max(−μ, x − ψ)i = (x − ψ)i, and thus
max(−μ̄, x̄− ψ)i = (x̄− ψ)i = −(μ̄)i ≤ 0 and

F (2)(x, μ)iG
(2)((x, μ); d)i → F (2)(x̄, μ̄)iδxi ≥ F (2)(x̄, μ̄)i max(−δμ, δx)i.

Second, for indices i such that (μ + x − ψ)i < 0 and xi ≤ ψi, max(−μ, x − ψ)i =
−μi ≤ 0, and thus max(−μ̄, x̄− ψ)i = −μ̄i = (x̄− ψ)i ≤ 0 and

F (2)(x, μ)iG
(2)((x, μ); d)i → F (2)(x̄, μ̄)i(−δμ)i ≥ F (2)(x̄, μ̄)i max(−δμ, δx)i.
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Hence we obtain

lim
(x,μ)→(x̄,μ̄), d→d̄

(F (x, μ), G((x, μ); d)) ≥ (F (x̄, μ̄), G((x̄, μ̄); d̄)),

(3) is satisfied, and G is a quasi-directional derivative.
We turn to the description of two methods for selecting a descent direction using

the quasi-directional derivative G.
Method 1 (Bouligand direction). Find d = (δx, δμ) such that G((x, μ); d) +

F (x, μ) = 0, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′(x)δx + δμ + f(x) + μ = 0,⎛⎜⎜⎜⎜⎝
δx + x− ψ = 0 on S1

δμ + μ = 0 on S2

max(−μ, x− ψ) + max(−δμ, δx) = 0 on S3.

⎞⎟⎟⎟⎟⎠ .
(6.10)

Assume that for each (x, μ) ∈ S

G((x, μ); d) + F (x, μ) = 0 has a solution d = d(x, μ)(6.11)

satisfying

|d| ≤ b |G((x, μ); d)|.(6.12)

For such d we have using (1) that

θ′(x; d) = 2 (F (x, μ), F ′((x, μ), d)) ≤ 2 (F (x, μ), G((x, μ); d)) = −2 θ(x).

Moreover the closure property holds, i.e.,

θ′(x̄, d̄) ≤ 2 (F (x̄, μ̄), G((x̄, μ̄), d̄)) ≤ 2 lim
(x,μ)→(x̄,μ̄),d→d̄

(F (x), G((x, μ); d))

= −2 lim
(x,μ)→(x̄,μ̄)

|F (x, μ)|2 = −2θ(x̄, μ̄),

where we used (3). Together with (6.12) this implies that (6.2) and (6.4) hold.
Method 2 (gradient direction). For (x, μ) ∈ S, d = (δx, δμ) is chosen as the

solution to

min
d

(F (x, μ), G((x, μ); d)) +
σ̂

2
|d|2.(6.13)

If d is an optimal solution, then α = 1 is optimal for

min
α>0

α (F (x), G((x, μ); d)) +
α2σ̂

2
|d|2,

and thus differentiating this with respect α we have

(F (x), G(x, μ); d) + σ̂ |d|2 = 0.
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Hence

θ′((x, μ); d) = 2(F (x, μ), F ′((x, μ); d))

≤ 2(F (x), G((x, μ); d)) ≤ −2σ̂ |d|2
(6.14)

and

σ̂ |d|2 ≤ −(F (x, μ), F ′((x, μ); d)) ≤ |F ′((x, μ); d)||F (x, μ)| ≤ M |d||F (x, μ)|,(6.15)

where M denotes the bound of F ′(x, μ) on S. This gives the second condition in (6.2)
with b = M

σ̂ . Moreover, if (6.11)–(6.12) hold, then

1

2
θ′((x, μ); d) = (F (x, μ), F ′((x, μ); d)) ≤ (F (x, μ), G((x, μ); d))

= (F (x, μ), G((x, μ); d)) +
σ̂

2
|d|2 ≤ (F (x), G((x, μ); d̂)) +

σ̂

2
|d̂|2

≤ |F (x)|2 +
σ̂

2
b2 |F (x)|2 = −1

2
(2 − σ̂b2) θ(x),

(6.16)

where G((x, μ); d̂)+F (x, μ) = 0 and we assume that 2− σ̂b2 > 0. Thus, the direction
d defined by (6.13) satisfies (6.2) with σ̄ = (2 − σ̄b2)). To verify the closure property
note that

1

2
θ′(x̄, d̄) = (F (x̄, μ̄), F ′((x̄, μ̄); d̄)) ≤ (F (x̄, μ̄), G((x̄, μ̄); d̄))

= (F (x̄, μ̄), G((x̄, μ̄); d̄)) +
σ̂

2
|d̄|2 ≤ lim

(x,d)→(x̄,μ̄),d→d̄
(F (x, μ), G((x, μ), d)) +

σ̂

2
|d|2.

On the other hand, we have

2(F (x, μ), G((x, μ); d)) + σ̂|d|2 ≤ 2(F (x, μ), G((x, μ); d̂)) + σ̂|d̂|2 ≤ −(2 − σ̂b2) θ(x).

It thus follows that

θ′((x̄, μ̄); d̄) ≤ −(2 − σ̂b2) θ(x̄).

Let A = f ′(x). Then, condition (6.10) reduces to a variational inequality for δx
on S3:

max(Bδx + b, δx) + max(−μ, x− ψ) = 0,(6.17)

where

B = AS3S3 −AS3S2A
−1
S2S2

AS2S3

and

b = −AS3S1(x− ψ)S1 −AS3S2A
−1
S2S2

f(x)S2 + (f(x) + μ)S3 .

Hence (6.10) has a unique solution if A is symmetric and positive definite, for example.
In fact (6.17) is equivalent to

max(Bξ + z, ξ) = 0,(6.18)
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where ξ = δx + c, z = b + c− Bc, and c = max(−μ, x− ψ). The variational inequal-
ity (6.18) in turn is equivalent to the equation for the Lagrange multiplier for the
constrained problem {

min 1
2 (B−1y, y) + (B−1z, y),

y ≥ 0,

which clearly has a unique solution.
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APPLICATIONS TO CONTROL SYSTEMS∗
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Abstract. The Morse decomposition theory for single-valued dynamical systems is extended
to general dynamical systems and differential inclusions. Relations between chain recurrent sets,
chain recurrent components (chain control sets), and Morse decompositions for open-loop systems
are discussed. The robustness of feedback laws of closed-loop systems with respect to small time
delays and sample-hold controls is also addressed.
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1. Introduction. General dynamical systems (GDSs), also referred to as gen-
eral control systems or set-valued dynamical systems, are basically used to describe
the behavior of differential equations without uniqueness, differential inclusions, and
control systems [6, 9, 12, 18, 28, 24, 31, 34, 36, 41] as well as dynamical economic
phenomena [10]. They have been widely studied since the pioneering work in the
1960s [41, 42, 45].

In this article we want to take a step towards the Morse decomposition theory
for GDSs as well as differential inclusions. Morse decomposition theory is a powerful
tool for analyzing dynamical behavior of nonlinear systems inside invariant sets and
attractors, and it has aroused an increasing interest in recent years. For single-valued
dynamical systems, the Morse decomposition theory can be found in the original work
of Conley [15] (see also [2] and [43]). Extensions to random dynamical systems can
be found in the recent work of Crauel, Duc, and Siegmund [16] and Ochs [37], and
extensions to nonautonomous dynamical systems can be found in Rasmussen [40].

Our purposes here are as follows. First, we extend the Morse decomposition
theory for single-valued dynamical systems to GDSs. A key point in this part is
to introduce a suitable notion of an attractor-repeller pair and overcome technical
difficulties due to the lack of invariance properties of repellers, Morse sets, and limit
sets (fortunately attractors of GDSs are invariant). One will see that the definition
of an attractor-repeller pair given here for GDSs is somewhat different from that for
single-valued systems. However, the two definitions coincide when we come back to
the latter case.

Second, we are interested in the stability of Morse decompositions of attractors.
Specifically, we prove that Morse decompositions of attractors for GDSs are stable
under parameter perturbations (upper semicontinuity of Morse sets).
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Third, we discuss Morse decompositions and their stability with respect to per-
turbations for differential inclusions by applying the abstract results on GDSs. Dif-
ferential inclusions have a very rich background and successful applications in many
different areas; see, for instance, [3, 4, 5, 11, 12, 17, 29], etc. In contrast to differential
equations, the understanding of dynamical behavior for differential inclusions seems
to be more difficult, and it has aroused an increasing interest in recent years.

Finally, we give some applications to control systems. First, we investigate re-
lationships between chain recurrent sets, chain recurrent components (chain control
sets), and Morse decompositions for open-loop systems under weaker assumptions.
Then we discuss the robustness of feedback laws of closed-loop systems with respect
to small time delays and sample-hold controls from the point of view of the stability
of Morse decompositions.

This paper is organized as follows. Section 2 is concerned with preliminary work
on GDSs. Section 3 is devoted to the Morse decompositions for GDSs. In section 4
we consider upper semicontinuity of Morse decompositions of attractors with respect
to parameter perturbations for GDSs, and in section 5 we establish a Morse decom-
position theory for differential inclusions. Section 6 consists of some applications to
open-loop control systems. Robustness results on feedback laws of closed-loop systems
are contained in section 7.

2. Preliminary work on GDSs. Let X be a complete locally compact metric
space with metric d(·, ·). For any nonempty subsets A and B of X, define the Hausdorff
semidistance and distance, respectively, as

dH(A,B) = sup
x∈A

d(x,B), δH(A,B) = max {dH(A,B), dH(B,A)} ,

where d(x,B) = infb∈B d(x, b). For convenience, we also assign dH(∅, B) = 0.
Let A ⊂ X. The closure of A is denoted by A or clA, and the interior of A is

denoted by intA. We denote by B(A, r) the neighborhood {y ∈ X : d(y,A) < r} of
radius r > 0 of A. We say that a subset V of X is a neighborhood of A if A ⊂ intV .

Definition 2.1 (see [27]). A set-valued mapping G : R
+×X → X with nonempty

closed images is said to be a GDS if the following axioms hold:
(1) The semigroup property is

G(0, x) = x, G(t, G(s, x)) = G(t + s, x) ∀x ∈ X, s, t ∈ R
+;

(2) G(t, x) is continuous in t for each fixed x in the sense of Hausdorff distance;
(3) G(t, x) is upper semicontinuous in x uniformly in t on any compact interval J .
For a GDS G, we will also write G(t, x) as G(t)x.
From now on we always assume that there has been given a GDS G on X.
For convenience, we denote by G(I)V the set

⋃
(t,x)∈I×V G(t)x for V ⊂ X and I

⊂ R
+.
Let A and V be two subsets of X. We say that A attracts V if

dH (G(t)V, A) → 0 as t → ∞.

The attraction region Ω(A) and uniform attraction region Ωu(A) of A are defined,
respectively, as

Ω(A) := {x ∈ X| A attracts x},

Ωu(A) := {x ∈ X| A attracts a neighborhood U of x}.
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A is said to be Lyapunov stable if for all ε > 0 there exists δ > 0 such that

G(R+)B(A, δ) ⊂ B(A, ε).

If A is Lyapunov stable with Ω(A) (resp., Ωu(A)) being a neighborhood of A, then
we say that A is asymptotically stable (resp., uniformly asymptotically stable).

Remark 2.2 (see [30]). If A is compact and asymptotically stable, then Ω(A) =
Ωu(A). Therefore asymptotic stability and uniform asymptotic stability for compact
sets are actually equivalent. We also know that A attracts each compact subset K of
Ωu(A).

Let I ⊂ R be an interval. A trajectory γ of G on I is a mapping γ : I → X
satisfying γ(t2) ∈ G(t2 − t1)γ(t1) for any t1, t2 ∈ I with t1 ≤ t2.

In case I = R, we will simply say that γ is a complete trajectory. A complete
trajectory γ through x ∈ X means a complete trajectory with γ(0) = x.

Theorem 2.3 (see [41]). Every trajectory is continuous. Further, let y ∈ G(t1 −
t0)x, where t0 ≤ t1. Then there is a trajectory γ of G on [t0, t1] such that γ(t0) = x
and γ(t1) = y.

Theorem 2.4 (see[41], Barbashin’s theorem). Let [t0, t1] be a compact interval
and γn be a sequence of trajectories of G on [t0, t1] with γn(t0) → x0. Then there
is a subsequence γni

and a trajectory γ0 such that γni
converges uniformly on [t0, t1]

to γ0.
A set A ⊂ X is said to be positively invariant, negatively invariant, or invariant,

if G(t)A ⊂ A, G(t)A ⊃ A, or G(t)A = A), respectively, for all t ≥ 0.
A set A is said to be weakly invariant if, for any x ∈ A, there passes through x a

complete trajectory γ with γ(R) ⊂ A. In case A is compact, we infer from [30] that
this amounts to saying that A is negatively invariant with G(t)A∩A �= ∅ for all t ≥ 0.

The following basic fact is well known. See also [30].
Proposition 2.5. Let A be a nonempty compact subset of X. If A is negatively

(resp., positively) invariant under G, then for any x ∈ A, there is a trajectory γ of G
on (−∞, 0] (resp. [0,∞) ) which lies in A such that γ(0) = x.

Let A ⊂ X, and let γ be a trajectory of G on [a,+∞). The ω-limit sets ω(A) and
ω(γ) are defined, respectively, as

ω(A) := {y ∈ X : ∃tn → ∞ and yn ∈ G(tn)A such that yn → y},

ω(γ) := {x ∈ X| ∃tn → +∞ such that γ(tn) → x}.

Similarly one can define the α-limit set α(γ) of a trajectory γ on (−∞, a].
Remark 2.6. In case G(R+)A, γ([a,∞)), and γ((−∞, a]) are precompact, it

can be easily shown that the limit sets defined above are nonempty compact weakly
invariant sets [30].

Definition 2.7. Let A be a compact subset of X. If there is a neighborhood U
of A such that A = ω(U), then we say that A is an attractor of G, and U is called an
attractor neighborhood of A. A global attractor is an attractor A with Ωu(A) = X.

We allow the empty set ∅ to be an attractor of G with Ωu(∅) = ∅.
Remark 2.8. In general limit sets of GDSs may fail to be invariant. However, if

A = ω(U) is an attractor of G, then it is invariant (see [30]).
An attractor A is necessarily uniformly asymptotically stable [30]. Thus by Re-

mark 2.2 we have Ω(A) = Ωu(A). So from now on we will not distinguish Ω(A) and
Ωu(A).

Let Gλ (λ ∈ Λ) be a family of GDSs, where Λ is a metric space with metric ρ(·, ·).
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Theorem 2.9 (see [31]). Let λ0 ∈ Λ. Assume the following continuity assump-
tion holds:

(C0) For any ε, T > 0 and compact set A, there exists δ > 0 such that, when
ρ(λ, λ0) < δ,

dH (Gλ(t)x, Gλ0(t)B(x, ε)) < ε ∀x ∈ A, t ∈ [0, T ].

Suppose Gλ0
has an attractor A. Then the following hold:

(1) there exists μ > 0 such that, when ρ(λ, λ0) < μ, Gλ has an attractor Aλ;
(2) dH(Aλ,A) → 0 as λ → λ0;
(3) if K ⊂ Ω(A) is compact, then K ⊂ Ω(Aλ) provided ρ(λ, λ0) sufficiently small.

3. Morse decompositions of invariant sets for GDSs.

3.1. Attractor-repeller pair. As usual, let X be a complete locally compact
metric space, and let G be a GDS on X. We also assume that there has been given
a compact invariant set S of G.

Denote by G|S the restriction of G on S. Since S is invariant, G|S is also a GDS
on S.

We say that a compact set A is an attractor of G in S; by this we mean that
it is an attractor of G|S in S. We denote by ΩS(A) the attraction region of A in S
(under the GDS G|S). Then for any compact subset K ⊂ ΩS(A), as A attracts K,
we necessarily have ω(K) ⊂ A.

Let A be an attractor of G in S. Define

(3.1) A∗ = {x ∈ S| ω(x) \ A �= ∅}.

A∗ is said to be the repeller of G in S dual to A, and (A,A∗) is said to be an
attractor-repeller pair in S.

Remark 3.1. For single-valued dynamical systems, the repeller A∗ of an attractor
A in an invariant set S is defined by

(3.2) A∗ = {x ∈ S| ω(x) ∩ A = ∅};

see [15, 43]. Here we have used a slightly relaxed condition “ω(x) \ A �= ∅ ” to define
a repeller for GDSs. One easily checks that the two definitions coincide when we
come back to the situation of the single-valued case. Our definition seems to be more
suitable for set-valued systems. This can be seen from the following easy example.

Example 3.1. Consider the scalar differential inclusion,

x′(t) ∈ f(x(t)), where f(x) =

{
[−8x(x + 1)2, 2], −1 ≤ x ≤ 0;

−8x(x + 1)2, otherwise.

This system generates a GDS G on R which has two equilibria −1 and 0, with 0 being
asymptotically stable and −1 being unstable; see Figure 3.1.

The global attractor of G is the interval [−1, 0]. Define γ on [0,∞) as

γ(t) = −1 + 2t (0 ≤ t ≤ 1/2) and γ(t) = 0 (t > 1/2).

Then γ is a trajectory of G, which implies 0 ∈ ω(−1).
Let S = [−1, 0]. It is easy to see that A = {0} is an attractor of G with ΩS(A) =

(−1, 0]. If we define the repeller A∗ as in (3.1), then we have A∗ = {−1}. However,
if we define A∗ as in (3.2), then since 0 ∈ ω(−1) ∩ A �= ∅, we have A∗ = ∅.
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Fig. 3.1.

Proposition 3.2. Let (A,A∗) be an attractor-repeller pair in S, and let U be a
neighborhood of A∗. Then for any ε > 0, there is a T > 0 such that

G(t)x ⊂ B(A, ε) ∀t > T, x ∈ S \ U.

Proof. Let K = S \ intU . Then K ⊂ ΩS(A) and is compact. Hence A attracts
K, and the conclusion follows.

As a direct consequence of the above result, we have the following.
Proposition 3.3. Let (A,A∗) be an attractor-repeller pair in S, and let B be a

closed set distinct from A. Then for every ε > 0, there is a T > 0 such that, whenever
x ∈ S and t ≥ T is such that G(t)x ∩B �= ∅, we have d(x,A∗) < ε.

Proposition 3.4. Let A be an attractor of G in S. Then the following hold:
(1) A∗ = S \ ΩS(A) = S \ Ω(A);
(2) A∗ is compact and weakly invariant.
Proof. (1) Assume x ∈ S. Then ω(x) is a nonempty compact set, and ω(x) ⊂ A

if and only if x ∈ ΩS(A). This implies A∗ = S \ ΩS(A).
Since S is invariant, we have ΩS(A) = S ∩ Ω(A). Hence the second equality

follows.
(2) The compactness of A∗ follows from (1).
To check the weak invariance of A∗, we first show that A∗ is negatively invariant.

Indeed, we observe that

S = G(t)S = G(t)
(
ΩS(A) ∪ A∗) =

(
G(t)ΩS(A)

)
∪G(t)A∗ ⊂ ΩS(A) ∪G(t)A∗.

Since A∗ ⊂ S and A∗ ∩ ΩS(A) = ∅, we necessarily have A∗ ⊂ G(t)A∗.
Now assume that x ∈ A∗. Then by Proposition 2.5 and the negative invariance of

A∗, there is a trajectory γ− on (−∞, 0] such that γ−((−∞, 0]) ⊂ A∗ and γ−(0) = x.
To complete the proof, it suffices to show that there is also a trajectory γ+ on

[0,∞) such that γ([0,∞)) ⊂ A∗ with γ(0) = x.
Take an open neighborhood V of A∗ and ε > 0 sufficiently small so that V ∩

B(A, ε) = ∅. By virtue of Proposition 3.2 there is a T > 0 such that

(3.3) G(t)y ⊂ B(A, ε) ∀t > T, y ∈ S \ V.

Since ω(x) is compact, if ω(x) ⊂ ΩS(A), then A attracts ω(x) and consequently A
attracts x, which implies x ∈ ΩS(A) and leads to a contradiction. Therefore we
deduce that ω(x) ∩ A∗ �= ∅. It follows that there exist tn → +∞ and yn ∈ G(tn)x
such that yn ∈ V for all n. Let γn be a trajectory of G on [0, tn] satisfying γn(0) = x
and γn(tn) = yn. Define

τn = sup{τ > 0| γn([0, τ ]) ⊂ V }.
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Then γn(τn) ∈ ∂V ⊂ S \ V . We claim that there is a subsequence of τn, still denoted
by τn, such that τn → +∞. Indeed, if τn is bounded, say, τn ≤ s for all n, then by
(3.3) we have

yn = γn(tn) ∈ G(tn − τn)γn(τn) ∈ B(A, ε)

for large n with tn > T + s, which leads to a contradiction and thus proves our claim.
Now thanks to Barbashin’s theorem (Theorem 2.4), one concludes that there is

a trajectory γ+ on [0,∞) such that γ+(0) = x and γ+([0,∞)) ⊂ V . Note that we
actually have γ+([0,∞)) ⊂ A∗; otherwise, one will find d(γ+(t),A) → 0 as t → ∞, a
contradiction!

The proof is complete.
Proposition 3.5. Let A be an attractor of G in S, and let γ : R → S be a

complete trajectory through x ∈ S. Then the following properties hold:
(1) If ω(γ) ∩ A∗ �= ∅, then γ(R) ⊂ A∗, and if α(γ) ∩ A �= ∅, then γ(R) ⊂ A;
(2) If x �∈ A, then α(γ) ⊂ A∗, and if x �∈ A∗, then ω(γ) ⊂ A.
Proof. The proof is a slight modification of the corresponding one for single-valued

systems (see, e.g., [43]). It is thus omitted.

3.2. Morse decompositions of invariant sets.
Definition 3.6. Let S be a compact invariant set. An ordered collection M =

{M1, . . . ,Mn} of subsets of S is called a Morse decomposition of S if there exists an
increasing sequence ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = S of attractors of G in S such that

Mk = Ak ∩ A∗
k−1, 1 ≤ k ≤ n.

The sets Mk in Definition 3.6 are called Morse sets. For convenience in statement,
we allow Morse sets to be empty. This occurs, say, for instance, in case Aj = Aj−1

for j (in which case Mj = Aj ∩A∗
j−1 = ∅). However, if two Morse decompositions M

and M′ have the same nonempty Morse sets, they will be regarded as the same.
Theorem 3.7. Let M = {M1, . . . ,Mn} be a Morse decomposition of S with the

corresponding attractor sequence ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = S. Then the following
hold:

(1) For each k, (Ak−1,Mk) is an attractor-repeller pair in Ak;
(2) Mk are pairwise disjoint weakly invariant compact sets;
(3) If γ is a complete trajectory, then either γ(R) ⊂ Mk for some Morse set Mk

or else there are indices i < j such that α(γ) ⊂ Mj and ω(γ) ⊂ Mi;
(4) The attractors Ak are uniquely determined by the Morse sets, i.e.,

Ak =
⋃

1≤i≤k

Wu(Mi), 1 ≤ k ≤ n,

where Wu(Mi) = {x| there is a trajectory γ : R → S through x with α(γ) ⊂
Mi};

(5) If S is isolated, then so is each Ak.
Proof. The proof of (1)–(5) except for the weak invariance of Morse sets Mk can be

given in a quite similar manner as in the situation of single-valued dynamical systems
(see [43, Chapter 3, Theorem 1.7]). We thus omit the details of the argument.

The weak invariance of Mk is a consequence of (1) and the weak invariance of
repellers.

The following result seems to be interesting, which demonstrates that (2) and (3)
in Theorem 3.7 uniquely characterize a Morse decomposition.
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Theorem 3.8. Let S be a compact invariant set of G, and let M = {M1, . . . ,Mn}
be an ordered collection of pairwise disjoint compact and weakly invariant subsets of
S. Suppose that for every x ∈ S and every complete trajectory γ through x, we have
either γ(R) ⊂ Mi for some i or else there are indices i < j such that α(γ) ⊂ Mj and
ω(γ) ⊂ Mi. Then M is a Morse decomposition of S.

Proof. Set A0 = ∅, and for 1 ≤ k ≤ n define Ak as

Ak = {x ∈ S| there is a complete trajectory γ : R → S
through x satisfying α(γ) ⊂ (M1 ∪ · · · ∪Mk)}.

We will show that A0 ⊂ A1 ⊂ · · · ⊂ An = S is an attractor sequence in S such that
Ak ∩ A∗

k−1 = Mk, thus proving the result.
Step 1. We show that the sets Ak are closed.
It is clear that An = S is closed. We now proceed inductively and assume that

Ak+1 is closed. We prove that Ak is closed. Let xm ∈ Ak with xm → x ∈ S. Then
x ∈ Ak+1, since Ak ⊂ Ak+1 and Ak+1 is closed. For each xm there is a complete
trajectory γm : R → S with γm(0) = xm and α(γm) ⊂ (M1 ∪ · · · ∪ Mk). Using
Barbashin’s compactness theorem one finds a subsequence of γm, still denoted by
γm, such that γm converges uniformly on any compact interval of R to a complete
trajectory γ : R → S through x. We claim that α(γ) ⊂ (M1 ∪ · · · ∪Mk), and hence
x ∈ Ak.

Indeed, since γm(R) ⊂ Ak+1 and Ak+1 is closed, it follows that γ(R) ⊂ Ak+1 and
so α(γ) ⊂ Ak+1. We first show that

(3.4) Mj ∩ Ak+1 = ∅ for j > k + 1.

Suppose the contrary, then there is a y ∈ Mj ∩ Ak+1 for some j > k + 1. Since y ∈
Ak+1, there is a complete trajectory σ1 : R → S such that α(σ1) ⊂ (M1 ∪ · · · ∪Mk+1)
and σ1(0) = y. By y ∈ Mj and the weak invariance of Mj , there is also a complete
trajectory σ2 : R → Mj such that σ2(0) = y. Define σ : R → S as

σ(t) = σ1(t) (for t ≤ 0) and σ(t) = σ2(t) (for t > 0).

Then σ is a complete trajectory of G. Note that α(σ) ⊂ (M1∪· · ·∪Mk+1) and ω(σ) ⊂
Mj . On the other hand by assumption in the theorem and α(σ) ⊂ (M1 ∪ · · ·∪Mk+1),
we deduce that ω(σ) ⊂ Mi for some i ≤ k + 1. This leads to a contradiction, as
Mi ∩Mj = ∅.

Now because α(γ) ⊂ Mj for some j (by assumption in the theorem), we necessarily
have by α(γ) ⊂ Ak+1 and (3.4) that α(γ) ⊂ M1 ∪ · · · ∪ Mk ∪ Mk+1. Consequently,
either α(γ) ⊂ M1 ∪ · · · ∪Mk, in which case we are done, or else α(γ) ⊂ Mk+1.

We prove that the latter case will not occur. Suppose the contrary. We take
two open neighborhoods U, V of Mk+1 with U and V compact such that U ⊂ V
and V ∩ Mj = ∅ for j �= k + 1. Since α(γ) ⊂ Mk+1, there is a τ > 0 such that
γ((−∞,−τ ]) ⊂ U . Since γm(−τ) → γ(−τ), we may assume that γm(−τ) ∈ V for all
m. Let

sm = sup{s > τ | γm([−s,−τ ]) ⊂ V }.

Then γm(−sm) ∈ ∂V . We claim that sm → ∞. Otherwise, say sm ≤ s for some
s > τ , due to the uniform convergence of γm to γ on [−s,−τ ], one will find that
γm(−sm) ∈ V for m sufficiently large, a contradiction! Now set

σm(t) = γ(−sm + t), t ∈ [0, sm − τm].
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Then by Barbashin’s theorem there is a subsequence of σm, still denoted by σm,
such that σm converges uniformly on any compact interval of R

+ to a trajectory
σ : R

+ → V . Note that σ(0) ∈ ∂V as σm(0) = γm(−sm) ∈ ∂V . Since Ak+1 is closed
and γm(R) ⊂ Ak ⊂ Ak+1, we conclude that σ(t) ∈ Ak+1 for t ≥ 0. In particular,
σ(0) ∈ Ak+1. Therefore by the definition of Ak+1, there is also a complete trajectory
σ̃ : R → S through σ(0) such that α(σ̃) ⊂ M1 ∪ · · · ∪Mk ∪Mk+1. Define a complete
trajectory σ′ : R → S as

σ′(t) = σ̃(t) (for t ≤ 0) and σ′(t) = σ(t) (for t > 0).

Then α(σ′) ⊂ M1 ∪ · · · ∪Mk ∪Mk+1. By σ′(R+) ⊂ V we also have ω(σ′) ⊂ Mk+1.
Therefore by the assumption in the theorem we necessarily have σ′(R) ⊂ Mk+1, which
contradicts the fact σ′(0) = σ(0) ∈ ∂V .

Step 2. Ak is invariant. Indeed, if y ∈ Ak, then there is a complete trajectory
γ : R → S through y such that α(γ) ⊂ M1 ∪ · · · ∪ Mk ⊂ Ak. It then follows
that γ(R) ⊂ Ak. Consequently y ∈ G(t)γ(R) ⊂ G(t)Ak for any t ≥ 0. Hence
Ak ⊂ G(t)Ak.

We check that the converse inclusion G(t)Ak ⊂ Ak also holds true. Let y ∈
G(t)Ak. Then y ∈ G(t)x for some x ∈ Ak. Since S is invariant, there is a trajectory
γ3 : [t,∞) → S such that γ3(t) = y. Thanks to Theorem 2.3, one can find a trajectory
γ2 on [0, t] such that γ2(0) = x and γ2(t) = y. By invariance of S, we necessarily have
γ2([0, t]) ⊂ S. As x ∈ Ak, there is also a complete trajectory γ1 : R → S such that
γ1(0) = x and α(γ) ⊂ M1 ∪ · · · ∪Mk. Now we define a complete trajectory γ : R → S
such that

γ|(−∞,0] = γ1, γ|[0,t] = γ2, γ|[t,∞) = γ3.

Then γ(t) = y and α(γ) ⊂ M1 ∪ · · · ∪ Mk, which implies y ∈ Ak and proves the
conclusion.

Step 3. Ak is an attractor of G in S.
This is clearly true for k = n. We proceed by induction and assume Ak+1 to be

an attractor in S. Choose a neighborhood Uk+1 of Ak+1 such that Uk+1 is compact
and ω(Uk+1∩S) = Ak+1. Since Ak is closed, Mk+1∪Ak ⊂ Ak+1, and Mk+1∩Ak = ∅,
we can choose a neighborhood U of Ak and neighborhoods V0, V1 of Mk+1 contained
in Uk+1 such that V 0 ⊂ V1 and U ∩ V 1 = ∅. We show that ω(U ∩ S) = Ak when U
is chosen sufficiently small. Indeed, since Ak is invariant, we have Ak ⊂ ω(U ∩ S).
There remains to check

(3.5) Ak ⊃ ω(U ∩ S).

Suppose ω(U ∩ S) \ Ak �= ∅, and choose a y ∈ ω(U ∩ S) \ Ak �= ∅. Then there
are sequences xm ∈ U ∩ S, tm → ∞, and ym ∈ G(tm)xm such that ym → y. Let
γm be a trajectory on [0, tm] with γm(0) = xm and γm(tm) = ym. We can extract a
subsequence of γm, still denoted by γm, such that γm(tm + t) converges uniformly on
any compact interval of R to a complete trajectory γ(t) with γ(R) ⊂ S and γ(0) = y.
Now ω(U ∩ S) ⊂ ω(Uk+1 ∩ S) = Ak+1 implies γ(R) ⊂ Ak+1, and hence α(γ) ⊂ Ak+1

(by Step 1). Therefore α(γ) ⊂ M1 ∪ · · · ∪Mk ∪Mk+1. As y �∈ Ak, we necessarily have
α(γ) ⊂ Mk+1 and so there is a T > 0 such that, when t > T , we have γ(−t) ∈ V0.
Since γm(tm + t) converges uniformly on any compact interval of R to γ(t) for any
τ > 0, we can find a mτ sufficiently large such that γmτ ([tmτ − T − τ, tmτ − T ]) ⊂ V1.
Rewriting tmτ − T − τ as smτ , we obtain

γmτ ([smτ smτ + τ ]) ⊂ V1.
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Now suppose (3.5) fails to be true for any U . Pick a sequence εm ↓ 0 with

B(Ak, εm) ∩ V 1 = ∅, B(Ak, εm) ⊂ Uk+1.

Applying what we have just proved above for each U = B(Ak, εm) and τ = 1/εm, one
obtains a sequence of trajectories denoted by γm such that, for each m,

γm(0) ∈ B(Ak, εm) ∩ S, γm([sm, sm + 1/εm]) ⊂ V1

for some sm ≥ 0. Let τm = inf {0 ≤ τ ≤ sm : γm([τ, sm + 1/εm]) ⊂ V1}. Then
γm(τm) ∈ ∂V1. We claim that τm → ∞. Otherwise, say τm ≤ T < ∞, γm will
converge uniformly on [0, T ] to a trajectory γ. Since d(γm(0),Ak) → 0 and Ak is
invariant, one necessarily has γ([0, T ]) ⊂ Ak . It then follows that d(γm(τm),Ak) → 0,
which contradicts γm(τm) ∈ ∂V1 and proves the claim.

We may assume that γm(τm) → z. Then since γm(0) ∈ B(Ak, εm)∩S ⊂ Uk+1∩S
and τm → ∞, we see that z ∈ ω(Uk+1 ∩ S) = Ak+1. Of course we also have z ∈ ∂V1

(by γm(τm) ∈ ∂V1). Set γ̃m(t) = γm(τm + t). Noting that sm + 1/εm − τm ≥ 1/εm,
we see that γ̃m is well defined at least on [−τm, 1/εm] with γ̃m([0, 1/εm]) ⊂ V1. By
Barbashin’s theorem one can easily find a complete trajectory γ̃ : R → S such that
γ̃(0) = z ∈ ∂V1 and γ̃(R+) ⊂ V 1. Due to the assumption of the theorem we conclude

(3.6) ω(γ̃) ⊂ Mk+1.

It is clear that γ̃(R) ⊂ Ak+1 and so α(γ̃) ⊂ M1 ∪ · · · ∪Mk ∪Mk+1. This and (3.6) as
well as the assumption in the theorem imply that γ̃(R) ⊂ Mk+1, which contradicts
γ̃(0) ∈ ∂V1.

Step 4. Mk = Ak ∩ A∗
k−1 for all 1 ≤ k ≤ n.

Indeed, if x ∈ Mk, then there is a complete trajectory γ : R → Mk through x,
and thus by definition of Ak we have x ∈ Ak. If x �∈ A∗

k−1, then ω(x) ∩ A∗
k−1 = ∅,

and hence ω(x) ⊂ Ak−1. It follows that ω(γ) ⊂ Ak−1; therefore, ω(γ) ⊂ Mi for some
1 ≤ i ≤ k − 1. This contradicts ω(γ) ⊂ Mk . Thus x ∈ A∗

k−1, i.e., Mk ⊂ Ak ∩ A∗
k−1.

Conversely, let x ∈ Ak ∩ A∗
k−1. Then by Proposition 3.4 there is a complete

trajectory γ : R → A∗
k−1. We have ω(γ) ∩ (M1 ∪ · · · ∪Mk−1) = ∅ and so ω(γ) ⊂ Mj

for some j ≥ k. On the other hand x ∈ Ak implies α(γ) ⊂ M1∪· · ·∪Mk. Consequently
by the assumption of the theorem, we have γ(R) ⊂ Mk, which implies x ∈ Mk. The
proof is complete.

3.3. The finest Morse decomposition. Let M1 and M2 be two Morse de-
compositions of a compact invariant S. We say that M2 is finer than M1; this means
that each Morse set M ∈ M2 is contained in a Morse set M ′ ∈ M1. A Morse decom-
position M is said to be the finest Morse decomposition of S if M̃ is a finer Morse
decomposition implies M̃ = M.

In general the finest Morse decomposition may fail to exist (see [13, Appendix
B]).

Lemma 3.9. Let S be a compact invariant set, and let M = {M1, . . . ,Mm} and
M′ = {M ′

1, . . . ,M
′
n} be two Morse decompositions of S. Let Mij be the maximal

weakly invariant set contained in Mi ∩M ′
j. Then the ordered collection

{Mij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a Morse decomposition of S, where the order “�” is given by

Mij � Mkl ⇐⇒ either i < k or i = k, j ≤ l.
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Proof. Let Aij = Mi ∩Mj . Since M and M′ are both Morse decompositions, it
is trivial to check that, for any complete trajectory γ in S, either γ(R) is contained
in some Aij or there are indices 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n with i ≤ k and j ≤ l

(in case i = k) such that ω(γ) ⊂ Aij , α(γ) ⊂ Akl . Let Mij = cl M̃ij , where M̃ij

is the set of the union of all ω-limit sets and α-limit sets of complete trajectories in
S that are contained in Aij and the orbit of complete trajectories in Aij . It is clear

that M̃ij is weakly invariant (see Remark 2.6). Therefore by Barbashin’s theorem
we easily know that Mij is weakly invariant. By definition of Mij , it is necessarily
the maximal weakly invariant set in Aij . It is also clear that the ordered collection
{Mij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} satisfies all the assumptions in Theorem 3.8; hence, it
is a Morse decomposition of S.

Remark 3.10. We infer from Lemma 3.9 that the finest Morse decomposition, if
it exists, is finer than any other Morse decomposition of S.

Proposition 3.11. Morse sets in the finest Morse decomposition are connected.
Proof. Let M = {M1, . . . ,Mn} be the finest Morse decomposition of S. Suppose

that there is a Morse set Mk which is not connected. Then there exist disjoint open
sets U, V such that Mk ⊂ U ∪ V and Mk ∩U �= ∅ �= Mk ∩ V . Let M+

k = Mk ∩U , and
let M−

k = Mk ∩ V . We claim that, for any complete trajectory γ in S, none of the
following cases will occur:

(1) ω(γ) ∩M+
k �= ∅ �= ω(γ) ∩M−

k , or α(γ) ∩M+
k �= ∅ �= α(γ) ∩M−

k ;
(2) ω(γ) ⊂ M+

k and α(γ) ⊂ M−
k , or ω(γ) ⊂ M−

k and α(γ) ⊂ M+
k .

Indeed, the first case does not occur because the limit sets are connected. Suppose
the latter case. Then we must have γ(R)∩U �= ∅ �= γ(R)∩V and γ(R) ⊂ Mk ⊂ U ∪V.
(The first inclusion is due to the fact that both ω- and α-limit sets of γ are contained
in Mk.) This contradicts the connectedness of γ(R). Hence the claim holds true.

Now let M′ = {M1, . . . ,Mk−1,M
−
k ,M+

k ,Mk+1, . . . ,Mn}. One easily checks that
M′ is a Morse decomposition which is finer than M, a contradiction!

4. Stability of Morse decompositions of attractors for GDSs. We first
state and prove the following basic results.

Theorem 4.1. Let A be an attractor of G, and let A0 ⊂ A be an attractor of G
in A. Then A0 is also an attractor of G (in X).

Proof. We first show that A0 is Lyapunov stable in X. Suppose the contrary.
Then one would find a δ > 0 and an ε0 > 0 such that, for any 0 < ε < ε0, there is
an xε ∈ B(A0, ε) and a tε > 0 such that G(tε)xε \ B(A0, δ) �= ∅. We may assume δ
sufficiently small so that B(A0, δ) ⊂ Ω(A), and B(A0, δ) ∩ A is a compact subset of
ΩA(A0).

By Theorem 2.3 there is a trajectory γε on [0, tε] with γε(0) = xε ∈ B(A0, ε) and
d (γε(tε), A0) ≥ δ. We may assume that

γε([0, tε]) ⊂ B(A0, δ);

otherwise, we can choose tε as tε = inf{t > 0| d (γε(t), A0) ≥ δ}. We claim that
tε → +∞ as ε → 0. Indeed, if this is not the case, then there would exist a sequence
xn := xεn → x0 ∈ A0 such that the sequence tn := tεn is bounded. By axiom (3) in
Definition 2.1,

d (γεn(tn), A0) = d (γεn(tn), G(tn)A0) ≤ dH (G(tn)xn, G(tn)x0) → 0

as n → ∞, which leads to a contradiction and proves our claim. Now let

σε(t) = γε(tε + t) for t ∈ [−tε, 0].
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Then σε is a trajectory of G on [−tε, 0]. Invoking Barbashin’s theorem, we can extract
a subsequence σn := σεn with εn → 0 such that σn converges to some trajectory σ :
(−∞, 0] → B(A0, δ) uniformly on any compact interval [t, 0]. Since d (σn(0), A0) = δ,
we necessarily have d (σ(0), A0) = δ. Now we extend σ to a complete trajectory, still
denoted by σ. Then since σ(0) ∈ Ω(A), we see that σ(R) ⊂ Ω(A). We infer from

σ((−∞, 0]) ⊂ B(A0, δ) ⊂ Ω(A)

that σ(R) ⊂ A. It follows that α(σ) ⊂ B(A0, δ) ∩ A. Using the same argument
as in the proof of Proposition 3.5(1), one can easily check that σ(R) ⊂ A0, which
contradicts to d (σ(0), A0) = δ > 0. Hence A0 is Lyapunov stable.

Now we proceed to prove that A0 is an attractor of G in X. Take 0 < δ0 < δ1 <
δ2 such that B(A0, δ2) ⊂ Ω(A) and B(A0, δ2) ∩ A is a compact subset of ΩA(A0);
moreover,

G(R+)B(A0, δ0) ⊂ B(A0, δ1), G(R+)B(A0, δ1) ⊂ B(A0, δ2).

Note that A0 is an isolated invariant, as A is an attractor of G. We show that
B(A0, δ0) ⊂ Ω(A0), and thus A0 is an attractor of G in X.

For this purpose, we first check that

(4.1) ω(x) ⊂ Ω(A0), x ∈ B(A0, δ0).

Let x ∈ B(A0, δ0). Then ω(x) is a nonempty compact set, and ω(x) ⊂ B(A0, δ1). Let
y ∈ ω(x). Since ω(x) is negatively invariant, there is a trajectory γ : (−∞, 0] → ω(x)
with γ(0) = y. We extend γ to a complete trajectory, still denoted by γ. Then
γ(R) ⊂ B(A0, δ2). As above, we can again show that γ is in fact contained in A0.
Thus y ∈ A0.

Now x ∈ B(A0, δ0) ⊂ Ω(A) implies ω(x) ⊂ A. This and (4.1) imply that ω(x) ⊂
A0.

Theorem 4.2. Let A be an attractor, and let M = {M1, . . . ,Mn} be a Morse
decomposition of A. Then for each trajectory γ : R

+ → X with γ(0) ∈ Ω(A), there is
a k such that

lim
t→∞

d(γ(t), Mk) = 0.

Proof. Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A be the attractor sequence that
corresponds to M. Then there is a smallest k such that ω(γ) ⊂ Ak . A direct
inspection shows that ω(γ) ⊂ Mk, and the conclusion follows.

The main result in this section is the following theorem.
Theorem 4.3. Let Gλ (λ ∈ Λ) be a family of GDS on X, where Λ is a met-

ric space with metric ρ(·, ·). Assume Gλ satisfies the continuity assumption (C0) in
Theorem 2.9 at λ0 ∈ Λ.

Let A be an attractor of G = Gλ0 with Morse decomposition M = {M1, . . . ,Mn}.
Then when ρ(λ, λ0) is sufficiently small, Gλ has an attractor A(λ) with Morse de-
composition M(λ) = {M1(λ), . . . ,Mn(λ)}; moreover, for each 1 ≤ k ≤ n, we have

lim
λ→λ0

dH (Mk(λ), Mk) = 0.

Proof. Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A be the increasing sequence of attractors
associated with the Morse decomposition M. Then Ak are also attractors of G in X.



46 DESHENG LI

Let ε > 0 be given arbitrarily. We may assume that ε is small so that B(Ak, ε) ⊂
Ω(Ak) for all 1 ≤ k ≤ n and are compact. Let Ã∗

k = X \ Ω(Ak). Then it is trivial to

verify that Mk = Ak ∩ Ã∗
k−1 . We observe that

(4.2) B(Ak, ε) ∩ B
(
Ã∗

k−1, ε
)
⊂ B(Mk, ε).

Let Vk = B(Ak, ε)\B(Ã∗
k−1, ε). Note that Vk is a compact subset of Ω(Ak−1). Thanks

to Theorem 2.9, there is a δ > 0 such that, when ρ(λ, λ0) < δ, Gλ has for each k an
attractor Ak(λ) with

(4.3) Ak(λ) ⊂ B(Ak, ε), Vk ⊂ Ω (Ak−1(λ)) .

Since B(Ak, ε) ⊂ Ω(Ak) and is compact, we can also assume δ > 0 is sufficiently
small so that by Theorem 2.9 we also have B(Ak, ε) ⊂ Ω(Ak(λ)) for 0 ≤ k ≤ n, and
consequently for each k fixed,

Ai(λ) ⊂ B(Ai, ε) ⊂ B(Ak, ε) ⊂ Ω(Ak(λ)) for i ≤ k,

which implies Ai(λ) ⊂ Ak(λ) for all i ≤ k. Therefore

∅ = A0(λ) ⊂ A1(λ) ⊂ · · · ⊂ An(λ) = A(λ)

is an increasing sequence of attractors of Gλ .
Let Mk(λ) = Ak(λ) ∩ A∗

k−1(λ). Then M(λ) = {M1(λ), . . . ,Mn(λ)} is a Morse
decomposition of A(λ). There remains to check that Mk(λ) ⊂ B(Mk, ε) . Indeed, by
Theorem 3.7 we know that Mk(λ) is the repeller of Gλ in Ak(λ) dual to Ak−1(λ).
Therefore by Proposition 3.4(1),

Mk(λ) = Ak(λ) \ ΩAk(λ)(Ak−1(λ)) = Ak(λ) \ Ω(Ak−1(λ)).

Further by (4.3) we find that

Mk(λ) ⊂ B(Ak, ε) \ Vk = B(Ak, ε) \
(
B(Ak, ε) \ B

(
Ã∗

k−1, ε
))

⊂ B(Ak, ε) \
(
B(Ak, ε) \ B

(
Ã∗

k−1, ε
))

= B(Ak, ε) ∩ B
(
Ã∗

k−1, ε
)
⊂ (by (4.2)) ⊂ B(Mk, ε).

The proof of the theorem is complete.
Some results concerning the robustness of Morse decompositions under discretiza-

tion for specific functional differential equations can be found in Gedeon and Hines
[20, 21], etc.

Remark 4.4. We remark that some of the perturbed Morse sets Mk(λ) in Theorem
4.3 may be ∅, even if each Mk is nonvoid. This can be seen by considering the scalar
equation:

x′(t) = −(x + 2)(x2 − 1)x2,

which has an equilibrium E = 0 that disappears when we add an arbitrary small
positive number λ > 0 in the right-hand side.

Theorem 4.5. Assume the hypothesis in Theorem 4.3. Let A be an attractor of
Gλ0 with Morse decomposition M = {M1, . . . ,Mn}. Then for any compact subset K
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of Ω(A) and ε > 0, there exists δ > 0 such that when ρ(λ, λ0) < δ, for any trajectory
γ of Gλ with γ(0) ∈ K,

lim sup
t→∞

d (γ(t), Mk) ≤ ε

for some Mk.
Proof. It is a consequence of Theorems 2.9, 4.2, and 4.3.

5. Morse decompositions for differential inclusions. Consider the differ-
ential inclusion on R

m

(5.1) x′(t) ∈ f(x(t)), t ≥ 0,

where f is always assumed to satisfy the following assumptions:
(H1) f(x) is a nonempty convex compact subset of R

m for every x ∈ R
m;

(H2) f is upper semicontinuous.
Let I be an interval. A mapping x(·) : I → R

m is said to be a solution of (5.1)
on I if it is absolutely continuous on any compact interval J ⊂ I and solves (5.1) at
a.e. t ∈ I.

A solution on R will be simply called a complete solution.
The reachable mapping F of (5.1) is defined as, for all (t, x) ∈ R

+ × R
m,

F(t)x = {x(t)| x(·) is a solution of (5.1) with x(0) = x} .

Although F is a GDS on R
m provided no solutions of (5.1) blow up in finite time

[31], we prefer to introduce the dynamical concepts for (5.1) while disregarding the
blowup of solutions which may be outside our interest. For instance, for two subsets
A and V of R

m we say that A attracts V ; this means no solutions x(·) with x(0) ∈ V
blow up in finite time, and dH(F(t)V, A) → 0 as t → ∞. The other concepts such
as attraction regions, asymptotic stability, limit sets, invariant sets, attractors, and
Morse decompositions can also be defined in the same manner as we do in the situation
of GDSs. We omit the details.

Proposition 5.1. Let Ω be a locally compact subset of R
m. If Ω is positively

invariant, then F is a GDS on Ω.
Proof. The proof is a slight modification of the one for Theorem 5.4 in Li and

Zhang [31].
Remark 5.2. Thanks to Proposition 5.1, one can immediately apply the abstract

results in sections 3 and 4 (except Theorems 4.3 and 4.5) to system (5.1) restricted
on any locally compact positively invariant sets to establish a Morse decomposition
theory for differential inclusions (without any additional assumptions on f(x)). Since
the results are just copies of those for GDSs, their statements are thus omitted. When
referring to these results, we will directly consult the corresponding ones in previous
sections.

Now let us give two simple examples on Morse decompositions.
Example 5.1 (gradient system). Let Ω be an open subset of R

m. We say that
(5.1) is a gradient system on Ω; there exists a function V (x) on Ω such that, for any
solution x(·) of (5.1) contained in Ω, V (x(t)) strictly decreases whenever x(·) is not
an equilibrium. V (x) is called a Lyapunov function of (5.1) on Ω.

An example for gradient systems is the one in which f(x) = −∂V (x), where
V : R

m → R is a locally Lipschitz sleek function or a lower semicontinuous convex
function and ∂V (x) is the generalized gradient of V (x); see [3, p. 341] and [4, p. 158]
for details.
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Suppose that (5.1) is a gradient system on Ω with a Lyapunov function V (x)
satisfying V (x) → +∞ as x → ∂Ω; i.e., for any a > 0 there is a compact subset K of
Ω such that

V (x) > a ∀x ∈ Ω \K.

Then the set E of equilibria of the system in Ω is nonvoid, as the minimum point x∗ of
V in Ω exists and is necessarily an equilibrium. Furthermore, it can be easily shown
that the system has an attractor A in Ω. If we further assume E to be finite,

E = {Ek| k = 1, 2, . . . , n},

where Ek (k = 1, 2, . . . , n) are ordered so that V (Ei) ≤ V (Ej) when i < j, then
by Theorem 3.8 (in fact, a copy of this theorem to differential inclusions) we easily
deduce that {E1, . . . , En} forms a natural Morse decomposition of A.

Example 5.2. Consider the following differential inclusion which relates to the
generalized equations governing Chua’s circuit [8]:⎛⎝ ẋ1

ẋ2

ẋ3

⎞⎠ ∈ A

⎛⎝ x1 − k Sgn(x1)
x2

x3 + k Sgn (x1)

⎞⎠ , A =

⎛⎝ −α(b + 1)
1
0

α
−1
−β

0
1
0

⎞⎠ ,(5.2)

where ẋi = x′
i(t) and Sgn(x) corresponds to the signal function,

Sgn(x) = 1 (x > 0), Sgn(x) = −1 (x < 0), Sgn(0) = [−1, 1].

Taking α = −1, β = 288, b = −36, and k = 1, the system reads as follows:⎛⎝ ẋ1

ẋ2

ẋ3

⎞⎠ ∈ A0

⎛⎝ x1

x2

x3

⎞⎠ +

⎛⎝ 35Sgn(x1)
0
0

⎞⎠ , A0 =

⎛⎝ −35
1
0

−1
−1

−288

0
1
0

⎞⎠ .(5.3)

Simple computations show that all the eigenvalues of A0 are negative, so the system
(5.3) is dissipative and has a global attractor A. (5.3) has three equilibria:

E1 = (−1, 0, 1), E2 = (1, 0,−1), E3 = (0, 0, 0),

where E1 and E2 are asymptotically stable. Let A0 = ∅, A1 = {E1}, A2 = {E1, E2},
and A3 = A. Then {Ak} is an increasing attractor sequence which yields a Morse
decomposition M = {M1,M2,M3} of A with

M1 = {E1}, M2 = {E2}, E3 ∈ M3.

Concerning the stability of Morse decompositions, we have the following.
Theorem 5.3. Assume (5.1) has an attractor A with Morse decomposition

{M1, . . . ,Mn}. Then for any compact subset K of Ω(A), there exists a δ > 0 such
that, when 0 ≤ λ < δ, the inflated system

(5.4) x′(t) ∈ fλ(x(t)), fλ(x) = conv f
(
x + λB1

)
+ λB1,

where Br denotes the ball B(0, r) in R
m, has an attractor A(λ) with K ⊂ Ω(A(λ))

and a Morse decomposition {M1(λ), . . . ,Mn(λ)}; moreover,

(5.5) lim
λ→0

δH (Mk(λ), Mk) = 0 ∀ 1 ≤ k ≤ n.
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Proof. The proof of the theorem can be obtained by slightly modifying the proof
of Theorem 2.10 in [32] and applying Theorem 4.3. We omit the details.

As a consequence of the above theorem and Theorem 4.2, we have the following.
Theorem 5.4. Assume (5.1) has an attractor A with Morse decomposition

{M1, . . . ,Mn}. Let K ⊂ Ω(A) be compact. Then for any compact subset K of Ω(A)
and ε > 0, there is a δ > 0 such that when λ < δ, for any solution x(·) of the perturbed
system (5.4) with x(0) ∈ K, we have

lim sup
t→∞

d (x(t), Mk) ≤ ε

for some Mk.

6. Chain recurrent sets and Morse decompositions. This section is con-
cerned with the open-loop system on R

m:

(6.1) x′(t) = f(x(t), u(t)), u ∈ U ,

where U = {u ∈ L∞(R; Rd)| u(t) ∈ U for a.e. t ∈ R} is the set of admissible controls
(inputs), and U ⊂ R

d is the control range.
It is well known that chain recurrent sets, chain recurrent components, and chain

control sets play a crucial role in the dynamical theory of control. As one of our
main purposes here, we give a detailed discussion on the relations between these sets
and Morse decompositions. In case one could associate the control system with a
single-valued control flow defined on the lifted phase space X = U × R

m, where
U is equipped with the weak∗-topology [13, 14], all the results presented below can
be obtained by applying some known ones in the theory of single-valued dynamical
systems. However, to do so we have to impose on the system some strong assumptions
to guarantee the continuity of the control flow. For instance, a typical assumption in
this line is to assume that the system is affine in control [13], i.e.,

f(x, u) = h(x) +
∑

1≤i≤d

uigi(x).

Our approach here is to connect control systems directly with differential inclusions,
which enables us to work under weaker conditions.

We first recall that a mapping x(·) : I → R
m is said to be a solution of (6.1) on

I with input u ∈ U , if it is absolutely continuous on any compact interval J ⊂ I and
the pair (x(·), u) solves (6.1) at a.e. t ∈ I.

We will denote by φ(t, x, u) a solution of (6.1) with input u and φ(0, x, u) = x.
Theorem 6.1 (see [36]). Assume that the following assumptions hold:

(C1) The control U is compact;
(C2) f(x, u) is continuous with F (x) := {f(x, u)| u ∈ U} being convex for each

x ∈ R
m.

Then the open-loop system (6.1) is equivalent to the following differential inclusion:

(6.2) x′(t) ∈ F (x(t)).

Remark 6.2. Note that under the assumptions (C1) and (C2), F (x) is a contin-
uous set valued mapping with compact convex images.

There is an additional assumption “f(x, u) ≤ c(1 + |x|) for all x ∈ R
m ” in [36].

However, we point out that this can be removed by using appropriate cutoff functions.
In fact, if x(·) is a solution of (6.2) on [0, T ), then for any τ < T , x(·) is bounded on
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[0, τ ]. Assume that |x(t)| ≤ R on [0, τ ]. Let a(x) be a continuous function on R
m with

a(x) ≡ 1 for |x| ≤ R and a(x) ≡ 0 for |x| > 2R. Then x(·) solves x′(t) ∈ a(x(t))F (x(t))
on [0, τ ]. Noting that

a(x)F (x) = {a(x)f(x, u)| u ∈ U}

and that a(x)f(x, u) is bounded, by the original result in [36] one immediately con-
cludes that x(·) is a solution (6.1) on [0, τ ]. Since τ is arbitrary, we see that x(·) is a
solution of (6.1) on [0, T ). Conversely, it is clear that any solution of (6.1) is a solution
of (6.2).

Due to Theorem 6.1, we will not distinguish the control system (6.1) with dif-
ferential inclusion (6.2) in the following argument, and all the dynamical concepts
without definitions below are understood with respect to (6.2).

Throughout this section we will always assume and only assume that (C1), (C2),
and a local Lipschitz continuity condition (C3) are satisfied, where (C3) is given as
follows:

(C3) f(x, u) is locally Lipschitz in x in a uniform manner with respect to u ∈ U ;
i.e., for any bounded set B ⊂ R

m, there exists LB > 0 such that

(6.3) |f(x, u) − f(y, u)| ≤ LB |x− y| ∀x, y ∈ B, u ∈ U.

We emphasize that in our case it is difficult to define a continuous control flow on the
lifted space mentioned above. The main difficulty lies in verifying the continuity of
the flow due to the nonlinearity of f(x, u) in u (recall that U is equipped with the
weak∗-topology).

We denote by F the reachable mapping of (6.2).
Definition 6.3. Let K be a closed subset of R

m. For x, y ∈ R
m and ε, T > 0, an

(ε, T )-chain ζ in K from x to y is given by a positive integer n ∈ N, x0, . . . , xn ∈ R
m,

u0, . . . , un−1 ∈ U , and T0, . . . , Tn−1 ≥ T with x0 = x, xn = y and

φ ([0, Ti], xi, ui) ⊂ K, |φ (Ti, xi, ui) − xi+1| < ε, i = 0, 1, . . . , n− 1.

If for all ε, T > 0 there is an (ε, T )-chain from x to y in K, then we say that x
is chain controllable to y in K.

Remark 6.4. The set K can be viewed as a constraint. In case K = R
m, we will

simply drop the words “in K” in the above definition.
Let K ⊂ R

m be closed, A ⊂ K. Define the K-chain limit set CK(A) as

CK(A) = {y ∈ R
m| ∃x ∈ A such that x is chain controllable to y in K}.

Lemma 6.5. Let K be a compact positively invariant set, A ⊂ K. Then CK(A)
is a compact invariant set with ω(A) ⊂ CK(A).

Proof. We prove only the negative invariance of CK(A). The closedness and
positive invariance as well as inclusion “ω(A) ⊂ CK(A)” can be easily examined.

Let z ∈ CK(A) and s > 0. We need to check that there exits w ∈ CK(A) such
that z ∈ F (s)w.

Let εk = 1/k. Take a sequence of positive numbers s ≤ τk → +∞. Then for each
k there exists 0 < δk < εk such that

(6.4) |φ(t, x, u) − φ(t, y, u)| < εk ∀ t ∈ [0, 4τk] ∀u ∈ U

for all x, y ∈ K with |x− y| < δk (this follows from the Lipschitz continuity property
of f). Since z ∈ CK(A), there is a x̂ ∈ A such that for each k one can find a
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(δk, 2τk)-chain from x̂ to z in K given by

x̂ = x0, x1, . . . , xnk−1, xnk
= z, u0, u1, . . . , unk−1 ∈ U , T0, T1, . . . , Tnk−1 ≥ 2τk.

We may assume that Ti ≤ 4τk. Otherwise, since there is no limitation on the number
nk of “jumps,” one could modify the original chain to such a one by just dividing the
time intervals with length larger than 4τk.

Set wk = φ(Tnk−1 − s, xnk−1, unk−1). Then d (z,F(s)wk) ≤ δk. Since K is
compact, we may assume that wk → w. By upper semicontinuity of F we have
z ∈ F(s)w. There remains to verify that w ∈ CK(A). For this purpose we first
formulate for each wk an (εk, τk)-chain from x̂ to wk in K.

If nk = 1, then clearly

x̃0 = x̂, x̃1 = wk ∈ R
m, T̃0 = T0 − s ≥ τk, and ũ0 = u0 ∈ U

give an (εk, τk)-chain from x̂ to wk. So we assume that nk ≥ 2. Define ũnk−2 ∈ U as

ũnk−2(t) = unk−2(t) (t < Tnk−2), ũnk−2(t) = unk−1(t− Tnk−2) (t ≥ Tnk−2).

Let T̃nk−2 = Tnk−2 + (Tnk−1 − s). Then

|φ(T̃nk−2, xnk−2, ũnk−2) − wk|
= |φ (Tnk−1 − s, φ (Tnk−2, xnk−2, unk−2) , unk−1) − φ(Tnk

− s, xnk−1, unk−1)|

Because

|φ (Tnk−2, xnk−2, unk−2) − xnk−1| < δk,

by (6.4) we deduce that |φ(T̃nk−2, xnk−2, ũnk−2) − wk| < εk. It follows that

x̂ = x0, . . . , xnk−2, wk ∈ R
m, u0, . . . , unk−3, ũnk−2 ∈ U , T0, . . . , Tnk−3, T̃nk−2 ≥ τk

is an (εk, τk)-chain from x̂ to wk in K.
Now since ωk → w, one easily sees that, for any ε, T > 0, there is an (ε, T )-chain

from x̂ to w in K. Hence w ∈ CK(A).
Theorem 6.6. Let K be a compact positively invariant set. Let A be a closed

subset of K. Then CK(A) is the intersection of all attractors of (6.2) in K containing
ω(A).

Proof. For ε, T > 0, define

CK(A, ε, T ) = {y ∈ K| ∃x ∈ A and an (ε, T )-chain from x to y in K}.

Then CK(A, ε, T ) is open in K. Note that CK(A) =
⋂

ε,T>0 CK(A, ε, T ). Indeed, it is
clear that CK(A) ⊂

⋂
ε,T>0 CK(A, ε, T ). Suppose that y ∈

⋂
ε,T>0 CK(A, ε, T ). Then

for each k ∈ N, there is a (1/k, k)-chain from some xk to y. As K is compact, we can
assume xk → x ∈ A. Now using some techniques used above, for any ε, T > 0 one
can easily formulate an (ε, T )-chain in K from x to y. Hence y ∈ CK(A).

For ε, T > 0, let V := C K(A, ε, T ). We claim that

(6.5) ω(V ) ⊂ CK(A, ε, T ) ⊂ intKV,
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where intKV is the interior of V with respect to K. The second inclusion in (6.5) is
in fact obvious. Now let z ∈ ω(V ). Then there are xn ∈ V , tn → +∞, and un ∈ U
such that φ(tn, xn, un) → z. Choose n0 ∈ N, δ > 0, and p ∈ CK(A, ε, T ) such that

|p− xn0
| < δ, tn0

> T, and |φ(tn0
, xn0

, un0
) − z| < ε/2,

|φ(tn0
, x, un0) − φ(tn0

, xn0
, un0)| < ε/2 ∀x ∈ K with |x− xn0 | < δ.

By definition of p there is an (ε, T )-chain from some y ∈ Y to p in K. We observe
that

|φ(tn0
, p, un0) − z| ≤ |φ(tn0 , p, un0) − φ(tn0 , xn0 , un0)| + |φ(tn0 , xn0

, un0
) − z|

< ε/2 + ε/2 = ε.

Thus concatenation yields an (ε, T )-chain from y to z in K. This proves (6.5).
(6.5) implies that A = ω(V ) is an attractor in K. By invariance of CK(A), we

find that

A = ω(C K(A, ε, T )) ⊃ ω(CK(A)) = CK(A) ⊃ ω(A).

Therefore we have shown that, for any ε, T > 0, there is an attractor A of (6.2) in
K containing ω(A) such that A ⊂ CK(A, ε, T ). Consequently the intersection of all
attractors of (6.2) in K containing ω(A) is necessarily contained in CK(A).

Now suppose that A is an attractor in K containing ω(A). Let δ > 0 be given
arbitrarily but sufficiently small so that

Vk := B(A, kδ) ∩K ⊂ ΩK(A), k = 1, 2.

Then Vk are neighborhoods of A in K and A attracts V2. Therefore there is a t0 > 0
such that F(t)V2 ⊂ V1 for all t > t0. Choose a T > t0 such that F(T )A ⊂ V1. Then
it is trivial to check that, when ε < δ, any (ε, T )-chain in K from A must end in V1.
It follows that CK(A) ⊂ V1. Since δ is arbitrary, we find CK(A) ⊂ A. The proof is
complete.

Definition 6.7. Let K be a closed subset of R
m. A K-chain control set D is a

maximal set in K with the property that, for any x, y ∈ D, x is controllable to y in K.
The K-chain recurrent set RK is defined as

RK = {x ∈ K| x ∈ CK(x)}.

The connected components of RK is said to be K-chain recurrent components.
Proposition 6.8. Let K be a compact positively invariant set. Then the follow-

ing hold:
(1) D is a K-chain control set if and only if it is a K-chain recurrent component;
(2) any K-chain recurrent component D is compact and weakly invariant.
Proof. (1) The proof of this conclusion is just a copy of the one for [13, Proposition

B.2.21] and is thus omitted.
(2) We check only the weak invariance of D. The verification of compactness is

trivial.
Let x ∈ D. We need to show that there is a complete solution through x which

lies in D. For this purpose, it suffices to prove that there is a solution x(·) : [0, 1] → D
as well as a solution x̃(·) : [−1, 0] → D of (6.2) with x(0) = x = x̃(0).
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Since x ∈ D, for each k ∈ N there is a (1/k, k)-chain from x to x in K given by

xk
0 , . . . , x

k
nk

∈ K, uk
0 , . . . , u

k
nk−1 ∈ U , T k

0 , . . . , T
k
nk−1 ≥ k,

with xk
0 = x = xk

nk
. We can assume that xk(·) = φ(·, x, uk

0) converges uniformly on
[0, 1] to a solution x(·). We show that x(s) ∈ D for all s ∈ [0, 1].

Let ε, T > 0 be given arbitrarily. We formulate an (ε, T )-chain ζ in K from x(s) to
x(s) as follows. First, since each solution xk(·) is defined on [0, T +1] for k sufficiently
large, by Barbashin’s theorem one can also assume x(·) is defined on [0, T + 1] and
that xk(·) converges uniformly on [0, T + 1] to x(·). Let x(t) = φ(t, x, ũ) for some
ũ ∈ U . We choose a k > 2T + 1 with 1/k < ε such that

(6.6) |φ(t, y, u) − φ(t, z, u)| < ε ∀t ∈ [0, T + 1], u ∈ U

for all y, z ∈ K with |y − z| < 1/k and

(6.7) |xk(t) − x(t)| < ε ∀t ∈ [0, T + 1].

Define ζ as

x0 = x(s), x1 = φ(T + s, xk
0 , u

k
0), xi = xk

i−1 (for 2 ≤ i ≤ nk), xnk+1 = x(s);

u0 = ũ, u1(t) = uk
0(T + s + t), ui = uk

i−1 (for 2 ≤ i ≤ nk − 1),

unk
(t) = uk

nk−1(t) (for t ≤ T k
nk−1), unk

(t) = ũ(t− T k
nk−1) (for t > T k

nk−1),

T0 = T, T1 = T k
0 − T − s, Ti = T k

i−1 (for 2 ≤ i ≤ nk − 1), Tnk
= T k

nk−1 + s.

We claim that ζ is an (ε, T )-chain from x(s) to x(s).
Indeed, simple computations show that

|φ(T0, x0, u0) − x1| = |x(T + s) − xk(T + s)| < (by (6.7)) < ε,

|φ(T1, x1, u1) − x2| = |φ(T k
0 , x

k
0 , u

k
0) − xk

1 | < 1/k < ε.

We also have

|φ(Tnk
, xnk

, unk
) − xnk+1| = |φ

(
s, φ(T k

nk−1, x
k
nk−1, u

k
nk−1), ũ

)
− x(s)|

= |φ
(
s, φ(T k

nk−1, x
k
nk−1, u

k
nk−1), ũ

)
− φ(s, x, ũ)|.

Because |φ(T k
nk−1, x

k
nk−1, u

k
nk−1) − x| < 1/k, by (6.6) we find

|φ(Tnk
, xnk

, unk
) − xnk+1| < ε.

This finishes the proof of our claim.
The proof for the existence of a solution x̃(·) : [−1, 0] → D with x̃(0) = x is

parallel.
Remark 6.9. Since K-chain recurrent components are compact, they are pairwise

disjoint.
Proposition 6.10. Let K be a compact positively invariant set, and let x(·) be

a complete solution in K. Then there are K-chain recurrent components D1 and D2

of RK such that ω(x(·)) ⊂ D1 and α(x(·)) ⊂ D2. Further if D1 = D2 = D, then
x(R) ⊂ D.
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Proof. One easily checks that ω(x(·)), α(x(·)) ⊂ RK . Since they are connected,
each of them is naturally contained in a K-chain recurrent component of RK .

In case D1 = D2 = D, it can be shown that x(·) is contained in RK with D∪x(R)
being a K-chain recurrent component (using the fact that D is a K-chain control set).
Hence by maximality of chain recurrent components we must have x(R) ⊂ D.

For K-chain recurrent components D1,D2 ⊂ RK , we denote by [D1,D2] the set

{x ∈ K| there is a complete solution x(·) in K with

x(0) = x and α(x(·)) ⊂ D1, ω(x(·)) ⊂ D2 }.

Then by Proposition 6.10 we have [D,D] = D if K is a compact positively invariant
set.

Theorem 6.11. Assume S is a compact invariant set of (6.2). Let A be the
family of attractors of (6.2) in S. Then RS =

⋂
A∈A (A ∪A∗).

Proof. The proof is a slight modification of that of Theorem B.2.26 in [13] (The-
orem 6.6 here plays a key role). We omit the details.

Now we state and prove the following theorem.
Theorem 6.12. Assume S is a compact invariant set of (6.2). Let M be the

family of Morse decompositions of S. Then the following assertions hold.
(1) RS =

⋂
M∈M

(⋃
M∈M M

)
.

(2) Let M be a Morse decomposition of S. Then each S-chain recurrent com-
ponent is contained in some Morse set M ∈ M. Furthermore, for each
M ∈ M, there is a family D of S-chain recurrent components such that
M =

⋃
D1,D2∈D [D1,D2].

(3) If RS has only a finite number of S-chain recurrent components, then S has
the finest Morse decomposition M with each Morse set being precisely the
S-chain recurrent components of RS .
Conversely if S has the finest Morse decomposition M, then RS has only a
finite number of S-chain recurrent components.

Proof. (1) Since, for any attractor A in S, M = {A,A∗} is a Morse decomposition
of S, we see that the intersection is contained in RS .

Conversely, let M = {M1, . . . ,Mn} ∈ M . Then a direct inspection shows that⋃
1≤k≤n

Mk =
⋂

1≤k≤n

(Ak ∪ A∗
k),

where ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A is the increasing attractor sequence which
corresponds to M. Due to Theorem 6.11 we see that RS ⊂

⋃
1≤k≤n Mk. Hence RS

is also contained in the intersection.
(2) The first conclusion follows from (1) and the fact that Morse sets in the same

Morse decomposition are disjoint. Now assume M ∈ M, and let

D = {D ⊂ M | D is a S-chain recurrent component}.

Then by Proposition 6.10 we easily see that M =
⋃

D1,D2∈D [D1,D2].
(3) Suppose that RS has n S-chain recurrent components. Let M be the set of

these chain recurrent components.
We first prove that there is a M ∈ M which will be marked as Mn such that,

for any complete solution x(·) of (6.2), if ω(x(·)) ⊂ M , then we necessarily have
α(x(·)) ⊂ M . Indeed, if this fails to be true, then by Proposition 6.10 one can easily
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find D1, . . . ,Dk ∈ M for some 2 ≤ k ≤ n and complete solutions xi(·) (1 ≤ i ≤ k) in
S such that

ω(xi(·)) ⊂ Di (1 ≤ i ≤ k), α(xi(·)) ⊂ Di+1 (1 ≤ i ≤ k − 1), and α(xk(·)) ⊂ D1.

However this implies that
⋃

1≤i≤k Di is a S-chain recurrent component, a contradic-
tion!

The same argument applies to show that there is a Mn−1 ∈ M such that if a
complete solution x(·) satisfies ω(x(·)) ⊂ Mn−1, then α(x(·)) ⊂ Mn−1∪Mn. Continu-
ing the procedure, we finally find that M can be ordered as M = {M1, . . . ,Mn} with
the following property holding: for any complete solution x(·) in S, if ω(x(·)) ⊂ Mk,
then α(x(·)) ⊂ Mk ∪ · · · ∪Mn. Now Theorem 3.8 and Proposition 6.10 imply that M
is a Morse decomposition of S.

We proceed to show that M is the finest Morse decomposition. We argue by
contradiction and suppose that there is a finer Morse decomposition M̃. Then using
the increasing attractor sequence corresponding to M̃, one would find an attractor
A in S such that Mk ∩ A is a proper subset of Mk. Take a y ∈ Mk \ A. Then
δ = d(y,A) > 0. Choose a positive number ε0 < δ/3 such that V := S ∩ B(A, 2ε0)
is a compact subset of ΩS(A). Then A attracts V . Thus there exists a T > 0 such
that F(t)V ⊂ V0 := S ∩ B(A, ε0) for all t ≥ T . This implies that, when ε < ε0,
any (ε, T )-chain in S from V0 will end in V0. Consequently there is no (ε, T )-chain
in S from x ∈ Mk ∩ A to y. This contradicts the chain controllability of Mk (see
Proposition 6.8).

Now we turn to the proof of the converse conclusion. Assume S has the finest
Morse decomposition M = {M1, . . . ,Mn}. Then each Mk is connected. By Remark
3.10 we deduce that, for any Morse decomposition M′,

⋃
1≤k≤n Mk ⊂

⋃
M∈M′ M .

It then follows from (1) that RS =
⋃

1≤k≤n Mk. Therefore each Morse set Mk is a
S-chain recurrent component.

The proof of the theorem is complete.
The following result seems to be interesting, too.
Theorem 6.13. Assume S is a compact invariant set of (6.2). Let M be the

family of Morse decompositions of S. Then for all ε > 0, there exists M ∈ M such
that

⋃
M∈M M ⊂ B(RS , ε).

Proof. As in [2, Proposition 4.8], it is not difficult to show that there are at most
countably many attractors in S. Consequently M is at most countable. If M is finite,
then the finest Morse decomposition exists, and the conclusion clearly holds true. So
we assume M is infinite. Let M = {M1,M2, . . . }. We choose a sequence {Mnk

}
as follows. First, we let Mn1 = M1. Then by using Lemma 3.9 we pick a Mn2 such
that Mn2

is finer than both Mn1
and M2. We proceed by induction and assume

that Mnk
is chosen. Then we next pick a Mnk+1

from M such that it is finer than
both Mnk

and Mk+1 (by Lemma 3.9, this is always available).
Set Ak =

⋃
M∈Mnk

M . Then {Ak} is a decreasing sequence of compact sets;

moreover, Ak ⊂
⋃

M∈Mk
M for each k. Thus we conclude that RS =

⋂
k≥1 Ak =

limk→∞ Ak. Now for any ε > 0, one can easily verify that Ak ⊂ B(RS , ε) for k
sufficiently large, which proves the validity of the conclusion.

7. Robustness of feedback laws to small time delays and sample-hold
controls. Consider the control system on R

m:

(7.1) x′(t) = f(x(t), u(t)), u(t) ∈ U,
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where the control range U is a metric space. Given a target set A ⊂ R
m, a basic task

in feedback control is to design a feedback law κ : R
m → U so that A is asymptotically

stable (asymptotic controllability) under the closed-loop system

(7.2) x′(t) ∈ f(x(t), κ(x(t))).

(Here we have written the closed-loop system in the form of a differential inclusion
instead of a differential equation; this is mainly due to the fact that in many situations
the feedback laws may be set-valued [2] or discontinuous [7, 25].) Such a feedback law
can be designed via control-Lyapunov functions; see [1, 25]. One can also consult [11]
and [29], etc., in the case where A is an equilibrium.

A very natural and interesting problem is to ask whether the feedback κ (or
equivalently the asymptotic behavior of the closed-loop system) possesses some nice
robustness properties so that it still works when small time delays are involved in the
feedback loop, when one uses a sample-hold control, or when there are measurement
errors as well as external disturbances. This problem has important practical sense
and has been discussed in the literature by many authors (especially in the case where
A is an equilibrium); see, e.g., [1, 11, 22, 23, 25, 29, 32] and references therein. Here
we will try to readdress the problem and establish some new results from the point of
view of stability of Morse decompositions. We hope that these results provide more
detailed information and thus help us to have a better understanding of the robustness
of feedback laws.

7.1. Robustness with respect to small time delays. Consider the closed-
loop system with small-time-delay r:

(7.3) x′(t) ∈ f (x(t), κ(xt)) , t ≥ 0,

where xt = x(t− r(t)) and r ∈ C(R+; [0, τ ]) for some τ > 0.
Let | · | be the usual Euclidean norm on R

m. We write CK = C([−τ, 0];K) for
any K ⊂ R

m. In particular, C = CRm , which is equipped with the norm ‖ · ‖ defined
by ‖ξ‖ = max[−τ,0] |ξ(t)| for any ξ ∈ C.

A solution of (7.3) with initial value ξ ∈ C is a function x(·) : [−τ, T ) → R
m which

is absolutely continuous on any compact interval J ⊂ [0, T ) and solves (7.3) at a.e.
t ∈ (0, T ) with x(t) = ξ(t) for t ∈ [−τ, 0]. The reader is referred to [4] for existence
results on delay differential inclusions.

We denote by ψ(t, ξ) any solution x(·) of (7.3) with initial value ξ.
Theorem 7.1. Assume that f(x) := f(x, κ(x)) satisfies (H1) and (H2). Sup-

pose that A is an attractor of the nondelayed system (7.2) with Morse decomposition
{M1, . . . ,Mn}.

Then for any compact subset K of Ω(A) and ε > 0, there exist τ > 0 such that,
for any delay r ∈ C(R+; [0, τ ]) and any solution ψ(t, ξ) of (7.3) with ξ ∈ CK , we have

(7.4) lim sup
t→∞

d (ψ(t, ξ), Mk) ≤ ε

for some 1 ≤ k ≤ n.
Proof. Take an η > 0 sufficiently small so that V := B(K, η) ⊂ Ω(A) and is

compact. Then A attracts V under (7.2). Invoking [31, Lemma 5.2], there exists a
R > 0 such that

(7.5) |x(t)| ≤ R ∀t ≥ 0

for any solution x(·) of (7.2) with x(0) ∈ V . Hence K ⊂ V ⊂ BR.
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Let a(x) be a continuous cutoff function on R
m satisfying

a(x) = 1 when |x| ≤ 3R, a(x) = 0 when |x| ≥ 4R.

Consider the modified systems

(7.6) x′(t) ∈ h (x(t), xt) , h(x, y) = a(x)a(y)f(x, κ(y)),

(7.7) x′(t) ∈ H(x(t)), H(x) = h(x, x).

Clearly A is an attractor of (7.7) with V ⊂ ΩH(A). Here ΩH(A) is the attraction
region of A under (7.7). For λ > 0, consider the inflation of (7.7):

(7.8) x′(t) ∈ Hλ(x(t)), Hλ(x) = conv H
(
x + λB1

)
+ λB1.

Let ε > 0 be given arbitrarily. We may assume ε < R/2. Thanks to Theorem 5.4,
there is a δ > 0 such that when λ < δ, for any solution x(·) of (7.8) with x(0) ∈ V ,
we have

(7.9) lim sup
t→∞

d (x(t), Mk) ≤ ε

for some k. Moreover, by (7.5) we can restrict δ sufficiently small (as in [32, equation
(3.6)]) so that

(7.10) |x(t)| ≤ 2R ∀t ≥ 0.

We fix a λ = λ1 < δ such that both (7.9) and (7.10) hold.
Note that h is bounded on R

2m, so there is a c0 > 0 such that |h(x, y)| ≤ c0 for

all x, y ∈ R
m. Let x(t) = ψ̃(t, ξ) be any solution of (7.6) with initial value ξ ∈ CK .

Then

|xt − x(t)| = |x′(θ)|r(t) ≤ c0τ for t ≥ τ,

|x(t) − x(0)| = |x′(θ)|t ≤ c0τ for t ∈ [0, τ ].

Therefore if τ > 0 is taken sufficiently small so that c0τ < min{η, λ1}, then

(7.11) x(t) ∈ V (for 0 ≤ t ≤ τ), xt ∈ B(x(t), λ1) (for t ≥ τ).

Setting z(t) = x(t+τ) for t ≥ 0, by (7.11) and the definition of h and H, one sees that
z(t) is a solution of the system (7.8)λ=λ1

with initial value z(0) ∈ V on any interval
[0, T ) where |z(t)| = |x(t+ τ)| ≤ 2R. This, together with (7.10), in turn implies that
|z(t)| ≤ 2R for all t ≥ 0, i.e.,

(7.12) |x(t + τ)| ≤ 2R ∀ t ≥ 0.

Thus z(t) is a solution of (7.8)λ=λ1
on R

+. By (7.9) we conclude that, for some
1 ≤ k ≤ n,

(7.13) lim sup
t→∞

d (x(t), Mk) = lim sup
t→∞

d (z(t− τ), Mk) ≤ ε.

We infer from (7.11) and (7.12) that, for any solution ψ̃(t, ξ) of (7.6) with ξ ∈ CK ,

|ψ̃(t, ξ)| ≤ 2R ∀t ≥ 0,
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and hence it is a solution of (7.3). Conversely, using this basic fact one can also easily
examine that any solution ψ(t, ξ) of the original system (7.3) with initial value ξ ∈ CK
exists on R

+ and is a solution of (7.6). This and (7.13) complete the proof of what
we desired.

Remark 7.2. The results can be extended without any difficulty to differential
inclusion

x′(t) ∈ f(x(t), x(t− r1(t)), . . . , x(t− rk(t))), t ≥ 0

with multiple small time delays. Here we omit the details.
Remark 7.3. A particular but interesting case is the one where each Morse set

Mk consists of an equilibrium Ek, as in the situation of a gradient system. In such a
case (7.4) reads

(7.14) lim sup
t→∞

d (ψ(t, ξ), Ek) ≤ ε.

The robustness of asymptotic stability with respect to small time delays for scalar
differential equations with multiple equilibria can be found in [38, 39, 44], etc., where
the authors used some monotonicity method to show that each bounded solution of
the small-time-delayed system approaches one of the equilibria. Similar results were
also established in Friesecke [19] for a scalar parabolic equation with small time delays
by using the special Lyapunov function of the system.

Remark 7.4. We refer the reader to [23, 26, 32, 33, 35] and the large number
of references cited therein for the works and related discussions on robustness of
asymptotic stability of a single equilibrium or a compact set with respect to small
time delays.

7.2. Robustness with respect to sample-hold controls. We first recall the
concept of π-solutions of the closed-loop system. Let

π : 0 = t0 < t1 < · · · < ti < ti+1 < · · · , where ti → ∞,

be a partition of R
+, ||π|| = supi≥0 |ti+1 − ti|. Given an initial value x0 ∈ R

m, a
π-solution of the closed-loop system (7.2) on [0, T ) is a function x(·) : [0, T ) → R

m

which is absolutely continuous on any compact interval J ⊂ [0, T ) and satisfies

x′(t) = f (x(t), κ (x(ti))) , x(0) = x0, a.e. t ∈ [ti, ti+1] ∩ [0, T )

for all i ≥ 0 such that ti+1 ≤ T .
Theorem 7.5. Assume that f(x) := f(x, κ(x)) satisfies (H1) and (H2). Suppose

that A is an attractor of the closed-loop system (7.2) with a Morse decomposition
{M1, . . . ,Mk}.

Then for any compact subset K ⊂ Ω(A) and ε > 0, there is a δ > 0 such that,
when ||π|| < δ, any π-solution x(·) of (7.2) with x(0) ∈ K exists on R

+ and satisfies

lim sup
t→∞

d(x(t),Mk) < ε

for some Mk.
Proof. We may assume that f is bounded on R

m × U ; otherwise, we can employ
the cutoff techniques used in the proof of Theorem 7.1.

Let |f(x, u)| ≤ c0 for all (x, u) ∈ R
m × U . Then for any λ > 0, when ||π|| < λ/c0

we find that any π-solution x(·) of (7.2) satisfies

|x(ti) − x(t)| ≤ c0||π|| < λ ∀i ≥ 0 ∀t ∈ [ti, ti+1),
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and hence x(·) solves

x′(t) ∈ f
(
x(t), κ(x(t) + λB1)

)
, t ≥ 0.

Now the conclusion follows immediately from Theorem 5.4.
Remark 7.6. Similarly we could consider robustness of feedback laws with respect

to measurement errors and external disturbances. In fact, results along this line are
readily contained in Theorems 5.3 and 5.4.
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Abstract. The present paper aims at analyzing the existence and convergence of approximate
solutions in shape optimization. Motivated by illustrative examples, an abstract setting of the
underlying shape optimization problem is suggested, taking into account the so-called two norm
discrepancy. A Ritz–Galerkin-type method is applied to solve the associated necessary condition.
Existence and convergence of approximate solutions are proved, provided that the infinite dimensional
shape problem admits a stable second order optimizer. The rate of convergence is confirmed by
numerical results.
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1. Introduction. Shape optimization is quite important for aircraft design,
bridge construction, electromagnetic shaping, etc. Many problems that arise in appli-
cations, particularly in structural mechanics, can be formulated as the minimization
of functionals defined over a class of admissible domains. Such problems have been
intensively studied in the literature in the past 25–30 years (see [14, 33, 35, 44, 47]
and the references therein). In the majority of papers, the undiscretized problem has
been studied. Only a few papers deal with the convergence of approximate solutions
to the solution of the original shape optimization problem. For example, in [6, 7, 8]
the question of convergence is considered on the fully discretized level. Therein, a
grid is fixed in advance on the hold all and the admissible shapes are allowed to vary
only on this predefined grid. Consequently, a discrete optimization problem has to
be solved next. Further investigations on convergence of approximate solutions have
been reported in [33, 44].

In [18, 19, 20, 22, 23, 24, 25], we considered the numerical solution of several ellip-
tic shape optimization problems. Boundary variations were used to derive boundary
integral representations of the shape gradient and the shape Hessian. This approach
allows the embedding of a shape problem into a Banach space by identifying the
domain with the parametrization of its boundary, i.e., with a function. Solving the
shape optimization problem becomes equivalent to finding the parametrization of the
minimizing domain. We applied a Ritz–Galerkin-type method to approximate this
parametrization. All ingredients of the shape gradient and Hessian that arise from
the state equation were computed with sufficiently high accuracy by a fast wavelet
boundary element method. In this way, the discretization of the shape is decoupled
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from the discretization of the state equation. Consequently, we may distinguish two
types of errors.

First, the discretization error of the shape refers to the approximation error and
determines the best possible rate of convergence. The present paper mainly tackles
this issue by proving existence and convergence of approximate solutions. To this end,
it is assumed that the objective, the constraints, and the state are given exactly.

Second, solving the state equation numerically induces a consistency error. Con-
sistency errors are also caused by the approximate computation of the objective and
constraints by, e.g., numerical quadrature. We present a Strang-type lemma to incor-
porate the error arising from numerical approximation. It gives a sufficient condition
for realizing the best order of convergence.

When identifying the boundary of the regular Ck,α-domain with its parametriza-
tion with respect to a fixed reference manifold Γ̂, a shape calculus based on boundary
variational fields of prescribed smoothness leads to a second order Frechét calculus in
a Banach space. For applications of interest, the space C2,α(Γ̂) for a certain α ∈ (0, 1]
is appropriate; cf. [15, 16, 17]. Since shape optimization problems are highly nonlin-
ear, we are looking for domains that satisfy the first order necessary condition. These
solutions are called stationary domains. To verify their local optimality, the second
order Frechét derivative has to be coercive. However, for integral objectives in elliptic
shape optimization it turns out that coercivity cannot be expected in the norm of
the space of differentiation C2,α(Γ̂). Instead, coercivity of the shape Hessian at Ω�

can be usually shown only in a weaker Sobolev space Hs(Γ̂). This lack of coercivity
is known from other PDE-constrained optimal control problems as the so-called two
norm discrepancy; cf. [4, 5, 28, 29]. The two norm discrepancy in shape optimization
was first observed in [10, 11, 12, 15, 17]. It will play a key role in our convergence
analysis.

Our investigations concentrate on the optimization of shapes and are not appli-
cable to dealing with topological changes. Certainly, dealing with variable topolo-
gies is of enormous practical interest, and much important work has been done for
the theoretical foundation and development of algorithms; see the monograph [3]
for the state of the art. The so-called topological derivative has been addressed in
[27, 31, 37, 39, 48, 49, 39] (we mention only some of the related papers). Related nec-
essary optimality conditions for simultaneous shape and topology optimization have
been investigated in [50], but the study of sufficient optimality conditions seems to be
a challenging problem.

Concerning the present paper, section 2 is dedicated to a summary of second
order shape calculus. Additionally, some examples are presented to illustrate the two
norm discrepancy. First, we consider shape functionals based on a simple domain or
boundary integral. Then, we treat PDE-constrained shape optimization problems by
means of elliptic free boundary problems. In addition to the problem with simple
constraints on the domain, we also discuss shape optimization problems subject to
further functional constraints.

Motivated by these examples, we present in section 3 an abstract setting for the
investigation of the second order sufficient optimality condition to verify stable min-
imizers. Then we introduce suitable trial spaces to discretize the shape optimization
problem by means of a Ritz–Galerkin method for solving the necessary condition. The
Ritz–Galerkin method solves a finite dimensional optimization problem that arises
from restricting the class of admissible domains to domains given by the trial space.
We show that there exist approximate solutions, provided that the level of discretiza-
tion is sufficiently large, and prove convergence of the approximate solutions Ω�

N to
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Ω�, the optimal solution of the original infinite dimensional shape problem. The ap-
proximate solution behaves like the best approximation in the trial space to Ω�, with
respect to the natural space of coercivity of the shape Hessian. Therefore, the com-
putation of the rate of convergence is along the lines of conventional approximation
theory.

In section 4, we present two numerical examples that confirm our analysis. The
first one is a simple shape problem based on a domain integral minimization, which is
mainly incorporated for illustration. The second is a more advanced PDE-constrained
shape optimization problem, with several additional functional constraints. Both
examples are chosen such that the optimal domain is known a priori. We observe
rates of convergence which verify the present theory.

2. Motivation and background.

2.1. Shape calculus. Shape optimization is concerned with the minimization
of the shape functional

J(Ω) =

∫
Ω

j(u,∇u,x)dx → min, Ω ∈ Υ,(2.1)

where Υ is a suitable class of admissible domains Ω ∈ R
n. The so-called state u

satisfies an abstract boundary value problem

Au = f in Ω, Bu = g on Γ,(2.2)

where A corresponds to a well-posed elliptic partial differential operator in the domain
Ω, and B operates on the functions supported at the free boundary Γ ⊂ ∂Ω. For the
sake of simplicity, we restrict ourselves to finding solutions with known topology and
assume that all involved functions and data are sufficiently smooth.

Generally, problem (2.1) is highly implicit, with respect to the shape of the do-
main, and has to be solved iteratively. The canonical way to solve the minimization
problem is to determine its stationary points. Then, via the second order optimal-
ity condition, regular minimizers of second order are verified. To this end, we will
briefly survey shape calculus. In particular, we refer the reader to Murat and Simon
[38], Simon [46], Pironneau [44], Soko�lowski and Zolésio [47], Delfour and Zolésio [14],
and the references therein. Herein, two basic concepts are considered, namely, the
perturbation of identity (Murat and Simon) and the speed method (Soko�lowski and
Zolésio).

For example, the perturbation of identity exploits a smooth perturbation field
U : Ω → R

n and defines the standard domain perturbation as

Ωε[U] := {(I + εU)(x) : x ∈ Ω}.

Then the directional derivative of J(Ω) is computed as

∇J(Ω)[U] := lim
ε→0

J(Ωε[U]) − J(Ω)

ε
.

Ever since Hadamard [32] it has been known that ∇J(Ω)[U] is a distribution living
only on the free boundary of the domain Ω, provided that J(Ω) is shape differentiable;
see also [13].

The latter observation leads to the idea of considering only boundary variations
for the update in the optimization algorithm. Therefore, we shall directly apply
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boundary variations for the computation of the boundary integral representations
of the shape gradient and Hessian. To this end, we introduce a reference manifold
Γ̂ ⊂ R

n and consider a fixed boundary perturbation field, for example, in the direction
of the outer normal n̂. We suppose that the free boundary of each domain Ω ∈ Υ can
be parametrized via a sufficiently smooth function r in terms of

γ : Γ̂ → Γ, γ(x) = x + r(x)n̂(x).

That is, we can identify a domain with the scalar function r. Defining the standard
variation

γε : Γ̂ → Γε, γε(x) := γ(x) + εdr(x)n̂(x),

where dr is again a sufficiently smooth scalar function, we obtain the perturbed do-
main Ωε. Consequently both the shape and its increment can be seen as elements of
a Banach space X. We will specify the notion of “sufficiently smooth” in the next
subsections.

2.2. Optimization of domain or boundary integrals. First, we introduce
some notation. For a given domain D ∈ R

n, the space C2(D) consists of all two times
continuously differentiable functions f : D → R

m. A function f ∈ C2(D) belongs to
C2,α(D) if the (spatial) Hessian ∇2f is Hölder continuous with coefficient 0 < α ≤ 1.
A domain D ∈ R

n is of class C2,α if for each x ∈ ∂D a neighborhood U(x) ⊆ ∂Ω and
a diffeomorphism γ : [0, 1]n−1 → U(x) exist such that γ ∈ C2,α([0, 1]n−1); see [52],
for example.

For the sake of clearness, we present here two elementary shape problems, since
both the shape calculus and the analysis become much more evident in comparison
with the more advanced shape optimization problems presented in the subsequent
subsections. To this end, let n = 2, Ω ∈ C1, and consider the following shape
optimization problem of domain integral type:

J(Ω) =

∫
Ω

h(x)dx → min,(2.3)

where h ∈ C1(R2) are given data. We choose the class of admissible domains as the
set of all domains that are star-shaped with respect to the origin. Then we can choose
Γ̂ as the unit circle. Equivalently, we can parametrize Γ = ∂Ω via polar coordinates

Γ :=
{
γ(φ) = r(φ)

[ cosφ
sinφ

]
: φ ∈ [0, 2π]

}
,

where r ∈ C1
per([0, 2π]) is a positive function. Here and in what follows, the space

Ck,α
per is defined as

Ck,α
per ([0, 2π]) = {f ∈ Ck,α([0, 2π]) : f (i)(0) = f (i)(2π) for all i = 0, . . . , k},

and likewise Ck
per([0, 2π]). Let us further remark that the tangent and the outward

normal at Γ are computed by

t =
r′
[ cosφ

sinφ

]
+ r
[ − sinφ

cosφ

]
√
r2 + r′2

, n =
r′
[ sinφ
− cosφ

]
+ r
[ cosφ

sinφ

]
√
r2 + r′2

.(2.4)

We consider dr ∈ C1
per([0, 2π]) as a standard variation for perturbed domains Ωε, re-

spectively, boundaries Γε, defined by rε(φ) = r(φ)+ εdr(φ), where γε(φ) = rε(φ)n̂(φ)
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is always a Jordan curve. Herein, n̂(φ) = [cosφ, sinφ]T denotes the outward normal

vector to the reference manifold Γ̂.
Lemma 2.1 (see [16]). The shape functional from (2.3) is twice Frechét differen-

tiable with respect to C1
per([0, 2π]), where the shape gradient and Hessian read as

∇J(Ω)[dr] =

∫ 2π

0

r(φ)dr(φ)h
(
r(φ), φ

)
dφ,

∇2J(Ω)[dr1, dr2] =

∫ 2π

0

dr1(φ)dr2(φ)

{
h
(
r(φ), φ

)
+ r(φ)

∂h

∂n̂

(
r(φ), φ

)}
dφ.

Consider now a stationary domain Ω�, which means ∇J(Ω�)[dr] = 0 for all dr ∈
C1([0, 2π]). Of course, the latter equation implies that h|Γ� ≡ 0. Hence, as one readily
verifies, it holds that

∇2J(Ω�)[dr1, dr2] =

∫ 2π

0

dr1(φ)dr2(φ)

⎧⎨⎩ r�2(φ)√
r�2(φ) + r�′2(φ)

∂h

∂n

(
r�(φ), φ

)⎫⎬⎭ dφ.

Optimality usually can be guaranteed by coercivity of the second order Frechét deriva-
tive. However, it is impossible to realize coercivity with respect to C1

per([0, 2π]); only
an estimate

∇2J(Ω�)[dr, dr] ≥ cE‖dr‖2
L2([0,2π])

for some cE > 0 can be expected. Note that we have such an estimate if (∂h/∂n)|Γ� ≥
cE > 0. This lack of regularity is known from other control problems as the so-called
two norm discrepancy. Nevertheless, the bilinear form imposed by the shape Hessian
∇2J(Ω) is obviously also continuous on L2([0, 2π]) × L2([0, 2π]), that is,

|∇2J(Ω)[dr1, dr2]| ≤ cS(Ω)‖dr1‖L2([0,2π])‖dr2‖L2([0,2π])

for all dr1, dr2 ∈ L2([0, 2π]). Notice that it is generally impossible to extend the
domain of definition C1([0, 2π]) to L2([0, 2π]). In other words, J is only densely
defined with respect to L2([0, 2π]).

Also, in the case of a shape optimization problem of boundary integral type

J(Ω) =

∫
Γ

g(x)dσ → min,(2.5)

where g ∈ C2(R2) are given data, one makes the above observations concerning the
coercivity. Similarly to above, coercivity cannot be realized in C1

per([0, 2π]). The
energy space of the bilinear form imposed by the shape Hessian ∇2J(Ω) is the Sobolev
space H1

per([0, 2π]); see [16] for details.

2.3. PDE-constrained shape optimization problems. We shall consider
free elliptic boundary problems as the most illustrative model problem for PDE-
constrained shape optimization problems. Let T ⊂ R

n denote a bounded domain
with boundary ∂T = Γ. Inside the domain T we assume the existence of a simply
connected subdomain S ⊂ T with fixed boundary ∂S = Σ. We denote the annular
domain T \ S by Ω; see also Figure 2.1.
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Σ ΓΩΣ ΓΩΣ ΓΩΣ ΓΩΣ ΓΩΣ ΓΩΣ ΓΩ

Fig. 2.1. The domain Ω and its boundaries Γ and Σ.

We consider the following overdetermined boundary value problem in the annular
domain Ω:

−Δu = f in Ω,
‖∇u‖ = g on Γ,

u = 0 on Γ,
u = h on Σ,

(2.6)

where f ≥ 0 and g, h > 0 are sufficiently smooth functions such that the shape
differentiability of the objective (2.7) is provided up to second order. We like to stress
that the positivity of the data implies that u is positive in Ω. Hence, there holds the
identity

‖∇u‖ ≡ −∂u

∂n
on Γ

since u admits homogeneous Dirichlet data on Γ.
We arrive at a free boundary problem if the boundary Γ is the unknown. In other

words, we seek a domain Ω with fixed boundary Σ and unknown boundary Γ such
that the overdetermined boundary value problem (2.6) is solvable. For the existence
of solutions we refer the reader to, e.g., [1, 26].

Shape optimization provides an efficient tool for solving such free boundary value
problems; cf. [14, 34, 47, 51]. Considering the cost functional

J(Ω) =

∫
Ω

‖∇u‖2 − 2fu + g2dx(2.7)

with underlying state equation

−Δu = f in Ω,
u = 0 on Γ,
u = h on Σ,

(2.8)

the solution of the free boundary problem is equivalent to the shape optimization
problem

J(Ω) → min .(2.9)



ON CONVERGENCE IN ELLIPTIC SHAPE OPTIMIZATION 67

This issues from the necessary condition of a minimizer to the cost functional (2.7);
that is,

∇J(Ω)[U] =

∫
Γ

〈U,n〉
{
g2 −

[
∂u

∂n

]2}
dσ = 0(2.10)

has to be valid for all sufficiently smooth perturbation fields U. Hence, shape opti-
mization induces a variational formulation of the condition

∂u

∂n
= −g on Γ.(2.11)

However, a stationary domain Ω� of the minimization problem (2.7), (2.8) will be a
stable minimum if and only if the shape Hessian is strictly H1/2([0, 2π])-coercive at
this domain (see below).

It suffices to consider S ∈ C0,1, but due to a second order boundary perturbation
calculus, we have to assume T ∈ C2,α for some fixed α ∈ (0, 1). We assume, similarly
to the previous subsection, that the domain T is star-shaped with respect to 0, and
we apply the same shape calculus. The shape gradient of the cost functional in (2.7)
becomes, in polar coordinates,

〈∇J(Ω), dr〉 =

∫ 2π

0

dr r

{
g2 −

[
∂u

∂n

]2}
dφ.(2.12)

According to [15, 16] the shape Hessian reads as

〈∇2J(Ω) · dr1, dr2〉 =

∫ 2π

0

dr1dr2

{
g2 −

[
∂u

∂n

]2
+ 2rg〈∇g, n̂〉(2.13)

− 2r√
r2 + r′2

∂u

∂n

[
r
∂2u

∂n2
+ r′

∂2u

∂n∂t

]}
− 2r dr1

∂u

∂n
· ∂du[dr2]

∂n
dφ.

Herein, the local shape derivative du = du[dr2] of the state function satisfies

Δdu = 0 in Ω,
du = 0 on Σ,
du = −dr2 〈n̂,n〉 ∂u∂n on Γ.

(2.14)

Notice that ∂2u/∂n2 := 〈∇2u · n,n〉 and ∂2u/(∂n∂t) := 〈∇2u · n, t〉.
Lemma 2.2 (see [15, 25]). The shape Hessian ∇2J(Ω) defines a continuous

bilinear form on H1/2([0, 2π]) × H1/2([0, 2π]); that is, there exists a constant cS(Ω)
depending only on the actual domain Ω such that

|∇2J(Ω)[dr1, dr2]| ≤ cS(Ω)‖dr1‖H1/2([0,2π])‖dr2‖H1/2([0,2π]).

In accordance with this lemma, we observe that the shape Hessian is a pseudo-
differential operator of order one, i.e., ∇2J(Ω) : H1/2([0, 2π]) → H−1/2([0, 2π]). In
particular the last term in (2.13) implies that the shape Hessian is a nonlocal operator.

According to [25] the following sufficient criterion concerning the H1/2([0, 2π])-
coercivity holds.

Lemma 2.3. The shape Hessian ∇2J(Ω�) is H1/2([0, 2π])-coercive; that is, there
exists a constant cE > 0 such that

∇2J(Ω�)[dr, dr] ≥ cE‖dr‖2
H1/2([0,2π])
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if

κ +

[
∂g

∂n
− f

]/
g ≥ 0 on Γ�.

In particular, in the case when f ≡ 0 and g ≡ const., the shape Hessian is H1/2([0, 2π])-
coercive if the boundary Γ� is convex (seen from inside).

The problem under consideration can be viewed as the prototype of a free bound-
ary problem arising in many applications. For example, the growth of anodes in
electrochemical processing might be modeled as above with f ≡ 0 and g, h ≡ 1.

In the two-dimensional exterior magnetic shaping of liquid metals, the state equa-
tion is an exterior Poisson equation and the uniqueness is ensured by a volume con-
straint of the domain Ω [9, 20, 41, 43]; see also the following subsection. However,
since the shape functional involves the perimeter, which corresponds to the surface
tension of the liquid, the energy space of the shape Hessian will be H1([0, 2π]).

The detection of voids or inclusions in two- or three-dimensional electrical im-
pedance tomography is slightly different since the roles of Σ and Γ are interchanged
[23, 24, 45]. Particularly, this inverse problem is severely ill-posed, in contrast to the
present class of problems. It has been proven in [23] that the shape Hessian is not
strictly coercive in any Hs([0, 2π]) for all s ∈ R.

2.4. Shape problems with additional functional constraints. We consider
the following shape optimization problem:

J(Ω) =

∫
Ω

j(u,∇u,x)dx → min,

subject to L domain or boundary integral equality constraints

Ji(Ω) =

∫
Ω

hi(x)dx = ci, 1 ≤ i ≤ K,

Ji(Ω) =

∫
Γ

gi(x)dσ = ci, K < i ≤ L.

We suppose that all functionals J and Ji, 1 ≤ i ≤ L, are twice Frechét differentiable in
a certain Banach space X. Moreover, let the Sobolev space Hs denote the strongest
energy space of the bilinear forms imposed by the shape Hessians of all the above
shape functionals.

Along the lines of standard optimization theory, one considers the free minimiza-
tion of the Lagrangian

L(Ω, λ1, . . . , λL) := J(Ω) +

L∑
i=1

λi

(
Ji(Ω) − ci

)
if Kuhn–Tucker regularity is provided. Hence, it is well known that the necessary and
sufficient optimality condition for a regular local optimal shape Ω� reads as

Lemma 2.4. Let Ω� ∈ X satisfy

∇L(Ω�, λ�
1, . . . , λ

�
L)[dr] = 0 for all dr ∈ X

for certain λ�
i ∈ R. Moreover, define the linearizing cone

Y := {dr ∈ X : ∇Ji(Ω
�)[dr] = 0 for all 1 ≤ i ≤ L} ⊂ X,

and assume the linear independence of all gradients ∇Ji(Ω
�) at Ω�.
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Then Ω� is a regular local minimizer of second order if and only if the following
coercivity condition is satisfied:

∇2L(Ω�, λ�
1, . . . , λ

�
L)[dr, dr] ≥ cE‖dr‖2

Hs for all dr ∈ Y .

Here, the techniques of the proof from [17, subsection 4.3] remain directly appli-
cable, including the case of integral constraints that depend again on a PDE solution.

Remark 2.5. The linear independent constraint qualification (LICQ) implies in
particular that the (vector valued) gradient of the constraints is a mapping onto R

L.
Hence, Y is a closed subspace of X of finite codimension L.

Consequently, the general concept developed in section 3 keeps applicable with re-
spect to the Banach space Y . We mention that the treatment of inequality constraints
is obvious and related modifications are well established in theory.

3. Approximation theory in shape optimization.

3.1. Assumptions on the optimization problem. Let us first introduce the
abstract setting needed for our theory. To this end, let X denote a Banach space,
where we shall denote the ball {h ∈ X : ‖r − h‖X < δ} by BX

δ (r).
We consider the following optimization problem in the Banach space X:

J(r) → min, r ∈ X.(P )

Herein, J : X �→ R defines a two times continuously differentiable functional; i.e., the
gradient ∇J(r) ∈ X� as well as the Hessian ∇2J(r) ∈ L(X,X�) exist for all r ∈ X,
and the mappings ∇J(·) : X → X�, ∇J2(·) : X → L(X,X�) are continuous.

We assume that the necessary first order optimality condition holds in r�:

∇J(r�)[dr] = 0 for all dr ∈ X.(A1)

As illustrated in the previous section, we have to take the two norm discrepancy
into account; i.e., the coercivity estimate holds only in a weaker Sobolev space Hs ⊃
X, s ≥ 0. Therefore, we shall assume that there is a constant cS > 0, depending
continuously on the actual variable r, such that the continuous bilinear form imposed
by the shape Hessian on X ×X extends continuously to a bilinear form on Hs ×Hs,
i.e.,

|∇2J(r)[h1, h2]| ≤ cS(r)‖h1‖Hs‖h2‖Hs for all h1, h2 ∈ Hs,(A2)

if r ∈ BX
δ (r�). Of course, there exists an absolute constant CS , defined by

CS := max
{
cS(r) : r ∈ BX

δ (r�)
}
,(3.1)

such that cS(r) ≤ CS for all r ∈ BX
δ (r�). Moreover, we assume that ∇2J is strongly

coercive at r�, that is,

∇2J(r�)[h, h] ≥ cE‖h‖2
Hs for all h ∈ Hs(A3)

for some cE > 0.
Remark 3.1. The existence of a continuous extension for the objective J from X to

Hs is not assumed throughout this paper since this is, in general, not realistic for shape
problems; cf. subsection 2.2. That is, J remains only “densely defined” with respect
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to Hs; this holds similarly for ∇J, ∇2J . As it turns out, by our investigations a
complete convergence analysis is possible without assuming a continuation property.

As a first consequence of our assumptions we have the following lemma concerning
Lipschitz continuity of the shape gradient with respect to the topology that is induced
by the coercivity space of the shape Hessian.

Lemma 3.2. The gradient is locally Lipschitz as a mapping in the (H−s, Hs)-
duality (H−s := (Hs)′), that is,

‖∇J(r + h) −∇J(r)‖H−s ≤ CS‖h‖Hs(3.2)

for all r, r + h ∈ BX
δ (r�). Herein, the constant CS is given by (3.1).

Proof. The assertion follows immediately from the following estimate:

|∇J(r + h)[dr] −∇J(r)[dr]| =

∣∣∣∣ ∫ 1

0

〈∇2J(r + th) · h, dr〉dt
∣∣∣∣ ≤ CS‖h‖Hs‖dr‖Hs

for all r, r + h ∈ BX
δ (r�), and dr ∈ Hs.

Notice that the twice differentiability of J provides only the Lipschitz continuity
of the shape gradient in the (X�, X)-duality, i.e.,

‖∇J(r + h) −∇J(r)‖X� ≤ CS‖h‖X

for all r, r + h ∈ BX
δ (r�).

3.2. Sufficient conditions. The above assumptions allow the following state-
ment on the regular local optimality of second order of r�. Although this is rather
standard, we recall it for convenience.

Theorem 3.3 (sufficient second order optimality condition). Let the necessary

condition (A1) hold for a certain r� ∈ X. For all r ∈ BX
δ (r�) suppose that the

bilinear form imposed by the shape Hessian satisfies (A2) and the following remainder
estimate:

|∇2J(r)[h1, h2] −∇2J(r�)[h1, h2]|
≤ η(‖r − r�‖X)‖h1‖Hs‖h2‖Hs for all h1, h2 ∈ Hs,(A4)

where η : R
+
0 → R

+
0 is a decreasing function that satisfies η(t) → 0 as t → 0. Then,

the domain r� is a strong regular local optimum of second order with respect to certain
constants ĉE > 0,

J(r) − J(r�) ≥ ĉE‖r − r�‖2
Hs for all r ∈ BX

δ̂
(r�),(3.3)

if and only if the shape Hessian satisfies the strong coercivity estimate (A3).

Proof. For all r = r� + h ∈ BX
δ (r�) the following Taylor expansion holds:

J(r) − J(r�) = 0 +
1

2
∇2J(r� + ξh)[h, h], ξ ∈ (0, 1).

According to (A3) and (A4), one infers on the one hand,

J(r) − J(r�) ≥ 1

2
∇2J(r�)[h, h] − |∇2J(r� + ξh)[h, h] −∇2J(r�)[h, h]|

≥ 1

2
∇2J(r�)[h, h] − η(‖h‖X)‖h‖2

Hs

≥ 1

2

(
cE − η(‖h‖X)

)
‖h‖2

Hs .
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Supposing 0 < δ̂ ≤ δ to be chosen such that η(‖r − r�‖X) ≤ cE/2 for all r ∈ BX
δ̂

(r�),
we arrive at

J(r) − J(r�) ≥ cE
4
‖r − r�‖2

Hs for all r ∈ BX
δ̂

(r�).

On the other hand, we choose r = r� + h ∈ Bδ̂(r
�) arbitrarily but fixed. Combining

the Taylor expansion

J(r) − J(r�) =
1

2
∇2J(r� + ξh)[h, h] ≥ ĉE‖h‖2

Hs , ξ ∈ (0, 1),

with (A4) yields

∇2J(r�)[h, h] = ∇2J(r� + ξh)[h, h] + ∇2J(r�)[h, h] −∇2J(r� + ξh)[h, h]

≥
(
2ĉE − η(‖h‖X)

)
‖h‖2

Hs .

Fixing, similarly to the above, 0 < δ ≤ δ̂ such that η(‖h‖X) ≤ ĉE/2 yields the

coercivity estimate (A3) with cE := 3ĉE/2 for all h ∈ BX
δ (0). This finishes the proof

since X is dense in Hs and ∇2J(r�) : Hs ×Hs → R is bilinear.
Let us remark that the verification of (A4) turns out to be rather technical in

the case of PDE-constrained shape optimization problems. For the presented model
problems, (A4) has been proven in [10, 11, 12], whereas the verification of (A2) is
much simpler (see, e.g., [15]) but already an indicator of the two norm discrepancy.

Combining the assumptions (A2) (together with (3.1)), (A3), and (A4) leads to
the following corollary by repeating a portion of the preceding proof.

Corollary 3.4. For δ̂ > 0 sufficiently small, the shape Hessian is strongly

coercive in the whole ball BX
δ̂

(r�), that is,

∇2J(r)[h, h] ≥ cE
2
‖h‖2

Hs for all h ∈ Hs, r ∈ BX
δ̂

(r�).(3.4)

Moreover, with respect to the objective, the following upper and lower quadratic bound

cE
4
‖r − r�‖2

Hs ≤ J(r) − J(r�) ≤ CS

2
‖r − r�‖2

Hs(3.5)

holds for all r ∈ BX
δ̂

(r�).

3.3. Ritz–Galerkin discretization. We shall consider a Ritz–Galerkin scheme
to solve the necessary condition (A1); i.e., we replace the given infinite dimensional
optimization problem with a finite dimensional problem. The trial space should pro-
vide sufficient regularity in order to approximate functions in X. To this end, we
introduce an appropriate Hilbert space Hk ⊂ X, continuously embedded in X, i.e.,

‖r‖X ≤ cHk→X‖r‖Hk for all r ∈ Hk.(V1)

Then we shall consider a sequence of nested finite dimensional trial spaces,

V0 ⊂ V1 ⊂ · · · ⊂ VN ⊂ · · · ⊂ Hk ⊂ X,
⋂
N≥0

VN = V0,
⋃
N≥0

VN

Hk

= Hk,(V2)

providing the following inverse estimate:

‖rN‖Hk ≤ E(N)‖rN‖Hs for all rN ∈ VN .(V3)
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Moreover, we assume that there exists an L > k such that the following approximation
property holds:

inf
rN∈VN

‖r − rN‖Hs = o

(
1

E(N)

)
‖r‖H� if r ∈ H	 (k <  ≤ L).(V4)

Herein, the Landau symbol g(x) = o(f(x)) means that limx→∞ g(x)/f(x) = 0.
Remark 3.5. Suppose X = C2,α([0, 1]) for some α ∈ (0, 1). Then the Sobolev

space Hk([0, 1]) with 3 ≥ k > 2 + α provides a continuous embedding in accordance
with (V1). Choosing VN ⊂ C2,1([0, 1]) as the space of smoothest cubic splines on
the uniform subdivision with step width hN := 2−N/4, we have the approximation
property

inf
rN∈VN

‖r − rN‖Hs � h	−s
N ‖r‖H� if r ∈ H	 (k <  ≤ 4)

uniformly in N , provided that s < k. The inverse estimate reads as

‖rN‖Hk � hs−k
N ‖rN‖Hs for all rN ∈ VN

uniformly in N , provided that s ≤ k. Hence, we conclude that the trial spaces
(VN )N≥0 satisfy (V2)–(V4).

The Ritz–Galerkin scheme reads as follows. In order to solve

J(rN ) → min, rN ∈ VN ,(PN )

one seeks an approximate solution r�N ∈ VN such that the discretized necessary con-
dition

∇J(r�N )[qN ] = 0(3.6)

holds for all qN ∈ VN .
There exist different strategies for finding rN ∈ VN such that (3.6) holds. In

general, suppose that rN has N degrees of freedom; i.e., there exist ϕ1, ϕ2, . . . , ϕN

such that

VN = span{ϕ1, ϕ2, . . . , ϕN}.

One makes the ansatz rN =
∑N

i=1 riϕi and considers an iterative scheme

r(n+1) = r(n) − h(n)M(n)G(n),(3.7)

where h(n) is a suitable step width and

r(n) =
(
r
(n)
i

)
i=1,...,N

, G(n) :=
(
∇J(r

(n)
N )[ϕi]

)
i=1,...,N

.

First order methods are the gradient method (M(n) := I) and the quasi-Newton
method, where M(n) denotes a suitable approximation to the inverse shape Hessian.
Choosing

M(n) :=
(
∇2J(r

(n)
N )[ϕi, ϕj ]

)−1

i,j=1,...,N

yields the Newton method, which converges much faster compared to first order meth-
ods; see [19] for an example.
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3.4. Existence of approximate solutions. We will consider the existence of
solutions of (3.6) and the question of the accuracy of approximate solutions r�N . Since
the solutions of (3.6) are only stationary points, it is reasonable to consider only local
optimization problems. Therefore, we replace the global problems (P ) and (PN ) with
the local optimization problem

J(r) → min, r ∈ BX
δ (r�),(P δ)

and its discrete variant

J(rN ) → min, rN ∈ VN ∩BX
δ (r�),(P δ

N )

where δ = δ̂ is chosen in accordance with the estimates (3.4), (3.5) and is independent
of N . Obviously, the solution of (P δ) is r�, since J is strictly coercive on the convex

set BX
δ (r�). Moreover, we have as a first consequence the following lemma.

Lemma 3.6. Problem (P δ
N ) always admits a solution r�N ∈ VN ∩ BX

δ (r�). Any

point r�N ∈ VN ∩ BX
δ (r�) satisfying (3.6) is a local regular optimizer of second order.

Moreover, the coercivity implies the uniqueness of r�N .

Proof. The existence of r�N is obvious since the admissible set VN ∩ BX
δ (r�) is

compact. It follows for all rN := r�N +hN ∈ VN∩BX
δ (r�) that r�N +ξhN ∈ VN∩BX

δ (r�)
is always satisfied for all ξ ∈ (0, 1) by convexity of the admissible set. Consequently,
if r�N also satisfies (3.6), we deduce from (3.4) that

J(rN ) − J(r�N ) =
1

2
∇2J(r�N + ξhN )[hN , hN ] ≥ cE

4
‖rN − r�N‖2

Hs , ξ ∈ (0, 1),

for all rN = r�N + hN ∈ VN ∩ BX
δ (r�). Uniqueness of r�N is an immediate conse-

quence of the strict convexity of J (ensured again by (3.4)) on the convex set VN ∩
BX

δ (r�).

Nevertheless, if r�N remains at the “artificial” boundary ∂
{
VN ∩BX

δ (r�)
}

= VN ∩
∂BX

δ (r�), only a related variational inequality holds instead of (3.6). Furthermore,
‖r�N − r�‖X = δ for N → ∞ contradicts convergence on its own. Consequently, we

have to ensure that r�N is an interior point of the set VN ∩BX
δ (r�), i.e.,

‖r�N − r�‖X < δ,

at least for all sufficiently large N ≥ N0. This result is provided by the next theorem.
Theorem 3.7. Let (A1)–(A4) and (V1)–(V4) hold. Then, if r� ∈ H	 for some

 > k, there exists an N0 such that

r�N ∈ VN ∩BX
δ (r�) for all N ≥ N0.

Proof. We split the proof into four parts.
(i) We define PN : L2 → VN as the L2-orthogonal projection onto VN . Then, by

our assumptions (V1), (V2) we have

‖PN (r�) − r�‖X ≤ cHk→X‖PN (r�) − r�‖Hk � inf
rN∈VN

‖rN − r�‖Hk
N→∞−→ 0

and likewise by (V4),

‖PN (r�) − r�‖Hs � inf
rN∈VN

‖rN − r�‖Hs
N→∞−→ 0.
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Hence, we deduce that there exists an N0 such that VN ∩BX
δ (r�) �= ∅ for all N ≥ N0.

Without loss of generality we assume that N0 = 0.
(ii) Recall that

J(r�) = inf
{
J(r) : r ∈ BX

δ (r�)
}
,

J(r�N ) = inf
{
J(rN ) : rN ∈ VN ∩BX

δ (r�)
}
,

and define Jδ(N) ≥ J(r�N ) ≥ J(r�) via

Jδ(N) := inf
{
J(rN ) : rN ∈ VN ∩ ∂BX

δ (r�)
}
.

Since J
(
PN (r�)

)
≥ J(r�N ), we conclude the assertion ‖r�N − r�‖X < δ if we can prove

Jδ(N) > J
(
PN (r�)

)
for all N ≥ N0.(3.8)

On the one hand, (3.5) implies

J
(
PN (r�)

)
− J(r�) ≤ CS

2
‖PN (r�) − r�‖2

Hs .(3.9)

On the other hand, by introducing the quantity

FX
δ (N) := inf

{
‖rN − r�‖Hs : rN ∈ VN ∩ ∂BX

δ (r�)
}

= inf
{
‖rN − r�‖Hs : rN ∈ VN \BX

δ (r�)
}
,

we derive from (3.5)

Jδ(N) − J(r�) ≥ cE
4
FX
δ (N)2.(3.10)

Combining (3.9) and (3.10), we see that the inequality

‖PN (r�) − r�‖Hs < C� · FX
δ (N), C� :=

√
cE

2CS
,(3.11)

will imply (3.8) and, thus, ‖r�N − r�‖X < δ.
(iii) We shall establish a relation between FX

δ (N), ‖r� − PN (r�)‖Hs , and E(N)
from the inverse estimate (V3). For the sake of simplicity, we assume without loss of
generality that the constant cHk→X from (V1) is less than one such that

BHk

δ (r�) ⊆ BX
δ (r�).(3.12)

Introducing

FHk

δ (N) := inf
{
‖rN − r�‖Hs : rN ∈ VN ∩ ∂BHk

δ (r�)
}

= inf
{
‖rN − r�‖Hs : rN ∈ VN \BHk

δ (r�)
}
,

there follows from (3.12) the relation

FHk

δ (N) ≤ FX
δ (N).

We shall now compute a lower bound for FHk

δ (N). From

‖rN − PN (r�)‖Hs − ‖PN (r�) − r�‖Hs ≤ ‖rN − r�‖Hs
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one infers the inequality

FHk

δ (N) ≥ inf
{
‖rN − PN (r�)‖Hs : rN ∈ VN \BHk

δ (r�)
}
− ‖PN (r�) − r�‖Hs .(3.13)

We choose N0 sufficiently large to ensure

‖PN (r�) − r�‖Hk ≤ δ/2 for all N ≥ N0.

Then it holds that BHk

δ/2

(
PN (r�)

)
⊂ BHk

δ (r�), and we arrive at

inf
{
‖rN − PN (r�)‖Hs : rN ∈ VN \BHk

δ (r�)
}

≥ inf
{
‖rN − PN (r�)‖Hs : rN ∈ VN \BHk

δ/2

(
PN (r�)

)}
≥ inf

rN∈VN

{‖rN‖Hs : ‖rN‖Hk
= δ/2}

≥ δ

2E(N)
.

Inserting this estimate into (3.13), we deduce

FX
δ (N) ≥ FHk

δ (N) ≥ δ

2E(N)
− ‖PN (r�) − r�‖Hs for all N ≥ N0.(3.14)

(iv) Observing

‖PN (r�) − r�‖Hs � inf
rN∈VN

‖rN − r�‖Hs ,

we infer from (V4) that we can increase N0 such that

‖PN (r�) − r�‖Hs <
δ

2E(N)
· C�

C� + 1
for all N ≥ N0.

Thus, in view of (3.14), we arrive at

‖PN (r�) − r�‖Hs < C�

(
δ

2E(N)
− ‖PN (r�) − r�‖Hs

)
< C�FX

δ (N),

that is, (3.11), for all N ≥ N0, which finishes the proof according to part (ii).
Remark 3.8. Obviously, by means of standard optimization theory, (3.3) and

(3.6) imply well-posedness of the finite dimensional optimization problem; that is,
existence and (local) uniqueness of minimizers are ensured. In particular, the strict
coercivity of (P δ

N ), induced by the coercivity of (P δ), provides the convergence

r
(n)
N → r�N as n → ∞

of the iterative scheme (3.7); see, e.g., [30, 40].

3.5. Convergence. The above theorem ensures the existence of an approximate
solution r�N to the finite dimensional problems (P δ

N ) that satisfies the necessary con-
dition (3.6), provided that N is sufficiently large. The next theorem estimates the
distance ‖r�N − r�‖Hs .

Theorem 3.9. The approximate solution r�N of the finite dimensional problem
(P δ

N ) satisfies the error estimate

‖r�N − r�‖Hs ≤ 2CS

cE
inf

rN∈VN

‖rN − r�‖Hs

uniformly with the number of unknowns N .
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Proof. For the sake of clearness in the representation, let 〈·, ·〉 denote the duality
pairing between Hs and its dual space H−s.

On the one hand, observing (3.2), Galerkin orthogonality implies

〈∇J(r�N ) −∇J(r�), r�N − r�〉 = 〈∇J(r�N ) −∇J(r�), rN − r�〉
≤ CS‖r�N − r�‖Hs‖rN − r�‖Hs

for all rN ∈ VN . On the other hand, by introducing

j(t) := 〈∇J
(
tr�N + (1 − t)r�

)
, r�N − r�〉,

we derive the estimate

〈∇J(r�N ) −∇J(r�), r�N − r�〉 = j(1) − j(0) =

∫ 1

0

j′(t) dt

=

∫ 1

0

〈∇2J(tr�N + (1 − t)r�
)
· (r�N − r�), r�N − r�〉 dt ≥ cE

2
‖r�N − r�‖2

Hs .

Combining both estimates yields

‖r�N − r�‖2
Hs ≤ 2CS

cE
‖r�N − r�‖Hs‖rN − r�‖Hs

for all rN ∈ VN , which is equivalent to the assertion.
Of course, from this theorem one can determine the rate of convergence if one

estimates infrN∈VN
‖rN − r�‖Hs .

3.6. The fully discretized problem. Up to now, we investigated only the
discretization with respect to the shape. Hence, we neglected consistency errors arising
from the approximate solution of the state equation or from computing the objective
and constraints by, e.g., quadrature. Consequently, we shall focus on the following
further modification of problem (P δ

N ):

seek r�Nε ∈ VN ∩BX
δ (r�N ) such that 〈∇Jε(r

�
N ), qN 〉 = 0 for all qN ∈ VN ,(P δ

Nε)

where ε is an approximation parameter referring to the inexact computation of the
gradient. We prove the following Strang-type lemma which estimates the consistency
error induced by solving (P δ

Nε).
Lemma 3.10. Assume that the estimate

|〈[∇Jε(rN ) −∇J(rN )] − [∇Jε(qN ) −∇J(qN )], sN 〉| ≤ ε‖rN − qN‖Hs‖sN‖Hs(3.15)

holds for all rN , qN ∈ VN ∩BX
δ (r�N ) and sN ∈ VN . Then, provided that ε is sufficiently

small, (P δ
Nε) admits a unique solution r�Nε ∈ VN ∩BX

δ (r�N ) which satisfies the a priori
estimate

‖r� − r�Nε‖Hs ≤
(
1 +

2 max{1, CS}
cE − 2ε

){
‖r� − rN‖Hs + sup

qN∈VN

〈∇J(rN ) −∇Jε(rN ), qN 〉
‖qN‖Hs

}
.

Proof. Due to our assumptions from the previous subsections, the unperturbed
Richardson iteration

r
(n+1)
N = r

(n)
N − α

N∑
i=1

∇J(r
(n)
N )[ϕi]ϕi, n = 0, 1, . . . ,
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defines a contraction of VN ∩ BX
δ (r�N ) onto itself for a whole range of α ∈ [α, α].

Estimate (3.15) ensures that the perturbed Richardson iteration

r
(n+1)
Nε = r

(n)
Nε − α

N∑
i=1

∇Jε(r
(n)
Nε )[ϕi]ϕi, n = 0, 1, . . . ,

is still a contraction of VN ∩ BX
δ (r�N ) onto itself for α := (α + α)/2, provided that ε

is sufficiently small. This proves existence and uniqueness of the perturbed solution
r�Nε.

Next, using again (3.15), we find

〈∇Jε(rN ) −∇Jε(qN ), rN − qN 〉
≥ 〈∇J(rN ) −∇J(qN ), rN − qN 〉 − ε‖rN − qN‖2

Hs

≥
(cE

2
− ε
)
‖rN − qN‖2

Hs ,

where c̃E := cE/2 − ε > 0 holds if ε is sufficiently small.
Due to Galerkin orthogonality, the Ritz–Galerkin solution r�Nε of (P δ

Nε) satisfies

c̃E‖r�Nε − rN‖2
Hs ≤ 〈∇Jε(r

�
Nε) −∇Jε(rN ), r�Nε − rN 〉

≤ 〈∇J(r�) −∇J(rN ), r�Nε − rN 〉 + 〈∇J(rN ) −∇Jε(rN ), r�Nε − rN 〉
≤ CS‖r� − rN‖Hs‖r�Nε − rN‖Hs + 〈∇J(rN ) −∇Jε(rN ), r�Nε − rN 〉,

that is,

‖r�Nε − rN‖Hs ≤ max{1, CS}
c̃E

{
‖r� − rN‖Hs + sup

qN∈VN

〈∇J(rN ) −∇Jε(rN ), qN 〉
‖qN‖Hs

}
.

Since rN ∈ VN ∩ BX
δ (r�N ) is arbitrary, we arrive at the assertion using the triangle

inequality

‖r� − r�Nε‖Hs ≤ ‖r� − rN‖Hs + ‖rN − r�Nε‖Hs .

4. Numerical results.

4.1. An unconstrained shape optimization problem. For comparison we
shall employ model problems, where the solution is known analytically. To this end,
we choose the shape optimization problem (2.3) based on the domain integral

J(Ω) =

∫
Ω

(x2

8
+

y2

4
− 2
)
dx

as our first numerical example. In accordance with subsection 2.2, the ellipse centered
in 0 with semiaxes 2

√
2 and 2 is a strict minimizer of second order.

The numerical setting is as follows. We subdivide the parameter interval [0, 2π]
equidistantly into N intervals. With respect to this subdivision, the radial function
r ∈ X := C1

per([0, 2π]) is then approximated periodically by N cubic B-splines B3
i ,

i = 1, . . . , N , that is,

rN =

N∑
i=1

aiB
3
i ∈ C2,1

per([0, 2π]).
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Fig. 4.1. L2-error of the approximate solution.

We employ a Newton method to iteratively solve the necessary condition ∇J(Ω) ≡ 0,
using the circle with radius 2 as an initial guess.

Since the energy space for the shape Hessian is L2([0, 2π]), we measure the L2-
norm of the approximation error given by

‖r − rN‖2
L2([0,2π]) =

∫ 2π

0

|r − rN |2dφ.

The measurements are shown in Figure 4.1. We observe, as predicted, the rate of
convergence N−4, indicated by the dashed line.

4.2. A constrained shape optimization problem. We consider next a cylin-
dric circular bar which is homogeneous and isotropic with a planar, simply connected
cross section Ω ∈ R

2. We follow Banichuk and Karihaloo [2], but normalize the shear
modulus G = 1 and the elastic modulus E = 1. We want to solve the problem of
maximizing the torsional rigidity of the bar subject to given equality constraints on
the bending stiffness and the volume.

First, we briefly recall the mathematical formulation of the quantities. The tor-
sional rigidity is calculated by

T (Ω) = 2

∫
Ω

u(x)dx,

where the stress function u = u(Ω) satisfies

−Δu = 2 in Ω, u = 0 on Γ.
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The bending rigidity with respect to a fixed barycenter in the origin is given by

B(Ω) =

∫
Ω

y2dx.

The volume of the domain and its (simplified) barycenter coordinates read as

V (Ω) =

∫
Ω

dx, Sx(Ω) =

∫
Ω

xdx, Sy(Ω) =

∫
Ω

ydx.

Consequently, we arrive at the following constraint shape optimization problem:

J(Ω) := −T (Ω) → min

subject to

B(Ω) = B0, V (Ω) = V0, Sx(Ω) = 0, Sy(Ω) = 0.

Choosing B0 =
√

2π/4, V0 = π, we see that the necessary condition is fulfilled by the
ellipse with semiaxes hx = 2−1/4 and hy = 21/4. The associated Lagrange multipliers
are λB = −4/9, λV = 8

√
2/9, and λSx = λSy

= 0; cf. [2]. From the identity

T (Ω) =

∫
Ω

‖∇u(x)‖2dx,

we deduce that ∇T (Ω)[dr] and ∇2T (Ω)[dr1, dr2] are given as in (2.12) and (2.13) with
g ≡ 0 and

Δdu = 0 in Ω, du = −dr2 〈n̂,n〉
∂u

∂n
on Γ.

Recall that twice differentiability needs r ∈ X := C2,α
per ([0, 2π]); cf. subsection 2.3.

The computation of the other gradients and Hessians is straightforward; see [18, 19]
for the details.

We approximate the radial function r similarly to our first example by periodic
cubic splines on the interval [0, 2π]. Even though the sufficient optimality condi-
tion has not yet been proven, our experience indicates coercivity in the energy space
H1/2([0, 2π]); cf. [18, 19, 21]. More precisely, coercivity of the Lagrangian at (Ω�, λ�)
has to hold on the closed subspace Y ⊆ C2,α

per ([0, 2π]), where

Y := {dr ∈ C2,α
per ([0, 2π]) : ∇B(Ω�)[dr] = 0 ∧∇V (Ω�)[dr] = 0

∧∇Sx(Ω�)[dr] = 0 ∧∇Sy(Ω
�)[dr] = 0}.

However, the pure Lagrangian is introduced only for investigating the sufficient op-
timality condition. In order to numerically solve the discretized constrained shape
optimization problem, we need to find the stationary points of the following aug-
mented Lagrange functional:

Lc(Ω,λ) := −T (Ω) + λT

⎡⎢⎢⎣
B(Ω) −B0

V (Ω) − V0

Sx(Ω)
Sy(Ω)

⎤⎥⎥⎦+
c

2

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣
B(Ω) −B0

V (Ω) − V0

Sx(Ω)
Sy(Ω)

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥

2

,

where λ := (λB , λV , λSx , λSy ) and c > 0 is an appropriate chosen penalty parameter.
The optimization algorithm then reads as follows:
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Fig. 4.2. H1/2-error of the approximate solution.

• initialization: choose initial guess (Ω(0),λ(0)) for (Ω�,λ�).

• inner iteration: solve Ω(n+1) := argminLc(Ω,λ(n)) with initial guess Ω(n).
• outer iteration: update

λ(n+1) := λ(n) − c

⎡⎢⎢⎣
B(Ω(n+1)) −B0

V (Ω(n+1)) − V0

Sx(Ω(n+1))
Sy(Ω

(n+1))

⎤⎥⎥⎦ .
In the inner iteration, we employ a Newton scheme combined with a quadratic line-
search. Instead of the first order update rule described above, we use a second order
Lagrange multiplier method introduced in [36] (see also [21]), which provides faster
convergence of the dual parameters. The state equation is solved by using a boundary
element method; cf. [18, 19] for the details. Notice that about 2000 boundary elements
are required to solve the state equation sufficiently accurately if we discretize the free
boundary by N = 100 B-splines.

According to our convergence result we shall observe the rate of convergence

‖r − rN‖H1/2([0,2π]) � N−3.5‖r‖H4([0,2π]).

We measure this norm via the approximation

‖r − rN‖2
H1/2([0,2π]) ∼ ‖r − rN‖2

L2([0,2π]) +

∫ 2π

0

|r − rN ||r′ − r′N |dφ.

The results are presented in Figure 4.2. As predicted, the error decreases like N−3.5,
which is indicated by the dashed line.
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Fig. 4.3. L2-error of the approximate solution.

In addition we also measured the L2-norm of the approximation error, visualized
in Figure 4.3. In fact, even though we have not proven the Aubin–Nitsche trick, we
observe the higher rate of convergence N−4, indicated by the dashed line.

5. Concluding remarks. In the present paper we established a complete con-
vergence analysis for approximate solutions of shape optimization problems. In par-
ticular, we incorporated the two norm discrepancy. We presented numerical results
which verify the predicted rates of convergence. We would like to point out that our
analysis applies also to p-discretizations of the domain’s parametrization, for example,
finite dimensional Fourier sequences for the discretization of the radial function. For
several applications we refer to [9, 18, 19, 20]; see also [22, 24, 42] for related problems
in three dimensions.
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Abstract. We study the problem of achieving integral input to state stability (iISS) with respect
to noise for a class of upper triangular nonlinear systems with uncertainty and measurement noise.
We propose a novel step-by-step Lyapunov-based design, consisting of (1) splitting an n-dimensional
system into n one-dimensional systems, each with its own state, inputs, and measurement, (2)
constructing a one-dimensional measurement feedback controller for each one-dimensional system,
according to a certainty equivalence principle, and (3) selecting the parameters of these controllers so
that their interconnection gives a measurement feedback controller for the n-dimensional system. The
stability analysis is performed through filtered Lyapunov functions, which are Lyapunov functions
with parameters being the output of suitable dynamical filters.
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1. Introduction and main results. In practical applications the controlled
output of a system is in general different from the measured output (measurement),
and, moreover, the measured output is affected by noise and uncertainty. In this
paper we study the problem of achieving integral input to state stability (iISS) in the
sense of [1] with respect to noise by means of measurement feedback. To this aim,
consider the class of systems

ẋj = xj+1 + ψjs(x, xn+1, w), μj = xj + ψjm(x, xn+1, w), j = 1, . . . , n,(1.1)

with states x = (x1 · · · xn)T , control u := xn+1, noise w ∈ Lr
2(R

≥) (space of functions
w : [0,∞) → R

r such that
∫ ∞
0

‖w(s)‖2ds < ∞), uncertainties ψjs(x, xn+1, w) and
ψjm(x, xn+1, w), and measurements μ = (μ1 · · · μn)T , with continuous functions
ψji : R

n × R × R
r → R such that for j = 1, . . . , n, i = s,m, and h = j + 1, . . . , n + 1,

|ψji|w=0 − ψji|xh=xh,w=0|2 ≤ |xh − xh|2ajih(xh, xj+1, . . . , xn+1),

|ψji(x, xn+1, w) − ψji|w=0|2 ≤ ‖w‖2bji(xj+1, . . . , xn+1),

ajs,j+1(0, 0, . . . , 0) = 0, ψji|xh=0,h=j+1,...,n+1;w=0 = 0(1.2)

for all x ∈ R
n, w ∈ R

r, and xn+1, xh ∈ R and for some smooth functions ajih :
R

n−j+2 → R
≥ and bji : R

n−j+1 → R
≥, where ψji|xh=xh

denotes the function
ψji(x, xn+1, w) evaluated for xh = xh. In particular, if each function ψji(x, xn+1, w),
i = s,m, does not depend on x1, . . . , xj , then the first two inequalities of (1.2) are
satisfied as long as ψji(x, xn+1, w), i = s,m, is smooth and grows at most linearly
with respect to w. The linear growth with respect to w is required only for sim-
plicity and can be relaxed, by replacing ‖w‖2 with α(‖w(s)‖), α ∈ K, such that∫ ∞
0

α(‖w(s)‖)ds < ∞. On the other hand, ajs,j+1(0, 0, . . . , 0) = 0 requires that for
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xl = 0, l = j + 2, . . . , n+ 1, the incremental ratio of ψji(x, xn+1, 0) between xj+1 and
xj+1 can be made in norm as small as desired by making small xj+1 and xj+1. For
smooth ψji this means that ψji does not contain, for xl = 0, l = j + 2, . . . , n + 1,
linear terms in xj+1. The example

ẋ1 = x2 + x2
2 sin(x1x2) + x2x3w, μ1 = x1,

ẋ2 = x3, μ2 = x2 + x4
3 sin(x2) + x2

3w,

ẋ3 = u + u2 cos(x1x3), μ3 = x3 + w(1.3)

clearly satisfies (1.2) with a1s2 = 2(x2 +x2)
2 +2x4

2 maxx1,x2,x2
[(sin(x1x2)− sin(x1x2))

/(x2 −x2)]
2, a2m3 = (x3 +x3)

2(x2
3 +x2

3)
2, a3s4 = (u+u)2, b1s = x2

2x
2
3, b2m = x4

3, and
b3m = 1. The main result of this paper for the class of systems (1.1) is the following
theorem. Let x̃1 := 0, x̃n+1 := xn+1 = u, and G(s) = s√

1+s2
.

Theorem 1.1. Under assumptions (1.2) there exist hj ∈ (0, 1) and Rj ≥ 1,
j = 1, . . . , n, such that the feedback controller C,

x̃j+1 = −G(σj)

2Rj
, σ̇j =

1

2Rj

[
(hj − 1)G(σj) +

1

hj
G(μj − x̃j − σj)

]
, j = 1, . . . , n,(1.4)

renders (1.1) iISS with respect to w.
We recall that a system Σ : ż = f(z, w) is iISS if there exist functions α1, α2 ∈ K∞

and β ∈ KL such that α1(‖z(t)‖) ≤ β(‖z(0)‖, t) +
∫ t

0
α2(‖w(s)‖)ds holds for all t ≥ 0

along the trajectories of Σ. Note the “nested” structure of the controller (1.4), in the
sense that the dynamics of σ̇j depends on σj−1 through the term x̃j .

With full state information (i.e., μ = x) and without noise (i.e., w = 0) systems
(1.1) have been studied in [7], [12] and extensively in the textbook [13]. On the
other hand, with full state information iISS properties with respect to w have been
obtained in [14]: we remark that Theorem 1.1 gives an improvement over [14] even
with state feedback, since we do not require in (1.2) that bji(0, . . . , 0) = 0. However,
these results cannot be applied to (1.1)–(1.2) since the measurements μ may differ
significantly from the states x due to unbounded noise w and large uncertainty and,
moreover, the coordinate change, as introduced in section 6.2 of [13], is a function of
the noise and uncertainty and can hardly be implemented as a (smooth) function of
the measurements. Moreover, even an observer-based control design is not feasible
since the observer design for (1.1) is highly nontrivial. Note also that the systems
(1.1)–(1.2) may be not in feedforward form, which is a substantial improvement over
the above results.

Following [3] we implement a “dynamic” backstepping design in which x̃j+1 is
used as the control for each dynamics żj , j = 1, . . . , n, where zj := xj − x̃j is the
backstepping coordinate, and for each state zj we implement a robust observer to
obtain an estimate of zj to be used in x̃j+1 according to a certainty equivalence
strategy (see (1.4)). In accordance with previous contributions on the subject, the
boundedness of x̃j+1 in (1.4) is crucial due to the presence of terms O(|xj+1|) in ψjs

(assumption ajs,j+1(0, 0, . . . , 0) = 0 in (1.2)), such as x2
2 and u2 in ẋ1 and, respectively,

ẋ3 of (1.3) (O(|xj+1|) means infinitesimals with order greater than |xj+1|). Bounded
backstepping with full state information has been also studied in [6] and [11].

The novelty with respect to previous contributions is the boundedness of the
function G(μj − x̃j − σj) in σ̇j of (1.4). This boundedness is crucial due to the

nonlinear terms containing xj fed back in żj through ˙̃xj (and thus, according to (1.4),
through μj−1) and which could not be otherwise counteracted by the bounded control
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x̃j+1 of żj . In example (1.3) with a controller (1.4) the term x4
3 sinx2 in σ̇2 cannot

be counteracted by the bounded control term u + u2 cos(x1x3) in ż3 unless G(s) is
bounded for all s.

The proof of the main Theorem 1.1 is organized along the following lines.
• Define a system as characterized by states z, inputs ι, measurements ς, and

uncertainty (section 3); both the inputs and measurements can be distinguished as
endogenous (i.e., from inside the system) and exogenous (i.e., from outside the system)
type. The endogenous inputs are the controls, and the endogenous measurements are
the measured outputs. The rate of the uncertainty with respect to each state and
input is quantified by the incremental rates.

• Split (1.1) into n one-dimensional systems Σj , j = 1, . . . , n (section 4), each one
with state zj := xj−x̃j , inputs ιj (of which only one controls x̃j+1), and measurements
ςj (of which only one is an endogenous measurement μ̃j := xj − x̃j + ψjm).

• Find a one-dimensional measurement feedback controller Cj (each x̃j+1 and σ̇j

in (1.4)) and a Lyapunov function Wj for each one-dimensional system Σj ◦Cj (section
5) according to a certainty equivalence design (Theorem 3.1 of [4]).

• Take the interconnection Cj , j = 1, . . . , n (the controller (1.4)), as candidate
controller C for (1.1) (section 8).

• Prove the iISS properties of the closed-loop system Σj ◦ Cj , j = 1, . . . , n, by
suitably selecting the parameters of the controllers Cj , j = 1, . . . , n, in such a way as
to enlarge the stability margins of each Σj ◦ Cj and compensate for the incremen-

tal rates of the exogenous inputs in the time derivatives Ẇi, i = 1, . . . , n and i 	= j
(section 8). A Lyapunov function W for the closed-loop system Σ is obtained from
Wj , j = 1, . . . , n, according to Theorem 7.4 in section 7. Theorem 7.4 gives the pro-
cedure for obtaining a Lyapunov function under the quite general assumptions that
the state trajectories are bounded and definitely enter a neighborhood of the origin,
where a small gain condition is met. With respect to the small gain theorem of [8]
which assesses only the existence of a Lyapunov function W for the interconnection,
application of Theorem 7.4 to systems (1.1)–(1.4) gives a Lyapunov function W con-
sisting of a “filtered” combination of W1, . . . ,Wn, i.e., θ[W1 + τ2[W2 + τ3[· · · + · · ·]]],
where τ2, . . . , τn > 0 and θ is the output of a filter implemented by explicitly using
the stability margins and incremental rates of each Σj ◦ Cj , j = 1, . . . , n, in the time

derivatives Ẇj , j = 1, . . . , n. This leads to the notion of filtered Lyapunov functions
(section 6) which give a new tool for the stability analysis of interconnected systems
like (1.1)–(1.4). These systems are not triangular and, thus, the results for the de-
sign of composite Lyapunov functions given in [7] cannot be applied (Example 6.1 in
section 6).

2. Notation. • ‖v‖ =
√
vT v denotes the euclidean norm of any given vector v

and ‖v‖A :=
√
vTAv for any positive semidefinite matrix A. R

s is the vector space of
s-dimensional real column vectors; R

+ (resp., R
≥) denotes the set of positive (resp.,

nonnegative) real numbers; In is the n×n identity matrix; and R
n×n denotes the set

of n× n matrices.
• For any continuous function f : R

q × R
l → R

r, (s, r) �→ f(s, r), we denote by
f(z, r) or f |s=z the function f(s, r) with s = z. A continuous function α : R

≥ → R
≥ is

said to be of class K (or α ∈ K) if α(0) = 0 and it is increasing; a function α : R
≥ → R

≥

is said to be of class K∞ (or α ∈ K∞) if α ∈ K and lims→+∞ α(s) = +∞; a function
α : R

≥ × R
≥ → R

≥ is said to be of class KL (or α ∈ KL) if for each r, α(s, r) is of
class K and for each s it is decreasing and limr→+∞ α(s, r) = 0; K0

∞ is the class of
continuous functions f : R → R

≥ such that f ∈ K∞ when restricted to [0,∞).
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• Ls
2(R

≥) is the class of measurable and square integrable functions χ : R
≥ → R

s,
and the norm of χ(t) in Ls

2(R
≥) is ‖χ‖2 =

√∫ ∞
0 ‖χ(τ)‖2dτ . We simply write L2(R

≥)
when s = 1.

• For any given functions hj : R
q → R, j = 1, 2, we say that h1(s) is of the same

order as h2(s) (in S ⊂ R
q) if there exists κ1, κ2 > 0 such that κ1h2(s) ≤ h1(s) ≤

κ2h2(s) for all s (∈ S) and we write h1 ∼ h2. Moreover, we say that h1(s) is less than
or equal to h2(s) (in S ⊂ R

q) if there exists κ > 0 such that h1(s) ≤ κh2(s) for all s
(∈ S) and we write h1 � h2.

• For any smooth functions V : R → R
≥, s �→ V (s), we denote by ∇rV (r) the

derivative of V (r) with respect to r and by ∇sV |r the derivative of V (s) with respect
to s evaluated for s = r.

3. Complex dynamics as interconnection of simpler dynamics. In view
of a general approach to the stabilization of an interconnected system such as (1.3)
we consider it as the interconnection of three one-dimensional systems:

Σ1 : ẋ1 = x2 + x2
2 sin(x1x2) + x2x3w, μ1 = x1

with state x1, control x2, and measurement μ1;

Σ2 : ẋ2 = x3, μ2 = x2 + x4
3 sin(x2) + x2

3w

with state x2, control x3, and measurement μ2; and

Σ3 : ẋ3 = u + u2 cos(x1x3), μ3 = x3 + w

with state x3, control u, and measurement μ3. Note that in each system Σj the
following hold.

– We can distinguish the inputs into control (or endogenous) inputs v (such as x2

for Σ1) and exogenous inputs χ (such as x3 and w for Σ1). We denote all the inputs,
endogenous and exogenous, by ι.

– We can distinguish the measurements into endogenous measurements μ (avail-
able from the system itself such as μ3 for Σ3) and exogenous measurements ν (available
from other systems such as μ3 for Σ1). We denote all the measurements, endogenous
and exogenous, by ς.

– State, inputs and measurements satisfy some constraints, given by the mea-
surement equations and differential equations of the other systems such as x2 =
μ2−x4

3 sin(x2)−x2
3w and x3 = μ3−w for Σ2 or ẋ2 = x3 for Σ1. Note that on account

of these constraints |x2| ≤ |μ2| + 8μ4
3 + 4w4 + w2. We will refer to this entire set of

constraints by saying that a system Σ with states x ∈ R
n, inputs ι = (vT χT )T ∈

I ⊆ R
m × R

r, and measurements ς = (μT νT )T ∈ Z ⊆ R
p × R

s satisfies a set of
constraints M among the state, inputs, and measurements or (x, ι, ς) ∈ M.

– State and measurement uncertainty ψjs and ψjm can be accommodated into a
vector Ψ, which denotes the “uncertainty” of a system. The uncertainty can be seen
as a locally Lipschitz continuous function Ψ : R

n×I → R
q, (x, ι) �→ Ψ(x, ι), such that

Ψ(0, 0) = 0. We will denote the uncertainty by Ψ or, when needed, more explicitly
with ψjs and ψjm.

Thus, any interconnected n-dimensional system such as (1.3) can be viewed as
the interconnection of n one-dimensional systems, each one with a state z, a control
v, an endogenous measurement μ, uncertainty Ψ, some exogenous inputs χ, some
exogenous measurements ν, and a set of constraints M among the state, inputs, and
measurements. It is important for the controller design to evaluate the effect of the
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uncertainty Ψ on the system under the constraints M. Indeed, the constraints M
allow us to either get suitable bounds depending only on the measurements, which can
be used in the design of a controller for the system itself (internal stability properties),
or bound some state-dependent terms by means of the exogenous inputs which can be
related to the stability properties of other interconnected systems (external stability
properties). In the case of Σ1 with state x1, measurements ς1 (endogenous μ1 and
exogenous ν1 = (μ2 μ3)

T ), inputs ι1 (control v = x2 and exogenous χ1 = (x3 w)T ),
uncertainty Ψ1 = (x2

2 sin(x1x2) + x2x3w 0)T , and constraint M1 = {μ3 = x3 +
w, μ2 = x2 + x4

3 sin(x2) + x2
3w, |w| ≤ 1}, we have (‖Ψ1‖ − ‖Ψ1|w=0‖)2 ≤ a[μ2

3 +
1][μ2

2 +μ8
3 +1]2w2 for some a > 0 and for all (x1, ι1, ς1) ∈ M1. Note that the function

γw
1 (ς1) = a[μ2

3 +1][μ2
2 +μ8

3 +1]2 gives a “worst case” bound of the “incremental term”
(‖Ψ1‖ − ‖Ψ1|w=0‖)2/w2 under the constraints M1. Note also that the constraint M1

has been used in γw
1 to bound the inputs x2, x3 in terms of the measurements μ2, μ3 so

that γw
1 can be used in the design of a controller for Σ1. This motivates the following

definition, which we recall here from [4] for extensive use.
Definition 3.1 (incremental rate). We will say that a system Σ with states

x ∈ R
n, inputs ι ∈ I ⊆ R

m × R
r, measurements ς ∈ Z ⊆ R

p × R
s, uncertainty

Ψ ∈ R
q, and constraints M has (smooth) incremental rate γz if there exist a nonempty

subvector z of (xT ιT )T and a (smooth) nonnegative function γz : R
n × I × Z → R

≥

such that (‖Ψ‖ − ‖Ψ|z=0‖)2 ≤ γz(x, ι, ς)‖z‖2 for all (x, ι, ς) ∈ M.
Since Ψ|x,v,χ=0 = 0 and ‖Ψ‖ ≤ ‖Ψ − Ψ|x=0‖ + ‖Ψ|x=0 − Ψ|x,v=0‖ + ‖Ψ|x,v=0 −

Ψ|x,v,χ=0‖, for a system Σ with states x, inputs ι, measurements ς, uncertainty Ψ,
and constraints M we expect to have the following general relation among Ψ on one
side, and x, ι, ς on the other, under the constraints M:

γ2(ς)‖Ψ‖2 ≤ γx(x, ς)‖x‖2 + γv(ς)‖v‖2 +
∑
j∈J

γχj (x, ι, ς)χ2
j ∀(x, ι, ς) ∈ M,(3.1)

where χj is the jth element of χ, j ∈ J := {1, . . . , r}, and γx : R
n × Z → R

≥,
γv : Z → R

+, and γχj : R
n×I ×Z → R

≥ are (smooth) incremental rates (“rescaled”
by the square of a smooth function γ : Z → R

+). The inequality (3.1) means that
the uncertainty Ψ is known up to the square of the states and the inputs, weighted
by the corresponding incremental rates evaluated under some constraints M. This
approach is inspired by an H∞-control problem formulation, with Ψ having the role
of a “disturbance,” the right-hand side of (3.1) having the role of a “penalty index,”
and γ having the role of an “attenuation level” [2]. Note that the incremental rate
γv is assumed (without loss of generality) to be a positive real function. Note also
that, by use of the constraints M in (3.1), the incremental rate γv depends only on
the measurements, so that it can be used directly in designing the controller gains.

Definition 3.2 (incremental rates and scaling of Σ). We will say that a system
Σ with states x ∈ R

n, inputs ι ∈ I ⊆ R
m × R

r, measurements ς ∈ Z ⊆ R
p × R

s,
uncertainty Ψ ∈ R

q, and constraints M has (smooth) incremental rates γx, γv, and
γχj , j ∈ J , with scaling γ if (3.1) holds for some (smooth) nonnegative functions
γx : R

n ×Z → R
≥, γχj : R

n × I × Z → R
≥ and positive γv, γ : Z → R

+.
Throughout the paper, when an incremental rate is not explicitly cited in the

context, we consider it equal to zero.

4. Splitting systems into simpler dynamics. In this section, using the gen-
eral framework introduced in section 3, we split the dynamics (1.1) into n one-
dimensional systems having a “canonical” form. To do this we change coordinate
xj into backstepping coordinate zj := xj − x̃j , j = 1, . . . , n, x̃1 := 0, to use x̃j+1 as the
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control for żj instead of xj+1 (which is a state for (1.1)) as the control for ẋj . Also we
change each measurement μj into μ̃j := μj− x̃j , j = 1, . . . , n, to have zj as the “nomi-
nal part” of the measurement μ̃j . Since by (1.2) each ψji contains terms O(|x̃j+1|), to
control żj through x̃j+1 it is thus important to keep x̃j+1 as small as possible (see [14]).
This accounts for introducing the constraints {|x̃i+1| ≤ Δi ∈ (0, 1], i = 1, . . . , n}. We
see that in backstepping coordinates zj , j = 1, . . . , n, and with measurement change
μ̃j , j = 1, . . . , n, (1.1) can be split into n one-dimensional systems of the form

Σj : żj = x̃j+1 + ψ̃js, μ̃j = zj + ψjm(4.1)

with state zj , control x̃j+1 with x̃n+1 := u, (endogenous) measurement μ̃j , and ex-

ogenous inputs z1, . . . , zj−1, zj+1, . . . , zn, x̃2, . . . , x̃j , ˙̃xj , x̃j+2, . . . , x̃n+1 and w; uncer-

tainties ψjm and ψ̃js := ψjs + zj+1 − ˙̃xj , with ˙̃x1 := 0 and zn+1 := 0; and constraints

M̃j := {|x̃i+1| ≤ Δi ∈ (0, 1], i = 1, . . . , n}. Moreover, by using (1.2) and Lemma A.1

we find γx̃h
ji (Δj , . . . ,Δh−1) ≥ 0, h = j + 1, . . . , n + 1, i = s,m, and smooth functions

γzh
ji : R

n−h+1 → R
≥, h = j + 1, . . . , n, and γw

ji : R
n−j → R

≥, i = s,m, such that
(A.1)–(A.3) hold true for j = 1, . . . , n and for all w ∈ R

r, xh, x̃h ∈ R, h = 1, . . . , n+1,
˙̃xh ∈ R, h = 1, . . . , n, such that |x̃h| ≤ Δh−1. As a consequence of (A.2)–(A.3)

γ
˙̃xj

js := 2, γ
˙̃xj

jm := 0, γx̃h
ji , h = j + 1, . . . , n + 1, i = s,m, γzh

ji , h = j + 1, . . . , n, and γw
ji,

i = s,m, are the incremental rates of Σj . We remark that the incremental rates of
z1, . . . , zj−1 and x̃2, . . . , x̃j are set to zero on account of the same Lemma A.1. Note

also that the input ˙̃xj will be specified later. When in the proof of Theorem 1.1 we
will define x̃j as a function of σj−1 (see (1.4)), we will consider zj−1 and zj−1 − σj−1

as exogenous inputs for Σj and express ˙̃xj and x̃j in terms of the incremental rates
of zj−1 and zj−1 − σj−1.

Example 4.1. In the case of (1.3) we get the three one-dimensional systems Σ1 :

ż1 = x̃2+ψ̃1s, μ̃1 = z1, with ψ̃1s = z2+(z2+ x̃2)
2 sin(z1(z2+ x̃2))+(z2+ x̃2)(z3+ x̃3)w

and incremetal rates γz2
1s ∼ 1 + z2

2 , γx̃2
1s ∼ Δ2

1, and γw
1s ∼ (z2

2 + 1)(z2
3 + 1) under the

constraints {|x̃i+1| ≤ Δi ∈ (0, 1], i = 1, 2, 3}; Σ2 : ż2 = x̃3 + ψ̃2s, μ̃2 = z2 + ψ2m,

with ψ̃2s = z3 − ˙̃x2, ψ2m = (z3 + x̃3)
4 sin(z2 + x̃2) + (z3 + x̃3)

2w and incremetal rates

γz3
2s , γ

˙̃x2
2s ∼ 1, γw

2m ∼ (z3 + 1)4, γz2
2m ∼ 1 + z6

3 , and γx̃3
2m ∼ Δ6

2 under the constraints

{|x̃i+1| ≤ Δi ∈ (0, 1], i = 1, 2, 3}; and Σ3 : ż3 = u + ψ̃3s, μ̃3 = z3 + ψ3m, with

ψ̃3s = u2 cos(z1(z3+x̃3))− ˙̃x3, ψ3m = w and incremetal rates γu
3s ∼ Δ2

3 and γ
˙̃x3
3s , γ

w
3m ∼

1 under the constraints {|x̃i+1| ≤ Δi ∈ (0, 1], i = 1, 2, 3}. As already stipulated
regarding the other incremental rates which are not explicitly cited in the context, we
consider them equal to zero.

In the next section we address the problem of controlling simple dynamics like
(4.1).

5. Controlling simple dynamics. In this section we apply Theorem 3.1 of [4]
for obtaining a measurement feedback controller Cj and a Lyapunov function Wj for
any one-dimensional system Σj like (4.1). This result, although applied in our case
to one-dimensional systems, can be used to extend Theorem 1.1 to block-feedforward
systems, for which each system Σj in (4.1) has dimension possibly greater than one.
By smooth measurement feedback controller Cj for Σj we mean

σ̇j = Hj(σj) + Gj(μ̃j − σj), x̃j+1 = Fj(σj)(5.1)
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with σj ∈ R and smooth Hj : R → R and Gj : R → R, vanishing at the origin and
satisfying the constraints

|Fj(σj)| ≤ Δjf ∈ (0,∞], |Gj(μ̃j − σj)| ≤ Δjm ∈ (0,∞] ∀σj , μ̃j ,(5.2)

for some given Δjf ,Δjm ∈ (0,∞]. This definition extends without further remarks
to the case of n-dimensional systems Σj . Note that the structure of the controller
(5.1) is based on a certainty equivalence principle, consisting of replacing in the state
feedback controller x̃j+1 = Fj(zj) the state zj with an estimate σj . The numbers Δjf

and Δjm characterize, respectively, the maximum level allowed for the control input
x̃j+1 and for the innovations μ̃j − σj fed back into the control loop by (5.1).

Definition 5.1 (controller levels). We say that a smooth measurement feedback
controller (5.1) has control input level Δjf and innovations level Δjm (or simply levels
(Δjf ,Δjm)) if there exist Δjf ,Δjm ∈ (0,∞] such that (5.2) holds true.

We recall that any system Σj like (4.1) has state zj , control x̃j+1, (endogenous)

measurement μ̃j , and among its exogenous inputs zj+1, . . . , zn, x̃j , ˙̃xj , x̃j+2, . . . , x̃n+1

and w. Throughout, we will denote by χji, i ∈ Jj , any one of these exogenous inputs.

Also, set γ
˙̃xj

js = 2 and γ
˙̃xj

jm = 0, and let G(s) be as in Theorem 1.1.
Theorem 5.2. For any system Σj like (4.1) satisfying (A.1) and (A.2)–(A.3)

for j = 1, . . . , n and for all w ∈ R
r; xh, x̃h ∈ R, h = 1, . . . , n + 1; and ˙̃xh ∈ R,

h = 1, . . . , n, such that |x̃h| ≤ Δh−1, there exist Δj , hjs, hjm ∈ (0, 1) and R′
j1 ≥ 1

such that for all Rj1 ≥ R′
j1 the smooth measurement feedback controller

Cj : x̃j+1 = − 1

2Rj1
G(σj), σ̇j =

1

2Rj1

[
(hjs − 1)G(σj) +

1

hjs
G(μ̃j − σj)

]
(5.3)

has levels (Δj ,Δj/hjs) and Wj(zj , σj) =
√

1 + z2
j +

√
1 + (zj − σj)2 − 2 is smooth,

proper, and positive definite and satisfies along the trajectories of Σj ◦ Cj

Ẇj ≤ −ϕjs(zj)z
2
j − ϕjm(zj − σj)(zj − σj)

2 +
∑
i∈Jj

γ
χji

j χ2
ji(5.4)

with stability margins

ϕjs(zj) :=
1 − hjs

8Rj1(1 + z2
j )

, ϕjm(zj − σj) :=
1 − 16hjs

32Rj1hjs[1 + (zj − σj)2]
(5.5)

and incremental rates

γ
χji

j :=
Rj1

hjs
[γ

χji

js + hjmγ
χji

jm ].(5.6)

Proof. First we rewrite Σj as a system Σ of the form (1) in [4]; then we check
the assumptions of Theorem 3.1 of [4] on Σ. By (A.1) there exist Δj ∈ (0, 1) and
hjs, hjm > 0 such that

γ
x̃j+1

js (Δj) + hjmγ
x̃j+1

jm (Δj) ≤ hjs ≤ 1/80.(5.7)

Let

Rj1 > R′
j1 := max

{
1

Δj
,

1√
hjm

}
, γ2

j =
Rj1

hjs
,(5.8)

C2 = B2 = 1, B1 = ( 1 0 ) , C1 = ( 0 1 )Rj1, Ψj =

(
ψ̃js

ψjm

Rj1

)T

.(5.9)
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Along with positions (5.9), Σj reads out as a system Σ of the form (1) of [4] with
B1C

T
1 = 0, R2 := C1C

T
1 = R2

j1 > 0, with state x = zj , control v = x̃j+1, uncertainty
Ψ = Ψj , and exogenous inputs χji, i ∈ Jj . Moreover, from (A.2)–(A.3), the first
inequality in (5.7), the fact that hjm > 1/R2

j1 and hjsγ
2
j = Rj1 by (5.8), and having

“rescaled” ψjm as in (5.9), we obtain under the constraints M̃j := {|x̃i+1| ≤ Δi ∈
(0, 1], i = 1, . . . , n}

γ2
j ‖Ψj‖2 = γ2

j

[
ψ̃2
js +

ψ2
jm

R2
j1

]
≤ Rj1x̃

2
j+1 +

Rj1

hjs

[
(γ

˙̃xj

js + hjmγ
˙̃xj

jm)| ˙̃xj |2

+

n∑
h=j+1

z2
h(γzh

js + hjmγzh
jm) +

n+1∑
h=j+2

x̃2
h(γx̃h

js + hjmγx̃h
jm) + (γw

js + hjmγw
jm)‖w‖2

]
;(5.10)

i.e., the incremental rates of Σ are γv := Rj1 and γχji := γ
χji

j as in (5.6) with scaling
γ := γj . We check the assumptions of Theorem 3.1 of [4] on Σ. Let Pm = 1 and

Vs(s) = Vm(s) = Ṽm(s) = 1
2 [
√

1 + s2 − 1]. The functions Vs(r) and Vm(r) are proper

and positive definite, and, moreover, ∇sṼm(s)/s := 1/[2
√

1 + s2] ∈ (0, 1] for all s,
and is even and nonincreasing for all s ≥ 0. By direct calculations with R2 = R2

j1, we
obtain that the inequalities (3) and (10) of [4] with n = 1 are satisfied, respectively,
with ϕs(s) = ϕjs(s) and ϕm(s) = ϕjm(s), where ϕjs(s) and ϕjm(s) are as in (5.5)
and, by the second inequality of (5.7), are positive for all zj and σj . Also (12) and (13)

of [4] follow from direct calculation of ∇sṼm(s), ∇2
ssṼm(s), and ∇3

sssṼm(s). Finally,
since Rj1 > 1/Δj > 1 by (5.8) and since Δj ∈ (0, 1), also the feedback constraints
|F (s, ς)| ≤ Δf and |G(s, ς)| ≤ Δm in Theorem 3.1 of [4] are met for all s, with

F (s, ς) := − s

2Rj1

√
1 + s2

,(5.11)

G(s, ς) :=
s

2Rj1hjs

√
1 + s2

, Δf = Δj , Δm =
Δj

hjs
.

Finally, it is not difficult to see that

f1(s1, s2) =

[
(s1 − s2)√

1 + (s1 − s2)2
− s1√

1 + s2
1

]2

has for each s2 a global maximum for s1 = s2/2. Using this fact and the second
inequality of (5.7), for all zj , ej

2

γ2
j

∇ejVm(ej)B1B
T
1

[
∇zjVs(zj) −∇zj−ejVs(zj − ej) −∇ejVs(ej)

]T
+ γv(‖ F (zj − ej) − F (zj)‖2 − ‖F (ej)‖2)

≤
[
hjs

Rj1
+

1

4Rj1

][
(zj − ej)√

1 + (zj − ej)2
− zj√

1 + z2
j

]2

≤
[
hjs

Rj1
+

1

4Rj1

]
e2
j

1 + e2
j/4

≤ 2

Rj1

e2
j

1 + e2
j

≤ ϕjm(ej)e
2
j ,

which implies (14) of [4] with n = 1. Application of Theorem 3.1 of [4] and (16)
therein gives the controller Cj in (5.3) with levels (Δj ,Δj/hjs) by (5.12) and that the
smooth, proper, and positive definite Wj(zj , σj) satisfies (5.4) along the trajectories
of Σj ◦ Cj .
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6. Filtered Lyapunov functions. The Lyapunov functions used in Theorem
5.2 cover with enough generality the stability analysis of systems of the form Σj ◦ Cj .
However, when interconnecting more systems Σi ◦Ci, i = 1, . . . , n, each one with Lya-
punov function Wi, i = 1, . . . , n, a simple combination

∑r
i=1 Wiθi, θi > 0, may be not

satisfactory for being a candidate Lyapunov function for the system interconnection
Σi, i = 1, . . . , n (see [7]). However, these interconnected systems are not necessarily
triangular and, thus, even the results for the design of composite Lyapunov functions
given in [7], [13] or [12] cannot be applied.

Example 6.1. Consider the system Σ:

ż1 = − 2z1√
1 + z2

1

+ z2
2 sin(z1), ż2 = − 2z2√

1 + z2
2

+ ε2
z1√

1 + z2
1

cos(z1z2)(6.1)

with ε2 ∈ (0, 1/2). If Wj(zj) = (1+z2
j )

1/2−1, j = 1, 2, then after some computations

Ẇj ≤ −ϕj(zj)z
2
j + γzi

j (zi)z
2
i , j 	= i,

ϕ1(z1) =
1

(1 + z2
1)

, γz2
1 (z2) = z2

2 , ϕ2(z2) =
1

(1 + z2
2)

, γz1
2 (z1) =

ε2

(1 + z2
1)

.(6.2)

Note that neither θ1W1(z1) + θ2W2(z2), θ1, θ2 > 0, is a Lyapunov function for (6.1)
nor the results of [7] can be applied to derive from W1(z1) and W2(z2) a composite
Lyapunov function for (6.1).

Thus, we look for a “filtered” combination
∑r

i=1 Wiθi, where θi are dynami-
cal parameters which may depend on the system trajectories. The parameter θi(t),
i = 1, . . . , n, should be positive along the system trajectories for

∑r
i=1 Wi(t)θi(t)

being positive as well, and its time derivative should be nonpositive along the sys-
tem trajectories for dominating the cross terms γzi

j (zi)z
2
i in Ẇj and γ

zj
i (zj)z

2
j in Ẇi,

i, j = 1, . . . , n, i 	= j.
Example 6.1 (continued). Let c2 := [1/(1 − 2ε2)

1/2 − 1] and assume that ε2 is
sufficiently small so that (1 + c2)

2[(1 + c2)
2 − 1] < 1/2. Moreover, let

c1 := 1/(1 − 2(1 + c2)
2[(1 + c2)

2 − 1])1/2 − 1,

κ1 := τ1(c2), τ1(s) := (1 + s)2[(1 + s)2 − 1], κ2 := ε2.(6.3)

It can be easily seen that the trajectories of (6.1) are bounded, enter in finite time the
set R = {(z1, z2) : Wj(zj) ≤ cj , j = 1, 2}, and remain thereinafter. Boundedness of
the trajectories of (6.1) follows from the fact that for each i 	= j while zj(t) approaches
the set {Wj(zj) ≤ cj}, zi(t) has infinite escape time. If, in addition, ε2 is sufficiently
small so that κ1κ2 < 1, the “filtered” linear combination of W1 and W2,

W̃ (z1, z2, θ) = θ(W1(z1) + d2W2(z2)), d2 ∈ (κ1, 1/κ2),(6.4)

θ̇ = −[θ/min{c1, d2c2}] max{τ1(W2(z2)) − τ1(c2), 0}ϕ2(z2)z
2
2 , θ(0) = 1,(6.5)

satisfies

˙̃
W ≤ −θ[(1 − κ2d2)ϕ1z

2
1 + (d2 − κ1)ϕ2z

2
2 ](6.6)

along the trajectories of (6.1) and (6.5). Also, since the trajectories of (6.1) are
captured in finite time by R and τ1(s) is nondecreasing for all s ≥ 0, for each trajectory
(z1(t), z2(t)) of (6.1)

θ(t) = exp

{
−[1/min{c1, d2c2}]

∫ t

0

max{τ1(W2(z2(s))) − τ1(c2), 0}ϕ2(z2(s))z
2
2(s)ds

}
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for all t ≥ 0, and, moreover, there exists T > 0 such that θ(t) = θ(T ) for all t ≥
T . Thus, θ(t) is bounded and positive for all t ≥ 0 and definitely approaches a

constant positive value. For this reason, the filtered Lyapunov function W̃ is a linear
combination of W1 and W2 locally around the origin. Moreover, since θ(t) is positive
for all t ≥ 0 and 1 − κ2d2 > 0 and d2 − κ1 > 0 by (6.5), it follows from (6.6) that

W̃ (z1(t), z2(t), θ(t)) decreases along the trajectories of (6.1) and (6.5).
Although once the trajectories are trapped closely to the origin the stability anal-

ysis can be performed locally with a quadratic Lyapunov function, filtered Lyapunov
functions unify the local and global dynamic behavior of interconnected systems and
can be used in a Lyapunov based controller design to stabilize the interconnection itself
(if not stable) or in small gain theorems for the stability analysis. The above discus-
sion motivates the following definition. Let Σ be any given system with controller
C and let z and σ be their corresponding (n-dimensional) states, with components
zj and, respectively, σj , j = 1, . . . , n, and let χ be the exogenous inputs of Σ, with
component χj , j ∈ J .

Definition 6.1 (filtered Lyapunov functions). We say that W̃ : R
n×R

n×Θ →
R

≥, (z, σ, θ) �→ W̃ (z, σ, θ) = θW (z, σ), Θ ⊆ R, is a smooth filtered Lyapunov function
for Σ ◦ C with stability margins θϕsj, θϕmj, j = 1, . . . , n, and incremental rates θγχj ,
j ∈ J , if

(i) W (z, σ) is smooth, proper and positive definite,
(ii) θ̇(t) ≤ 0 and θ(t) > 0 along the trajectories of Σ ◦ C, and
(iii) along the trajectories of Σ ◦ C

˙̃
W ≤ −θ

⎧⎨⎩
n∑

j=1

[ϕsj(z)z
2
j + ϕmj(z − σ)(zj − σj)

2] +
∑
j∈J

γχj (z, ι, ς)χ2
j

⎫⎬⎭(6.7)

for some continuous positive (definite) functions ϕsj , ϕmj : R
n → R

≥ and continuous
functions γχj : R

n × I × Z → R
≥.

Clearly, by Theorem 5.2 Wj is a (filtered) Lyapunov function for Σj ◦ Cj with
stability margins (5.5) and incremental rates as in (5.6). If θ = 1 and γχj are functions
only of χ, then our filtered Lyapunov functions are iISS Lyapunov functions [1]. A

smooth, proper, and positive definite function W̃ : R
n × R

n → R
≥ for which there

exist positive definite α : R
≥ → R

≥ and β ∈ K∞ such that
˙̃
W ≤ −α(W̃ ) + β(‖χ‖)

along the trajectories of Σ ◦ C is said to be an iISS Lyapunov function for Σ ◦ C.
As already remarked, (ii) and (6.7) imply that W̃ (z(t), σ(t), θ(t)) decreases along

the trajectories of Σ ◦ C. However, this is not enough for inferring stability properties
on the system trajectories of Σ ◦ C, since θ(t) varies itself along the trajectories of
Σ ◦ C. The following results clarify the stability issues related to the existence of
a filtered Lyapunov function and will be used to prove Theorem 1.1. Let χ be the
exogenous inputs of Σ. We will say that Σ ◦ C is 0-GAS if there exists β ∈ KL such
that ‖z(t), σ(t)‖ ≤ β(‖z(0), σ(0)‖, t) for all t ≥ 0 along the trajectories of Σ ◦ C with
χ = 0, i.e., the origin of Σ◦C is globally asymptotically stable. The following stability
result can be proved as Theorem 4.1 of [9].

Lemma 6.2 (0-GAS). Assume the existence of α1 ∈ K and α2, α3 ∈ K∞ for which

a smooth filtered Lyapunov function W̃ : R
n × R

n × Θ → R
≥ for Σ ◦ C satisfies

˙̃
W (z(t), σ(t), θ(t)) ≤ −α1(W̃ (z(t), σ(t), θ(t))),(6.8)

W̃ (z(0), σ(0), θ(0)) ≤ α2(‖z(0), σ(0)‖),(6.9)
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W̃ (z(t), σ(t), θ(t)) ≥ α3(‖z(t), σ(t)‖)(6.10)

for all t ≥ 0 along the trajectories of Σ ◦ C. Then Σ ◦ C is 0-GAS.
The iISS properties are then inferred through the following lemma. Let χ ∈

Lr
2(R

≥) be the exogenous inputs of Σ. We will say that Σ ◦ C is UBEBS if there exist
α1, α2 ∈ K∞ and α3 > 0 such that ‖z(t), σ(t)‖ ≤ α1(‖z(0), σ(0)‖)+α2(‖χ‖2)+α3 for
all χ ∈ Lr

2(R
≥) and t ≥ 0 along the trajectories of Σ ◦ C [1].

Lemma 6.3 (iISS [1]). Assume that Σ ◦ C is 0-GAS and UBEBS. Then Σ ◦ C is
iISS.

In the next section we show how to construct filtered Lyapunov functions for
complex systems, resulting from interconnecting dynamics like (4.1), using the fil-
tered Lyapunov functions of the simpler dynamics in which these systems can be
decomposed.

7. Filtered Lyapunov functions for interconnected systems. Let Σj , j =
1, 2, be given systems with controller Cj and smooth filtered Lyapunov function

W̃j(zj , σj , θj) = θjWj(zj , σj) with stability margins θjϕjls, θjϕjlm, l = 1, . . . , nj ,
and incremental rates θjγ

χjl

j , l ∈ Jj := {1, . . . , rj} (nj is the dimension of the state
vector zj). In other words, along the trajectories of Σj ◦ Cj

˙̃
W j ≤ −θj

⎧⎨⎩
nj∑
l=1

[ϕjls(zj)z
2
jl + ϕjlm(ej)e

2
jl] +

∑
l∈Jj

γ
χjl

j (zj , ιj , ςj)χ
2
jl

⎫⎬⎭ ,(7.1)

where ej := zj − σj and ejl and zjl are the lth elements of ej and zj , respectively.
We also assume that zj , ej are exogenous inputs of Σi and that μj , σj are exoge-
nous measurements of Σi for j 	= i. Thus, zj and ej are elements of χi, and μj

and σj are elements of νi for j 	= i. Moreover, wherever possible we will denote

W̃j(zj(t), σj(t), θj(t)), Wj(zj(t), σj(t)), ϕjls (zj(t)), and ϕjlm(ej(t)) simply by W̃j(t),
Wj(t), ϕjls(t), and ϕjlm(t). We will also omit the arguments zj ∈ R

nj , ςj ∈ Zj , ιj ∈ Ij
of the functions whenever there is no ambiguity. In this section, we study the problem
of finding a filtered Lyapunov function for the interconnection of Σj ◦Cj , j = 1, 2. We
start with the following definition.

Definition 7.1 (local saturation). Let j, i = 1, 2 with i 	= j. We say that ϕjls

(resp., ϕjlm) locally saturates γ
zjl
i (resp., γ

ejl
i ) with levels (cj , κi) if there exist cj > 0

and a continuous nondecreasing function τi : R
≥ → R

+ such that τi(cj) ≤ κi and
γ
zjl
i ≤ τi(Wj)ϕjls (resp., γ

ejl
i ≤ τi(Wj)ϕjlm) for all ιl, ςl, l = 1, 2.

Thus, “local saturation” in our context means that the ratio between γ
zjl
i and

ϕjls, j 	= i, is, for Wj ≤ cj , locally bounded by κi and globally bounded by τi(Wj).
If the function τi : R

≥ → R
+ can be taken constant, we have the following stronger

property.
Definition 7.2 (saturation). Let j, i = 1, 2 with i 	= j. We say that ϕjls

(resp., ϕjlm) saturates γ
zjl
i (resp., γ

ejl
i ) with level κi if there exist κi > 0 such that

γ
zjl
i ≤ κiϕjls (resp., γ

ejl
i ≤ κiϕjlm) for all ιl, ςl, l = 1, 2.

In Example 6.1, γz1
2 is saturated by ϕ1 with levels (c1, κ2) and γz2

1 is locally
saturated by ϕ2 with levels (c2, κ1), where τ2(s) = κ2 and κ1, κ2, and τ1(s) are as in
(6.3).

The main result of this section points out the construction of a filtered Lyapunov
function for the interconnection of Σj ◦ Cj , j = 1, 2, when each γ

zjl
i (resp., γ

ejl
i ) is

locally saturated by ϕjls (resp., ϕjlm), j 	= i, with levels (cj , κi) satisfying the small
gain condition κ1κ2 < 1 and under the assumption that the trajectories of Σj ◦ Cj ,
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j = 1, 2, are bounded, enter in finite time a set in which Wj ≤ cj , j = 1, 2, and remain
thereinafter. This result will be applied in section 8 for constructing a filtered Lya-
punov function for the interconnection of Σj ◦Cj , j = 1, 2. It gives a filtered Lyapunov
function W as a “filtered” linear combination of Wj , j = 1, 2. The design of composite
Lyapunov functions has been widely studied in [8] for general systems and [12], [7],
and [13] in the case of triangular systems ż = f(z)+ψ(z, ξ), ξ̇ = a(ξ). However, while
the result of [8] does not lead to a constructive procedure, the constructive procedures
of [12], [7], and [13] cannot be applied here since, as already remarked, the control
design is not performed in our case by using feedforwarding [13] and rather relies on
a backstepping-like strategy. As a consequence of this, in backstepping coordinates
zj := zj− x̃j , j = 1, . . . , n, from (1.1)–(1.4) we get interconnected systems of the more

general form ż = f(z)+ψ(z, ξ), ξ̇ = a(ξ)+ ζ(z, ξ). As a particular case, if ζ(z, ξ) ≡ 0,
we obtain the same class of interconnected systems considered in [7] and [13], and
our filtered Lyapunov functions are alternative to the composite Lyapunov functions
proposed in [7] and [13].

We have already seen in Lemma 6.2 that from the point of view of the asymptotic
stability properties of the system trajectories it is important that W̃ (t) be lower

bounded uniformly with respect to θ(t) and that
˙̃
W (t) be bounded by a definite

negative function uniformly with respect to θ(t). In the case of the interconnection

of two systems as in Example 6.1, W̃ (t) is the filtered combination of two Lyapunov
functions and has uniform (with respect to θ) upper and lower bounds since the system
trajectories are bounded for all times and enter some “invariant” set, where a small
gain condition is met. To formalize these “capture” and “invariance” properties we
introduce the notions of traps and recurrence. A set W is a trap relative to a system Σ
if the trajectories of Σ are captured by W for all times, while a system Σ is recurrent
relative to a set W if each trajectory of Σ ensuing from outside W hits W at some
time T .

Definition 7.3 (recurrence and traps). Let Σ be a given system with state
z ∈ R

n and exogenous inputs χ ∈ X ⊆ R
r. We say that R ⊆ R

n is a trap for W ⊆ R
if for each z0 ∈ W, exogenous input χ(t), and T ≥ 0 the trajectory z(t) of Σ ensuing
from z(T ) = z0 satisfies z(t) ∈ R for all t ≥ T . We say that a system Σ is recurrent
relative to a closed set W ⊆ R

n if for each z0 ∈ R
n\W and exogenous input χ(t) the

trajectory z(t) of Σ ensuing from z(0) = z0 is defined for all t ≥ 0 and there exists
T > 0 (recurrence time) such that z(T ) ∈ W. If, in addition, R ⊆ R

n is a trap for
W = R, then we say that Σ is recurrent relative to the trap R.

We are ready to state and prove the main result of this section. For any cj , dj > 0
and continuous nondecreasing functions τj : R

≥ → R
+ and Ij ⊆ {1, . . . , nj}, j = 1, 2,

let

a(z1, z2, e1, e2) := d1 max{τ1(W2(z2, σ2)) − τ1(c2), 0}
∑
l∈I2

(ϕ2ls(z2)z
2
2l + ϕ2lm(e2)e

2
2l)

+ d2 max{τ2(W1(z1, σ1)) − τ2(c2), 0}
∑
r∈I1

(ϕ1rs(z1)z
2
1r + ϕ1rm(e1)e

2
1r).(7.2)

In what follows we will denote a(z1(t), z2(t), e1(t), e2(t)) simply by a(t).
Theorem 7.4. Assume that Σj ◦ Cj, j = 1, 2, has smooth (filtered) Lyapunov

function W̃j with stability margins θjϕjls, θjϕjlm, l = 1, . . . , nj, and incremental rates
θjγ

χjl

j , l ∈ Jj, and let Ij ⊆ {1, . . . , nj}, j = 1, 2. Assume also that
(i) ϕ1rs and ϕ1rm, r ∈ I1, locally saturate γz1r

2 and γe1r
2 , with levels (c1, κ2),
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(ii) ϕ2ls and ϕ2lm, l ∈ I2, locally saturate γz2l
1 and γe2l

1 , with levels (c2, κ1),
(iii) κ1κ2 < 1,
(iv) for each j = 1, 2, Σj ◦ Cj is recurrent relative to the trap Rj = {(zj , σj) :

Wj(zj , σj) ≤ cj}.
There exist d1 > 0 and d2 ∈ (d1κ1, d1/κ2) such that W̃ = θ[d1W1 + d2W2], with
θ = θ0θ1θ2 and

θ̇0 = −[a(z1, z2, e1, e2)/min
j

{djcj}]θ0, θ0(0) > 0,(7.3)

is a smooth filtered Lyapunov function for the interconnection Σ of Σj ◦ Cj, j = 1, 2,
with stability margins

θδjlϕjls, θδjlϕjlm, l = 1, . . . , nj , j = 1, 2,

δ1r = d1 − κ2d2, r ∈ I1, δ2l = d2 − κ1d1, l ∈ I2, δjl = dj otherwise(7.4)

and incremental rates

θdjγ
χjl

j , χjl /∈ H := {z1r, z2l, e1r, e2l : r ∈ I1, l ∈ I2};

i.e.,

˙̃
W ≤ θ

∑
j=1,2

⎧⎨⎩−
nj∑
j=1

δjl[ϕjlsz
2
jl + ϕjlme2

jl] +
∑

χjl /∈H

djγ
χjl

j χ2
jl

⎫⎬⎭(7.5)

along the trajectories of Σ and (7.3). Moreover, the interconnection Σ is recurrent
relative to the trap R = {(z1, z2, σ1, σ2) : d1W1 + d2W2 ≤ d1c1 + d2c2}, and along
each trajectory of Σ and (7.3) there exists T, θ > 0 such that θ0(t) = θ for all t ≥ T .
In particular,

θ0(0) = exp

(∫ ∞

0

a(s)ds

)
(7.6)

⇒ a(t) ≥ 0, θ0(t) ≥ 1 ∀t ≥ 0, a(t) = 0, θ0(t) = 1 ∀t ≥ T.

Proof. We will prove the theorem with θ0(0) = exp(
∫ ∞
0

a(s)ds) in (7.3). By (iii)
it is possible to select d1 > 0 and d2 ∈ (d1κ1, d1/κ2) in such a way that

δ1r, δ2l > 0, r ∈ I1, l ∈ I2.(7.7)

Since Wj(zj , σj), j = 1, 2, is smooth, proper, and positive definite, then also W =∑2
j=1 djWj is smooth, proper, and positive definite. Let τj : R

≥ → R
+, j = 1, 2, be

continuous nondecreasing functions such that

γz1r
2 ≤ τ2(W1)ϕ1rs, γe1r

2 ≤ τ2(W1)ϕ1rm,(7.8)

γz2r
1 ≤ τ1(W2)ϕ2rs, γe2r

1 ≤ τ1(W2)ϕ2rm,

which indeed exist by (i) and (ii). By (iv) each trajectory (zj(t), σj(t)) of Σj ◦ Cj ,
j = 1, 2, is defined for all t ≥ 0, and for each such trajectory there exists Tj > 0 such
that Wj(zj(t), σj(t)) ≤ cj for all t ≥ Tj . This, together with τj(s), j = 1, 2, being
nondecreasing and positive for all s ≥ 0, implies that

a(t) ≥ 0 ∀t ≥ 0, a(t) = 0 ∀t ≥ T := max{T1, T2}(7.9)
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and, thus, 0 ≤
∫ ∞
0

a(s)ds =
∫ T

0
a(s)ds < ∞. This gives from (7.3), together with

θ0(0) = exp(
∫ ∞
0

a(s)ds),

θ0(t) = θ0(0) exp

{
−

∫ t

0

a(s)ds

}
= exp

{
−

∫ T

min{t,T}
a(s)ds

}
, t ≥ 0.(7.10)

Thus, θ0(t) is bounded and positive for all t ≥ 0 along each trajectory of Σ and (7.7)
holds true. Also, by (iv) the interconnection Σ is recurrent relative to the trap R.

We are left with proving (7.5). Taking into account that for all t ≥ 0 along the
trajectories of Σj ◦ Cj , we have θj(t) > 0, θ̇j(t) ≤ 0, j = 1, 2, since Wj , j = 1, 2, is a

filtered Lyapunov function for Σj ◦ Cj , and θ0(t) > 0, θ̇0(t) ≤ 0 by (7.3), (7.9), and
(7.10), we get from (7.1), (7.2), and (7.9) that

(7.11)

˙̃
W ≤ θ

⎧⎨⎩ ∑
j=1,2

⎧⎨⎩−
nj∑
j=1

dj [ϕjlsz
2
jl + ϕjlme2

jl] +
∑
l∈Jj

djγ
χjl

j χ2
jl

⎫⎬⎭+
θ̇0

θ0

2∑
j=1

djWj

⎫⎬⎭
≤ θ

⎧⎨⎩ ∑
j=1,2

⎧⎨⎩−
nj∑
j=1

δjl[ϕjlsz
2
jl + ϕjlme2

jl] +
∑

χjl /∈H

djγ
χjl

j χ2
jl

⎫⎬⎭+a+
θ̇0

θ0

2∑
j=1

djWj

⎫⎬⎭
along the trajectories of Σ, with δjl, δ1r as in (7.4) and δjl, δ1r > 0, r ∈ I1, l ∈ I2,

by (7.7). Since
∑2

j=1 djWj ≥ minj{djcj} whenever either W1 ≥ c2 or W2 ≥ c1 and,

moreover, a ≡ 0 when Wi ≤ ci, i = 1, 2, from (7.3) and (7.11) we obtain (7.5).

8. Proof of Theorem 1.1. The proof goes as follows. For each system Σj , j =
1, . . . , n, in (4.1) we apply Theorem 5.2 to obtain a measurement feedback controller
Cj and take the interconnection C of Cj , j = 1, . . . , n, as measurement feedback
controller for the interconnection Σ of Σj , j = 1, . . . , n, i.e., the controller (1.4) (see
part A below). Theorem 1.1 follows from Lemma 6.3, once we prove that (1.1)–
(1.4) is 0-GAS and UBEBS (see part B). First, we show that (1.1)–(1.4) is UBEBS.
Instrumental to this and since w ∈ Lr

2(R
≥), we prove that Σi ◦ Ci, i = j, . . . , n, for

each j = 1, . . . , n is recurrent relative to some compact trap Tj(‖w‖2) (see Lemma
8.1). Finally, we show that (1.1)–(1.4) is 0-GAS (see part C). Instrumental to this,

we use the traps Tj(0), j = 1, . . . , n, to define a filtered Lyapunov function W̃ for
(1.1)–(1.4), with w = 0, by repeated applications of Theorem 7.4 (see Lemma 8.2)

and then we prove that W̃ satisfies Lemma 6.2.

A. Controller definition for (1.1). Set ej := zj −σj , j = 1, . . . , n, and let G(s) be
defined as in Theorem 1.1.

Step 1. Application of Theorem 5.2 to Σ1 in (4.1) gives Δ1, h1s, h1m ∈ (0, 1] and
R′

11 ≥ 1 such that for all R11 ≥ R′
11 the controller C1 in (5.3), with j = 1, has levels

(Δ1,Δ1/h1s) and

W1(z1, σ1) =
√

1 + z2
1 +

√
1 + e2

1 − 2(8.1)

is a smooth filtered Lyapunov function for Σ1 ◦ C1 with stability margins

ϕ1s ∼ 1/[R11(1 + z2
1)], ϕ1m ∼ 1/[R11(1 + e2

1)](8.2)
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and, by (5.6), smooth incremental rates

γzl
1 ∼ R11[γ

zl
1s + γzl

1m], l = 2, . . . , n,

γw
1 ∼ R11[γ

w
1s + γw

1m], γx̃l
1 ∼ R11[γ

x̃l
1s + γx̃l

1m], l = 3, . . . , n + 1.(8.3)

In other words,

Ẇ1 ≤ −ϕ1sz
2
1 − ϕ1me2

1 +

n∑
l=2

[γzl
1 z2

l + γ
x̃l+1

1 x̃2
l+1] + γw

1 ‖w‖2.(8.4)

Moreover, on account of

G

(∣∣∣∣∣
2∑

l=1

sl

∣∣∣∣∣
)

≤
2∑

l=1

G(|sl|) ∀sl, l = 1, 2,(8.5)

and by Lemma A.2 with j = 1, we obtain that x̃2 and ˙̃x2 satisfy

x̃2
2 ≤ 1

R2
11

[
G2(z1) + G2(e1)

]
,(8.6)

˙̃x
2

2 � 1

R4
11

[
2∑

l=1

(G2(zl) + G2(el)) +

n∑
l=3

z2
l +

n+1∑
l=3

x̃2
l + ‖w‖2

]
.

Step 2. Given j = 2, . . . , n, let

εn−1 =
R11

R′
11

, Rl1 = R′
l1ε

n−l, l = 1, . . . , j − 1,(8.7)

and assume that

x̃2
l ≤ 1

R2
l−1,1

[G2(zl−1) + G2(el−1)], l = 2, . . . , j,(8.8)

| ˙̃xj |2 � 1

R4
j−1,1

⎡⎣ j∑
l=j−1

(G2(zl) + G2(el)) +

n∑
l=j+1

z2
l +

n+1∑
l=j+1

x̃2
l + ‖w‖2

⎤⎦ .(8.9)

By application of Theorem 5.2 to Σj in (4.1) with the additional constraints (8.8)–
(8.9) we get Δj , hjs, hjm ∈ (0, 1] and R′

j1 ≥ 1 such that for all Rj1 ≥ R′
j1 the controller

Cj (5.3) has levels (Δj ,Δj/hjs) and

Wj(zj , σj) =
√

1 + z2
j +

√
1 + e2

j − 2(8.10)

is a smooth filtered Lyapunov function for Σj ◦ Cj with stability margins

ϕjs ∼ 1/[Rj1(1 + z2
j )], ϕjm ∼ 1/[Rj1(1 + e2

j )](8.11)

and, by (5.6) and (8.9), smooth incremental rates

γzl
j ∼ Rj1

R4
j−1,1(1 + z2

l )
, γel

j ∼ Rj1

R4
j−1,1(1 + e2

l )
, l = j − 1, j,(8.12)

γzl
j ∼ Rj1[γ

zl
js + γzl

jm + 1], l = j + 1, . . . , n,(8.13)

γw
j ∼ Rj1[γ

w
js + γw

jm + 1], γx̃l
j ∼ Rj1[γ

x̃l
js + γx̃l

jm + 1], l = j + 2, . . . , n + 1.(8.14)
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In other words,

Ẇj ≤ −[ϕjs − γ
zj
j ]z2

j − [ϕjm − γ
ej
j ]e2

j + γ
zj−1

j z2
j−1 + γ

ej−1

j e2
j−1

+

n∑
l=j+1

[γzl
j z2

l + γ
x̃l+1

j x̃2
l+1] + γw

j ‖w‖2.(8.15)

Set

Rj1 = R′
j1ε

n−j .(8.16)

By (8.7), (8.11), (8.12), and (8.16) we can select εj ≥ 1 such that

ϕjs − γ
zj
j ≥ ϕjs/2, ϕjm − γ

ej
j ≥ ϕjm/2(8.17)

for all ε ≥ εj . Moreover, by (8.5) and Lemma A.2, x̃j+1 and ˙̃xj+1 satisfy

x̃2
l ≤ 1

R2
l−1,1

[G2(zl−1) + G2(el−1)], l = 2, . . . , j + 1,(8.18)

| ˙̃xj+1|2 � 1

R4
j1

⎡⎣j+1∑
l=j

(G2(zl) + G2(el)) + ‖w‖2 +

n∑
l=j+2

z2
l +

n+1∑
l=j+2

x̃2
l

⎤⎦ .(8.19)

Using the constraints (8.6) and (8.18) we can express the terms x̃2
l+1 in (8.4) and

(8.15) in terms of the exogenous inputs zl and el, so that we can assume that the
incremental rates are finally given for j = 1 by

γzl
1 , γel

1 ∼ R11[γ
zl
1s + γzl

1m + γ
x̃l+1

1s + γ
x̃l+1

1m ], l = 2, . . . , n, γw
1 ∼ R11[γ

w
1s + γw

1m](8.20)

and for j = 2, . . . , n by

γ
zj−1

j ∼ Rj1/[R
4
j−1,1(1 + z2

j−1)], γ
ej−1

j ∼ Rj1/[R
4
j−1,1(1 + e2

j−1)],(8.21)

γzl
j , γel

j ∼ Rj1[γ
zl
js + γzl

jm + γ
x̃l+1

js + γ
x̃l+1

jm + 1], l = j + 1, . . . , n,

γw
j ∼ Rj1[γ

w
js + γw

jm + 1].(8.22)

After performing n steps, we obtain the controller (1.4) as the interconnection of Cj ,
j = 1, . . . , n.

B. (1.1)–(1.4) is UBEBS. The exogenous inputs of (1.1)–(1.4) are w. To prove
that (1.1)–(1.4) is UBEBS, we need the following lemma, which is proved in the
appendix. We will often use the notation Wj(t) in place of Wj(zj(t), σj(t)). Moreover,
let Zj = (zj · · · zn)T and Sj = (σj · · · σn)T , with Z1 = Z and S1 = S. Denote by
(R≥)q the q-times vector space product R

≥ × · · · × R
≥.

Lemma 8.1. There exist continuous cj : R
+ → R

+, �j : (R≥)n−j+2
R

≥ →
R

≥, nondecreasing with respect to each argument and �j(0, . . . , 0) = 0, and ε∗j > 0,

j = 1, . . . , n, such that for all ε ≥ ε∗j , for each w ∈ Lr
2(R

≥), and j = 1, . . . , n the
interconnection Σi ◦ Ci, i = j, . . . , n, is recurrent relative to the trap Tj(‖w‖2) :=
{(Zj , Sj) : Wi(zi, σi) ≤ �i(ci(ε), . . . , cn(ε), ‖w‖2), i = j, . . . , n} and

c1 < 1, ci ∼
i∏

l=2

R2
l1

R4
l−1,1

, i = 2, . . . , n.(8.23)
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Moreover, for all t ≥ 0 along the trajectories of (1.1)–(1.4)

Wi(t) ≤ �i(Wi(0), . . . ,Wn(0), ‖w‖2), i = j, . . . , n.(8.24)

Since Wj(zj , σj), j = 1, . . . , n, is proper and positive definite,

βj1(‖zj , σj‖) ≤ Wj(zj , σj) ≤ βj2(‖zj , σj‖), j = 1, . . . , n,(8.25)

for some βj1, βj2 ∈ K∞, j = 1, . . . , n, and for all zj , σj . Moreover, for any continuous
α : R

≥×R
≥ → R

≥ such that α(s, r) and α(r, s) are nondecreasing for each r ≥ 0 and
α(0, 0) = 0,

α(r, s) ≤ α(s, s) + α(r, r) ∀r, s ≥ 0(8.26)

and α(s) := α(s, s) is K-class. Thus, from (8.24)–(8.26) and since β−1
j1 (�j(sj , . . . ,

sn+1 )) is nondecreasing with respect to each argument si and β−1
j1 (�j(0, . . . , 0)) = 0,

we have along the trajectories of (1.1)–(1.4)

‖zj(t), σj(t)‖ ≤ β−1
j1 (�j(Wj(0), . . . ,Wn(0), ‖w‖2))(8.27)

≤
n∑

i=j

2n+2−jβ−1
j1 (�j(Wi(0), . . . ,Wi(0)))

+

n∑
i=j

2n+2−jβ−1
j1 (�j(‖w‖2, . . . , ‖w‖2))

≤ αj1(‖Zj(0), Sj(0)‖) + αj2(‖w‖2),

where αj1(s) :=
∑n

i=j 2n+2−jβ−1
j1 (�j(βi2(s), . . . , βi2(s))) and αj2(s) :=

∑n
i=j 2n+2−j

β−1
j1 (�j(s, . . . , s)) for j = 1, . . . , n. Let α1(s) :=

∑n
j=1 αj1(s) + s, and α2(s) :=∑n

j=1 αj2(s) + s and note that α1, α2 ∈ K∞, since αj1, αj2 ∈ K. We obtain from
(8.27) that

‖Z(t), S(t)‖ ≤ α1(‖Z(0), S(0)‖) + α2(‖w‖2)(8.28)

for all t ≥ 0 along the trajectories (1.1)–(1.4). This proves that (1.1)–(1.4) is UBEBS.
C. (1.1)–(1.4) is 0-GAS. To prove that (1.1)–(1.4) is 0-GAS we construct a filtered

Lyapunov function W̃ for (1.1)–(1.4), with w = 0, and prove that it satisfies (6.8)–
(6.10). To this aim, we need the following lemma, which is proved in the appendix.
Let Zj := (zj · · · zn)T and Sj = (σj · · · σn)T and set Z = Z1 and S = S1. Moreover,
from now on we take w = 0.

Lemma 8.2. Let cj : R
+ → R

+, �j : (R≥)n−j+2 → R
≥, and ε∗j > 0, j = 1, . . . , n,

be as in Lemma 8.1. There exist ε∗∗ ≥ maxj ε
∗
j and continuous and nondecreasing

τj : R
≥ → [1,∞), j = 1, . . . , n, such that

W̃ (Z, S, θ) := θW (Z, S),

W (Z, S) := W1(z1, σ1) +

n∑
j=2

2j−1Wj(zj , σj)τ1(c
(2)) · · · τj−1(c

(j)),

c(n) := cn, c(i) := ci + 2τi(c
(i+1))c(i+1), i = 2, . . . , n− 1,(8.29)

ci := �i(ci, . . . , cn, 0)
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is for all ε ≥ ε∗∗ a smooth filtered Lyapunov function for (1.1)–(1.4) and

˙̃
W ≤ −θ

n∑
i=1

[ϕ̃isz
2
i + ϕ̃ime2

i ](8.30)

along the trajectories of (1.1)–(1.4), where

ϕ̃1l ∼ ϕ1l, ϕ̃il ∼ τi−1(c
(i)) · · · τn−1(c

(n))ϕil, i = 2, . . . , n, l = s,m.(8.31)

Moreover, for each trajectory of (1.1)–(1.4) there exists T > 0 such that

θ(t) ≥ 1 ∀t ≥ 0;

θ(t) = 1 ∀t ≥ T.(8.32)

First, we prove (6.8). Since

(1 + s)1/2 − 1 ≤ s ∀s ≥ 0,
r1 + r2

1 + r1 + r2
≤ r1

1 + r1
+

r2
1 + r2

∀r1, r2 ≥ 0,(8.33)

it is easy to see by (8.2), (8.11), and (8.31) that

τi−1(c
(i)) · · · τn−1(c

(n))Wi(zi, σi)/[1 + Wi(zi, σi] � ϕ̃is(zi)z
2
i + ϕ̃im(ei)e

2
i(8.34)

for all zi, σi and for each i = 1, . . . , n. By the definition of W̃ in (8.29), (8.34) and
since τ1(s), . . . , τn−1(s) ≥ 1 for all s ≥ 0,

θ ≥ 1 ⇒ W̃ (Z, S, θ)/[1 + W̃ (Z, S, θ)] � θ
n∑

i=1

[ϕ̃is(zi)z
2
i + ϕ̃im(ei)e

2
i ].(8.35)

From (8.30), (8.32), with j = 1, . . . , n− 1, and (8.35) follows the existence of α0 > 0

such that
˙̃
W ≤ −α0W̃ (Z, S, θ)/[1 + W̃ (Z, S, θ)] along the trajectories of (1.1)–(1.4).

This proves (6.8) with α1(s) = α0s/[1 + s].
Next, we show (6.9)–(6.10). By continuity of the trajectories (Z(t), S(t)) of

(1.1)–(1.4) with respect to (Z(0), S(0)) over finite intervals [0, T ], it follows that
θ(0) is a continuous function of (Z(0), S(0)). Indeed, according to the proof of

Lemma 8.2, θ = θ̃1 := θ1 · · · θn−1, with θi and ai(Zi+1, Si+1), i = 1, . . . , n − 1,
defined as in (A.54) and θi(0) := exp

∫ ∞
0

ai(Zi+1(s),Si+1(s))ds. Since by definition of
ai(Zi+1, Si+1) for each (Zi+1,0, Si+1,0) ∈ R

n−i × R
n−i and i = 1, . . . , n − 1 there

exist T ◦
i ∈ R

≥ and an open ball B(Zi+1,0, Si+1,0) around (Zi+1,0, Si+1,0) such that
ai(Zi+1(s), Si+1(t)) = 0 for all t ≥ T ◦

i and trajectory (Zi+1(s), Si+1(t)) ensuing from

B(Zi+1,0, Si+1,0), then θi(0) := exp
∫ ∞
0

ai(Zi+1(s),Si+1(s))ds = exp
∫ T◦

i
0 ai(Zi+1(s),Si+1(s))ds

for all (Zi+1(0), Si+1(0)) ∈ B(Zi+1,0, Si+1,0), i = 1, . . . , n− 1. As in the proof of The-
orem 1(i) of [7], we conclude that θi(0) is a continuous function of (Zi+1(0), Si+1(0))
and thus, as claimed, θ(0) is a continuous function of (Z(0), S(0)). By this we can
find a continuous and increasing function β : R

≥ → R
+ such that

θ(0) ≤ β(‖Z(0), S(0)‖)(8.36)

for all (Z(0), S(0)). Indeed, let α(s) =
∫ s+1

s
maxW (Z(0),S(0))≤r{θ(0)}dr and α̃(s) =

α(s) + s. Since W (Z, S) (defined as in (8.29)) is proper and positive definite being
the linear combination of proper and positive definite functions Wj(zj , σj), α(s) is
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continuous and nondecreasing for all s ≥ 0, and α̃(s) is continuous and increasing for
all s ≥ 0. Moreover, by construction θ(0) ≤ α(W (Z(0), S(0))) ≤ α̃(W (Z(0), S(0)))

for all Z(0), S(0). The desired function is β(s) = α̃(β̃1(s)), where β̃1 ∈ K∞ is such

that W (Z, S) ≤ β̃1(‖Z, S‖) for all (Z, S), which exists since W (Z, S) is proper and

positive definite. This with (8.29) and (8.36) gives (6.9) with α2(s) = β(s)β̃1(s).

Finally, from (8.29) and (8.32), we obtain W̃ (Z(t), S(t), θ(t)) ≥ β̃2(‖Z(t), S(t)‖)
for all t ≥ 0 along the trajectories of (1.1)–(1.4), with β̃2 ∈ K∞ such that W (Z, S) ≥
β̃2(‖Z, S‖) for all (Z, S), which exists since W (Z, S) is proper and positive definite.

This implies (6.10) with α3(s) = β̃2(s). By Lemma 6.2 we conclude that (1.1)–(1.4)
is 0-GAS.

Appendix.
Lemma A.1. Let w ∈ R

r, xh, x̃h ∈ R, h = 1, . . . , n + 1, ˙̃xh ∈ R, h = 1, . . . , n,
x̃1 = ˙̃x1 := 0, xn+1 = x̃n+1, and zj := xj − x̃j, j = 1, . . . , n, zn+1 := 0. For any
continuous functions ψji : R

n×R×R
r → R, j = 1, . . . , n, i = s,m, satisfying (1.2) and

for each Δ1, . . . ,Δn ∈ (0, 1] there exist γx̃h
ji (Δj , . . . ,Δh−1) > 0, h = j + 1, . . . , n + 1,

i = s,m, and smooth γw
ji : R

n−j → R
≥ and γzh

ji : R
n−h+1 → R

≥, h = j + 1, . . . , n,
i = s,m, such that for each j = 1, . . . , n

lim
Δj→0+

γ
x̃j+1

js (Δj) = 0(A.1)

and

[ψjs + zj+1 − ˙̃xj ]
2 ≤ 2| ˙̃xj |2 +

n∑
h=j+1

z2
hγ

zh
js (zh, . . . , zn) +

n+1∑
h=j+1

x̃2
hγ

x̃h
js (Δj , . . . ,Δh−1)

+ γw
js(zj+1, . . . , zn)‖w‖2,(A.2)

ψ2
jm ≤

n∑
h=j+1

z2
hγ

zh
jm(zh, . . . , zn)+

n+1∑
h=j+1

x̃2
hγ

x̃h
jm(Δj , . . . ,Δh−1)+γw

jm(zj+1, . . . , zn)‖w‖2

(A.3)

for all w ∈ R
r, xh, x̃h ∈ R, h = 1, . . . , n + 1, ˙̃xh ∈ R, h = 1, . . . , n, such that

|x̃h| ≤ Δh−1, h = 2, . . . , n + 1.
Proof. We will prove only (A.1) and (A.2) (the other inequality, (A.3), can be

proved in the same way as (A.2)). Fix j = 1, . . . , n. Since ψjs|xi=0,i=j+1,...,n+1;w=0 =
0 for all x1, . . . , xj ∈ R by (1.2) and using the first relation of (1.2), we get for all
x ∈ R

n, w ∈ R
r, and x̃h ∈ R, h = j + 1, . . . , n + 1, that

|ψjs|2 � |ψjs − ψjs|w=0|2 +

n∑
h=j+1

|ψjs|xi=x̃i,i=j+1,...,h;w=0 − ψjs|xi=x̃i,i=j+1,...,h−1;w=0|2

+

n+1∑
h=j+1

|ψjs|xi=x̃i,i=j+1,...,h;xi=0,i=h+1,...,n+1;w=0

− ψjs|xi=x̃i,i=j+1,...,h−1;xi=0,i=h,...,n+1;w=0|2

≤ bjs(xj+1, . . . , xn+1)‖w‖2 +

n∑
h=j+1

|zh|2ajsh(x̃h, x̃j+1, . . . , x̃h−1, xh, . . . , xn+1)
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+

n+1∑
h=j+1

|x̃h|2ajsh(0, x̃j+1, . . . , x̃h, 0, . . . , 0).(A.4)

Moreover, for any smooth function q : R
s × R

r → R there exist smooth f : R
s → R

+

and g : R
r → R

+ such that q(x, y) ≤ f(x)g(y) for all x ∈ R
s and y ∈ R

r [10], [5]. By
this, let h = j + 1, . . . , n + 1 and let fjsh : R

h−j+1 → R
+, gjsh : R

n−h+1 → R
+, and

�js, ξjs : R
n−h+1 → R

+ be smooth functions such that

ajsh(x̃h, x̃j+1, . . . , x̃h−1, xh, . . . , xn+1)

≤ gjsh(zh, . . . , zn) max
|x̃i+1|≤Δi∈(0,1]:i=j,...,n

fjsh(x̃j+1, . . . , x̃n, xn+1),

bjs(xj+1, . . . , xn+1)

≤ �js(zj+1, . . . , zn) max
|x̃i+1|≤Δi∈(0,1]:i=j,...,n

ξjs(x̃j+1, . . . , x̃n, xn+1)(A.5)

for all x̃j+1, . . . , x̃h, xh, . . . , xn+1 such that |x̃i+1| ≤ Δi, i = j, . . . , n. Moreover, let

αjs,j+1(r) := max
|x̃j+1|≤r

ajs,j+1(0, x̃j+1, 0, . . . , 0).(A.6)

The function αjs,j+1 : R
≥ → R

≥ is nondecreasing for all r ≥ 0 and continuous at
r = 0, and

ajs,j+1(0, x̃j+1, 0, . . . , 0) ≤ αjs,j+1(|x̃j+1|) ≤ αjs,j+1(Δj)(A.7)

for all x̃j+1 such that |x̃j+1| ≤ Δj . From (A.4)–(A.7) we get (A.2). Moreover, (A.1)
follows by (A.7), the continuity of αjs,j+1(r) at r = 0 and since ajs,j+1(0, 0, . . . , 0) = 0
by (1.2).

Lemma A.2. Let w ∈ R
r, xh, x̃h ∈ R, h = 1, . . . , n + 1, x̃1 := 0, xn+1 = x̃n+1,

and zj := xj− x̃j, j = 1, . . . , n. For any continuous functions ψjm : R
n×R×R

r → R,
j = 1, . . . , n− 1, satisfying (1.2), for each j = 1, . . . , n− 1, and Δ1, . . . ,Δn ∈ (0, 1]

G2(ej + ψjm) � G2(ej) + G2(zj+1) +

n∑
l=j+2

z2
l +

n+1∑
l=j+1

x̃2
l + ‖w‖2(A.8)

for all w ∈ R
r, ej , xh, x̃h ∈ R, h = 1, . . . , n + 1, such that |x̃h| ≤ Δh−1, h =

2, . . . , n + 1.
Proof. Under assumption (1.2), (A.3) holds true by Lemma A.1. Moreover, for

each continuous function f : R
q → R

≥ there exists a > 0 such that

f(s)‖s‖2

1 + f(s)‖s‖2
≤ a‖s‖2

1 + ‖s‖2
(A.9)

for all s ∈ R
q. Indeed, pick δ > 0 and let a0 > 0 be such that (A.9) holds true for

all s ∈ R
q : ‖s‖ ≤ δ with a = a0. Since f(s)(1 + ‖s‖2)/[1 + f(s)‖s‖2] ≤ 1

δ2 + 1 for
all s ∈ R

q : ‖s‖ ≥ δ, then clearly (A.9) holds true with a = max{a0,
1
δ2 + 1} for all

s ∈ R
q. Using repeatedly s1

1+s1
≤ s2

1+s2
for all s2 ≥ s1 ≥ 0 and

∑
l sl

1+
∑

l sl
≤

∑
l

sl
1+sl

for all sl ≥ 0 and (A.9) with s := (zj+1 · · · zn x̃j+1 · · · x̃n+1 w)T and f(s) :=∑n
l=j+1 γ

zl
jm +

∑n+1
l=j+1 γ

x̃l
jm + γw

jm, from (A.3) we get

G2(ej + ψjm) � G2(ej) + G2(ψjm) � G2(ej) + G2(
√
f(s)‖s‖)

� G2(ej) + G2(‖s‖) � G2(ej) + G2(zj+1) +

n∑
l=j+2

z2
l +

n+1∑
l=j+1

x̃2
l + ‖w‖2,(A.10)
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i.e., (A.8).
Lemma A.3. For any continuous γ : R

n → R
≥, positive ϕ : R

n → R
+, and

smooth, proper, and positive definite W : R
n × R

n → R
≥ there exists a continuous

nondecreasing function τ : R
≥ → [1,∞) such that γ(x) ≤ τ(W (x, y))ϕ(x) for all

x, y ∈ R
n.

Proof. Let α ∈ K∞ be such that W (x, y) ≥ α(‖x, y‖) for all x, y ∈ R
n, which

indeed exists since W is proper and positive definite. Let max0≤‖x‖≤r
γ(x)
ϕ(x) := β(r)

and τ̃(s) =
∫ s+1

s
β(r)dr. The function τ̃ : R

≥ → R
≥ is continuous and nondecreasing

for all s ≥ 0 and
γ(x)

ϕ(x)
≤ τ̃(‖x‖) ≤ τ̃(‖x, y‖) ≤ τ̃(α−1(W (x, y))) + 1 for all x and y.

Thus, our lemma follows with τ(s) = τ̃(α−1(s)) + 1.
Proof of Lemma 8.1. First, we prove the lemma for j = n, n−1, and then proceed

by induction. We construct a sequence of compact traps T (k)
n (‖w‖2) and T (k)

n−1(‖w‖2)

for Σn ◦ Cn and Σi ◦ Ci, i = n− 1, n, respectively, parametrized by some numbers c
(k)
n

and c
(k)
n−1, getting smaller as k gets larger and converging to cn and cn−1 satisfying

(8.23). Note that since

(r1 + r2 + 1)2 − 1

(r1 + r2 + 1)2
≤ 2

[
(r1 + 1)2 − 1

(r1 + 1)2
+

(r2 + 1)2 − 1

(r2 + 1)2

]
∀r1, r2 ≥ 0(A.11)

and Wn(zn, σn) = [
√

1 + z2
n − 1] + [

√
1 + e2

n − 1], then

2

[
z2
n

1 + z2
n

+
e2
n

1 + e2
n

]
≥ (Wn(zn, σn) + 1)2 − 1

(Wn(zn, σn) + 1)2
≥ Wn(zn, σn)

1 + Wn(zn, σn)
(A.12)

for all zn, σn. Thus, from (8.7), (8.8)–(8.11), (8.15), and (8.21)–(8.22), with j = n,

we infer the existence of ε
(0)
n ≥ εn and bn, ln > 0 such that for all ε ≥ ε

(0)
n

Ẇn ≤ − lnWn

Rn1(Wn + 1)
+

6bnRn1

R4
n−1,1

+ bnRn1‖w‖2, c(0)n :=
24R2

n1bn
lnR4

n−1,1

< 1(A.13)

along the trajectories of (1.1)–(1.4). Let ε ≥ ε
(0)
n and s ≥ t0 ≥ 0. Note that 0 ≤ a ≤

1 ⇒ a/[a + 1] ≥ a/2 and

Wn ≥ c(0)n ⇒ −lnWn/[Rn1(Wn + 1)] + 12bnRn1/R
4
n−1,1 ≤ 0.(A.14)

For each trajectory of (1.1)–(1.4) and r ≥ s such that Wn(t) ≥ c
(0)
n for all t ∈ [s, r]

along such trajectory and since
∫ r

s
‖w(λ)‖2dλ ≤ ‖w‖2

2 < ∞, by integrating (A.13)
over [s, r] we obtain

Wn(t) ≤ −6bnRn1(t− s)

R4
n−1,1

+ Wn(s) + bnRn1‖w‖2
2 ∀t ∈ [s, r], Wn(s) ≥ c(0)n .(A.15)

It is easy to see that for each s ≥ t0 ≥ 0 and trajectory of (1.1)–(1.4) such that

Wn(s) > c
(0)
n there exists r ≥ s such that

Wn(r) = c(0)n .(A.16)

Indeed, if not there would exist a trajectory of (1.1)–(1.4) such that Wn(t) > c
(0)
n

and (A.15) holds for all t ≥ s. From (A.15) we get Wn(r) = c
(0)
n for r := s +
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R4
n−1,1/(6bnRn1)][Wn(s) − c

(0)
n + bn‖w‖2

2], which gives a contradiction. Thus, (A.15)
and (A.16) imply for each trajectory of (1.1)–(1.4) starting at t0 ≥ 0 the existence of

T
(0)
n ≥ t0 such that

Wn(t) ≤ �(0)
n (Wn(t0), ‖w‖2) := Wn(t0) + bnRn1‖w‖2

2 ∀t ≥ t0,

Wn(t) ≤ �(0)
n (c(0)n , ‖w‖2) ∀t ≥ T (0)

n ,(A.17)

where �
(0)
n (λ1, ·) and �

(0)
n (·, λ2) are nondecreasing for each λ1, λ2 ≥ 0 and �

(0)
n (0, 0) =

0. In other words, Σn ◦ Cn is recurrent relative to the trap T (0)
n (‖w‖2) := {(zn, σn) :

Wn(zn, σn) ≤ �
(0)
n (c

(0)
n , ‖w‖2)} for all ε ≥ ε

(0)
n , with c

(0)
n � R2

n1

R4
n−1,1

by (A.13). More-

over, since Wn(zn, σn) ≥ 0 for all zn, σn, from (A.13) and the definition of c
(0)
n

Wn(t) ≥ c(0)n ∀t ∈ [s, r] ⇒
∫ t

s

Wn(λ)

Wn(λ) + 1
dλ

≤ ξ(0)
n (Wn(s), ‖w‖2) :=

2Rn1

ln
[Wn(s) + Rn1bn‖w‖2

2] ∀t ∈ [s, r](A.18)

along the trajectories (1.1)–(1.4), where ξ
(0)
n (λ1, ·) and ξ

(0)
n (·, λ2) are nondecreasing

for each λ1, λ2 ≥ 0 and ξ
(0)
n (0, 0) = 0. Now, we prove the existence of ε

(0)
n−1 >

0 such that for all ε ≥ ε
(0)
n−1, Σi ◦ Ci, i = n − 1, n, is recurrent relative to the

trap T (0)
n−1(‖w‖2) := {(Zn−1, Sn−1) : Wn−1(zn−1, σn−1) ≤ �

(0)
n−1(c

(0)
n−1, c

(0)
n , ‖w‖2),

Wn(zn, σn) ≤ �
(0)
n (c

(0)
n , ‖w‖2)} with �

(0)
n−1 : (R≥)3 → R

≥, nondecreasing with respect

to each argument and �
(0)
n−1(0, 0, 0) = 0, and with

c
(0)
n−1 < 1, c(0)n � R2

n1

R4
n−1,1

.(A.19)

Let

αn−1(s) :=

∫ s+1

s

max
Wn(zn,σn)≤r

αn−1(zn, σn)dr

with αn−1(zn, σn) := [(γzn
n−1,s+γzn

n−1,m+γ
x̃n+1

n−1,s+γ
x̃n+1

n−1,m+1)(Wn(zn, σn)+2)2+γw
n−1].

The function αn−1 : R
≥ → R

≥ is continuous and nondecreasing since αn−1(s) ≥
maxWn(zn,σn)≤s αn−1(zn, σn) for all s ≥ 0. Moreover, by (8.22), with j = n − 1 and
l = n, the nonnegativity of Wn(zn, σn), and since z2

n, e
2
n ≤ (1 + Wn(zn, σn))2 − 1 for

all zn, σn,

γzn
n−1z

2
n + γen

n−1e
2
n + γw

n−1‖w‖2 � Rn−1,1

[
(γzn

n−1,s + γzn
n−1,m + γ

x̃n+1

n−1,s + γ
x̃n+1

n−1,m + 1)

· [(Wn + 1)2 − 1](2 + Wn)

Wn
+ γw

n−1

] [
Wn

Wn + 1
+ ‖w‖2

]
≤ Rn−1,1αn−1(Wn)

[
Wn

Wn + 1
+ ‖w‖2

]
for all zn, σn, w. Note that c

(0)
n < 1, Rn1 ≥ 1, and Wn(zn, σn) ≤ c

(0)
n ⇒ z2

n, e
2
n, x̃

2
n+1 ≤

2[(c
(0)
n + 1)2 − 1] ≤ 6 by (8.18) and the second relation of (A.13). Thus, from (8.7),
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(8.10), (8.11), (8.15)–(8.17), and (8.21)–(8.22), with j = n−1, we derive the existence

of ε
(0)
n−1 > 0 and bn−1, ln−1 > 0 such that for all ε ≥ ε

(0)
n−1

c
(0)
n−1 :=

4R2
n−1,1bn−1

ln−1

[
6

R4
n−2,1

+ 2n3αn−1(2n)c(0)n

]
< 1(A.20)

and along the trajectories of (1.1)–(1.4)

Ẇn−1 ≤ − ln−1Wn−1

Rn−1,1(Wn−1 + 1)
+ 6bn−1

Rn−1,1

R4
n−2,1

+ bn−1Rn−1,1αn−1(Wn)

[
Wn

Wn + 1
+ ‖w‖2

]
.

(A.21)

Assume that Wn−1(t) ≥ c
(0)
n−1 for all t ∈ [s, r], s ≥ t0. Since αn−1(a) is nondecreasing

for all a ≥ 0 and c
(0)
n ≤ 1, by the nonnegativity of Wi and (A.17) and (A.18) we

obtain for all t ∈ [s, r]∫ t

s

αn−1(Wn(λ))

[
Wn(λ)

Wn(λ) + 1
+ ‖w(λ)‖2

]
dλ

≤ αn−1(2n�
(0)
n (Wn(s), ‖w‖2))[2n

2ξ(0)
n (Wn(s), ‖w‖2) + ‖w‖2

2](A.22)

if Wn(t) ≥ c
(0)
n for all t ∈ [s, r],

αn−1(Wn(t))

[
Wn(t)

Wn(t) + 1
+ ‖w(t)‖2

]
≤ nαn−1(2n)[2n2c(0)n + ‖w(t)‖2](A.23)

if Wn(t) ≤ c
(0)
n for all t ∈ [s, r]. Thus, using the definition of c

(0)
n−1 in (A.20) and by

integrating (A.21) over [s, r], we have that

Wn−1(t) ≥ c
(0)
n−1 ∀t ∈ [s, r] ⇒ Wn−1(t) ≤ −6bn−1Rn−1,1(t− s)

R4
n−2,1

+ �
(0)
n−1(Wn−1(s),Wn(s), ‖w‖2) ∀t ∈ [s, r](A.24)

with

�
(0)
n−1(Wn−1(s),Wn(s), ‖w‖2) := Wn−1(s) + bn−1Rn−1,1

{
nαn−1(2n)‖w‖2

2

+αn−1(2n�
(0)
n (Wn(s), ‖w‖2))[2n

2ξ(0)
n (Wn(s), ‖w‖2) + ‖w‖2

2]
}
.(A.25)

From (A.24) follows for each trajectory of (1.1)–(1.4) starting at t0 the existence of

continuous �
(0)
n−1 : (R≥)3 → R

≥, nondecreasing with respect to each argument and

�
(0)
n−1(0, 0, 0) = 0, and for each trajectory (1.1)–(1.4) the existence of T

(0)
n−1 ≥ T

(0)
n ≥ t0

such that

Wn−1(t) ≤ �
(0)
n−1(Wn−1(t0),Wn(t0), ‖w‖2) ∀t ≥ t0,

Wn−1(t) ≤ �
(0)
n−1(c

(0)
n−1, c

(0)
n , ‖w‖2) ∀t ≥ T

(0)
n−1.(A.26)
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Moreover, c
(0)
n and c

(0)
n−1 satisfy (A.19) by (A.13) and (A.20). This proves that Σi ◦Ci,

i = n−1, n, is recurrent relative to the trap T (0)
n−1(‖w‖2). We also claim the existence of

continuous ξ
(0)
n−1 : R

≥×R
≥×R

≥ → R
≥, nondecreasing with respect to each argument

and ξ
(0)
n−1(0, 0, 0) = 0, such that

Wn−1(t) ≥ c
(0)
n−1 ∀t ∈ [s, r]

⇒
∫ t

s

Wn(λ)

Wn(λ) + 1
dλ ≤ ξ

(0)
n−1(Wn−1(s),Wn(s), ‖w‖2) ∀t ∈ [s, r](A.27)

along the trajectories (1.1)–(1.4). Indeed, assume that Wn−1(t) ≥ c
(0)
n−1 for all t ∈

[s, r], s ≥ t0. Integrating (A.21) over [s, r] and on account of (A.22) and (A.23), by

the definition of c
(0)
n−1 in (A.20) and the nonnegativity of Wn−1, we obtain∫ t

s

Wn(λ)

Wn(λ) + 1
dλ ≤ 2Rn−1,1

ln−1
{Wn−1(s) + �

(0)
n−1(0,Wn(s), ‖w‖2)} ∀t ∈ [s, r],(A.28)

which, upon setting ξ
(0)
n−1(Wn−1(s),Wn(s), ‖w‖2)) := [2Rn−1,1/ln−1]{Wn−1(s)+ �

(0)
n−1

(0,Wn(s), ‖w‖2)}, proves (A.27). Next, we prove by induction that for each k ≥ 0

it is possible to construct smaller and smaller c
(k+1)
n and c

(k+1)
n−1 and, thus, traps

T (k+1)
n (‖w‖2) and T (k+1)

n−1 (‖w‖2) for Σn ◦ Cn and Σi ◦ Ci, i = n − 1, n, by using c
(k)
n

and c
(k)
n−1. For some sufficiently large k, these c

(k+1)
n and c

(k+1)
n−1 will satisfy (8.23) for

i = n− 1, n. Let k ≥ 0.

Induction step. There exist ε
(k)
i > 0, continuous functions c

(k)
i : R

+ → R
+,

�
(k)
i , ξ

(k)
i : (R≥)3 → R

≥, i = n − 1, n, nondecreasing with respect to each argument

and �
(k)
i (0, 0, 0) = ξ

(k)
i (0, 0, 0) = 0, and for each trajectory of (1.1)–(1.4) starting at

t0 ≥ 0 there exist T
(k)
n−1 ≥ T

(k)
n ≥ t0, such that (A.17), (A.18), (A.19), (A.26), and

(A.27) hold along the trajectories of (1.1)–(1.4), with (0) replaced by (k) and for all

ε ≥ ε
(k)
i .

By (A.19) and since Wn−1(zn−1, σn−1) ≤ c
(k)
n−1 ⇒ z2

n−1, e
2
n−1, x̃

2
n ≤ 2[(c

(k)
n−1 +

1)2 − 1] ≤ 6c
(k)
n−1 by (8.18), from (8.7), (8.8)–(8.15), with j = n, and (8.21)–(8.22) we

get the existence of ε
(k+1)
n ≥ ε

(k)
n such that for all ε ≥ ε

(k+1)
n

Ẇn ≤ − lnWn

Rn1(Wn + 1)
+

6bnRn1c
(k)
n−1

R4
n−1,1

+ bnRn1‖w‖2, c(k+1)
n :=

24R2
n1bnc

(k)
n−1

lnR4
n−1,1

< 1,

(A.29)

Ẇn−1 ≤ − ln−1Wn−1

Rn−1,1(Wn−1 + 1)
+

6bn−1Rn−1,1

R4
n−2,1

+ bn−1Rn−1,1αn−1(Wn)

[
Wn

Wn + 1
+ ‖w‖2

]
,

c
(k+1)
n−1 :=

4R2
n−1,1bn−1

ln−1

[
6

R4
n−2,1

+ 2n3αn−1(2n)c(k)
n

]
< 1.(A.30)

Note that in (A.13) we used the weaker bound Wn−1(zn−1, σn−1) ≤ c
(0)
n−1 ⇒ z2

n−1,

e2
n−1, x̃

2
n ≤ 6 instead of Wn−1(zn−1, σn−1) ≤ c

(k)
n−1 ⇒ z2

n−1, e
2
n−1, x̃

2
n ≤ 6c

(k)
n−1 as in
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(A.29). Reasoning as in the case k = 0 above, we obtain the existence of ε
(k+1)
i > 0,

continuous functions �
(k+1)
i , ξ

(k+1)
i : (R≥)n−i+2 → R

≥, i = n − 1, n, nondecreasing

with respect to each argument and �
(k+1)
n (0, 0, 0) = 0, and for each trajectory of

(1.1)–(1.4) the existence of T
(k+1)
n−1 , T

(k+1)
n ≥ T

(k)
n−1 such that the induction step holds

true with ε
(k)
i , c

(k)
i , T

(k)
i , �

(k)
i , and ξ

(k)
i replaced by ε

(k+1)
i , c

(k+1)
i , T

(k+1)
i , �

(k+1)
i , and

ξ
(k+1)
i , i = n − 1, n. Thus, since, as already shown, the induction step also holds for
k = 0, it holds for all k ≥ 0. We prove Lemma 8.1 for j = n − 1, n if we prove that

c
(k)
n and c

(k)
n−1 in (A.29 ) and (A.30) satisfy (8.23) for j = n− 1, n for sufficiently large

k and ε. To this aim, we claim that there exist ε∗n−1 > 0 and k∗n−1 > 0 such that for
all ε ≥ ε∗n−1 and k ≥ k∗n−1

c
(k)
i ∼

i∏
l=n−1

R2
l1

R4
l−1,1

, i = n− 1, n,(A.31)

c(k+1)
n :=

24R2
n1bnc

(k)
n−1

lnR4
n−1,1

< 1, c
(k+1)
n−1 :=

4R2
n−1,1bn−1

ln−1

[ 6

R4
n−2,1

+ 2n3αn−1(2n)c(k)
n

]
< 1

(A.32)

with c
(0)
n as in (A.13) and c

(0)
n−1 as in (A.20), since then Lemma 8.1 for j = n − 1, n

follows with ε∗n−1, ci := c
(k∗

n−1)

i and �i := �
(k∗

n−1)

i , j = n − 1, n. The equations
(A.32), which hold for all k ≥ 0 on account of (A.29)–(A.30), can be described by a

linear discrete-time system x(k+ 1) = Ax(k) +Bu(k) with state x(k) = (c
(k)
n c

(k)
n−1)

T ,

initial condition x(0) = (c
(0)
n c

(0)
n−1)

T , input u(k) = 24R2
n−1,1bn−1/[R

4
n−2,1ln−1]. Using

induction and by (8.7) and (8.16), with j = n, we prove for all k ≥ 1(
c
(k)
n

c
(k)
n−1

)
= Ak

(
c
(0)
n

c
(0)
n−1

)
+ [I + A + A2 + · · · + Ak−1]

(
0
1

)
u(k)

∼
(
O(ε−(k+1))
O(ε−(k+1))

)
+

(
[R2

n1/R
4
n−1,1][1 + O(ε−1)]
1 + O(ε−1)

)
R2

n−1,1

R4
n−2,1

,(A.33)

where O(r) means infinitesimals with order greater than r and ∼ is meant compo-
nentwise. This proves (A.31) for some sufficiently large ε∗n−1, k

∗
n−1 and Lemma 8.1

for j = n − 1, n. We complete the proof of Lemma 8.1 by induction on the number
n− j + 1, j = 1, . . . , n− 1, of systems Σi ◦ Ci in Σi ◦ Ci, i = j, . . . , n. To this aim we
formulate the induction step as follows, letting j = 2, . . . , n− 1.

Induction step. There exist ε∗j > 0, k∗j ≥ 1, continuous functions �
(k)
i , ξ

(k)
i :

(R≥)n−i+2 → R
≥, i = j, . . . , n, k ≥ k∗j , nondecreasing with respect to each argument

and �
(k)
i (0, . . . , 0) = ξ

(k)
i (0, . . . , 0) = 0, and for each trajectory of (1.1)–(1.4) starting

at t0 ≥ 0 there exist T
(k)
i ≥ t0, i = j, . . . , n, k ≥ k∗j , such that for all i = j, . . . , n,

k ≥ k∗j , and ε ≥ ε∗j ,

Wi(t) ≤ �
(k)
i (Wi(t0), . . . ,Wn(t0), ‖w‖2) ∀t ≥ t0,

Wi(t) ≤ �
(k)
i (c

(k)
i , . . . , c(k)

n , ‖w‖2) ∀t ≥ T
(k)
i ,(A.34)

Wi(t) ≥ c(k)
n ∀t ∈ [s, r]

⇒
∫ t

s

Wi(λ)

Wi(λ) + 1
dλ ≤ ξ

(k)
i (Wi(s), . . . ,Wn(s), ‖w‖2) ∀t ∈ [s, r](A.35)
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hold along the trajectories of (1.1)–(1.4) and

c
(k)
i ∼

i∏
l=j

R2
l1

R4
l−1,1

, i = j, . . . , n, c
(k)
j ≥ c

(k)
j+1 ≥ · · · ≥ c(k)

n ,(A.36)

c(k+1)
n :=

24R2
n1bnc

(k)
n−1

lnR4
n−1,1

< 1,

c
(k+1)
i :=

4R2
i1bi
li

[
6c

(k)
i−1

R4
i−1,1

+ 2n3αi(2n)c
(k)
i+1

]
< 1, i = j, . . . , n.(A.37)

Let k ≥ k∗j and ε ≥ ε∗j . We distinguish the cases j = 3, . . . , n and j = 2. Assume first
that j = 3, . . . , n. Let

αj−1(s) :=

∫ s+1

s

max∑n
i=j Wi(zi,σi)≤r

αj−1(Zj , Sj)dr

with αj−1(Zj , Sj) :=
∑n

i=j [(γ
zi
j−1,s + γzi

j−1,m + γ
x̃i+1

j−1,s + γ
x̃i+1

j−1,m + 1)(
∑n

i=j Wi(zi, σi) +

2)2 + γw
j−1] and, thus,

n∑
i=j

(γzi
j−1z

2
i + γei

j−1e
2
i ) + γw

n−1‖w‖2 ≤ Rj−1,1αj−1

⎛⎝ n∑
i=j

Wi

⎞⎠[ ∑n
i=j Wi∑n

i=j Wi + 1
+ ‖w‖2

]

for all zi, σi, w, i = j . . . , n. Thus, from (8.7), (8.8)–(8.11), (8.15), and (8.21)–(8.22),

we derive the existence of ε
(k∗

j )

j−1 > 0 and bj−1, lj−1 > 0 such that for all ε ≥ ε
(k∗

j )

j−1

c
(k∗

j )

j−1 :=
4R2

j−1,1bj−1

lj−1

[
6

R4
j−2,1

+ 2n3αj−1(2n)c
(k∗

j )

j

]
< 1(A.38)

and along the trajectories of (1.1)–(1.4)

Ẇj−1 ≤ − lj−1Wj−1

Rj−1,1(Wj−1 + 1)
+ 6bj−1

Rj−1,1

R4
j−2,1

+ bj−1Rj−1,1αj−1

⎛⎝ n∑
i=j

Wi

⎞⎠[ ∑n
i=j Wi∑n

i=j Wi + 1
+ ‖w‖2

]
.(A.39)

Assume that Wj−1(t) ≥ c
(k∗

j )

j−1 , Wi(t) ≥ c
(k∗

j )

i , i ∈ J ⊆ {j, . . . , n}, and Wi(t) ≤
c
(k∗

j )

i , i ∈ {j, . . . , n}\J , for all t ∈ [s, r], s ≥ t0. Since αj−1(
∑n

i=j ai)[
∑n

i=j ai]/[
∑n

i=j ai + 1]
is nondecreasing with respect to each ai ≥ 0 and on account of (8.26)∑n

i=j ai∑n
i=j ai + 1

αj−1

⎛⎝ n∑
i=j

ai

⎞⎠ ≤
n∑

i=j

2n2ai
ai + 1

αj−1(2nai)(A.40)

for all ai ≥ 0, and since c
(k∗

j )

i ≤ 1, j, . . . , n, using the induction step and the nonneg-
ativity of Wi we obtain for all t ∈ [s, r], i = j . . . , n, and for any set J ⊆ {j, . . . , n}
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αj−1

⎛⎝ n∑
i=j

Wi(t)

⎞⎠[ ∑n
i=j Wi(t)∑n

i=j Wi(t) + 1
+ ‖w(t)‖2

]

≤ 2n2
n∑

i=j

αj−1(2nWi(t))

[
Wi

Wi + 1
+ ‖w(t)‖2

]
,(A.41)

∑
i∈J

∫ t

s

αj−1(2nWi(λ))

[
Wi(λ)

Wi(λ) + 1
+ ‖w(λ)‖2

]
dλ

≤
n∑

i=j

αj−1(2n�
(k∗

j )

i (Wi(s), . . . ,Wn(s), ‖w‖2))[ξ
(k∗

j )

i (Wi(s), . . . ,Wn(s), ‖w‖2) + ‖w‖2
2],

(A.42)∑
i∈{j,...,n}\J

αj−1(2nWi(t))

[
Wi(t)

Wi(t) + 1
+ ‖w(t)‖2

]
≤ αj−1(2n)

n∑
i=j

[c
(k∗

j )

i + ‖w(t)‖2]

≤ nαj−1(2n)[c
(k∗

j )

j + ‖w(t)‖2].

(A.43)

The last passage in (A.43) follows from being c
(k)
j ≥ c

(k)
j+1 ≥ · · · ≥ c

(k)
n in (A.37).

Thus, using the definition of c
(k∗

j )

n−1, by integrating (A.39) over [s, r]

Wj−1(t) ≥ c
(k∗

j )

j−1 ∀t ∈ [s, r] ⇒ Wj−1(t) ≤ −6bn−1Rj−1,1(t− s)

R4
j−2,1

+ �
(k∗

j )

j−1 (Wj−1(s), . . . ,Wn(s), ‖w‖2) ∀t ∈ [s, r](A.44)

with

�
(k∗

j )

j−1 (Wj−1(s), . . . ,Wn(s), ‖w‖2) := Wj−1(s) + 2n2bn−1Rj−1,1

{
nαj−1(2n)‖w‖2

2

+ αj−1(2n�
(k∗

j )

i (Wi(s), . . . ,Wn(s), ‖w‖2))

n∑
i=j

[ξ
(k∗

j )

i (Wi(s), . . . ,Wn(s), ‖w‖2) + ‖w‖2
2]
}
.

From (A.44) follow the existence of ε
(k∗

j +1)

j−1 > 0 and for each trajectory of (1.1)–(1.4)

starting at t0 ≥ 0 the existence of T
(k∗

j +1)

j−1 ≥ t0 such that (A.34) hold true for all
i = j − 1, . . . , n with k = k∗j + 1. Next, we show that also (A.35) holds true for

all i = j − 1, . . . , n with k = k∗j + 1. Assume that Wj−1(t) ≥ c
(k∗

j )

j−1 , Wi(t) ≥ c
(k∗

j )

i ,

i ∈ J ⊆ {j, . . . , n}, and Wi(t) ≤ c
(k∗

j )

i , i ∈ {j, . . . , n}\J , for all t ∈ [s, r], s ≥ t0.

Integrating (A.39) over [s, r] and using the induction step, by the definition of c
(k∗

j )

j−1

in (A.38) and the nonnegativity of Wj−1, we obtain for any set J ⊆ {j, . . . , n}∫ t

s

Wi(λ)

Wi(λ) + 1
dλ ≤ 2Rj−1,1

lj−1
{Wj−1(s) + �

(k∗
j )

j−1 (0,Wj(s), . . . ,Wn(s), ‖w‖2)} ∀t ∈ [s, r],

which, upon setting ξ
(k∗

j )

j−1 (Wj(s), . . . ,Wn(s), ‖w‖2) := [2Rj−1,1/lj−1]{Wj−1(s) + �
(k∗

j )

j−1

(0,Wj(s), . . . ,Wn(s), ‖w‖2)}, gives (A.35) for all i = j − 1, . . . , n with k = k∗j + 1.
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The case j = 2 can be carried out in the same way as the case j = 3, . . . , n with
the only difference being that

c
(k∗

2 )
1 := 8R2

11b1n
3α1(2n)c

(k∗
2 )

2 /l1 < 1.(A.45)

By iterating the above arguments for k > k∗j + 1 and using the bounds Wi(zi, σi) ≤
c
(k)
i ⇒ z2

i , e
2
i , x̃

2
i+1 ≤ 6c

(k)
i , i = j, . . . , n, in (A.39), we obtain (A.34)–(A.35) for all

i = j − 1, . . . , n and k ≥ k∗j with c
(k)
i defined by the following equations for k ≥ k∗j :

c(k+1)
n :=

24R2
n1bnc

(k)
n−1

lnR4
n−1,1

, c
(k+1)
i :=

4R2
i1bi
li

[
6c

(k)
i−1

R4
i−1,1

+ 2n3αi(2n)c
(k)
i+1

]
, i = j, . . . , n,

(A.46)

and

c
(k+1)
j−1 :=

4R2
j−1,1bj−1

lj−1

[
6

R4
j−2,1

+ 2n3αj−1(2n)c
(k)
j

]
if j ≥ 3,

c
(k+1)
1 :=

8R2
11b1n

3α1(2n)c
(k)
2

l1
if j = 2,(A.47)

where the c
(k∗

j )

i , i = j, . . . , n, are defined (on account of the induction step) as

c
(k∗

j )

i ∼
i∏

l=j

R2
l1

R4
l−1,1

, i = j, . . . , n, c
(k∗

j )

j ≥ c
(k∗

j )

j+1 ≥ · · · ≥ c
(k∗

j )
n ,(A.48)

and c
(k∗

j )

j−1 as in (A.38) if j ≥ 3 and c
(k∗

2 )
1 as in (A.45) if j = 2. The equations (A.46)

can be described by a linear discrete-time system x(k+1) = Ax(k)+Bu(k) with state

x(k) = (c
(k)
n · · · c

(k)
j−1)

T , initial condition x(0) = (c
(k∗

j )
n · · · c

(k∗
j )

j−1 )T , input u(k) = 0 if

j = 2, and 24R2
j−1,1bj−1/[lj−1R

4
j−2,1] if j ≥ 3. Thus, for all k ≥ k∗j + 1(

c
(k)
n · · · c

(k)
j−1

)T
= Ak−k∗

j
(
c
(k∗

j )
n · · · c

(k∗
j )

j−1

)T
+[I + A + A2 + · · · + Ak−k∗

j−1] ( 0 · · · u(k) )
T
,

where the last term is zero if j = 2. It is not difficult to prove that if j ≥ 3 and for
1 ≤ r ≤ j − 1

[I + A + A2 + · · · + Ar]

⎛⎝ 0
...

u(k)

⎞⎠ ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

r+j−1∏
h=j−1

R2
h1

R4
h−1,1

[
1 + O

(1

ε

)]
...

R2
j−1,1

R4
j−2,1

[
1 + O

(1

ε

)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and for 1 ≤ r ≤ j − 1 and s ≥ 0

Asj+r ( 0 · · · u(k) )
T ∼ ε−2sAr ( 0 · · · u(k) )

T
,(A.49)
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where ∼ is meant componentwise. Moreover, for 1 ≤ r ≤ j − 1

Ar
(
c
(k∗

j )
n · · · c

(k∗
j )

j−1

)T
=

(
O
(
ε−(n−j+2)

n∏
h=j

R−2
h−1,1

)
· · · O

(
ε−2R−2

j−1,1

)
O
(
ε−1

))T

and for 1 ≤ r ≤ j − 1 and s ≥ 0

Asj+r
(
c
(k∗

j )
n · · · c

(k∗
j )

j−1

)T ∼ ε−2sAr
(
c
(k∗

j )
n · · · c

(k∗
j )

j−1

)T
.(A.50)

From this follows the existence of ε∗j−1 ≥ ε∗j and k∗j−1 ≥ k∗j such that the induction step

(A.34)–(A.35) and (A.37) hold true with j replaced by j−1, and c
(k)
i , i = j−1, . . . , n,

satisfy (A.36) if j ≥ 3; otherwise c
(k)
1 < 1 if j = 2. Thus, since (A.34)–(A.35) and

(A.37) hold true for j = n − 1 with (A.31), they hold true for all j = 1, . . . , n.

Moreover, c
(k)
i , i = 2, . . . , n, satisfy (A.36) and c

(k)
1 < 1 for all ε ≥ ε∗1 and k ≥ k∗1 .

This also concludes the proof of Lemma 8.1 with cj := c
(k∗

1 )
j and �j := �

(k∗
1 )

j , j =
1, . . . , n.

Proof of Lemma 8.2. Let ε∗i , �i, and ci, i = 1, . . . , n, be as in Lemma 8.1.
Moreover, let

ci(ε) := �i(ci(ε), . . . , cn(ε), 0), Tj(0) := {(Zj , Sj) : Wi(zi, σi) ≤ ci(ε), i = j, . . . , n}

and set w = 0 (we are proving internal stability). Define recursively a filtered Lya-
punov function for (1.1)–(1.4) by using Theorem 7.4. First, find a filtered Lyapunov
function for Σi ◦ Ci, i = n− 1, n; then proceed by induction on the number n− j + 1,
j = 1, . . . , n − 1, of systems Σi ◦ Ci in Σi ◦ Ci, i = j, . . . , n. By (8.15) and (8.17),
with j = n, n − 1, Σn ◦ Cn has for all ε ≥ maxi ε

∗
i filtered Lyapunov function Wn,

stability margins ϕns/2, ϕnm/2, and incremental rates γ
zn−1
n , γ

en−1
n (given in (8.21)),

while Σn−1 ◦ Cn−1 has for all ε ≥ maxi ε
∗
i Lyapunov function Wn−1, stability mar-

gins ϕn−1,s/2, ϕn−1,m/2, and incremental rates γ
zn−2

n−1 , γ
en−2

n−1 , γzn
n−1, γen

n−1 (given in
(8.21)–(8.22)). Choose ε∗∗n−1 ≥ maxi ε

∗
i such that for all ε ≥ ε∗∗n−1 the following hold:

(1) ϕns/2 and ϕnm/2 locally saturate γzn
n−1 and γen

n−1, respectively, with levels
(cn, τn−1 (cn)), where τn−1 : R

≥ → [1,∞) is a continuous nondecreasing function
such that γzn

n−1 ≤ τn−1(Wn)ϕns/2 and γen
n−1 ≤ τn−1(Wn)ϕnm/2 for all zn, σn: by

(8.22), with j = n − 1 and l = n, and Lemma A.3 this can be done by taking
τn−1(s) ∼ Rn−1,1Rn1τ̃n−1(s), with τ̃n−1 : R

≥ → [1,∞) a continuous nondecreasing
function such that

[(1 + Wn(zn, σn))2 − 1][γzn
n−1,s + γzn

n−1,m + γ
x̃n+1

n−1,s + γ
x̃n+1

n−1,m + 1] ≤ τ̃n−1(Wn(zn, σn))

for all zn, σn.
(2) ϕn−1,s/2 and ϕn−1,m/2 saturate γ

zn−1
n and γ

en−1
n with level 1/[3τn−1(cn)]:

this follows since τ̃n−1(cn) � 1 (by continuity of τ̃n−1(s) and cn � 1) and from (8.21)
with j = n, by (8.7) and (8.16) with j = n.

(3) Σn ◦ Cn is recurrent relative to the trap Tn(0), and Σn−1 ◦ Cn−1 is recurrent
relative to the trap {(zn−1, σn−1) : Wn−1(zn−1, σn−1) ≤ cn−1}: this follows by Lemma
8.1.

Application of Theorem 7.4 to Σi ◦Ci, i = n−1, n, with c1 → cn−1, c2 → cn, κ2 →
1/[3τn−1(cn)], κ1 → τn−1(cn), d1 → 1, d2 → 2τn−1(cn−1), θ1, θ2 → 1, θ0 → θn−1,
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τ2(s) → κn, and τ1(s) → τn−1(s), gives that

W̃ (n−1)(Zn−1, Sn−1, θn−1) = θn−1W
(n−1)(Zn−1, Sn−1),

W (n−1)(Zn−1, Sn−1) = Wn−1(zn−1, σn−1) + 2τn−1(cn)Wn(zn, σn),

θ̇n−1 = −[an−1(zn, σn)/min{cn−1, 2cnτn−1(cn)}]θn−1, θn−1(0) = e
∫ ∞
0

an−1(τ)dτ ,

with an−1(zn, σn) = max{τn−1(Wn(zn, σn)) − τn−1(cn), 0}[ϕnsz
2
n/2 + ϕnme2

n/2], is
for all ε ≥ ε∗∗n a smooth filtered Lyapunov function for the interconnection Σj ◦ Cj ,
j = n− 1, n, with

˙̃
W

(n−1)

≤ θn−1

{
−

n∑
i=n−1

[ϕ
(n−1)
is z2

i + ϕ
(n−1)
im e2

i ] + γ
zn−2

n−1 z2
n−2 + γ

en−2

n−1 e2
n−2

}
(A.51)

along the trajectories of Σj ◦ Cj , j = n − 1, n, where ϕ
(n−1)
n−1,l ∼ ϕn−1,l and ϕ

(n−1)
nl ∼

τn−1(cn)ϕnl, l = s,m. Moreover, the interconnection Σj ◦ Cj , j = n − 1, n, is re-
current relative to the trap {(Zn−1, Sn−1) : W (n−1)(Zn−1, Sn−1) ≤ c(n−1) := cn−1 +
2τn−1(cn)} and for each trajectory of Σj ◦ Cj , j = n− 1, n, there exists Tn−1 > 0 such
that

θn−1(t) ≥ 1 ∀t ≥ 0, θn−1(t) = 1 ∀t ≥ Tn−1.(A.52)

For each j = 2, . . . , n− 1 and i = j, . . . , n− 1 let

ϕ
(n)
nl ∼ ϕnl, ϕ

(i)
il ∼ ϕil, ϕ

(i)
hl ∼ τi(c

(i+1)) · · · τn−1(c
(n))ϕhl, h = i + 1, . . . , n; l = s,m,

W̃ (n)(Zn, Sn) = Wn(zn, σn), c(n) = cn, c(i) = ci + 2τi(c
(i+1))c(i+1),(A.53)

and

W̃ (j)(Zj , Sj , θ̃j) = θ̃jW
(j)(Zj , Sj), θ̃j = θj · · · θn−1,

W (i)(Zi, Si) = Wi(zi, σi) + 2τi(c
(i+1))W (i+1)(Zi+1, Si+1),

θ̇i = −[ai(Zi+1, Si+1)/min{ci, 2c(i+1)τi(c
(i+1))}]θi, θi(0) = e

∫ ∞
0

ai(τ)dτ ,

i = j, . . . , n− 1,

(A.54)

where ai(Zi+1, Si+1) = max{τi(W (i+1)(Zi+1, Si+1))−τi(c
(i+1)), 0}

∑n
l=i+1[ϕ

(l+1)
ls z2

l +

ϕ
(l+1)
lm e2

l ] and τi : R
≥ → [1,∞), i = j, . . . , n − 1, are continuous nondecreasing func-

tions.
Induction hypothesis. Let j = 2, . . . , n−1. Assume the existence of ε∗∗j ≥ maxi ε

∗
i

such that for all εj ≥ ε∗∗j

τi(s) ∼ Ri1Ri+1,1τ̃i(s), i = j, . . . , n− 1,(A.55)

with τ̃i, τi : R
≥ → [1,∞) continuous nondecreasing functions such that γ

zi+1

i ≤
τi(W

(i+1))ϕ
(i)
i+1,s, γ

ei+1

i ≤ τi(W
(i+1))ϕ

(i)
i+1,m and

[(1 + Wi+1(zi+1, σi+1))
2 − 1][γ

zi+1

is + γ
zi+1

im + γ
x̃i+2

is + γ
x̃i+2

im + 1] ≤ τ̃i(W
(i+1)(Zi+1, Si+1))

for all Zi+1, Si+1. Assume also that for all ε ≥ ε∗∗j

˙̃
W

(j)

≤ θ̃j

⎧⎨⎩−
n∑

i=j

[ϕ
(j)
is z2

i + ϕ
(j)
ime2

i ] + γ
zj−1

j z2
j−1 + γ

ej−1

j e2
j−1

⎫⎬⎭(A.56)
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along the trajectories of Σi ◦ Ci, i = j, . . . , n, and, moreover, the interconnection
Σj ◦ Cj , i = j, . . . , n, is recurrent relative to the trap {(Zj , Sj) : W (j)(Zj , Sj) ≤ c(j)}
and for each trajectory of Σi ◦ Ci, i = j − 1, . . . , n, there exists Tj > 0 such that

θi(t) ≥ 1 ∀t ≥ 0, θi(t) = 1 ∀t ≥ Tj , i = j, . . . , n− 1.(A.57)

Note that by (8.15) and (8.17), with j replaced by j − 1, for all ε ≥ ε∗∗j

Ẇj−1 ≤− [ϕj−1,sz
2
j−1/2 + ϕj−1,me2

j−1/2] + γ
zj−2

j−1 z2
j−2 + γ

ej−2

j−1 e2
j−2

+

n∑
l=j

[γzl
j−1z

2
l + γel

j−1e
2
l ]

along the trajectories of Σi ◦ Ci, i = j − 1, . . . , n. Choose ε∗∗j−1 ≥ ε∗∗j such that for all
ε ≥ ε∗∗j−1 the following hold:

(1) ϕ
(j)
is /2 and ϕ

(j)
im/2, i = j, . . . , n, locally saturate γzi

j−1 and γei
j−1, respectively,

with levels (c(j), τj−1(c
(j))), where τj−1 : R

≥ → [1,∞) is a continuous nondecreas-

ing function such that γ
zj
j−1 ≤ τj−1(W

(j))ϕjs/2 and γ
ej
j−1 ≤ τj−1(W

(j))ϕjm/2 for
all Zj , Sj : by Lemma A.3 and since τi(s) ≥ 1 for all s, i = j, . . . , n, this can be
done by taking τj−1(s) ∼ Rj−1,1Rj1τ̃j−1(s), with τ̃j−1 : R

≥ → [1,∞) a continuous
nondecreasing function such that for all Zj , Sj

[(1 + Wj(zj , σj))
2 − 1][γ

zj
j−1,s + γ

zj
j−1,m + γ

x̃j+1

j−1,s + γ
x̃j+1

j−1,m + 1] ≤ τ̃j−1(W
(j)(Zj , Sj)).

(A.58)

(2) ϕj−1,s/2 and ϕj−1,m/2 saturate γ
zj−1

j and γ
ej−1

j with level 1/[3τj−1(c
(j))]:

this follows from (A.55), (8.21), and (A.58) and since τ̃j−1 � 1.
(3) Σi ◦Ci, i = j, . . . , n, is recurrent relative to the trap {(Zj , Sj) : W (j)(Zj , Sj) ≤

c
(j)
i }, and Σj−1 ◦ Cj−1 is recurrent relative to the trap {(zj−1, σj−1) : Wj−1(zj−1,
σj−1) ≤ cj−1}: this follows from Lemma 8.1 and the induction step.

By application of Theorem 7.4 to Σi ◦ Ci, i = j − 1, . . . , n, we prove that there
exists ε∗∗j−1 ≥ ε∗j−1 such that (A.53)–(A.57) hold for all ε ≥ ε∗∗j−1 with j replaced
by j − 1, the interconnection Σj ◦ Cj , i = j − 1, . . . , n, is recurrent relative to the
trap {(Zj−1, Sj−1) : W (j−1)(Zj−1, Sj−1) ≤ c(j−1)}, and for each trajectory of Σi ◦ Ci,
i = j−1, . . . , n, there exist Tj−1 > 0 such that θj−1(t) ≥ 1 for all t ≥ 0 and θj−1(t) = 1
for all t ≥ Tj−1. Thus, since the induction step holds true for j = n − 1, it holds
true for all j = 1, . . . , n− 1. This completes the proof of Lemma 8.2 with ε∗∗ = ε∗∗1 ,

W̃ = W̃ (1), θ = θ̃1, and ϕ̃il = ϕ
(1)
il .
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Abstract. In this paper we derive a posteriori error estimates for space-time finite element
discretizations of parabolic optimization problems. The provided error estimates assess the dis-
cretization error with respect to a given quantity of interest and separate the influences of different
parts of the discretization (time, space, and control discretization). This allows us to set up an
efficient adaptive algorithm which successively improves the accuracy of the computed solution by
construction of locally refined meshes for time and space discretizations.

Key words. parabolic equations, optimal control, parameter identification, a posteriori error
estimation, mesh refinement
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1. Introduction. In this paper we develop an adaptive algorithm for efficient
solution of time-dependent optimization problems governed by parabolic partial dif-
ferential equations. The optimization problems are formulated in a general setting
including optimal control as well as parameter identification problems. Both, time
and space discretization of the state equation are based on the finite element method
as proposed, e.g., in [10, 11]. In [2] we have shown that this type of discretization
allows for a natural translation of the optimality conditions from the continuous to
the discrete level. This gives rise to exact computation of the derivatives required in
the optimization algorithms on the discrete level.

The main goal of this paper is to derive a posteriori error estimates which assess
the error between the solution of the continuous and the discrete optimization problem
with respect to a given quantity of interest. This quantity of interest may coincide
with the cost functional or express another goal for the computation. In order to
set up an efficient adaptive algorithm we will separate the influences of the time and
space discretizations on the error in the quantity of interest. This allows us to balance
different types of errors and successively to improve the accuracy by construction of
locally refined meshes for time and space discretizations.

The use of adaptive techniques based on a posteriori error estimation is well ac-
cepted in the context of finite element discretization of partial differential equations;
see, e.g., [9, 28, 3]. In the past several years the application of these techniques
has also been investigated for optimization problems governed by partial differential
equations. Energy-type error estimators for the error in the state, control, and adjoint
variable are developed in [20, 21] in the context of distributed elliptic optimal control
problems subject to pointwise control constraints. Recently, these techniques were
also applied in the context of optimal control problems governed by linear parabolic
equations; see [19]. In a recent preprint [24] an anisotropic error estimate is derived
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for the error due to the space discretization of an optimal control problem governed
by the linear heat equation.

However, in many applications, the error in global norms does not provide useful
error bounds for the error in the quantity of physical interest. In [1, 3] a general
concept for a posteriori estimation of the discretization error with respect to the cost
functional in the context of optimal control problems is presented. In papers [4, 5],
this approach is extended to the estimation of the discretization error with respect
to an arbitrary functional depending on both the control and state variables, i.e.,
with respect to a quantity of interest. This allows, among other things, an efficient
treatment of parameter identification and model calibration problems.

The main contribution of this paper is the extension of these approaches to opti-
mization problems governed by parabolic partial differential equations.

In this paper, we consider optimization problems under constraints of (nonlinear)
parabolic differential equations

(1.1)
∂tu + A(q, u) = f

u(0) = u0(q).

Here, the state variable is denoted by u and the control variable by q. Both, the
differential operator A and the initial condition u0 may depend on q. This allows a si-
multaneous treatment of both optimal control and parameter identification problems.
For optimal control problems, the operator A is typically given by

A(q, u) = Ā(u) −B(q),

with a (nonlinear) operator Ā and a (usually linear) control operator B. In parameter
identification problems, the variable q denotes the unknown parameters to be deter-
mined and may enter the operator A in a nonlinear way. The case of initial control is
included via the q-dependent initial condition u0(q).

The target of the optimization is to minimize a given cost functional J(q, u)
subject to the state equation (1.1).

For the numerical solution of this optimization problem the state variable has to
be discretized in space and in time. Moreover, if the control (parameter) space is
infinite dimensional, it has to be discretized too. For fixed time, space, and control
discretizations this leads to a finite dimensional optimization problem. We introduce
σ as a general discretization parameter including the space, time, and control dis-
cretizations and denote the solution of the discrete problem by (qσ, uσ). For this
discrete solution we derive an a posteriori error estimate with respect to the cost
functional J of the following form:

(1.2) J(q, u) − J(qσ, uσ) ≈ ηJk + ηJh + ηJd .

Here, ηJk , ηJh , and ηJd denote the error estimators, which can be evaluated from the
computed discrete solution; ηJk assesses the error due to the time discretization, ηJh
due to the space discretization, and ηJd due to the discretization of the control space.
The structure of the error estimate (1.2) allows for equilibration of different discretiza-
tion errors within an adaptive refinement algorithm to be described in the following
discussion.

For many optimization problems the quantity of physical interest coincides with
the cost functional, which explains the choice of the error measure (1.2). However, in
the case of parameter identification or model calibration problems, the cost functional
is only an instrument for the estimation of the unknown parameters. Therefore, the
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value of the cost functional in the optimum and the corresponding discretization error
are of secondary importance. This motivates error estimation with respect to a given
functional I depending on the state and control (parameter) variables. In this paper
we extend the corresponding results from [4, 5, 29] to parabolic problems and derive
an a posteriori error estimator of the form

I(q, u) − I(qσ, uσ) ≈ ηIk + ηIh + ηId,

where again ηIk and ηIh estimate the temporal and spatial discretization errors and ηId
estimates the discretization error due to the discretization of the control space.

In section 5.2 we will describe an adaptive algorithm based on these error estima-
tors. Within this algorithm the time, space, and control discretizations are separately
refined for efficient reduction of the total error equilibrating different types of the error.
This local refinement relies on the computable representation of the error estimators
as a sum of local contributions (error indicators), see the discussion in section 5.1.

To the authors’ knowledge, this is the first paper describing the a posteriori er-
ror estimation for optimization problems governed by parabolic differential equations
including the separation of different types of the discretization error.

The outline of the paper is as follows: In the next section we describe necessary
optimality conditions for the problem under consideration and sketch the Newton-
type optimization algorithm on the continuous level. This algorithm will be applied
on the discrete level for fixed discretizations within an adaptive refinement procedure.
In section 3 we present the space-time finite element discretization of the optimization
problem. Section 4 is devoted to the derivation of the error estimators in a general
setting. In section 5 we discuss numerical evaluation of these error estimators and the
adaptive algorithm in details. In the last section we present two numerical examples
illustrating the behavior of the proposed methods. The first example deals with
boundary control of the heat equation, whereas the second one is concerned with the
identification of Arrhenius parameters in a simplified gaseous combustion model by
means of point measurements of the concentrations.

2. Optimization. The optimization problems considered in this paper are for-
mulated in the following abstract setting: Let Q be a Hilbert space for the controls
(parameters) with scalar product (·, ·)Q. Moreover, let V and H be Hilbert spaces,
which build together with the dual space V ∗ of V a Gel’fand triple V ↪→ H ↪→ V ∗.
The duality pairing between the Hilbert spaces V and its dual V ∗ is denoted by
〈·, ·〉V ∗×V , and the scalar product in H is denoted by (·, ·)H . A typical choice for
these spaces could be

(2.1) V =
{
v ∈ H1(Ω) v

∣∣
∂ΩD

= 0
}

and H = L2(Ω),

where ∂ΩD denotes the part of the boundary of Ω with prescribed Dirichlet boundary
conditions.

For a time interval (0, T ) we introduce the Hilbert space X := W (0, T ) defined
as

(2.2) W (0, T ) =
{
v v ∈ L2((0, T ), V ) and ∂tv ∈ L2((0, T ), V ∗)

}
.

It is well known that the space X is continuously embedded in C([0, T ], H); see,
e.g., [8]. Furthermore, we use the inner product of L2((0, T ), H) given by

(2.3) (u, v) := (u, v)L2((0,T ),H) =

∫ T

0

(u(t), v(t))H dt

for setting up the weak formulation of the state equation.
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By means of the spatial semilinear form ā : Q×V ×V → R defined for a differential
operator A : Q× V → V ∗ by

ā(q, ū)(ϕ̄) := 〈A(q, ū), ϕ̄〉V ∗×V ,

we can define the semilinear form a(·, ·)(·) on Q×X ×X as

a(q, u)(ϕ) :=

∫ T

0

ā(q, u(t))(ϕ(t)) dt

which is assumed to be three times Gâteaux differentiable and linear in the third
argument.

Remark 2.1. If the control variable q depends on time, this has to be incorporated
by an obvious modification of the definitions of the semilinear forms.

After these preliminaries, we pose the state equation in a weak form: Find for
given control q ∈ Q the state variable u ∈ X such that

(2.4)
(∂tu, ϕ) + a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ X,

u(0) = u0(q),

where f ∈ L2((0, T ), V ∗) represents the right-hand side of the state equation and
u0 : Q → H denotes a three times Gâteaux differentiable mapping describing para-
meter-dependent initial conditions. The usage of the inner product (·, ·) defined in
(2.3) for stating the formulation (2.4) is possible since the inner product on H is an
equivalent representation of the duality pairing of V and V ∗ due to the properties of
the Gel’fand triple.

Remark 2.2. There are several sets of assumptions on the nonlinearity in ā(·, ·)(·)
and its dependence on the control variable q allowing the state equation (2.4) to
be well-posed. Typical examples are different semilinear equations, where the form
ā(·, ·)(·) consists of a linear elliptic part and a nonlinear term depending on u and
∇u. Due to the fact that the development of the proposed adaptive algorithm does
not depend on the particular structure of the nonlinearity in ā, we do not specify a
set of assumptions on it but assume that the state equation (2.4) possesses a unique
solution u = S(q) ∈ X for each q ∈ Q.

The cost functional J : Q × X → R is defined using two three times Gâteaux
differentiable functionals J1 : V → R and J2 : H → R by

(2.5) J(q, u) =

∫ T

0

J1(u) dt + J2(u(T )) +
α

2
‖q − q̄‖2

Q,

where the regularization (or cost) term is added which involves α ≥ 0 and a reference
parameter q̄ ∈ Q.

The corresponding optimization problem is formulated as follows:

(2.6) Minimize J(q, u) subject to the state equation (2.4), (q, u) ∈ Q×X.

The question of existence and uniqueness of solutions to such optimization problems
is discussed, e.g., in [18, 13, 27]. Throughout the paper, we assume problem (2.6) to
admit a (locally) unique solution. Moreover, we assume the existence of a neighbor-
hood W ⊂ Q×X of the optimal solution, such that the linearized form ā′u(q, u(t))(·, ·)
considered as a linear operator

ā′u(q, u(t)) : V → V ∗
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is an isomorphism for all (q, u) ∈ W and almost all t ∈ (0, T ). This assumption will
allow all considered linearized and adjoint problems to be well-posed.

Provided the existence of a solution operator S : Q → X for the state equa-
tion (2.4) (see Remark 2.2), we can define the reduced cost functional j : Q → R

by j(q) = J(q, S(q)). This definition allows us to reformulate problem (2.6) as an
unconstrained optimization problem:

(2.7) Minimize j(q), q ∈ Q.

We assume the solution operator S to be two times differentiable; see, e.g., [27] for a
discussion of this issue.

For the reduced optimization problem (2.7) we apply Newton’s method to reach
a control q which satisfies the first order necessary optimality condition

j′(q)(τq) = 0 ∀τq ∈ Q.

Starting with an initial guess q0, the next Newton iterate is obtained by qi+1 =
qi + δq, where the update δq ∈ Q is the solution of the linear problem:

(2.8) j′′(q)(δq, τq) = −j′(q)(τq) ∀τq ∈ Q.

Thus, we need suitable expressions for the first and second derivatives of the reduced
cost functional j. To this end, we introduce the Lagrangian L : Q × X × X → R,
defined as

(2.9) L(q, u, z) = J(q, u) + (f − ∂tu, z) − a(q, u)(z) − (u(0) − u0(q), z(0))H .

With its aid, we obtain the following standard representation of the first derivative
j′(q)(τq).

Theorem 2.1.

• If for given q ∈ Q the state u ∈ X fulfills the state equation

L′
z(q, u, z)(ϕ) = 0 ∀ϕ ∈ X,

with (q, u) ∈ W ⊂ Q×X,
• and if additionally z ∈ X is chosen as a solution of the adjoint state equation

L′
u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X,

then the following expression of the first derivative of the reduced cost functional holds:

j′(q)(τq) = L′
q(q, u, z)(τq)

= α(q − q̄, τq)Q − a′q(q, u)(τq, z) + (u′
0(q)(τq), z(0))H .

Remark 2.3. The optimality system of the considered optimization problem (2.6)
is given by the derivatives of the Lagrangian used in Theorem 2.1 above:

(2.10)

L′
z(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (State equation),

L′
u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (Adjoint state equation),

L′
q(q, u, z)(ψ) = 0 ∀ψ ∈ Q (Gradient equation).

For the explicit formulation of the dual equation in this setting, see, e.g., [2].
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In the same manner one can gain representations of the second derivatives of j
in terms of the Lagrangian; see, e.g., [2] where two different kinds of expressions are
discussed: Either one can build up the whole Hessian and solve the system (2.8) by an
arbitrary linear solver, or one can just compute matrix-vector products of the Hessian
times a given vector and use this to solve (2.8) by the conjugate gradient method.

The presented Newton’s method will be used to solve discrete optimization prob-
lems arising from discretizing the states and the controls as, e.g., shown in the fol-
lowing section. In practical realizations, Newton’s method has to be combined with
some globalization techniques such as line search or trust region to enlarge its area of
convergence; see, e.g., [23, 7].

Remark 2.4. The solution u of the underlying state equation is typically required
in the whole time interval for the computation of the adjoint solution z. If all data are
stored, the storage grows linearly with respect to the number of time intervals in the
time discretization. For reducing the required memory one can apply checkpointing
techniques; see, e.g., [15, 14]. In [2] we analyze such a strategy in the context of
space-time finite element discretization of parabolic optimization problems.

3. Discretization. In this section, we discuss the discretization of the optimiza-
tion problem (2.6). To this end, we use Galerkin finite element methods in space and
time to discretize the state equation. This allows us to give a natural computable
representation of the discrete gradient and Hessian in the same manner as shown in
section 2 for the continuous problem. The use of exact discrete derivatives is impor-
tant for the convergence of the optimization algorithms. Moreover, our systematic
approach to a posteriori error estimation relies on using the Galerkin-type discretiza-
tions.

The first of the following subsections is devoted to semidiscretization in time by
continuous Galerkin (cG) and discontinuous Galerkin (dG) methods. Section 3.2
deals with the space discretization of the semidiscrete problems arising from time
discretization. For the numerical analysis of these schemes we refer to [10].

The discretization of the control space Q is kept rather abstract by choosing a
finite dimensional subspace Qd ⊂ Q. A possible concretion of this choice is shown in
the numerical examples in section 6. For the variational discretization concept, where
the control variable is not discretized explicitly, we refer to [16]; for a superconvergence
based discretization of the control variable, see [22].

3.1. Time discretization of the states. To define a semidiscretization in time,
let us partition the time interval [0, T ] as

[0, T ] = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, . . . ,M .

By means of the subintervals Im, we define for r ∈ N0 two semidiscrete spaces
Xr

k and X̃r
k :

Xr
k =

{
vk ∈ C([0, T ], H) vk

∣∣
Im

∈ Pr(Im, V )
}
⊂ X,

X̃r
k =

{
vk ∈ L2((0, T ), V ) vk

∣∣
Im

∈ Pr(Im, V ) and vk(0) ∈ H
}
.
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Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with
values in V . Thus, Xr

k consists of piecewise polynomials which are continuous in time

and will be used as trial space in the cG method, whereas the functions in X̃r
k may

have discontinuities at the edges of the subintervals Im. This space will be used in
what follows as test space in the cG method and as trial and test space in the dG
method.

3.1.1. Continuous Galerkin methods. Using the semidiscrete spaces defined
above, the cG(r) formulation of the state equation can be directly stated as follows:
Find for given control qk ∈ Q a state uk ∈ Xr

k such that

(3.1)
(∂tuk, ϕ) + a(qk, uk)(ϕ) = (f, ϕ) ∀ϕ ∈ X̃r−1

k ,

uk(0) = u0(qk).

Remark 3.1. This equation is assumed to posses a unique solution for each
q ∈ Q, cf. Remark 2.2. In special cases the existence and uniqueness can be shown
by separation of variables and by using the fact that X̃r

k is finite dimensional with
respect to time.

The corresponding semidiscretized optimization problem reads

(3.2) Minimize J(qk, uk) subject to the state equation (3.1), (qk, uk) ∈ Q×Xr
k .

Since the state equation semidiscretized by the cG(r) method has the same form as
in the continuous setting, the corresponding Lagrangian is analogically defined on
Q×Xr

k × X̃r−1
k as

L(qk, uk, zk) = J(qk, uk) + (f − ∂tuk, zk) − a(qk, uk)(zk) − (uk(0) − u0(qk), zk(0))H .

3.1.2. Discontinuous Galerkin methods. To define the dG(r) discretization

we employ the following definition for functions vk ∈ X̃r
k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m.

Then, the dG(r) semidiscretization of the state equation (2.4) reads as follows:

Find for given control qk ∈ Q a state uk ∈ X̃r
k such that

(3.3)

M∑
m=1

∫
Im

(∂tuk, ϕ)H dt + a(qk, uk)(ϕ) +

M−1∑
m=0

([uk]m, ϕ+
m)H = (f, ϕ) ∀ϕ ∈ X̃r

k ,

u−
k,0 = u0(qk).

This equation is assumed to be well-posed, cf. Remark 3.1.
The semidiscrete optimization problem for the dG(r) time discretization has the

form

(3.4) Minimize J(qk, uk) subject to the state equation (3.3), (qk, uk) ∈ Q× X̃r
k .

Then we pose the Lagrangian L̃ : Q× X̃r
k × X̃r

k → R associated with the dG(r) time
discretization for the state equation as

L̃(qk, uk, zk) = J(qk, uk) + (f, zk) −
M∑

m=1

∫
Im

(∂tuk, zk)H dt

− a(qk, uk)(zk) −
M−1∑
m=0

([uk]m, z+
k,m)H − (u−

k,0 − u0(qk), z
−
k,0)H .
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3.2. Space discretization of the states. In this subsection, we first describe
the finite element discretization in space. To this end, we consider two- or three-
dimensional shape-regular meshes; see, e.g., [6]. A mesh consists of quadrilateral or
hexahedral cells K, which constitute a nonoverlapping cover of the computational
domain Ω ⊂ R

n, n ∈ {2, 3}. The corresponding mesh is denoted by Th = {K}, where
we define the discretization parameter h as a cellwise constant function by setting
h
∣∣
K

= hK with the diameter hK of the cell K.
On the mesh Th we construct a conform finite element space Vh ⊂ V in a standard

way:

V s
h =

{
v ∈ V v

∣∣
K

∈ Qs(K) for K ∈ Th
}
.

Here, Qs(K) consists of shape functions obtained via bi- or trilinear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n.
To obtain the fully discretized versions of the time discretized state equations (3.1)

and (3.3), we utilize the space-time finite element spaces

Xr,s
k,h =

{
vkh ∈ C([0, T ], V s

h ) vkh
∣∣
Im

∈ Pr(Im, V s
h )

}
⊂ Xr

k

and

X̃r,s
k,h =

{
vkh ∈ L2((0.T ), V s

h ) vkh
∣∣
Im

∈ Pr(Im, V s
h ) and vkh(0) ∈ V s

h

}
⊂ X̃r

k .

Remark 3.2. By the above definition of the discrete spaces Xr,s
k,h and X̃r,s

k,h, we have
assumed that the spatial discretization is fixed for all time intervals. However, in many
application problems the use of different meshes T m

h for each of the subintervals Im will
lead to more efficient adaptive discretizations. The consideration of such dynamically
changing meshes can be included in the formulation of the dG(r) schemes in a natural
way. The corresponding formulation of the cG(r) method is more involved due to
the continuity requirement in the trial space. The treatment of dynamic meshes
for the forward simulation of parabolic problems within an adaptive algorithm is
discussed in [26]. It will be analyzed in a forthcoming paper in the context of parabolic
optimization problems.

Then, the so-called cG(s)cG(r) discretization of the state equation (2.4) can be
stated as follows: Find for given control qkh ∈ Q a state ukh ∈ Xr,s

k,h such that

(3.5) (∂tukh, ϕ) + a(qkh, ukh)(ϕ) + (ukh(0), ϕ(0))H

= (f, ϕ) + (u0(qkh), ϕ(0))H ∀ϕ ∈ X̃r−1,s
k,h .

The cG(s)dG(r) discretization has the following form: Find for given control qkh ∈ Q

a state ukh ∈ X̃r,s
k,h such that

(3.6)

M∑
m=1

∫
Im

(∂tukh, ϕ)H dt + a(qkh, ukh)(ϕ) +

M−1∑
m=0

([ukh]m, ϕ+
m)H + (u−

kh,0, ϕ
−
0 )H

= (f, ϕ) + (u0(qkh), ϕ−
0 )H ∀ϕ ∈ X̃r,s

k,h.

These fully discretized state equations are assumed to posses unique solutions for each
qkh ∈ Q; see Remark 3.1.
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Thus, the optimization problems with fully discretized states are given by

(3.7)
Minimize J(qkh, ukh) subject to the state equation (3.5), (qkh, ukh) ∈ Q×Xr,s

k,h,

for the cG(s)cG(r) discretization and by

(3.8)

Minimize J(qkh, ukh) subject to the state equation (3.6), (qkh, ukh) ∈ Q× X̃r,s
k,h,

for the cG(s)dG(r) discretization of the state space.

The definition of the Lagrangians L and L̃ for fully discretized states can be
directly transferred from the formulations for semidiscretization in time just by re-
striction of the state spaces Xr

k and X̃r
k to the subspaces Xr,s

k,h and X̃r,s
k,h, respec-

tively. With the aid of these Lagrangians, the derivatives of the reduced functionals
jk(qk) = J(qk, Sk(qk)) and jkh(qkh) = J(qkh, Skh(qkh)) on the different discretization
levels can be expressed in the same manner as described on the continuous level in
Theorem 2.1. Thus, we obtain exact derivatives of the reduced cost functional on the
discrete level; see [2] for details.

Remark 3.3. The dG(r) and cG(r) schemes are known to be time discretization
schemes of order r + 1. The cG(r) schemes lead to a A-stable discretization whereas
the dG(r) schemes are even strongly A-stable.

Remark 3.4. Due to the fact that the test space is discontinuous in time for
both dG(r) and cG(r) discretization, these methods (although globally formulated)
can be interpreted as time-stepping schemes. To illustrate this fact, we present the
time-stepping scheme for the low order cG(s)dG(0) method: For the state equation
we obtain with the abbreviations U0 := ukh(0) and Um := uhk

∣∣
Im

for m = 1, . . . ,M
the following time-stepping formulation:

• m = 0:

(U0, ϕ)H = (u0(q), ϕ)H ∀ϕ ∈ V s
h ,

• m = 1, . . . ,M :

(Um, ϕ)H + kmā(q, Um)(ϕ) = (Um−1, ϕ)H +

∫
Im

(f(t), ϕ)H dt ∀ϕ ∈ V s
h .

This scheme is a variant of the implicit Euler scheme. If the time integrals are
approximated by the box rule, then the resulting scheme is equivalent to the implicit
Euler method. However, a better approximation of these time integrals leads to a
scheme which allows for better error estimates with respect to the required smoothness
of the solution and has advantages in the case of long time integration (T  1); see,
e.g., [12].

The exact computation of the derivatives on the discrete level mentioned above
is not disturbed even by the numerical integration. This can be shown by computing
the schemes for the auxiliary equations by means of the inner product based on the
underlying quadrature rule (e.g., the box rule or the trapezoidal rule).

3.3. Discretization of the controls. As proposed in the beginning of the
current section, the discretization of the control space Q is kept rather abstract. It is
done by choosing a finite dimensional subspace Qd ⊂ Q. Then, the formulation of the
state equation, the optimization problems, and the Lagrangians defined on the fully
discretized state space can be directly transferred to the level with fully discretized
control and state spaces by replacing Q by Qd. The full discrete solutions will be
indicated by the subscript σ which collects the discretization indices k, h, and d.
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4. Derivation of the a posteriori error estimator. In this section, we will
establish a posteriori error estimators for the error arising due to the discretization
of the control and state spaces in terms of the cost functional J and an arbitrary
quantity of interest I.

For this, we first recall a modification of an abstract result from [3] which we will
later use to establish the desired a posteriori error estimators.

Proposition 4.1. Let Y be a function space and L a three times Gâteaux differ-
entiable functional on Y . We seek a stationary point y1 of L on a subspace Y1 ⊂ Y ,
i.e.,

(4.1) L′(y1)(ŷ1) = 0 ∀ŷ1 ∈ Y1.

This equation is approximated by a Galerkin method using a subspace Y2 ⊂ Y . The
approximative problem seeks y2 ∈ Y2 satisfying

(4.2) L′(y2)(ŷ2) = 0 ∀ŷ2 ∈ Y2.

If the continuous solution fulfills additionally

(4.3) L′(y1)(ŷ2) = 0 ∀ŷ2 ∈ Y2,

then we have for arbitrary ŷ2 ∈ Y2 the error representation

(4.4) L(y1) − L(y2) =
1

2
L′(y2)(y1 − ŷ2) + R,

where the remainder term R is given with e := y1 − y2 by

R =
1

2

∫ 1

0

L′′′(y2 + se)(e, e, e) · s · (s− 1) ds.

Proof. Even if the assumptions are weakened compared to the variant in [3], the
proof presented there can be transferred directly.

Remark 4.1. Usually this proposition is formulated for the case Y1 = Y ; then
condition (4.3) is automatically fulfilled.

In what follows, we present the derivation of an error estimator for the fully
discrete optimization problem in the case of dG time discretization only. The cG
time discretization can be treated in a similar way.

4.1. Error estimator for the cost functional. In what follows, we use the
abstract result of Proposition 4.1 for derivation of error estimators in terms of the
cost functional J :

J(q, u) − J(qσ, uσ).

Here, (q, u) ∈ Q×X denotes the continuous optimal solution of (2.6), and (qσ, uσ) =

(qkhd, ukhd) ∈ Qd × X̃r,s
k,h is the optimal solution of the full discretized problem.

To separate the influences of the different discretizations on the discretization
error we are interested in, we split

J(q, u) − J(qσ, uσ) = J(q, u) − J(qk, uk)

+ J(qk, uk) − J(qkh, ukh)

+ J(qkh, ukh) − J(qσ, uσ),
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where (qk, uk) ∈ Q × X̃r
k is the solution of the time discretized problem (3.4) and

(qkh, ukh) ∈ Q× X̃r,s
k,h is the solution of the time and space discretized problem (3.8)

with still undiscretized control space Q.
Theorem 4.1. Let (q, u, z), (qk, uk, zk), (qkh, ukh, zkh), and (qσ, uσ, zσ) be sta-

tionary points of L, resp., L̃ on the different levels of discretization, i.e.,

L′(q, u, z)(q̂, û, ẑ) = L̃′(q, u, z)(q̂, û, ẑ) = 0 ∀(q̂, û, ẑ) ∈ Q×X ×X,

L̃′(qk, uk, zk)(q̂k, ûk, ẑk) = 0 ∀(q̂k, ûk, ẑk) ∈ Q× X̃r
k × X̃r

k ,

L̃′(qkh, ukh, zkh)(q̂kh, ûkh, ẑkh) = 0 ∀(q̂kh, ûkh, ẑkh) ∈ Q× X̃r,s
k,h × X̃r,s

k,h,

L̃′(qσ, uσ, zσ)(q̂σ, ûσ, ẑσ) = 0 ∀(q̂σ, ûσ, ẑσ) ∈ Qd × X̃r,s
k,h × X̃r,s

k,h.

Then there holds for the errors with respect to the cost functional due to the time,
space, and control discretizations

J(q, u) − J(qk, uk) =
1

2
L̃′(qk, uk, zk)(q − q̂k, u− ûk, z − ẑk) + Rk,

J(qk, uk) − J(qkh, ukh) =
1

2
L̃′(qkh, ukh, zkh)(qk − q̂kh, uk − ûkh, zk − ẑkh) + Rh,

J(qkh, ukh) − J(qσ, uσ) =
1

2
L̃′(qσ, uσ, zσ)(qkh − q̂σ, ukh − ûσ, zkh − ẑσ) + Rd.

Here, (q̂k, ûk, ẑk) ∈ Q×X̃r
k ×X̃r

k , (q̂kh, ûkh, ẑkh) ∈ Q×X̃r,s
k,h×X̃r,s

k,h, and (q̂σ, ûσ, ẑσ) ∈
Qd × X̃r,s

k,h × X̃r,s
k,h can be chosen arbitrarily, and the remainder terms Rk, Rh, and

Rd have the same form as given in Proposition 4.1 for L = L̃.
Proof. Since all the used solution pairs are optimal solutions of the optimization

problem on different discretizations levels, we obtain for arbitrary z ∈ X, zk ∈ X̃r
k ,

and zkh, zσ ∈ X̃r,s
k,h

J(q, u) − J(qk, uk) = L̃(q, u, z) − L̃(qk, uk, zk),(4.5a)

J(qk, uk) − J(qkh, ukh) = L̃(qk, uk, zk) − L̃(qkh, ukh, zkh),(4.5b)

J(qkh, ukh) − J(qσ, uσ) = L̃(qkh, ukh, zkh) − L̃(qσ, uσ, zσ),(4.5c)

whereas the identity

J(q, u) = L(q, u, z) = L̃(q, u, z)

follows from the fact that the u ∈ X is continuous, and thus the additional jump
terms in L̃ compared to L vanish.

To apply the abstract error identity (4.4) on the three right-hand sides in (4.5),
we choose the spaces Y1 and Y2 of Proposition 4.1 as

for (4.5a) : Y1 = Q×X ×X, Y2 = Q× X̃r
k × X̃r

k ,

for (4.5b) : Y1 = Q× X̃r
k × X̃r

k , Y2 = Q× X̃r,s
k,h × X̃r,s

k,h,

for (4.5c) : Y1 = Q× X̃r,s
k,h × X̃r,s

k,h, Y2 = Qd × X̃r,s
k,h × X̃r,s

k,h.

Hence, for the second and third pairing we have Y2 ⊂ Y1, since we have X̃r,s
k,h ⊂ X̃r

k

and Qd ⊂ Q. Thus we can choose Y = Y1 in these cases. For the choice of the spaces
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for (4.5a), we have to take into account the fact that X̃r
k �⊂ X. Thus, we choose

Y = Y1 + Y2 and have to ensure condition (4.3):

L̃′(q, u, z)(q̂, û, ẑ) = 0 ∀(q̂, û, ẑ) ∈ Q× X̃r
k × X̃r

k .

Since the solutions u ∈ X and z ∈ X are continuous in time with respect to H, the
additional jump terms in L̃ compared to L vanish, and we may prove equivalently

L′
z(q, u, z)(ẑ) = 0 ∀ẑ ∈ X̃r

k ,

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k ,

L′
q(q, u, z)(q̂) = 0 ∀q̂ ∈ Q.

We demonstrate the details of the construction for the adjoint state equation

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k

which we can write after integration by parts in time as

−
M∑

m=1

∫
Im

(û, ∂tz)H dt + a′u(q, u)(û, z)

+ (û−
M , z(T ))H =

∫
I

J ′
1(u)(û) dt + J ′

2(u(T ))(û−
M ) ∀û ∈ X̃r

k .

Since the continuous adjoint solution z fulfills

(ϕ, z(T ))H = J ′
2(u(T ))(ϕ) ∀ϕ ∈ H,

the terms containing û−
M ∈ V ⊂ H cancel out, and we have to ensure

−
M∑

m=1

∫
Im

(û, ∂tz)H dt + a′u(q, u)(û, z) =

∫
I

J ′
1(u)(û) dt ∀û ∈ X̃r

k .

Since we have that X is dense in L2((0, T ), V ) in regards to the L2((0, T ), V ) norm

and due to X̃r
k ⊂ L2((0, T ), V ), we obtain then directly the stated condition

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k .

The remaining derivatives of L can be treated in a similar matter. The assertion of
the theorem follows then by application of Proposition 4.1.

By means of the residuals of the three equations building the optimality sys-
tem (2.10),

ρ̃u(q, u)(ϕ) := L̃′
z(q, u, z)(ϕ),

ρ̃z(q, u, z)(ϕ) := L̃′
u(q, u, z)(ϕ),

ρ̃q(q, u, z)(ϕ) := L̃′
q(q, u, z)(ϕ),



128 DOMINIK MEIDNER AND BORIS VEXLER

the statement of Theorem 4.1 can be rewritten as

J(q, u) − J(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(z − ẑk) + ρ̃z(qk, uk, zk)(u− ûk)

)
,

(4.6a)

J(qk, uk) − J(qkh, ukh) ≈ 1

2

(
ρ̃u(qkh, ukh)(zk − ẑkh) + ρ̃z(qkh, ukh, zkh)(uk − ûkh)

)
,

(4.6b)

J(qkh, ukh) − J(qσ, uσ) ≈ 1

2
ρ̃q(qσ, uσ, zσ)(qkh − q̂σ).

(4.6c)

Here, we employed the fact that the terms

ρ̃q(qk, uk, zk)(q − q̂k), ρ̃q(qkh, ukh, zkh)(qk − q̂kh),

ρ̃u(qσ, uσ)(zkh − ẑσ), ρ̃z(qσ, uσ, zσ)(ukh − ûσ)

are zero for the choice

q̂k = q ∈ Q, q̂kh = qk ∈ Q,

ẑσ = zkh ∈ X̃r,s
k,h, ûσ = ukh ∈ X̃r,s

k,h.

This is possible since for the errors J(q, u)−J(qk, uk) and J(qk, uk)−J(qkh, ukh) only
the state space is discretized, and for J(qkh, ukh) − J(qσ, uσ) we keep the discrete
state space while discretizing the control space Q.

4.2. Error estimator for an arbitrary functional. We now tend toward an
error estimation of the different types of discretization errors in terms of a given
functional I : Q × X → R describing the quantity of interest. This will be done
using solutions of some auxiliary problems. In order to ensure the solvability of these
problems we assume that the semidiscrete and the full discrete optimal solutions
(qk, uk), (qkh, ukh), and (qσ, uσ) are in the neighborhood W ⊂ Q×X of the optimal
solution (q, u) introduced in section 2.

We define exterior Lagrangians M : [Q×X×X]2 → R and M̃ : [Q×X̃r
k×X̃r

k ]2 → R

as

M(ξ, χ) = I(q, u) + L′(ξ)(χ),

with ξ = (q, u, z), χ = (p, v, y), and

M̃(ξk, χk) = I(qk, uk) + L̃′(ξk)(χk),

with ξk = (qk, uk, zk), χk = (pk, vk, yk).
Now we are in a similar setting to that in the preceding subsection: We split the

total discretization error with respect to I as

I(q, u) − I(qσ, uσ) = I(q, u) − I(qk, uk)

+ I(qk, uk) − I(qkh, ukh)

+ I(qkh, ukh) − I(qσ, uσ)

and obtain the following theorem.
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Theorem 4.2. Let (ξ, χ), (ξk, χk), (ξkh, χkh), and (ξσ, χσ) be stationary points

of M, resp., M̃ on the different levels of discretization, i.e.,

M′(ξ, χ)(ξ̂, χ̂) = M̃′(ξ, χ)(ξ̂, χ̂) = 0 ∀(ξ̂, χ̂) ∈ [Q×X ×X]2,

M̃′(ξk, χk)(ξ̂k, χ̂k) = 0 ∀(ξ̂k, χ̂k) ∈ [Q× X̃r
k × X̃r

k ]2,

M̃′(ξkh, χkh)(ξ̂kh, χ̂kh) = 0 ∀(ξ̂kh, χ̂kh) ∈ [Q× X̃r,s
k,h × X̃r,s

k,h]2,

M̃′(ξσ, χσ)(ξ̂σ, χ̂σ) = 0 ∀(ξ̂σ, χ̂σ) ∈ [Qd × X̃r,s
k,h × X̃r,s

k,h]2.

Then there holds for the errors with respect to the quantity of interest due to the time,
space, and control discretizations

I(q, u) − I(qk, uk) =
1

2
M̃′(ξk, χk)(ξ − ξ̂k, χ− χ̂k) + Rk,

I(qk, uk) − I(qkh, ukh) =
1

2
M̃′(ξkh, χkh)(ξk − ξ̂kh, χk − χ̂kh) + Rh,

I(qkh, ukh) − I(qσ, uσ) =
1

2
M̃′(ξσ, χσ)(ξkh − ξ̂σ, χkh − χ̂σ) + Rd.

Here, (ξ̂k, χ̂k) ∈ [Q × X̃r
k × X̃r

k ]2, (ξ̂kh, χ̂kh) ∈ [Q × X̃r,s
k,h × X̃r,s

k,h]2, and (ξ̂σ, χ̂σ) ∈
[Qd × X̃r,s

k,h × X̃r,s
k,h]2 can be chosen arbitrarily, and the remainder terms Rk, Rh, and

Rd have the same form as given in Proposition 4.1 for L = M̃.
Proof. Due to the optimality of the solution pairings on the different discretization

levels, we have the representations

I(q, u) − I(qk, uk) = M̃(ξ, χ) − M̃(ξk, χk),(4.7a)

I(qk, uk) − I(qkh, ukh) = M̃(ξk, χk) − M̃(ξkh, χkh),(4.7b)

I(qkh, ukh) − I(qσ, uσ) = M̃(ξkh, χkh) − M̃(ξσ, χσ),(4.7c)

where the identity

I(q, u) = M(ξ, χ) = M̃(ξ, χ)

again follows from the fact that the u ∈ X is continuous and thus the additional jump
terms in M̃ compared to M vanish.

Similar to the proof of Theorem 4.1, we choose the spaces Y1 and Y2 for application
of Proposition 4.1 as

for (4.7a) : Y1 = [Q×X ×X]2, Y2 = [Q× X̃r
k × X̃r

k ]2,

for (4.7b) : Y1 = [Q× X̃r
k × X̃r

k ]2, Y2 = [Q× X̃r,s
k,h × X̃r,s

k,h]2,

for (4.7c) : Y1 = [Q× X̃r,s
k,h × X̃r,s

k,h]2, Y2 = [Qd × X̃r,s
k,h × X̃r,s

k,h]2,

and we end up with the stated error representations.
To apply Theorem 4.2 for instance to I(qkh, ukh) − I(qσ, uσ), we have to require

that

M̃′(ξσ, χσ)(ξ̂σ, χ̂σ) = 0 ∀(ξ̂σ, χ̂σ) ∈ [X̃r,s
k,h × X̃r,s

k,h ×Qd]
2.

For solving this system, we have to consider the concrete form of M̃′:

M̃′(ξσ, χσ)(δξσ, δχσ) =

I ′q(qσ, uσ)(δqσ) + I ′u(qσ, uσ)(δuσ) + L̃′(ξσ)(δχσ) + L̃′′(ξσ)(χσ, δξσ).
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Since ξσ = (qσ, uσ, zσ) is the solution of the discrete optimization problem, it fulfills

already L̃′(ξσ)(δχσ) = 0. Thus, the solution triple χσ = (pσ, vσ, yσ) ∈ Qd×X̃r,s
k,h×X̃r,s

k,h

has to fulfill

(4.8) L̃′′(ξσ)(χσ, δξσ) =

− I ′q(qσ, uσ)(δqσ) − I ′u(qσ, uσ)(δuσ) ∀δξσ ∈ Qd × X̃r,s
k,h × X̃r,s

k,h.

Solving this system of equations is—apart from a different right-hand side—equivalent
to the execution of one step of a (reduced) SQP-type method.

After splitting yσ = y
(0)
σ + y

(1)
σ , where y

(0)
σ ∈ X̃r,s

k,h is the solution of

L̃′′
zu(ξσ)(y(0)

σ , ϕ) = −I ′u(qσ, uσ)(ϕ) ∀ϕ ∈ X̃r,s
k,h,

we can rewrite system (4.8) in terms of the full discrete reduced Hessian j′′σ(q) as

j′′σ(qσ)(pσ, δqσ) = −I ′q(qσ, uσ)(δqσ) − L′′
zq(ξσ)(y(0)

σ , δqσ) ∀δqσ ∈ Qd,

where j′′σ(qσ)(pσ, δqσ) can be expressed as

L̃′′
qq(ξσ)(pσ, δqσ) + L̃′′

uq(ξσ)(vσ, δqσ) + L̃′′
zq(ξσ)(y(1)

σ , δqσ).

The computation of j′′σ(qσ)(pσ, ·) requires here the solution of the two auxiliary equa-

tions for vσ ∈ X̃r,s
k,h and y

(1)
σ ∈ X̃r,s

k,h:

L̃′′
uz(ξσ)(vσ, ϕ) = −L̃′′

qz(ξσ)(pσ, ϕ) ∀ϕ ∈ X̃r,s
k,h,

L̃′′
zu(ξσ)(y(1)

σ , ϕ) = −L̃′′
qu(ξσ)(pσ, ϕ) − L̃′′

uu(ξσ)(vσ, ϕ) ∀ϕ ∈ X̃r,s
k,h.

By means of the residuals of the presented equations for p, v, and y, i.e.,

ρ̃v(ξ, p, v)(ϕ) := L̃′′
uz(ξ)(v, ϕ) + L̃′′

qz(ξ)(p, ϕ),

ρ̃y(ξ, p, v, y)(ϕ) := L̃′′
zu(ξ)(y, ϕ) + L̃′′

qu(ξ)(p, ϕ) + L̃′′
uu(ξ)(v, ϕ) + I ′u(q, u)(ϕ),

ρ̃p(ξ, p, v, y)(ϕ) := L̃′′
qq(ξ)(p, ϕ) + L̃′′

uq(ξ)(v, ϕ) + L̃′′
zq(ξ)(y, ϕ) + I ′q(q, u)(ϕ),

and the already defined residuals ρ̃u, ρ̃z, and ρ̃q, the result of Theorem 4.2 can be
expressed as

I(q, u) − I(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(y − ŷk) + ρ̃z(qk, uk, zk)(v − v̂k)

+ ρ̃v(ξk, pk, vk)(z − ẑk) + ρ̃y(ξk, pk, vk, yk)(u− ûk)
)
,

I(qk, uk) − I(qkh, ukh) ≈ 1

2

(
ρ̃u(qkh, ukh)(yk − ŷkh) + ρ̃z(qkh, ukh, zkh)(vk − v̂kh)

+ ρ̃v(ξkh, pkh, vkh)(zk − ẑkh)

+ ρ̃y(ξkh, pkh, vkh, ykh)(uk − ûkh)
)
,

I(qkh, ukh) − I(qσ, uσ) ≈ 1

2

(
ρ̃q(qσ, uσ, zσ)(pkh − p̂σ) + ρ̃p(ξσ, pσ, vσ, yσ)(qkh − q̂σ)

)
.
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As for the estimator for the error in the cost functional, we employed here the fact
that the terms

ρ̃q(qk, uk, zk)(p− p̂k), ρ̃p(ξk, pk, vk, yk)(q − q̂k),

ρ̃q(qkh, ukh, zkh)(pk − p̂kh), ρ̃p(ξkh, pkh, vkh, ykh)(qk − q̂kh),

ρ̃u(qσ, uσ)(ykh − ŷσ), ρ̃z(qσ, uσ, zσ)(vkh − v̂σ),

ρ̃v(ξσ, pσ, vσ)(zkh − ẑσ), ρ̃y(ξσ, pσ, vσ, yσ)(ukh − ûσ)

vanish if p̂k, q̂k, p̂kh, q̂kh, ŷσ, v̂σ, ẑσ, ûσ are chosen appropriately.
Remark 4.2. As already mentioned in the introduction of this section, we obtain

almost identical results for the time discretization by the cG method to those presented
here. The difference simply consists in the tilde on the variables. The arguments of
the proofs are exactly the same.

Remark 4.3. For the error estimation with respect to the cost functional no
additional equations have to be solved. The error estimation with respect to a given
quantity of interest requires the computation of the auxiliary variables pσ, vσ, yσ.
The additional numerical effort is similar to the execution of one step of the SQP or
Newton’s method.

5. Numerical realization.

5.1. Evaluation of the error estimators. In this subsection, we concretize
the a posteriori error estimator developed in the previous section for the cG(1)cG(1)
and cG(1)dG(0) space-time discretizations on quadrilateral meshes in two space di-
mensions. That is, we consider the combination of cG(1) or dG(0) time discretization
with piecewise bilinear finite elements for the space discretization. As in the previous
section, we will present only the concrete expressions for the dG time discretization;
the cG discretization can be treated in exactly the same manner.

The error estimates presented in the previous section involve interpolation errors
of the time, space, and the control discretizations. We approximate these errors
using interpolations in higher order finite element spaces. To this end, we introduce
linear operators Πh, Πk, and Πd, which will map the computed solutions to the
approximations of the interpolation errors:

z − ẑk ≈ Πkzk, u− ûk ≈ Πkuk,

zk − ẑkh ≈ Πhzkh, uk − ûkh ≈ Πhukh,

qkh − q̂σ ≈ Πdqσ,

y − ŷk ≈ Πkyk, v − v̂k ≈ Πkvk,

yk − ŷkh ≈ Πhykh, vk − v̂kh ≈ Πhvkh,

pkh − p̂σ ≈ Πdpσ.

For the case of cG(1)cG(1) and cG(1)dG(0) discretizations of the state space
considered here, the operators are chosen depending on the test and trial space as

Πk = I
(1)
k − id with I

(1)
k : X̃0

k → X1
k ,

Πk = I
(2)
2k − id with I

(2)
2k : X1

k → X2
2k,

Πh = I
(2)
2h − id with I

(2)
2h :

{
X1,1

k,h → X1,2
k,2h

X̃0,1
k,h → X̃0,2

k,2h.
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(a) Piecewise linear interpolation of a
piecewise constant function.

(b) Piecewise quadratic interpolation
of a piecewise linear function.

Fig. 5.1. Temporal interpolation.

Fig. 5.2. Patched mesh.

The action of the piecewise linear and piecewise quadratic interpolation operators

I
(1)
k and I

(2)
2k in time is depicted in Figure 5.1. The piecewise biquadratic spatial

interpolation I
(2)
2h can be easily computed if the underlying mesh provides a patch

structure. That is, one can always combine four adjacent cells to a macrocell on
which the biquadratic interpolation can be defined. An example of such a patched
mesh is shown in Figure 5.2.

The choice of Πd depends on the discretization of the control space Q. If the
finite dimensional subspaces Qd are constructed similar to the discrete state spaces,
one can directly choose for Πd a modification of the operators Πk and Πh defined
above. If, e.g., the controls q depend only on time and the discretization is done with

piecewise constant polynomials, we can choose Πd = I
(1)
d − id. If the control space

Q is already finite dimensional, which is usually the case in the context of parameter
estimation, it is possible to choose Πd = 0, and thus, the estimator for the error
J(qkh, ukh) − J(qσ, uσ) is zero—as well as this discretization error itself.

In order to make the error representations from the previous section computable,
we replace the residuals linearized on the solution of semidiscretized problems by the
linearization at full discrete solutions.

We finally obtain the following computable a posteriori error estimator for the
cost functional J :

J(q, u) − J(qσ, uσ) ≈ ηJk + ηJh + ηJd ,
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with

ηJk :=
1

2

(
ρ̃u(qσ, uσ)(Πkzσ) + ρ̃z(qσ, uσ, zσ)(Πkuσ)

)
,

ηJh :=
1

2

(
ρ̃u(qσ, uσ)(Πhzσ) + ρ̃z(qσ, uσ, zσ)(Πhuσ)

)
,

ηJd :=
1

2
ρ̃q(qσ, uσ, zσ)(Πdqσ).

For the quantity of interest I the error estimator is given by

I(q, u) − I(qσ, uσ) ≈ ηIk + ηIh + ηId,

with

ηIk :=
1

2

(
ρ̃u(qσ, uσ)(Πkyσ) + ρ̃z(qσ, uσ, zσ)(Πkvσ)

+ ρ̃v(ξσ, vσ, pσ)(Πkzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πkuσ)
)
,

ηIh :=
1

2

(
ρ̃u(qσ, uσ)(Πhyσ) + ρ̃z(qσ, uσ, zσ)(Πhvσ)

+ ρ̃v(ξσ, vσ, pσ)(Πhzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πhuσ)
)
,

ηId :=
1

2

(
ρ̃q(qσ, uσ, zσ)(Πdpσ) + ρ̃p(ξσ, vσ, yσ, pσ)(Πdqσ)

)
.

To give an impression of the terms that have to be evaluated for the error esti-
mators, we present for the implicit Euler variant of the cG(1)dG(0) discretization the
explicit form of the state residuals ρ̃u(qσ, uσ)(Πkzσ) and ρ̃u(qσ, uσ)(Πhzσ) and the
adjoint state residuals ρ̃z(qσ, uσ, zσ)(Πkuσ) and ρ̃z(qσ, uσ, zσ)(Πhuσ). For simplicity
of notation, we assume here q to be independent on time. Since we evaluate the aris-
ing integrals over time for the residuals weighted with zσ or uσ by the right endpoint

rule and for the residuals weighted with I
(1)
k zσ or I

(1)
k uσ by the trapezoidal rule, we

have to ensure the right-hand side f to be continuous in time, i.e., f ∈ C([0, T ], H).
Then we obtain with the abbreviations U0 := uσ(0), Um := uσ

∣∣
Im

, Z0 := zσ(0), and

Zm = zσ
∣∣
Im

the following parts of the error estimators:

ρ̃u(qσ, uσ)(Πkzσ) =

M∑
m=1

{
(Um − Um−1, Zm − Zm−1)H

+
km
2

ā(qσ, Um)(Zm − Zm−1)

+
km
2

(f(tm−1), Zm−1)H − km
2

(f(tm), Zm)H

}
,

ρ̃z(qσ, uσ, zσ)(Πkuσ) =

M∑
m=1

{km
2

ā′u(qσ, Um)(Um, Zm)

− km
2

ā′u(qσ, Um−1)(Um−1, Zm)

+
km
2

J ′
1(Um−1)(Um−1) −

km
2

J ′
1(Um)(Um)

}
,
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ρ̃u(qσ, uσ)(Πhzσ) =

M∑
m=1

{
km(f(tm), I

(2)
2h Zm − Zm)H

− kmā(qσ, Um)(I
(2)
2h Zm − Zm)

− (Um − Um−1, I
(2)
2h Zm − Zm)H

}
− (U0 − u0(qσ), I

(2)
2h Z0 − Z0)H ,

ρ̃z(qσ, uσ, zσ)(Πhuσ) =

M∑
m=1

{
kmJ ′

1(Um)(I
(2)
2h Um − Um)

− kmā′u(qσ, Um)(I
(2)
2h Um − Um, Zm)

+ (I
(2)
2h Um−1 − Um−1, Zm − Zm−1)H

}
+ J ′

2(UM )(I
(2)
2h UM − UM ) − (I

(2)
2h UM − UM , ZM )H .

For the cG(1)cG(1) discretization the terms that have to be evaluated are very
similar and the evaluation can be treated as presented here for the cG(1)dG(0) dis-
cretization. The presented a posteriori error estimators are directed towards two aims:
assessment of the discretization error and improvement of the accuracy by local re-
finement. For the second aim the information provided by the error estimator has to
be localized to cellwise or nodewise contributions (local error indicators). For details
of the localization procedure we refer, e.g., to [3].

5.2. Adaptive algorithm. The goal of the adaption of the different types of
discretizations has to be the equilibrated reduction of the corresponding discretization
errors. If a given tolerance (TOL) has to be reached, this can be done by refining
each discretization as long as the value of this part of the error estimator is greater
than 1

3TOL. We want to present here a strategy which will equilibrate the different
discretization errors even if no tolerance is given.

The aim of the equilibration algorithm presented in what follows is to obtain
discretization such that

|ηk| ≈ |ηh| ≈ |ηd|

and to keep this property during the further refinement. Here, the estimators ηi
denote the estimators ηJi for the cost functional J or ηIi for the quantity of interest I.

For doing this equilibration, we choose an “equilibration factor” e ≈ 1−5 and pro-
pose the following strategy: We compute a permutation (a, b, c) of the discretization
indices (k, h, d) such that

|ηa| ≥ |ηb| ≥ |ηc|,

and we define the relations

γab :=

∣∣∣∣ηaηb
∣∣∣∣ ≥ 1, γbc :=

∣∣∣∣ηbηc
∣∣∣∣ ≥ 1.

Then we decide by means of Table 5.1 in every repetition of the adaptive refinement
algorithm given by Algorithm 5.1 which discretization shall be refined. For every
discretization to be adapted we select by means of the local error indicators the cells
for refinement. For this purpose there are several strategies available; see, e.g., [3].
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Table 5.1

Equilibration strategy.

Relation between the estimators Discretizations to be refined
γab ≤ e and γbc ≤ e a, b, and c

γbc > e a and b
else (γab > e and γbc ≤ e) a

Algorithm 5.1 (Adaptive Refinement Algorithm).

1: Choose an initial triple of discretizations Tσ0
, σ0 = (k0, h0, d0) for the space-time

discretization of the states and an appropriate discretization of the controls, and
set n = 0.

2: loop
3: Compute the optimal solution pair (qσn

, uσn).
4: Evaluate the a posteriori error estimators ηkn , ηhn

, and ηdn
.

5: if ηkn + ηhn + ηdn ≤ TOL then
6: break
7: else
8: Determine the discretization(s) to be refined by means of Table 5.1.
9: end if

10: Refine Tσn → Tσn+1 depending on the size of ηkn , ηhn , and ηdn to equilibrate
the three discretization errors.

11: Increment n.
12: end loop

6. Numerical examples. This section is devoted to the numerical validation of
the theoretical results presented in the previous sections. This will be done by means
of an optimal control problem with time-dependent boundary control (see section 6.1)
and a parameter estimation problem (see section 6.2).

6.1. Example 1: Neumann boundary control problem. We consider the
linear parabolic state equation on the two-dimensional unit square Ω := (0, 1)2 (see
Figure 6.1) with final time T = 1 given by

(6.1)

∂tu− νΔu + u = f in Ω × (0, T ),

∂nu(x, t) = 0 on Γ0 × (0, T ),

∂nu(x, t) = qi(t) on Γi × (0, T ), i = 1, 2,

u(x, 0) = 0 on Ω.

The control q = (q1, q2) acts as a purely time-dependent boundary control of Neumann
type on the two parts of the boundary denoted by Γ1 and Γ2. Thus, the control space
Q is chosen as [L2(0, T )]2, and the spaces V and H used in the definition of the state
space X are set to V = H1(Ω) and H = L2(Ω).

As the cost functional J to be minimized subject to the state equation, we choose
the functional

J(q, u) :=
1

2

∫ T

0

∫
Ω

(u(x, t) − 1)2 dx dt +
α

2

∫ T

0

{q2
1(t) + q2

2(t)} dt

of the tracking type endowed with a L2(0, T )-regularization.
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Fig. 6.1. Example 1: Computational domain Ω.

For the computations, the right-hand side of f is chosen as

f(x, t) = 10t exp

(
1 − 1

1 − 100‖x− x̃‖2

)
, x̃ =

(
2

3
,
1

2

)
,

and the parameters α and ν are set to

α = 0.1, ν = 0.1.

The discretization of the state space is done here via the cG(1)cG(1) space-time
Galerkin method which is a variant of the Crank–Nicolson scheme. Consequently, the
state is discretized in time by piecewise linear polynomials and the adjoint state by
piecewise constant polynomials. The controls are discretized using piecewise constant
polynomials on a partition of the time interval (0, T ) which has to be at most as fine
as the time discretization of the states.

Remark 6.1. If the discretization of the control is chosen such that the gradient
equation ∫

Γi

z(x, t) dx + αqi(t) = 0, i = 1, 2, t ∈ (0, T ),

can be fulfilled pointwise on the discrete level, the residual ρq of this equation as well
as the error due to discretization of the control space vanish; cf. (4.6c). Thus, it is
only reasonable to discretize the controls at most as fine as the adjoint state.

In Table 6.1 we show the development of the discretization error and the a poste-
riori error estimators during an adaptive run with local refinement of all three types
of discretizations. Here, M denotes the number of time steps, N denotes the number
of nodes in the spatial mesh, and dimQd is the number of degrees of freedom for the
discretization of the control. The effectivity index given in the last column of this
table is defined as usual by

Ieff :=
J(q, u) − J(qσ, uσ)

ηJk + ηJh + ηJd
.

The table also demonstrates the desired equilibration of the different discretization
errors and the sufficient quality of the error estimators. Here and in what follows, the
“exact” values J(q, u) and I(q, u) are obtained approximatively by extrapolation of
the values of these functionals computated on a sequence of fine discretizations.

A comparison of the error J(q, u)−J(qσ, uσ) for the different refinement strategies
is depicted in Figure 6.2:
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Table 6.1

Example 1: Local refinement with equilibration.

M N dimQd ηJk ηJh ηJd ηJk + ηJh + ηJd J(q, u) − J(qσ , uσ) Ieff

64 25 16 −9.7·10−05 2.0·10−03 −8.5·10−04 1.088 · 10−03 −2.567 · 10−04 −0.2360
64 81 20 −1.1·10−04 −1.0·10−03 −3.2·10−04 −1.543 · 10−03 −7.818 · 10−04 0.5065
64 289 20 −1.3·10−04 −4.8·10−04 −3.2·10−04 −9.458 · 10−04 −8.009 · 10−04 0.8468
74 813 32 −4.7·10−05 −2.2·10−05 −1.3·10−04 −2.058 · 10−04 −2.116 · 10−04 1.0285
74 813 48 −4.8·10−05 −2.2·10−05 −7.7·10−05 −1.476 · 10−04 −1.493 · 10−04 1.0109
87 2317 76 −2.7·10−05 1.1·10−05 −2.9·10−05 −4.516 · 10−05 −4.559 · 10−05 1.0094
104 8213 128 −1.8·10−05 2.7·10−06 −1.3·10−05 −2.931 · 10−05 −2.842 · 10−05 0.9696
208 8213 128 −4.3·10−06 2.7·10−06 −1.5·10−05 −1.674 · 10−05 −1.661 · 10−05 0.9923
208 8213 192 −4.2·10−06 2.7·10−06 −7.0·10−06 −8.573 · 10−06 −8.335 · 10−06 0.9722

10−5

10−4

0.001

10000 100000 106 107 108 109 1010

E
rr

or

M · N · dimQd

uniform
uniform equilibration

local equilibration

Fig. 6.2. Example 1: Comparison of different refinement strategies.

• “Uniform”: Here, we apply uniform refinement of all discretizations after each
run of the optimization loop.

• “Uniform equilibration”: Here, we also allow for only uniform refinements
but use the error estimators within the equilibration strategy (Table 5.1) to
decide which discretizations have to be refined.

• “Local equilibration”: Here, we combine local refinement of all discretizations
with the proposed equilibration strategy.

It shows, e.g., that to reach a discretization error of 4 · 10−5 the uniform refinement
needs about 70 times the number of degrees of freedom the fully adaptive refinement
needs.

In Table 6.2 we present the numerical justification for splitting the total discretiza-
tion error in three parts regarding the discretization of time, space, and control: The
table demonstrates the independence of each part of the error estimator on the refine-
ment of the other parts. This feature is especially important to reach a equilibration
of the discretization errors by applying the adaptive refinement algorithm.

6.2. Example 2: Parameter estimation. The state equation for the following
example is taken from [17]. It describes the major part of gaseous combustion under
the low Mach number hypothesis. Under this assumption, the motion of the fluid
becomes independent from temperature and species concentration. Hence, one can
solve the temperature and the species equation alone specifying any solenoidal velocity
field.
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Table 6.2

Example 1: Independence of one part of the error estimator on the refinement of the other parts.

M N dimQd ηJk ηJh ηJd

256 289 16 −4.9104·10−04 −8.6152·10−04

512 289 16 −4.9110·10−04 −8.6232·10−04

1024 289 16 — −4.9111·10−04 −8.6251·10−04

2048 289 16 −4.9111·10−04 −8.6256·10−04

4096 289 16 −4.9112·10−04 −8.6258·10−04

1024 25 16 −3.8360·10−07 −8.7015·10−04

1024 81 16 −4.3463·10−07 −8.5900·10−04

1024 289 16 −4.5039·10−07 — −8.6251·10−04

1024 1089 16 −4.5529·10−07 −8.6398·10−04

1024 4225 16 −4.6096·10−07 −8.6432·10−04

4096 289 16 −2.8171·10−08 −4.9112·10−04

4096 289 32 −3.0332·10−08 −4.8826·10−04

4096 289 64 −3.1317·10−08 −4.8688·10−04 —
4096 289 128 −3.1704·10−08 −4.8651·10−04

4096 289 256 −3.1828·10−08 −4.8642·10−04

Fig. 6.3. Example 2: Computational domain Ω and measurement points pi.

Introducing the dimensionless temperature θ = T−Tunburnt

Tburnt−Tunburnt
, denoting by Y the

species concentration, and assuming constant diffusion coefficients yields

(6.2)
∂tθ − Δθ = ω(Y, θ) in Ω × (0, T ),

∂tY − 1

Le
ΔY = −ω(Y, θ) in Ω × (0, T ),

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of mass.
We use a simple one-species reaction mechanism governed by an Arrhenius law

ω(Y, θ) =
β2

2Le
Y e

β(θ−1)
1+α(θ−1)

in which an approximation for large activation energy has been employed.
Here, we consider a freely propagating laminar flame described by (6.2) and its

response to a heat absorbing obstacle, a set of cooled parallel rods with rectangular
cross section (cf. Figure 6.3). Thus, the boundary conditions are chosen as

θ = 1 on ΓD × (0, T ),

Y = 0 on ΓD × (0, T ),

∂nθ = 0 on ΓN × (0, T ),

∂nY = 0 on ΓN × (0, T ),

∂nθ = −kθ on ΓR × (0, T ),

∂nY = 0 on ΓR × (0, T ),

where the heat absorption is modeled by Robin boundary conditions on ΓR.
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The initial condition is the analytical solution of a one-dimensional right-traveling
flame in the limit β → ∞ located left of the obstacle:

θ(0, x) =

{
1 for x1 ≤ x̃1

ex̃1−x1 for x1 > x̃1

on Ω,

Y (0, x) =

{
0 for x1 ≤ x̃1

1 − eLe(x̃1−x1) for x1 > x̃1

on Ω.

For the computations, the occurring parameters are set to

Le = 1, β = 10, k = 0.1, x̃1 = 9,

whereas the parameter α occurring in the Arrhenius law will be the objective of the
parameter estimation.

To use the same notations as in the theoretical parts of this article, we define the
pair of solution components u := (θ, Y ) ∈ û + X2 and denote the parameter α to be
estimated by q ∈ Q := R. For definition of the state space X we use the spaces V
and H as given by (2.1). The function û is defined to fulfill the prescribed Dirichlet
data as û

∣∣
ΓD

= (1, 0).
The unknown parameter α is estimated here using information from pointwise

measurements of θ and Y at four measurement points pi ∈ Ω (i = 1, . . . , 4) at final
time T = 60. This parameter identification problem can be formulated as a cost
functional of least squares type:

J(q, u) =
1

2

4∑
i=1

{
(θ(pi, T ) − θ̃i)

2 + (Y (pi, T ) − Ỹi)
2
}
.

The values of artificial measurements θ̃i and Ỹi (i = 1, . . . , 4) are obtained from a
reference solution computed on fine discretizations.

The consideration of point measurements does not fulfill the assumption on the
cost functional in (2.5), since the point evaluation is not bounded as a functional on
H = L2(Ω). Therefore, the point functionals here may be understood as regularized
functionals defined on L2(Ω). For an a priori error estimate of elliptic parameter
identification problems with pointwise measurements, we refer to [25].

For this type of parameter estimation problem one is usually not interested in
reducing the discretization error measured in terms of the cost functional. The focus
is rather on reducing the error in the parameter q to be estimated. Hence, we use the
quantity of interest I given by

I(q, u) = q

and apply the techniques presented in section 4.2 for estimating the discretization
error with respect to I. Since the control space Q in this application is given as
Q = R, it is not necessary to discretize Q. Thus, there is no discretization error due
to the Q-discretization and the a posteriori error estimator consists only of ηIk and ηIh.
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Table 6.3

Example 2: Local refinement with equilibration.

M N ηIk ηIh ηIk + ηIh I(q, u) − I(qkh, ukh) Ieff

512 269 −8.4·10−03 4.3·10−02 3.551 · 10−02 −2.859 · 10−02 −0.8051
512 685 −9.0·10−03 5.2·10−03 −3.778 · 10−03 −4.854 · 10−02 12.8480
690 1871 −3.7·10−03 −1.4·10−02 −1.860 · 10−02 −3.028 · 10−02 1.6280
968 5611 −2.9·10−03 −6.3·10−03 −9.292 · 10−03 −1.104 · 10−02 1.1885
1036 14433 −2.7·10−03 −2.3·10−03 −5.118 · 10−03 −5.441 · 10−03 1.0630
1044 43979 −2.7·10−03 −8.3·10−04 −3.613 · 10−03 −3.588 · 10−03 0.9932

0.01

100000 106 107 108

E
rr

or

M · N

uniform
uniform equilibration

local equilibration

Fig. 6.4. Example 2: Comparison of different refinement strategies.

Fig. 6.5. Example 2: Local refined mesh.

The results of a computation with equilibrated adaption of the space and time
discretization using cG(1)dG(0) are shown in Table 6.3. The discretization parameters
M and N as well as the effectivity index Ieff are defined as in section 6.1.

Similar to section 6.1, we compare in Figure 6.4 the fully adaptive refinement
with equilibration and uniform refinements with and without equilibration. By local
refinement of all involved discretizations we reduce the necessary degrees of freedom
to reach a total error of 10−2 by a factor of 11 compared to a uniform refinement
without equilibration.

Finally, we present in the Figures 6.5 and 6.6 a typical locally refined spatial
mesh and a distribution of the time step size obtained by the space-time-adaptive
refinement.
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Fig. 6.6. Example 2: Visualization of the adaptively determined time step size k.
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[22] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J.
Control Optim., 43 (2004), pp. 970–985.

[23] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer-
Verlag, New York, 1999.

[24] M. Picasso, Anisotropic A Posteriori Error Estimates for an Optimal Control Problem Gov-
erned by the Heat Equation, Internat. J. Numer. Methods PDE, 22 (2006), pp. 1314–1336.

[25] R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of
elliptic parameter identification problems with pointwise measurements, SIAM J. Control
Optim., 44 (2005), pp. 1844–1863.

[26] M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space-time finite element
discretizations of parabolic equations, SIAM J. Sci. Comput., submitted.
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Abstract. A new procedure is presented for determining the kernel and the offspring hypersur-
faces for general linear time invariant (LTI) dynamics with multiple delays. These hypersurfaces, as
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imaginary characteristic roots. To determine the kernel and offspring we use the extraordinary fea-
tures of the “extended Kronecker summation” operation in this paper. The end result is that the
infinite-dimensional problem reduces to a finite-dimensional one (and preferably into an eigenvalue
problem). Following the procedure described in this paper, we are able to shorten the computational
time considerably in determining these hypersurfaces. We demonstrate these concepts via some ex-
ample case studies. One of the examples treats a 3-delay system. For this case another interesting
perspective, called the “building block,” is also utilized to display the kernel in three-dimensional
space in the domain of “spectral delays.”
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1. Introduction and the problem statement. We consider linear time in-
variant, retarded multiple time-delayed systems (LTI-MTDS), the general form of
which is given as

ẋ(t) = Ax(t) +

p∑
j=1

Bjx(t− τj),(1)

where x ∈ R
n, A, Bj , j = 1 . . . p, are all constant matrices in R

n×n and the vector
of time delays τ = (τ1, τ2, . . . , τp) ∈ R

p+ of which the elements are rationally inde-
pendent from each other. As a note of formalism we use boldface capital notation for
vector and matrix quantities in the text. We refer to the right (and left) half open
complex plane as C

+ (C−), while C
0 is used to indicate the imaginary axis. Therefore

C
+
⋃

C
− ⋃

C
0 = C represents the entire complex plane.

The characteristic equation of the system in (1) is

CE(s, τ1, . . . , τp) = det

⎡⎣sI − A −
p∑

j=1

Bje
−τjs

⎤⎦
= A0(s) + Ap+1(s, τ1, . . . , τp) +

p∑
j=1

e−njτjsAj (s , τ1 , . . . , τj−1, τj+1 , . . . , τp),

(2)
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where A0(s) is an nth degree polynomial in s and Aj ’s (j = 1 . . . p) are quasi poly-
nomials in s and all the delays except τj . nj is the highest order of commensuracy
of delay τj in the dynamics (nj ≤ n). Aj contains s terms with the highest degree
of n − 1 and they are the factors multiplying the representative exponential of the
highest commensuracy of τj , i.e., e−njτjs. Since the system is “retarded” the sn term
appears only in A0 (s) which is free of delays. Ap+1 is another quasi polynomial
which contains all the remaining terms with lower commensuracy levels (in τj) than
nj , j = 1 . . . p.

The stability robustness of this general class of systems has been studied for over
four decades, resulting in some respectable volumes of literature [11, 13, 7, 15, 18]. One
of the mainstream research foci has been the stability assessment of these systems for
a given delay vector, τ . The determination of the robustness of such systems against
uncertainties in delay and other parameters (i.e., uncertain τ , A, and Bj) are also
widely investigated [5, 10, 17, 16, 20, 21]. The class, with delay uncertainty only, is
declared to be an N-P hard (nondeterministic-polynomial time hard) problem [27].
Many further investigations appeared later on some simplified forms of the problem
given here [25, 12, 4]. A very recent paradigm which is introduced by the authors,
cluster treatment of characteristic roots (CTCR), brought a practical and numerically
efficient procedure for the problem when there are only two delays (p = 2) [23, 24, 22].
In fact, this procedure produces a unique stability robustness tableau in the domain
of uncertain delays, τ ∈ R

p+. The numerical efficiency is comfortably demonstrated
for cases n = 3, p = 2 [23], still respecting the difficulties attributed to the N-P
hardness of the problem. That is, the CTCR method solves the stability robustness
problem completely in the delay space, however, with nondeterministic polynomial
time hard numerical complexity still remaining. The most critical step in CTCR is
the exhaustive determination of the stability switching trajectories in the delay space.
The primary contributions of the present paper are on this issue.

The key novelties introduced by the CTCR paradigm are the concept of “kernel
and offspring hypersurfaces” and their intriguing characteristics, which were unrec-
ognized earlier. Leaving the details to later segments of the paper, we simply describe
the kernel hypersurface as the creating loci of all the points in τ ∈ R

p+ space, which
render at least one pair of imaginary characteristic roots (±ωi) of (2) (or a root at the
origin, s = 0). Let us denote a generic point on the kernel with τker. This kernel point
has an important descriptor: there is no τ ∈ R

p+, which generates the same imagi-
nary root ±ωi and is closer to the origin than τ ker. This is equivalent to stating that
the set {τ |CE(τ , ωi) = 0, CE(τ ker, ωi) = 0, |τ | < |τ ker|} is an empty set. When the
inequality condition is reversed, we find the offspring hypersurfaces of the system on
which τ ’s generate the same imaginary root, ±ωi. That is, the points on the offspring
satisfy the following property: {τ |CE(τ , ωi) = 0, CE(τ ker, ωi) = 0, |τ | > |τ ker|}.
We will give a summary of the outstanding features of the kernel and the offspring
hypersurfaces later in the text for the completeness of the presentation.

A critical and comforting observation under the CTCR paradigm is the claim that
(2) can possess imaginary characteristic roots only at some manageably small number
of kernel hypersurface segments in the domain of the delays. And this number is
shown to be upper bounded by n2. Indeed this finite number of hypersurface segments
constitutes the “kernel hypersurface set” as explained in section 2.

The text is structured as follows: Section 2 reviews the concept of “kernel” and
“offspring” hypersurfaces under the umbrella of the CTCR paradigm. Section 3 states
the two fundamental propositions as the foundation of the new paradigm and presents
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the steps of the CTCR procedure for the stability robustness assessment of LTI-
MDTS. In the same section, we take advantage of an intriguing procedure called the
“Kronecker sum” of matrices. We show that it provides considerable computational
advantage over the alternative procedure called the “Rekasius substitution,” which
was utilized in earlier pursuit of CTCR. This point constitutes the main contribution
of the paper. We also present a different perspective on the problem, using the
domain of “spectral delays” as a companion computational effort. It is referred to
as ”building block” representation. Section 4 contains example case studies including
one with three delays, p = 3.

2. Review of CTCR paradigm. We present an overview of the CTCR para-
digm borrowing from [23, 24, 22]. The underlying philosophy can be expressed via the
following interlinked observations: (i) The system (1) is infinite-dimensional. That
is, it has infinitely many characteristic roots in the finite complex plane, C. (ii) Its
stability is guaranteed if there exist no characteristic roots in the open right half
plane, C

+. (iii) It is impossible to track all of the infinitely many roots. (iv) One has
to focus only on the occurrence of the imaginary root crossings at ±ωi, which can be
encountered only at some special settings of τ ∈ R

p+ [11, 13, 18]. (v) These points
show continuous variations resulting in continuously varying imaginary roots. Those
surfaces are the only locations where the stability switching can take place: let us call
them the “switching hypersurfaces.” (vi) One must determine, then, exhaustively all
such hypersurfaces in τ ∈ R

p+ space. (vii) However, there is still a countably infinite
number of these hypersurfaces [11, 13]. (viii) One has to introduce a feature-based
discipline, what we call “the clustering” operation, to those crossings in order to bring
the analysis to a manageable size. Clearly, this route can be taken only if there is
such a discipline in the root formation.

CTCR achieves precisely this objective, determining the two extraordinary “clus-
tering features” of LTI-MTDS as described in detail later. The deployment of these
features on the single delay and two-delay cases has already been reported in earlier
investigations [23, 24, 19]. This document presents the first generalized treatment for
systems with nth order-p delay treatment and offers an example with three delays.

We state a series of relevant postulates and propositions first. As discussed above,
the imaginary characteristic roots, ±ωi, play a critical role. Let us define a set, which
exhaustively contains all such frequencies ω for the entire parameter space τ ∈ R

p+:

Ω =
{
ω |CE (s = ωi, τ ) = 0, τ ∈ R

p+, ω ∈ R
}
.(3)

It is intuitively obvious that, except degeneracies (such as a standing root at s = 0),
Ω contains a continuum of ω values, not discrete [11, 13, 18]. That is, if there is a
〈τ , ω〉 correspondence, τ + ε should result in another imaginary root, 〈τ + ε, ω +
εω〉. Clearly, 〈•, •〉 notation implies a causal relation that the p members of the
first argument result in the second argument as the imaginary root. The in-depth
analysis of existence/uniqueness of ε and εω correspondence is beyond the scope of
this presentation, and therefore it is suppressed.

Postulate 1. The stability posture of the system in (1) is determined by the
number of open right half plane characteristic roots of (2), which we call NU (abbre-
viated from Number of Unstable roots). This number is naturally a function of the
delays, which are the only parameters in (1), i.e., NU (τ1, . . . , τp). Wherever NU = 0,
the system is labeled as “stable.” For any change in NU one has to pass through a
point on the switching hypersurfaces, τ = (τ1, . . . , τp), for which a characteristic root
±ωi exists. This is a direct result of the “root continuity” argument in the parametric
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space τ ∈ R
p+ [11, 13]. Obviously ΔNU = ±2 if ω �= 0, and ΔNU = ±1 if ω = 0

is a simple root crossing. As a critical side note, if s = 0 is a simple root, it is a
stationary one independent of τ . Therefore when there is a crossing at s = 0, it has
to appear in the form of a multiple root. That is, at least CE (τ , s)|s=0 = 0 and
d
ds CE (τ , s)|s=0 = 0 must be satisfied jointly for the same delay set τ . As stated
above we represent such occurrences of τ yielding ±ωi as a characteristic root, with
the notation 〈τ , ω〉.

As per El’sgol’ts’s D-subdivison principle [8] one can state that a region in τ∈ R
p+

space where NU is constant has to be enclosed by hypersurfaces which belong to either
one of the following two general classes:

H1: a hypersurface on which 〈τ , ω〉 occurrence is encountered.
H2: a hypersurface defined by one or more of the delays being zero, where 〈τ , ω〉

correspondence does not necessarily occur.
We iterate some more on these classes next.
Postulate 2. The H2 class of hypersurfaces is clearly arising from the hard

bounds of τj ≥ 0, j = 1 . . . p, posed by the problem statement, and these hypersurfaces
are uniquely defined. The H1 class, however, represents a countably infinite number
of hypersurfaces possessing the feature〈

τ1 ±
2π

ω
j1, τ2 ±

2π

ω
j2, . . . , τp ±

2π

ω
jp, ω

〉
, jk = 0, 1, . . . k = 1, . . . , p.(4)

This equation indicates that if s = ωi occurred at a point (τ1, . . . , τp), infinitely
many equidistance grid points in τ∈ R

p+ (with the grid size 2π
ω ) would also result

in the same characteristic root. Small perturbations on (τ1, . . . , τp) would yield small
perturbations on the resultant imaginary root as per the root continuity argument
[8]. They sprout in a set of countably infinite number of hypersurfaces which are
pointwise equidistant as per (4).

As such the boundaries of the closed regions mentioned above would duplicate
themselves as infinitely many hypersurfaces. In order to successfully complete the
stability robustness analysis one has to determine all of the hypersurfaces where
〈τ , ω〉 correspondence occurs and all of these closed regions. This is an impossible
task to undertake, unless a well-structured approach is followed. This line of rationale
is precisely what prompts the CTCR paradigm.

Definition 1 (kernel hypersurfaces). Those hypersurfaces which consist of all
the points in τ∈ R

p+ as per (4) complying with 〈τ , ω〉 correspondence except with the
constraint that

0 ≤ τk <
2π

ω
∀k = 1, . . . , p(5)

are called the kernel hypersurfaces. This constraint implies that the points on the
kernel hypersurface exhibit the smallest positive member for each one of its p elements.
Notice that there are ∞p (p-dimensional infinite) candidate points in τ= R

p+ defined
by (4) resulting in the same imaginary root, ωi. All of these points are represented
by a single point on the kernel hypersurface. And similar unique points on the kernel
hypersurface (call it the “kernel points”) exist for all possible ω ∈ Ω. Consequently,
this hypersurface formation is unique for a given system (1). The following notation
encapsulates the complete definition of the kernel hypersurfaces:

℘ker = kernel hypersurfaces =

{
τ |〈τ , ω〉, τ ∈ R

p+, ω ∈ Ω, 0 ≤ τk <
2π

ω
∀k = 1, 2, . . . , p

}
.

(6)
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Definition 2 (offspring hypersurfaces). Those ∞p hypersurfaces which are ob-
tained from the kernel hypersurface by a pointwise nonlinear transformation given in
(4) are called the offspring. This definition simply utilizes the fact that a point on the
kernel will result in ∞p(p-dimensional infinity) offspring. The complete formalism
for offspring hypersurfaces can be given as

℘off = offspring hypersurfaces =
{
τ | 〈τ , ω〉, τ ∈ R

p+, ω ∈ Ω
}
\kernel .(7)

3. Determination of the kernel and the offspring hypersurfaces. As per
the earlier discussions for the stability robustness of the system we need to determine
all the kernel and offspring hypersurfaces exhaustively. That amounts to determining
the complete set of 〈τ , ω〉 correspondence for the entire τ= R

p+ domain. This mission
is computationally very demanding. In our earlier research we utilized a holographic
mapping procedure called the Rekasius substitution for this purpose [23]. An alter-
nate procedure is studied here: the extended Kronecker sum method. It is based on
the properties of the Kronecker summation of matrices as described for single delay
systems in [6, 26]. The treatment prescribed here is an extended version of the process
to multiple rationally independent delay cases, and therefore the name “extended Kro-
necker sum method.” We first describe the Kronecker summation operation for clarity
and state the main theorem of the paper. A Lyapunov function-based study, which is
conducted by another researcher, independently from the authors, has recently been
presented at an international conference [14]. It results in the similar outcome of
the Kronecker summation method here. Separately, we also recognize that, from the
numerical perspective, this process identically coincides with a new concept called the
building block, which offers a very interesting yet simple representation of the kernel
and offspring hypersurfaces [22, 9].

Kronecker summation of two matrices and its properties. In matrix alge-
bra [2, 3] the Kronecker sum of two square matrices M1 (n1 × n1) and M2 (n2 × n2)
is defined as

M1 ⊕ M2 = M1 ⊗ In2
+ In1

⊗ M2, where M1 ∈ R
n1×n1 ,M2 ∈ R

n2×n2 .

Here ⊕ denotes the Kronecker summation and ⊗ the Kronecker product operations.
The most critical feature of the Kronecker summation of M1 and M2 is that this new
square matrix

M1 ⊕ M2 ∈ R
(n1·n2)×(n1·n2)

has n1·n2 eigenvalues which are indeed pairwise combinatoric summations of the n1

eigenvalues of M1 and n2 eigenvalues of M2. That is, the Kronecker sum operation, in
fact, induces the “eigenvalue addition” character to the matrices. We take advantage
of this feature as discussed next in a definition and the highlight theorem.

Definition 3. We define the auxiliary characteristic equation (ACE) of the
system in (1), with zj = e−τjs:

ACE(z) = det

⎡⎣A ⊗ I + I ⊗ A +

p∑
j=1

(Bj ⊗ Izj + I ⊗ Bjz
−1
j )

⎤⎦ = 0.(8)

Theorem 1. For the system given in (1) the following findings are equivalent:
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(a) A vector of p-dimensional unitary complex numbers z = {zj} ∈ C
p
u, |zj | = 1

for all j = 1 . . . p satisfies ACE. C
p
u is the complete set of such complex

numbers.
(b) There exists at least one pair of imaginary characteristic roots, ±ωi, of (2).
(c) There exists a corresponding delay vector τ= {τj} ∈ ℘ker

⋃
℘off , where 〈τ , ω〉

holds.
Proof of Theorem 1. The Laplace transformation of the LTI-MTDS equation (1)

is

sX(s) = AX(s) +

p∑
j=1

BjX(s)zj ,(9)

where the zj = e−τjs, j = 1 . . . p, represents p unitary complex numbers for s = ωi.
The following equation is directly obtained from (9):

(sI − Δ(z(s)))X(s) = 0,(10)

Δ(z(s)) = A +

p∑
j=1

Bjzj ∈ R
n×n, where z = {zj} ∈ C

p
u.

In order to find nontrivial solution of X(s) the matrix (sI−Δ(z(s))) should be singular,
in other words, det Δ(z(s)) = 0, or

det

⎡⎣sI − A −
p∑

j=1

Bjzj

⎤⎦ = 0.(11)

Due to the fact that A, Bj , j = 1 . . . p, are all constant matrices in R
n×n, the complex

conjugates of s and (indirectly) of zj also satisfy (11):

det

⎡⎣s∗I − A −
p∑

j=1

Bjz
∗
j

⎤⎦ = 0.(12)

For a point on the ℘ker

⋃
℘off hypersurface set τ = (τ1, . . . , τp) ∈ ℘ker

⋃
℘off , s = ωi is

an element of the spectrum. Therefore s∗ = −ωi, zj =
{
e−τjωi

}
and z∗j =

{
eτjωi

}
=

z−1
j , j = 1 . . . p. Since the sum of the two certain eigenvalues of Δ(s, z) and Δ(s∗, z∗)

is zero, then the Kronecker sum of these two matrices must be singular when such
〈τ , ω〉 correspondence occurs. That is,

det

⎡⎣⎛⎝A +

p∑
j=1

Bjzj

⎞⎠⊕

⎛⎝A +

p∑
j=1

Bjz
∗
j

⎞⎠⎤⎦ = 0.(13)

Note that in (13) all the s and τ terms are incorporated into zj , where zj represents
the unitary complex numbers, i.e., |zj | = 1. The task of determining ℘ker

⋃
℘off in

τ∈ R
p+ space is now reduced to evaluating the solution set of z ∈ C

p
u which satisfies

(13). Using the Kronecker summation definition, (13) can be rewritten as

ACE(z) = det

⎡⎣A ⊗ I +

p∑
j=1

(Bj ⊗ I)zj + I ⊗ A +

p∑
j=1

(I ⊗ Bjz
∗
j )

⎤⎦ = 0.(14)
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Equation (14) is in fact a multinomial in terms of the n components of z, and the
highest degree of any one of these components is n2 in this multinomial. We denote
the complete solution set for (14) by Z. That is,

Z = {z |ACE (z) = 0, z ∈ C
p
u}, Z ∈ C

p
u.(15)

Inversely it is trivial to prove that for every solution z ∈ C
p
u of (15) there exists at

least one imaginary characteristic root, s = ±ωi.
In other words, (8) is both a necessary and sufficient condition for a point τ=

(τ1, . . . , τp) ∈ R
p+ to be on either the kernel or the offspring hypersurfaces. Since this

equation is completely free from the delays, and only a function of z, the procedure is
now considerably simplified to find z ∈ C

p
u solutions of (8) exhaustively. To determine

the imaginary characteristic roots of (2) one simply plugs such a z into (11) and solves
for s. These roots reveal the crossing frequencies we are interested in and form the
earlier-mentioned set in (3), i.e.,

Ω = {ω |CE (s = ωi, z) = 0, z ∈ Z} .(16)

One then uses the individual components of s to determine the respective delays which
are

τjk =
arg(zj) ∓ 2kπ

ω
, j = 1 . . . p, k = 0, 1, 2, . . . ,(17)

where τjk implies the jth delay value for various k values. One of these delays forms
the τj ker, via the feature described in (5). The remaining delays form an infinitely
many equidistant grid in R

p+ for the same crossing root, ωi, as also expressed in (4).
Definition 4 (the building blocks). The complex vector z ∈ C

p
u can be identified

exactly by a p-dimensional real vector τω ∈ R
p (i.e., the fundamental phase angle

of each component) as per (17). The complete solution set Z of (15) corresponds to
some hypersurfaces in p-dimensional space of τω. These hypersurfaces are called the
“building blocks (BBs).”

Due to the constraint on τjω ∈ [0, 2π] for the fundamental phase angle (also see
the discussion below on τker,j), however, the complete BB set can now be confined to
a p-dimensional generalized cube of size 2π. This encapsulated BB set on the new
domain has recently been studied by the authors’ group in [22, 9]. There are some
interesting features of BBs which are proven in [9]. The interested reader is referred
to that document.

Definition 5 (spectral delay space). We name the p-dimensional space of τω ∈
R

p the spectral delay space (SDS), as it is the domain of BB representation.

Determination of the Kernel and the Offspring. The explicit representa-
tion ACE(z) = 0 of (14) is, in fact, a class of holographic mappings from τ∈ R

p+

space to z ∈ C
p
u space. Every single τ which renders an imaginary root for (2) creates

a corresponding z which is unique, and it satisfies (14). Inversely, however, for each
z that satisfies (14) one can find infinitely many equidistant τ points but only one
single imaginary root, ωi. Thus z ↔τ mapping is of “holographic” class [1].

Consequently, if one obtains the complete solution set Z as given in (15) it would
be sufficient to create the kernel and the offspring hypersurfaces we seek. For this,
one has to create the transition

z → ω → τ
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as described in the proof of Theorem 1. The hypersurfaces created in τ∈ R
p+ form

the complete set of hypersurfaces ℘ker

⋃
℘off . The kernel is simply identified using

the pointwise feature, which selects the minimum positive delay set for any given ω
root crossing frequency (or a solution vector z of (15)). In mathematical formalism
the kernel hypersurfaces are made of points defined by

τker = {min τjk}, j = 1 . . . p, k = 0, 1, 2, . . . , 0 ≤ τker,j <
2π

ω
,(18)

as indicated without details in section 1. Notice that the min operation in (18)
is componentwise applied to all p elements of the vector. And the remaining τjk
values from (17) will create the points on the offspring hypersurfaces, and these points
correspond to the same ω. In short, z →τ ker correspondence is one-to-one; one point
in the BB corresponds to one point on the kernel hypersurface.

Corollary 1. The number of kernel hypersurface segments is upperbounded by
n2.

Proof. The proof is simply by recognizing the fact that the number of BBs is
upperbounded by n2. If we fix z1, . . . , zp−1 in (14), there can be at most n2 unitary
solutions for zp. This fact implies that there can be a maximum of n2 layers of the
BBs. One-to-one correspondence from these BBs to the kernel hypersurfaces results
in the conclusion that kernel hypersurfaces can have at most n2 segments.

The numerical procedure with Kronecker summation for obtaining the kernel and
the offspring can be performed very efficiently. We will demonstrate this capability
in some example case studies next, with a companion treatment of the BB concept
and the SDS.

4. Example case studies.

Example 1. A case is borrowed from [23], with n = 3 and p = 2:

A =

⎛⎜⎝ −1 13.5 −1

−3 −1 −2
−2 −1 −4

⎞⎟⎠ , B1 =

⎛⎝ −5.9 0 0
2 0 0
2 0 0

⎞⎠ , B2 =

⎛⎝ 0 7.1 −70.3
0 −1 5
0 0 6

⎞⎠ .

(19)

The corresponding characteristic equation is

CE(s, τ1, τ2) = s3 + 6s2 + 45.5s + 111 + (96.9s + 18.3)e−(τ1+τ2)s + (−5s2 − 121.3s+

20.1)e−τ2s + (5.9s2 + 4.5s− 42.2)e−τ1s + (−6s− 203.4)e−2τ2s + 119.4e−(τ1+2τ2)s = 0.

(20)

This quasi polynomial contains all types of complex formations of transcendental
terms, such as individual delays, their commensurate forms (e.g., e−2τ2s), cross-talk
terms (e.g., e−(τ1+τ2)s ), and both cross-talk with commensuracy (e.g., e−(τ1+2τ2)s).
As it is accepted in the delay differential equations literature, such a formation
presents a very complex problem.

Using Theorem 1 ACE is obtained as follows:
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(21)

ACE(z1, z2) =

⎛⎜⎜⎝
1.7022z6

2 + 9.0713z5
2 + 40.7183z4

2 − 21.1282z3
2 − 40.1780z2

2

−123.5525z2 − 34.0495 + 4.3008z−1
2 + 50.1953z−2

2 + 7.2436z−3
2

+8.6351z−4
2

⎞⎟⎟⎠ z6
1

+

⎛⎜⎜⎝
−9.2124z6

2 − 34.3982z5
2 − 164.0727z4

2 + 309.8357z3
2 + 308.8355z2

2 + 340.0104z2

−93.5932 − 455.9817z−1
2 − 2.4843z−2

2 − 85.8515z−3
2 + 17.8037z−4

2

−7.3179z−5
2

⎞⎟⎟⎠ z5
1

+

⎛⎜⎜⎝
16.2587z6

2 + 19.9951z5
2 + 204.5044z4

2 − 883.9491z3
2 − 429.7956z2

2 + 26.9372z2

+763.3490 + 964.9333z−1
2 − 78.4191z−2

2 − 63.6748z−3
2 − 22.3465z−4

2

−37.63910z−5
2 − 1.4883z−6

2

⎞⎟⎟⎠ z4
1

+

⎛⎜⎜⎝
−8.5227z6

2 + 45.9059z5
2 − 69.8016z4

2 + 773.7642z3
2 + 75.7380z2

2 − 631.0328z2

−1340.0621 − 631.03287z−1
2 + 75.7380z−2

2 + 773.7642z−3
2 − 69.8016z−4

2

+45.9059z−5
2 − 8.5227z−6

2

⎞⎟⎟⎠ z3
1

+

⎛⎜⎜⎝
−1.4883z6

2 − 37.63910z5
2 − 22.3465z4

2 − 63.6748z3
2 − 78.4191z2

2 + 964.9333z2

+763.3490 + 26.9372z−1
2 − 429.7956z−2

2 − 883.9491z−3
2 + 204.5044z−4

2

+19.9951z−5
2 + 16.2587z−6

2

⎞⎟⎟⎠ z2
1

+

⎛⎜⎜⎝
−7.3179z5

2 + 17.8037z4
2 − 85.8515z3

2 − 2.4843z2
2 − 455.9817z2 − 93.5932

+340.0104z−1
2 + 308.8355z−2

2 + 309.8357z−3
2 − 164.0727z−4

2 − 34.3982z−5
2

−9.2124z−6
2

⎞⎟⎟⎠ z1
1

+

(
8.6351z4

2 + 7.2436z3
2 + 50.1953z2

2 + 4.3008z2 − 34.0495 − 123.5525z−1
2

−40.1780z−2
2 − 21.1282z−3

2 + 40.7183z−4
2 + 9.0713z−5

2 + 1.7022z−6
2

)
.

For a numerical algorithm to obtain the (z1, z2) ∈ C
2
u exhaustively, the following steps

are followed:

1. Select z2 using a secondary parameter, θ, as z2 = eiθ, θ ∈ [0, 2π]; start with
θ = 0.

2. With this value of z2, solve the roots of (21). Those roots with unity mag-
nitude will form the corresponding z1 values. Obviously, there can be a
maximum of 6 such solutions which is less than n2 = 9.

3. Substitute z1 (for e−τ1ωi) and z2 (for e−τ2ωi) into (20) and solve for ω, the
imaginary spectrum of the system.

4. Then increase θ by a desired resolution, Δθ, and repeat steps 1–3.
5. As θ reaches 2π a complete set of imaginary spectra and the corresponding

kernel points (τ1, τ2) ∈ ℘ker are obtained using (17). The offspring ℘off is
trivially generated using (17) again.

Notice that ACE is a self-inversive polynomial with interspersed zeros on the unit
circle. Although not used here, this feature may be of some computational value in
future studies.

Further deployment of Postulates 1 and 2 of CTCR results in the stability robust-
ness tableau of Figure 1 against delay uncertainties. The stable regions are shaded,
and the number of unstable roots, NU , is shown sparingly on the figure. The stability
outlook matches with that of [23] precisely.
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Fig. 1. Kernel (red, thick) and offspring hyperplanes of Example 1.

Two main objectives of this example are the following:
1. To demonstrate that the extended Kronecker summation method coincides

with the earlier Rekasius-based determination of ℘ker and ℘off . Clearly both
of these procedures are serving for the initial step of the CTCR paradigm.

2. To show substantial computational improvement by utilizing the Kronecker
summation method. The computation of kernel and offspring hypersurfaces
takes 0.7 seconds on a PC with Pentium-Centrino 2.13 GHz and 1 GB RAM,
as opposed to 19.2 sec as stated in [23] which is based on Rekasius substitu-
tion. We make a qualified remark that such CPU times can vary considerably
for various code writing styles. Nevertheless, we wish to give the reader a
comparative perspective.

Example 2. We take a challenging case with three delays (n = 2, p = 3) next:

A =

(
0 1
−8 −3

)
, B1 =

(
0 0
−1 −3

)
, B2 =

(
0 0
−8 1

)
, B3 =

(
0 0
−5 0

)
with the corresponding characteristic equation

CE(s, τ1, τ2, τ3) = s2 + 3s + 8 + (3s + 1)e−τ1s + (−s + 8)e−τ2s + 5e−τ3s = 0.

For this system the ACE(z1, z2, z3) is trivial to obtain from (14), but it is not given
here to conserve space. For this example case study, we display in Figure 2 the BB in
the SDS, (τ1ω, τ2ω, τ3ω). Notice that for each (z1, z2, z3) ∈ C

3
u solution of ACE one

obtains a 〈(τ1, τ2, τ3), ω〉 correspondence. The relation between zj and τjω, j = 1, 2, 3,
is trivial:

τjω = arg(z1), 0 < arg(z1) < 2π.

The BB represents the complete kernel hypersurface set in the SDS. Every point on
the BB has an ω root crossing frequency (which are not shown here), and the BB
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Fig. 2. BB representation of the system in Example 2.

traces the hypersurfaces with the following property:

{ω| τω ∈ BB} = Ω.

That is, the BB represents the complete kernel. For easier visualization, selected
cross-sections of Figure 2 are given in Figure 3 for τ3ω = 0, π

2 , π, and 3π
2 . The

offspring form by simple shift operations (by 2π) in any of the three SDS coordinates
in accordance with (17); see Figure 3 (blue). The BB in Figure 2 can be transformed
into the (τ1, τ2, τ3) delay space to create the ultimate kernel and offspring as shown
in Figure 4 for various levels of τ3. The cross-sections of hypersurfaces with the τ3 =
constant planes (the kernel and offspring hypercurves) are shown in red and black,
respectively. The stable regions are shaded. Notice several small regions of stability
(such as τ1 = 1.5, τ2 = 0.2, τ3 = 2 or τ1 = 2, τ2 = 0.4, τ3 = 2.5) which are easily
detected by the CTCR procedure. Computationally this operation is quite efficient.
Just to give an idea to the reader, each one of the frames in Figure 4 is obtained within
0.8 sec CPU time. Therefore, it is only a matter of computational capacity to create a
sufficiently dense cross-section of the kernel and the offspring even in the case of three
independent delays. Another study of the authors’ group, on a simpler dynamics with
three delays (without cross-talk), was also presented at a recent conference [28].

5. Conclusions. This paper presents the stability robustness of LTI systems
with multiple delays against uncertainties in delays. The main contribution is in the
utilization of some intriguing properties of the Kronecker summation of matrices. One
of them (the eigenvalue summation feature) yields a numerically efficient process for
determining the stability switching hypersurfaces, which are called the kernel and
the offspring hypersurfaces. This effort constitutes the initial step for the umbrella
paradigm, the CTCR, which, in turn, resolves the stability robustness of LTI systems
with multiple delays against delay uncertainties. Numerical efficiency improvement is
the main benefit of using the Kronecker summation property. A companion perspec-
tive, the BB representation, is also given for a three-delay example case study.
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Fig. 3. Cross-sectional outlook of the BB (red, thick) and the offspring (blue, thin) for various
values of τ3ω.

Fig. 4. Cross-sections of kernel (red, thick) and offspring hypersurfaces (black, thin) for various
τ3 values. Stable regions (NU = 0) are shaded.
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Abstract. This paper is concerned with a continuous-time mean-variance portfolio selection
problem in a (possibly incomplete) market with multiple stocks and a bond. Only the past price
movements of the stocks and the bond are the information available to the investors. A separation
principle is shown to hold in this setting. Efficient strategies based on the aforementioned partial
information are derived, which involve the optimal filter of the stock appreciation rate processes.
The main methodological contribution of the paper is to employ the particle system representation
to develop analytical and numerical approaches in obtaining the filter as well as solving the related
backward stochastic differential equation.
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1. Introduction. In the Nobel Prize winning work [19], Markowitz proposed
the mean-variance portfolio selection model for a single investment period, where an
agent seeks to minimize the risk of his investment, measured by the variance of his
return, subject to a given mean return. The dynamic extension of the Markowitz
model, especially in continuous time, has been studied extensively in recent years;
see, e.g., Li and Ng [15], Zhao and Ziemba [30], Zhou and Li [31], Lim [16], Bielecki
et al. [2], and Xia [25]. (In particular, refer to Steinbach [23] and Bielecki et al. [2]
for elaborative discussions on the history of the mean-variance model.) In many
of these works, explicit, analytic forms of efficient portfolios have been obtained.
However, in all these works it is assumed that the driving Brownian motions are
completely observable by an investor, which in reality is more of an exception than
a rule. Practically, the investor can observe only the stock prices (including past
and present) on which he will base his investment decisions. This leads to the so-
called partially observed portfolio selection problem, and this paper aims to solve the
problem in the realm of mean variance. An important finding in this paper is that
the separation principle (for separating filtering and optimization) turns out to hold
in the mean-variance setting, which in turn greatly simplifies the problem. Another
main contribution of the paper is to employ the particle system representation, which
has been developed quite recently for solving stochastic partial differential equations
(SPDEs), to develop analytical and numerical approaches in obtaining the filter as
well as solving the related backward stochastic differential equation (BSDE).
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Asset allocation and asset pricing based on partial information under various
setups have been studied extensively in the financial economics literature; see, for ex-
ample, Lakner [14], Brennan and Xia [3], Xia [26], Rogers [22], Nagai and Peng [20],
and Yang and Xiong [27]. Detemple [4], Dothan and Feldman [5], and Gennotte [7]
established a separation principle. However, all these works are predominantly done
within the expected utility framework. (Refer to [2, 23, 30] for discussions on crucial
differences between the utility and mean-variance models.) Pham [21] considered a
mean-variance hedging problem for a general semimartingale model and proved a sep-
aration principle for a diffusion model (though it is not a multidimensional geometric
Brownian motion as in the present paper). Although in theory a mean-variance prob-
lem a là Markowitz can be formulated as a mean-variance hedging problem, there are
subtleties that must be considered such as the feasibility and the determination of the
Lagrange multiplier (see [2, 16]). Moreover, the analysis in [21] is rather involved due
to the martingale method employed, whereas here we will give a very direct, clean,
and short proof for a separation principle.

The rest of this article is organized as follows. In section 2, we formulate the
mean-variance portfolio selection model under partial information. In section 3, we
derive the innovation process associated with the filtering problem, which leads to
the separation principle. Section 4 studies the optimal filter in details for two cases.
Section 5 is devoted to the optimization part as well as the final solution to the
partially observed mean-variance problem. A numerical solution to a related BSDE
is presented, which is of independent interest.

2. The model. We consider a market consisting of d stocks and a bond whose
prices are stochastic processes Si(t), i = 0, 1, . . . , d, governed by the following SDEs:{

dSi(t) = Si(t)
(
μi(t)dt +

∑m
j=1 σ̃ij(t)dW̃j(t)

)
, i = 1, 2, . . . , d,

dS0(t) = S0(t)μ0(t)dt, t ≥ 0,

where W̃ := (W̃1, . . . , W̃m)∗ is a standard Brownian motion defined on a filtered com-
plete probability space (Ω,F , P ; {Ft}t≥0); μi(t), i = 1, 2, . . . , d, are the appreciation
rate processes of the stocks; μ0(t) is the interest rate process; and the d ×m matrix
valued process Σ̃(t) := (σ̃ij(t)) is the volatility process. Here and throughout the
paper A∗ denotes the transpose of a matrix A.

Let

Gt := σ(Si(s) : s ≤ t, i = 0, 1, 2, . . . , d), t ≥ 0.

In our model Gt, rather than FW̃
t (the filtration generated by W̃ ), is the only infor-

mation available to the investors at time t.
By Itô’s formula, we have

d logSi(t) =

(
μi(t) −

1

2
aii(t)

)
dt +

m∑
j=1

σ̃ij(t)dW̃j(t), i = 1, 2, . . . , d,(2.1)

where

aij(t) :=

m∑
k=1

σ̃ik(t)σ̃jk(t), i, j = 1, 2, . . . , d.

The following assumptions on the market coefficients will be in force throughout
this paper.
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Assumption (ND). For any t ≥ 0, the d× d matrix A(t) := (aij(t)) is of full rank
a.s. (almost surely).

Assumption (BC). There exists a finite constant C such that ∀ t ≥ 0, ∀i, j,

|σ̃ij(t)| ≤ C a.s.

Assumption (IC). E
∫ T

0
(μ0(t)

2 + |μ(t)|2)dt < ∞.

Remark 2.1. In this article, we allow d < m as long as condition (ND) is satisfied;
in other words, the market itself is allowed to be incomplete. It is interesting to note
that, unlike the full information case, the incompleteness of the market does not
impose essential difficulty in the partial information case. This can be explained as
follows. In the classical model of incomplete market (with full information), there are
vast amounts of information available. Namely, one has to seek optimal portfolios

in the class of all FW̃
t -adapted portfolios. When m > d, the number of available

stocks is fewer than that of the (independent) random factors and hence, some of
the market risks cannot be completely eliminated by composing an appropriate stock
portfolio. As a result, portfolio selection problems become harder than the case with a
complete market because some contingent claims cannot be replicated. In our current
setup, the available information comes only from the stocks themselves, and any other
information is not observable anyway. Therefore, the model is essentially complete,
as also will be evident in what follows, although the market is indeed incomplete in
the conventional sense.

It is easy to show that the quadratic covariation process between logSi(t) and

logSj(t) is given by
∫ t

0
aij(s)ds. Therefore, the matrix valued process (aij(t)) is Gt-

adapted. Let Σ(t) ≡ (σij(t)) be the square root of A(t). Then, σij(t) is Gt-adapted,
i.e., it is completely observable. As we shall see in (3.5) below, the stock price Si(t)
satisfies an equivalent SDE which depends on σij(t) instead of σ̃ij(t). Moreover,
μ0(t) = d

dt logS0(t) is also Gt-adapted. Therefore, we do not need to consider the
filtering problem for the stochastic interest rate and volatility processes.

However, the stochastic process μ(t) := (μ1(t), . . . , μd(t))
∗ is not necessarily Gt-

adapted and hence, its value is not available to the investors. Note that μ(t), being a

very general process, does not need to be even FW̃
t -adapted.

Denote by L2
G(0, T ; Rn) the set of R

n-valued, Gt-adapted processes f(t) with

E
∫ T

0
|f(t)|2dt < ∞. (Similar notation L2

H(0, T ; Rn) can be defined for any filtration
Ht.) L2

G(0, T ; Rn) becomes a Hilbert space endowed with the norm ‖ f ‖L2
G(0,T ;Rn):=

(E
∫ T

0
|f(t)|2dt) 1

2 .

We now define the class of admissible portfolios (investment strategies).

Definition 2.2. A d-dimensional process u(t) ≡ (u1(t), . . . , ud(t))
∗ is an admis-

sible portfolio if u(t) ∈ L2
G(0, T ; Rd).

In the preceding definition, ui(t) represents the worth (dollar amount) of an
agent’s wealth in the ith stock, i = 1, 2, . . . , d. It is well known that under a so-
called self-financed portfolio, the wealth process of an agent, starting with an initial
wealth x0, satisfies the following wealth equation (see, e.g., [11]):⎧⎪⎨⎪⎩

dx(t) =
(
μ0(t)x(t) +

∑d
i=1(μi(t) − μ0(t))ui(t)

)
dt

+
∑d

i=1

∑m
j=1 σ̃ij(t)ui(t)dW̃j(t), t ≥ 0,

x(0) = x0.

(2.2)
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The partially observed mean-variance portfolio selection model is formulated as
the following optimization model:

Minimize Var(x(T )) = E(x(T ) − Ex(T ))2

subject to

⎧⎨⎩
u(t) is self-financed and admissible,
(x(t), u(t)) satisfies (2.2) with initial wealth x0,
Ex(T ) = z,

(2.3)

where x0, z ∈ R are given constants.

3. Separation principle. In this section, we consider the filtering problem as-
sociated with our model (2.3) and establish a separation principle. Specifically, we
define the innovation process for the filtering problem. Based on this process, we
will derive a Gt-adapted representation for the wealth process corresponding to any
self-financed admissible portfolio.

Theorem 3.1. Under any self-financed admissible portfolio u(t), the correspond-
ing wealth process x(t) satisfies the following SDE:

{
dx(t) =

(
x(t)μ0(t) +

∑d
i=1(μ̄i(t) − μ0(t))ui(t)

)
dt +

∑d
i,j=1 σij(t)ui(t)dνj(t), t ≥ 0,

x(0) = x0,

(3.1)

where μ̄i(t) := E(μi(t)|Gt) is the optimal filter of μi(t), and the innovation process
ν(t) ≡ (ν1(t), . . . , νd(t))

∗ is a d-dimensional Brownian motion given by

dν(t) := Σ(t)−1d logS(t) − Σ(t)−1

(
μ̄(t) − 1

2
Ã(t)

)
dt,(3.2)

where

S(t) := (S1(t), . . . , Sd(t))
∗, logS(t) := (logS1(t), . . . , logSd(t))

∗,

μ̄(t) := (μ̄1(t), . . . , μ̄d(t))
∗, and Ã(t) := (a11(t), . . . , add(t))

∗.

Proof. From (2.1), we see that

logSi(t) − logSi(0) −
∫ t

0

(
μi(s) −

1

2
aii(s)

)
ds =

m∑
j=1

∫ t

0

σ̃ij(s)dW̃j(s), i = 1, 2, . . . , d,

are martingales with a quadratic covariation process
∫ t

0
A(s)ds =

∫ t

0
Σ(s)2ds. By the

martingale representation theorem, there exists a standard Brownian motion W ≡
(W1, . . . ,Wd) on (Ω,F , P ) such that

m∑
j=1

σ̃ij(t)dW̃j(t) =

d∑
j=1

σij(t)dWj(t), i = 1, . . . , d.(3.3)

Thus,

d logSi(t) =

(
μi(t) −

1

2
aii(t)

)
dt +

d∑
j=1

σij(t)dWj(t), i = 1, . . . , d.(3.4)
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Equivalently, the stock prices satisfy the following modified SDE:

dSi(t) = Si(t)

⎛⎝μi(t)dt +

d∑
j=1

σij(t)dWj(t)

⎞⎠, i = 1, . . . , d.(3.5)

Note that Σ(t) is invertible. Let S̃(t) be defined by

dS̃(t) := Σ(t)−1d logS(t).

We can write the observation equation (3.4) in the classical form (cf. (8.1.1) in [10]):

S̃(t) = S̃(0) +

∫ t

0

Σ(s)−1

(
μ(s) − 1

2
Ã(s)

)
ds + W (t)(3.6)

with the observation σ-field Gt. By Theorem 8.1.3 and Remark 8.1.1 in Kallianpur [10],
(ν(t),Gt) is a d-dimensional Brownian motion such that σ(ν(u)− ν(s) : u ≥ s ≥ t) is
independent of Gt.

By (3.6) and (3.2), we get

Σ(t)dW (t) = Σ(t)dν(t) + (μ̄(t) − μ(t))dt.(3.7)

The desired form of wealth equation (3.1) then follows from (2.2), (3.3), and (3.7).
Remark 3.2. A notorious difficulty in tackling general stochastic optimization

problems with partial information is that one usually cannot separate the filtering and
optimization, except for some very rare situations. The significance of Theorem 3.1 is
that for the specific mean-variance portfolio selection problem, the separation principle
happens to hold: one can simply replace the appreciation rate with its filter in the
wealth equation and then solve the resulting optimization problem as in the complete
information case.

4. Filtering. In this section, we study the filtering problem (for the appreciation
rate process) by considering two cases associated with the volatility processes. The
aim is to study the optimal filter U(t) given by

〈U(t), f〉 := E(f(μ(t))|Gt) ∀ f ∈ Cb(R
d).

4.1. Case 1: Nonrandom Σ̃. In this subsection we consider the case when
the original volatility process Σ̃(t) is a deterministic matrix valued function of t and
μ(t) a d-dimensional Markov process (with a generator L) independent of W̃ . By
the definitions of Σ(t) and W , where W is defined via (3.3), it is clear that Σ(t) is
also nonrandom and μ(t) is independent of W . Then the filtering problem becomes
a classical one with the signal μ(t) and observation S̃(t) given by (3.6). In this case,

Gt = F S̃
t .

Remark 4.1. By Theorem 8.3.1 in [10], every square integrable F S̃
t -martingale

(and hence, in the present case every Gt-martingale) Yt can be represented as

Yt = E(Y0) +

∫ t

0

Φ(s)∗dν(s),(4.1)

where Φ(s) ∈ L2
F S̃

(0, T ; Rd). This fact will be useful in Proposition 5.5 below in

establishing an optimal portfolio since H = AC(G) in this case (cf. Definition 5.1).
Namely, the market is complete in the sense of Definition 5.2.
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In Kurtz and Xiong [12, 13], a large class of SPDEs, with the filtering equations
as a special case, and their numerical solutions are studied based on a technique
called the particle system representation. In this subsection, we demonstrate that
the particle system representation itself can be used to derive the filtering equations
directly. Note that the generator L of the appreciation rate process μ(t) is not required
to be a second-order differential operator. In fact, even the continuity of μ(t) in t need
not to be assumed. It is also worth mentioning that the results in this and the next
subsections are not covered by those of [12, 13].

Introduce the following integrability condition:∫ T

0

∣∣∣∣(μ(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1

∣∣∣∣2 ds < ∞ a.s.(4.2)

Applying Girsanov’s formula to (3.6) and noting that μ and W are independent,
under the probability P̃ defined below, we get that S̃(t) is a Brownian motion inde-
pendent of μ(t), where dP = M(T )dP̃ with

M(t) := exp

(∫ t

0

(
μ(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1dS̃(s)

−1

2

∫ t

0

∣∣∣∣(μ(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1

∣∣∣∣2 ds).
By the Kallianpur–Striebel formula, we can represent the optimal filter U(t) as

〈U(t), f〉 =
〈V (t), f〉
〈V (t), 1〉 ,(4.3)

where for f ∈ Cb(R
d),

〈V (t), f〉 := Ẽ (M(t)f(μ(t))|Gt)

is the unnormalized filter. Here Ẽ refers to the expectation under the new probability
measure P̃ .

Lemma 4.2. Suppose that μ(t) is a d-dimensional Markov process (with generator
L) independent of W satisfying (4.2). Then, V (t) is represented as

〈V (t), f〉 = lim
n→∞

1

n

n∑
i=1

M i(t)f(μi(t)),(4.4)

where μ1(t), μ2(t), . . . are independent copies of μ(t) and

M i(t) := exp

(∫ t

0

(
μi(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1dS̃(s)

−1

2

∫ t

0

∣∣∣∣(μi(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1

∣∣∣∣2 ds).(4.5)

Proof. Note that

dM i(t) = M i(t)

(
μi(t)∗ − 1

2
Ã(t)∗

)
Σ(t)−1dS̃(t).(4.6)
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Denote by X the collection of all those processes μ(t) satisfying (4.2) and by
Y the collection of all measurable R

2d-valued random vectors. Then X and Y are
measurable spaces. For μi ∈ X , the SDE (4.6) has a unique strong solution. Therefore,
for each fixed t ∈ [0, T ] there is a measurable functional Ft : C([0, T ],Rd) × X →
Y such that (μi(t),M i(t)) = Ft(S̃, μ

i). As a consequence, under the conditional

probability P̃ (·|F S̃
t ), (μi(t),M i(t)) is completely determined by μi, i = 1, 2, . . . . Since

S̃, μ1, μ2, . . . are independent, the strong law of large numbers yields

lim
n→∞

1

n

n∑
i=1

M i(t)f(μi(t)) = Ẽ

(
M(t)f(μ(t))|F S̃

t

)
.(4.7)

Since F S̃
t = Gt, we obtain (4.4).

Now we derive via Itô’s formula and (4.4)–(4.5) an SPDE for the unnormalized
filter V (t). Let μi(t), i = 1, 2, . . . , be as in Lemma 4.2. It is well known (see the
standard textbooks of Ethier and Kurtz [6] or Stroock and Varadhan [24]) that there
are independent martingales N i

f (t) such that

df(μi(t)) = Lf(μi(t))dt + dN i
f (t), f ∈ D(L),(4.8)

where D(L) is the domain of L.
Applying Itô’s formula to (4.6) and (4.8), we get

d(M i(t)f(μi(t))) = M i(t)
(
Lf(μi(t))dt + dN i

f (t)
)

+M i(t)f(μi(t))

((
μi(t)∗ − 1

2
Ã(t)∗

)
Σ(t)−1dS̃(t)

)
.

Taking an average for i = 1, 2, . . . , k, letting k → ∞, and applying Lemma 4.2, we see
that V (t) satisfies the following Zakai equation:

d 〈V (t), f〉 = 〈V (t), Lf〉 dt + 〈V (t), Gtf〉 dS̃(t),(4.9)

where

Gtf(μ) := f(μ)

(
μ∗ − 1

2
Ã(t)∗

)
Σ(t)−1.

Making use of (4.3), by Itô’s formula, we have

d 〈U(t), f〉 = 〈U(t), Lf〉 dt

+ (〈U(t), Gtf〉 − 〈U(t), Gt1〉 〈U(t), f〉)
(
dS̃(t) − 〈U(t), Gt1〉 dt

)
.

Note that

〈U(t), Gt1〉 = E

((
μ(t)∗ − 1

2
Ã(t)∗

)
Σ(t)−1

∣∣∣∣Gt

)
=

(
μ̄(t)∗ − 1

2
Ã(t)∗

)
Σ(t)−1.

Hence (3.2) can be rewritten as

dS̃(t) − 〈U(t), Gt1〉 dt = dν(t).
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Therefore, U(t) satisfies the following Fujisaki–Kallianpur–Kunita (FKK) equation:

d 〈U(t), f〉 = 〈U(t), Lf〉 dt + (〈Ut, Gtf〉 − 〈U(t), Gt1〉 〈U(t), f〉) dν(t).(4.10)

Remark 4.3. Since L is not necessarily a second-order differential operator, which
was used heavily in [12] in proving that an SPDE of the form (4.10) has a unique strong
solution, we cannot establish such a property for a general L by the same argument
in [12]. However, by Theorem 9.1 in [1], under suitable conditions, the solution to
(4.10) is indeed unique.

Next, let us discuss the numerical implementation of the preceding filter. Recall
that μ1(t), μ2(t), . . . are independent copies of μ(t). For δ > 0, let ηδ(t) := jδ for
jδ ≤ t < (j + 1)δ, j = 0, 1, . . . . We approximate M i(t) by the Euler scheme:

M δ,i(t) := exp

(∫ t

0

(
μi(ηδ(s))

∗ − 1

2
Ã(ηδ(s))

∗
)

Σ(s)−1dS̃(s)

−1

2

∫ t

0

∣∣∣∣(μi(ηδ(s))
∗ − 1

2
Ã(ηδ(s))

∗
)

Σ(s)−1

∣∣∣∣2 ds).
Define

〈
V n,δ(t), f

〉
:=

1

n

n∑
i=1

M δ,i(t)f(μi(t)) and 〈V n(t), f〉 :=
1

n

n∑
i=1

M i(t)f(μi(t)).

We then combine both approximations by using V̄ n := V n,1/n1/2α

to approximate the
unnormalized filter, where α > 0 is given in (4.11) below.

Although we did not assume the sample path continuity of μ(t), we need some
kind of continuity in the sense of moments. We assume that |Σ(t)−1| ≤ K and with
some α > 0,

E
(
|μ(t) − μ(s)|2

)
≤ |t− s|α.(4.11)

For example, if μ(t) is a compound Poisson process, then (4.11) holds with α = 1.
Let R̄

d be the one-point compactification of R
d. Then Cb(R̄

d) is a separable
Banach space. Let MF (R̄d) be the space of finite Borel measures on R̄

d, and let d be
a distance defined on MF (R̄d) whose topology coincides with the weak convergence
topology. More precisely, let {fk} ⊂ C1

b (R̄d) be a dense subset of Cb(R̄
d). We define

d(ν1, ν2) :=

∞∑
k=1

|〈ν1 − ν2, fk〉|
2k‖fk‖L

, ν1, ν2 ∈ MF (R̄d),

where

‖f‖L := sup
x∈R̄d

|f(x)| + sup
x,y∈R̄d

|f(x) − f(y)|
|x− y| , f ∈ C1

b (R̄d).

Theorem 4.4. Suppose that |Σ(t)−1| ≤ K and (4.11) holds. Then, for each fixed
t, there exists M > 0, such that ∀n,

Ẽ
(
d(V̄ n(t), V (t))

)
≤ M√

n
.(4.12)
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Proof. By the conditional independence, it is easy to show that ∀ f ∈ Cb(R̄
d),

Ẽ

(
〈V n(t) − V (t), f〉2

)
≤ c1(T )2‖f‖2

∞
n

.

Next we note that

Ẽ

{∣∣logM δ,i(t) − logM i(t)
∣∣2}

≤ 2

∫ T

0

E

∣∣∣∣(μi(ηδ(s))
∗ − 1

2
Ã(ηδ(s))

∗
)

Σ(s)−1 −
(
μi(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1

∣∣∣∣2 ds
+ T

∫ T

0

E

∣∣∣∣∣
∣∣∣∣(μi(ηδ(s))

∗ − 1

2
Ã(ηδ(s))

∗
)

Σ(s)−1

∣∣∣∣2− ∣∣∣∣(μi(s)∗ − 1

2
Ã(s)∗

)
Σ(s)−1

∣∣∣∣2
∣∣∣∣∣
2

ds

≤ c2(T )δα.

Let d̃ be the Waserstein metric on MF (R̄d), namely,

d̃(v1, v2) := inf {|〈v1 − v2, f〉| : |f(x)| ≤ 1 ∀x, |f(x) − f(y)| ≤ |x− y| ∀x, y} .

Then

d̃(V n,δ(t), V n(t))

≤ 1

n

n∑
i=1

(
M δ,i(t) ∨M i(t)

) (
|μδ,i(t) − μi(t)| + | logM δ,i(t)− logM i(t)|

)
.

Thus

Ẽd̃(V n,δ(t), V n(t)) ≤ c3(T )δα.

It is clear that d ≤ d̃. So

Ẽ
(
d(V̄ n(t), V (t))

)
≤ Ẽd̃(V n,1/n1/2α

, V n(t)) + Ẽd(V n(t), V (t))

≤ c2(T )(n−1/2α)α +
c1(T )√

n
=

c3(T )√
n

.

4.2. Case 2: Random Σ̃. In this subsection we discuss a case when the volatil-
ity is a random process with the following structure: σ(t) is a function of μ(t) plus a
white noise, namely,

dσij(t) = hij(μ(t))dt + dBij(t), 1 ≤ i ≤ j ≤ d,(4.13)

where Bij(t), 1 ≤ i ≤ j ≤ d, are independent Brownian motions. Note that the inde-
pendence assumption is imposed for ease of presentation only. In fact, the arguments

below remain valid if we replace the d(d+1)
2 -dimensional Brownian motion (Bij(t),

1 ≤ i ≤ j ≤ d) with a linear transformation of this process.
In this case, we have a classical filtering problem with observations S̃(t) and

Σ(t) ≡ (σij(t)) given by (3.6) and (4.13), respectively. Then

B̃ij(t) := σij(t) −
∫ t

0

〈
U(s), hij

〉
ds

are Brownian motions adapted to Gt and are independent of ν(t). Namely, ν̃(t) :=

(B̃ij(t), ν(t); 1 ≤ i ≤ j ≤ d) forms the
(d(d+1)

2 +d
)
-dimensional innovation process for



PORTFOLIO SELECTION UNDER PARTIAL INFORMATION 165

the filtering problem. The FKK equation can be derived similarly to the arguments
as in subsection 4.1 leading to (4.10). Namely, we need only replace ν(t) and

(
μ(t)−

1
2 Ã(t)

)∗
Σ(t)−1 with ν̃(t) and

(
hij(μ(t)),

(
μ(t) − 1

2 Ã(t)
)∗

Σ(t)−1, 1 ≤ i ≤ j ≤ d
)
,

respectively. The numerical scheme can also be given by employing a similar method
from subsection 4.1. We leave the details to the interested reader.

Remark 4.5. The condition (4.1) does not hold for the present model. In fact,
B̃ij(t) is a Gt-martingale independent of ν(t); hence, it cannot be represented as the
stochastic integrals with respect to ν(t).

5. Optimization. In this section, we derive the optimal strategy of the partially
observed mean-variance problem (2.3) in three steps. First, we derive from (3.1) a
constraint on the terminal wealth x(T ). Then, we solve a static optimization problem
under this constraint to find the best terminal wealth, x∗(T ). After that, we show
that there is a portfolio such that x∗(T ) is its terminal wealth. Finally, we give a
numerical scheme in solving the BSDE involved in deriving the optimal portfolio and
prove the convergence of the proposed scheme.

5.1. The optimal value of x(T ). Let

ρ(t) := exp

(
−
∫ t

0

μ0(s)ds−
d∑

i,j=1

∫ t

0

σ−1
ij (s)(μ̄i(s) − μ0(s))dνj(s)

−1

2

d∑
j=1

∫ t

0

∣∣∣∣∣
d∑

i=1

σ−1
ij (s)(μ̄i(s) − μ0(s))

∣∣∣∣∣
2

ds

)
,

where, with an abuse of notation, σ−1
ij (s) denotes the ijth element of Σ(s)−1. Denote

θj(t) :=

d∑
i=1

σ−1
ij (t)(μ̄i(t) − μ0(t)).(5.1)

By Itô’s formula, we get

dρ(t) = −ρ(t)μ0(t)dt−
d∑

j=1

ρ(t)θj(t)dνj(t), ρ(0) = 1.(5.2)

Applying Itô’s formula to (5.2) and (3.1), we have

d(x(t)ρ(t)) = ρ(t)
d∑

i,j=1

σij(t)ui(t)dνj(t) − x(t)

d∑
j=1

ρ(t)θj(t)dνj(t).(5.3)

Therefore, x(t)ρ(t) is a Gt-martingale and hence,

x(t) = ρ(t)−1
E(ρ(T )x(T )|Gt).

In particular, taking t = 0 we have

E(ρ(T )x(T )) = x(0) = x0.(5.4)

Definition 5.1. A contingent claim v ∈ H := L2(Ω,GT , P ) is called attainable
if there is Φ(s) ∈ L2

G(0, T ; Rd) such that

vρ(T ) = E(vρ(T )) +

∫ T

0

Φ(s)∗dν(s).
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Denote the collection of all attainable contingent claims by AC(G). It is easy to
see that AC(G) is a subspace of H. Denote by H0 the closure of AC(G).

Definition 5.2. The market is complete if AC(G) = H.
Remark 5.3. If Σ(t) is nonrandom as in subsection 4.1, then the market is

complete.
Now we seek

min
v∈H0

E(v − z)2(5.5)

subject to constraints

Ev = z and E(ρ(T )v) = x0.(5.6)

Theorem 5.4. Let α and β be the orthogonal projections on H0 of 1 and ρ(T ),
respectively. Then the optimal solution to the optimization problem (5.5) under con-
straint (5.6) is given by

v =
(z 〈β, β〉

H
− x0 〈α, β〉H

)α + (−z 〈α, β〉
H

+ x0 〈α, α〉H
)β

〈α, α〉
H
〈β, β〉

H
− 〈α, β〉2

H

.(5.7)

Proof. Note that

E(v − z)2 = E(v − zα)2 + z2
E(1 − α)2.

So, the optimization problem becomes

min
v∈H0

‖v − zα‖2
H

subject to constraints

〈v, α〉
H

= z and 〈v, β〉
H

= x0.(5.8)

Using Lagrange multipliers, we define

f(v, λ1, λ2) := ‖v − zα‖2
H
− 2λ1(〈v, α〉H

− z) − 2λ2(〈v, β〉H
− x0), (v, λ1, λ2) ∈ H × R

2.

Taking the Fréchet derivative and setting it to be zero, we have

2(v − zα) − 2λ1α− 2λ2β = 0.

This implies

v = zα + λ1α + λ2β.

Plugging the above into the constraints (5.8), we obtain the values of λ1 and λ2, which
lead to (5.7).

5.2. Replicate v. In this subsection, we seek the wealth process x(t) which
satisfies (3.1) and x(T ) = v, where v ∈ H0 is given by (5.7). Namely, we seek a
solution to the following BSDE:

{
dx(t) =

(
x(t)μ0(t) +

∑d
j=1(μ̄j(t)−μ0(t))uj(t)

)
dt+

∑d
i,j=1σij(t)ui(t)dνj(t), 0≤ t≤T,

x(T ) = v.

(5.9)
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Let

Zj(t) :=

d∑
i=1

σij(t)ui(t).

Then

ui(t) =

d∑
j=1

σ−1
ij (t)Zj(t)(5.10)

and (5.9) becomes

(5.11){
dx(t) =

(
x(t)μ0(t) +

∑d
j=1 θj(t)Zj(t)

)
dt +

∑d
j=1 Zj(t)dνj(t), 0 ≤ t ≤ T,

x(T ) = v.

If Fν
t = Gt, then (5.11) is the usual BSDE whose solution exists, assuming that μ0(t)

and θj(t) are essentially bounded (cf. [28]). However, it is well known that, in general,
Fν

t �= Gt.
Now we prove the existence of a unique square integrable solution for the BSDE

(5.11), under the following additional condition.
Assumption (UB). For some δ > 0, A(t) ≥ δI a.s., almost every t ≥ 0, and μ0(t)

and μ(t) are essentially bounded.
Under this assumption, θj(t) is also essentially bounded.
Proposition 5.5. If v ∈ H0, then (5.11) has a unique Gt-adapted, square inte-

grable solution (x(t), Zj(t), j = 1, 2, . . . , d).
Proof. If (x(t), Zj(t), j = 1, 2, . . . , d) is a Gt-adapted, square integrable solution

to (5.11), as in (5.3), we have that

x(t)ρ(t) = x0 +

d∑
j=1

∫ t

0

ρ(s)

(
d∑

i=1

σij(s)ui(s) − x(s)θj(s)

)
dνj(s)

is a Gt-local martingale. Hence, there is an increasing sequence of Gt-stopping times
{τn} with τn → T as n → ∞ such that for each n,

x(t ∧ τn)ρ(t ∧ τn) = E(x(T ∧ τn)ρ(T ∧ τn)|Gt).

For any fixed t ∈ [0, T ],

x(t ∧ τn)ρ(t ∧ τn) ≤ sup
0≤s≤T

x(s) sup
0≤s≤T

ρ(s),

whereas the right-hand side of the above is a square integrable random variable
by virtue of the Cauchy–Schwarz inequality and the standard L2 estimation on the
supernorm of the solutions to SDEs. Hence, we obtain by the dominated convergence
theorem that

x(t)ρ(t) = E(x(T )ρ(T )|Gt).

Namely,

x(t) = ρ(t)−1
E(vρ(T )|Gt).(5.12)
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This implies the uniqueness of the solution.

To prove the existence we first assume that v ∈ AC(G). We show that x(t) given
by (5.12) is a solution to (5.11). As v ∈ AC(G), vρ(T ) is square integrable in view of
Definition 5.1, and we have the representation

E(vρ(T )|Gt) = E(vρ(T )) +

d∑
j=1

∫ t

0

Φj(s)dνj(s),(5.13)

where each Φj is square integrable. Define

Zj(t) := x(t)θj(t) + ρ(t)−1Φj(t), 0 ≤ t ≤ T.(5.14)

By Itô’s formula, it is easy to show that (x(t), Z(t)) ≡ (x(t), Zj(t), j = 1, 2, . . . , d)
satisfies (5.11). Moreover, a stopping time argument exactly as in [28, pp. 352–353]
establishes the square integrability of (x(t), Z(t)).

Next, let v ∈ H0. Then there is a sequence {vn} ⊂ AC(G) such that vn → v in
H. By the above proof there is a unique square integrable solution (xn(t), Zn(t)) to
(5.11) with xn(T ) = vn. Moreover,

sup
n

E

∫ T

0

(|xn(t)|2 + |Zn(t)|2)dt ≤ K sup
n

E|vn|2 < +∞;

see page 349, Theorem 2.2 in [28]. This implies that (xn(t), Zn(t)) is a bounded se-
quence in L2

G(0, T ; Rd+1). Hence there is a subsequence (still denoted as (xn(t), Zn(t))),
along with (x(t), Z(t)) ∈ L2

G(0, T ; Rd+1), so that

(xn(t), Zn(t)) → (x(t), Z(t)) weakly in L2
G(0, T ; Rd+1).

By Mazur’s theorem there is a sequence (x̃n(t), Z̃n(t)), each element of which is a
convex combination of those in {(xn(t), Zn(t))}, so that

(x̃n(t), Z̃n(t)) → (x(t), Z(t)) (strongly) in L2
G(0, T ; Rd+1).

Since (5.11) is a linear equation, by a standard technique we conclude that (x(t), Z(t))
is a square integrable solution to (5.11).

Summarizing, we get the following.

Theorem 5.6. For every z, there exists an optimal portfolio to the mean-variance
problem (2.3), which is a self-financed, admissible portfolio replicating v given by (5.7).
Moreover, this optimal portfolio u(t) is given by (5.10) and the corresponding optimal
wealth process is x(t), where (x(t), Zj(t), j = 1, 2, . . . , d) is the square integrable
solution to (5.11).

So solving our partially observed mean-variance problem boils down to solving
the BSDE (5.11). Numerical solutions to some classes of nonlinear BSDEs have been
developed lately [29, 8]. However, in those works the drift coefficients of the BSDEs
are assumed to be deterministic functions. In our model, the coefficients μ0(t) and
θj(t) are random in general. To the best of our knowledge, solving such a BSDE
numerically remains open. In the next subsection, we shall give a numerical solution
to this BSDE based upon the constructive proof of the last theorem.
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5.3. Numerical solution. In this subsection, we assume that the market is
complete (see Definition 5.2) and seek a numerical solution to (5.11). By virtue of the
constructive proof of Proposition 5.5 the solution is given by (5.12) and (5.14). We
now propose a numerical scheme to approximate (5.12) and (5.14).

To start with, note that as the market is complete, α = 1 and β = ρ(T ). By
(5.7), we get

v = z +
x0 − zEρ(T )

Var(ρ(T ))
(ρ(T ) − Eρ(T )).(5.15)

As in the proof of Proposition 5.5, the key to solving (5.11) is the martingale represen-
tation of the Gt-martingale E(ρ(T )v|Gt). We will establish a particle representation
for this martingale.

Let (θ1, ν1), (θ2, ν2), . . . be independent copies of (θ, ν) which appeared in (5.2).
Now we define ρi(t, t′), t, t′ ≥ 0, in two steps. First, for t ≤ t′, let ρi(t, t′) := ρ(t)
which is given by (5.2). Second, for t > t′, let ρi(t, t′) be given by (5.2) with (b, ν)
replaced by (bi, νi):

dρi(t, t′) = −ρi(t, t′)μ0(t)dt−
d∑

j=1

ρi(t, t′)θij(t)dν
i
j(t), ρi(t′, t′) = ρ(t′).(5.16)

Let vi(T, t) be given by (5.15) with ρ(T ) replaced by ρi(T, t):

vi(T, t) = z +
x0 − zEρ(T )

Var(ρ(T ))
(ρi(T, t) − Eρ(T )).(5.17)

Theorem 5.7. Let v be given by (5.15). Then

E(ρ(T )v|Gt) = lim
n→∞

1

n

n∑
i=1

ρi(T, t)vi(T, t).(5.18)

Proof. Note that the SDE (5.16) has a unique strong solution. Therefore, there
exists a measurable functional Ft,T such that

(ρi(T, t), vi(T, t)) = Ft,T (θ|[0,t], ν|[0,t], θi|[t,T ], ν
i|[t,T ]).

Note that (μ̄(t), ν(t)) are Gt-measurable. Further, as discussed in section 2, σ−1
ij (t)

and μ0(t) are also Gt-measurable. Thus, θ(t) defined by (5.1) is Gt-measurable and
we have

(ρi(T, t), vi) = Gt,T (S|[0,t], θi|[t,T ], ν
i|[t,T ])

for a measurable functional Gt,T . By the independence of S|[0,t], (θi|[t,T ], ν
i|[t,T ]),

i = 1, 2, . . . , it follows from the strong law of large numbers under the conditional
probability (given Gt) that (5.18) holds.

For notational simplicity, we now assume d = T = 1. Denote the process in (5.18)
by N(t). By (5.13), we have
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〈N, ν〉t =

∫ t

0

Φ(s)ds

which can be approximated by (cf. Jacod and Shiryaev [9, Theorem 1.4.47])

m∑
k=1

(N(tk) −N(tk−1))(ν(tk) − ν(tk−1).

Based on the above, we now approximate Φ by piecewise constants, i.e., approximate
Φ on ( k

n ,
k+1
n ) by

Φn

(
k

n

)
:= n

m∑
j=1

(
N

(
k − 1

n
+

j

mn

)
−N

(
k − 1

n
+

j − 1

mn

))

×
(
ν

(
k − 1

n
+

j

mn

)
− ν

(
k − 1

n
+

j − 1

mn

))
,(5.19)

n = 1, 2, . . . ,

where m = mn is to be chosen later.

Lemma 5.8. For 1 < p < 2, we have

E

∣∣∣∣∣Φn

(
k

n

)
− n

∫ k
n

k−1
n

Φ(s)ds

∣∣∣∣∣
p

(5.20)

≤ c
(
mε−p + n

p
2 m− p

2

)(
E

∫ k
n

k−1
n

Φ(t)2dt

) p
2

,

for any ε > 0, where c depends only on p.

Proof. Let

π(t) :=
k − 1

n
+

j − 1

mn
, for

k − 1

n
+

j − 1

mn
≤ t <

k − 1

n
+

j

mn
.

Apply Itô’s formula, we have

Φn

(
k

n

)
− n

∫ k
n

k−1
n

Φ(s)ds

= n

∫ k
n

k−1
n

{Φ(t)(ν(t) − ν(π(t))) + (N(t) −N(π(t)))} dν(t).
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For p ∈ (1, 2), by Doob’s inequality, we have

E

(∣∣∣∣∣Φn

(
k

n

)
− n

∫ k
n

k−1
n

Φ(s)ds

∣∣∣∣∣
p)

≤ cpn
p
E

(∫ k
n

k−1
n

{
Φ(t)2(ν(t) − ν(π(t)))2 + (N(t) −N(π(t)))2

}
dt

) p
2

≤ cpn
p
E

⎛⎝(∫ k
n

k−1
n

Φ(t)2dt

) p
2

sup
k−1
n ≤t≤ k

n

(ν(t) − ν(π(t)))p

⎞⎠
+ cpn

p
E

(∫ k
n

k−1
n

(N(t) −N(π(t)))2dt

) p
2

≤ cpn
p

(
E

∫ k
n

k−1
n

Φ(t)2dt

) p
2
(

E sup
k−1
n ≤t≤ k

n

(ν(t) − ν(π(t)))
2p

2−p

) 2−p
2

+ cpn
p

(
E

∫ k
n

k−1
n

(N(t) −N(π(t)))2dt

) p
2

.

Note that for independent, identically distributed (i.i.d.) normal random variables ξi
with mean 0 and variance σ2, we have

E sup
1≤i≤m

ξpi ≤
(

E sup
1≤i≤m

ξ
p/ε
i

)ε

≤
(

E

m∑
i=1

ξ
p/ε
i

)ε

≤ cmεσp

for any ε > 0. Thus(
E sup

k−1
n ≤t≤ k

n

(ν(t) − ν(π(t)))
2p

2−p

) 2−p
2

≤ cmε

(nm)p
.

On the other hand,

E

∫ k
n

k−1
n

(N(t) −N(π(t)))2dt = E

∫ k
n

k−1
n

∫ t

π(t)

Φ(s)2dsdt

= E

m∑
j=1

∫ k−1
n + j

mn

k−1
n + j−1

mn

∫ t

k−1
n + j−1

mn

Φ(s)2dsdt

≤ 1

nm
E

∫ k
n

k−1
n

Φ(t)2dt.

Equation (5.20) then follows easily.
Next we need to approximate N (kδ), k = 0, 1, . . . ,mn, where δ = 1

mn . To this
end, we need to approximate ρi(t, t′) by time-discretization. Recall that ρi(t, t′) is
given by (5.2) for t ≤ t′ and (5.16) for t > t′.

For j ≤ k, let

ρi,δ(jδ, kδ) := ρi((j − 1)δ, kδ) − ρi((j − 1)δ, kδ)μ0((j − 1)δ)δ

−ρi((j − 1)δ, kδ)θ((j − 1)δ)(ν(jδ) − ν((j − 1)δ)),
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with ρi,δ(0, kδ) := 1. For j > k, let

ρi,δ(jδ, kδ) := ρi((j − 1)δ, kδ) − ρi((j − 1)δ, kδ)μ0((j − 1)δ)δ

−ρi((j − 1)δ, kδ)θ((j − 1)δ)(νi(jδ) − νi((j − 1)δ)).

Let

vi,δ(T, kδ) := z +
x0 − zEρ(T )

Var(ρ(T ))
(ρi,δ(T, kδ) − Eρ(T )),

and

Nn,δ(kδ) :=
1

n

n∑
i=1

ρi,δ(T, kδ)vi,δ(T, kδ).(5.21)

Now, in view of (5.14), we define

Zn(t) := ρn
(

[nt]

n

)−1(
θn
(

[nt]

n

)
Nn,δ

(
[nt]

n

)
+ Φn,δ

(
[nt]

n

))
,(5.22)

where δ = 1
mnn

(with mn suitably chosen), Φn,δ is defined as in (5.19) for Φn with N

replaced by Nn,δ, the approximate θn and ρn of θ and ρ can be defined by the same
method as in section 4.1 such that ∀ β > 1,

E sup
0≤t≤T

∣∣∣∣∣ρn
(

[nt]

n

)−1

θn
(

[nt]

n

)
Nn,δ

(
[nt]

n

)
− ρ(t)−1θ(t)N(t)

∣∣∣∣∣
β

→ 0,(5.23)

and

E sup
0≤t≤T

∣∣∣∣∣ρn
(

[nt]

n

)−1

− ρ(t)−1

∣∣∣∣∣
β

→ 0.(5.24)

Finally, we define the approximate portfolio by

un(t) := Σ(t)−1Zn(t).

Since we do not know the continuity of Φ(s), we cannot obtain Φn(s) → Φ(s)
(cf. (5.23)). Therefore, it is not clear whether un(t) → u(t). However, we have the
convergence of their corresponding terminal wealths.

Theorem 5.9. Suppose that E(|vρ(T )|2) < ∞. Then

E|xn(T ) − x(T )| → 0 as n → ∞.(5.25)

Proof. For simplicity of notation, we assume μ0(t) ≡ 0. Then by (5.11), we have

E|xn(T ) − x(T )| ≤ cE

∫ T

0

|θn(t)Zn(t) − θ(t)Z(t)|2dt

+cE

(∫ T

0

|Zn(t) − Z(t)|2dt
)1/2

.
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We estimate only the second term (the first can be evaluated similarly). Note that
by (5.22) and (5.19),

|Zn(t) − Z(t)| ≤
∣∣∣∣∣ρn

(
[nt]

n

)−1

θn
(

[nt]

n

)
Nn,δ

(
[nt]

n

)
− ρ(t)−1θ(t)N(t)

∣∣∣∣∣
+

∣∣∣∣∣ρn
(

[nt]

n

)−1

Φn,δ

(
[nt]

n

)
− ρ(t)−1Φ(t)

∣∣∣∣∣ .
By (5.23), the first term on the right-hand side of the above inequality tends to 0.
Note that

E

⎡⎢⎣
⎛⎝∫ T

0

∣∣∣∣∣ρn
(

[nt]

n

)−1

Φn,δ

(
[nt]

n

)
− ρ(t)−1Φ(t)

∣∣∣∣∣
2

dt

⎞⎠
1
2

⎤⎥⎦
≤ E

⎡⎣(∫ T

0

ρn
(

[nt]

n

)−2 ∣∣∣∣Φn,δ

(
[nt]

n

)
− Φn

(
[nt]

n

)∣∣∣∣2 dt
)1

2

⎤⎦
+ E

⎡⎣(∫ T

0

∣∣∣∣∣ρn
(

[nt]

n

)−2

− ρ(t)−2

∣∣∣∣∣Φn

(
[nt]

n

)2

dt

)1
2

⎤⎦
+ E

⎡⎢⎣
⎛⎝ 1

n

n∑
k=1

∣∣∣∣∣Φn

(
k

n

)
−
∫ k

n

k−1
n

Φ(s)ds

∣∣∣∣∣
2

sup
0≤t≤T

ρ(t)−2

⎞⎠
1
2

⎤⎥⎦
+ E

⎡⎢⎣
⎛⎝ n∑

k=1

∫ k
n

k−1
n

∣∣∣∣∣Φ(t) − n

∫ k
n

k−1
n

Φ(s)ds

∣∣∣∣∣
2

sup
0≤t≤T

ρ(t)−2

⎞⎠
1
2

⎤⎥⎦ .

The convergence of the first term follows from similar arguments in subsection 4.1,
that of the second term from (5.24), and that of the fourth term from the same
arguments as in the proof of Lebesgue’s continuity theorem; namely, first approximate
Φ by uniformly continuous functions and then prove the conclusion for such functions.
Finally, the third term is dominated by

E max
1≤k≤n

∣∣∣∣∣Φn

(
k

n

)
−
∫ k

n

k−1
n

Φ(s)ds

∣∣∣∣∣ sup
0≤t≤T

ρ(t)−1

≤
(

E

n∑
k=1

∣∣∣∣∣Φn

(
k

n

)
−
∫ k

n

k−1
n

Φ(s)ds

∣∣∣∣∣
p) 1

p (
E sup

0≤t≤T
ρ(t)−

p
p−1

) p−1
p

≤ cn
(
mε−p + n

p
2 m−p

)
which converges to 0 if we take m = nβ with β > max( 1+ε

p , 1
2 ).

Remark 5.10. It follows from (5.25) that Exn(T ) → Ex(T ). However, it is not
clear whether Var(xn(T )) → Var(x(T )). To achieve this, we need a higher moment

(in p) in (5.20) for which we require
∫ T

0
Φ(s)2ds to have a higher moment. To be
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precise, if we assume that vρ(T ) has a moment of order p′ > 2, then

E

⎡⎣(∫ T

0

Φ(s)2ds

)p′/2
⎤⎦ < ∞.

The proof of (5.20) can be adapted for 2 < p < p′ and, hence, (5.25) can be strength-
ened to

E
(
|xn(T ) − x(T )|2

)
→ 0.

In this case we get the convergence of both Exn(T ) and Var(xn(T )).
Remark 5.11. If the market is not complete, the numerical approximation of this

section remains valid if we replace 1 and ρi(T, t) with their projections α and βi on
H0 (i.e., use the formula (5.7) instead of (5.15)). However, it remains open how to
calculate α and βi numerically.
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PARTIALLY OBSERVED INVENTORY SYSTEMS:
THE CASE OF ZERO-BALANCE WALK∗

ALAIN BENSOUSSAN† , METIN ÇAKANYILDIRIM‡ , AND SURESH P. SETHI§

Abstract. In many inventory control contexts, inventory levels are only partially (i.e., not
fully) observed. This may be due to nonobservation of demand, spoilage, misplacement, or theft
of inventory. We study a partially observed inventory system where the demand is not observed,
inventory level is noticed when it reaches zero, the unmet demand is lost, and replenishment orders
must be decided so as to minimize the total discounted costs over an infinite horizon. This problem
has an infinite-dimensional state space, and for it we establish the existence of a feedback policy when
single-period costs are bounded or when the discount factor is sufficiently small. We also provide an
approximately optimal feedback policy that uses a finite state representation.

Key words. stochastic inventory problem, partial observations, the Zakai equation, lost sales
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1. Introduction. Inventory control is among the most important topics in op-
erations research because of large investments in inventory and their effect on the
profitability of the firms. In 1999, for example, the investment into the inventory by
U.S. businesses alone amounted to 1.1 trillion dollars [31]. Because of the importance
of inventory control decisions, there has resulted an extensive literature on the topic
[3, 31]. For the motivation of our research, one of the critical assumptions in the vast
inventory literature, dating back to at least the Harris lot size model of 1913 [17],
has been that the level of inventory at any given time is fully observed. Some of the
most celebrated results, such as the optimality of the base stock policy [1], have been
obtained under the assumption of full observation. Yet the inventory level is often not
fully observed in practice, as elaborated below. In such cases, most of the well-known
inventory policies are not even admissible, let alone optimal.

The study of systems with partially observed inventories is important in many
real-life situations. We shall introduce some of the possible instances where inventories
can only be partially observed by the inventory manager (IM).

Transaction errors. Unintentional mistakes happen from time to time during
inventory transactions. Some of these transactions are inventory counting, receiv-
ing, checking out at the cash register, etc. An example is checking out at a grocery
store. If a customer buys two types of different soups each at the same price, the
sales clerk often scans only one soup type twice. A similar example with different
types of yogurts can be found in Raman, DeHoratius, and Ton [26]. In such cases,
the recorded inventory levels of the items involved will differ from their actual levels.
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When stock-keeping units are discrete, it may be possible to eliminate counting er-
rors. On the other hand, when they are not discrete, such as oil in a refinery, exact
measurements are difficult to obtain. While measurement errors cause inventory to
be not fully observed, it is often the mistakes in reporting transactions that lead to
partial observation of inventories. Raman, DeHoratius, and Ton [26] report a retailer
who has inaccurate inventory records for 65% of its stock-keeping units. It is roughly
estimated that the retailer loses 10% of its current profit due to these inaccuracies.
They go on to say: “[this particular retailer] is not an isolated case; this [inaccuracy]
problem is common at other retailers.” Common use of modern information tech-
nology tends to reduce transaction errors. However, as pointed out by Axsäter [3],
deployment of big-ticket computer technology is not always economically feasible.

Misplaced inventory. When a part of the inventory on hand is misplaced, it is
not available to meet a demand until it is found. Often the misplaced inventories are
not immediately found, and thus they remain unobserved to the IM. This causes the
total inventory that is available to meet the demand to become partially observed.
Misplaced inventory can be quite large and have a significant impact on the bottom
line. It is reported in [26] that customers of a “leading retailer” cannot find 16% of
the items in the stores because those items are misplaced. Misplacement of the items
reduces the profit by roughly 25% at this retailer.

Misplacement is more likely when the location of items in storage is altered dy-
namically. According to [3], “It is easier to keep the records accurate if the items have
fixed locations. On the other hand, this can lead to inefficient space utilization. By
dynamically locating items, the same item can be stored in more than one location.”
The recent trends in supply chain management such as crossdocking (see, e.g., p. 412
of [13]) also cause dynamic locations.

Misplaced inventories are eventually discovered either by inspection or by chance.
When the misplaced items are placed in their proper shelves, they become available
once again to meet customer demands. Thus, misplacements and their recoveries
can cause the actual inventory to be, respectively, less and more than the recorded
inventory.

Spoilage. Products can naturally lose their properties while they are held in
the inventory [25]. Examples with limited lifetime are drugs, chemicals, and food
products. If the lifetime is limited and not immediately observed, then the actual
inventory is less than the recorded inventory, and it is partially observed.

If the lifetime is deterministic as in the case of drugs, an implementation of RFID
(radio frequency identification) tags called SMC (smart medicine cabinet) can be
used to track the expired drugs [28]. Thus, the SMC can make drug spoilage fully
observed. However, investments into technology such as SMC must be justified with
an economic analysis, which requires the evaluation of the optimal cost under partial
observations [9]. As an example of random lifetime, consider the number of batteries
in a Sears retail store. Only when these batteries are inspected (say by measuring
their voltage, one by one) does the inventory level of fully functioning batteries become
known. When the spoiled inventory is observed immediately, the associated model
(e.g., [24]), in spite of being challenging to work with, has full observations.

In retail stores, customers can cause damage to products, making them unsuitable
for sale. Some examples are tearing of a package to try on the contained cloth item,
wearing down a shoe by trying it on and walking, erasing software on computers on
demonstration, spilling food on clothes, and scratching a car during a test drive. So
long as the damages are not detected by the IM, the actual inventory is not fully
observed.
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Product quality and yield. When the product quality is low or a produc-
tion process has a low yield [29], the actual inventory is not known. Receipts at a
warehouse can include products that are defective or that do not conform to quality
standards. It is very often the case that nonconformance of a product is not im-
mediately observed by the IM. Receipts are usually added to the inventory at the
warehouse without full inspection. As a result, the inventory on record may consist of
both nondefective products (available to meet customer demands) and defective prod-
ucts (not fit for sale). Since the defective products are not immediately observed, the
actual (nondefective) inventory becomes partially observed.

If production lead times are long, an IM may have to place a particular order
before observing the yields from previous orders, so that the production of the partic-
ular order is completed by a given due date. Thus, partial observability of inventory
can be caused by due dates and long production lead times as well as process yields.

Theft. The items in the inventory can be stolen by thieves who violently break
into the inventory storage, by the warehouse employees who calmly pilfer, or by
the customers who shoplift. Since violent break-ins are generally investigated, they
are usually observed and therefore not relevant for our study. We focus more on
continuous pilferage or shoplifting, because they are not always observed without
inventory inspections. Instances of theft at furniture retailers and at food wholesalers
have been documented in [12, 23]. Axsäter [3] says: “. . . thefts may be a major
problem. Apart from the loss in value, thefts . . . also lead to inaccurate inventory
records.” Thus, the IM relying on inventory records ends up overestimating the
available inventory until a stockout occurs. In this case, there are shortage costs in
addition to costs of reordering, expediting, and re-receiving items to replace the stolen
units. Typically, costs of the expedited items to urgently meet backlogged demands
are much more than their regular costs.

When there is no physical inventory, i.e., the inventory is zero or negative, then
none of the following would happen: transaction errors, misplaced inventories, spoil-
age, inventory level uncertainty due to yield and quality, or theft. Most companies
pay utmost attention to an item when its inventory reaches zero. At these companies,
employees walk around the shelves to identify the stocked-out items and verify the
inventory levels for those items. This process is implemented at the office supplies
store Staples and is called “zero-balance walk” in [16, 26]. Thus, a model based on a
zero-balance walk process can be built by assuming that the inventory levels are fully
observed when they are zero. It is the purpose of this paper to formulate and analyze
a zero-balance walk model. This paper is part of a greater effort to build a compre-
hensive theory of inventory control under partial observations. In related works, we
study some of the other inventory models with partial observations [6, 7, 8].

There have been a few studies of partial observations in the inventory control con-
text. In these studies, partial observations are about demands rather than inventories.
Among these, a common assumption is that of unobserved demands in the periods
when lost sales occur. That is, the demand is observed fully when it is smaller than
the available inventory. Otherwise, only the event that it is larger than the inventory
is observed. When the underlying demand distribution is not known but estimated
from the demand observations, partial demand observations limit the data available
for estimation. This is called estimation with censored (demand) data. Ding, Puter-
man, and Bisi [14] and Lu, Song, and Zhu [22] have a multiperiod newsvendor model
with censored demand. They assume the leftover inventory in a period to be salvaged
entirely so that every period starts with zero inventory. This assumption decouples
the periods from each other as far as the inventory evolution is concerned. However,
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the periods are still coupled together by the current estimate of the demand distribu-
tion. The demand distribution is updated in a Bayesian fashion in each period with
that period’s demand or the observation of the lost sales event. Thus, there is an evo-
lution equation that maps one period’s demand distribution to the next period’s. This
evolution is affected by the choice of the order quantity. Before [14], Lariviere and
Porteus [21] treated a similar problem for the restricted case of exponential demand
distributions with gamma conjugate priors.

Treharne and Sox [27] study a periodic review inventory model with Markov
modulated demand. A simple example of such a demand occurs when there are
two demand states—High and Low—of a Markov chain and there are two demand
distributions, one for each state. Unlike the Markovian demand cases (treated, e.g.,
in [10, 11]), it is not observed whether the demand state is High or Low. Instead,
probabilities are used to represent the event that the demand state is High or Low.
These probabilities along with the current level of inventory constitute the state of
the system. The probabilities are updated in each period in accordance with that
period’s demand. Neither the current level of inventory nor the order size affects the
probability updates. Evolution of the probabilities that capture partial observability
is totally independent of the order quantities. The evolution equations can be written
down in the first period, and they will include the random demands in the forthcoming
periods. To make the discussion simple, here we mention only two demand states,
but Treharne and Sox consider finitely many demand states. Consequently, they have
a finite-dimensional state for their system.

The models we have described above make simplifying assumptions to end up
with an easily workable setup. Ding, Puterman, and Bisi assume that the leftover
inventory is salvaged every period, while Treharne and Sox have updates of the prob-
abilities which are independent of the controls. Thus, they can capture only a limited
amount of the dynamics associated with partial observations. Besides, they do not
consider the issue of existence of optimal policies. Consequently, they do not require
the methodology developed in this paper. Without such a methodology, however,
inventory models with partial observations will remain largely unexplored.

A main reason for why the analysis of inventory problems under partial observa-
tions has been neglected lies in its mathematical difficulty. Whereas one works with a
finite-dimensional state space in the full observation case, one usually has to deal with
an infinite-dimensional state space in the partial observation setting. More specifi-
cally, the inventory level at a given time is no longer a system state in �n; it must now
be represented by its conditional probability given some limited information available
at that time. Thus, the analysis takes place in the space of probability distributions.
This is, of course, inevitable, and simplifies only in particular situations when, for
instance, the separation principle applies; see [5] for an example.

Concerning controls of dynamic systems in general, a great step forward was
achieved in the applied mathematics and engineering control literature, when the
Zakai equation [30] was discovered. Prior to that, the evolution of the conditional
probability had been studied with the highly nonlinear Kushner equation [18]. The
Zakai equation uses a transformation that changes the Kushner equation into a pair
of linear equations. This transformation corresponds to the concept of “change of
measure” [15]. While it does not remove the infinite dimensionality, the linearity has
permitted a number of important control problems with partial observations to be
solved [5]. Of course, there remain numerical difficulties due to the infinite dimen-
sionality of the state. Nevertheless, a sound theory is available.

The key idea in going from the Kushner equation to the Zakai equation is in in-
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troducing unnormalized conditional probabilities in place of conditional probabilities.
This linearizes the state equation, and the problem becomes much simpler to study.
Ideas of this kind have not been introduced yet in the context of solving partial ob-
servation control problems in management. While the standard Zakai setup cannot
be directly applied to inventory problems, we show that unnormalized conditional
probabilities can be introduced and are indeed quite appropriate.

In the next section, we formulate the problem with normalized probabilities and
switch to unnormalized probabilities. In sections 3 and 4, we examine the existence
and uniqueness of the solution under the assumptions of bounded costs, bounded
order quantities, and small discount rates. An asymptotically optimal control scheme
is provided in section 5. Section 6 includes a brief conclusion and directions for future
research.

2. The zero-balance walk model. We study a periodic review inventory prob-
lem with partially observed inventory levels. In our model, the inventory levels are
not automatically observed by the IM who decides on order quantities. The order
of events in any given period t is as follows: The IM observes the event when the
inventory level falls to zero, but he does not observe the inventory level when it is
positive. The manager determines how much to order and the order is delivered in-
stantaneously. Next the customer demand occurs, but it is not observed by the IM
unless the inventory level drops to zero. In each period, the IM incurs inventory re-
lated costs, but he does not observe these costs immediately. Lastly the state defining
the inventory level is updated for the next period.

In classical inventory settings, the inventory level It at the beginning of period t is
observed, and is used to determine the order quantity qt in period t. Each period t has
a random demand Dt defined on the probability space (Ω,F , P ). The demand is met,
to the extent possible, from the on-hand stock It + qt. We suppose that the demand
that is not immediately met from the on-hand stock is lost. Then the evolution of
inventory dynamics is given as follows:

It+1 = (It + qt −Dt)
+ for t ≥ 1.(1)

We assume demand Dt to be independently and identically distributed (i.i.d.) random
variables with the same distribution as D, where the density and the cumulative
distribution function of D are denoted by f and F , respectively. Let F̄ = 1 − F .

When the demand is met entirely, inventory holding costs apply to the remaining
inventory. Otherwise, there are lost sales costs. It is well known that a base stock (or
an order up to S) policy is optimal for this setting. We investigate the validity of the
optimality of a base stock policy, or lack of it, for the zero-balance walk model.

In the zero-balance walk model, the inventory levels are partially observed by the
IM as follows:

I1 is either 0 or its distribution is known.(2)

In general, the IM does not observe the demand or the inventory level. However, look-
ing at empty shelves and concluding It = 0 does not take much effort, and constitutes
a free observation. Thus, we allow It to be observed only when the inventory shelf
is empty, i.e., [It = 0]. To study such partial observations of the inventory levels, we
introduce a signal (message) random variable

zt := 1lIt=0, t ≥ 1.(3)
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The signal zt is a discrete-time Markov chain with the state space {0, 1}: 1 means an
empty shelf and 0 means a nonempty shelf.

When the inventory levels are fully observed, the order qt is adapted to the sigma
field Ft := σ({Ij : 1 ≤ j ≤ t}) generated by the inventory levels observed by period
t. Note that the demand observations up to and including the beginning of period t
also generate the same field, i.e., Ft = σ({I1, Dj : 1 ≤ j ≤ t − 1}). With our partial
observations model, qt is adapted to Zt := σ({zj : 1 ≤ j ≤ t}). Clearly Zt ⊂ Ft, so
our partial observations model must decide on order quantities on the basis of less
than full information.

Given a stationary cost function c(It, qt) that depends on the beginning inventory
level It and the order size qt in period t, and with q̃ defining the admissible sequence
of actions q̃ = {q1, q2, . . . }, the total discounted cost is defined by

J(ζ, π, q̃) := E
∞∑
t=1

αtc(It, qt),(4)

where α < 1 is the discount factor. The initial conditions are a pair (ζ, π(x)), where
ζ is 1 or 0. If ζ is 1, then I1 = 0. If ζ is 0, then I1 > 0 and π(·) is the probability
distribution of I1. We look for an admissible control q̃ = {q1, q2, . . . }, with qt adapted
to Zt, t ≥ 1, such that J(ζ, π, q̃) is minimized.

Special cases. To make the form of the single-period cost c(I, q) concrete, we
can consider c(I, q) = c1q+hI+bE[(D−I−q)+], which is often used in the inventory
control literature [11]. The cost parameters c1, h, and b can be interpreted as the
cost of purchasing an item, the cost of holding an item in the inventory charged at
the beginning of a period, and the opportunity cost of not selling an item when there
is demand for it. Since bE[(D − I − q)+] ≤ bE[D], c(I, q) is of linear growth in I and
q. Another example includes a nonzero fixed cost of ordering. These observations
will inspire an assumption on the bounds of the general single-period cost c(I, q) in
section 3.

2.1. Evolution of state probabilities. We now develop the conditional prob-
ability density πt(.) of It given Zt−1 and It > 0. By definition,∫ x

0

πt(y)dy = P(It ≤ x|Zt−1, It > 0).

Since the event [It = 0] is observable, conditional probabilities are needed only when
It > 0.

For any real and bounded test function ϕ(.), we can use the conditional Bayes
theorem (e.g., [15]) to obtain

∫ ∞

0

ϕ(x)πt(x)dx = E[ϕ(It)|Zt−1, It > 0] =
E[ϕ(It)1lIt>0|Zt−1]

E[1lIt>0|Zt−1]
=

E[ϕ(It)1lIt>0|Zt−1]

P(It > 0|Zt−1)
.

(5)

In order to obtain a recursive expression for πt in terms of πt−1, we begin with
expressing E(ϕ(It)|Zt) in terms of conditional expectations with respect to Zt−1 in
the next lemma.

Lemma 1.

E (ϕ(It)|Zt) = 1lIt=0ϕ(0) + 1lIt>0
E (ϕ(It)1lIt>0|Zt−1)

P(It > 0|Zt−1)

= 1lIt=0ϕ(0) + 1lIt>0E (ϕ(It)|Zt−1, It > 0).(6)
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Proof. Beginning with the left-hand side of (6), we have

E(ϕ(It)|Zt) = E[ϕ(It)(1lIt=0 + 1lIt>0)|Zt)] = ϕ(0)1lIt=0 + E[ϕ(It)1lIt>0|Zt].(7)

Now take the last term in (7) and obtain

E(ϕ(It)1lIt>0|Zt) = 1lIt>0E(ϕ(It)|Zt)

= 1lIt>0ψ(z1, . . . , zt−1, zt)

= 1lIt>0ψ(z1, . . . , zt−1, 0),(8)

where the first equality follows from Zt-measurability of 1lIt>0. The second equality
merely expresses E(ϕ(It)|Zt) as ψ(z1, . . . , zt−1, zt) for some measurable function ψ.
The last equality follows from the fact that It > 0 ⇔ zt = 0.

We now take the expectation of (8) with respect to Zt−1. Since Zt−1 ⊆ Zt and
since ψ(z1, . . . , zt−1, 0) is Zt−1-measurable, we obtain

E[ϕ(It)1lIt>0|Zt−1] = ψ(z1, . . . , zt−1, 0)E[1lIt>0|Zt−1] = ψ(z1, . . . , zt−1, 0)P(It > 0|Zt−1)
(9)

or

ψ(z1, . . . , zt−1, 0) =
E(ϕ(It)1lIt>0|Zt−1)

P(It > 0|Zt−1)
.(10)

Using (10) in (8) and substituting into (7) the resulting expression for E[ϕ(It)1lIt>0|Zt],
we obtain the first equality in (6). Using (5) gives the second equality.

Instead of the conditional expectations in Lemma 1, the left-hand side in (6)
can also be expressed by using the conditional density function πt. Using (5) on the
right-hand side of (6) gives

E(ϕ(It)|Zt) = 1lIt=0ϕ(0) + 1lIt>0

∫ ∞

0

ϕ(z)πt(z)dz.(11)

The density πt is obtained by setting (6) and (11) to be equal. For It = 0, this equality
yields πt = δ, which is the Dirac delta function taking the value of zero everywhere
except at 0, where it is infinite. For the more interesting case of It > 0, the next
lemma molds (6) into a convenient form to set (11) equal to (6) and solve for πt.

Lemma 2.

E (ϕ(It)|Zt)1lIt>0 = 1lIt−1=0

∫∞
0

ϕ(z)f(qt−1 − z)1lqt−1≥zdz

F (qt−1)

+ 1lIt−1>0

∫∞
0

ϕ(z)
∫∞
(z−qt−1)+

f(y + qt−1 − z)πt−1(y)dydz∫∞
0

F (y + qt−1)πt−1(y)dy
.(12)

Proof. Consider the numerator in the second term on the right-hand side of (6).
We see that
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E(ϕ(It)1lIt>0|Zt−1) = E(ϕ(It−1 + qt−1 −Dt−1)1lIt−1+qt−1−Dt−1>0|Zt−1)

= E
(
E(ϕ(It−1 + qt−1 −Dt−1)1lIt−1+qt−1−Dt−1>0|Zt−1, It−1)|Zt−1

)
because Zt−1 = σ({z1, . . . , zt−1}) ⊆ σ({z1, . . . , zt−1, It−1})

= E

(∫ ∞

0

ϕ(It−1 + qt−1 − y)1lIt−1+qt−1−y>0f(y)dy|Zt−1

)
= E

(∫ qt−1+It−1

0

ϕ(It−1 + qt−1 − y)f(y)dy|Zt−1

)

= E

(∫ qt−1+It−1

0

ϕ(x)f(It−1 + qt−1 − x)dx|Zt−1

)
set x := It−1 + qt−1 − y

= E

(∫ ∞

0

ϕ(x)f(It−1 + qt−1 − x)1lIt−1+qt−1−x≥0dx|Zt−1

)
=

∫ ∞

0

ϕ(x)E
(
f(It−1 + qt−1 − x)1lIt−1+qt−1−x≥0|Zt−1

)
dx.(13)

Use (11) with the time index t − 1 instead of t and replace ϕ(It−1) with f(It−1 +
qt−1 − x)1lIt−1+qt−1−x≥0 to obtain

E(f(It−1 + qt−1 − x)1lIt−1+qt−1−x≥0|Zt−1)

= 1lIt−1=0f(qt−1 − x)1lqt−1−x≥0

+ 1lIt−1>0

∫ ∞

0

f(y + qt−1 − x)1ly+qt−1−x≥0πt−1(y)dy.(14)

Inserting (14) into (13), we obtain

E(ϕ(It)1lIt>0|Zt−1) = 1lIt−1=0

∫ ∞

0

ϕ(x)f(qt−1 − x)1lx≤qt−1dx

+ 1lIt−1>0

∫ ∞

0

ϕ(x)

(∫ ∞

(x−qt−1)+
f(y + qt−1 − x)πt−1(y)dy

)
dx.

Now consider the denominator in the second term on the right-hand side of (6)
to obtain

P(It > 0|Zt−1) = E(1lIt−1+qt−1−Dt−1>0|Zt−1)

= E{E(1lIt−1+qt−1−Dt−1>0|Zt−1, It−1)|Zt−1}
= E{F (It−1 + qt−1)|Zt−1}

= 1lIt−1=0F (qt−1) + 1lIt−1>0

∫ ∞

0

F (y + qt−1)πt−1(y)dy.

Inserting the numerator and the denominator into (6) yields the desired result.
Having obtained the conditional expectation in Lemma 2, we go back to the

conditional probability πt as defined in (11) for It > 0. Setting the second term on
the right-hand side of (11) equal to (12), we have

πt(x) = 1lIt−1=0

{
f(qt−1 − x)1lx≤qt−1

F (qt−1)

}
+ 1lIt−1>0

{∫∞
(x−qt−1)+

f(y + qt−1 − x)πt−1(y)dy∫∞
0

F (y + qt−1)πt−1(y)dy

}
.

(15)
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This expression specializes to the conditional probabilities stated in the next theorem.
Theorem 1. The conditional probability πt can be expressed recursively as fol-

lows:

πt(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1lx≤qt−1

f(qt−1 − x)

F (qt−1)
if It−1 = 0∫∞

(x−qt−1)+
πt−1(y)f(y + qt−1 − x)dy∫∞

0
πt−1(y)F (y + qt−1)dy

if It−1 > 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(16)

Note that the denominators in (16) are P(Dt−1 < It−1+qt−1), which is P(It > 0).
When It > 0, πt is an absolutely continuous p.d.f. (probability density function).

Note that the recursive equations for It−1 > 0 and It−1 = 0 coincide for πt−1 = δ, so
the equation for It−1 > 0 applies even when It−1 = 0. Since the largest value of It
is It−1 + qt−1, πt has a support of [0,

∑t−1
i=1 qi]. If It′ = 0 for some t′ < t, then the

support is [0,
∑t−1

i=t′ qi]. Since π1, f , and F are all given, the evolution of πt can be
controlled only by q̃ = {q1, q2, . . . }.

The conditional probability evolves according to a highly nonlinear equation,

πt(x) = zt−1
f(qt−1 − x)1lx≤qt−1

F (qt−1)
(17)

+ (1 − zt−1)

∫∞
(x−qt−1)+

f(y + qt−1 − x)πt−1(y)dy∫∞
0

F (qt−1 + y)πt−1(y)dy
, t ≥ 2,

π1(x) = π(x),

which corresponds to the Kushner equation [18] in our inventory context.
We can linearize (17) as follows. Set

pt(x) := λtπt(x),(18)

where λt is a weighting factor to be defined shortly. On account of this weighting,
pt(x) can be viewed as unnormalized probability. Furthermore, it evolves according
to the linear equation

pt(x) = zt−1f(qt−1 − x)1lx≤qt−1 + (1 − zt−1)

∫ ∞

(x−qt−1)+
f(y + qt−1 − x)pt−1(y)dy,

(19)

p1(x) = π(x).

This equation corresponds to the Zakai equation for systems with diffusions in [30, 5].
By integrating both sides of (18),

λt =

∫ ∞

0

pt(x)dx

(19)
= zt−1F (qt−1) + (1 − zt−1)

∫ ∞

0

F (qt−1 + y)pt−1(y)dy

(18)
= zt−1F (qt−1) + (1 − zt−1)λt−1

∫ ∞

0

F (qt−1 + y)πt−1(y)dy.

The last equation defines λt recursively starting with λ1 = 1. However, note that λt

depends on πt−1 on the right-hand side. The normalized probabilities can easily be
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computed from the unnormalized probabilities as follows:

πt(x) =
pt(x)∫∞

0
pt(x)dx

.(20)

These equations can be written in the operator form in the space

H :=

{
p ∈ L1(�+) :

∫ ∞

0

x|p(x)|dx < ∞
}
,

where L1(�+) is the space of integrable functions whose domain is the set of nonneg-
ative real numbers. If we define regular addition and multiplication by a scalar on H
and include negative valued functions in H, then H becomes a subspace of L1(�+).
Working with the subspace H is convenient for some of our arguments. However, we
are ultimately interested in unnormalized probabilities, which are nonnegative. For
them, we will specify an appropriate subset of H in section 2.2.

Let us equip the subspace H with the norm

||p|| =

∫ ∞

0

|p(x)|dx +

∫ ∞

0

x|p(x)|dx.(21)

The dual space of H is denoted by H∗, and it is the space of functions φ with linear
growth, i.e.,

H∗ =

{
φ : sup

x>0

|φ(x)|
1 + x

< ∞
}
.

Furthermore, we have the inner product

〈p, φ〉 =

∫ ∞

0

p(x)φ(x)dx for p ∈ H, φ ∈ H∗.

For any scalar q > 0 and p ∈ H, we define the linear operator ρ as

ρ(q, p)(x) =

∫ ∞

(x−q)+
f(y + q − x)p(y)dy,

which is established in section 2.2 to be from H to H. For the Dirac delta function
δ /∈ H, we define ρ(q, δ)(x) = f(q − x)1lx≤q. This gives us ρ(0, δ)(x) = 0 almost
everywhere in �+. Define the nonlinear operator θ as

θ(q, p)(x) =
ρ(q, p)(x)

〈ρ(q, p), 1〉 .(22)

With these notations, we can write (17) and (19) in the operator form:

πt(x) = zt−1θ(qt−1, δ)(x) + (1 − zt−1)θ(qt−1, πt−1)(x),(23)

pt(x) = zt−1ρ(qt−1, δ)(x) + (1 − zt−1)ρ(qt−1, pt−1)(x),(24)

with the initial conditions

π1 = p1 = π.(25)

Once again, we emphasize that (24) is a linear equation, while (23) is nonlinear.
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2.2. Properties of the operators. In preparation to obtain some required
operator properties, we need some identities and inequalities. By changing the order
of integration, we obtain∫ ∞

0

|ρ(q, p)(x)|dx ≤
∫ ∞

0

∫ ∞

(x−q)+
f(y + q − x)|p(y)|dydx

=

∫ ∞

0

∫ y+q

0

f(y + q − x)|p(y)|dxdy

=

∫ ∞

0

|p(y)|
∫ y+q

0

f(y + q − x)dxdy =

∫ ∞

0

|p(y)|F (y + q)dy.(26)

Using similar operations, we see that∫ ∞

0

x|ρ(q, p)(x)|dx ≤
∫ ∞

0

∫ ∞

(x−q)+
xf(y + q − x)|p(y)|dydx

=

∫ ∞

0

∫ y+q

0

xf(y + q − x)|p(y)|dxdy

=

∫ ∞

0

p(y)

∫ y+q

0

(y + q − z)f(z)dzdy

=

∫ ∞

0

(y + q)|p(y)|F (y + q)dy.(27)

Furthermore,∫ ∞

0

|θ(q, p)(x)|dx =

∫ ∞

0

∣∣∣∣∣ ρ(q, p)(x)∫∞
0

ρ(q, p)(x)dx

∣∣∣∣∣ dx =

∫∞
0

|ρ(q, p)(x)|dx∣∣∫∞
0

ρ(q, p)(x)dx
∣∣

(26)

≤
∫∞
0

F (y + q)|p(y)|dy
|
∫∞
0

F (y + q)p(y)dy|
(28)

and ∫ ∞

0

x|θ(q, p)(x)|dx =

∫ ∞

0

∣∣∣∣∣ xρ(q, p)(x)∫∞
0

ρ(q, p)(x)dx

∣∣∣∣∣ dx =

∫∞
0

x|ρ(q, p)(x)|dx∣∣∫∞
0

ρ(q, p)(x)dx
∣∣

(26,27)

≤
∫∞
0

(y + q)|p(y)|F (y + q)dy

|
∫∞
0

p(y)F (y + q)dy|

= q +

∫∞
0

y|p(y)|F (y + q)dy

|
∫∞
0

p(y)F (y + q)dy|
.(29)

Next we derive some properties for nonnegative p. For this, we define

H+ := {p ∈ H : p ≥ 0} .

Note that H+ is not a subspace, as it does not include −p for any p > 0.
Properties.
• Operator θ(q, p) is well defined if 〈ρ(q, p), 1〉 > 0, i.e.,

〈ρ(q, p), 1〉 =

∫ ∞

0

p(y)F (y + q)dy �= 0.(30)
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This property is satisfied if p �= 0, p ∈ H+, and F (y) > 0 for all y > 0. Then,∫∞
0

p(y)F (y + q)dy > 0. Otherwise, p(y)F (y + q) = 0 is a.e. satisfied, which
along with F (y) > 0 for all y > 0 implies p(y) = 0 a.e. This contradicts
p �= 0.
Moreover, the operator ρ preserves the nonzero property: p �= 0 =⇒ ρ(q, p) �=
0. We establish the contrapositive of this statement. If ρ(q, p) = 0, then
〈ρ(q, p), 1〉 = 0, which is possible only under p = 0.
Furthermore, note that the equality in (30) specializes to 〈ρ(q, δ), 1〉 = F (q).

• Operator θ(q, p)(x) yields a valid p.d.f. if p ∈ H+. Clearly, θ(q, p)(x) ≥ 0 and∫∞
0

θ(q, p)(x)dx = 1.
• Operator ρ(q, p) is a linear operator from L1(�+) to L1(�+) and also from

H to H. Moreover, H+ is closed under the operator ρ: ρ(q, p) ∈ H+ when
p ∈ H+, because

||ρ(q, p)|| =

∫ ∞

0

|ρ(q, p)(x)|dx +

∫ ∞

0

x|ρ(q, p)(x)|dx

(26,27)

≤
∫ ∞

0

F (y + q)|p(y)|dy +

∫ ∞

0

(y + q)F (y + q)|p(y)|dy

≤
∫ ∞

0

|p(y)|dy +

∫ ∞

0

y|p(y)|dy + q

∫ ∞

0

|p(y)|dy < ∞,

where the last less-than-or-equal-to relation is due to F (y + q) ≤ 1.
• Operator θ(q, p) maps each element p, satisfying 〈ρ(q, p), 1〉 �= 0, from L1(�+)

to L1(�+) and also from H to H. Moreover, H+ is closed under the operator
θ: θ(q, p) ∈ H+ when p ∈ H+, because

||θ(q, p)|| =

∫ ∞

0

|θ(q, p)(x)|dx +

∫ ∞

0

x|θ(q, p)(x)|dx

(28,29)

≤
∫∞
0

F (y + q)|p(y)|dy
|
∫∞
0

F (y + q)p(y)dy|
+ q +

∫∞
0

y|p(y)|F (y + q)dy

|
∫∞
0

p(y)F (y + q)dy|

≤
∫∞
0

|p(y)|dy
|
∫∞
0

F (y)p(y)dy|
+ q +

∫∞
0

y|p(y)|dy
|
∫∞
0

p(y)F (y)dy|
.

Because of (30), the denominator is positive. Consequently, the right-hand
side is finite and θ(q, p) ∈ H+.

• Operator ρ(q, p) when q = 0 is a contraction mapping: when no order is
made, the inventory distribution shifts to the left. This follows from

||ρ(0, p)|| =

∥∥∥∥∫ ∞

x

f(y − x)p(y)dy

∥∥∥∥
≤

∫ ∞

0

∫ ∞

x

f(y − x)|p(y)|dydx +

∫ ∞

0

x

∫ ∞

x

f(y − x)|p(y)|dydx

=

∫ ∞

0

|p(y)|
∫ y

0

f(y − x)dxdy +

∫ ∞

0

|p(y)|
∫ y

0

xf(y − x)dxdy

≤
∫ ∞

0

|p(y)|F (y)dy +

∫ ∞

0

|p(y)|yF (y)dy

≤
∫ ∞

0

|p(y)|dy +

∫ ∞

0

|p(y)|ydy (since F ≤ 1)

= ||p||.(31)
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• Operator θ is homogenous of degree 0 in p because

〈θ(q, p), 1〉 =

∫ ∞

0

ρ(q, p)

〈ρ(q, p), 1〉dx = 1 and

θ(q, λp) = θ(q, p) for each constant λ ∈ �.

2.3. The Bellman equation. We write pt(q̃) and πt(q̃) to emphasize the de-
pendence of the states pt or πt on the control policy. We assume that c(It, qt) has
linear growth in It for every fixed qt, i.e., c(., qt) ∈ H∗. The cost function can be
written as follows:

J(ζ, π, q̃) =

∞∑
t=1

αtE[E[c(It, qt)|Zt]]

=

∞∑
t=1

αtE{ztc(0, qt) + (1 − zt)〈c(It, qt), πt(q̃)〉},

where πt(q̃) is the solution of (17). Recall that the initial conditions ζ1 = ζ ∈ {0, 1}
and π1 = π are given. In what follows, we study only the discounted infinite horizon
costs, so the time index t is suppressed. We define the value function

V (ζ, π) := inf
q̃
J(ζ, π, q̃).

Looking one period ahead from period one,

V (ζ, π) = inf
q
{ζc(0, q) + (1 − ζ)〈c(., q), π(·)〉 + αE[V (ζ2, π2)|ζ, π]},

where

E[V (ζ2, π2)|ζ, π] = E[V (ζ2, ζθ(q, δ) + (1 − ζ)θ(q, π))|ζ, π]

= P(I2 = 0|ζ)V (1, ζθ(q, δ) + (1 − ζ)θ(q, π))

+ P(I2 > 0|ζ)V (0, ζθ(q, δ) + (1 − ζ)θ(q, π)).

Then V (ζ, π) can be written more explicitly, depending on ζ, as follows:

V (0, π) = inf
q

{
〈c(., q), π(.)〉 + αV (1, θ(q, π))

∫ ∞

0

F̄ (y + q)π(y)dy

+ αV (0, θ(q, π))

∫ ∞

0

F (y + q)π(y)dy

}
,

V (1, π) = inf
q

{
c(0, q) + αV (1, θ(q, δ))F̄ (q) + αV (0, θ(q, δ))F (q)

}
.

If we write v := V (1, π) which, in fact, is not dependent on π, and V (π) := V (0, π),
then we obtain the following system:

V (π) = inf
q

{
〈c(., q), π(.)〉(32)

+ αv

∫ ∞

0

F̄ (y + q)π(y)dy + αV (θ(q, π))

∫ ∞

0

F (y + q)π(y)dy

}
,

v = inf
q

{
c(0, q) + αvF̄ (q) + αV (θ(q, δ))F (q)

}
.(33)
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A direct study of the system in (32)–(33) is not very easy. The matters simplify
considerably when working with the unnormalized probability p ∈ H+. The unnor-
malized probability evolves in accordance with the linear operator ρ. To make ideas
concrete, we define a new value function Z(·) as follows:

Z(p) := V
( p

λ

)
λ, λ :=

∫ ∞

0

p(x)dx.

It follows from (32) that

(34)

Z(p) = λ inf
q

{
〈c(., q), p(.)/λ〉 + αv

∫ ∞

0

F̄ (y + q)(p(y)/λ)dy

+ αV (θ(q, p/λ))

∫ ∞

0

F (y + q)(p(y)/λ)dy

}
= inf

q

{
〈c(., q), p(.)〉 + αv

∫ ∞

0

F̄ (y + q)p(y)dy + αV (θ(q, p))

∫ ∞

0

F (y + q)p(y)dy

}
,

where we use the fact that θ is a homogenous operator of degree 0. Now consider
the term V (θ(q, π)) on the right-hand side. Recall that the λ value corresponding to
ρ(q, p) is 〈ρ(q, p), 1〉. Thus,

Z(ρ(q, p)) =

{∫ ∞

0

ρ(q, p)(x)dx

} {
V

(
ρ(q, p)

〈ρ(q, p), 1〉

)}
=

{∫ ∞

0

F (y + q)p(y)dy

}
{V (θ(q, p))}.

This equality can be used to eliminate V (θ(q, p)) from (34). It can be specialized for
p = δ to eliminate V (θ(q, δ)) from the expression for v. Eventually, we obtain the
following new system of equations:

(35)

Z(p) = inf
q

{
〈c(., q), p(.)〉 + αv

∫ ∞

0

F̄ (y + q)p(y)dy + αZ(ρ(q, p))

}
for all p ∈ H+,

v = inf
q

{
c(0, q) + αvF̄ (q) + αZ(ρ(q, δ))

}
.(36)

Recall that for the Dirac delta function δ /∈ H+ ⊆ H, we have defined ρ(q, δ)(x) =
f(q − x)1lx≤q and ρ(0, δ) = 0 almost everywhere.

From (35) and (36), it follows that

Z(μp) = μZ(p) for every μ > 0.(37)

Thus, Z(0) = 0.
Unlike the operator θ, ρ is a linear operator. Thus, it is easier to study the system

in (35)–(36) than that in (32)–(33). The linearity facilitates our arguments dealing
with the existence of an optimal feedback control and our discussion when it is finite.
Furthermore, it helps in studying finite approximations of the infinite-dimensional
state space as well as in building associated approximate solutions to (35)–(36).

We conclude this section by remarking that this problem and the methodology
developed here have not appeared before in the inventory control literature.
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3. Existence of a solution to the Bellman equation.

3.1. Bounded costs. For the existence result, we bound the single-period cost.
To include the special cases given in section 2, we consider positive constants c, c0,
c1, c2, and h such that

c2 + cq < c(I, q) ≤ c0 + c1q + hI for I ≥ 0.(38)

To include the special cases, it is sufficient to set c0 ≥ c(0, 0), where c(0, 0) represents
the maximum expected cost of lost sales that can be incurred in a period. Let a0 :=
max{c0/(1 − α), h}.

In the subsequent analysis, we shall assume c(I, q) to be continuous in I. Further-
more, we shall assume continuity in q for convenience in exposition. In the case when
there is a fixed cost of ordering, c(I, q) will be discontinuous in q at q = 0. However,
the affected proofs can be easily extended to handle this case.

To accommodate our unnormalized conditional probabilities, we define the func-
tional space

B :=

{
φ(p) : H+ → � : sup

p∈H+

|φ(p)|
||p|| < ∞

}
(39)

equipped with the norm

||φ||B := sup
p∈H+

|φ(p)|
||p|| ,(40)

where ||p|| still refers to the norm that we initially defined in H ⊇ H+. For any φ ∈ B,
we must have φ(0) = 0.

We will often speak of a pair (v, Z), which is made of a scalar v ∈ � and an
element Z ∈ B. As such, (v, Z) can be considered as an element in the functional
space �×B. We suppress the argument p in Z(p) when Z is considered as a functional.
Thus, when the existence, uniqueness, or continuity of Z is under consideration, we
only write Z in what follows. For example, a solution of (35)–(36) will be a pair of
the form (v, Z). We will write (v1, Z1) ≤ (v2, Z2) to mean (v1, Z1(p)) ≤ (v2, Z2(p))
for any given p ∈ H+.

We search for a solution (v, Z) of (35)–(36) in �×B. A property of this solution
is presented next.

Lemma 3. Each solution (v, Z) of (35)–(36) in �×B satisfies ||Z||B ≤ a0/(1−α).
Proof. For any given p ∈ H+, by setting q = 0, we obtain

Z(p) ≤
{
〈c(., 0), p(.)〉 + αv

∫ ∞

0

F̄ (y)p(y)dy + αZ(ρ(0, p))

}
.(41)

From (38) and the fact that F̄ ≤ 1, we can write

Z(p) ≤ c0

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx + αv

∫ ∞

0

p(x)dx + αZ(ρ(0, p))(42)

(40)

≤ (c0 + αv)

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx + α||Z||B||ρ(0, p)||

(31)

≤ (c0 + αv)

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx + α||Z||B||p||.(43)
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Now use the Bellman equation for v along with ρ(0, δ) = 0 and Z(0) = 0 to obtain
the second inequality:

0 ≤ v ≤ c(0, 0) + αv ≤ c0 + αv.

This implies v ≤ c0/(1 − α). Then c0 + αv ≤ c0 + αc0/(1 − α) = c0/(1 − α), which
can be inserted into the upper bound for Z(p) above to obtain

Z(p) ≤ (c0/(1 − α))

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx + α||Z||B||p||

and, in turn,

Z(p) ≤ a0||p|| + α||Z||B||p||.

By dividing both sides by ||p|| and taking the supremum over p ∈ H+, we obtain

||Z||B ≤ a0 + α||Z||B,

which implies ||Z||B ≤ a0/(1 − α).
Define the function G : �×H → �, given (v, Z), as

G(q, p; v, Z) := 〈c(., q), p(.)〉 + αv

∫ ∞

0

F̄ (y + q)p(y)dy + αZ(ρ(q, p)).

For p = δ,

G(q, δ; v, Z) = c(0, q) + αvF̄ (q) + αZ(ρ(q, δ)).

Define the map T : �× B → �× B as

T

(
v
Z(p)

)
:=

(
infq G(q, δ; v, Z)
infq G(q, p; v, Z)

)
.(44)

Define Z0 as the value function that solves the Bellman equations when q = 0. Then
it must solve

〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZ0(ρ(0, p)) = Z0(p),(45)

where v0 := Z0(p = δ). By (36) and Z(0) = 0, we have v0 = c0 + αv0. The existence
and uniqueness of the functional Z0 are established in the next lemma.

Lemma 4. Z0 exists and is uniquely defined.
Proof. First, we look for a solution of (45). Consider a linear and bounded map

U : H → �. We can locally define the norm of U as

||U ||B− = sup
p∈H

|U(p)|/||p||.(46)

This norm is defined on the functional space B−, which can be constructed like B
but with H instead of H+ in (39). In comparison to φ ∈ B and Z0, U has a larger
domain that includes negative p. Here it is more convenient to work in the subspace
H instead of H+.
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Define

τ(U)(p) := 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αU(ρ(0, p)).

The map τ is an affine function of U and it is linear in p. For linear maps U1, U2 ∈ B−,
we have

|τ(U1)(p) − τ(U2)(p)| = α|U1(ρ(0, p)) − U2(ρ(0, p))|
= α|(U1 − U2)(ρ(0, p))|
≤ α||ρ(0, p)|| · ||U1 − U2||B−

(31)

≤ α||p|| · ||U1 − U2||B− .

This equality above follows from the linearity of U1 and U2. Using the inequality
above, we can deduce that

sup
p∈H

|τ(U1)(p) − τ(U2)(p)|
||p|| ≤ α||U1 − U2||B− .

The left-hand side above is the norm ||τ(U1) − τ(U2)|| of τ(U1) − τ(U2), so we arrive
at

||τ(U1) − τ(U2)|| ≤ α||U1 − U2||B− .

It follows that τ is a contraction mapping and it has a unique fixed point U0 such that
τ(U0) = U0. By restricting the domain of U0 to H+, we uniquely obtain Z0. Thus,
Z0 is a fixed point for T when q = 0, and it solves (45).

If v ≤ v0, Z(p) ≤ Z0(p), and(
ṽ

Z̃(p)

)
:= T

(
v
Z(p)

)
,

then ṽ ≤ c(0, 0) + αv ≤ c0 + αv0 = v0. Also,

Z̃(p) ≤ 〈c(., 0), p(.)〉 + αv

∫ ∞

0

F̄ (y)p(y)dy + αZ(ρ(0, p))

≤ 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZ0(ρ(0, p))

(45)
= Z0(p).

For 0 ≤ v ≤ v0 and 0 ≤ Z(p) ≤ Z0(p), we have just shown that

T

(
v
Z(p)

)
≤

(
v0

Z0(p)

)
.(47)

This inspires the next theorem, which proves the existence of a solution of the system
(35)–(36) by using a value iteration scheme. The solution is denoted as (v̄, Z̄).

Theorem 2. Under assumption (38), a solution of (35)–(36) exists.
Proof. Let (

vn+1

Zn+1(p)

)
:= T

(
vn
Zn(p)

)
.
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Starting with v0 and Z0 defined by (45), we first claim that(
vn+1

Zn+1(p)

)
≤

(
vn
Zn(p)

)
.

The claim can be established recursively. First consider n = 0. Then, by setting
q = 0, we have

v1 ≤ c0 + αv0 + αZ0(ρ(0, δ)) = v0,

Z1(p) ≤ 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZ0(ρ(0, p)) = Z0(p),

where the equalities are due to (45). Now we assume that the claim holds for n = k,
and then establish it for n = k + 1. If v ≤ v′ and Z(p) ≤ Z ′(p), then it follows from
the definition of T that

T

(
v
Z(p)

)
≤ T

(
v′

Z ′(p)

)
.

By the recursion hypothesis (vk+1, Zk+1) ≤ (vk, Zk). Take v = vk+1, Z = Zk+1,
v′ = vk, and Z ′ = Zk in the above inequality to finish the proof of the claim.

Since (vn, Zn) is a nonincreasing sequence with a lower bound of (0, 0), it has a
limit (v̄, Z̄): (vn, Zn) ↓ (v̄, Z̄). In other words,(

v̄
Z̄(p)

)
= lim

n→∞
Tn

(
v0

Z0(p)

)
,

where Tn is the n times composition of T . Since T is not known to be continuous,
the above equality does not yield (v̄, Z̄) as a fixed point. But, for a finite n,(

vn+1

Zn+1(p)

)
≥ T

(
v̄
Z̄(p)

)
.

Applying T infinitely many times on both sides, we arrive at(
v̄
Z̄(p)

)
≥ T

(
v̄
Z̄(p)

)
.(48)

On the other hand, by arbitrarily picking a q in (44), we see that

vn+1 ≤ c(0, q) + αvnF̄ (q) + αZn(ρ(q, δ)),

Zn+1(p) ≤ 〈c(., q), p(.)〉 + αvn

∫ ∞

0

F̄ (y + q)p(y)dy + αZn(ρ(q, p)).

Specializing these inequalities for vn = v̄ and Zn(p) = Z̄(p), we obtain(
v̄
Z̄(p)

)
≤ T

(
v̄
Z̄(p)

)
.(49)

Combining (48) and (49), we establish that (v̄, Z̄) is a fixed point. The fixed point is
not necessarily unique, but it is the maximum solution in the following sense. Any
solution (v, Z) that satisfies (v, Z) ≤ (v0, Z0) also satisfies (v, Z) ≤ (v̄, Z̄).
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Backward interpretation of the monotone iterative process (vn, Zn).
Recall the monotone iterative process on (vn, Zn), which starts with v0 = c0/(1 − α)
and Z0 as given in (45), and continues with (vn+1, Zn+1) = T (vn, Zn).

Now consider a new sequence (vn,N+1, Zn,N+1) constructed by starting with

ZN+1,N+1(p) = Z0(p), vN+1,N+1 = v0

and by moving backwards recursively:(
vn+1,N+1

Zn+1,N+1(p)

)
≤ T

(
vn,N+1

Zn,N+1(p)

)
.

Then Zn,N+1(p) = ZN+1−n(p) and vn,N+1 = vN+1−n.
We define the total discounted cost as

Jn,N+1(ζ, π, q̃) := E

[
N∑

t=n

αt−nc(It, qt) +

∞∑
t=N+1

αt−nc(It, 0)

]
,

with zn = ζ and πn = π. Then we have the validation of the backward monotone
process:

inf
q̃
Jn,N+1(ζ, π, q̃) = ζvn,N+1 + (1 − ζ)Zn,N+1(π).

Note that the cost c(., .) is bounded. Then, J1,N+1(ζ, π, q̃) converges to J(ζ, π, q̃) as
N increases. Thus, one has the option of finding the optimal order quantities either
by a forward or a backward recursion.

Bounding the optimal order quantity. Start by setting q = 0 in (35) and
obtain

Z(p) ≤ 〈c(., 0), p(., 0)〉 + αv

∫ ∞

0

F̄ (y)p(y)dy + αZ(ρ(0, p))

≤ c0

∫ ∞

0

p(x)dx

+ h

∫ ∞

0

xp(x)dx + α
c0

1 − α

∫ ∞

0

p(x)dx + α

(
sup
p∈H+

|Z(ρ(0, p))|
||ρ(0, p)||

)
||ρ(0, p)||

≤ c0

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx + α
c0

1 − α

∫ ∞

0

p(x)dx + α

(
a0

1 − α

)
||p||

≤ c0

∫ ∞

0

p(x)dx + h

∫ ∞

0

xp(x)dx

+ α
c0

1 − α

∫ ∞

0

p(x)dx + α
a0

1 − α

(∫ ∞

0

p(x)dx +

∫ ∞

0

xp(x)dx

)
≤

(
c0

1 − α
+

a0α

1 − α

)∫ ∞

0

p(x)dx +

(
h +

a0α

1 − α

)∫ ∞

0

xp(x)dx

≤ a0

1 − α

{∫ ∞

0

p(x)dx +

∫ ∞

0

xp(x)dx

}
.

With an arbitrary order quantity q, the cost has a lower bound of cq
∫∞
0

p(x)dx. If
this bound exceeds Z(p), then q cannot be optimal. Hence, the optimal order quantity
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satisfies cq
∫∞
0

p(x)dx ≤ Z(p), which along with the above inequality implies

q ≤ a0

c(1 − α)

{
1 +

∫∞
0

xp(x)dx∫∞
0

p(x)dx

}
.(50)

Note that the bound depends on the unnormalized probability p and can be arbitrarily
large as p → 0. Because of this observation, we choose to assume a bound on the
order quantity in the next subsection.

3.2. Bounded order quantities. In this section we assume that there is a finite
bound on the order quantity q in addition to the cost bounds in the previous section.
The finite bound can be due to the supplier’s limited production or transportation
capacity, or the storage capacity IM can use. Let the capacity be m and let the
corresponding Z and v be denoted by Zm and vm. Then (35)–(36) is written as

Zm(p)

= inf
q≤m

{
〈c(., q), p(.)〉 + αvm

∫ ∞

0

F̄ (y + q)p(y)dy + αZm(ρ(q, p))

}
for all p ∈ H+,

vm = inf
q≤m

{
c(0, q) + αvmF̄ (q) + αZm(ρ(q, δ))

}
.(51)

We shall prove that the functional Zm is Lipschitz continuous on H, i.e., there
exist constants Am and Bm such that

|Zm(p) − Zm(p′)| ≤ Am

∫ ∞

0

|p(y) − p′(y)|dy + Bm

∫ ∞

0

y|p(y) − p′(y)|dy(52)

for any p, p′ ∈ H. This additional smoothness property allows us to establish the
uniqueness of a solution of the system in (35)–(36). The next lemma illustrates how
the constants Am and Bm can be chosen.

Lemma 5. For a fixed m, Zm is Lipschitz continuous, where the constants Am

and Bm in (52) should be chosen as

Am =
c0

(1 − α)2
+

m

1 − α

(
c1 +

αh

1 − α

)
and Bm =

h

1 − α
.

Proof. To bound the differences of Zm, we construct

Zm,n+1(p) = inf
q≤m

G(q, p; vm, Zm,n)

by starting with Zm,0, which solves

〈c(., 0), p(.)〉 + αvm
∫ ∞

0

F̄ (y)p(y)dy + αZm,0(ρ(0, p)) = Zm,0(p).(53)

Since Zm,n converges to Zm as n goes to infinity, it suffices to prove that Zm,n is
Lipschitz continuous with constants independent of n. This proof is by induction on
n. In other words, Lipschitz continuity must be preserved as n grows and it must
hold when we start at n = 0. These two requirements correspond respectively to the
following two claims, which are proved below.



196 A. BENSOUSSAN, M. ÇAKANYILDIRIM, AND S. P. SETHI

Claim 1. Zm,n+1 is Lipschitz continuous with constants Am and Bm, if Zm,n is
Lipschitz continuous with the same constants.

Claim 2. Zm,0 is Lipschitz continuous with constants Am and Bm.

Proof of Claim 1. We start by bounding G(q, p; ; vm, Zm,n) − G(q, p′; vm, Zm,n)
as follows. In the first inequality below, we use vm ≤ c0/(1 − α) and the fact that ρ
is a linear operator:

|G(q, p; vm, Zm,n) −G(q, p′; vm, Zm,n)|

≤ (c0 + c1q)

∫ ∞

0

|p(y) − p′(y)|dy + h

∫ ∞

0

y|p(y) − p′(y)|dy

+
αc0

1 − α

∫ ∞

0

|p(y) − p′(y)|dy

+ α

{
Am

∫ ∞

0

|ρ(q, p− p′)(y)|dy + Bm

∫ ∞

0

y|ρ(q, p− p′)(y)|dy
}

(26,27)

≤
(

c0
1 − α

+ c1q

)∫ ∞

0

|p(y) − p′(y)|dy + h

∫ ∞

0

y|p(y) − p′(y)|dy

+ α

{
(Am + Bmq)

∫ ∞

0

|p(y) − p′(y)|dy + Bm

∫ ∞

0

y|p(y) − p′(y)|dy
}

≤
(

c0
1 − α

+ c1m + α(Am + Bmm)

)∫ ∞

0

|p(y) − p′(y)|dy

+ (h + αBm)

∫ ∞

0

y|p(y) − p′(y)|dy.

Note that the right-hand side of the last inequality is independent of q, provided
that 0 ≤ q ≤ m. Hence,

|Zm,n+1(p) − Zm,n+1(p′)| = | inf
q≤m

G(q, p; vm, Zm,n) − inf
q≤m

G(q, p′; vm, Zm,n)|

≤
(

c0
1 − α

+ c1m + α(Am + Bmm)

)∫ ∞

0

|p(y) − p′(y)|dy

+ (h + αBm)

∫ ∞

0

y|p(y) − p′(y)|dy

≤ Am

∫ ∞

0

|p(y) − p′(y)|dy + Bm

∫ ∞

0

y|p(y) − p′(y)|dy.

The last inequality holds only if

h + αBm ≤ Bm,

so we set Bm = h/(1 − α). Then, we have the equality below and we require the
inequality below:

c0
1 − α

+ c1m + α(Am + Bmm) =
c0

1 − α
+ c1m + α(Am + mh/(1 − α)) ≤ Am.

This inequality yields the condition on Am and completes the proof of Claim 1.

Proof of Claim 2. We prove the claim by using another induction. Consider the
following iteration:
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Zm,0,0(p) = 〈c(., 0), p(.)〉 + αvm
∫ ∞

0

F̄ (y)p(y)dy,

Zm,0,n(p) = G(0, p; vm, Zm,0,n−1)

= 〈c(., 0), p(.)〉 + αvm
∫ ∞

0

F̄ (y)p(y)dy + αZm,0,n−1(ρ(0, p)).

It is immediate that Zm,0,n(p) ≥ Zm,0,n−1(p), and we can also show that Zm,0,n(p) is
bounded. Thus, Zm,0,n(p) converges to Zm,0(p), which is the unique solution of (53).
We know from Claim 1 that G preserves Lipschitz continuity. Thus, it suffices to show
that Zm,0,0 is Lipschitz. This follows from

|Zm,0,0(p) − Zm,0,0(p′)|

≤ c0

∫
|p(y) − p′(y)|dy + h

∫
y|p(y) − p′(y)|dy +

αc0
1 − α

|p(y) − p′(y)|dy

≤ c0
1 − α︸ ︷︷ ︸
≤Am

∫
|p(y) − p′(y)|dy + h︸︷︷︸

≤Bm

∫
y|p(y) − p′(y)|dy.

This completes the proof of Claim 2. Thus, the lemma is proved.
Existence of a solution to (51) can be proved by following the steps in Theorem 2.

The more interesting issue is whether the respective solutions of (35)–(36) and (51)
coincide as the bound on the order quantity is removed. To make ideas concrete,
define the map Tm similar to T in (44):

Tm

(
v
Z(p)

)
:=

(
infq≤m G(q, δ; v, Z)
infq≤m G(q, p; v, Z)

)
.(54)

Let Tm
n be n compositions of Tm. Thus, (vmn , Zm

n ) can be obtained by applying Tm
n

on (v0, Z0). By the arguments in Theorem 2, (vmn , Zm
n ) is a nonincreasing sequence,

and it converges to, say, (v̄m, Z̄m). We next establish that (v̄m, Z̄m) converges to
(v̄, Z̄), which is the maximal solution of the system in (35)–(36).

Lemma 6. (v̄m, Z̄m) ↓ (v̄, Z̄) as m increases to ∞.
Proof. Because of the constraint q ≤ m,

Tm

(
v
Z(p)

)
≥ Tm+1

(
v
Z(p)

)
for any (v, Z). Starting the value iteration with (v0, Z0),(

vm1
Zm

1 (p)

)
= Tm

(
v0

Z0(p)

)
≥ Tm+1

(
v0

Z0(p)

)
=

(
vm+1
1

Zm+1
1 (p)

)
.

Applying Tm on the right and Tm−1 on the left as many times as necessary, we set

(v̄m, Z̄m) = lim
n→∞

Tm
n (v0, Z0) ≥ lim

n→∞
Tm+1
n (v0, Z0) = (v̄m+1, Z̄m+1).

In particular, (v̄m, Z̄m) ≥ (v̄, Z̄). In addition, (v̄m, Z̄m) is nonincreasing in m, so it
has a limit, say (ṽ, Z̃). Clearly, (ṽ, Z̃) ≥ (v̄, Z̄).

Recall that (v̄, Z̄) is the maximal fixed point of T . To finish the proof, it suffices
to argue that (ṽ, Z̃) is also a fixed point of T . Since (ṽ, Z̃) ≤ (v0, Z0), we can repeat
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the initial steps in the proof of Theorem 2 to obtain the following inequality, which
is analogous to (48): (

ṽ

Z̃(p)

)
≥ T

(
ṽ

Z̃(p)

)
.

On the other hand, for any q and q ≤ m, we have

Zm(p) ≤ G(q, p; vm, Zm),

vm ≤ G(q, δ; vm, Zm).

Hence, (
ṽ

Z̃(p)

)
≤ T

(
ṽ

Z̃(p)

)
.

Thus, (ṽ, Z̃) is a fixed point of T .
So far, we have studied the existence and the convergence of (vm, Zm). The next

theorem validates the monotone iterative process, that is, (vm, Zm) minimizes the
total discounted cost. As a side product of the theorem, vm and Zm turn out to be
unique because they are equal to the minimum costs, which are unique by definition.

Theorem 3. The solution (vm, Zm) of (51) gives the minimum total discounted
cost as follows:

Zm(π) = inf
q̃:qt≤m

J(0, π, q̃),

vm = inf
q̃:qt≤m

J(1, δ, q̃).

Proof. The proof has two parts. We first show that Zm(π) and vm are, re-
spectively, smaller than J(0, π, q̃) and J(1, δ, q̃) for any q̃ such that qt ≤ m. For an
arbitrary q ≤ m,

Zm(p) ≤ 〈c(., q), p(.)〉 + αvm
∫ ∞

0

F̄ (y + q)p(y)dy + αZm(ρ(q, p)).

Take p = πt and q = qt so that

Zm(πt) ≤ 〈c(., qt), πt(.)〉 + αvm
∫ ∞

0

F̄ (y + qt)πt(y)dy + αZm(ρ(qt, πt)),

vm ≤ c(0, qt) + αvmF̄ (qt) + αZm(ρ(qt, δ)).

Note that by (51) and (37), Zm(λp) = λZm(p) for any scalar λ > 0. Taking λ =∫
F (y + qt)πt(y)dy, we obtain

Zm(πt) ≤ 〈c(., qt), πt(.)〉 + αvm
∫ ∞

0

F̄ (y + qt)πt(y)dy

+ αZm(θ(qt, πt))

∫ ∞

0

F (y + qt)πt(y)dy,

vm ≤ c(0, qt) + αvmF̄ (qt) + αZm(θ(qt, δ))F (qt).
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Now combine these two inequalities by using the weights 1 − zt and zt, respectively,
and obtain

(1 − zt)Z
m(πt) + ztv

m ≤ ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉

+ α

{
(1 − zt)

[
vm

∫ ∞

0

F̄ (y + qt)πt(y)dy

+ Zm(θ(qt, πt))

∫ ∞

0

F (y + qt)πt(y)dy

]
+ zt

[
vmF̄ (qt) + Zm(θ(qt, δ))F (qt)

]}
.(55)

Consider the relation

E[(1 − zt+1)Z
m(πt+1) + zt+1v

m|Zt]

= P(It+1 > 0|Zt)Z
m(πt+1) + P(It+1 = 0|Zt)v

m

=

[
ztF (qt) + (1 − zt)

∫ ∞

0

F (qt + y)πt(y)

]
Zm(πt+1)

+

[
ztF̄ (qt) + (1 − zt)

∫ ∞

0

F̄ (qt + y)πt(y)dy

]
vm

=

[
ztF (qt) + (1 − zt)

∫ ∞

0

F (qt + y)πt(y)

]
Zm(ztθ(qt, δ) + (1 − zt)θ(qt, πt))

+

[
ztF̄ (qt) + (1 − zt)

∫ ∞

0

F̄ (qt + y)πt(y)dy

]
vm

= zt
[
Zm(θ(qt, δ))F (qt) + vmF̄ (qt)

]
+ (1 − zt)

[
Zm(θ(qt, πt))

∫ ∞

0

F (qt + y)πt(y)dy + vm
∫ ∞

0

F̄ (qt + y)πt(y)dy

]
.

Now insert this equality into the curly brackets in (55) to obtain

(1 − zt)Z
m(πt) + ztv

m ≤ ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉
+ α {E[(1 − zt+1)Z

m(πt+1) + zt+1v
m|Zt]} .

By multiplying both sides by αt and taking expected values, we get

αtE[(1 − zt)Z
m(πt) + ztv

m] ≤ αtE[ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉]
+ αt+1E[(1 − zt+1)Z

m(πt+1) + zt+1v
m] for t ≥ 1.

Now sum up both sides for t ≥ 1 to obtain

∞∑
t=1

αtE[(1 − zt)Z
m(πt) + ztv

m] ≤
∞∑
t=1

αtE[ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉]

+

∞∑
t=1

αt+1E[(1 − zt+1)Z
m(πt+1) + zt+1v

m].(56)

The second term on the right-hand side is next argued to be finite, so that it can be
deducted from both sides of the inequality.

We now construct an upper bound for EZm(πt+1). First note that

EZm(πt+1) ≤ |EZm(πt+1)| ≤ ||Zm||B||Eπt+1|| = ||Zm||BE||πt+1||,
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where

E||πt+1|| = 1 + E

∫ ∞

0

xπt+1(x)dx.

But

E

∫ ∞

0

xπt+1(x)dx = E(1 − zt+1)E[It+1|Zt+1] ≤ EIt+1 ≤ I0 + m(t + 1),

where the last inequality follows from qt ≤ m. Therefore, as t → ∞,

αt+1E[(1 − zt+1)Z
m(πt+1) + zt+1v

m] ≤ αt+1E[Zm(πt+1)] + αt+1vm

≤ αt+1 a0

1 − α
E[πt+1] + αt+1vm

by Lemma 3

≤ αt+1 a0

1 − α
(I0 + m(t + 1)) + αt+1vm.

Since
∑

t α
t+1 a0

1−α (I0 + m(t + 1)) + αt+1vm < ∞, the second term on the right-hand
side of (56) is finite. Now deduct it from the left-hand side to obtain

αE[(1 − z1)Z
m(π1) + z1v

m] ≤
∞∑
t=1

αtE[ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉].(57)

From (57), it follows that

(1 − ζ)Zm(π) + ζvm = E[(1 − z1)Z
m(π) + z1v

m]

≤
∞∑
t=1

αt[ztc(0, qt) + (1 − zt)〈c(., qt), πt(.)〉] = J(ζ, π, q̃).

This finishes the first part of the proof.
For the second part of the proof, we construct an optimal solution by considering

an optimal feedback control q̂m(p) and q̂m such that

Zm(p) = 〈c(., q̂m(p)), p(.)〉 + αvm
∫ ∞

0

F̄ (y + q̂m(p))p(y)dy + αZm(ρ(q̂m(p), p)),

vm = c(0, q̂m) + αvmF̄ (q̂m) + αZm(ρ(q̂m, δ)).

Existence of an optimal feedback control follows from the continuity of c(·, ·), the
continuity of F̄ (·), and the Lipschitz continuity of Zm in Lemma 5.

We associate these feedbacks with a stochastic process {ˆ̃qmt }, which is adapted to
Zt and defined recursively as follows:

ˆ̃q
m

1 := ζq̂m + (1 − ζ)q̂m(π),

ˆ̃q
m

t+1 := ztq̂
m + (1 − zt)q̂

m(πt).

The definitions of q̂m(p), q̂m, and ˆ̃q
m

yield the next two equalities:
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(1 − zt)Z
m(πt) + ztv

m

= (1 − zt)〈c(., q̂m(πt)), πt(.)〉 + α(1 − zt)v
m

∫ ∞

0

F̄ (y + q̂m(πt))πt(y)dy

+ α(1 − zt)Z
m(ρ(q̂m(πt), πt)) + ztc(0, q̂

m) + αztv
mF̄ (q̂m) + αztZ

m(ρ(q̂m, δ))

= (1 − zt)〈c(., ˆ̃q
m

t+1), πt(.)〉 + α(1 − zt)v
m

∫ ∞

0

F̄ (y + ˆ̃q
m

t+1)πt(y)dy

+ α(1 − zt)Z
m(ρ(ˆ̃q

m

t+1, πt)) + ztc(0, ˆ̃q
m

t+1) + αztv
mF̄ (ˆ̃q

m

t+1) + αztZ
m(ρ(ˆ̃q

m

t+1, δ))

= (1 − zt)〈c(., ˆ̃q
m

t+1), πt(.)〉 + ztc(0, ˆ̃q
m

t+1)

+ α(1 − zt)

[
vm

∫ ∞

0

F̄ (y + ˆ̃q
m

t+1)πt(y)dy + Zm(ρ(ˆ̃q
m

t+1, πt))

]
+ αzt[v

mF̄ (ˆ̃q
m

t+1) + Zm(ρ(ˆ̃q
m

t+1, δ))].

Specializing for t = 1 and taking the infimum over q̃ yields

(1 − ζ)Zm(π) + ζvm ≥ J(ζ, π, ˆ̃q
m

).

Combining the two parts of the proof we have

(1 − ζ)Zm(π) + ζvm = J(ζ, π, ˆ̃q
m

).

Since Zm(π) and vm are defined as a solution of (51) and they are given by the
infima in Theorem 3, both Zm(π) and vm are unique. As m increases, we have

inf
q̃:qt≤m

J(0, π, q̃) ↓ inf
q̃
J(0, π, q̃),

inf
q̃:qt≤m

J(1, π, q̃) ↓ inf
q̃
J(1, π, q̃).

These imply

Z(π) = inf
q̃
J(0, π, q̃),

v = inf
q̃
J(1, π, q̃).

Thus, Z(π) and v are interpreted as the infima of the costs even when m disappears.
However, a corresponding feedback solution that yields Z(π) and v may not exist
unless m is finite.

In this section, we have established that Zm is continuous and that it converges
to Z. However, these results do not guarantee the continuity of Z. Nevertheless, we
have the weaker form of continuity as presented in the next lemma.

Lemma 7. Z is upper semicontinuous, i.e.,

lim sup
pk→p

Z(pk) ≤ Z(p).

Proof. Since Z(pk) ≤ Zm(pk) for each k and Zm is continuous,

lim sup
pk→p

Z(pk) ≤ lim sup
pk→p

Zm(pk) = Zm(p).

Now take the limit as m → ∞ to obtain the desired result.
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4. A sufficiently small discount rate. We argue that T is a contraction map
for a sufficiently small α. Namely, we let M := 1 + a0/(c(1 − α)) and require that
α(1 + M) < 1. In this case, the solution of the system (35)–(36), whose existence
follows from Theorem 2, is unique.

Consider the difference

G(q, p; v, Z) −G(q, p; v′, Z ′) = α(v − v′)

∫ ∞

0

F̄ (y + q)p(y)dy

+ α[Z(ρ(q, p)) − Z ′(ρ(q, p))].

Let us define a distance in the space �× B by

η = d

((
v
Z(p)

)
,

(
v′

Z ′(p)

))
:= max

{
sup
p∈H+

|Z(p) − Z ′(p)|
||p|| , |v − v′|

}
.

Since Z ∈ B and η < ∞, we have

|G(q, p; v, Z) −G(q, p; v′, Z ′)| ≤ α|v − v′|
∫ ∞

0

p(y)dy + α||Z − Z ′||B||ρ(q, p)||

≤ ηα

∫ ∞

0

p(y)dy + ηα||ρ(q, p)||.(58)

On the other hand, by (50),

q ≤ a0

c(1 − α)

||p||∫∞
0

p(y)dy
,

or, equivalently,

q

∫ ∞

0

p(y)dy ≤ a0

c(1 − α)
||p||.

Using (26) and (27), we obtain

||ρ(q, p)|| ≤
∫ ∞

0

|p(y)|dy +

∫ ∞

0

(y + q)|p(y)|F (y + q)dy

≤ ||p|| + q

∫ ∞

0

|p(y)|dy

≤ ||p||
(

1 +
a0

c(1 − α)

)
= M ||p||.(59)

Now insert (59) into (58) to obtain

|G(q, p; v, Z) −G(q, p; v′, Z ′)| ≤ ηα(1 + M)||p||.

Hence, it follows that

|inf
q
G(q, p; v, Z) − inf

q
G(q, p; v′, Z ′)| ≤ ηα(1 + M)||p||.

Recalling ||δ|| = 1 and specializing to p = δ, we have

|inf
q
G(q, δ; v, Z) − inf

q
G(q, δ; v′, Z ′)| ≤ ηα(1 + M).
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In summary, we have proved

d

(
T

(
v

Z(p)

)
, T

(
v′

Z ′(p)

))
≤ α(1 + M)d

((
v
Z(p)

)
,

(
v′

Z ′(p)

))
.

In addition, if α(1 + M) < 1 as required at the beginning of this section, T is a
contraction map on � × B. It is also a contraction on � × Bc, where Bc denotes the
closed subset containing the continuous functions in B. Therefore, when α(1+M) < 1,
(35)–(36) have a unique fixed point in �× Bc.

4.1. Relaxing the condition on the discount rate. We relax the condition
α(1+M) < 1 to αM < 1 by measuring the distance d in �×B for a fixed λ. Namely,
we consider the projection of �×B onto {λ}×B. For any λ, we define the projected
value function Zλ as the solution of

Zλ(p) = inf
q

{
〈c(., q), p(.)〉 + αλ

∫ ∞

0

F̄ (y + q)p(y)dy + αZλ(ρ(q, p))

}
.(60)

Note by (37) that Zλ(μp) = μZλ(p), and thus Zλ(0) = 0.
Lemma 8. If λ < v0 = c0/(1 − α), then Zλ(p) ≤ Z0(p) for all p ∈ H+.
Proof. First note that

Zλ(p) ≤ 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZλ(ρ(0, p)),

Z0(p) = 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZ0(ρ(0, p)).

Now take the difference to obtain Zλ(p)−Z0(p) ≤ α(Zλ(ρ(0, p))−Z0(ρ(0, p))). Taking
the positive parts, we obtain [Zλ(p)−Z0(p)]

+ ≤ α[Zλ(ρ(0, p))−Z0(ρ(0, p))]
+. Divide

both sides by ||p|| and take the supremum over p ∈ H+ to obtain

sup
p∈H+

[Zλ(p) − Z0(p)]
+

||p|| ≤ α sup
p∈H+

[Zλ(ρ(0, p)) − Z0(ρ(0, p))]
+

||p||

≤ α||Zλ − Z0||B sup
p∈H+

||ρ(0, p)||
||p|| ≤ α||Zλ − Z0||B

≤ α

{
sup
p∈H+

[Zλ(p) − Z0(p)]
+

||p||

}
.(61)

By recursing (61) N times, we get

sup
p∈H+

[Zλ(p) − Z0(p)]
+

||p|| ≤ αN

{
sup
p∈H+

[Zλ(p) − Z0(p)]
+

||p||

}
.

Thus, [Zλ(p) − Z0(p)]
+ = 0 or Zλ(p) ≤ Z0(p).

Define, for λ ≤ v0 and Z ≤ Z0,

Tλ(Z)(p) := inf
q

{
〈c(., q), p(.)〉 + αλ

∫ ∞

0

F̄ (y + q)p(y)dy + αZ(ρ(q, p))

}
.

Use v = v′ = λ in the steps used in obtaining (58) to arrive at

|Tλ(Z)(p) − Tλ(Z ′)(p)| ≤ α||Z − Z ′||B||ρ(q, p)|| ≤ α||Z − Z ′||BM ||p||.
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The second inequality is due to ||ρ(q, p)|| ≤ M ||p||, where M = 1 + a0/(c(1 − α)).
Then it is immediate that

||Tλ(Z1) − Tλ(Z2)||B ≤ αM ||Z1 − Z2||B.

If αM < 1, then Tλ(Z) is a contraction mapping. Thus, Tλ(Z) has a fixed point in
� × Bc. Consequently, Zλ is uniquely defined. It is shown to be nondecreasing with
respect to λ in the next lemma.

Lemma 9. Zλ(p) is nondecreasing in λ for each p ∈ H+.
Proof. For any λ, define

Zλ
n(p) := TλZλ

n−1(p), Zλ
0 (p) := Z0(p).

Then Zλ
n(p) ↓ Zλ(p). Suppose λ′ > λ. By induction, if

Zλ′

n−1(p) ≥ Zλ
n−1(p),

then

Zλ′

n (p) = Tλ′
(Zλ′

n−1)(p) ≥ Tλ(Zλ′

n−1)(p) ≥ Tλ(Zλ
n−1)(p) = Zλ

n−1(p).

Going to the limit yields Zλ′
(p) ≥ Zλ(p).

Now consider the function g(λ) for λ ≥ 0 defined by

g(λ) := inf
q

{
c(0, q) + αλF̄ (q) + αZλ(ρ(q, δ))

}
,(62)

where Zλ is given by (60). By Lemma 9, the map g(λ) is nondecreasing. It is concave
with a rate of increase of at most α, by the next theorem.

Theorem 4. The system in (35)–(36) has a unique solution.
Proof. We first establish the concavity of Zλ(p) in λ for each fixed p ∈ H+:

Zβλ1+(1−β)λ2(p) ≥ βZλ1(p) + (1 − β)Zλ2(p).

This will be proved by induction on n in Zλ
n , where Zλ

n = TλZλ
n−1. For n = 0,

Zλ
0 (p) = Z0(p), so it is a constant and hence concave. If the concavity holds for

Zλ
n−1(p) then,

Zβλ1+(1−β)λ2
n (p) = inf

q

{
〈c(., q), p(.)〉 + α(βλ1 + (1 − β)λ2)

∫ ∞

0

F̄ (y + q)p(y)dy

+ αZ
βλ1+(1−β)λ2

n−1 (ρ(q, p))

}
≥ inf

q

{
β〈c(., q), p(.)〉 + αβλ1

∫ ∞

0

F̄ (y + q)p(y)dy + αβZλ1
n−1(ρ(q, p))

+ (1 − β)〈c(., q), p(.)〉 + α(1 − β)λ2

∫ ∞

0

F̄ (y + q)p(y)dy

+ α(1 − β)Zλ2
n−1(ρ(q, p))

}
≥ βZλ1

n (p) + (1 − β)Zλ2
n (p).

Since Tλ preserves the concavity and Zλ
n converge to Zλ, we can conclude that Zλ(p)

is concave in λ for every p ∈ H+.
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We repeat the steps above with g(λ) to see the following:

g(βλ1 + (1 − β)λ2)

= inf
q

{
c(0, q) + α(βλ1 + (1 − β)λ2)F̄ (q) + αZβλ1+(1−β)λ2(ρ(q, δ))

}
≥ inf

q

{
βc(0, q) + αβλ1F̄ (q) + αβZλ1(ρ(q, δ))

+ (1 − β)c(0, q) + α(1 − β)λ2F̄ (q)p(y)dy + α(1 − β)Zλ2(ρ(q, δ))
}

≥ βg(λ1) + (1 − β)g(λ2).

Hence, g(λ) inherits concavity from Zλ(p) for every p ∈ H+.

By setting q = 0 in (62) and recalling that Zλ(ρ(0, δ)) = Zλ(0) = 0, we obtain

g(λ) ≤ c(0, 0) + αλ,(63)

which shows that the function g(λ) has a rate of growth of at most α. Furthermore,
ignoring the last two terms in (62) and using (38), we get

g(0) ≥ inf
q
c(0, q) ≥ c2 > 0.(64)

We already know that there exists a solution to (60). Since g(0) > 0, and g(λ) is
concave and has a growth rate of at most α, the equation g(λ) = λ has a unique
solution v. Thus, setting Z = Zv, we obtain a unique pair (v, Z) which solves
(35)–(36).

5. Abridged optimal control. Let q̂k be the abridged feedback control defined
as

q̂k = {q̂1(π1), q̂2(π2), . . . , q̂k(πk), q̂
∞, . . . , q̂∞, . . . }.

It is important to note that q̂k is defined by k functions mapping H+ to � and a
scalar q̂∞. After period k, the same scalar q̂∞ is applied repeatedly without regard
to the current state, so q̂t is adapted to Zt only for t ≤ k.

Consider the abridged monotone iterative process starting with

v0 = c(0, 0) + αv0,

Z0(p) = 〈c(., 0), p(.)〉 + αv0

∫ ∞

0

F̄ (y)p(y)dy + αZ0(ρ(0, p))

by iterating with the feedback q̂n(p) for n ≤ k, which solves

vn+1 = infq
{
c(0, q) + αvnF̄ (q) + αZn(ρ(q, δ))

}
Zn+1(p) = infq

{
〈c(., q), p(.)〉 + αvn

∫
F̄ (y + q)p(y)dy + αZn(ρ(q, p))

} }
for n ≤ k.

(65)

Afterwards, the monotone iterative process applies the scalar q̂∞, so we have

vn+1 =
{
c(0, q̂∞) + αvnF̄ (q̂∞) + αZn(ρ(q̂∞, δ))

}
Zn+1(p) =

{
〈c(., q̂∞), p(.)〉 + αvn

∫
F̄ (y + q̂∞)p(y)dy + αZn(ρ(q̂∞, p))

} }
for n > k.
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One can improve the value functions by choosing q̂∞ as good as possible. For example,
take

q̂∞ = arg inf
q

E

∞∑
t=1

αtc(It, q) with I1 = Ik+1.

The scalar q̂∞ exists because q can be bounded in the minimization of the sum of
continuous functions c(., q) above.

The scalar q̂∞ can be found by an alternative procedure. For a fixed q, define
(vq, Zq) by

Zq(p) = 〈c(., q), p(.)〉 + αvq

∫ ∞

0

F̄ (y + q)p(y)dy + αZq(ρ(q, p)),

vq = c(0, q) + αvqF̄ (q) + αZq(ρ(q, δ)).

Once the functional Zq is obtained, we choose q̂∞ as

q̂∞ = arg inf
q
Zq(πk+1).

The abridged iterative process preserves the continuity of Zn as established next.
Lemma 10. If Zn is continuous over H+ \ {0}, then Zn+1 is continuous over the

same set.
Proof. Indeed if Zn is continuous, then the function

G(q, p; vn, Zn) = 〈c(., q), p(.)〉 + αvn

∫ ∞

0

F̄ (y + q)p(y)dy + αZn(ρ(q, p))

is continuous in �+ × H+. In view of (50), we can moreover assume that the order
quantity q is bounded above by

q ≤ a0

c(1 − α)

{
1 +

∫∞
0

xp(x)dx∫∞
0

p(x)dx

}
.

This bound depends on p and it is well defined for p ∈ H+ \ {0}. Then there exist
q̂n(p) and q̂n achieving the infima such that

vn+1 = c(0, q̂n) + αvnF̄ (q̂n) + αZn(ρ(q̂n, δ)),

Zn+1(p) = 〈c(., q̂n(p)), p(.)〉 + αvn

∫ ∞

0

F̄ (y + q̂n(p))p(y)dy + αZn(ρ(q̂n(p), p)).

Hence, Zn+1 is continuous in q̂n(p).
To complete the proof, we need to show continuity in p. Suppose that pk → p in

H+. For an arbitrary q,

Zn+1(pk) ≤ 〈c(., q), pk(.)〉 + αvn

∫ ∞

0

F̄ (y + q)pk(y)dy + αZn(ρ(q, pk)).

Take the lim sup of both sides and note that the right-hand side is continuous in pk
to obtain

lim sup
k→∞

Zn+1(pk) ≤ lim sup
k→∞

{
〈c(., q), pk(.)〉 + αvn

∫ ∞

0

F̄ (y + q)pk(y)dy + αZn(ρ(q, pk))

}
≤ 〈c(., q), p(.)〉 + αvn

∫ ∞

0

F̄ (y + q)p(y)dy + αZn(ρ(q, p)).
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Inserting q = q̂n(p) into the right-hand side gives

lim sup
k→∞

Zn+1(pk) ≤ Zn+1(p).(66)

Next

Zn+1(pk) = 〈c(., q̂(pk)), pk(.)〉 + αvn

∫ ∞

0

F̄ (y + q̂(pk))pk(y)dy + αZn(ρ(q̂(pk), p)).

Since pk → p, we can extract a subsequence pkl
indexed by kl such that pkl

→ p
and liml→∞ Zn+1(pkl

) = lim infk Zn+1(pk). Using the standard arguments and the
fact that q̂n(pkl

) remains bounded, we can guarantee that the subsequence q̂n(pkl
)

converges to a number, say q̂′. By continuity of Zn,

lim
l→∞

Zn+1(pkl
) = 〈c(., q̂′), p(.)〉 + αvn

∫ ∞

0

F̄ (y + q̂′)pk(y)dy + αZn(ρ(q̂′, p))

≥ Zn+1(p),

where the inequality is due to the fact that q̂′ may differ from q̂n(p). Using the
inequality along with the definition of the subsequence pkl

, we have

lim inf
k→∞

Zn+1(pk) = lim
l→∞

Zn+1(pkl
) ≥ Zn+1(p).(67)

Combining (66) and (67), we obtain that lim supk Zn+1(pk) = lim infk Zn+1(pk), so
that Zn+1 is continuous.

In this section, we have introduced an abridged optimal control for our inventory
problem. The choice of k for the abridged control q̂k is an important practical ques-
tion. Note that vn and Zn+1(p) decrease as k increases for any p ∈ H+. Moreover,
these values cannot fall below the inventory cost of the corresponding fully observed
system. The gap between these costs is an upper bound on the cost savings achievable
by increasing k. A manager may use this bound to determine whether a given value
of k is suitable. An alternative approach is to increase k until the reduction in the
costs vn and Zn+1(p) for any p ∈ H+ become less than a specified amount.

6. Conclusion and extensions. This paper has provided a rigorous treatment
of inventory problems with partial observations. The observation process is a binary
valued Markov chain, which arises from the zero-balance walk approach to inventory
management. Since the inventory level is often not observed, its distribution is used
to represent the state of the system. This approach immediately results in a dynamic
program in a functional space. The dynamic programming equations are simplified
by using unnormalized probabilities. By doing so, a Zakai-type system of equations
are derived for our inventory problem. This simplification has allowed us to prove
the existence of a value function under various assumptions. We also established the
uniqueness of the function in some cases.

This paper is part of a greater effort [6] that aims to study inventory problems
with partial observations. As such, it represents an important step in the study of
inventory problems with partial observations. It treats a specific binary observation
process. We plan to investigate the effect of other observation processes on inventory
policies.

Search for a sufficient statistic. An interesting area of research is to classify
those partial observation processes for which a sufficient statistic exists. While it
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is not so in the general case, such statistics exist; see [7, 8], for example. When a
sufficient statistic exists, the system becomes finite-dimensional, and the analysis can
be carried much further.

Approximation algorithms. When a sufficient statistic does not exist, which
is often the case, the analysis in this paper becomes very relevant. Furthermore,
our analysis directly shows how successive approximations can lead to an optimal
solution. In devising approximate optimal solutions and heuristic procedures, one
can also benefit from the books [19, 20].

Finer interval observations. We have supposed in this paper that only events
[It = 0] and [It > 0] are observed. This corresponds to observing if the inventory
falls into the intervals [0, 0] or (0,∞). When there is a finite storage capacity a, the
inventory can take values in the interval [0, a]. This interval can be partitioned into
N + 2 disjoint intervals, namely,

I0 := [a0, a0], I1 := (a0, a1], I2 := (a1, a2], . . . , IN := (aN−1, aN ), IN+1 := [aN , aN ]

for 0 = a0 < a1 < · · · < aN−1 < aN = a. The signals associated with the observation
of inventory in these intervals will be

zt = n if It ∈ In for 0 ≤ n ≤ N + 1.

Clearly this new signal process provides more information than the binary signal we
have studied. However, we expect that the Bellman equations can still be linearized
by using unnormalized probabilities.

In practice, the interval observations as defined above would happen when the
inventory is stored in modules, e.g., bins, shelves, or different locations. The IM can
see empty and full bins by simply walking in the storage area. In a typical case, the
bins may be prioritized in such a way that the items in bin i are not used until the
items in bin i+ 1 are finished. Then a1 would be the first bin’s capacity, a2 would be
the first and second bins’ cumulative capacity, etc. If three bins are full, the fourth
is semifull, and the others are empty, the IM would conclude that It ∈ I4 = (a3, a4]
and observe the signal zt = 4.

Stock-taking and inspections. Perpetual growth in the uncertainty of the
actual inventories can lead to poor decisions and therefore higher costs. In practice,
actual inventories are counted and/or inspected often periodically to reduce uncer-
tainty [2]. Since stock-counting and inspections may require testing and disrupt other
activities, they are expensive. Consequently, the inventory is not counted or inspected
every period. Also, only a part of the inventory (partial inspection) may be exam-
ined to reduce the uncertainty to a reasonable level. The counting and inspection
costs typically have both fixed and proportional components. The optimal timing
and the amount of inspections, whose study would require the use of quasi-variational
inequalities [4], is an interesting topic for future research.
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TRACKING WITH PRESCRIBED TRANSIENT BEHAVIOR FOR
NONLINEAR SYSTEMS OF KNOWN RELATIVE DEGREE∗
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Abstract. Tracking of a reference signal (assumed bounded with essentially bounded deriva-
tive) is considered in the context of a class Σρ of multi-input, multi-output dynamical systems,
modelled by functional differential equations, affine in the control and satisfying the following struc-
tural assumptions: (i) arbitrary—but known—relative degree ρ ≥ 1; (ii) the “high-frequency gain”
is sign definite—but possibly of unknown sign. The class encompasses a wide variety of nonlinear
and infinite-dimensional systems and contains (as a prototype subclass) all finite-dimensional, linear,
m-input, m-output, minimum-phase systems of known strict relative degree. The first control objec-
tive is tracking, by the output y, with prescribed accuracy: given λ > 0 (arbitrarily small), determine
a feedback strategy which ensures that, for every reference signal r and every system of class Σρ, the
tracking error e = y − r is ultimately bounded by λ (that is, ‖e(t)‖ < λ for all t sufficiently large).
The second objective is guaranteed output transient performance: the tracking error is required to
evolve within a prescribed performance funnel Fϕ (determined by a function ϕ). Both objectives are
achieved using a filter in conjunction with a feedback function of the tracking error, the filter states,
and the funnel parameter ϕ.

Key words. output feedback, nonlinear systems, functional differential equations, transient
behavior, tracking, high relative degree
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1. Introduction. In [5], a class of infinite-dimensional, m-input (u(t) ∈ R
m),

m-output (y(t) ∈ R
m), nonlinear systems (with finite memory) given by a controlled

functional differential equation of the form ẏ(t) = g(p(t), (Ty)(t), u(t)) is considered,
where g is a continuous function, p represents a bounded disturbance, and T is a
causal operator with a bounded-input bounded-output property: an output feedback
control structure is developed which ensures approximate asymptotic tracking, with
prescribed transient behavior, of any absolutely continuous bounded reference signal
with essentially bounded derivative. Here we extend these investigations to incorpo-
rate higher-order systems, affine in the control, of the form

y(ρ)(t) = R1 y(t) + R2 y
(1)(t) + · · · + Rρ y

(ρ−1)(t) + g(p(t), (Ty)(t)) + Γu(t),

(1.1)

where ρ ∈ N is known, y(i) denotes the ith derivative of y, and the matrix Γ is assumed
to be sign definite (equivalently, 〈v,Γv〉 = 0 ⇔ v = 0).

In an early contribution by Miller and Davison [12], the attainment of prescribed
transient behavior is considered for a class of single-input, single-output, linear,
minimum-phase systems with known high-frequency gain: a controller is introduced
which guarantees the “error to be less than an (arbitrarily small) prespecified constant
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after an (arbitrarily small) prespecified period of time, with an (arbitrarily small)
prespecified upper bound on the amount of overshoot.” However, the controller is
adaptive with nondecreasing gain k, invokes a piecewise-constant switching strategy,
and is less flexible in its scope for shaping transient behavior (in particular, an a priori
bound on the initial data is required) when compared to the nonadaptive approach
in [6].

The results of this paper generalize the main ideas in [6], where tracking with pre-
scribed transient behavior is considered in a more restricted context of linear systems
of known relative degree, subject to “mild” nonlinear perturbations: the generality of
the operator T in (1.1) allows for a considerable diversity of nonlinear and infinite-
dimensional effects, including delays and hysteresis phenomena. We implement a
“backstepping” procedure in conjunction with a filter/precompensator in the con-
struction of a nonadaptive controller. The backstepping procedure is akin to that of
[17, 9, 12].

We briefly digress to review the literature on tracking and stabilization of high
relative degree systems. Unless otherwise stated, all results relate to single-input,
single-output systems. Bullinger and Allgöwer [1] introduce a high-gain observer in
conjunction with an adaptive controller to achieve tracking with prescribed asymptotic
accuracy λ > 0 (λ-tracking). This is achieved for a class of systems which are affine
in the control, of known relative degree, and with affine linearly bounded drift term.
Paper [17] considers linear minimum-phase systems with nonlinear perturbation; the
control objective is (continuous) adaptive λ-tracking with nondecreasing gain. The
class of allowable nonlinearities is considerably smaller than that of the present paper.
Stabilization for systems of maximum relative degree in the so-called parametric strict
feedback form is achieved in [18] via a piecewise constant adaptive switching strategy.
Both these contributions use a backstepping procedure. Nonadaptive contributions
are found in the work by Byrnes and Isidori [2] with extensions in [3]. They cover
stabilization and tracking for a class of relative-degree-one nonlinear systems, with an
exosystem, the positive orbits of which lie in a compact set: systems of higher relative
degree are also considered (see in particular [2, eq. (33)]), and the authors state
(without proof) that “these systems can [be] reduced to systems of (relative degree 1)
by means of the semiglobal back-stepping Lemma.” The main result in [2, Prop. 7.1]
pertains to practical tracking and applies high-gain principles in conjunction with an
internal model: the multilayered nature of the assumptions determining the system
class makes it difficult to assess the overlap with the class considered in the present
paper. Related investigations, based on high-gain properties and/or an internal model
principle, can be found in [10, 13, 9]: we will have occasion to comment further on
the latter in section 3.1.3 below.

The paper is organized as follows. Sections 2 and 3 introduce the control ob-
jectives and the system class: section 3.1 highlights several particular subclasses. In
section 4, the control and feedback laws are constructed: an existence theorem for the
resulting closed-loop system is provided in section 4.3. Our main results on transient
and asymptotic behavior of the closed-loop are given in section 5 and illustrated in
an example in section 6. All proofs are relegated to the appendix.

We close this introduction with remarks on notation. Throughout, R+ := [0,∞)
and C− denotes the open left half complex plane {λ ∈ C| Reλ < 0}. The Euclidean
inner product and induced norm on R

n are denoted by 〈 · , · 〉 and ‖ · ‖, respectively.
The open ball of radius δ > 0 centered at x ∈ R

n is denoted by Bδ(x). For an
interval I ⊂ R, C(I,Rn) is the space of continuous functions I → R

n, L∞(I,Rn)
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is the space of essentially bounded measurable functions x : I → R
n with norm

‖x‖∞ := ess-supt∈I‖x(t)‖, L1(I,Rn) is the space of integrable functions x : I → R
n

with norm ‖x‖1 :=
∫
I
‖x(t)‖dt < ∞, L∞

loc(I,R
n) (respectively, L1

loc(I,R
n)) is the space

of measurable, locally essentially bounded (respectively, locally integrable) functions
I → R

n, and W 1,∞(I,Rn) is the space of absolutely continuous functions x : I → R
n

with x, ẋ ∈ L∞(I,Rn). The spectrum of A ∈ R
n×n is denoted by spec(A).

2. Control objectives and the performance funnel. There are two control
objectives: (i) approximate tracking, by the output, of reference signals r ∈ R :=
W 1,∞(R+,R

m) (in particular, for arbitrary λ > 0, we seek an output feedback strategy
which ensures that, for every r ∈ R, the closed-loop system has bounded solution and
the tracking error e(t) = y(t) − r(t) is ultimately bounded by λ (that is, ‖e(t)‖ ≤ λ
for all t sufficiently large)) and (ii) prescribed transient behavior of the tracking error.

Both objectives are captured in the concept of a performance funnel

Fϕ :=
{
(t, e) ∈ R+ × R

m
∣∣ ϕ(t)‖e‖ < 1

}
associated with a function ϕ of the following class:

Φ :=
{
ϕ ∈ W 1,∞(R+,R)

∣∣ ϕ(0) = 0, ϕ(s) > 0 ∀ s > 0 and lim inf
s→∞

ϕ(s) > 0
}
.

The aim is an output feedback strategy ensuring that, for every reference signal
r ∈ R, the tracking error e = y − r evolves within the funnel Fϕ; see Figure 1. For
example, if lim inft→∞ ϕ(t) ≥ 1/λ, then evolution within the funnel ensures that the
first control objective is achieved. If ϕ is chosen as the function t → min{t/τ, 1}/λ,
then evolution within the funnel ensures that the prescribed tracking accuracy λ > 0
is achieved within the prescribed time τ > 0. The feedback structure incorporates
a filter and essentially exploits an intrinsic high-gain property of the system/filter
interconnection to ensure that, if (t, e(t)) approaches the funnel boundary, then an
appropriately generated gain attains values sufficiently large to preclude boundary
contact.

Error evolution

Ball of radius 1/ϕ(t)

t

Fϕ

Fig. 1. Prescribed performance funnel Fϕ.

3. Class of systems. We subsume (1.1) in the following:⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) + f(p(t), (Ty)(t), x(t)) + Bu(t),

y(t) = Cx(t),

x|[−h,0] = x0 ∈ C([−h, 0],Rρm),

(3.1)
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A =

⎡⎢⎢⎢⎢⎢⎣
0 I 0 · · · 0
0 0 I 0
...

. . .
. . .

...
0 0 · · · 0 I
R1 R2 · · · Rρ−1 Rρ

⎤⎥⎥⎥⎥⎥⎦ ∈ R
ρm×ρm, B =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
Γ

⎤⎥⎥⎥⎥⎥⎦ ∈ R
ρm×m,(3.2)

C = [I
... 0

... · · ·
... 0

... 0] ∈ R
m×ρm, f : R

m × R
q × R

ρm → R
ρm continuous.(3.3)

Observe that Γ = CAρ−1B. In the special case wherein f is given by

f(p, w, x) =

⎡⎢⎢⎢⎣
0
...
0

g(p, w)

⎤⎥⎥⎥⎦ ,(3.4)

it is clear that (1.1) and (3.1) are equivalent. Next, we define the class of operators
T allowable in (3.1).

Definition 3.1 (operator class Th). Let h ≥ 0. An operator T is said to be of
class Th if, and only if, for some l, q ∈ N, the following hold:

(i) T : C([−h,∞),Rl) → L∞
loc(R+,R

q) .
(ii) For every δ > 0, there exists Δ > 0 such that, for all ζ ∈ C([−h,∞),Rl),

sup
t∈[−h,∞)

‖ζ(t)‖ ≤ δ =⇒ ‖(Tζ)(t)‖ ≤ Δ for almost all t ≥ 0 .

(iii) For all t ∈ R+, the following hold:
(a) for all ζ, ψ ∈ C([−h,∞),Rl),

ζ(·) ≡ ψ(·) on [−h, t] =⇒ (Tζ)(s) = (Tψ)(s) for almost all s ∈ [0, t];

(b) for all continuous functions β : [−h, t] → R
l, there exist τ, δ, c > 0 such that,

for all ζ, ψ ∈ C([−h,∞),Rl) with ζ|[−h,t] = β = ψ|[−h,t] and ζ(s), ψ(s) ∈
Bδ(β(t)) for all s ∈ [t, t + τ ],

ess-sups∈[t,t+τ ]‖(Tζ)(s) − (Tψ)(s)‖ ≤ c sups∈[t,t+τ ]‖ζ(s) − ψ(s)‖ .

Remark 3.2. Property (ii) is a bounded-input, bounded-output assumption on
the operator T . Property (iii)(a) is a natural assumption of causality. Property (iii)(b)
is a technical assumption of local Lipschitz type which is used in establishing well-
posedness of the closed-loop system (defined later in section 4.3).

We are now in a position to make precise the system class.
Definition 3.3 (system class Σρ). For ρ ∈ N, Σρ is the class of m-input,

m-output systems (A,B,C, f, p, T, h) of the form (3.1), where h ≥ 0 quantifies the
memory of the system, and A, B, and C are structured as in (3.2)–(3.3) and satisfy

(A1) sign-definite high-frequency gain: Γ = CAρ−1B is either positive definite or
negative definite (equivalently, 〈v,Γv〉 = 0 ⇔ v = 0).

The functions f , p and operator T are such that
(A2) p ∈ L∞(R+,R

m),
(A3) for some q ∈ N, T : C([−h,∞),Rm) → L∞

loc(R+,R
q) is of class Th,

(A4) f : R
m×R

q×R
ρm → R

ρm is continuous and, for all nonempty compact sets
P ⊂ R

m, W ⊂ R
q, and Y ⊂ R

m, there exists a constant c0 = c0(P,W, Y ) > 0
such that ‖f(p, w, x)‖ ≤ c0 for all (p, w, x) ∈ P ×W ×

{
v ∈ R

ρm | Cv ∈ Y
}
.
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Remark 3.4. (i) Due to the presence of the nonlinear function f , the (vector)
relative degree of (3.1) at some point x0 ∈ R

ρm may not be defined; see [7, pp. 137
and 220]. However, if f ≡ 0, then it follows from assumption (A1) that the vector
relative degree of the linear system (3.1) is (ρ, . . . , ρ) ∈ R

m at each point x0 ∈ R
ρm

and, in particular,

CAiB = 0 for i = 1, . . . , ρ− 2 and Γ = CAρ−1B is invertible.(3.5)

The linear system (A,B,C) is said to have strict relative degree ρ if, and only if,
(3.5) holds. Note that assumption (A1) requires the strengthened assumption that
CAρ−1B is either positive definite or negative definite. In the multi-input, multi-
output case, (A1) is rather restrictive. By contrast, in the single-input, single-output
case, the assumption of sign definiteness is redundant and (A1) is simply equivalent
to positing that the relative degree of the linear triple (A,B,C) is known.

(ii) Recall that a linear system (A,B,C) is said to be minimum phase if, and only
if,

det

[
sI −A B

C 0

]
�= 0 ∀ s ∈ C with Re(s) ≥ 0.(3.6)

Due to the structure of the matrices A, B, and C in (3.2)–(3.3) and assumption (A1),
(A,B,C) is minimum phase.

(iii) Assumption (A4) constrains the nature of the dependence of f on its third
argument: in particular, for compact sets P , W , and Y , it posits boundedness of f on
P ×W × {v ∈ R

ρm | Cv ∈ Y }. For example, (A4) holds if there exists a continuous
function π : R

m×R
q×R

m → R+ such that ‖f(p, w, x)‖ ≤ π(p, w,Cx) for all (p, w, x).
Assumption (A4) plays a crucial role in the later analysis: in its absence (i.e., if f is
merely assumed to be continuous), it is not difficult to construct examples for which
the performance objectives cannot be achieved (indeed, finite escape times can occur).

(iv) With reference to Figure 2, the system (3.1) can be thought of as the inter-
connection of two blocks. The dynamical system represented by block Λ1, which can
be influenced directly by the system control u, is also driven by the output w from
the dynamic block Λ2, as shown in Figure 2. The block Λ2 can be considered as a
causal operator mapping the system output y to w (an internal quantity, unavailable
for feedback purposes); it allows for infinite-dimensional (e.g., delays, diffusions) and
hysteresis (e.g., backlash) effects, some examples of which are given in section 3.1.

Λ2 : w = Ty

w
yΛ1 :

{
ẋ = Ax + f(p, w, x) + Bu
y = Cx

u
p

Fig. 2. System of class Σρ.

3.1. Subclasses of Σρ.

3.1.1. Finite-dimensional linear prototype. For motivational purposes, we
first examine a prototype linear system and show that all finite-dimensional linear
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systems of this form are incorporated into the class Σρ. Consider an m-input, m-
output linear system of the form

ẇ(t) = Ã w(t) + B̃ u(t), w(0) = w0 ∈ R
n, y(t) = C̃ w(t),(3.7)

with strict relative degree ρ ≥ 1, Ã ∈ R
n×n, B̃ ∈ R

n×m, C̃ ∈ R
m×n, n ≥ ρm, and

positive-definite or negative-definite high-frequency gain C̃Ãρ−1B̃. To show that the
system (3.7) belongs to the class Σρ, we present the following lemma, a proof of which
can be found in the appendix.

Lemma 3.5. Consider a linear system of the form (3.7) with strict relative degree
ρ ∈ N. Define

C :=

⎡⎢⎢⎢⎣
C̃

C̃Ã
...

C̃Ãρ−1

⎤⎥⎥⎥⎦ ∈ R
ρm×n, B := [B̃

... ÃB̃
... · · ·

... Ãρ−1B̃] ∈ R
n×ρm

and let V ∈ R
n×(n−ρm) be such that im V = ker C. Then

(i) R
n = ker C ⊕ imB ;

(ii) the matrix

U =

[
C
N

]
∈ R

n×n, where N = (VTV)−1VT [I − B(CB)−1C] ∈ R
(n−ρm)×n,

is invertible, with inverse U−1 = [B(CB)−1
...V], and the triple

(Â , B̂ , Ĉ) :=
(
UÃU−1, UB̃ , C̃U−1

)
(3.8)

has the following structure (wherein I and 0 denote the m × m identity matrix and
zero matrix, respectively):

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0 0
0 0 I 0
...

. . .
. . .

...
0 0 · · · 0 I 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
Γ
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Ĉ = [I

... 0
... · · ·

... 0
... 0

... 0 ],

(3.9)

with [R1

... · · ·
...Rρ

...S] = C̃ÃρU−1, Γ = C̃Ãρ−1B̃, P = N ÃρB̃Γ−1, and Q = N ÃV;
(iii) if the system (3.7) is minimum phase, then spec(Q) ⊂ C− .
We remark that, in the case ρ = 1, (3.9) is to be interpreted as

Â =

[
R1 S
P Q

]
, B̂ =

[
Γ
0

]
, Ĉ = [I

... 0 ].(3.10)

Invoking the similarity transformation (3.8)–(3.9) and writing x0 := Cw0, z0 := Nw0,
x(t) := Cw(t), it is readily verified that system (3.7) is equivalent to

ẋ(t) = Ax(t) + f(p(t), (Ty)(t), x(t)) + Bu(t), x(0) = x0, y(t) = Cx(t),(3.11)
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where A, B, and C are as in (3.2)–(3.3), p : t → S(exp Qt)z0, T is the linear operator
given by

(Ty)(t) = S

(∫ t

0

exp(Q(t− s))Py(s)ds

)
, t ≥ 0,

and the function f takes the special form (3.4) with g : R
m × R

m → R
m given by

g(p, w) := p + w.
If (3.7) has sign-definite high-frequency gain, then C̃Ãρ−1B̃ = Γ = CAρ−1B is

either positive definite or negative definite, and hence assumption (A1) is satisfied.
If we assume that (3.7) has the minimum-phase property, then by Lemma 3.5 (iii),
Q has spectrum in C−: it follows that p ∈ L∞(R+,R

m) and T belongs to the class
of operators T0, and so assumptions (A2) and (A3) are satisfied. Assumption (A4)
is trivially satisfied. Therefore, the system class Σρ contains all m-input, m-output,
finite-dimensional, linear, minimum-phase systems of strict relative degree ρ with
sign-definite high-frequency gain.

3.1.2. Infinite-dimensional linear systems. The finite-dimensional class of
systems of the form (3.8) can be extended to infinite dimensions by reinterpreting
the operators Q, P , and S as the generating operators of a regular linear system
(regular in the sense of [16]). In the infinite-dimensional setting, Q is assumed to
be the generator of a strongly continuous semigroup S = (St)t∈R+ of bounded linear
operators and a Hilbert space X with norm ‖ · ‖X . Let X1 denote the space dom(Q)
endowed with the graph norm and let X−1 denote the completion of X with respect
to the norm ‖z‖−1 = ‖(s0I−Q)−1z||X , where s0 is any fixed element of the resolvent
set of Q. Then P is assumed to be a bounded linear operator from R

m to X−1 and
S is assumed to be a bounded linear operator from X1 to R

m. Assuming that the
semigroup S is exponentially stable and that S extends to a bounded linear operator
(again denoted by S) from X to R

m, then the operator T given by

(Ty)(t) := S

(∫ t

0

St−sPy(s) ds

)
is of class T0 (see [14] for details) and, writing p(t) := S Stz

0, we again arrive at the
structure of (3.11).

3.1.3. Nonlinear systems. In [9, eq. (1)] the following class of systems is stud-
ied: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + f1(w(t), y(t))
...

ẋρ−1(t) = xρ(t) + fρ−1(w(t), y(t))

ẋρ(t) = γ u(t) + fρ(w(t), y(t))

ẇ(t) = q(w(t), y(t))

y(t) = x1(t)

(x1(0), . . . , xρ(0), w(0)) = (x0
1, . . . , x

0
ρ, w

0)

(3.12)

where γ ∈ R \ {0}, q : R
p × R → R

p, and fi : R
p × R → R, i = 1, . . . , ρ, are locally

Lipschitz functions. Denote, by T , the mapping y → w induced by the subsystem
ẇ = q(w, y) with initial condition w(0) = w0. Then (3.12) is equivalent to (3.1)
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(with h = 0 and m = 1). Moreover, if we assume that the subsystem ẇ = q(w, y) is
input-to-state stable (ISS), then, as shown in [4, sect. 2.3], the operator T is of class
T0, in which case system (3.12), interpreted in its equivalent form (3.1), is of class Σρ.

We remark that, in [9, eq. (1)], an assumption of integral input-to-state stabil-
ity (iISS) (strictly weaker than our assumption of ISS) is imposed on the subsystem
ẇ = q(w, y). In this respect, the full generality of the system class in [9] is not
captured by the class considered in the present paper.

3.1.4. Nonlinear delay systems. Let functions Gi : R × R
l → R

q : (t, ζ) →
Gi(t, ζ), i = 0, . . . , n, be measurable in t and locally Lipschitz in ζ uniformly with
respect to t: precisely, (i) for each fixed ζ, Gi(·, ζ) is measurable and (ii) for every
compact K ⊂ R

l there exists a constant c such that

‖Gi(t, ζ) − Gi(t, ψ)‖ ≤ c ‖ζ − ψ‖ for almost all t and ∀ ζ, ψ ∈ K .

For i = 0, . . . , n, let hi ∈ R+ and define h := maxi hi. For ζ ∈ C([−h,∞),Rl), let

(Tζ)(t) :=

∫ 0

−h0

G0(s, ζ(t + s)) ds +

n∑
i=1

Gi(t, ζ(t− hi)) ∀ t ≥ 0 .

The operator T , so defined, is of class Th: for details see [14].

3.1.5. Systems with hysteresis. A general class of hysteresis operators, which
includes many physically motivated hysteretic effects, is discussed in [11]. Examples
of such operators include backlash hysteresis, elastic-plastic hysteresis, and Preisach
operators. In [5], it is pointed out that these operators are of class T0. For illustration,
we describe a particular example of a hysteresis operator.

Backlash hysteresis. Consider a one-dimensional mechanical link consisting of
two components, denoted I and II (of width 2a) and illustrated in Figure 3(a). The
displacements of each part (with respect to some fixed datum) at time t ≥ 0 are
given by ζ(t) and ψ(t) with |ζ(t) − ψ(t)| ≤ a for all t, and ψ(0) := ζ(0) + b for
some prespecified b ∈ [−a, a]. Within the link there is mechanical play: that is to
say, the position ψ(t) of II remains constant as long as the position ζ(t) of I remains
within the interior of II. Thus, assuming continuity of ζ, we have ψ̇(t) = 0 whenever
|ζ(t)−ψ(t)| < a. Given a continuous input ζ ∈ C(R+,R), describing the evolution of
the position of I, denote the corresponding position of II by ψ = Tζ. The operator T
(in effect we define a family Ta,b of operators parameterized by a > 0 and b ∈ [−a, a]),
so defined, is known as backlash or play and is of class T0.

4. The control. Let ϕ ∈ Φ determine a performance funnel Fϕ. We proceed
to construct a feedback structure which ensures that, for every reference r ∈ R and
when applied to any system of class Σρ, the tracking error e = y − r evolves within
Fϕ. We initially assume ρ ≥ 2; the case of systems with strict relative degree ρ = 1
will be treated separately in due course.

4.1. Filter. Fix μ > 0 (arbitrarily) and introduce the filter

ξ̇i(t) = −μ ξi(t) + ξi+1, ξi(0) = ξ0
i ∈ R

m , i = 1, . . . , ρ− 2,

ξ̇ρ−1(t) = −μ ξρ−1(t) + u(t), ξρ−1(0) = ξ0
ρ−1 ∈ R

m ,
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Fig. 3. Backlash hysteresis.

which, on writing (wherein I and 0 denote the m×m identity and zero matrices)

ξ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ1(t)
ξ2(t)
ξ3(t)

...
ξρ−2(t)
ξρ−1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−μI I 0 · · · 0 0
0 −μI I · · · 0 0
0 0 −μI · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −μI I
0 0 0 · · · 0 −μI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

may be expressed as{
ξ̇(t) = Fξ(t) + Gu(t), ξ(0) = ξ0 ∈ R

(ρ−1)m,

ξ1(t) = Hξ(t), H :=
[
I

... 0
... 0

... · · ·
... 0

... 0
]
.

(4.1)

4.2. Feedback. Define

s(Γ) :=

{
+1 , Γ positive definite,
−1 , Γ negative definite.

Let ν : R → R be any C∞ function with the following property:{
there exists a strictly increasing unbounded sequence (kj) such that
the sequence

(
s(Γ)ν(kj)

)
is strictly decreasing and unbounded.

(4.2)

Introduce the projections

πi : R
(ρ−1)m → R

im, ξ = (ξ1, . . . , ξρ−1) → (ξ1, . . . , ξi), i = 1, . . . , ρ− 1,

and define the C∞ function

γ1 : R × R
m → R

m, (k, e) → γ1(k, e) := −ν(k)e ,(4.3)

with derivative (Jacobian matrix function) Dγ1. Next, for i = 2, . . . , ρ− 1, define the
C∞ function γi : R × R

m × R
(i−1)m → R

m by the recursion

γi(k, e, πi−1ξ) := γi−1(k, e, πi−2ξ) + ‖Dγi−1(k, e, πi−2ξ)‖2 k4 (1 + ‖πi−1ξ‖2)

×
(
μ2−iξi−1 + γi−1(k, e, πi−2ξ)

)
,(4.4)
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wherein we adopt the notational convention γ1(k, e, π0ξ) := γ1(k, e). Define the C∞

function γρ : R × R
m × R

(ρ−1)m → R
m as follows:

γρ(k, e, ξ) :=μρ−1γρ−1(k, e, πρ−2ξ) + μρ−1‖Dγρ−1(k, e, πρ−2ξ)‖2k4 (1 + ‖ξ‖2)

×
(
μ2−ρξρ−1 + γρ−1(k, e, πρ−2ξ)

)
.(4.5)

Finally, we introduce the bijection

α : [0, 1) → [1,∞), s → 1/(1 − s).(4.6)

For arbitrary r ∈ R, the control strategy is given by

u(t) = −γρ
(
k(t), Cx(t) − r(t), ξ(t)

)
, k(t) = α

(
ϕ2(t)‖Cx(t) − r(t)‖2

)
.(4.7)

Remark 4.1. (i) If s(Γ) is known a priori, then the function ν : k → −s(Γ)k is
sufficient to ensure property (4.2); if s(Γ) is unknown, then the function ν : k → k cos k
suffices. In the latter case, the role of the function ν is similar to that of a “Nussbaum”
function in adaptive control. Note, however, that the requisite property (4.2) is less
restrictive than (a) the “Nussbaum properties” as required in [17], for example, or (b)
the stronger “scaling invariant Nussbaum properties”, as required in [9], for example.

(ii) The function α in (4.6) may be generalized to any C∞ bijection α : [0, 1) →
[1,∞) with the property that α′ = d(α) for some function d: the particular choice
d(·) = (·)2 yields the specific function adopted in (4.6) for simplicity of presentation.
In the case of general α, the term k4 in (4.4) and (4.5) should be replaced by d2(k).

(iii) In the specific case of a system of relative degree ρ = 2, writing e(t) =
Cx(t)−r(t) and omitting the argument t for simplicity, the control strategy takes the
explicit form ⎧⎪⎨⎪⎩

u = μ ν(k)e− μ
[
(ν′(k)‖e‖)2 + (ν(k))2

]
k4 [1 + ‖ξ‖2]θ,

k = α
(
ϕ2‖e‖2

)
, θ = ξ − ν(k)e ,

ξ̇ = −μ ξ + u, ξ(0) = ξ0.

(4.8)

We will adopt this controller in the example in section 6.

4.3. Well-posedness of the closed-loop system. The conjunction of the fil-
ter (4.1) and the feedback (4.7) applied to (3.1) yields the initial-value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f(p(t), (TCx)(t), x(t)) −Bγρ(k(t), Cx(t) − r(t), ξ(t)),

ξ̇(t) = Fξ(t) −Gγρ(k(t), Cx(t) − r(t), ξ(t)),

k(t) = α
(
ϕ2(t)‖Cx(t) − r(t)‖2

)
,

x|[−h,0] = x0 ∈ C([−h, 0],Rρm), ξ(s) = ξ0 ∈ R
(ρ−1)m ∀ s ∈ [−h, 0] .

(4.9)

By a solution of (4.9) on [−h, ω) we mean a function (x, ξ) ∈ C([−h, ω),Rρm ×
R

(ρ−1)m), with 0 < ω ≤ ∞, x|[−h,0] = x0, and ξ(s) = ξ0 for all s ∈ [−h, 0], such
that (x, ξ)|[0,ω) is absolutely continuous, satisfies the differential equations in (4.9) for
almost all t ∈ [0, ω), and avoids the singularity in α in the sense that ϕ(t)‖Cx(t) −
r(t)‖ < 1 for all t ∈ [0, ω). To answer affirmatively the question of well-posedness of
the closed loop, we provide an existence theorem for a class of initial-value problems of
sufficient generality to incorporate (4.9). For h ≥ 0, consider the initial-value problem{

ζ̇(t) = Z(t, (T̂ ζ)(t), ζ(t)), ζ(t) ∈ D,

ζ|[−h,0] = ζ0 ∈ C([−h, 0],RN ), ζ0(0) ∈ D,
(4.10)
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where D ⊂ R
N is a nonempty, open set, Z : [−h,∞)×R

q×D → R
N is a Carathéodory

function, and T̂ is a causal operator of class Th. By a solution of (4.10) on [−h, ω)
we mean a function ζ ∈ C([−h, ω),RN ), with 0 < ω ≤ ∞, and ζ|[−h,0] = ζ0 such
that ζ|[0,ω) is absolutely continuous and satisfies the differential equations in (4.10)
for almost all t ∈ [0, ω) and ζ(t) ∈ D for all t ∈ [0, ω). A solution of (4.9) or of (4.10)
is maximal if, and only if, it has no proper right extension that is also a solution.

Theorem 4.2. Let D ⊂ R
N be nonempty and open, let T̂ be an operator of

class T , and let Z : [−h,∞) × R
q × D → R

N be a Carathéodory function. Then, for
each ζ0 ∈ C([−h, 0],RN ) with ζ(0) ∈ D, there exists a solution ζ : [−h, ω) → R

N ,
ζ([0, ω)) ⊂ D, of the initial-value problem (4.10) and every solution can be extended
to a maximal solution. Moreover, if Z is locally essentially bounded and ζ : [−h, ω) →
R

N , ζ([0, ω)) ⊂ D, is a maximal solution with ω < ∞, then, for every compact set
K ⊂ D, there exists t̂ ∈ [0, ω) such that ζ(t̂) �∈ K.

Proof. The proof is a straightforward modification of that of [5, Thm. 5].

We apply this result to our closed-loop system (4.9).

Corollary 4.3. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 1 and let ϕ ∈ Φ. For ev-
ery r ∈ R and (x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m), application of the feedback (4.7)
in conjunction with the filter (4.1) to the system (3.1) yields the initial-value prob-
lem (4.9), which has a solution, and every solution can be extended to a maximal
solution. If a maximal solution of (4.9) on [−h, ω) is bounded and such that the
associated gain function k is also bounded, then ω = ∞.

The proof is in the appendix.

5. Main results.

5.1. Preliminary lemmas. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Rewriting
the conjunction of the nonlinear system (3.1) and the filter (4.1) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
ẋ(t)

ξ̇(t)

]
=

[
A 0
0 F

] [
x(t)
ξ(t)

]
+

[
I
0

]
f(p(t), (Ty)(t), x(t)) +

[
B
G

]
u(t),

y(t) = [C
... 0 ]

[
x(t)
ξ(t)

]
,

(5.1)

we have the following technicality, a proof of which can be found in the appendix.

Lemma 5.1. For system (5.1), there exist K ∈ R
ρm×(ρ−1)m and N ∈ R

(ρ−1)m×ρm

such that

L :=

⎡⎣C 0
N −NK
0 I

⎤⎦ ∈ R
(2ρ−1)m×(2ρ−1)m

is invertible and

L

[
A 0
0 F

]
L−1 =

⎡⎣A1 A2 Γ̃
A3 A4 0
0 0 F

⎤⎦ , L

[
B
G

]
=

[
0
G

]
, [C

... 0 ]L−1 = [ I
... 0

... 0 ],

where Γ̃ :=
[
Γ

... 0
]
∈ R

m×(ρ−1)m, Γ := CAρ−1B, and A4 ∈ R
(ρ−1)m×(ρ−1)m is such

that spec(A4) ⊂ C−.
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In view of Lemma 5.1, there exist K and N such that, under the coordinate
change ⎡⎣y(t)z(t)

ξ(t)

⎤⎦ = L

[
x(t)
ξ(t)

]
,

⎡⎣y0

z0

ξ0

⎤⎦ = L

[
x0

ξ0

]
, L :=

⎡⎣C 0
N −NK
0 I

⎤⎦ ,(5.2)

the conjunction (5.1) of system (3.1) and filter (4.1) can be represented by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẏ(t) = A1y(t) + A2z(t) + Cf(p(t), (Ty)(t), x(t)) + Γξ1(t),

ż(t) = A3y(t) + A4z(t) + Nf(p(t), (Ty)(t), x(t)),

ξ̇(t) = Fξ(t) + Gu(t),

(y, z, ξ)|[−h,0] = (y0, z0, ξ0) ∈ C([−h, 0],Rm × R
(ρ−1)m × R

(ρ−1)m),

(5.3)

where A4 ∈ R
(ρ−1)m×(ρ−1)m has spectrum in C−. If (x, ξ) : [0, ω) → R

ρm × R
(ρ−1)m

is a maximal solution of the nonlinearly perturbed closed-loop system (4.9), then, in
view of (5.3) and writing

y(t) = Cx(t), e(t) = y(t) − r(t), e|[−h,0] = e0(·) = y0(·) − r(0) ,(5.4)

we arrive at the following equivalent to (4.9):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ė(t) = A1e(t) + A2z(t) + f1(t) + Γξ1(t),

ż(t) = A3e(t) + A4z(t) + f2(t),

ξ̇(t) = Fξ(t) −Gγρ(k(t), e(t), ξ(t)),

k(t) = α
(
ϕ2(t)‖e(t)‖2

)
,

(e, z, ξ)|[−h,0] = (e0, z0, ξ0) ∈ C([−h, 0],Rm × R
(ρ−1)m × R

(ρ−1)m),

(5.5)

where the functions f1 and f2 are given by{
f1(t) := A1r(t) + Cf(p(t), (Ty)(t), x(t)) − ṙ(t),

f2(t) := A3r(t) + Nf(p(t), (Ty)(t), x(t)).
(5.6)

Since (ϕ(t)‖e(t)‖)2 < 1 for all t ∈ [0, ω), the properties of ϕ ∈ Φ yield boundedness
of the function e which, together with boundedness of r, implies boundedness of y.
Since T is of class Th and y is bounded, Ty is essentially bounded. By boundedness
of r, essential boundedness of ṙ and p, and assumption (A4), we may now conclude
(essential) boundedness of the functions f1 and f2. Observing that A4 is Hurwitz and
f2 bounded, the second of the differential equations in (5.5) yields boundedness of z.
These observations are recorded in the following lemma.

Lemma 5.2. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Let ϕ ∈ Φ, r ∈ R,
and (x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m). If (x, ξ) : [−h, ω) → R
ρm × R

(ρ−1)m is a
maximal solution of (4.9), then the functions y, z, and e, given by (5.2) and (5.4),
are bounded. Furthermore, the functions f1 and f2, given by (5.6), are essentially
bounded and bounded, respectively.

The proofs of our main results (Theorems 5.4 and 5.5 below) rely crucially on
a further technicality: the signals θi = μ1−iξi + γi(k, e, πi−1ξ), i = 1, . . . , ρ − 1, are
bounded. More precisely, we have the following (with proof in the appendix).
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Lemma 5.3. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2. Let ϕ ∈ Φ, r ∈ R, and
(x0, ξ0) ∈ C([−h, 0],Rρm×R

(ρ−1)m). If (x, ξ) : [−h, ω) → R
ρm×R

(ρ−1)m is a maximal
solution of (4.9), then the function θ = (θ1, . . . , θρ−1) : [0, ω) → R

(ρ−1)m is bounded,
where

θi(t) := μ1−i ξi(t) + γi(k(t), e(t), πi−1ξ(t)) , i = 1, . . . , ρ− 1,(5.7)

with the notational convention γ1(k, e, π0ξ) := γ1(k, e).

5.2. Relative degree 1 case. We are now in a position to state our main result
for the case when the system has strict relative degree 1; in this case, a filter is not
necessary and the controller (4.7) simplifies to

u(t) = ν(k(t))(Cx(t) − r(t)), k(t) = α
(
ϕ2(t)‖Cx(t) − r(t)‖2

)
.(5.8)

The closed-loop initial-value problem then becomes⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) + Bν(k(t))(Cx(t) − r(t)) + f(p(t), T (Cx)(t), x(t)),

k(t) = α
(
ϕ2(t)‖Cx(t) − r(t)‖2

)
,

x|[−h,0] = x0 ∈ C([−h, 0],Rm).

(5.9)

Theorem 5.4. Let (A,B,C, f, p, T, h) ∈ Σ1 and ϕ ∈ Φ with associated per-
formance funnel Fϕ. For each reference signal r ∈ R, and initial data (x0, ξ0) ∈
C([−h, 0],Rρm×R

(ρ−1)m), application of the feedback (5.8) to (3.1) yields the initial-
value problem (5.9), which has a solution, and every solution can be maximally ex-
tended. Every maximal solution x : [−h, ω) → R

m has the following properties:
(i) ω = ∞;
(ii) x, k, and u are bounded;
(iii) the tracking error evolves within the funnel Fϕ and is bounded away from the

funnel boundary; i.e., there exists ε > 0 such that, for all t ≥ 0, ϕ(t)‖Cx(t)− r(t)‖ ≤
1 − ε.

The proof of Theorem 5.4 follows easily by modifying (all vestiges of the filter
equations are excised) the proof of Theorem 5.5. The latter proof is in the appendix.

5.3. Relative degree ρ ≥ 2 case. We now arrive at the main result of the
paper (with proof in the appendix).

Theorem 5.5. Let (A,B,C, f, p, T, h) ∈ Σρ with ρ ≥ 2 and let ϕ ∈ Φ with
associated performance funnel Fϕ. For each reference signal r ∈ R and initial data
(x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m), application of the feedback (4.7), in conjunc-
tion with the filter (4.1), to (3.1) yields the initial-value problem (4.9), which has
a solution, and every solution can be maximally extended. Every maximal solution
(x, ξ) : [−h, ω) → R

ρm × R
(ρ−1)m has the following properties:

(i) ω = ∞;
(ii) x, ξ, k, and u are bounded;
(iii) the tracking error evolves within the funnel Fϕ and is bounded away from the

funnel boundary; i.e., there exists ε > 0 such that, for all t ≥ 0, ϕ(t)‖Cx(t)− r(t)‖ ≤
1 − ε.

6. Example. We illustrate the controller strategy (4.7) applied to the following
single-input, single-output system of relative degree ρ = 2:

ÿ(t) + b0 sin y(t) + b1y(t)|y(t)| + (Ta,b y)(t) = b2 u(t) ,(6.1)
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where b0, b1, and b2 �= 0 are unknown real parameters and Ta,b represents the back-
lash operator, as defined in section 3.1.5, with parameters a > 0 and b ∈ [−a, a].
Equation (6.1) is equivalent to (3.1) with

x(t) =

[
y(t)
ẏ(t)

]
, A =

[
0 1
0 0

]
, B =

[
0
b2

]
, C = [1

... 0], f(p, w, x) =

[
0
1

]
w,

and the operator T given by (Ty)(t) = b0 sin y(t) + b1y(t)|y(t)| + (Ta,by)(t), t ∈ R+.
Setting h = 0 and p = 0, the resulting system (A,B,C, f, 0, T, 0) is of class Σ2.

Fix τ > 0 arbitrarily and define ϕ ∈ Φ by

t → ϕ(t) =

{
20(1 − ( t

τ − 1)2), 0 ≤ t < τ,
20, t ≥ τ.

(6.2)

Evolution within the associated performance funnel Fϕ ensures a tracking accuracy
|e(t)| < 0.05 for all t ≥ τ . Choosing ν : k → k cos k, ξ0 = 0, writing e(t) = y(t)− r(t),
and suppressing the argument t for simplicity, the control strategy (4.8) is⎧⎪⎪⎨⎪⎪⎩

u = μ(k cos k)e− μ
[
(cos k − k sin k)2 e2 + k2 cos2 k

]
k4 [1 + ξ2]θ ,

k =
[
1 − ϕ2e2

]−1
, θ = ξ − (k cos k)e ,

ξ̇ = −μ ξ + u, ξ(0) = 0.

(6.3)

For purposes of illustration, as reference signal r ∈ R, we take the first component
ζ1 of the solution (chaotic and bounded; see [15, appx. C]) of the following Lorenz
system of equations:⎧⎪⎪⎨⎪⎪⎩

ζ̇1(t) = 1
2ζ2(t) − ζ1(t), ζ1(0) = 1

2 ,

ζ̇2(t) = 28
5 ζ1(t) − 1

10ζ2(t) − 2ζ1(t)ζ3(t), ζ2(0) = 0,

ζ̇3(t) = 2ζ1(t)ζ2(t) − 8
30ζ3(t), ζ3(0) = 3.

(6.4)

Setting b0 = 1
2 , b1 = 1 = b2, μ = 10, τ = 50 and adopting backlash hysteresis with

parameters a = 1/2, b = 0 and initial data (y(0), ẏ(0)) = (0, 0), the behavior of the
closed-loop system (6.1)–(6.3) is depicted in Figure 4.

7. Appendix.

7.1. Proof of Lemma 3.5. Parts of the following proof are implicit in the proofs
of [7, Lem. 4.1.1] and [8, Prop. 11.5.1 and 11.5.2] (in a general context of nonlinear
systems); here, we provide a simple, self-contained proof in the restricted context of
linear systems.

Step (i). First, note that

CB =

⎡⎣0 Γ
. .

.

Γ ∗

⎤⎦ ,

and, since Γ is invertible, we see that CB ∈ GLρm(R). Furthermore, NB = 0.
Assertion (i) then follows from the observation that, for any x ∈ R

n, we have
v := (I − B(CB)−1C)x ∈ ker C and w := B(CB)−1Cx ∈ im B, and so x = v + w.
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Fig. 4. Tracking of a Lorenz component reference signal; system (6.1) with unknown sign
b2 �= 0 and control strategy (6.3). (a) The funnel and tracking error e. (b) The reference r and
output y. (c) The function k. (d) The control u.
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Step (ii). We now prove assertion (ii). It is clear that U−1 = [B(CB)−1
...V]. It

is also immediate that B̂ := UB̃ and Ĉ := C̃U−1 have the structure given in (3.9).
Furthermore,

U Ã = ÂU(7.1)

for some Â of the form

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0 0
0 0 I 0
...

. . .
. . .

...
0 0 . . . 0 I 0
R1 R2 . . . Rρ−1 Rρ S
P1 P2 . . . Pρ−1 Pρ Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

with Ri ∈ R
m×m, Pi ∈ R

(n−ρm)×m, i = 1, . . . , ρ, S ∈ R
m×(n−ρm), Q = N ÃV ∈

R
(n−ρm)×(n−ρm), and [R1

... · · ·
...Rρ

...S] = C̃ÃρU−1. If ρ = 1, then Â takes the form
shown in (3.10).

Recalling that NB = 0, we see that

[P1

... · · ·
...Pρ] = N ÃB(CB)−1 = [0

... · · ·
... 0

...N ÃρB̃]

⎡⎣ ∗ Γ−1

. .
.

Γ−1 0

⎤⎦ ,

and hence Pi = 0 for i = 2, . . . , ρ. Writing P = P1, it follows that Â takes the form
in (3.9) and P = N ÃρB̃Γ−1.

Step (iii). Finally, we prove part (iii) of the lemma. Writing

M1(s) =

[
sI − Ã B̃

C̃ 0

]
, M2(s) =

[
U 0
0 I

]
M1(s)

[
U−1 0
0 I

]
=

[
sI − Â B̂

Ĉ 0

]
,

and

M3(s) =

[
Ĉ 0

Â− sI −B̂

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 . . . 0 0 0
−sI I 0 . . . 0 0 0
0 −sI I 0 0 0
...

. . .
. . .

...
...

0 0 . . . −sI I 0 0
R1 R2 . . . Rρ−1 Rρ − sI S −Γ
P 0 . . . 0 0 Q− sI 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we see that |detM1(s)| = |detM2(s)| = |detM3(s)| = |det Γ det(sI −Q)|.
By the minimum-phase property of (Ã, B̃, C̃), we have det(M1(s)) �= 0 for all

s ∈ C \ C−, and so det(sI −Q) �= 0 for all s ∈ C \ C−. It follows that spec(Q) ⊂ C−,
and hence assertion (iii) holds.

7.2. Proof of Corollary 4.3. Introducing the open set

D :=
{

(x, ξ, η) ∈ R
ρm × R

(ρ−1)m × R

∣∣∣ ϕ(|η|) ‖Cx− r(|η|)‖ < 1
}
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and defining, on D,

γ∗
ρ : (x, ξ, η) → γρ

(
α(ϕ2(|η|) ‖Cx− r(|η|)‖2) , Cx− r(|η|) , ξ

)
,

the initial-value problem (4.9) may be recast on D as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = Ax(t) + f(p(t), T (Cx)(t), x(t)) −Bγ∗

ρ(x(t), ξ(t), η(t)),

ξ̇(t) = Fξ(t) −Gγ∗
ρ(x(t), ξ(t), η(t)),

η̇(t) = 1,

(x, ξ, η)|[−h,0] = (x0, ξ0, 0) ∈ C([−h, 0],Rρm × R
(ρ−1)m × R).

(7.2)

Setting ζ = (x, ξ, η) and defining the Carathéodory function

Z : [−h,∞) × R
q × R

2(ρ−1)m+1 → R
(2ρ−1)m+1,

(t, w, ζ) → Z(t, w, ζ) :=

⎡⎣A 0 0
0 F 0
0 0 0

⎤⎦ ζ +

⎡⎣I0
0

⎤⎦ f(p(t), w, x) −

⎡⎣BG
0

⎤⎦ γ∗
ρ(ζ) +

⎡⎣0
0
1

⎤⎦
we can rewrite (7.2) as follows:

ζ̇(t) = Z(t, (T̂ ζ)(t), ζ(t)), ζ|[−h,0] = ζ0 ∈ C([−h, 0],R(2ρ−1)m+1),(7.3)

where the operator T̂ , given by (T̂ ζ)(t) = (TCx)(t), is of class Th. We then ap-
ply the existence result, Theorem 4.2, to establish: (i) the existence of a solution
t → ζ(t) ∈ D to (7.2) and that (ii) every solution can be extended to a maximal
solution ζ : [−h, ω) → D. Furthermore, if there exists a compact set C ⊂ D such that
(x(t), ξ(t), η(t)) ∈ C for all t ∈ [0, ω), then ω = ∞.

Clearly, if ζ = (x, ξ, η) : [−h, ω) → D is a solution of (7.3), then (x, ξ) : [−h, ω) →
R

ρm×R
(ρ−1)m is a solution of (4.9); conversely, if (x, ξ) : [−h, ω) → R

ρm×R
(ρ−1)m is

a solution of (4.9), then ζ = (x, ξ, η) : [−h, ω) → R
ρm×R

(ρ−1)m×R, with component
η given by η(t) = t, is a solution of (7.3). We may now conclude that, for each
(x0, ξ0) ∈ C([−h, 0],Rρm × R

(ρ−1)m), (4.9) has a solution and every solution can be
maximally extended.

Let (x, ξ) : [−h, ω) → R
ρm × R

(ρ−1)m be a maximal solution of (4.9) (and so t →
ζ(t) = (x(t), ξ(t), t) is a maximal solution of (4.10)). Assume that (x, ξ) is bounded
and that the gain function t → k(t) = α

(
ϕ2(t)‖Cx(t)− r(t)‖2

)
is also bounded. Then

there exist c > 0 and ε > 0 such that ‖(x(t), ξ(t))‖ ≤ c and ϕ(t)‖Cx(t)− r(t)‖ ≤ 1−ε
for all t ∈ [0, ω). Seeking a contradiction, suppose that ω < ∞. It then follows that

K :=
{
(x̂, ξ̂, η̂) ∈ D

∣∣ ϕ(|η̂|)‖Cx̂ − r(|η̂|)‖ ≤ 1 − ε, ‖(x̂, ξ̂)‖ ≤ c, η̂ ∈ [−h, ω]
}

is a
compact subset of D which contains the trajectory ζ([−h, ω)) of the maximal solution
ζ of (4.10). This contradicts the last assertion of Theorem 4.2, and so ω = ∞.

7.3. Proof of Lemma 5.1. Define

K :=
[
[μ I + A]ρ−2B

... [μ I + A]ρ−3B
... · · ·

... [μ I + A]B
... B

]
∈ R

ρm×(ρ−1)m

and note that

AK −KF =
[
[μ I + A]ρ−1B

... 0
... · · ·

... 0
]
, KG = B, and CK = 0.
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Writing B̃ := (μI +A)ρ−1B, we have CB̃ = CAρ−1B = Γ, and so the triple (A, B̃, C)
defines a linear system of relative degree one. Let V ∈ R

ρm×(ρ−1)m be such that
imV = kerC. By Lemma 3.5 applied in the context of the system (A, B̃, C), the ma-

trix
[
C
N

]
, with N := (V TV )−1V T [I− B̃Γ−1C], is invertible, with inverse

[
B̃Γ−1

...V
]
.

Writing

L =

⎡⎣C 0
N −NK
0 I

⎤⎦ with L−1 =

[
B̃Γ−1 V K

0 0 I

]

and recalling that KG = B, CB = 0, and CK = 0, we have

L

[
B
G

]
=

[
0
G

]
and

[
C

... 0
]
L−1 =

[
I

... 0
]
.

Moreover, noting that CAK =
[
Γ

... 0
... · · ·

... 0
]

=: Γ̃ and N [AK −KF ] = 0, we have

L

[
A 0
0 F

]
L−1 =

⎡⎣CAB̃Γ−1 CAV CAK

NAB̃Γ−1 NAV N [AK −KF ]
0 0 F

⎤⎦ =

⎡⎣A1 A2 Γ̃
A3 A4 0
0 0 F

⎤⎦ ,

where Γ̃ = [Γ
... 0

... · · ·
... 0]. It remains to show that A4 has spectrum in C−. Writing

M4(s) =

[
sI −A B

C 0

]
and M5(s) =

⎡⎣sI −A 0 B
0 sI − F −G
C 0 0

⎤⎦ ,

we have

M6(s) :=

⎡⎣I K 0
0 I 0
0 0 I

⎤⎦M5(s)

⎡⎣I K 0
0 I 0
0 0 I

⎤⎦−1

=

⎡⎣sI −A AK −KF 0
0 sI − F −G
C 0 0

⎤⎦ .

In view of the particular structure of F , G, and AK −KF , it is readily verified that
|detM6(s)| = |detM7(s)|, where

M7(s) =

[
sI −A [μ I + A]ρ−1B

C 0

]
.

Define

M8(s) :=

⎡⎣C 0
N 0
0 I

⎤⎦M7(s)

[
B̃Γ−1 V 0

0 0 I

]
=

⎡⎣sI −A1 −A2 Γ
−A3 sI −A4 0
I 0 0

⎤⎦ .

By the minimum-phase property of the triple (A,B,C) (recall Remark 3.4(ii)), for all
s ∈ C \ C−, we have detM4(s) �= 0. We may now conclude that, for all s ∈ C \ C−,

|det Γ det(sI −A4)| = |detM8(s)| = |detM7(s)|
= |detM6(s)| = |detM5(s)| = |det(sI − F ) detM4(s)| �= 0,

and so spec(A4) ⊂ C−. This completes the proof.
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7.4. Proof of Lemma 5.3. Assume that (x, ξ) : [−h, ω) → R
ρm × R

(ρ−1)m is a
maximal solution of (4.9). Write y(t) = Cx(t) and e(t) = y(t)−r(t) for all t ∈ [−h, ω).
By Lemma 5.1, there exists an invertible linear transformation L under which the
closed-loop system (4.9) may be expressed in the form (5.5), wherein, by Lemma 5.2,
e and z are bounded and the functions f1 and f2 given by (5.6) are essentially bounded
and bounded, respectively. By boundedness of z, essential boundedness of f1, and
the first of equations (5.5), we may infer the existence of c1 > 0 such that

‖ė(t)‖ ≤ c1
(
1 + ‖ξ1(t)‖

)
for a.a. t ∈ [0, ω).

By boundedness of ϕ, e, essential boundedness of ϕ̇, and recalling that α′(s) = α2(s) ≥
1 for all s ∈ [0, 1), there exists a constant c2 > 0 such that

|k̇(t)| = 2α′(ϕ2(t)‖e(t)‖2)
∣∣ϕ2(t)〈e(t), ė(t)〉 + ϕ(t)ϕ̇(t)‖e(t)‖2

∣∣
≤ c2k

2(t) (1 + ‖ξ1(t)‖) for a.a. t ∈ [0, ω).

Since k(t) ≥ 1 for all t ∈ [0, ω), we may now conclude the existence of a constant
c3 > 0 such that

‖(k̇(t), ė(t))‖2 ≤ c3 Δ(t) for a.a. t ∈ [0, ω), where Δ(t) := k4(t)
(
1 + ‖ξ1(t)‖2

)
.

Then, invoking (4.4), (5.7), and writing c4,1 := c3/μ > 0, we have

〈θ1(t), θ̇1(t)〉 ≤ 〈θ1(t) , −μξ1(t) + ξ2(t)〉 + ‖θ1(t)‖‖Dγ1(k(t), e(t))‖‖(k̇(t), ė(t))‖
≤ 〈θ1(t) , −μθ1(t) + μγ1(k(t), e(t))〉 + 〈θ1(t), ξ2(t)〉

+
√
μ ‖θ1(t)‖ ‖Dγ1(k(t), e(t))‖

√
(c3/μ) Δ(t)

≤ c4,1 − μ‖θ1(t)‖2 + 〈θ1(t), ξ2(t)〉 + μ〈θ1(t), γ1(k(t), e(t))〉
+μ‖θ1(t)‖2 ‖Dγ1(k(t), e(t))‖2 Δ(t)

= c4,1 − μ‖θ1(t)‖2 +
〈
θ1(t), ξ2(t) + μγ2(k(t), e(t), ξ1(t))

〉
= c4,1 − μ‖θ1(t)‖2 + μ〈θ1(t), θ2(t)〉 for a.a. t ∈ [0, ω).

Analogous calculations yield the existence of constants c4,2, . . . , c4,ρ−1 > 0, such that

〈θi(t), θ̇i(t)〉 ≤ c4,i − μ‖θi(t)‖2 + μ〈θi(t), θi+1(t)〉 for a.a. t ∈ [0, ω), i = 2, . . . , ρ− 2,

and, using (4.5), 〈θρ−1(t), θ̇ρ−1(t)〉 ≤ c4,ρ−1 − μ‖θρ−1(t)‖2 for almost all t ∈ [0, ω).
Writing c4 = c4,1 + · · · + c4,ρ−1, we have

1
2

d
dt ‖θ(t)‖2 ≤ c4 − μ‖θ(t)‖2 + μ〈θ1(t), θ2(t)〉 + · · · + μ〈θρ−2(t), θρ−1(t)〉

≤ c4 − μ〈θ(t), Pθ(t)〉 for a.a. t ∈ [0, ω),

where P is a positive-definite, symmetric, tridiagonal matrix with all diagonal entries
equal to 1 and all sub- and superdiagonal entries equal to −1/2. By positivity of P ,
it follows that θ is bounded. This completes the proof of the lemma.

7.5. Proof of Theorem 5.5. Let (x0, ξ0) be arbitrary. By Corollary 4.3, (4.9)
has a solution and every solution can be maximally extended. Let (x, ξ) be a maximal
solution of (4.9) with interval of existence [−h, ω). Writing y(t) = Cx(t), e(t) =
y(t) − r(t) for all t ∈ [0, ω) and invoking Lemma 5.1, there exists an invertible linear
transformation L which takes (4.9) into the equivalent form (5.5)–(5.6). Introducing
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θ1 : [0, ω) → R
m given by (5.7), namely, θ1(t) = ξ1(t) − ν(k(t))e(t), then the first of

equations (5.5) yields

ė(t) = f3(t) + ν(k(t)) Γ e(t) for a.a. t ∈ [0, ω),(7.4)

with f3(t) := A1e(t) +A2z(t) + Γθ1(t) + f1(t). By Lemmas 5.2 and 5.3, the functions
y, z, e and θ = (θ1, . . . , θρ−1), given by (5.7), are bounded, which, together with
essential boundedness of f1, implies essential boundedness of f3. Therefore, there
exists c5 > 0 such that

〈e(t), ė(t)〉 ≤ c5 + ν(k(t)) 〈e(t),Γe(t)〉 for a.a. t ∈ [0, ω).(7.5)

We are now in a position to prove boundedness of k. Recalling that Γ is either positive
definite or negative definite, there exist constants β0, β1 > 0 such that

β0‖e‖2 ≤ |〈e,Γe〉| ≤ β1‖e‖2 ∀ e ∈ R
m.

Define the continuous function ν̃ : R → R as follows:

ν̃(k) :=

{
−β1ν(k), s(Γ)ν(k) ≥ 0 ,
−β0ν(k), s(Γ)ν(k) < 0 .

Observe that

ν(k)〈e,Γe〉 ≤ −s(Γ)ν̃(k)‖e‖2 ∀ e ∈ R
m , ∀ k ≥ 0 ,

which, together with boundedness of e, ϕ, essential boundedness of ϕ̇, and (7.5),
implies the existence of c6 > 0 such that

d
dt (ϕ(t)‖e(t)‖)2 ≤ c6 − 2s(Γ) ν̃(k(t))

(
ϕ(t)‖e(t)‖

)2
for a.a. t ∈ [0, ω).

In view of property (4.2) of ν, there exists a strictly increasing unbounded sequence
(kj) in (1,∞) such that the sequence

(
s(Γ)ν̃(kj)

)
is also strictly increasing, un-

bounded, and such that s(Γ)ν̃(kj) > 0 for all j ∈ N. Seeking a contradiction, suppose
k is unbounded on [0, ω). For each j ∈ N, define τj := inf{t ∈ [0, ω)| k(t) = kj+1}
and σj := sup{t ∈ [0, τj ]| ν̃(k(t)) = ν̃(kj)}. It is readily verified that σj < τj
and k(σj) < k(τj); moreover, for all j ∈ N and all t ∈ [σj , τj ], k(t) ≥ kj and
s(Γ)ν̃(k(t)) ≥ s(Γ)ν̃(kj). Therefore,

(ϕ(t)‖e(t)‖)2 ≥ α−1(kj) ≥ α−1(k1) = 1 − 1

k1
=: c7 > 0 ∀ t ∈ [σj , τj ], ∀ j ∈ N,

where α−1 : [1,∞) → [0, 1) is the inverse of the bijection α. Thus,

d
dt (ϕ(t)‖e(t)‖)2 ≤ c6 − 2c7s(Γ)ν̃(k(t)) ∀ t ∈ [σj , τj ], ∀ j ∈ N.

Let j∗ ∈ N be sufficiently large so that c6 − 2c7s(Γ)ν̃(kj∗) < 0. Then(
ϕ(τj∗)‖e(τj∗)‖

)2
<
(
ϕ(σj∗)‖e(σj∗)‖

)2
,

whence the contradiction

0 > α
(
ϕ2(τj∗)‖e(τj∗)‖2

)
− α

(
ϕ2(σj∗)‖e(σj∗)‖2

)
= k(τj∗) − k(σj∗) > 0.
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This proves boundedness of k. Therefore, there exists ε > 0 such that ϕ(t)‖e(t)‖ ≤
1− ε for all t ∈ [0, ω). By boundedness of θ, e, and k, together with continuity of the
functions γi, it follows from the recursive construction in (5.7) that, for i = 1, . . . , ρ−1,
ξi is bounded. We may now deduce that x and ξ are bounded, and, by (4.3), (4.4),
(4.5), and (4.7), we may also infer boundedness of u. Finally, by boundedness of x,
ξ, and k, together with Corollary 4.3, we conclude that ω = ∞.
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INFINITE HORIZON RISK SENSITIVE CONTROL OF DISCRETE
TIME MARKOV PROCESSES UNDER MINORIZATION PROPERTY∗

GIOVANNI B. DI MASI† AND �LUKASZ STETTNER‡

Abstract. Risk sensitive control of Markov processes satisfying the minorization property is
studied using splitting techniques. Existence of solutions to the multiplicative Poisson equation is
shown. Approximation by uniformly ergodic controlled Markov processes is introduced, which allows
us to show the existence of solutions to the infinite horizon risk sensitive Bellman equation.
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1. Introduction. On a probability space (Ω,F , P ) consider a controlled Markov
process X = (xn) taking values on a complete separable metric state space E endowed
with the Borel σ-algebra E . Assume that xn has a controlled transition operator
P an(xn, ·), where an is the control at time n taking values on a compact metric space
U and adapted to the σ-algebra σ{x0, x1, . . . , xn}.

Let c : E×U → R be a continuous and bounded function. Our aim is to minimize
the exponential ergodic performance criterion,

Jγ
x

(
(an)

)
= lim

t→∞
sup

1

t
lnE(an)

x

{
exp

{
t−1∑
i=0

γc(xi, ai)

}}
,(1)

with risk factor γ > 0. In what follows we shall distinguish the following special classes
of admissible controls (an): Markov controls UM = {(an) : an = un(xn)}, where un :
E �→ U is a sequence of Borel measurable functions, and stationary controls Us =
{(an) : an = u(xn)}, where u : E �→ U is a Borel measurable function.

Consider the following assumptions:
(A1) ∃β>0 ∃Ccompact∈E ∃ν∈P(E) with ν(C) = 1 such that ∀A∈E

inf
x∈C

inf
a∈U

P a(x,A) ≥ βν(A).

(A2) C given in (A1) is ergodic, i.e., ∀(an)∈UM
∀x∈E E

(an)
x , {τC} < ∞, where

τC = inf {i > 0 : xi ∈ C}, and furthermore supx∈C E
(an)
x {τC} < ∞.

In this paper the risk sensitive control problem with cost functional (1) and general
state space is studied. The paper generalizes [12] and [13] where uniform ergodicity
assumption was required. Instead of uniform ergodicity we require minorization prop-
erty (A1), which allows us to use splitting technique arguments described in [21] and
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[22]. Risk sensitive discrete time control problems have been studied in a number of
papers [1], [5], [6], [7], [8], [9], [10], [11], [14], [15], [16] for finite or countable state
spaces. The general state space model in discrete time was considered in [12] and [13]
only. Financial applications of risk sensitive control problems were introduced in [3]
and continued in various papers; see, e.g., [23] and [25] and the references therein.
Splitting techniques for controlled problems were used in a number of papers; see, e.g.,
[20] for the case of average cost per unit time and [4] for partially observed ergodic
control problems. The first part of this paper studies the so-called Poisson equation.
This equation was considered in particular in [17], [18], [5], [2], and [22]. Here we
present a rather simple probabilistic characterization (based on splitting arguments)
of its solution, which in some sense generalizes Theorem 5.1 of [22] and Proposition 2.8
of [18], where an operator form of the solution was considered. The main result of the
paper concerns the existence of solutions to the Bellman equation corresponding to
the risk sensitive control problem with a general state space (under minorization prop-
erty) and is obtained using a uniformly ergodic approximating process. The idea of
the approximation of general Markov processes by Markov processes with nice ergodic
properties has been exploited in various papers, particularly in [18], where multiplica-
tive Poisson equations are studied, while in [16] ideas based on the spectral theory are
used. In this paper we show that the approximation by uniformly ergodic controlled
Markov processes is also a useful tool to study risk sensitive Bellman equations.

2. Splitting of Markov processes. Let Ê = {C × {0} ∪ C × {1} ∪ E \ C ×
{0}} and x̂n = (x1

n, x
2
n) ∈ Ê. Given a Markov control an = un(x1

n), where un : E �→ U
is a sequence of Borel measurable functions, consider the following Markov process
defined on Ê (compare to [22] and [17]):

(i) When (x1
n, x

2
n) ∈ C×{0}, x1

n moves to y according to (1−β)−1(P an(x1
n, dy)−

βν(dy)), and whenever y ∈ C, x2
n is changed into x2

n+1 = βn+1, where βn

is independently and identically distributed (i.i.d.) and P {βn = 0} = 1 − β,
P {βn = 1} = β.

(ii) When (x1
n, x

2
n) ∈ C × {1}, x1

n moves to y according to ν and x2
n+1 = βn+1.

(iii) When (x1
n, x

2
n) ∈ E \ C × {0}, x1

n moves to y according to P an(x1
n, dy), and

whenever y ∈ C, x2
n is changed into x2

n+1 = βn+1.
In what follows we shall write that the control (an) of (x̂n) is in the class UM whenever
there is a sequence of Borel measurable functions un : E �→ U such that an = un(x1

n).
Let C0 = C × {0}, C1 = C × {1}. By direct calculation we obtain the following.
Lemma 1. For n = 1, 2 . . . we have almost surely

P {x̂n ∈ C0|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = 1 − β,

P {x̂n ∈ C1|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = β.

Furthermore we have the following.
Lemma 2. Under Markov control (an) ∈ UM the process (x̂n = (x1

n, x
2
n)) is

Markov with transition operator P̂ an(x̂n, dy) defined by (i)–(iii) and if (an) ∈ Us, it
has a unique invariant measure Ψ(an) given by

Ψ(an)(A) =
Ê

(an)
z

{∑τC1
i=1 χA(x̂i)

}
Ê

(an)
z {τC1}

,(2)

with z ∈ C1, for any Borel subset A of Ê, where Ê
(an)
z stands for conditional law of

Markov process x̂n with initial state z. Furthermore the first coordinate (x1
n) is also

a Markov process with transition operator P an(x1
n, dy).
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Proof. The Markov property of (x̂n) follows from the construction (i)–(iii) above
of the split Markov process. One can easily verify that Ψ(an) is in fact an invariant

measure if we know that Ê
(an)
z {τC1} is finite. To show this, notice first that for x /∈ C

and positive integer m

Ê
(an)
(x,0) {τCχτC≤m} = E(an)

x {τCχτC≤m} ,

where τC in the left-hand side is the first time in which (x1
n) hits C, while in the

right-hand side it is the analogous hitting time for (xn). Therefore by (A2) letting
n → ∞ we obtain that for x /∈ C

Ê
(an)
(x,0) {τC} = E(an)

x {τC} .(3)

For x̂ = (x1, 0) ∈ C0 by (i), (3), and (A2) there is an M > 0 such that

Êx̂ {τC} =
P (x,C) − β

1 − β
+ Êx̂

{
χE\C(x1

1)(1 + Êx̂1
{τC})

}
=

P (x,C) − β

1 − β
+ Êx̂

{
χE\C(x1

1)(1 + Ex1
1
{τC})

}
≤ P (x,C) − β

1 − β
+

1

1 − β
Ex1 {τC} ≤ M.

Let τ1 = τ and τn+1 = τn + θτn ◦ τ for n = 1, 2 . . . . Then for x̂ ∈ C0 we have

Êx̂ {τC1} = Êx

{ ∞∑
i=1

χCc
1
(x̂τ1) . . . χCc

1
(xτi−1)χC1(x̂τi)τi

}

≤
∞∑
i=1

β(1 − β)i−1iM =
M

β
,

and since for x̂ ∈ C1

Êx {τC1} = β + Êx

{
χC0(x

1
1)(1 + Ê(x1

1,0)
{τC1})

}
,

we have that Ê
(an)
z {τC1

} is in fact finite.
To prove the second statement of Lemma 2 notice that for A ∈ E

P
{
x1
n+1 ∈ A|x1

n, x
1
n−1, . . . , x

1
0

}
= P

{
x1
n+1 ∈ A|x1

n, x
2
n = 0, x1

n−1, . . . , x
1
0

}
P
{
x2
n = 0|x1

n, x
1
n−1, . . . , x

1
0

}
+ P

{
x1
n+1 ∈ A|x1

n, x
2
n = 1, x1

n−1, . . . , x
1
0

}
P
{
x2
n = 1|x1

n, x
1
n−1, . . . , x

1
0

}
.(4)

In the case when x1
n ∈ C, (4) is equal to

P an(x1
n, A) − βν(A)

1 − β
(1 − β) + βν(A) = P an(x1

n, A).

For x1
n /∈ C, (4) is equal to P an(x1

n, A), which completes the proof of the Markov
property of (x1

n).
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The following corollary explains the meaning of the splitting.
Corollary 1. For any bounded Borel measurable function f : Em �→ R, m =

1, 2, . . . , and control (an) ∈ UM we have

E(an)
x {f(x1, x2, . . . , xm)} = Ê

(an)
δ∗x

{
f(x1

1, x
1
2, . . . , x

1
m)
}
,(5)

where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C and Êμ

stands for the conditional law of Markov process (x̂n) with initial law μ ∈ P(Ê).
Proof. It follows from (4) that for a bounded Borel measurable g : E �→ R

Ê
{
g(x1

i+1)|x1
i , x

1
i−1, . . . , x

1
0

}
= Ê

{
Ê
{
g(x1

i+1)|x̂i, x̂i−1, . . . , x̂0

}
|x1

i , x
1
i−1, . . . , x

1
0

}
= Ê

{
Êx̂i

{
g(x1

1)
}
|x1

i , x
1
i−1, . . . , x

1
0

}
= Êδ∗

x1
i

{
g(x1

1)
}
.(6)

On the other hand by the Markov property of (x1
n) we have

Ê
{
g(x1

i+1)|x1
i , x

1
i−1, . . . , x

1
0

}
=

∫
E

g(y)P ai(x1
i , dy).(7)

Consequently applying (6) and (7) to function f : Em �→ R we obtain (5).

3. Multiplicative Poisson equation. In this section we shall assume that
(A3) ∀(an)∈Us

∃d such that ∀x∈Ê

Ê(an)
x

{
exp

{τC1∑
i=1

(
γc(x1

i , ai) − d
)}}

< ∞

and for x ∈ C1

Ê(an)
x

{
exp

{τC1∑
i=1

(
γc(x1

i , ai) − d
)}}

≥ 1.

Lemma 3. Under (A3) for (an) ∈ Us there is a unique λγ((an)) such that

Ê(an)
x

{
exp

{τC1∑
i=1

(
γc(x1

i , ai) − λγ((an))
)}}

= 1(8)

for x ∈ C1.
Proof. Notice that for x ∈ C1 the mapping

D : λ �→ Ê(an)
x

{
exp

{τC1∑
i=1

γc(x1
i , ai) − λ

}}

is strictly decreasing whenever it is finite. Moreover by (A3) we have that ∞ >
D(d) ≥ 1. Since limb→∞ D(b) = 0 by continuity of D (which follows by the monotone
convergence theorem) there is a unique λγ((an)) for which (8) holds.

Remark 1. Notice that by letting d = infx∈E,a∈U γc(x, a) we have a sufficient
condition for (A3) in the form
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(D1) Ê
(an)
x {exp {γ‖c‖spτC1

}} < ∞ for x ∈ Ê,
where ‖c‖sp := supx∈E,a∈U c(x, a)− infx∈E,a∈U c(x, a). In section 6 we shall formulate
a sufficient condition for (D1) in terms of the expected value of the functional with
respect to the original Markov process (xn).

For Borel measurable u : E �→ U let

eŵ
u(x) = Êu

x

{
exp

{τC1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)}}
,(9)

where by λγ(u) we denote the value of λγ((u(x1
n)) and the expected value Êu

x stands

for Ê
(u(x1

n))
x .

By (A3) clearly λγ(u) ≥ d and therefore ŵu is well defined. For a Borel measurable
function w̃ : Ê �→ R define the operator Φ(w̃) by the formula

eΦ(w̃) = (1 − β)

∫
C

ew̃(x,0)ν(dx) + β

∫
C

ew̃(x,1)ν(dx)(10)

whenever it is well defined. Notice that

eΦ(w̃) = Êx {exp {w̃(x̂1)}}(11)

for x ∈ C1. We have the following analogue of Theorem 5.1 of [22] and Proposition 2.8
of [18].

Lemma 4. Function ŵu defined in (9) is a solution to the multiplicative Poisson
equation (MPE) for the split Markov process (x̂n):

eŵ
u(x) = eγc(x

1,u(x1))−λγ(u)

∫
Ê

eŵ
u(y)P̂u(x1)(x, dy).(12)

Moreover Φ(ŵu) = 0, and for any other solution w̃u to (12) we have

w̃u(x) − Φ(w̃u) ≥ ŵu(x)(13)

with equality for Ψu almost all x ∈ Ê. Furthermore, if w̃ and λ satisfy the equation

ew̃(x) = eγc(x
1,u(x1))−λ

∫
Ê

ew̃(y)P̂u(x1)(x, dy),(14)

then λ ≥ λγ(u).
Proof. In fact, using (6) we have

Êu
x {exp {w(x̂1)}} = Êu

x

{
χx̂1∈C1Ê

u
x1

{
exp

{τC1∑
i=0

γc(x1
i , u(x1

i )) − λγ(u)

}}}

+ Êu
x

{
χx̂1 /∈C1

Êu
x1

{
exp

{τC1∑
i=0

γc(x1
i , u(x1

i )) − λγ(u)

}}}
= Êu

x {χx̂1∈C1 ,

exp
{
γc(x1

1, u(x1
1)) − λγ(u)

}}
+ Êu

x

{
χx̂1 /∈C1

exp

{τC1∑
i=1

γc(x1
i , u(x1

i )) − λγ(u)

}}

= Êu
x

{
exp

{τC1∑
i=0

γc(x1
i , u(x1

i )) − λγ(u)

}}
exp

{
−(γc(x1, u(x1)) − λγ(u))

}
,
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from which (12) follows. Furthermore we clearly see that Φ(ŵ) = 0. If w̃u is a
solution to (12), then by (11) Φ(w̃u) is well defined and by iteration, for a positive
integer m = 1, 2, . . . ,

ew̃
u(x) = Êu

x

{
exp

{τC1
∧m∑

i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)}
Êu

x̂τC1
∧m

{exp {w̃u(x̂(1))}}
}
.

By Fatou’s lemma

ew̃
u(x) ≥ Êu

x

{
exp

{τC1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)}
Êu

x̂τC1

{exp {w̃u(x̂(1))}}
}

= Êu
x

{
exp

{τC1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)}}
eΦ(w̃u),

from which we immediately obtain (13). For ε > 0 let

Zε =
{
x ∈ Ê : w̃u(x) − Φ(w̃u) ≥ ŵu(x) + ε

}
.

If Ψu(Zε) > 0, then there is a positive integer n such that P̂u
z

{
x̂τC1

∧n

}
> 0 for

z ∈ C1. Consequently

ew̃
u(z)−Φ(w̃u) = Êu

z

⎧⎨⎩exp

⎧⎨⎩
τC1

∧n−1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭ exp
{
w̃u(x̂τC1

∧n)
}⎫⎬⎭

> Êu
z

⎧⎨⎩exp

⎧⎨⎩
τC1

∧n−1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭ exp
{
ŵu(x̂τC1

∧n)
}⎫⎬⎭ = eŵ

u(z).

Since by (11) we have that ew̃
u(z)−Φ(w̃u) = eŵ

u(z) = eγc(z
1,u(z1))−λγ(u) we obtained a

contradiction. Consequently Ψu(Zε) = 0 for each ε > 0.
Assume now that w̃ and λ satisfy (14). Let τ1 = τC1

, τn+1 = τn + θτn ◦ τC1
for

n = 1, 2, . . . . Then for a positive integer m

ew̃(x) = Êu
x

{
exp

{
τn∧m∑
i=0

(
γc(x1

i , u(x1
i )) − λ

)}
Êu

x̂τn∧m
{exp {w̃(x̂(1))}}

}
,

and letting m → ∞, by Fatou’s lemma

ew̃(x) ≥ Êu
x

{
exp

{
τn∑
i=0

(
γc(x1

i , u(x1
i )) − λ

)}
Êu

x̂τn
{exp {w̃(x̂(1))}}

}

= Êu
x

{
exp

{τC1∑
i=0

(
γc(x1

i , u(x1
i )) − λ

)}}
Dn−1(λ)eΦ(w̃),

with function D defined in the proof of Lemma 3. Since the right-hand side of the
above inequality remains bounded as n → ∞ we should have D(λ) ≤ 1, and this
means that λ ≥ λγ(u).
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There is a 1 : 1 correspondence between the solutions to the MPE for the split
Markov process and the solution to the MPE corresponding to the original Markov
process.

Corollary 2. Given a solution w̃u : Ê �→ R and λ to the MPE (14) we have
that wu defined for x ∈ E by

ew
u(x) := ew̃

u(x,0) + 1C(x)β(ew̃
u(x,1) − ew̃

u(x,0))(15)

is a solution to the MPE for the original Markov process (xn)

ew
u(x) = eγc(x,u(x))−λ

∫
E

ew
u(y)Pu(x)(x, dy).(16)

Furthermore if wu is a solution to (16), then w̃u defined by

ew̃
u(x1,x2) = eγc(x

1,u(x1))−λÊx1,x2

{
ew

u(x1
1)
}

(17)

is a solution to (14).
Proof. By Lemma 1 we have

Êu
x

{
ew̃

u(x̂1)
}

= Êu
x

{
Êu

x

{
ew̃

u(x̂1)|x1
1

}}
= Êu

x

{
χC(x1

1)((1 − β)ew̃
u(x1

1,0) + βew̃
u(x1

1,1))

+ χE\C(x1
1)e

w̃u(x1
1,0)
}

= Êu
x

{
ew

u(x1
1)
}
.(18)

Therefore by (14) taking into account (5) we obtain that wu defined in (15) is a
solution to (16). Assume now that wu is a solution to (16). Then by (5)

Êu
δ∗x

{
ew

u(x1
1)
}

= Eu
x

{
ew

u(x1
1)
}
,

and for w̃u given in (17) we obtain (15). From (15) we obtain (18), which in turn by
(17) shows that w̃u is a solution to (14).

Furthermore we have the following.
Corollary 3. If λ(u) and wu is a solution to the MPE

ew
u(x) = eγc(x,u(x))−λ(u)

∫
E

ew
u(y)Pu(x)(x, dy),

wu is a bounded Borel measurable function, and the family⎧⎨⎩exp

⎧⎨⎩
τC1

∧N∑
i=1

(
γc(x1

i , u(x1
i )) − λ(u)

)⎫⎬⎭ ;N = 1, 2, . . .

⎫⎬⎭
is uniformly integrable with respect to P̂u

z with z ∈ C1, then λ(u) = λγ(u).
Proof. By Corollary 2 the function w̃u defined in (17) and λ(u) is a solution to

the MPE (14). Clearly w̃ is also a bounded function. Moreover,

ew̃
u(x) = Êu

x

⎧⎨⎩exp

⎧⎨⎩
τC1

∧N∑
i=0

(
γc(x1

i , u(x1
i )) − λ(u)

)⎫⎬⎭ Êu
x̂τC1

∧N
{exp {w̃u(x̂(1))}}

⎫⎬⎭ .
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By the dominated convergence theorem, letting N → ∞ and using uniform integra-

bility of {exp{
∑τC1

∧N
i=1 (γc(x1

i , u(x1
i )) − λ(u))};N = 1, 2, . . .} and the fact that w̃ is

bounded we obtain

ew̃
u(z) = Êu

z

{
exp

{τC1∑
i=0

(
γc(x1

i , u(x1
i )) − λ(u)

)}}
eΦ(w̃u)

for z ∈ C1. Consequently, since by the MPE we have that w̃u(z) − Φ(w̃u) =
c(z1, u(z1)) − λ(u), for z = (z1, 1) ∈ C1 we obtain

Êu
z

{
exp

{τC1∑
i=1

(
γc(x1

i , u(x1
i )) − λ(u)

)}}
= 1,

from which, by Lemma 3, we immediately have that λ(u) = λγ(u).
Remark 2. Notice that λγ(u) is the minimal solution to the MPE (14). However,

solutions may be well defined ∀λ ≥ λγ(u), as shown in the example below.
Example. Consider the following model: E = {0, 1, 2, . . .}, γ = 1, there is no

control, c(x) ≡ c for x ∈ E, and the transition probabilities are P (0, 1) = 1 − α0,
P (0, 0) = α0, P (x, 0) = α, P (x, x + 1) = 1 − α for x = 1, 2, . . . , with 0 < α0, α < 1.
The MPE Bellman equation is of the form

ew(x) = ec−λEx

{
ew(x1)

}
.(19)

Clearly the pair λ = c and w ≡ 0 is a solution to (19). We shall identify other solutions.
Taking into account the form of transition probabilities, from (19) we obtain

ew(0) = ec−λ
(
α0e

w(0) + (1 − α0)e
w(1)

)
,

and for n = 1, 2, . . .

ew(n) = ec−λ
(
αew(0) + (1 − α)ew(n+1)

)
.

The first equation has a solution whenever

λ > c + lnα0.(20)

Iterating the second equation we obtain that

ew(n) =
1

1 − α

(
eλ−c+κqn−2 − α(qn−2 + · · · + 1)

)
ew(0),(21)

with κ = ln( e
λ−c−α0

1−α0
) and q = eλ−c

1−α . Whenever q ≤ 1 the right-hand side of (21) is
negative for a sufficiently large n, so that there are no solutions. Whenever q > 1 we
have

ew(n) =
ww(0)

(1 − α)(q − 1)

(
(eλ−c+κ(q − 1) − αq)qn−2 + α

)
,(22)

and the above equation has a solution only when eλ−c+κ(q−1)−αq ≥ 0. Taking into
account the form of κ, this leads to the quadratic inequality

e2(λ−c) − (α0 + 1 − α)eλ−c + α0 − α ≥ 0,
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from which we in turn obtain that eλ−c ≤ α0 − α or eλ−c ≥ 1. In view of (20) the
first inequality is not satisfied. From the second inequality we obtain λ ≥ c, and then
we clearly see that (20) also holds. Finally, ∀λ ≥ c we have solutions to (14) which
are unbounded whenever λ > c.

The value λγ(u) defined in Lemma 3 has (under some additional assumptions)
the following important interpretation.

Proposition 1. If for Borel measurable u : E �→ U

(B1) the family ⎧⎨⎩exp

⎧⎨⎩
τC1

∧N∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭ ;N = 1, 2, . . .

⎫⎬⎭(23)

is uniformly integrable with respect to P̂u
z measure with z ∈ C1,

(B2) for x ∈ Ê

inf
N

Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭ > 0(24)

with σC1 = inf {i ≥ 0 : x̂(i) ∈ C1}, and
(B3) for x ∈ Ê

sup
N

Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭ < ∞,(25)

then for x ∈ E

λγ(u) = lim
n→∞

1

n
lnEu

x

{
exp

{
n−1∑
i=0

γc(xi, u(xi))

}}
.(26)

Proof. Let λ > λγ(u). For z ∈ C1 we have

Êu
z

{
exp

{τC1∑
i=1

(
γc(x1

i , u(x1
i )) − λ

)}}
< 1

and consequently by the dominated convergence theorem and (23) for N ≥ N0, with
N0 sufficiently large,

Êu
z

⎧⎨⎩exp

⎧⎨⎩
τC1

∧N∑
i=1

(
γc(x1

i , u(x1
i )) − λ

)⎫⎬⎭
⎫⎬⎭ ≤ 1.(27)

Let

ew
u
N (x) = Êu

x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=0

(
γc(x1

i , u(x1
i )) − λ

)⎫⎬⎭
⎫⎬⎭ .(28)



240 GIOVANNI B. DI MASI AND �LUKASZ STETTNER

By (B3) wu
N is well defined. For x /∈ C1

ew
u
N+1(x) = Êu

x

⎧⎨⎩eγc(x
1
0,u(x1

0))−λÊu
x̂1

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=0

(
γc(x1

i , u(x1
i )) − λ

)⎫⎬⎭
⎫⎬⎭
⎫⎬⎭

= Êu
x

{
eγc(x

1
0,u(x1

0))−λew
u
N (x̂1)

}
,(29)

and for x ∈ C1 by (27) we have

ew
u
N+1(x) = eγc(x

1
0,u(x1

0))−λ

≥ eγc(x
1
0,u(x1

0))−λÊu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N∑
i=1

(
γc(x1

i , u(x1
i )) − λ

)⎫⎬⎭
⎫⎬⎭

= Êu
x

{
eγc(x

1
0,u(x1

0))−λew
u
N (x̂1)

}
.(30)

Consequently

ew
u
N+1(x) ≥ Êu

x

{
eγc(x

1
0,u(x1

0))−λew
u
N (x̂1)

}
,

and by iteration for N ≥ N0

ew
u
N+k(x) ≥ Êu

x

{
e
∑k−1

i=0 (γc(x1
i ,u(x1

i ))−λ)ew
u
N (x̂k)

}
≥ Êu

x

{
e
∑k−1

i=0 (γc(x1
i ,u(x1

i ))−λ)e−γ‖c‖N
}
.

Therefore

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≤ 1

k
γ‖c‖N

+
1

k
sup
N

ln Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭+ λ,

and by (B3)

lim sup
k→∞

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≤ λ.

Consequently, letting λ decrease to λγ(u), we obtain

lim sup
k→∞

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≤ λγ(u).(31)

Assume now that λ < λγ(u). By Fatou’s lemma for z ∈ C1 and N ≥ N0, with N0

sufficiently large, we have

Êu
z

⎧⎨⎩exp

⎧⎨⎩
τC1

∧N∑
i=1

(
γc(x1

i , u(x1
i )) − λ

)⎫⎬⎭
⎫⎬⎭ ≥ 1.(32)
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Therefore for wu
N given by (28) (with λ as above) similarly as in (29) and (30) we

have

ew
u
N+1(x) ≤ Êu

x

{
eγc(x

1
0,u(x1

0))−λew
u
N (x̂1)

}
,(33)

and by iteration for N ≥ N0

ew
u
N+k(x) ≤ Êu

x

{
e
∑k−1

i=0 (γc(x1
i ,u(x1

i ))−λ)ew
u
N (x̂k)

}
≤ Êu

x

{
e
∑k−1

i=0 (γc(x1
i ,u(x1

i ))−λ)eγ‖c‖N
}
.

Therefore

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≥ −1

k
γ‖c‖N

+
1

k
inf
N

ln Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=0

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭+ λ,

and by (B2)

lim inf
k→∞

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≥ λ,

and finally

lim inf
k→∞

1

k
ln Êu

x

{
eγ
∑k−1

i=0 c(x1
i ,u(x1

i ))
}
≥ λγ(u),(34)

which together with (31) using (5) completes the proof.
Remark 3. Notice that under (D1) assumptions (B1) and (B3) are satisfied. By

the Hölder inequality, using the fact that λγ(u) ≤ supx∈E,a∈U γc(x, a) we have that

1 ≤

⎛⎝Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=1

(
−γc(x1

i , u(x1
i )) + λγ(u)

)⎫⎬⎭
⎫⎬⎭
⎞⎠

1
2

×

⎛⎝Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭
⎞⎠

1
2

≤
(
Êu

x

{
eγ‖c‖spτC1

}) 1
2

×

⎛⎝Êu
x

⎧⎨⎩exp

⎧⎨⎩
σC1

∧N−1∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭
⎫⎬⎭
⎞⎠

1
2

,

from which, under (D1), inequality (24) holds, and in conclusion (26) holds.
Furthermore notice that

MN := e−ŵu(z) exp

⎧⎨⎩
τC1

∧N∑
i=0

(γc(x1
i , u(x1

i )) − λγ(u))

⎫⎬⎭ e
ŵu(xτC1

∧N+1)
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is a positive martingale that converges almost surely to M∞ as N → ∞. Since by
the choice of λγ(u) we have that Êu

zMN = 1 = Êu
zM∞, from Theorem II 21 of [19]

it follows that the family {MN , N = 1, 2, . . .} is uniformly integrable. When ŵu is
bounded we then immediately obtain (B1).

Finally, by the Jensen inequality we can easily formulate a sufficient condition for
(B2) as follows: for x ∈ Ê

inf
N

Êu
x

⎧⎨⎩
σC1

∧N−1∑
i=1

(
γc(x1

i , u(x1
i )) − λγ(u)

)⎫⎬⎭ > −∞.

4. Uniformly ergodic approximation of controlled Markov processes.
We shall now assume that

(A4) for x ∈ E, A ∈ E

P a(x,A) =

∫
A

p(x, a, y)ν(dy),(35)

where p is a positive continuous function of its coordinates.
Denote by |x| the value of ρ(x, θ), where ρ is a metric on E compatible with the

topology of E and θ ∈ E is a fixed point.
Let

p̃N (x, a, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(x,a,y)
Δa

N (x) for |y| ≤ N,

p(θ,ā,y)
Δa

N (x) for |y| ≥ N + 1,

p(x,a,y)(N+1−|y|)+p(θ,ā,y)(|y|−N)
Δa

N (x) elsewhere,

with Δa
N (x) = P a(x,BN )+P ā(θ,Bc

N+1)+
∫
BN+1\BN

[p(x, a, y)(N +1−|y|)+p(θ, ā, y)

(|y| −N)]ν(dy), where BN = {x ∈ E : |x| ≤ N} and ā is a fixed element of U .
Let

pN (x, a, y) = p̃N (x, a, y) if |x| ≤ N,

pN (x, a, y) = p̃N

(
x

|x|N, a, y

)
for |x| > N

and define

P a
N (x, dy) = pN (x, a, y)ν(dy).(36)

We clearly have the following.
Lemma 5.

sup
a∈U

‖P a
N (x, ·) − P a(x, ·)‖var → 0(37)

as N → ∞, uniformly in x from compact sets. Furthermore for each N

sup
a,a′∈U

sup
x,x′∈E

sup
y∈E

pN (x, a, y)

pN (x′, a′, y)
< ∞.(38)

For (an) ∈ Us let

F
(an)
Nx (λ) = Ê(an),N

x

{
exp

{τC1∑
i=1

(γc(x1
i , ai) − λ)

}}
(39)
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and

F (an)
x (λ) = Ê(an)

x

{
exp

{τC1∑
i=1

(γc(x1
i , ai) − λ)

}}
,(40)

where P̂
(an),N
x is the conditional probability of the split Markov process (x̂n) corre-

sponding to Markov process (xn) with transition probability P an

N at time n.
Notice that whenever x ∈ C1 the functions in (39) and (40) do not depend on x

and will be denoted by F
(an)
N and F (an). We have the following.

Proposition 2. Assume that there exist N0 and d1 < d2 such that for N ≥ N0,
(an) ∈ Us, and x ∈ C1 we have

F
(an)
N (d2) = F

(an)
Nx (d2) ≤ 1 ≤ F

(an)
Nx (d1) < ∞,(41)

F
(an)
Nx (λ) → F

(an)
x (λ) for x ∈ C1 uniformly in (an) ∈ Us and λ ∈ [d1, d2], and further-

more

sup
(an)

|F (an)′(d1)| < ∞,(42)

where ′ stands for the derivative with respect to λ. Then

λγ
N ((an)) :=

(
F

(an)
N

)−1

(1) →
(
F (an)

)−1

(1) = λγ((an))(43)

uniformly in (an) ∈ Us as N → ∞.
Proof. Assume that there exist ε > 0, a sequence (akn) of strategies from Us, and

a sequence Nk → ∞ such that

|λγ
Nk

((akn)) − λγ((akn))| > ε.(44)

By assumption we have that

|F (ak
n)

Nkx
(λNk

((akn))) − F
(ak

n)
x (λNk

((akn)))| → 0

and therefore

F
(ak

n)
x (λγ

Nk
((akn))) → 1 = F

(ak
n)

Nkx
(λγ

Nk
((akn)))(45)

as k → ∞. Since F
(ak

n)
x (λγ((akn))) = 1 and sup(ak

n) |F (ak
n)′(λ)| is bounded for λ ∈

[d1, d2] (by (42)), we should have |λγ
Nk

((akn)) − λγ((akn))| → 0 as k → ∞, which
contradicts (44).

Remark 4. Notice that the choice of d1 and d2 in (41) is uniform with re-
spect to (an) ∈ Us. Two natural candidates are d1 = infx∈E,a∈U γc(x, a) and d2 =
supx∈E,a∈U γc(x, a).

To have convergence F
(an)
Nx (λ) → F

(an)
x (λ) for x ∈ C1 uniform in (an) ∈ Us and

λ ∈ [d1, d2] we have to assume for x ∈ C1 that

sup
(an)∈Us

Ê(an)
x {exp {γ‖c‖spτC1}} < ∞,

and
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(D2) supN sup(an)∈Us
Ê

(an),N
x {exp {γ‖c‖spτC1

}} < ∞.

Since

|F (an)′
x (λ)| = Ê(an)

x

{
τC1

exp

{τC1∑
i=1

(γc(x1
i , hi) − λ)

}}

≤ Ê(an)
x {τC1 exp {γ‖c‖spτC1}}

≤ KÊ(an)
x {exp {(1 + ε)γ‖c‖spτC1}}

for ε > 0 and K > 0, to have (42) it is sufficient to assume for x ∈ C1 that

(D3) sup(an)∈Us
Ê

(an)
x {exp {(1 + ε)γ‖c‖spτC1

}} < ∞ for a sufficiently small ε > 0.

We have the following.

Proposition 3. For each N there are λγ
N and wN ∈ C(E) such that

ewN (x) = inf
a∈U

[
eγc(x,a)−λγ

N

∫
E

ewN (y)P a
N (x, dy)

]
,(46)

and consequently

λγ
N = inf

an

Jγ,N
x ((an)),(47)

where

Jγ,N
x ((an)) := lim sup

t→∞

1

t
lnE(an),N

x

{
exp

{
t−1∑
i=0

γc(xi, ai)

}}

and the infimum is taken over all admissible controls (an).

Moreover the strategy âNn = uN (xn), where uN : E �→ U is a Borel measurable

function for which the infimum in equation (46) is attained, is optimal and if Ê
(âN

n ),N
x

{exp {γ‖c‖spτC1}} < ∞, we have additionally that λγ
N = λγ

N (uN ) with λγ
N (uN ) defined

in Lemma 3 for a Markov process with transition operator PuN

N .

Proof. In view of (38) and Theorem 1 of [12] it remains only to show that λγ
N =

λγ
N (uN ), which in turn follows directly from Corollary 3.

Corollary 4. Under (D2) and (D3) we have that

λγ := inf
(an)∈Us

Jγ
x ((an)) = lim

N→∞
λγ
N(48)

for x ∈ E.

Proof. By Remark 4 and Proposition 2

sup
(an)∈Us

|λγ
N ((an)) − λγ((an))| → 0.

Since by Remark 3 and Propositions 1 and 2 λγ
N ((an)) = inf(an)∈Us

λγ
N ((an)) = λγ

N ,
we obtain (48).

5. Risk sensitive Bellman equation. Let uN be an optimal control function
corresponding to P a

N (x, dy). Furthermore assume that
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(A5) ∃ε>0 such that ∀K compact⊂ Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x

{
exp

{τC1∑
i=1

(γc(x1
i , uN (x1

i )) − λγ
N (uN ))(1 + ε)

}}

= M(K) < ∞,(49)

where above we control the split Markov process (x̂n) using at time 0 control a0 = a
and then an = uN (x1

n) for n ≥ 1, with uN as in Proposition 3.

Theorem 1. Under (A1)–(A5) there exist λγ and a continuous function w : E �→
R such that

ew(x) = inf
a∈U

[
eγc(x,a)−λγ

∫
E

ew(y)P a(x, dy)

]
.(50)

Moreover, under (D2)–(D3) we have that

λγ = inf
(an)∈Us

Jγ
x ((an)) = lim

N→∞
λγ
N (uN ).(51)

Assuming additionally that (D1) is satisfied for ân = û(xn), where û is a Borel
measurable function for which the infimum on the right-hand side of (50) is attained,
we have that λγ = λγ(û). Furthermore, if for an admissible control (an) we have

lim sup
t→∞

E(an)
x

{(
Eat

xt

{
ew(x1)

})α}
< ∞

for every α > 1, then λγ ≤ Jγ
x ((an)).

Proof. The proof consists of several steps.

Step 1. We prove first that supN Êa,N
x {exp {ŵuN

N (x̂1}} is bounded uniformly on
compact subsets of (E0∪C1)×U , where ŵuN

N is a solution to the multiplicative Poisson
equation corresponding to the transition operator P a

N (x, dy) with control function uN

with Φ(ŵuN

N ) = 0.

In fact,

Êa,N
x {exp {ŵuN

N (x̂1)}} = Êa,N
x

{
χC1(x̂1)e

γc(x1
1,uN (x1

1))−λγ
N (uN )

}

+ Êa,N
x

{
χCc

1
(x̂1) exp

{τC1∑
i=1

(γc(x1
i , uN (x1

i )) − λγ
N (uN ))

}}
,(52)

and by (A5) the required boundedness follows.

Step 2. We show now that for N = 1, 2 . . . , functions Êa,N
x {χC1(x̂1) exp {ŵuN

N (x̂1)}},
Êa,N

x {χC0(x̂1) exp {ŵuN

N (x̂1)}}, and Êa,N
x

{
χ(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}

are equicon-
tinuous in x and a from compact subsets of E0 ∪ C1 and U , respectively.

Notice first that by (37) for each compact set K ⊂ E0 ∪ C1, ε′ > 0 there is a
compact set K1 ⊃ C0 ∪ C1 such that

sup
a∈U

sup
x∈K

sup
N

P̂ aN
x {x̂1 ∈ Kc

1} < ε′.(53)
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Furthermore by the Hölder inequality

sup
a∈U

sup
x∈K

sup
N

Êa,N
x

{
χKc

1
(x̂1) exp

{τC1∑
i=1

(γc(x1
i , uN (x1

i )) − λγ
N (uN ))

}}
(54)

≤ sup
a∈U

sup
x∈K

sup
N

(
P̂ a,N
x {x̂1 ∈ Kc

1}
) ε

1+ε

,

sup
a∈U

sup
x∈K

sup
N

(
Êa,N

x

{
exp

{τC1∑
i=1

(γc(x1
i , uN (x1

i )) − λγ
N (uN ))(1 + ε)

}}) 1
1+ε

≤ ε′
ε

1+ε (M(K))
1

1+ε .

Consequently

|Êa,N
x {χC1(x̂1) exp {ŵuN

N (x̂1)}} − Êa′,N
x′ {χC1

(x̂1) exp {ŵuN

N (x̂1)}} |

≤ e|γ|‖c‖‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var

and by (53)–(54)

|Êa,N
x {χC0(x̂1) exp {ŵuN

N (x̂1)}} − Êa′,N
x′ {χC0(x̂1) exp {ŵuN

N (x̂1)}} |

≤ 2ε′
ε

1+ε (M(K))
1

1+ε + |Êa,N
x {χK1(x̂1) exp {ŵuN

N (x̂1)}}

−Êa′,N
x′ {χK1

(x̂1) exp {ŵuN

N (x̂′
1)}} |

and

|Êa,N
x

{
χ(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}
− Êa′,N

x′

{
χ(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}
|

≤ 2ε′
ε

1+ε (M(K))
1

1+ε + |Êa,N
x

{
χK1∩(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}

−Êa′,N
x′

{
χK1∩(E\C)0(x̂1) exp {ŵuN

N (x̂′
1)}
}
|.

For δ > 0 choose K1 in (52) such that ε′
ε

1+ε (M(K))
1

1+ε < δ
3 . Since

max
{
|Êa,N

x {χK1(x̂1) exp {ŵuN

N (x̂1)}} − Êa′,N
x′ {χK1(x̂1) exp {ŵuN

N (x̂′
1)}} |,

|Êa,N
x

{
χK1∩(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}
− Êa′,N

x′

{
χK1∩(E\C)0(x̂1) exp {ŵuN

N (x̂′
1)}
}
|
}

≤ sup
x∈K1

exp {ŵuN

N (x)} ‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var

for x, x′ ∈ E0 ∪ C1, and a, a′ ∈ U such that

‖P̂ aN (x,C1 ∩ ·) − P̂ a′N (x′, C1 ∩ ·)‖var ≤ δ

3eγ‖c‖
(55)

and

‖P̂ aN (x,K1 ∩ ·) − P̂ a′N (x′,K1 ∩ ·)‖var ≤ δ

3 supz∈K1
eŵ

uN
N (z)

(56)
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we obtain that

|Êa,N
x {χC1(x̂1) exp {ŵuN

N (x̂1)}} − Êa′,N
x′ {χC1(x̂1) exp {ŵuN

N (x̂1)}} | ≤ δ,

|Êa,N
x {χC0(x̂1) exp {ŵuN

N (x̂1)}} − Êa′,N
x′ {χC0

(x̂1) exp {ŵuN

N (x̂1)}} | ≤ δ,

and

|Êa,N
x

{
χ(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}
− Êa′,N

x′

{
χ(E\C)0(x̂1) exp {ŵuN

N (x̂1)}
}
| ≤ δ.

Now by (A5) supz∈K1
eŵ

uN
N (z) is bounded in N , and therefore by (37) we can choose

x, x′ and a, a′ in (55) and (56) uniformly in N , which completes the proof of the
equicontinuity.

Step 3. By Steps 1 and 2 and by (5) and (15) we immediately see that

Ea,N
x {exp {wuN

N (x1)}}

is uniformly (in N) bounded and equicontinuous on compact subsets of E ×U . Since
uN is optimal for P a

N (x, dy) we have that wuN

N = wN . Therefore by Ascoli’s theorem
(Theorem 33 of [24]) there is a subsequence Nk such that

Ea,Nk
x {exp {wNk

(x1)}}

converges uniformly in a ∈ U and x from compact subsets of E and λγ
Nk

(uNk
) → λ

(since λγ
N (un) ∈ [infx∈E,a∈U γc(x, a), supx∈E,a∈U γc(x, a)]). Consequently there is a

continuous function w such that

ew(x) = inf
a∈U

[
eγc(x,a)−λ lim

k→∞

∫
E

ewNk
(y)P a

Nk
(x, dy)

]
.(57)

Moreover, using the fact that wuN

N = wN is a solution to the Bellman equation (46)
we obtain

ew(x) = lim
k→∞

inf
a∈U

[
eγc(x,a)−λ

∫
E

ewNk
(y)P a

Nk
(x, dy)

]
= lim

k→∞
eλ−λγ

Nk
(uNk

)ewNk
(x) = lim

k→∞
ewNk

(x)(58)

with the convergence uniform on compact sets.
Step 4. To prove that function w defined in (57) is a solution to the Bellman

equation (50) it remains to show that

lim
k→∞

Ea,Nk
x {exp {wNk

(x1)}} = Ea
x

{
ew(x1)

}
.(59)

In fact, by Fatou’s lemma

Ea
x

{
ew(x1)

}
≤ lim

k→∞
Ea,Nk

x {exp {wNk
(x1)}} < ∞.(60)

By Steps 1 and 2 one can find a compact set K1 ⊃ C such that

sup
N

sup
a∈U

Ea,N
x

{
χKc

1
(x1) exp {wN (x1)}

}
≤ ε

3
(61)
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and

sup
a∈U

Ea
x

{
χKc

1
(x1) exp {w(x1)}

}
≤ ε

3
.(62)

Therefore

|Ea
x {exp {w(x1)}} − Ea,Nk

x {exp {wNk
(x1)}} |

≤ |Ea
x {χK1(x1) exp {w(x1)}} − Ea,Nk

x {χK1(x1) exp {w(x1)}} |

+ |Ea,Nk
x {χK1(x1) (exp {w(x1)} − exp {wNk

(x1)})} |

+ Ea,Nk
x

{
χKc

1
(x1) exp {wNk

(x1)}
}

+ Ea
x

{
χKc

1
(x1) exp {w(x1)}

}
≤ sup

x∈K1

ew(x)‖P a(x,K1 ∩ ·) − P aN (x,K1 ∩ ·)‖var + sup
x∈K1

|ew(x) − ewNk (x)| + 2ε

3
.

Consequently letting k → ∞ and taking into account that ε may be arbitrarily small
we obtain the convergence (59). By the continuity in x and a of the right-hand side
of (50) we have the existence of a Borel measurable function û for which the infimum
is attained. Identity (51) follows immediately from Corollary 4. From Remark 3 and
Proposition 1 (under (D1)) we obtain that λγ = λγ(û).

Step 5. If for an admissible control (an) we have lim supt→∞ E
(an)
x {(Eat

xt
{ew(x1)})α}

< ∞ for every α > 1, then by the Hölder inequality we have from (50)

w(x) ≤ lnE(an)
x

{
exp

{
t−1∑
i=0

(γc(xi, ai) − λγ)

}
Eat

xt

{
ew(x1)

}}

≤ −tλγ + ln

(
E(an)

x

{
exp

{
t−1∑
i=0

γc(xi, ai)(1 + ε)

}}) 1
1+ε

+ ln

(
E(an)

x

{(
Eat

xt

{
ew(x1)

})1+ 1
ε

}) ε
1+ε

.

Dividing both sides of the last inequality by t and letting t go to infinity, we obtain

that 1
1+εJ

γ(1+ε)
x ((an)) ≥ λγ for any ε > 0. It remains to show that the mapping

γ �→ Jγ
x ((an)) is a continuous function for γ > 0 since then letting ε → 0 we obtain

Jγ
x ((an)) ≥ λγ . To prove continuity notice that for γ1, γ2 > 0, γ1 ≤ γ2

|Jγ1
x ((an)) − Jγ2

x ((an))| ≤ lim sup
t→∞

1

t

∣∣∣∣∣ lnE(an)
x

{
exp

{
t−1∑
i=0

γ1c(xi, ai)

}}

− lnE(an)
x

{
exp

{
t−1∑
i=0

γ2c(xi, ai)

}}∣∣∣∣∣ ≤ lim sup
t→∞

1

t
|γ1 − γ2| sup

γ∈[γ1,γ2]

|g′t(γ)|

≤ ‖c‖|γ1 − γ2|,

since the derivative of the function

gt(γ) := lnE(an)
x

{
exp

{
t−1∑
i=0

γc(xi, ai)

}}
is bounded by t‖c‖.
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Remark 5. A sufficient condition for (A5) can be formulated as follows:
(D4) There is ε > 0 such that for each compact set K ⊂ Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x {exp {(1 + ε)|γ|‖c‖spτC1}} < ∞,

where the split Markov process (x̂n) after control a at time 0 is controlled
using the control function uN .

6. Remarks on assumptions and an example. We shall formulate first a
sufficient condition for (A3). It is worth noting that the assumption (63) below cor-
responds to geometrical regularity of the set C with a constant γ‖c‖sp, as considered
in [18].

Proposition 4. If for x ∈ E and (an) ∈ Us

E(an)
x {exp {γ‖c‖spτC}} < ∞(63)

and

sup
x∈C

E(an)
x {exp {γ‖c‖spτC}} − β exp {γ‖c‖sp} < 1,(64)

then (A3) holds.
Proof. Notice first that by Corollary 1 for z /∈ C and positive integer m we have

Ê
(an)
(z,0) {exp {γ‖c‖spτC}χτC≤m} = E(an)

z {exp {γ‖c‖spτC}χτC≤m} .(65)

Letting m → ∞ by (63) we obtain

Ê
(an)
(z,0) {exp {γ‖c‖spτC}} = E(an)

z {exp {γ‖c‖spτC}} .(66)

Now for (an) ∈ UM and x ∈ C, using the definition of split Markov process and (64)
we have

Ê
(an)
(x,0) {exp {γ‖c‖spτC}}(67)

= Ê
(an)
(x,0)

{
χC(x1

1)e
γ‖c‖sp + χCc(x1

1)Ê
(an)
x̂1

{exp {γ‖c‖spτC}}
}

= eγ‖c‖sp
P a0(x,C) − β

1 − β
+ eγ‖c‖sp

∫
Cc

E(an)
z {exp {γ‖c‖spτC}}

P a0(x, dz)

1 − β

=
1

1 − β

[
eγ‖c‖sp(P a0(x,C) − β) − E(an)

x

{
χC(x1)e

γ‖c‖sp

}
+ Ex

{
eγ‖c‖spτC

}]
<

1

1 − β
.

Let τ1 = τC :=
{
i ≥ 0 : x1

i ∈ C
}
, τn+1 = τn + τ1 ◦ θτn .

For x ∈ Ê and L = supz∈C Ê
(an)
(z,0)

{
eγ‖c‖spτC

}
, using Lemma 1 we have

Ê(an)
x

{
eγ‖c‖spτC1

}
= Êx

{ ∞∑
i=1

χCc
1
(x̂τ1) . . . χCc

1
(xτi−1)χC1(x̂τi)e

γ‖c‖spτi

}

≤
∞∑
i=1

Ê(an)
x

{
χCc

1
(x̂τ1) . . . χCc

1
(x̂τi−1)e

γ‖c‖spτi−1

}
Lβ

≤ Ê(an)
x

{
eγ‖c‖spτC

} ∞∑
i=1

(1 − β)i−1βLi−1 = Ê(an)
x

{
eγ‖c‖spτC

} β

1 − (1 − β)L
.
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Taking into account (66), (63), (64) we obtain (D1), which completes the proof.
Taking Remark 4 into account, by the proof of Proposition 4 we easily obtain a

sufficient condition for (A5).
Corollary 5. If there is an ε > 0 such that for any compact set K ⊂ E, we

have

sup
a∈U

sup
x∈K

sup
N

Ea,N
x {exp {(1 + ε)γ‖c‖spτC}} < ∞(68)

and

sup
a∈U

sup
x∈C

sup
N

Ea,N
x {exp {(1 + ε)γ‖c‖spτC}} − β exp {εγ‖c‖sp} < 1,(69)

where the Markov process (xn) is controlled using constant a at time 0 and an =
uN (xn) afterwards, then (A5) holds.

Consequently we see that the assumptions imposed in the paper are satisfied
for a class of processes for which f(γ) := Ex {eγτC} is finite, provided we choose γ
sufficiently small (to guarantee (64) and (69)). As an example one can consider a
discretized ergodic diffusion (xn) in Rd given by the following equation:

xn+1 = xn + Axn + b(xn, an) + D(xn, an)wn,(70)

where (wn) is a sequence of i.i.d. standard normal random vectors in Rd, A is a stable
matrix, b(x, a) is a continuous bounded vector function of x ∈ Rd and a ∈ U , and
D(x, a) is a continuous bounded matrix-valued function which is uniformly elliptic,
i.e., infx∈Rd infa∈U trD(x, a)D(x, a)T > 0. Notice that by the nondegeneracy of D the
minorization property (A1) is satisfied for any closed ball C in Rd. The stability of
the matrix A and boundedness of b imply that if C is sufficiently large, the controlled
process, no matter what control is used, is pushed to C. For completeness we add
the following Lyapunov-type criterion (more detailed analysis of geometric regularity
assumption can be found in Chapter 15 of [21]).

Lemma 6. If for (an) ∈ Us

sup
x/∈C

E(an)
x

{
‖xτC‖−1

}
< ∞(71)

and for γ > 0

sup
x/∈C

sup
a∈U

Ea
x {‖x1‖} ≤ e−4γ‖x‖,(72)

then

E(an)
x {eγτC} < ∞.(73)

Proof. Define a Lyapunov function V (s, x) := e2γ(s+1)‖x‖. For x /∈ C by (72) we
have

E(an)
x {V (s + 1, x1)} − V (s, x) ≤ e2γ(s+2)E(an)

x {‖x1‖} − e2γ(s+1)‖x‖

≤ −(e2γ(s+1) − e2γs)‖x‖.

Consequently

E(an)
xm

{V (m + 1, x1)} − V (m,xm) ≤ −(e2γ(m+1) − e2γm)‖xm‖,
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E(an)
xm−1

{V (m,x1)} − V (m− 1, xm−1) ≤ −(e2γm − e2γ(m−1))‖xm−1‖,

and summing up the above inequalities till the process (xn) enters the set C and
taking the expected value, we obtain

E(an)
xτC

{V (τ, xτ )} − V (0, x) ≤ −E(an)
x

{
‖xτC‖(e2γτC − 1)

}
,(74)

from which by nonnegativity of V we have that

E(an)
x

{
e2γτC‖xτC‖

}
≤ V (0, x).(75)

By the Hölder inequality

E(an)
x {eγτC} ≤

(
E(an)

x

{
e2γτC‖xτC‖

}) 1
2
(
E(an)

x

{
‖xτC‖−1

}) 1
2

,

and from (71) we obtain (73).
In section 4 we introduced a uniformly ergodic approximation. One can consider

more general, i.e., v-separable, approximations, as studied in [18]. Following The-
orem 2.4 of [18] we then have that the Lyapunov drift criterion (DV3) holds and
consequently the local multiplicative mean ergodic Theorem 3.4 of [18] is satisfied.
The transition kernel of the original Markov process (xn), although quite regular
under assumption (A4), may not be itself v-separable. The latter property would
require uniform approximation of the transition kernel, while we can show only an
approximation which is uniform on compact subsets. A useful sufficient condition for
v-separability is formulated in Lemma B.3 of [18].
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STABILITY AND UNIQUENESS FOR THE CRACK
IDENTIFICATION PROBLEM∗

ZAKARIA BELHACHMI† AND DORIN BUCUR†

Abstract. This paper deals with the identifiability of nonsmooth defects by boundary measure-
ments, and the stability of their detection. We introduce and analyze a new pointwise regularity
concept at the boundary of an open set which turns out to play a crucial role in the identifiability of
defects by two boundary measurements. As a consequence, we prove the unique identifiability for a
large class of closed sets, including sets with an infinite number of connected components of positive
capacity and totally disconnected sets. In order to rigorously justify numerical approximation results
of defects by optimal design methods, we prove a geometric stability result of the defect identification
process, without any a priori smoothness assumptions.

Key words. defect identification, conductivity, uniqueness, stability
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1. Introduction. This paper deals with the defect identification problem by
boundary measurements. Roughly speaking, the problem can be formulated as fol-
lows: Given a smooth bounded domain Ω ⊆ R

2, find a closed set K ⊆ Ω knowing the
traces on the boundary wi|∂Ω of the solutions of⎧⎪⎨⎪⎩

−Δwi = 0 in Ω \K,
∂wi

∂n = 0 on ∂K,

∂wi

∂n = ψi on ∂Ω

(1)

for several inputs ψi. We refer the reader to the paper [4] for a complete review of
the most important and up-to-date results concerning this problem.

There are three main challenges when dealing with such a problem:
• The uniqueness of the defect for a given number of measures: May different

defects give the same measures?
• Stability with respect to the measurements: Do close measures give “close”

cracks? There is a subsequent question: What is the right sense of closeness
for defects: close in geometry or in behavior (like γ-convergence)?

• (Numerical) reconstruction of the defects and rigorous convergence results.
A way to tackle this geometric inverse problem is to use optimal design methods.
From this viewpoint, one needs to understand the three items above in the context of
minimal regularity assumptions for defects. Dropping a priori regularity assumptions
for the stability purpose allows us, for example, to give a formal justification to the
convergence of the approximation process by a shape optimization approach.

The purpose of this paper is twofold. First, we introduce and analyze a new
pointwise regularity concept at the boundary of an open set, called conductivity, which
plays a crucial role in the identifiability of defects by two boundary measurements.
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It is known that one measure cannot uniquely determine even a smooth curve K,
and, following Alessandrini and Diaz Valenzuela [1], two suitably chosen inputs can
uniquely determine closed sets K which can be decomposed in a finite union of disjoint
continua (see also [17]). Roughly speaking, we prove that unique identification holds
for the family of defects which are conductive at quasi-every point of their boundaries
(see Theorem 3.9). As a consequence, we prove unique identifiability by two boundary
measurements for a large class of closed sets, including sets with an infinite number of
connected components of positive capacity and totally disconnected sets. Our proof
uses the scheme of Alessandrini and Diaz Valenzuela based on nonexistence of critical
points for suitable holomorphic functions. The construction of critical points relies
on the conductivity regularity concept. With respect to the proof of Alessandrini and
Diaz Valenzuela several new technical difficulties appear, which are related to the fact
that harmonic conjugates of solutions are not Hölder continuous up to the boundary
and information given by the unique continuation principle cannot be propagated
“across” the defects. The conductivity regularity concept has several features in
common with the Dirichlet regularity related to the Wiener criterion, but we are not
able to prove or disprove their equivalence. Nevertheless, our result associated with
the Kellogg property also shows that the equivalence of the two regularity concepts
(conductivity and Dirichlet regularity) would straightforwardly imply the conjecture
that all closed sets are uniquely identifiable, up to a set of zero capacity, by two
boundary measurements.

The second purpose of the paper is to investigate the stability of the detection
from the shape optimization point of view. Precisely, we prove that asymptotic geo-
metric stability holds in the class of defects having a uniform bound on the number
of connected components (see Theorem 4.3). Roughly speaking, convergence of the
measures in the space of traces implies geometric convergence of the defects (this is the
framework of the so-called Tikhonov principle [20]). All previous stability results (see
[2, 4, 11, 18] and references therein) require us to know a priori a quantitative estimate
of the smoothness of the defects, and provide quantitative estimates for the stability.
By dropping the a priori smoothness hypotheses we lose any quantitative estimate
but—and here is the main interest of such a result—we can rigorously justify that
suitable numerical approximations of the defects are convergent (see Theorems 5.1
and 5.3). This result is to be compared to the one obtained in [8] for shape optimiza-
tion problems associated with the Dirichlet–Laplacian and relies deeply on the shape
stability result of [6] and on the elimination of the smoothness hypotheses (see also
[7, 9, 15]). Stability results based on a priori smoothness cannot be used to achieve
shape convergence for numerical approximations in the optimal design framework.

2. Setting the problem. Throughout the paper, Ω denotes a bounded simply
connected open set in R

2 with smooth boundary. By |E| we denote the Lebesgue
measure of the set E and by cap (E) its capacity, i.e.,

cap (E) = inf

{∫
R2

|∇u|2 + |u|2dx, u ∈ UE

}
,

where UE is the class of all functions u ∈ C∞
c (R2) such that u ≥ 1 a.e. in a neighbor-

hood of E. It is said that a property p(x) holds quasi everywhere on E (q.e. on E) if
the set of all points x ∈ E for which p(x) does not hold has capacity zero. We refer
to [14] for details concerning capacity.

A function u is said to be quasi-continuous if for every ε > 0 there exists an open
set Aε such that cap (Aε) < ε and u|Ω\Aε

is continuous in Ω \ Aε. Throughout the
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paper, every time we refer to pointwise properties of Sobolev functions, we implicitly
consider quasi-continuous representatives.

The usual Sobolev space is denoted by H1(Ω). Recall that every function u ∈
H1(Ω) has a quasi-continuous representative, unique up to a set of zero capacity.
Considering quasi-continuous representatives, one can define the trace (as restriction)
of a function u ∈ H1(Ω) on every continuum of positive diameter. We recall the
following result (see [6]).

Lemma 2.1. Let u ∈ H1(Ω) and let K1,K2 be two compact connected sets in
Ω with positive diameter. If there exist two different constants c1, c2 ∈ R such that
u(x) = c1 q.e. on K1 and u(x) = c2 q.e. on K2, then K1 ∩K2 = ∅.

We also recall the definition of the following functional space. Let U ⊆ R
2 be an

open set; the Dirichlet space L1,2(U) is defined as [14].

L1,2(U) = {u ∈ L2
loc(U) : ∇u ∈ [L2(U)]2},(2)

where the gradient of u is taken in the sense of distributions. Introducing the equiv-
alence relation

uRv if

∫
U

|∇(u− v)|2dx = 0,

we see that the quotient space L1,2(U)/R := L1,2(U) is a Hilbert space for the scalar
product

(u, v)L1,2(U) =

∫
U

∇u∇vdx.

Let C be a connected component of U and let u, v ∈ L1,2(U) such that uRv. Then
u− v is constant a.e. on C.

Following [12, Corollary 2.2], if U is smooth enough (e.g., with Lipschitz contin-
uous boundary), then L1,2(U) = H1(U). If U is not smooth, then H1(U) might be
strictly contained in L1,2(U). Observe also that if U is not smooth enough, several
“well-known” properties of H1-spaces fail to be true, e.g., the Poincaré–Wirtinger
inequality.

For an arbitrary set F ⊆ R
2 and for ε > 0 let us denote the dilation of F

by ε, F ε = ∪x∈FB(x, ε) being the union of all open balls centered in points of F
with radius ε, and denote by F

ε
its closure. Clearly the following holds for ε < ν:

F ε = (F )ε ⊆ (F ε) ⊆ F ν .

Definition 2.2. The Hausdorff distance between two compact sets K1,K2 ⊆ R
2

is defined by

dH(K1,K2) = inf{ε > 0 : K1 ⊆ Kε
2 ,K2 ⊆ Kε

1}.

Note that the family of closed subsets of a given compact of R
2 is compact for the

Hausdorff metric. We refer to [6] and [19] for more details on the Hausdorff metric
and on the following.

Lemma 2.3. Let {un}n∈N ⊆ H1(Ω), {Kn}n∈N be a sequence of compact connected
sets in Ω, and {cn}n∈N be a sequence of constants such that un(x) = cn q.e. on Kn.

If Kn
H−→ K, then K is connected. Suppose that un

H1(Ω)
⇀ u. Then there exists a

constant c ∈ R such that cn −→ c and u(x) = c q.e. on K ∩ Ω.
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Let K ⊂ Ω be compact and ψ ∈ L2(∂Ω) be such that
∫
∂Ω

ψ = 0. We consider in
what follows the perfectly insulating problem⎧⎨⎩

−Δw = 0 in Ω \K,
∂w
∂n = 0 on ∂K,
∂w
∂n = ψ on ∂Ω.

(3)

Since K is the unknown of the problem and may vary, if ambiguity occurs on the
choice of K, this solution will be denoted wψ,K . It is clear that using the usual tools
(e.g., the Lax–Milgram theorem [3]; see also [6]) one has the following.

Proposition 2.4. There exists a unique solution u ∈ L1,2(Ω \ K) obtained by
solving the following minimization problem:

min
φ∈L1,2(Ω\K)

1

2

∫
Ω\K

|∇φ|2dx−
∫
∂Ω

φψdσ.

Let us denote by 1U the characteristic function of the set U . The following result
has a simple proof (see section 4 and [6, 10]).

Proposition 2.5. The following holds for ε → 0:

∇wψ,K
ε1Ω\Kε

L2(Ω,R2)−→ ∇wψ,K1Ω\K .

Note also that for ε > 0 the function wψ,K
ε has a harmonic conjugate in Ω\Kε

(see
[1], for example), i.e., is the real part of a holomorphic function. Following Proposition
2.5 and the usual properties of holomorphic functions, the function wψ,K also has a
harmonic conjugate. The problem which is solved by the conjugate functions will be
clarified by studying the following.

The perfectly conducting problem. A dual problem, called “the perfectly
conducting case” has been introduced in [11] for one connected crack and extended
in [1] for a finite number of connected cracks, say, K = ∪k

i=1Ki. In this case, the
problem is formulated as follows (see, for instance, [1]):⎧⎨⎩

−Δu = 0 in Ω \K,
u = ci q.e. on Ki,
∂u
∂n = ψ on ∂Ω.

(4)

The constants ci are uniquely determined by the no-flux condition that the solution
u has to satisfy: for every smooth Jordan curve γ ⊆ Ω \K

∫
γ

∂u
∂ndσ = 0.

Moreover, the solution of this problem is given by the minimization of the follow-
ing energy functional:

min

{
1

2

∫
Ω\K

|∇u|2dx−
∫
∂Ω

uψdσ : u ∈ H1(Ω), u q.e. constant on Ki

}
.(5)

Details concerning the equivalence of the formulations (4) and (5) can be found in [1]
(see also [6] for more details concerning the formulation via quasi-continuous func-
tions).

Here is the main key to understanding the uniqueness of the inverse problem for
arbitrary compact sets. We manage the perfectly conductive case for arbitrary K
by introducing the following Sobolev-like space. Let Ω be a bounded open set, and
F ⊆ Ω an arbitrary set. We define

H1
cond,F (Ω) = clH1(Ω){u ∈ H1(Ω) : ∃ε > 0,∇u = 0 a.e. on F ε ∩ Ω}.(6)
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Let us denote by u(F ) the image of the set F by u. For sets F which have a certain
regularity (e.g., a finite number of Lipschitz connected components), the previous
definition coincides with

clH1(Ω){u ∈ H1(Ω) : u(F ) is finite}(7)

and

clH1(Ω){u ∈ C∞(Ω) ∩H1(Ω) : u(F ) finite},

but it is not clear whether this holds for arbitrary F . Of course, in (7) we consider
quasi-continuous representatives. Observe also that if u ∈ H1

cond,F (Ω), then |u| ∈
H1

cond,F (Ω).

Note that the following inequality holds for every function u ∈ H1(Ω) such that∫
∂Ω

udσ = 0: ∫
∂Ω

u2dx ≤ C

∫
Ω

|∇u|2dx,(8)

where C is a constant depending only on Ω. This is a consequence of the trace theorem
and the Poincaré inequality in H1(Ω). Note also that u →

∫
Ω
|∇u|2dx is a norm on

{u ∈ H1(Ω),
∫
∂Ω

udσ = 0} and that for every u ∈ H1
cond,K(Ω) we have ∇u = 0 a.e.

on K.
We see problem (4) for an arbitrary K only by its variational formulation

min

{
1

2

∫
Ω\K

|∇u|2dx−
∫
∂Ω

uψdσ : u ∈ H1
cond,K(Ω)

}
.(9)

Proposition 2.6. Problem (9) has a unique solution such that
∫
∂Ω

udσ = 0.
Note that the gradient of the solution is unique. We can fix a representative such

that
∫
∂Ω

udσ = 0.
Proof. To prove the existence of a solution for problem (9), the Lax–Milgram

theorem can be directly used. Nevertheless, in order to familiarize the reader with
the space H1

cond,K(Ω), we show this by using the direct methods of the calculus of
variations.

Let un ∈ H1
cond,K(Ω) be a minimizing sequence. We can assume that

∫
∂Ω

undσ =

0; if not, we simply add suitable constants. Since 0 ∈ H1
cond,K(Ω), we can also assume

1

2

∫
Ω\K

|∇un|2dx−
∫
∂Ω

unψdσ ≤ 0.

Using the Cauchy inequality together with (8) there exists a constant M depending
only on Ω such that ∫

Ω\K
|∇un|2dx ≤ M.

There exists u ∈ H1
cond,K(Ω) such that ∇un

L2(Ω,R2)
⇀ ∇u and un|∂Ω

L2(∂Ω)−→ u|∂Ω.
Consequently,

1

2

∫
Ω\K

|∇u|2dx−
∫
∂Ω

uψdσ ≤ lim inf
n→∞

1

2

∫
Ω\K

|∇un|2dx−
∫
∂Ω

unψdσ,
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and hence u is a solution of (9).
The uniqueness of the solution comes from the convexity of the energy

functional.
Note the following facts: The solution given by Proposition 2.6 satisfies −Δu = 0

on Ω \K in the sense of distributions and ∂u
∂n = ψ on ∂Ω in the weak sense of traces;

for every x ∈ K such that x ∈ Ux ⊆ K, where Ux is a continuum, the solution of (9)
is constant q.e. on Ux.

We give the following proposition which has a simple direct proof, and refer to
section 4 for a more detailed discussion of the stability question.

Proposition 2.7. The following holds for ε → 0:

∇uψ,K
ε

L2(Ω,R2)−→ ∇uψ,K .

Proof. For simplicity, let us denote uε = uψ,K
ε . As in Proposition 2.6, there

exists a constant M independent on ε such that∫
Ω

|∇uε|2dx ≤ M.

There exists u ∈ H1(Ω) such that ∇uε
L2(Ω,R2)

⇀ ∇u and uε|∂Ω
L2(∂Ω)−→ u|∂Ω. We get

1

2

∫
Ω

|∇u|2dx−
∫
∂Ω

uψdσ ≤ lim inf
ε→0

1

2

∫
Ω

|∇uε|2dx−
∫
∂Ω

uεψdσ.(10)

Note that u ∈ H1
cond,K(Ω) since uε ∈ H1

cond,K
ε(Ω) ⊆ H1

cond,K(Ω). Let u∗ be the

solution of (9) in H1
cond,K(Ω). Then

1

2

∫
Ω

|∇u∗|2dx−
∫
∂Ω

u∗ψdσ ≤ 1

2

∫
Ω

|∇u|2dx−
∫
∂Ω

uψdσ.

From the definition of H1
cond,K(Ω), there exists a sequence φn ∈ H1(Ω), such that

∇φn = 0 a.e. on K1/n, such that
∫
∂Ω

φndσ = 0 and φn −→ u∗ in H1(Ω)-strong.
Choosing suitable couples (ε, n) such that ε < 1/n, we get φn ∈ H1

cond,K
ε(Ω). Conse-

quently,

lim sup
ε→0

1

2

∫
Ω

|∇uε|2dx−
∫
∂Ω

uεψdσ ≤ lim
n→∞

1

2

∫
Ω

|∇φn|2dx−
∫
∂Ω

φnψdσ

=
1

2

∫
Ω

|∇u∗|2dx−
∫
∂Ω

u∗ψdσ.

(11)

From (10) and (11) we get u = u∗ = uψ,K , and from the convergence of the L2-norms
of the gradients we get that

∇uε −→ ∇uψ,K-strong L2.

The result of Proposition 2.7 is still true if on ∂Ω one considers Dirichlet boundary
conditions.

Proposition 2.8 (existence of stream functions). Let w and u be the solutions
of (3) and (4), respectively. There exists holomorphic functions W and U in Ω \ K
such that w = Re W and u = Re U . Moreover, Im W and Im U solve problems (12)
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and (13) below, respectively. Let Ψ a primitive of ψ on ∂Ω. The problem solved by
Im W is

min

{∫
Ω

|∇φ|2dx : φ ∈ H1
cond,K(Ω), φ = Ψ on ∂Ω

}
,(12)

and the problem solved by Im U is⎧⎨⎩
−Δφ = 0 in Ω \K,

∂φ
∂n = 0 on ∂K,
φ = Ψ on ∂Ω.

(13)

Proof. For ε > 0, the result is true in Ω \Kε
by [1, 6]. Making ε → 0, the result

is true in Ω \K as a consequence of Propositions 2.5 and 2.7.

3. Unique identifiability by two boundary measurements. In a first step
we introduce a regularity notion, called conductivity, for a point of the boundary of an
open set U ; this kind of regularity should be related to the notion of Wiener regular
point, rather than to the usual smoothness of the boundary.

In a second step, we prove that all sets which q.e. satisfy this regularity assump-
tion on their boundaries are uniquely (up to a set of zero capacity) identifiable by two
boundary measurements. The proof follows the same steps as in [1], and essentially is
obtained by approximating these sets with sets that have a finite number of connected
components.

Definition 3.1. Let K be a compact subset of Ω. A point x ∈ K is a capacity
point for K if ∀r > 0, cap (Bx,r ∩K) > 0.

Proposition 3.2. The set K∗ of capacity points of a compact set K is compact
and cap (K \K∗) = 0.

Proof. The compactness comes directly and the relation cap (K \K∗) = 0 follows
from the Lindelöf property and the subadditivity of the capacity.

Remark 3.3. From now on, every time we consider a compact set K, we replace
it implicitly with K∗. Since cap (K \K∗) = 0, problems (3) and (4) have the same
solutions on Ω \ K and Ω \ K∗, respectively. From a practical point of view, every
time an open set U ⊆ Ω is considered, it is replaced with Ω \ (Ω \ U)∗.

Definition 3.4. Let U be an open subset of Ω and x ∈ ∂U . We say that x is
conductive for U if for every r > 0 and for every ϕ ∈ C(U) ∩H1

cond,∂U∩Bx,r
(Ω),

lim inf
y → x
y ∈ ∂U

|ϕ(y) − ϕ(x)|
|y − x| = 0.(14)

Roughly speaking, x is a conductivity point if there exists a “path” of conduc-
tivity on ∂U passing through x and having locally positive capacity. Note that every
conductivity point is a capacity point for U c.

Proposition 3.5. Let K be a compact subset of Ω such that Ω \K is connected
and F a continuum of positive diameter such that x ∈ F ⊆ ∂(Ω \ K). Then x is a
conductivity point for Ω \K.

Proof. Let ϕ ∈ C(Ω \K) ∩ H1
cond,∂(Ω\K)∩Bx,r

(Ω). Then, ϕ is q.e. constant on

the continuum of positive diameter F̃ passing through x and contained in F ∩ Bx,r.
Indeed, if φ is a quasi-continuous representative of ϕ on Ω, then φ is finely continuous
q.e. (see [16]) and coincides q.e. with ϕ on Ω \K. Since every point of ∂(Ω \K) is
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thick with respect to Ω \K (which is connected), we conclude that φ(x) = ϕ(x) q.e.
on ∂(Ω \K). Therefore ϕ is q.e. constant on F̃ and relation (14) holds.

In what follows we give two examples of the form U = Ω \K with points x ∈ ∂K
which are disconnected from the rest of the set K; in one of them we show that such
a point may be conductive despite the fact it is not contained in any continuum of
positive diameter (subset of K).

Example 3.6. Let Ω = [−2, 2] × [−2, 2] and

K = {(0, 0)}
⋃

n∈N∗

1

n
×
[
0,

1

n

]
.

Then (0, 0) is not a conductivity point for Ω \K; consider, for example, u(x, y) = x.
Obviously u ∈ C(Ω) and it is easy to see (cf., e.g., [5, 6]) that u ∈ H1

cond,K(Ω) by

approaching u strongly in H1(Ω) by the sequence un of solutions of the following
equations. Let Kn =

⋃n
k=1[

1
k − 1

n2 ,
1
k + 1

n2 ] × [0, 1
k ] and let un solve −Δun = 0 in

Ω \Kn, un = u on ∂Ω and un = 1
k on [ 1

k − 1
n2 ,

1
k + 1

n2 ] × [0, 1
k ].

On the other hand, (14) does not hold, since |u(x,y)−u(0)|
|(x,y)| ≥

√
2
−1

, for every

(x, y) ∈ K.
Example 3.7. Now let

K = {(0, 0)}
⋃

n∈N∗

{bn} ×
[
0, rn

]
,

where

bn =

∞∑
k=n

1

k2(k + 1)3

and

rn =
1

n
.

Then (0, 0) is a conductivity point for Ω \K which is not contained in a continuum
of positive capacity of K.

The proof needs some computation. We give it in the appendix at the end of the
paper.

We also prove in the appendix the following proposition, which is an extension of
Proposition 3.5.

Proposition 3.8. Let K be a compact subset of Ω such that Ω \K is connected.
Every x ∈ ∂(Ω \K) for which there exists a continuum of positive diameter Ux, such
that x ∈ Ux ⊆ K, is a conductivity point for Ω \K.

In particular, if K is a continuum of positive diameter, then Ω \K is conductive
at every point of ∂(Ω \K). As well, if K is a compact set having a finite number of
connected components, then Ω \K is conductive at quasi-every point of its boundary
(except the isolated points).

Note that if K is a compact subset of Ω, the only detectable part of ∂K is the
one contained in the boundary of the connected component of Ω \K which touches
∂Ω. For this reason, we shall assume (only) in the following theorem that Ω \ K is
connected.

The fluxes we consider are defined as in [1]. Consider a division of ∂Ω into three
connected disjoint parts Γ0,Γ1,Γ2. For i = 0, 1, 2 we consider on ∂Ω a nonnegative
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function ηi such that supp ηi ⊆ Γi, ηi ∈ L2(∂Ω),
∫
∂Ω

ηi = 0. We take for k = 1, 2,
ψk = η0 − ηk.

Theorem 3.9. Let K, K̃ be two compact subsets of Ω such that Ω \ K, Ω \ K̃
are connected. Let ψ1, ψ2 be two fluxes on ∂Ω chosen as above. Suppose that for
k = 1, 2 either wψk,K|∂Ω = wψk,K̃|∂Ω or uψk,K|∂Ω = uψk,K̃|∂Ω. If Ω \K and Ω \ K̃ are

conductive at quasi-every point of their boundaries, then K = K̃ q.e.
Proof. The proof relies on the nonexistence of geometrical critical points for

particular holomorphic functions. Let us first prove that if K �= K̃ q.e., then we may
find a geometrical critical point for the solution of (3) (or (4)) with a boundary data
of the form αψ1 + βψ2, for a certain couple α, β which satisfies α2 + β2 = 1. The
proof follows along the same lines as in [1], in the new hypotheses on the conductivity
of the sets K and K̃. A new kind of difficulty appears, since the unique continuation
property does not give information over all Ω \ (K ∪ K̃).

We shall consider only problem (3) (the case (4) follows the same ideas). For
k = 1, 2, let w∗

k, w̃
∗
k be the conjugate functions of wk = wψk,K , w̃k = wψk,K̃

, such

that wk + iw∗
k are holomorphic in Ω \ K and w̃k + iw̃∗

k are holomorphic in Ω \ K̃,
respectively. Note that for the boundary condition αψ1 + βψ2 the solution of (3) on
Ω \ K is αw1 + βw2 and that the harmonic conjugate of this function in Ω \ K is
αw∗

1 + βw∗
2 .

From the unique continuation property, we get as in [1] that wk = w̃k on G, where
G is the connected component of Ω\(K∪K̃) satisfying ∂Ω ⊆ ∂G (the functions wk and
w̃k have the same Cauchy data on ∂Ω). The main difficulty is that the information
is not obtained over all Ω \ (K ∪ K̃). In [1], using the particular structure of K and
K̃, the information could be extended in Ω \ (K ∪ K̃).

Let us suppose that Ω \K �= Ω \ K̃, say, Ω \K �⊆ Ω \ K̃. There exists x ∈ Ω \K
such that x �∈ Ω \ K̃ (i.e., x ∈ K̃). Since Ω \ K is connected and ∂Ω is smooth,
there exists a smooth curve γ : [0, 1] → Ω \K such that γ(0) = x, γ((0, 1)) ⊆ Ω \K,
γ(1) ∈ ∂Ω. Let x0 = γ(t0), where

t0 = sup{t ∈ [0, 1] : γ(t) ∈ K̃}.

Obviously, x0 ∈ ∂K̃ and also x0 ∈ ∂G. Since d(x0,K) > 0, there exists a ball Bx0,r

such that Bx0,r ∩K = ∅.
We prove the following.
Lemma 3.10. For every δ > 0, G has a conductivity point on ∂G ∩Bx0,δ.

Proof. For every ε > 0 we consider the open set K̃ε. There exists an open
polygonal set Vε such that

K̃ε/2 ⊆ Vε ⊆ K̃ε.

Let Uε be the connected component of Vε which contains x0. Choosing a sequence
(εn) such that εn → 0, εn+1 < εn/2 we get

Uεn+1 ⊆ Uεn .

There are two possibilities:
1. diam (Uεn) → 0;
2. diam (Uεn) → η > 0.

The first case. Suppose that diam (Uεn) → 0. For n large enough we have
Uεn ⊆ Bx0,r/2. Let An be the connected component of Ω \ Uεn such that ∂Ω ⊆ ∂An.
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Let Pn = ∂An \ ∂Ω. Then Pn is a closed polygonal Jordan curve, which separates
Ω in two regions. We observe that Pn ⊆ Ω \ (K ∪ K̃) because Pn ∩ K = ∅ (since
Pn ⊆ Bx0,r/2) and Pn ∩ K̃ = ∅ since (Pn ⊆ ∂Uεn and d(∂Uεn , K̃) = εn/2).

Since Pn intersects γ, and γ lies in G, the connectedness of G implies that Pn is
entirely in G. Therefore, for ξ small enough, we have that

G ∩Bx0,ξ = (Ω \ K̃) ∩Bx0,ξ,(15)

∂G ∩Bx0,ξ = ∂(Ω \ K̃) ∩Bx0,ξ.(16)

In this case two possibilities may hold: either x0 is a conductivity point or it is not.
If it is not a conductivity point, we replace it with a close point of ∂G which is
conductive. Such a point exists, since following [5, Lemma 4.5] x0 is a capacity point
also for ∂G, and the family of points of ∂G which are not conductive is, by hypothesis,
of zero capacity (note that ∂G coincides locally with ∂(Ω \ K̃)).

The second case. Suppose that diam (Uεn) → η > 0. We observe that
⋂

n Uεn =

C, where C is a continuum such that x ∈ C ⊆ K̃, diam C = η. Let 0 < ξ < η/2.
Then C ∩ ∂Bx0,ξ �= ∅.

Denoting again by An the connected component of Ω \Uεn such that ∂Ω ⊆ ∂An,
let us set again Pn = ∂An \ ∂Ω. Then Pn is a polygonal Jordan curve satisfying
Pn ∩ K̃ = ∅. Let us denote zn = γ(tn), where

tn = min{t ∈ [0, 1], γ(t) ∈ Pn}.(17)

We observe that zn is well defined and zn → x0 for n → ∞.
Since Pn contains in its “interior” region the continuum C and Pn ∩ K̃ = ∅ and

(Pn ∩Bx0,ξ) ∩K = ∅, there exists a connected component Fn of Pn passing through
zn which is contained in G and cuts ∂Bx0,ξ into at least two points. For n → ∞,
we have that Fn converges in the Hausdorff sense to a continuum F which contains
x0 and lies in the boundary of G. From Proposition 3.5 x0 is a conductivity point
for G.

Proof of Theorem 3.9 (continuation). Let x0 be the conductive point given by
Lemma 3.10. Up to translation by constants, we can assume that for k = 1, 2 wk(x0) =
w∗

k(x0) = 0. Note that the function |w̃∗
1 | + |w̃∗

2 | belongs to H1
cond,K̃

(Ω) and equals

|w∗
1 |+ |w∗

2 | on G. This last function is continuous in a neighborhood of x0, and hence
we can apply the conductivity property to |w∗

1 | + |w∗
2 | in x0.

There exists a sequence of points xn such that xn ∈ ∂G, xn → x0, and

|w∗
1(xn)| + |w∗

2(xn)|
|xn − x0|

→ 0.(18)

Hence, for k = 1, 2,

w∗
k(xn)

|xn − x0|
→ 0.(19)

We suitably chose values αn, βn, such that α2
n+β2

n = 1 and αnw1(xn)+βnw2(xn) = 0.
Choosing a subsequence of (αn)n, (βn)n such that αn → α0, βn → β0 and using
relations (19), we have that the sequence of holomorphic functions

fn = (αnw1 + βnw2) + i(αnw
∗
1 + βnw

∗
2)
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satisfies

fn(xn) − fn(x0)

|xn − x0|
→ 0.

Consequently, x0 is a geometrical critical point for f0 = (α0w1 + β0w2) + i(α0w
∗
1 +

β0w
∗
2). Indeed, we have, for n → ∞,

f0(xn) − f0(x0)

|xn − x0|

=
fn(xn)− fn(x0)

|xn − x0|
− (αn −α0)

w1(xn) + iw∗
1(xn)

|xn − x0|
− (βn −β0)

w2(xn) + iw∗
2(xn)

|xn − x0|
→ 0.

The last two terms converge to zero thanks to the holomorphy in x0 of the functions
wk + iw∗

k.
To get the contradiction we observe that f0 cannot have geometrical critical

points in Ω \K. Indeed, this is a consequence of the result of [1] applied on Ω \Kε

by passing to the limit Kε → K and using the continuity property of critical
points.

The main difficulty in the proof of this theorem is the fact that the unique con-
tinuation property gives information only in the connected component of Ω\ (K ∪ K̃)
touching ∂Ω. In [1], this information is extended over all Ω \ (K ∪ K̃) by using the
connectedness of the cracks. Here we are not able to do that, and for this reason we
can use information only “on one side” of the crack K̃, namely, on G. Since the con-
ductivity hypothesis is formulated in Ω\K̃ and not in G, we are brought to discussing
the two cases of Lemma 3.10.

Remark 3.11. The conductivity property is somehow related to the thickness
property relying on the Wiener criterion. It would be of interest to characterize all
sets which are q.e. conductive at the boundary, and in this way to characterize all
detectable sets by two boundary measurements. Even an example of a compact set
which is not conductive q.e. would be of interest.

Remark 3.12. Notice from relations (15)–(16) that the density of the conductive
points of ∂G into ∂G is sufficient for carrying out the proof. In the appendix, we give
an example of a Cantor set which is conductive in a dense set of its boundary points,
and consequently the unique identifiability for this totally disconnected set holds true
(see Example 6.2).

4. Sequential stability of the inverse problems. Let ψ1, ψ2 be two fluxes
on ∂Ω which uniquely identify q.e. conductive sets (Theorem 3.9) for problem (3) as
well as for (4). For a compact set K ⊆ Ω and a sequence of compacts (Kn)n such
that

wψi,Kn|∂Ω
L2(∂Ω)
⇀ wψi,K|∂Ω, i = 1, 2,

or

uψi,Kn|∂Ω
L2(∂Ω)
⇀ uψi,K|∂Ω, i = 1, 2,

we wonder if Kn
H→ K.

This assertion is in general false. First, the convergence in the Hausdorff metric
does not have much in common with the behavior of the PDE on “moving” cracks.
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For this reason, it is not senseless to think of stability in terms of behavior, i.e.,
two close measurements should give cracks such that all measurements are close.
This approach is to be compared to the γ-convergence of sets (see [5]) which has a
certain relation to the geometric convergence but is not at all equivalent. This kind of
approach seems necessary as soon as one deals with “wild” cracks without any a priori
structure. Nevertheless, we restrict ourselves to the Hausdorff metric because it seems
quite difficult to describe the general behavior of sets. Note that for homogeneous
Neumann boundary conditions the general behavior of the direct problem for moving
domains is not, to our knowledge, known.

Second, uniqueness holds for sets Ω \K which are q.e. conductive with the con-
vention that Ω \K is connected. If Ω \K is disconnected, the only identifiable part is
the connected component “touching” ∂Ω. From a purely geometric point of view, this
means that different geometries for K may give similar measures. Here we explain
what can happen, from the information we have, namely, the coincidence of the iden-
tifiable connected components. Under mild assumptions on K, our result becomes a
standard stability result.

In order to understand the sequential stability for the crack identification problem,
the usual tool relies on the stability of the direct problem associated with compact-
ness and uniqueness of the identification. Compactness is a geometric property of the
Hausdorff convergence, and for uniqueness we rely on Theorem 3.9. The geometric
stability of the direct problems (3) and (4) relies on the Mosco convergence of the
Sobolev spaces H1(Ω \Kn) for problem (3) and H1

cond,Kn
(Ω) for problem (4). Ulti-

mately, because of the existence of harmonic conjugates for solutions of problem (3),
the only important case to be studied is the Mosco convergence of H1

cond,Kn
(Ω) (see

[6]).
Let X be a Hilbert space and {Gn}n∈N a sequence of subsets of X. The weak

upper and strong lower limits in the sense of Kuratowski are defined as follows:

w − lim sup
n→∞

Gn = {u ∈ X : ∃{nk}k,∃unk
∈ Gnk

such that unk

w−X
⇀ u},

s− lim inf
n→∞

Gn = {u ∈ X : ∃un ∈ Gn such that un
s−X−→ u}.

If {Gn}n∈N are closed subspaces in X, it is said that Gn converges in the sense
of Mosco to G if

(M1) G ⊆ s− lim infn→∞ Gn,
(M2) w − lim supn→∞ Gn ⊆ G.

Note that in general s − lim infn→∞ Gn ⊆ w − lim supn→∞ Gn. Therefore, if Gn

converges in the sense of Mosco to G, then

s− lim inf
n→∞

Gn = G = w − lim sup
n→∞

Gn.

For our purposes, we consider the compact sets Kn,K ⊆ Ω and wonder if Gn :=
H1

cond,Kn
(Ω) converges in the sense of Mosco to H1

cond,K(Ω) into the space X :=

H1(Ω).

Assume that Kn
H→ K. Then condition M1 is immediately satisfied. Indeed, using

density, it is enough to consider u ∈ H1
cond,K(Ω) such that ∇u = 0 a.e. on Kε, for some

ε > 0. Following the Hausdorff convergence, for n large enough we have Kn ⊆ K
ε
2 ;

hence K
ε
2
n ⊆ Kε and so ∇u = 0 a.e. on K

ε
2
n , and therefore u ∈ H1

cond,Kn
(Ω).
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In general, condition M2 is not true. Take for example Ω = (−2, 2) × (−2, 2),
Kn = ∪n

k=0{ k
n} × [0, 1], and un(x, y) = x. A second example which typically restricts

M2 from holding is when Kn consists of many small disconnected sets, e.g., Kn =
∪n
k,p=0B(( k

n ,
p
n ), εn), εn > 0, εn → 0. Then

Kn
H→ [0, 1] × [0, 1],

but for a suitable choice of εn every function of H1(Ω) can be written as a limit of a
sequence of H1

cond,Kn
(Ω) (choose εn such that cap (Kn) → 0).

Theorem 4.1. Let Kn,K ⊆ Ω, Kn
H→ K. If M2 occurs, then for every ψ ∈

L2(∂Ω) such that
∫
∂Ω

∂ψ
∂ndσ = 0, we have

1. uKn,ψ|∂Ω
L2(∂Ω)−→ uK,ψ|∂Ω,

2. wKn,ψ|∂Ω
L2(∂Ω)−→ wK,ψ|∂Ω.

Proof. Let us prove assertion 1. For simplicity, we set un = uKn,ψ and u = uK,ψ.
As in Propositions 2.6, and 2.7 there exists a uniform bound M such that∫

Ω

|∇un|2dx ≤ M.

For a subsequence (still denoted using the same index), we can write un ⇀ ũ weakly
H1(Ω). From the second Mosco condition, which is assumed by hypothesis, we get
ũ ∈ H1

cond,K(Ω). In order to prove that ũ = u, we observe that

1

2

∫
Ω

|∇u|2dx−
∫
∂Ω

uψdσ

≤ 1

2

∫
Ω

|∇ũ|2dx−
∫
∂Ω

ũψdσ ≤ lim inf
n→∞

1

2

∫
Ω

|∇un|2dx−
∫
∂Ω

unψdσ.

(20)

We also note that the first Mosco condition is a direct consequence of the geo-

metric convergence Kn
H−→ K. Indeed, for proving M1 it is enough to consider

φ ∈ H1
cond,K(Ω) such that ∇φ = 0 a.e. on Kε, for some ε > 0 (this set is dense in

H1
cond,K(Ω)). Indeed, for n large enough such that Kn ⊆ Kε/2 we get that ∇φ = 0

a.e. on K
ε/2
n ; hence φ ∈ H1

cond,Kn
(Ω).

Let φn ∈ H1
cond,Kn

(Ω) such that φn −→ u in H1(Ω)-strong. We get

lim sup
n→∞

1

2

∫
Ω

|∇un|2dx−
∫
∂Ω

unψdσ ≤ lim
n→∞

1

2

∫
Ω

|∇φn|2dx−
∫
∂Ω

φnψdσ

=
1

2

∫
Ω

|∇u|2dx−
∫
∂Ω

uψdσ.

(21)

From (20) and (21) we get ũ = u and the strong H1-convergence un −→ u. The

convergence uKn,ψ|∂Ω
L2(∂Ω)−→ uK,ψ|∂Ω follows from the trace theorem.

To prove assertion 2 of the theorem, namely, wKn,ψ|∂Ω
L2(∂Ω)−→ wK,ψ|∂Ω, one has

to use the following duality argument, which was already applied in [6].
Following Proposition 2.8, let vn be the conjugate function of wKn,ψ|∂Ω in Ω\Kn.

Then vn solves the following problem (set as an energy minimization):

min

{∫
Ω

|∇v|2dx : v ∈ H1
cond,Kn

(Ω), v = Ψ on ∂Ω

}
,
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where Ψ is a primitive of ψ on ∂Ω.
Note that vn solves a problem very similar to (9), with the only difference that

on the fixed boundary ∂Ω, the Neumann condition is replaced with a Dirichlet one.
The same proof as for the first point of this theorem can be repeated. We get

∇vn
L2(Ω,R2)−→ ∇v

and

∇vn1Ω\Kn

L2(Ω,R2)−→ ∇v1Ω\K ,

since ∇vn = 0 a.e. on Kn. In terms of conjugate functions, this gives

∇wKn,ψ|∂Ω1Ω\Kn

L2(Ω,R2)−→ wK,ψ|∂Ω1Ω\K .

Applying the trace theorem for wKn,ψ|∂Ω into a smooth neighborhood U of ∂Ω, we

get wKn,ψ|∂Ω
L2(∂Ω)−→ wK,ψ|∂Ω.

In the next proposition we prove that condition M2 is satisfied, provided that the
number of connected components of Kn and K are uniformly bounded (we denote by
�K the number of connected compoenents of K).

Proposition 4.2. Let K ⊆ Ω,Kn
H−→ K, �Kn ≤ M . Then the second Mosco

condition holds for H1
cond,Kn

(Ω) and H1
cond,K(Ω).

Proof. Let φn ∈ H1
cond,Kn

(Ω) such that φn ⇀ φ in H1(Ω)-weak. Let Kα be a
connected component of K. We observe first that φ is q.e. constant on Kα. Indeed,
from the Hausdorff convergence, Kα can be written Kα = ∪M

i=1K
i
α, where (up to

subsequences) Ki
α = H− limn→∞ Ki

n, where Ki
n are connected components of Kn. In

our notation, some of these components can be chosen empty sets. Following Lemma
2.3 (see also [19] and [6]) we get φ q.e. constant on Ki

α, and following Lemma 2.1 we
get φ q.e. constant on Kα.

In order to prove that φ ∈ H1
cond,K(Ω) we use Hedberg’s result [13], which asserts

that φ can be approached strongly in H1(Ω) by a sequence of functions which for
every α are constant q.e. (hence a.e.) on a neighborhood of Kα.

In what follows we give several situations when stability occurs. To simplify the
notation, for every compact K ⊆ Ω we denote by GK the connected component of
Ω \K which “touches” ∂Ω.

Theorem 4.3. Let ψ1, ψ2 be as in Theorem 3.9. Suppose F is a compact subset
of Ω and that (Kn) is a family of compact subsets of F such that

∃M > 0 ∀n ∈ N �Kn ≤ M.

If either

uKn,ψi|∂Ω
L2(∂Ω)−→ ui, i = 1, 2,

or

wKn,ψ|∂Ω
L2(∂Ω)−→ wi, i = 1, 2,

holds, then there exists a compact set K ⊆ Ω such that we have �K ≤ M and a

subsequence Knk

H→ K, and that for i = 1, 2, we have ui = uψi,K|∂Ω (respectively,
wi = wψi,K|∂Ω).
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If for another subsequence, we have Kn′
k

H→ K̃, then GK = GK̃ q.e.

Proof. By the compactness of the Hausdorff convergence we can write Knk

H−→
K, with K ⊆ F , and �K ≤ M . Using Theorem 4.1 and Proposition 4.2 we get

uKnk
,ψi|∂Ω

L2(∂Ω)−→ uK,ψi|∂Ω (and the same for w). Hence ui = uK,ψi|∂Ω (and the same

for w).

If for another subsequence we have Kn′
k

H→ K̃, we use the uniqueness theorem,
Theorem 3.9, and get the conclusion.

Remark 4.4. Theorem 4.3 is not a standard stability result, as one might expect.
It is rather a description of possible situations regarding stability. Nevertheless, under
mild assumptions on K, this becomes a usual sequential stability result.

In the following, K, Kn, and K̃ are as in Theorem 4.3.

Corollary 4.5. Let K be such that �K = M , Ω \K is connected, and
◦
K= ∅.

Then K̃ = K and the hole sequence Kn converges into the Hausdorff metric to K.

Proof. From Theorem 4.3,

GK̃ = GK = Ω \K q.e.(22)

Moreover, thanks to the hypothesis �K = M , K has M connected components and
each one has a positive diameter. Consequently, equality (22) holds everywhere. From
the definition of GK̃ , relation (22) implies K̃ ⊆ K. The converse is also true since

K = ∂K = ∂GK̃ \ ∂Ω ⊆ ∂K̃ ⊆ K̃.

Example 4.6. In order to give geometric intuition on the sense in which Theorem
4.3 should be understood, we give in Figures 1 and 2 two examples of cracks and
cavities which give close measurements.

Fig. 1. Four compacts giving “close” measures: Cavity (a) gives the same measure as crack
(b); asymptotically, cracks (c) and (d) give the same measures (as soon as the apertures of the
rectangular cracks go to zero).

Fig. 2. Two compacts giving “close” measures; on the left a “long and dense” curve and on
the right a cavity.
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We give an example in which stability comes from the structure of K and requires
that all Kn satisfy a uniform identifiability assumption. From a practical point of view
this result might be helpful if all cracks do not have interior points, and locally their
diameters are beyond a detectability level.

Definition 4.7. Let ε > 0. A compact set K is ε-detectable if for every x ∈ K,
the diameter of the connected component of K containing x is greater than or equal
to ε. A compact set K ⊆ Ω is called ε-stable if

(23)

H1
cond,K(Ω)

= {u ∈ H1(Ω)∀x ∈ K,∃Ux continuum, diam (Ux) ≥ ε s.t. u = cx q.e. on Ux}.

To simplify, let us denote the space on the right-hand side as H1
ε (Ω). Notice that

if K is arbitrary, equality (23) does not occur; e.g., if K has an interior point. Take,
for example, Ω = [−2, 2] × [−2, 2], K = [0, 1] × [0, 1], and u(x, y) = x.

An example of ε-stable K is K = {
⋃∞

n=1{ 1
n} × [0, 1]}

⋃
{0} × [0, 1]. Indeed,

continua on lines are intervals. Hence on each vertical segment a function u ∈ H1
ε (Ω)

can take only a finite number of values. Using Lemma 2.1 it follows that u is q.e.
constant on each vertical segment. Using the same argument as in Example 3.6 we
get u ∈ H1

cond,K(Ω).
Proposition 4.8. Suppose there exists ε > 0 such that Kn are ε-detectable. The

conclusion of Theorem 4.3 holds, provided that K and K̃ are ε-stable.

5. Application: Approximation by finite elements. We prove in this sec-
tion that the unknown defects can be formally approached using finite elements, re-
gardless of their regularity. Basically, this is one of the main applications of the sta-
bility result established in the previous section. All previous stability results, which
give finer estimates for the stability, assume a priori the smoothness of the defects
and suppose known their (uniform) Lipschitz character. In this regard, Theorem 4.3
does not give a quantitative estimate for the stability, but provides a rigorous justi-
fication of the approach by finite elements. For a similar argument related to shape
optimization problems with homogeneous Dirichlet conditions on the free boundaries,
we refer to [8].

We discuss both problems (3) and (4). It will be quite surprising to notice that,
formally, problem (4) is easier to treat from a numerical point of view, since a unique
mesh can be used at each step for both capturing the defect Γ and computing the
finite element approximation of the solution. This is also the case for homogeneous
Dirichlet problems [8]. For problem (3) the defect Γ is captured on a mesh, while the
finite element approximation of the solution needs a refinement of the mesh. This is
precisely what is done in practice.

Let F be “the design region,” i.e., a subdomain of Ω containing all defects. Let
(Th)h denote a family of triangulations of Ω made of elements which are triangles
(the extension to quadrilaterals is standard). The maximal size of elements is the
discretization parameter, denoted by h. In addition, we assume that each triangula-
tion satisfies the usual admissibility assumptions, i.e., the intersection of two different
elements is either empty, a vertex, or a whole edge, and Th is assumed to be “regular,”
i.e., the ratio between the diameter of any element K ∈ Th and the diameter of its
largest inscribed ball is bounded by a constant σ independent of K and h.

Let K∗ ⊆ F be a defect such that �K∗ ≤ M which gives the measures w1, w2

corresponding to the input fluxes, ψ1, ψ2, respectively. We solve the finite dimensional
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problem

min
K⊂Th∩F

#K≤M

∫
∂Ω

|wK,ψ1
− w1|2 dσ +

∫
∂Ω

|wK,ψ2
− w2|2 dσ,(24)

which admits at least one solution, denoted Kh. The following convergence result
holds.

Theorem 5.1. For h → 0, there exists a subsequence such that

Kh
H→ K̃ and GK∗ = GK̃ .

Proof. By compactness we can extract a subsequence Kh
H→ K̃. First, we notice

that ∫
∂Ω

|wKh,ψ1
− w1|2 +

∫
∂Ω

|wKh,ψ2
− w2|2 −→ 0 as h −→ 0.(25)

Indeed, we define

K∗
h =

⋃
T∈Th∩F

T∩K∗ �=∅

T .(26)

Then, d(K∗
h,K

∗) ≤ h, #K∗
h ≤ M , and K∗

h ⊂ F . Moreover, K∗
h

H→ K∗, and following
the stability result for the direct problem [6], we have∫

∂Ω

|wKh,ψ1
− w1|2 +

∫
∂Ω

|wKh,ψ2
− w2|2 −→ 0 as h −→ 0.

By the choice of Kh in (24) we get (25). Second, since (25) holds, we use Theorem
4.3 and get GK∗ = GK̃ , which means that Kh is an approximation of K∗.

Remark 5.2. Notice that in the least square approximation (problem (24)), the
continuous solutions wK,ψ1 , wK,ψ2 are chosen to be compared to the measures w1, w2.

In practice, instead of wKh,ψi
, we use a finite element approximation, say wj

Kh,ψi
,

obtained on a finer mesh. This approximation can be chosen such that ‖wj
Kh,ψi

−
wKh,ψi‖L2(∂Ω) ≤ j, j < h. Consequently, as h goes to zero, the result of Theorem 5.1
still holds.

In what follows we consider the approximation problem for the perfectly conduct-
ing case. Let K∗ ⊆ F be a defect such that �K∗ ≤ M which gives the measures u1, u2

corresponding to the input fluxes ψ1, ψ2, respectively. We solve the following finite
dimensional problem:

min
K⊂Th∩F

#K≤M

∫
∂Ω

|uh
K,ψ1

− u1|2 dσ +

∫
∂Ω

|uh
K,ψ2

− u2|2 dσ.(27)

Theorem 5.3. For h −→ 0, there exists a subsequence such that

Kh
H→ K̃ and GK∗ = GK̃ .
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Proof. By compactness, we can extract a subsequence Kh
H→ K̃. We prove that

for the continuous solutions we have∫
∂Ω

|uKh,ψ1 − u1|2 dσ +

∫
∂Ω

|uKh,ψ2 − u2|2 dσ −→ 0 as h −→ 0.(28)

For i = 1, 2 we have that∫
∂Ω

|uKh,ψi
− ui|2 dσ ≤ 2

(∫
∂Ω

|uh
Kh,ψi

− ui|2 dσ +

∫
∂Ω

|uKh,ψi − uh
Kh,ψi

|2 dσ
)
.

We construct K∗
h as in (26). Then, for i = 1, 2,∫

∂Ω

|uh
Kh,ψi

− ui|2 dσ ≤
∫
∂Ω

|uh
K∗

h,ψi
− ui|2 dσ

≤ 2

(∫
∂Ω

|uK∗
h,ψi − ui|2 dσ +

∫
∂Ω

|uh
K∗

h,ψi
− uK∗

h,ψi
|2 dσ

)
.

From the stability of the direct problem (see [6]) we get∫
∂Ω

|uK∗
h,ψi − ui|2 dσ −→ 0 as h −→ 0.

In order to get (28) we have to prove that∫
∂Ω

|uKh,ψi
− uh

Kh,ψi
|2 dσ +

∫
∂Ω

|uK∗
h,ψi

− uh
K∗

h,ψi
|2 dσ −→ 0 as h −→ 0.

In fact, it is enough to prove that if

Kh
H→ K̃, #Kh ≤ M, Kh ⊂ F,

then uh
Kh,ψi

L2(∂Ω)→ uK̃,ψi
. This is a consequence of the Mosco convergence of the

spaces

Vh =
{
u∈C(Ω), u ∈ P1(T )∀T ∈Th, u = constant on each connected component ofKh

}
to H1

cond,K̃
(Ω).

Indeed, let vh ∈ Vh, vh
H1(Ω)
⇀ u. Following [6], u ∈ H1(Ω), u is constant on each

connected component of K̃, and hence u ∈ H1
cond,K̃

(Ω). Now let u ∈ H1
cond,K̃

(Ω).

Applying Hedberg’s result [13] locally in a neighborhood of each connected component
of K̃, for every ε > 0, there exists δ > 0 and uδ ∈ H1

cond,K̃δ
(Ω) ∩ C∞(Ω), such that

|uδ − u|H1(Ω) < ε. Then, uδ ∈ H1
cond,Kh

(Ω) for h small enough. Thus, for the finite

element approximation uh
δ ∈ Vh we have the error estimate |uδ − uh

δ | ≤ h‖uδ‖H2(Ω).

By a diagonal procedure, we construct uh
δh

∈ Vh, and uh
δh

H1(Ω)→ u.

Remark 5.4. In Theorem 5.3, we have the approximation of uK∗,ψ obtained on Th,
which means that no refinement is necessary. This is mainly due to the Dirichlet-type
boundary conditions, which are easier to handle than the Neumann ones.
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6. Appendix.
Proof of Example 3.7. We start with the following simple result.
Lemma 6.1. Let (cn)n and (rn)n be two sequences of real numbers such that ∀n,

0 < rn ≤ cn, (rn)n is decreasing, and (cn)n converges to zero. Then, there exists a

subsequence (cnk
)nk

such that |cnk
− cnk+1| ≥

rnk
−rnk+1

2 .
Proof. Assume for contradiction that there exists n0 such that

∀n ≥ n0, |cn − cn+1| <
rn − rn+1

2
.

Then, ∀ k > n0, we have

|cn0 − ck| <
rn0 − rk

2
,

which yields, when k goes to +∞, cn0 ≤ rn0

2 , in contradiction with the hypothesis of
the lemma.

Now choose rn as in Example 3.7. Then Ω \K = Ω and take φ ∈ C(Ω) ∩
H1

cond,K∩B0,r
(Ω) such that φ(0) = 0. Suppose for contradiction that 0 is not con-

ductive. Then there exists C, δ > 0 such that φ(x) ≥ C|x| for x ∈ K ∩ B0,δ. Since
φ ∈ H1

cond,K∩B0,r
(Ω) we have that φ is constant on every vertical line. Let us denote

by cn this constant. Writing φ(bn, rn) ≥ C
√
b2n + r2

n we get that cn ≥
√
b2n + r2

n ≥ rn.
We prove that the gradient of φ has an infinite L2-norm, and this will contradict

the hypothesis φ ∈ H1
cond,K∩B0,r

(Ω). We have the following:∫
Ω

|∇φ|2dx ≥
∞∑
n0

∫
[bn+1,bn]×rn+1

|∇φ|2dx

≥
∞∑
n0

∫
[bn+1,bn]×rn+1

(cn+1 − cn
bn − bn+1

)2

dx

≥
∞∑
n0

rn+1

bn − bn+1
(cn+1 − cn)2.

Using Lemma 6.1, there exists a subsequence such that

rnk+1

bnk
− bnk+1

(cnk+1 − cnk
)2 ≥ rnk+1

4(bnk
− bnk+1)

(rnk+1 − rnk
)2.

We observe from the definition of bn and rn that bn − bn+1 = rn+1(rn+1 − rn)2;
therefore the series above cannot converge since its general term does not converge to
zero.

Proof of Proposition 3.8. Let K be a compact subset of Ω such that Ω \ K is
connected, and let x ∈ ∂(Ω \K) such that x ∈ Ux ⊆ K, where Ux is a continuum of
positive diameter. Following Proposition 3.5, in order to prove that x is conductive
for Ω \K it is enough to prove the existence of a continuum of positive diameter F
such that x ∈ F ⊆ ∂(Ω \K).

One can mimic the proof of the second case in the proof of Theorem 3.9. The
only difference is that a curve γ joining x to ∂Ω and lying in Ω \ K may not exist.
Nevertheless, there exists a sequence of points yn ∈ Ω\K, yn → x and smooth curves
γn joining yn to a point of the ∂Ω and lying in Ω \ K. Choosing εn as in Theorem
3.9 and choosing yn such that |x− yn| < εn/2, we define

tn = min{t ∈ [0, 1], γn(t) ∈ Pn}.(29)
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We observe that zn is well defined, but we do not have necessarily zn → x. Never-
theless, γn([0, tn]) is a continuum containing yn and zn, and lying in (Ω \K) ∩K

εn
.

Two possibilities occur: either for a subsequence we have zn → x and apply the same
argument as in Theorem 3.9, or |zn−x| ≥ α > 0 and any Hausdorff limit of γn([0, tn])
is a continuum of diameter greater than or equal to α contained in ∂(Ω \ K) and
passing through x.

Example 6.2 (example of a Cantor set which is uniquely identifiable by two bound-
ary measurements). Let Ω = B(0, 2) and define

F1 = [0, 1] × {0},

F2 =

{[
0,

1

2
− ε1

]
∪
[
1

2
+ ε1, 1

]}
× {0},

F3 =

{[
0,

1

2

(
1

2
− ε1

)
− ε2

]
∪
[
1

2

(
1

2
− ε1

)
+ ε2,

1

2
− ε1

]

∪
[
1

2
+ ε1,

1

2

(
1

2
+ ε1 + 1

)
− ε2

]
∪
[
1

2

(
1

2
+ ε1 + 1

)
+ ε2, 1

]}
× {0},

etc. Let (cn)n be an increasing sequence of positive numbers converging to 1. The
value of ε1 is chosen such that ∀ϕ ∈ H1

cond,F1
(Ω\F1)∩C(Ω), ϕ(0, 0) = 0,

∫
Ω
|∇ϕ|2dx ≤

1 we have for every t ∈ [0, 1]
∫ t

0
ϕ2(s, 0)ds ≤ c1t

4. Such a constant ε1 exists; if it does

not, for a sequence ϕk corresponding to εk1 → 0 we would have∫ tk

0

ϕ2
k(s, 0)ds > c1t

4
k.

Assuming tk → t, we clearly have t ≥ 1/2 and for the limit function we get (by the

continuity of the trace operator)
∫ t

0
ϕ2(s, 0)ds ≥ c1t

4. But from Lemma 2.1 we have
ϕ = 0 on [0, 1] × {0}, and hence we get a contradiction.

Note that ε1 can be chosen such that

∀ϕ ∈ H1
cond,F1

(Ω \ F1) ∩ C(Ω), ϕ(1, 0) = 0,

∫
Ω

|∇ϕ|2dx ≤ 1,(30)

we have

∀t ∈ [0, 1],

∫ 1

t

ϕ2(s, 0)ds ≤ c1t
4.(31)

As well, we define ε2 > 0 such that ∀ϕ ∈ H1
cond,F1

(Ω \ F1) ∩ C(Ω), ϕ(0, 0) =

0,
∫
Ω
|∇ϕ|2dx ≤ 1, we have for every t ∈ [0, 1]

∫ t

0
ϕ2(s, 0)ds ≤ c2t

4. Note that ε2 can
be chosen such that similar relations as in (30)–(31) hold for the points (1/2− ε1, 0),
(1, 0) in the “left” direction and for (1/2 + ε1, 0) in the “right” direction.

By induction, we define Fn and set F = ∩n∈NFn, which is a totally disconnected
Cantor set. Since ∪n∈N∂Fn is dense in F , it is enough to prove that F is conductive
at every point of ∂Fn. So fix n and choose x0 ∈ ∂Fn. There are two possibilities:
either x0 is a left end point of an interval of Fn or a right end point. Thanks to the
construction of εk, both situations are treated in the same way. If it is a left end
point, the proof is similar to the conductivity of 0 that we give in the following.
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Let u ∈ H1
cond,F (Ω \ F ) ∩ C(Ω). There exists ϕε ∈ H1(Ω) such that ∇ϕε = 0

on F ε, ϕε → u in H1(Ω). Moreover, the functions ϕε can be chosen continuous and
may be translated by a constant such that ϕε(0) = 0. It is clear that, even after
translations, ∇ϕε → ∇u strongly in L2. Since for every ε > 0 we have for n large
enough Fn ⊆ F ε we have from the previous construction that for every t ∈ [0, 1]∫ t

0
ϕ2
ε(s, 0)ds ≤ (M + 1)t4, where M = lim supn→∞

∫
Ω
|∇ϕn|2dx . This implies (for a

subsequence) that ϕε converges weakly in H1(Ω) to ũ = u+ c, where c is a constant.
The continuity of the trace operator gives

∀t ∈ [0, 1],

∫ t

0

ũ2(s, 0)ds ≤ (M + 1)t4,(32)

and the continuity of ũ implies ũ(0, 0) = 0, hence c = 0, and thus u satisfies

(32). Consequently lim inft→0
|u(t,0)|

t = 0, and hence (0, 0) is conductive; otherwise
|u(t, 0)| ≥ c|t| in a neighborhood of 0, which contradicts (32).
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Abstract. Well-posedness of abstract quantum mechanical systems is considered and the ex-
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1. Introduction. We consider a quantum mechanical system with internal Hamil-
tonian H0 prepared in the initial state Ψ0(x), where x denotes the relevant spatial
coordinate. The state Ψ(x, t) satisfies the time-dependent Schrödinger equation (we
set h = 1). In the presence of an external interaction taken as an electric field, mod-
eled by a coupling operator with amplitude ε(t) ∈ R and a time-independent dipole
moment operator μ̂, the new Hamiltonian H0 − μ(t) gives rise to the control system

i
∂

∂t
Ψ(x, t) = (H0 − μ(t))Ψ(x, t), Ψ(x, 0) = Ψ0(x),(1.1)

where μ(t) = ε(t)μ̂. Here μ(t) represents a controlled Hamiltonian which can be a
distributed control. The optimal control approach (see, e.g., [MT], [PDR], [TKO],
[ZR]) allows us to assess the fitness of the final state Ψ(T ) to a prescribed goal. This
is achieved through the introduction of a performance index J which is maximized.
One possible choice for a cost functional is given by

J(μ) =
1

2
〈Ψ(T )|O|Ψ(T )〉 − α

2

∫ T

0

|μ(t)|2 dt,(1.2)

where α > 0 and O is the observable operator that encodes the goal. The larger the
value 〈Ψ(T )|O|Ψ(T )〉 is, the better the control objective is met. Here we used the
notation 〈Ψ(T )|O|Ψ(T )〉 =

∫
Ω

Ψ(T, x)OΨ(T, x) dx. The conditions that we utilize for
H0, μ(·) and O will be given in the following section. Maximization of 〈Ψ(T )|O|Ψ(T )〉
is at the price of a large laser influence

∫ T

0
|μ(t)|2 dt. The optimally controlled evolu-

tion must therefore balance between the expense for the laser influence and the desire
that the observable has an acceptably large value.
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An alternative cost is given by

J(μ) = −1

2

(
|Ψ(T ) − Ψ̄(T )|2 + α

∫ T

0

|μ(t)|2 dt
)
,

where Ψ̄ is a target state. Since |Ψ|L2 = 1, it is equivalent to

J(μ) = Re (Ψ, Ψ̄) − α

2

∫ T

0

|μ(t)|2 dt.(1.3)

In section 2 we shall establish well-posedness results for (1.1) based on a semi-
group framework in a form that will facilitate the optimal control treatment. Section 3
is devoted to the precise statement of the optimal control problem, including the class
of admissible control operators μ which are considered, and a proof for the existence of
optimal solutions. First order necessary optimality conditions are derived in section 4.
In section 5 we describe the monotone scheme for the general class of optimal problems
that is considered in this paper. Well-posedness and subsequential convergence of the
scheme are proved.

To point at some of the relevant literature for the problem under investigation we
mention the pioneering work of Rabitz and collaborators; see, e.g., [PDR], [ZR], and
the references given there. For existence of optimal controls we refer to [BP]. Differ-
ently from our semigroup approach, the work in [BP] is based on partial differential
equation techniques, and requires higher regularity in time. Many important aspects
of the monotone scheme for the solution of the optimality system were investigated
in, e.g., [MST], [MT], [S], [TKO]. However, except for [S], which treats the case of
scalar-valued controls, convergence proofs of the optimal controls and states have re-
ceived little attention so far. The technique of proof in [S] and in the present work are
different. While the key ingredient for the convergence proof in [S] is a convergence
result in [BMS] for the convolution of a Hilbert-space valued function with a sequence
of weakly convergent scalar-valued functions, our results are based on compactness
arguments. This allows for finite dimensional (in space) as well as infinite dimensional
(distributed) control action.

2. Well-posedness. Setting Ψ(t, x) = Ψ1(t, x) + Ψ2(t, x) and Ψ = (Ψ1,Ψ2),
system (1.1) can equivalently be written as

∂

∂t
Ψ1(t, x) = (H0 − μ(t)) Ψ2(t, x),

∂

∂t
Ψ2(t, x) = −(H0 − μ(t)) Ψ1(t, x) for (t, x) ∈ (0, T ] × Ω.

(2.1)

Here T > 0 and Ω = R
n or Ω is a bounded subset of R

n. The behavior of Ψ at the
boundary of Ω is defined through the domain of the operator H0. We refer to section
3 for specific examples. Throughout it is assumed that H0 is a densely defined,
self-adjoint positive semidefinite operator in a real Hilbert space H, consisting of
functions defined over the domain Ω. Typically H is L2(Ω). If H0 satisfies the
above assumptions it is necessarily closed. We define the closed linear operator A0 in
X = H ×H by

A0 =

⎛⎝ 0 H0

−H0 0

⎞⎠ ,
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with dom (A0) = dom (H0) × dom (H0). Note that A0 is skew-adjoint, i.e.,

(A0Ψ, Ψ̂) = −(A0Ψ̂,Ψ) for all Ψ, Ψ̂ ∈ dom (A0).

Consequently by Stone’s theorem [HP] A0 generates a C0-group S(t) on X satisfying
|S(t)Ψ|X = |Ψ|X for all Ψ ∈ X and t ≥ 0. Let

V = dom (H
1
2
0 ) and V = V × V.

Then H0 ∈ L(V, V ∗) and thus A0 ∈ L(V,V∗), where

V ∗ and V∗ = V ∗ × V ∗

denote the dual space of V and V, respectively, with H and X as pivot spaces. V is
equipped with

|φ|2V = 〈H0φ, φ〉V ∗×V + |φ|2H

as norm. Then the restriction of S(t) to V is again a C0-group. The dual S∗(−t) is
the extension of S(t) to V∗ and forms a C0-group on V∗. Moreover, for the extension
group on V∗ the domain of the generator is given by domV∗(A0) = V∗.

Suppose that μ(t) ∈ L(H) is self-adjoint for almost every t ∈ (0, T ) and define

B(t) =

⎛⎝ 0 μ(t)

−μ(t) 0

⎞⎠ .

In the context of an external interaction with an electric field, as mentioned in the
introduction, μ(t) = ε(t)μ̂, where ε denotes a scalar-valued amplitude and μ̂ = μ̂(x)
is a multiplication operator representing the dipole moment [MT], [MST], [ZR].

By a fixed point argument it can be argued that for every T > 0, μ ∈ L2(0, T ;L(H)),
and Ψ0 ∈ X there exists a unique mild solution Ψ ∈ C(0, T ;X) to (2.1) satisfying

Ψ(t) = S(t)Ψ0 −
∫ t

0

S(t− s)B(s)Ψ(s) ds for t ∈ [0, T ].(2.2)

Here C(0, T ;X) stands for C([0, T ];X). Moreover, if Ψ̂ ∈ C(0, T ;X) denotes the
mild solution to (2.1) corresponding to (Ψ̂0, μ̂) ∈ X×L2(0, T ;H), then by Gronwall’s
inequality

|Ψ − Ψ̂|C(0,T ;X) ≤ M̃

(
|Ψ0 − Ψ̂0|X +

∫ T

0

|μ(t) − μ̂(t)|L(H) dt

)
,(2.3)

for a constant M̃ depending continuously on |μ|L1(0,T ;L(H)) and |Ψ0|X .
Theorem 2.1. If Ψ0 ∈ V and μ ∈ L2(0, T ;L(V )∩L(H)), then the mild solution

Ψ ∈ C(0, T ;X) to (2.2) satisfies

Ψ(t) ∈ H1(0, T ;V∗) ∩ C(0, T ;V)

and

d

dt
Ψ(t) = (A0 −B(t))Ψ(t) a.e. in (0, T ).
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Moreover |Ψ(t)|X = |Ψ0|X for all t ∈ [0, T ];

|Ψ(t)|V ≤ K1 exp

(
K2

∫ t

0

|μ(s)|L(V ) ds

)
|Ψ0|V

for constants Ki independent of μ and Ψ0, and for some M1 depending continuously
on its arguments∣∣∣∣ ddtΨ(t)

∣∣∣∣
L2(0,T ;V∗)

≤ M1 (|μ|L2(0,T ;L(V)∩L(H)), |Ψ0|V).(2.4)

Proof. Consider

A0Ψ(t) = S(t)A0Ψ0 −
∫ t

0

S(t− s)A0B(s)Ψ(s) ds in V∗.(2.5)

Adding this equation to (2.2) we find the a priori estimate

|Ψ(t)|V ≤ K1|Ψ0|V + K2

∫ t

0

|B(s)|L(V)|Ψ(s)|V ds

for embedding constants K1,K2. By Gronwall’s inequality we have

|Ψ(t)|V ≤ K1|Ψ0|V exp

(
K2

∫ t

0

|μ(s)|L(V ) ds

)
for t ∈ (0, T ).

This estimate allows us to verify existence of a solution to (2.5) in C(0, T ;V), which co-
incides with the solution to (2.2). By construction we have that Ψ ∈ C(0, T ; domV∗(A0)).
It follows with standard arguments (see, e.g., [P, p. 107]) applied to (2.2) that Ψ is
differentiable almost everywhere in (0, T ) and that

d

dt
Ψ(t) = A0Ψ(t) −B(t)Ψ(t) in V∗ for a.e. in (0, T ).

Hence Ψ ∈ H1(0, T ;X) ∩ C(0, T ;V). In fact we have∣∣∣∣ ddtΨ
∣∣∣∣
L2(0,T ;V∗)

≤ K(|Ψ|L2(0,T ;V) + |μ|L2(0,T ;L(H))|Ψ|C(0,T ;H)),

which implies (2.4). Since

1

2

d

dt
|Ψ(t)|2X =

〈
d

dt
Ψ(t),Ψ(t)

〉
V∗,V

= 〈(A0 −B(t)) Ψ(t),Ψ(t)〉V∗,V = 0

for a.e. t ∈ (0, T ), it follows that |Ψ(t)|X = |Ψ0|X for all t ∈ [0, T ].

3. Existence of an optimal solution. In this section we provide sufficient
conditions for the existence of a solution to{

max J(μ) over μ ∈ L2(0, T ;U)

subject to (2.2),
(3.1)

where J(μ) = 1
2 〈Ψ(T )|O|Ψ(T )〉− α

2

∫ T

0
|μ(t)|2 dt, with O ∈ L(X)∩L(V) a self-adjoint

positive definite operator. Here 〈Ψ(T )|O|Ψ(T )〉 stands for (Ψ(T ), OΨ(T ))X , with
(·, ·)X denoting the inner product in X.
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Here U is a closed Hilbert space continuously embedded in {μ ∈ L(H) ∩ L(V ) :
μ is self-adjoint}. We assume that there exists a closed subspace H1 ⊂ H such that
for X1 = H1 ×H1 we have

V ∩X1 is compactly embedded into X(3.2)

and

|Ψ|L2(0,T ;V∩X1) ≤ M (|Ψ0|V∩X1 , |μ|L2(0,T ;U)),(3.3)

where M depends continuously on its arguments, and Ψ denotes the solution to (2.2).
Since

J(μ) → −∞ as |μ|L2(0,T ;U) → ∞,

there exists a maximizing sequence {μn} to (3.1), i.e.,

lim
n→∞

J(μn) = sup
μ∈L2(0,T ;U)

J(μ) and |μn|L2(0,T ;U) ≤ K,

for some K independent of n. Hence there exists a subsequence of {μn} denoted by
the same symbol and μ̄ ∈ L2(0, T ;U) such that

μn → μ̄ weakly in L2(0, T ;U).(3.4)

By (2.4) and (3.3) the sequence {Ψn} is bounded in L2(0, T ;X1∩V) and the sequence
{ d
dtΨn} is bounded in L2(0, T ;V∗), where Ψn = Ψ(μn) denotes the solution to (2.2)

with μ replaced by μn. By Aubin’s lemma, e.g., [CF], there exists Ψ̄ ∈ H1(0, T ;V∗)∩
L2(0, T ;V ∩X1) such that for a further subsequence

Ψn → Ψ̄ strongly in L2(0, T ;X)(3.5)

and weakly in L2(0, T ;V). For ϕ and ψ in X the mapping B → (Bϕ,ψ)X , B ∈ U,
defines a bounded linear functional in U . Hence by the Riesz representation theorem
there exists F = F (ϕ,ψ) ∈ U such that

(Bϕ,ψ)X = (F (ϕ,ψ), μ)U for all μ ∈ U, where B =

(
0 μ
−μ 0

)
.(3.6)

Note that F : X ×X → U is a continuous, bilinear mapping satisfying

F (ϕ,ψ) = −F (ψ,ϕ).

Moreover, if ψn → ψ strongly in L2(0, T ;X) and ϕn → ϕ strongly in C(0, T ;X) we
have

F (ϕn, ψn) → F (ϕ,ψ) in L2(0, T ;U).(3.7)

Taking the inner product in L2(0, T ;X) of

Ψn(t) = S(t)Ψ0 −
∫ t

0

S(t− s)Bn(s) Ψn(s) ds
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with an arbitrary Φ ∈ L2(0, T ;X) implies that∫ T

0

(Ψn(t),Φ(t))X dt =

∫ T

0

(S(t)Ψ0,Φ(t))X dt

+

∫ T

0

(
F

(∫ T

·
S∗(t− ·)Φ(t) dt,Ψn

)
, Bn

)
U

ds.

From (3.4), (3.5), and (3.7) we deduce that∫ T

0

(Ψ(t),Φ(t))X dt =

∫ T

0

(S(t)Ψ0,Φ(t))X dt

+

∫ T

0

(
F

(∫ T

·
S∗(t− ·)Φ(t) dt,Ψ

)
, B

)
U

ds

=

∫ T

0

(S(t)Ψ0,Φ(t))X dt

−
∫ T

0

(∫ t

0

S(t− s)B(s) Ψ(s) ds,Φ(t)

)
X

dt.

Since Φ was arbitrary we find

Ψ̄(t) = S(t)Ψ0 −
∫ t

0

S(t− s) B̄(s) Ψ̄(s) ds,

and thus Ψ̄ is the unique solution to (2.2) with μ replaced by μ̄.

We next verify that

Ψn(T ) → Ψ̄(T ) strongly in X.(3.8)

For this purpose set Φn = Ψn − Ψ̄, and choose K such that

max(|Φn|L2(0,T ;V∗), |Φn|C(0,T ;V∩X1)) ≤ K.

Due to (3.2) there exists [CF, p. 96], for every ε > 0, a constant cε such that

|Φn(T )|X ≤ ε|Φn(T )|V∩X1 + cε|Φn(T )|V∗ ≤ εK + cε|Φn(T )|V∗ .(3.9)

By Hölder’s inequality we have

| Φn(T )|V∗ =

∣∣∣∣∣1ε
∫ T

T−ε

Φn(s) ds +
1

ε

∫ T

T−ε

(s− T + ε)
d

ds
Φ′

n(s) ds

∣∣∣∣∣
V∗

≤ 1

ε

∣∣∣∣∣
∫ T

T−ε

Φn(s) ds

∣∣∣∣∣
V∗

+
1

ε

(∫ T

T−ε

(s− T + ε)2 ds

) 1
2
(∫ T

T−ε

∣∣∣∣ ddsΦ′(s)

∣∣∣∣
V∗

ds

) 1
2

≤ 1

ε

∣∣∣∣∣
∫ T

T−ε

Φn(s) ds

∣∣∣∣∣
V∗

+

√
εK√
3

,



280 KAZUFUMI ITO AND KARL KUNISCH

and with (3.9)

|Φn(T )|X ≤ εK +

√
εK√
3

+
1

ε

∣∣∣∣∣
∫ T

T−ε

Φn(s) ds

∣∣∣∣∣
V∗

.

Since Φn → 0 weakly in L2(0, T ;V) we have 1
ε |
∫ T

T−ε
Φn(s) ds|V∗ → 0 as n → ∞ for

every fixed ε > 0. We conclude that (3.8) holds.
Weak lower-semicontinuity of norms and (3.8) imply that

J(μ̄) ≥ sup
μ

J(μ)

and hence μ̄ is an optimal solution to (3.1). We thus proved the following result.
Theorem 3.1. If Ψ0 ∈ X1∩V and (3.2), (3.3) hold, then (3.1) admits a solution

μ̄ ∈ L2(0, T ;U).
Example 3.1. The control space in (3.1) is U = L2(0, T ;U). Here we consider the

special case of a scalar-valued control coupling a time-dependent control amplitude ε
with a fixed time-independent self-adjoint moment operator μ̃ ∈ L(V ) ∩ L(H), i.e.,
we consider the closed subspace of U given by

Û = {εμ̃ : ε ∈ L2(0, T ; R)},

which is isomorphic to L2(0, T ; R). In this case U is the one dimensional space {εμ̃ :
ε ∈ R}, which is endowed with the inner product of R. The resulting control cost is
α
2

∫ T

0
|ε(t)|2dt and the bilinear mapping F : X ×X → U = R is given by

F (φ, ψ) = (B̃φ, ψ)X = (μ̃(φ2), ψ1)H − (μ̃(φ1), ψ2)H ,

with B̃ = ( 0 μ̃
−μ̃ 0 ). The resulting optimality condition has the form

αε̄ + (B̃Ψ̄(t), χ̄)X = 0.

Example 3.2. Let H = L2(Ω)/R with Ω = (0, 1) and H0 = −Δ with periodic
boundary conditions. Then V = H1

P (Ω), the space of H1(Ω) functions with periodic
boundary conditions φ(0) = φ(1). The control space is taken as multiplication oper-
ators by elements μ ∈ H1

P (Ω) and we identify U with H1(Ω)p. Note that φ → μφ
defines a self-adjoint element in L(H) ∩ L(V ), since H1(Ω) is a Banach algebra in
dimension one. For φ ∈ X = H ×H and ψ ∈ X = H ×H the element F (φ, ψ) ∈ V
is the solution to

(F (φ, ψ), μ)H1 = (μφ2, ψ1)H − (μφ1, ψ2)H for all μ ∈ V.

Thus the optimality condition can be expressed as

αμ(t) + (−Δ + I)−1(Ψ2(t)χ1(t) − Ψ1(t)χ2(t)) = 0,

where Ψ, χ ∈ C(0, T ;V). Note that this implies additional spatial regularity of the
optimal solution.

Example 3.3. Let H0, H, V, and Ω be as in the previous example. Define

Ũ = {μ̃ ∈ L2(Ω) : μ̃(x) = μ̃(−x) for x ∈ Ω}
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endowed with the canonical inner product. Each μ̃ can be uniquely identified with a
self-adjoint operator μ ∈ L(H) given by

μ(φ)(x) =

∫
Ω

μ̃(x− y)φ(y) dy,

where μ̃ is extended periodically from Ω to R. All such operators also satisfy μ ∈ L(V ).
The set of all these operators constitutes the control space U . The resulting penalty
term in the cost functional J has the form

α

2

∫ T

0

|μ̃(t, ·)|2L2(Ω) dt.

Using symmetry of μ̃ it can be shown that for φ, ψ in X = H × H the element
F ∈ L2(Ω) satisfying

(F (φ, ψ), μ̃)L2(Ω) = (μφ2, ψ1)L2(Ω) − (μφ1, ψ2)L2(Ω) for all μ ∈ U

is given by

F (φ, ψ)(x) =
1

2

∫
Ω

(
φ2(y)ψ1(x + y) + φ2(y)ψ1(−x + y)

− φ1(y)ψ2(x + y) − φ1(y)ψ2(−x + y)
)
dy.

The resulting optimality condition is

αμ̃(t, x) +
1

2

∫
Ω

(
Ψ2(t, y)χ1(t, x + y) + Ψ2(t, y)χ1(t,−x + y)

− Ψ1(t, y)χ2(t, x + y) − Ψ1(t, y)χ2(t,−x + y)
)
dy = 0.

Analogous results can be obtained with Ω = (0, 1) replaced by bounded cubes in R
n

with H0 satisfying periodic boundary conditions, or with Ω = R
n.

Example 3.4. Let H0 = −Δ in H = L2(Rn). Then H0 is densely defined
with dom(H0) = H2(Rn) and self-adjoint (see, e.g., [K]), with spectrum consisting of
continuous spectrum given by [0,∞). We set H = {ϕ ∈ L2(Rn) :

∫
Rn(1+ |x|2)ϕ(x)2 <

∞}. To verify (3.2) let {fn}∞n=1 be a bounded sequence in H1 = V ∩H = dom(H
1
2
0 )∩H.

For r ∈ N set Ωr = {x ∈ R
n : |x|Rn ≤ r}. Extract a subsequence of {fn} that

converges weakly in H1 to some f ∈ H1. Using compactness of {φ|Ωr
: φ ∈ V } in

L2(Ωr) successively extract further subsequences whose restriction to Ωr converges
strongly in L2(Ωr) to f , for r = 1, 2, . . . . Let {fnk

} denote the sequence which arises
from diagonalization of the above procedure. The restriction to Ωr of this sequence
converges strongly in L2(Ωr) to the restriction of f to Ωr for each r ∈ N . Strong
convergence of {fnk

} to {f} in L2(Rn) follows from the following estimate:∫
Rn

|f − fnk
|2 dx =

∫
Ωr

|f − fnk
|2 dx +

∫
Rn\Ωr

|f − fnk
|2 |x|2 dx

|x|2

≤
∫

Ωr

|f − fnk
|2 dx +

1

r2

∫
Rn\Ωr

|f − fnk
|2|x|2 dx ≤

∫
Ωr

|f − fnk
|2 dx +

4

r2
C,

where C is the common bound for {fnk
} and f in H1. Hence dom(H

1
2
0 ) ∩ H is

compactly embedded in H and (3.2) follows.
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Turning to (3.3), consider, for X = L2(Rn) × L2(Rn),

〈 d
dtΨ(t), |x|2Ψ(t)〉 = 1

2
d
dt 〈Ψ(t), |x|2Ψ(t)〉

= 〈A0Ψ(t), |x|2Ψ(t)〉 − (B(t)Ψ(t), |x|2Ψ(t))X

= (−ΔΨ2, |x|2Ψ1)H + (ΔΨ1, |x|2Ψ2)H − ((μ(t)Ψ2, |x|2Ψ1)H − (μ(t)Ψ1, |x|2Ψ2)H)

= 2(∇Ψ2(t), xΨ1(t))H − 2(∇Ψ1(t), xΨ2(t))H

≤ |∇Ψ1(t)|2H + |∇Ψ2(t)|2H +
∣∣ |x|Ψ1(t)

∣∣2
H

+
∣∣ |x|Ψ2(t)

∣∣2
H
,

and hence

1

2

d

dt

∣∣ |x|Ψ(t)
∣∣2
X

≤ K|Ψ|2V +
∣∣ |x|Ψ(t)

∣∣2
X

for a constant K satisfying |∇φ| ≤ K|φ|V for all φ ∈ V. Gronwall’s inequality and
Theorem 2.1 imply the existence of a constant M̃ = M̃(|Ψ0|V∩X1

, |B|L2(0,T ;L(V)∩L(X)))
such that

|Ψ|C(0,T ;V∩X1) ≤ M̃,

which, in particular, implies (3.3).

4. Necessary optimality condition. We now derive a first order necessary
optimality system for (3.1).

Theorem 4.1. Let (μ̄, Ψ̄) = (μ̄, Ψ(μ̄)) be an optimal pair for (3.1) and assume
that Ψ0 ∈ V and O Ψ̄(T ) ∈ V. Then

d
dt Ψ̄(t) = (A0 − B̄(t))Ψ̄(t), Ψ̄(0) = Ψ0 (primal equation),

d
dt χ̄(t) = (A0 − B̄(t))χ̄(t), χ(T ) = OΨ̄(T ) (adjoint equation),

αμ̄(t) + F (Ψ̄(t), χ̄(t)) = 0 (optimality),

where the adjoint state satisfies χ̄ ∈ H1(0, T ;V∗) ∩ C(0, T ;V) and B̄ =
(

0 μ̄
−μ̄ 0

)
.

Proof. For any μ ∈ L2(0, T ;U) we have

J(μ) − J(μ̄) = −α (μ̄, μ− μ̄)L2(0,T ;U) −
α

2
|μ− μ̄|2L2(0,T ;U)

+(Ψ(T ) − Ψ̄(T ), OΨ̄(T ))X +
1

2
(Ψ(T ) − Ψ̄(T ), O(Ψ(T ) − Ψ̄(T )) )X .

Let χ̄(t) ∈ H1(0, T ;V∗) ∩ C(0, T ; domV) be the solution to the adjoint equation

d

dt
χ̄(t) = (A0 − B̄(t))χ̄(t), χ(T ) = OΨ̄.

Then,

(Ψ(T ) − Ψ̄(T ), OΨ̄(T )) =

∫ T

0

〈
d

dt
(Ψ(t) − ¯Ψ(t)), χ̄(t)

〉
+

〈
Ψ(t) − ¯Ψ(t),

d

dt
χ̄(t)

〉
dt

=

∫ T

0

[〈(A0 −B(t))Ψ(t) − (A0 − B̄(t))Ψ̄(t), χ̄(t)〉 + 〈Ψ(t) − Ψ̄(t), (A0 − B̄(t))χ̄(t)〉] dt

= −
∫ T

0

((B(t) − B̄(t))Ψ(t), χ̄(t))X dt

= −
∫ T

0

(
(B(t) − B̄(t))(Ψ(t) − Ψ̄(t)), χ̄(t)

)
X
dt−

∫ T

0

(
(B(t) − B̄(t))Ψ̄(t), χ̄(t)

)
X
dt,
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where 〈·, ·〉 denotes the duality pairing between V and V∗. Hence

J(μ) − J(μ̄) = −
∫ T

0

(
αμ̄(t) + F (Ψ̄(t), χ̄(t)), μ(t) − μ̄(t)

)
U

−
∫ T

0

(
(B(t) − B̄(t))(Ψ(t) − Ψ̄(t)), χ̄(t)

)
X
dt

−α

2
|μ− μ̄|2L(0,T ;U) +

1

2
(Ψ(T ) − Ψ̄(T ), O(Ψ(T ) − Ψ̄(T )) )X .

Taking the limit μ → μ̄ and using (2.3) we obtain the claim.

5. An algorithm and its convergence. The following algorithm for solving
the optimality system in case of scalar-valued controls was proposed in [ZR] and
further developed in [TKO], [MT].

Algorithm.

(i) Choose δ ∈ [0, 2], η ∈ [0, 2], μ̃0 ∈ L2(0, T ;U), χ0 ∈ C(0, T ;X).

For k = 1, 2, . . . until convergence
(ii)

d
dtΨ

k(t) = (A0 −Bk(t))Ψk(t), Ψk(0) = Ψ0,

μk = (1 − δ)μ̃k−1 − δ
αF (Ψk, χk−1),

(iii)

d
dtχ

k(t) = (A0 − B̃k(t))χk(t), χk(T ) = OΨk(T ),

μ̃k = (1 − η)μk − η
αF (Ψk, χk).

First we prove the well-posedness of the algorithm.
Proposition 5.1. Let ψ0 ∈ V, μ ∈ L2(0, T ;U), and χ ∈ C(0, T ;X). Then there

exists a unique solution Ψ ∈ H1(0, T ;V∗) ∩ C(0, T ;V) to

Ψ(t) = S(t)Ψ0 −
∫ t

0

S(t− s)B(Ψ)(s)Ψ(s) ds,(5.1)

where B = B(μ), with μ(Ψ)(t) = (1 − δ)μ(t) − δ
αF (Ψ(t), χ(t)). Analogously, if Ψ ∈

C(0, T ;X), then there exists a unique solution χ ∈ H1(0, T ;V∗) ∩ C(0, T ;V) to

χ(t) = S∗(T − t)OΨ(T ) +

∫ T

t

S∗(s− t)μ̃(χ)(s) ds,

where μ̃(χ)(t) = (1 − η)μ(t) − η
αF (Ψ(t), χ(t)).

Proof. We verify the first claim by a continuation argument. The second one can
be proved analogously. For any Ψ and Ψ̂ in C(0, T ;X) we have

|B(Ψ)(t) −B(Ψ̂)(t)| ≤ M |Ψ(t) − Ψ̂(t)|X ,

where M = M̃ δ
α |χ|C(0,T ;X) and M̃ is an embedding constant. Consider the iteration

Ψn = S(t)Ψ0 +

∫ t

0

S(t− s)B(Ψn−1)(s)Ψn(s) ds,
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which is initialized by the constant with value Ψ0. It is well defined by Theorem 2.1,
and |Ψn(t)|X = |Ψ0|X for all n and t ≥ 0. For consecutive iterates we find

1
2

d
dt |Ψn+1(t) − Ψn(t)|2X

= ((A0 −B(Ψn))(t)(Ψn+1(t) − Ψn(t))
−(B(Ψn)(t) −B(Ψn−1)(t))Ψn(t),Ψn+1(t) − Ψn(t))

≤ M2

2 |Ψn+1(t) − Ψn(t)|2 + 1
2 |Ψn(t) − Ψn−1(t)|2.

Hence for every τ ∈ (0, T ] and t ∈ (0, τ ]

|Ψn+1(t) − Ψn(t)|2X ≤ 1

M2
(eM

2τ − 1) max
t∈[0,τ ]

|Ψn(t) − Ψn−1(t)|X .

Selecting τ > 0 sufficiently small so that θ = 1
M2 (eM

2τ − 1) < 1 implies that

|Ψn+1 − Ψn|C(0,τ ;X) ≤ θn |Ψ1 − Ψ0|C(0,T ;X) → 0

as n → ∞. By standard arguments existence of a solution to (5.1) on [0, τ ] follows.
Since τ only depends on M , this solution can be extended to a solution Ψ ∈ C(0, T ;X).
Uniqueness follows by Gronwall’s inequality. Another application of Theorem 2.1
guarantees that Ψ ∈ H1(0, T ;V∗) ∩ C(0, T ;V).

Theorem 5.2. Assume that (δ, η) = (0, 0), that Ψ0 ∈ V ∩ X1, and that (3.2),
(3.3) hold. Then the sequence {μk, μ̃k,Ψk, χk} contains a subsequence which converges
strongly in L2(0, T ;U)×L2(0, T ;U)×C(0, T ;X)×C(0, T ;X) and every such subse-
quence converges to some (μ, μ,Ψ, χ), where (μ,Ψ, χ) is a solution of the optimality
system.

Proof. For k ≥ 2 and δ, η ∈ [0, 2]

J(μk) − J(μk−1) = 1
2 ( Ψk(T ) − Ψk−1(T ), O (Ψk(T ) − Ψk−1(T )) )X

+α
2

∫ T

0
( 2
δ − 1) |μk − μ̃k−1|2U + ( 2

η − 1) |μk−1 − μ̃k−1|2U dt ≥ 0.
(5.2)

If δ = 0 or η = 0, then μk = μ̃k−1, respectively, μk−1 = μ̃k−1, and the corresponding
terms in (5.2) are dropped. This inequality will be verified at the end of the proof, in
an analogous way as in the scalar case which was treated in [ZR], [MT].

From (5.2) it follows that J(μk) is monotonically increasing. Since J(μ) is
bounded from above this implies that limk→∞ J(μk) exists. Recall that |Ψk(t)|X =
|Ψ0|X and |χk(t)|X ≤ ‖O‖|Ψ0|X for all k and t ∈ [0, T ]. It thus follows that

J(μ0) ≤ J(μk) =
1

2
(Ψk(T ), OΨk(T ))X − α

2
|μk|2L2(0,T ;U),

and hence

α

2
|μk|2L2(0,T ;U) ≤

1

2
|Ψ0|2X‖O‖L(X) − J(μ0).

Moreover,

|μ̃k|L2(0,T ;U) ≤ |1 − η| |μk|L2(0,T ;U) +
η

2
|Ψ0|2X‖O‖L(X),

and hence

{μk}∞k=1 and {μ̃k}∞k=1 are bounded in L2(0, T ;U).(5.3)
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From Theorem 2.1 and assumptions (3.2) and (3.3), therefore,

{Ψk}∞k=1 and {χk}∞k=1 are bounded in H1(0, T ;V∗) ∩ L2(0, T ;V ∩X1).

By Aubin’s lemma there exists a subsequence {kn} of {k} and Ψ ∈ C(0, T ;X), χ ∈
C(0, T ;X) such that

Ψkn → Ψ and χkn → χ strongly in L2(0, T ;X).

Using the boundedness of {Ψkn} and {χkn} in C(0, T ;X) and the properties of F
one argues that F (Ψkn , χkn) → F (Ψ, χ) strongly in L2(0, T ;U). From (iii) of the
algorithm we have

ημkn = μkn − μ̃kn − η

α
F (Ψkn , χkn).

Since μkn − μ̃kn → 0 in L2(0, T ;U) by (5.2), it follows, for η = 0, that μkn converges
strongly in L2(0, T ;U) to some μ, as kn → ∞. For each kn we have the following by
(ii) of the algorithm:

Ψkn(t) = S(t)Ψ0 −
∫ t

0

S(t− s)Bkn(s)Ψkn(s) ds.(5.4)

Let Ψ ∈ C(0, T ;X) denote the solution to

Ψ(t) = S(t)Ψ0 −
∫ t

0

S(t− s)B(s)Ψ(s) ds.(5.5)

From Gronwall’s inequality it follows that Ψkn → Ψ in C(0, T ;X). By (5.2) the
sequence {μ̃kn} converges strongly in L2(0, T ;U) to μ. Step (iii) of the algorithm
implies that

χkn(t) = S∗(T − t)OΨkn(T ) +

∫ T

t

S∗(s− t)B̃kn(s)χkn(s) ds.(5.6)

Let χ in C(0, T ;X) denote the solution to

χ(t) = S∗(T − t)OΨ(T ) +

∫ T

t

S∗(s− t)B(s)χ(s) ds.(5.7)

Again by Gronwall’s lemma we find that χkn → χ in C(0, T ;X). Passing to the limit
in the second equation of (iii) implies that

αB + F (Ψ, χ) = 0.(5.8)

For η = 0 there exists a subsequence {kn} of {k} and Ψ̄ ∈ C(0, T ;X), χ̄ ∈ C(0, T ;X)
such that

Ψkn → Ψ̄ and χkn → χ̄ strongly in L2(0, T ;X).

By (5.2) and since μ̃k = μk for η = 0 we have limn→∞ μkn−1−μkn = 0 in L2(0, T ;U).
From

μkn = (1 − δ)μkn−1 − δ

α
F (Ψkn , χkn−1)
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it therefore follows that μkn−1 converges strongly to some μ in L2(0, T ;U). By (5.2)
also limn→∞ μkn = μ in L2(0, T ;U). As before, the solutions to (5.4) and (5.6)
converge strongly in C(0, T ;X) to the solutions of (5.5) and (5.7), and (5.8) also
holds for η = 0. From (5.5), (5.7), and (5.8) we conclude that (μ,Ψ, χ) is a solution
to the optimality system.

We now provide the proof of (5.2) for the case η = 0, δ = 0. The remaining cases
follow easily. We have

J(μk+1) − J(μk) =
1

2
( Ψk+1(T ) − Ψk(T ), O (Ψk+1(T ) − Ψk(T )) )X

+(Ψk+1(T ) − Ψk(T ), OΨk(T ))X +
α

2

∫ T

0

|μk+1|2 − α

2

∫ T

0

|μk|2.

Suppressing the dependence of Ψk and μk on t we find

(Ψk+1(T ) − Ψk(T ), OΨk(T ))X = (Ψk+1(T ) − Ψk(T ), χk(T ))X

=

∫ T

0

(
∂

∂t
(Ψk+1 − Ψk), χk

)
X

+

(
Ψk+1 − Ψk,

∂

∂t
χk

)
X

=

∫ T

0

((A0 −Bk+1)Ψk+1 − (A0 −Bk)Ψk, χk)X + (Ψk+1 − Ψk, (A0 − B̃k)χk)X

=

∫ T

0

((B̃k −Bk+1)Ψk+1, χk)X + ((Bk − B̃k)Ψk, χk)X

=

∫ T

0

(F (Ψk+1, χk), μ̃k − μk+1)U + (F (Ψk, χk), μk − μ̃k)U

= α

∫ T

0

1

δ
(μ̃k − μk+1, (1 − δ)μ̃k − μk+1)U +

1

η
(μ̃k − μk, (1 − η)μk − μ̃k)U

= α

∫ T

0

1

δ
|μ̃k − μk+1|2U +

1

η
|μ̃k − μk|2U − (μ̃k − μk+1, μ̃k)U − (μk − μ̃k, μk)U .

Hence we find

J(μk+1) − J(μk) =
1

2
( Ψk+1(T ) − Ψk(T ), O (Ψk+1(T ) − Ψk(T )) )X

+( Ψk+1(T ) − Ψk(T ), OΨk(T ) )X − α

2

∫ T

0

|μk+1|2U +
α

2

∫ T

0

|μk|2

=
1

2
( Ψk+1(T ) − Ψk(T ), O (Ψk+1(T ) − Ψk(T )) )X

+
α

2

∫ T

0

((
2

δ
− 1

)
|μ̃k − μk+1|2U +

(
2

η
− 1

)
|μk − μ̃k|2U

)
dt ≥ 0.

In [S] it is argued that the set of limit points is in fact compact. Moreover, if the
penalty parameter α is sufficiently large, then the limit set consists of a singleton.

In the previous theorem subsequential convergence followed under the assumption
of compactness of the orbits implied by (3.2), (3.3). Alternatively a compactness
assumption for U as a subset of L(X) also implies convergence.

Theorem 5.3. Assume that (δ, η) = (0, 0), that Ψ0 ∈ V, χ0 ∈ H1(0, T ;X),
μ̃ ∈ H1(0, T ;U), and that U is a compact subset of L(X). Then the conclusion of
Theorem 5.2 holds.
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Proof. As in the proof of Theorem 5.2 {μk}∞k=1 and {μ̃k}∞k=1 are bounded in
L2(0, T ;U), and by Theorem 3.1

{Ψk}∞k=1 and {χk}∞k=1 are bounded in H1(0, T ;V∗) ∩ C(0, T ;V).

This implies that {F (Ψk, χk−1)}∞k=1 and {F (Ψk, χk)}∞k=1 are bounded in H1(0, T ;U).
If δ = η = 1, then {μk} and {μ̃k} are bounded in H1(0, T ;U). Otherwise

μ̃k = (1 − η)(1 − δ)μ̃k−1 + (1 − η)
δ

α
F (Ψk, χk−1) − η

α
F (Ψk, χk),

with |(1−η)(1−δ)| < 1. It follows that μk and μ̃k are bounded in H1(0, T ;U). Hence
there exists a subsequence {kn} of {k} and μ ∈ H1(0, T ;U), μ̃ ∈ H1(0, T ;U) such
that

μkn → μ, and μ̃kn → μ̃ strongly in L2(0, T ;L(X)).

By (5.2) we have |μk − μ̃k|L2(0,T ;L(X)) → 0 if η = 0, whereas μk = μ̃k if η = 0. In
either case it follows that μ = μ̃. The proof can now be completed as the one for
Theorem 5.2.
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STATE AGREEMENT FOR CONTINUOUS-TIME COUPLED
NONLINEAR SYSTEMS∗

ZHIYUN LIN† , BRUCE FRANCIS† , AND MANFREDI MAGGIORE†

Abstract. Two related problems are treated in continuous time. First, the state agreement
problem is studied for coupled nonlinear differential equations. The vector fields can switch within
a finite family. Associated to each vector field is a directed graph based in a natural way on the
interaction structure of the subsystems. Generalizing the work of Moreau, under the assumption
that the vector fields satisfy a certain subtangentiality condition, it is proved that asymptotic state
agreement is achieved if and only if the dynamic interaction digraph has the property of being
sufficiently connected over time. The proof uses nonsmooth analysis. Second, the rendezvous problem
for kinematic point-mass mobile robots is studied when the robots’ fields of view have a fixed radius.
The circumcenter control law of Ando et al. [IEEE Trans. Robotics Automation, 15 (1999), pp. 818–
828] is shown to solve the problem. The rendezvous problem is a kind of state agreement problem,
but the interaction structure is state dependent.

Key words. state agreement, rendezvous, interacting nonlinear systems, time-varying interac-
tion, asymptotical stability

AMS subject classifications. 93C10, 93D20, 37N35, 05C20

DOI. 10.1137/050626405

1. Introduction. This paper studies a dynamical system that is the interconnec-
tion of subsystems. Examples are abundant in biology, physics, engineering, ecology,
and social science: e.g., a biochemical reaction network [14], coupled Kuramoto oscil-
lators [17,39], arrays of chaotic systems [44,45], a swarm of organisms [12,13], and a
group of autonomous agents [16, 22, 23]. We model such systems by coupled nonlin-
ear differential equations in state form. Pioneering work on such coupled dynamical
systems from a structural point of view is that of Siljak, e.g., [35, 36].

State agreement means that the states of the subsystems are all equal. For exam-
ple, [11] studies a group of individuals who must act together as a team; each individ-
ual has its own subjective probability distribution for the unknown value of some pa-
rameter. How the group might reach a consensus and form a common subjective prob-
ability distribution for the parameter is a state agreement problem. In other contexts,
state agreement arises as synchronization in theoretical physics, e.g., [5,30,39,42,43],
and consensus in computer science, particularly in distributed computing, e.g., [25].

Central to the state agreement problem is the graph describing the interaction
structure in the interconnected system—that is, who is coupled to whom. And a
central question is, What properties of the interaction graph lead to state agreement?
Most existing work has dealt with static graphs with a particular topology, such
as rings [6, 30], cyclic digraphs [32], and fully connected graphs [12, 13, 34], or with
static graphs having an unspecified topology but a certain connectedness. Example
frameworks are coupled cell systems [38], coupled oscillators [17, 45], multiagent sys-
tems [4, 31], and formations of unicycles [23]. Of course, a static graph simplifies the
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state agreement problem and allows one to focus on the difficulties caused by the
nonlinear dynamics of the nodes.

The more interesting situation is when the interaction graph is time varying.
From the point of view of control theory, the most suitable mathematical model for
these setups is a switched interconnected system. However, attempts to understand
how the switching affects the collective system behavior had been hampered by the
lack of suitable analysis tools. Recently, however, great strides have been made [16]
by characterizing the convergence of infinite products of certain types of nonnegative
matrices in a linear discrete-time setup with an undirected interaction graph. For
the switched linear continuous-time system model and a directed graph, [22] uses the
graph Laplacian and the properties of some special matrices to prove asymptotic state
agreement under certain graphical conditions. In addition, [29] uses the common Lya-
punov function technique for the switched linear continuous-time system and shows
that balanced digraphs play a key role in addressing the average-consensus problem.
Two other works on state agreement for linear continuous-time systems are [15], which
deals with random networks, and [26], which addresses the deterministic time-varying
case.

However, many real systems are nonlinear in addition to having time-varying
interaction among subsystems. Examples are systems of coupled oscillators. For
nonlinear interconnected systems with time-varying interaction, new tools are re-
quired. A novel approach is taken by Moreau in [27]: The framework is nonlinear and
discrete-time, and the stability analysis is based upon a blend of graph-theoretic and
system-theoretic tools, with the notion of convexity being key. The idea is, roughly
speaking, that if every agent always moves toward the relative interior of the convex
hull of the set of neighbor agents at each step, state agreement will be achieved. The
result in [27] was recently generalized in [2] as follows: The setup is still a discrete-
time system, but each agent moves towards the relative interior of a set which is a
function, not necessarily the convex hull, of the present and past states of neighbor
agents. In this way communication delays can be accommodated.

One concrete instance of the state agreement problem is the rendezvous problem
for autonomous mobile robots. Suppose the robots’ fields of view have a fixed radius.
Then the robots may come into and go out of sensor range of each other, and the
interaction graph is therefore state dependent instead of time dependent. For this
problem, some distributed algorithms were proposed in [1, 41], with the objective
of getting the robots to congregate at a common location (achieving rendezvous).
These algorithms were extended to various synchronous and asynchronous stop-and-
go strategies in [9, 19,20].

This paper makes two main contributions. The first is the continuous-time coun-
terpart to the result of Moreau [27]. We borrow heavily from Moreau’s geometric
concepts and proof structure; we suggest, however, that the continuous-time case
presents some considerable challenges, as one will see from the details of our proof.
Thus our contribution to this problem is primarily technical in nature. As an example
application, we apply our result to make new conclusions about synchronization of
coupled Kuramoto oscillators. The second contribution of this paper is a solution of
the continuous-time rendezvous problem for kinematic point-mass robots; we use the
circumcenter control law of Ando et al. [1] and give the first proof of convergence in
continuous time.

2. Preliminaries. Here we assemble some known and some novel concepts re-
lated to convex sets and tangent cones, directed graphs, and Dini derivatives. In
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addition, we provide some fundamental properties associated with them.

2.1. Convex sets and tangent cones. References for this subsection are [3,37].
The convex hull of S ⊂ R

m is denoted co(S). The convex hull of a finite set of
points x1, . . . , xn ∈ R

m is a polytope, denoted co{x1, . . . , xn}.
Let S ⊂ R

m be convex. If S contains the origin, the smallest subspace containing
S is the carrier subspace, denoted lin(S). The relative interior of S, denoted ri(S), is
the interior of S when it is regarded as a subset of lin(S) and the relative topology
is used, and likewise for the relative boundary, denoted rb(S). If S does not contain
the origin, it must be translated by an arbitrary vector: Let v be any point in S and
let lin(S) denote the smallest subspace containing S − v. Then ri(S) is the interior of
S when it is regarded as a subset of the affine subspace v + lin(S), and similarly for
rb(S).

A nonempty set K ⊂ R
m is a cone if λy ∈ K when y ∈ K and λ > 0. Let S ⊂ R

m

be a closed convex set and y ∈ S. The tangent cone (often referred to as contingent
cone) to S at y is the set

T (y,S) =

{
z ∈ R

m : lim inf
λ→0

‖y + λz‖S
λ

= 0

}
,

where ‖y+λz‖S denotes the distance from y+λz to S. The normal cone to S at y is

N (y,S) = {z∗ : 〈z, z∗〉 ≤ 0 ∀z ∈ T (y,S)}.

Note that if y is in the interior of S, then T (y,S) = R
m. Thus the set T (y,S)

is nontrivial only on ∂S, the boundary of S. In particular, if S contains only one
point, y, then T (y,S) = {0}. In geometric terms the tangent cone for y ∈ ∂S is a
cone centered at the origin which contains all vectors whose directions point from y
“inside” (or they are “tangent to”) the set S.

Lemma 2.1 (see [3]). Let Si, i = 1, . . . , n be convex sets in R
m.

(i) If y ∈ S1 ⊂ S2, then

T (y,S1) ⊂ T (y,S2) and N (y,S2) ⊂ N (y,S1).

(ii) If xi ∈ Si (i = 1, . . . , n), then

T ((x1, . . . , xn),S1 × · · · × Sn) = T (x1,S1) × · · · × T (xn,Sn),
N ((x1, . . . , xn),S1 × · · · × Sn) = N (x1,S1) × · · · × N (xn,Sn).

2.2. Directed graphs. For a directed graph (digraph for short) G = (V, E),
where V = {1, . . . , n} is the set of nodes and E is the set of arcs, we write i → j if
there is a path from node i to node j. By definition, i → i for every node i. A center
is a node i such that i → j for every node j, and G is quasi-strongly connected (QSC)
if it has a center [7]. Finally, G is fully connected if for every two nodes i and j there
is an arc from i to j.

2.3. Dini derivatives. Consider the nonautonomous system

ẏ = f(t, y),(2.1)

where D ⊂ R
m is a domain and f : R × D → R

m. Let V (t, y) : R × D → R be a
continuous function satisfying a local Lipschitz condition for y, uniformly with respect
to t. Then we define

D+
f V (t, y) = lim sup

τ→0+

V (t + τ, y + τf(t, y)) − V (t, y)

τ
.
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The function D+
f V is called the upper Dini derivative of V along the trajectory of

(2.1). Suppose that for an initial condition y(0) = y0, (2.1) has a solution y(t) defined
on an interval [0, ε) and let D+V (t, y(t)) be the upper Dini derivative of V (t, y(t))
with respect to t, i.e.,

D+V (t, y(t)) = lim sup
τ→0+

V (t + τ, y(t + τ)) − V (t, y(t))

τ
.

Let t∗ ∈ [0, ε) and put y(t∗) = y∗. Then one has that (see [33])

D+V (t∗, y(t∗)) = D+
f V (t∗, y∗).

Lemma 2.2. Let I0 = {1, 2, . . . , n} and suppose for each i ∈ I0, Vi : R ×
D → R is of class C1; let V (t, y) = maxi∈I0 Vi(t, y); and let I(t) = {i ∈ I0 :
Vi(t, y(t)) = V (t, y(t))} be the set of indices where the maximum is reached at time t.
Then D+V (t, y(t)) satisfies

D+V (t, y(t)) = max
i∈I(t)

V̇i(t, y(t)).

The proof can be obtained from Danskin’s theorem [8,10].

3. The state agreement problem: Main results. Our setup is a general
interconnection of nonlinear subsystems, where the vector fields can switch within a
finite family. We associate to each vector field a directed graph based in a natural way
on the interaction structure of the subsystems; this is called an interaction digraph in
the present paper. Assuming that the vector fields satisfy a certain subtangentiality
condition, we show that asymptotic state agreement is achieved if and only if the
dynamic interaction digraph has the property of being sufficiently connected over
time, in a certain technical sense. Most of the proofs are deferred to section 5.

To formalize the notion of a switched interconnected system, first consider a family
of systems

ẋ1 = f1
p (x1, . . . , xn)

...
ẋn = fn

p (x1, . . . , xn),

where xi ∈ R
m is the state of subsystem i and where the index p belongs to a finite

set P. Notice that the subsystems share a common state space, R
m. Introducing the

aggregate state x ∈ R
mn, we have the concise form

ẋ = fp(x), p ∈ P,(3.1)

where for each p ∈ P, fp : R
mn → R

mn.
We now associate to each vector field fp an interaction digraph Gp capturing the

interaction structure of the n subsystems (agents).
Definition 3.1 (interaction digraph). The interaction digraph Gp = (V, Ep)

consists of
• a finite set V of n nodes, each node i modeling agent i;
• an arc set Ep representing the links between agents. An arc from node j to

node i indicates that agent j is a neighbor of agent i in the sense that f i
p

depends on xj; i.e., there exist x1
j , x

2
j ∈ R

m such that

f i
p(x1, . . . , x

1
j , . . . , xn) 
= f i

p(x1, . . . , x
2
j , . . . , xn).

The set of neighbors of agent i is denoted Ni(p).
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1
1

2

2

3

f1
p

f1
p

C1
p(x)

Fig. 3.1. Some examples of vector fields f i
p satisfying assumption A2.

Let Ci
p(x) = co{xi, xj : j ∈ Ni(p)} denote the polytope in R

m formed by the states
of agent i and its neighbors. Also, it is convenient to introduce a subset S ⊂ R

m of the
common state space that plays the role of a region of focus. In our state agreement
problem, initial states of the agents will be in S and agreement will occur in S. Let
I0 denote the index set {1, . . . , n} and assume that, for each i ∈ I0 and each p ∈ P,
the vector fields f i

p : R
mn → R

m satisfy the following two assumptions:

A1. f i
p is locally Lipschitz on Sn.

A2. For all x ∈ Sn, f i
p(x) ∈ ri

(
T (xi, Ci

p(x))
)
.

Assumption A2 is sometimes referred to as a strict subtangentiality condition.
Figure 3.1 illustrates two example situations of A2. In the left-hand example, agent 1
has only one neighbor, agent 2; the convex hull C1

p(x) is the line segment joining x1

and x2; the tangent cone T (x1, C1
p(x)) is the closed ray {λ(x2 − x1) : λ ≥ 0} (in the

figure it is shown translated to x1); the relative interior ri
(
T (x1, C1

p(x))
)

is the open
ray {λ(x2−x1) : λ > 0}; and A2 means that f1

p is nonzero and points in the direction
of x2 −x1. In the right-hand example, agent 1 has two neighbors, agents 2 and 3; the
convex hull C1

p(x) is the triangle with vertices x1, x2, x3; the tangent cone T (x1, C1
p(x))

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 ≥ 0}

(again, it is shown translated to x1); the relative interior ri
(
T (x1, C1

p(x))
)

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 > 0};

and A2 means that f1
p points into this open cone. In general, A2 requires that f i

p(x)
have the form ∑

j∈Ni(p)

αj(x)(xj − xi),

where αj(x) are nonnegative scalar functions, and that f i
p(x), now viewed as a vector

applied at the vertex xi, not be tangent to the relative boundary of the convex set
Ci
p(x).

When the index p in (3.1) is replaced by a piecewise constant function σ :
[0, ∞) → P, we obtain a switched interconnected system

ẋ(t) = fσ(t) (x(t)) .(3.2)
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The function σ is called a switching signal. The case of infinitely fast switching (chat-
tering), which would call for a concept of generalized solution, is not considered here.
As a matter of fact, it can be shown that even piecewise constant switching signals σ(t)
do not have sufficient regularity for asymptotic agreement of the switched intercon-
nected system (3.2) [21]. Let Sdwell denote the class of piecewise constant switching
signals such that any consecutive discontinuities are separated by no less than some
fixed positive constant τD, the dwell time. We make the following assumption:

A3. σ(t) ∈ Sdwell.
Having replaced p by a switching signal σ(t), we similarly replace the interaction

digraph Gp by a dynamic interaction digraph Gσ(t).
Definition 3.2 (dynamic interaction digraph and union digraph). Given a

switching signal σ(t), the dynamic interaction digraph Gσ(t) is the pair
(
V, Eσ(t)

)
.

Given two real numbers t1 ≤ t2, the union digraph G ([t1, t2]) is the digraph whose
arcs are obtained from the union of the arcs in Gσ(t) over the time interval [t1, t2].

Definition 3.3. A dynamic interaction digraph Gσ(t) is uniformly quasi-strongly
connected (UQSC) if there exists T > 0 such that for all t ≥ 0, the union digraph
G([t, t + T ]) is QSC.

Our main result, Theorem 3.8, is that the switched interconnected system achieves
asymptotic state agreement on S if and only if the dynamic interaction digraph Gσ(t)

is UQSC.
But first, the precise meaning of state agreement is given in the following defini-

tion.
Definition 3.4. The switched interconnected system (3.2) has the property of

(i) state agreement on S if ∀ζ ∈ S, ∀ε > 0, ∃δ > 0 such that ∀t0 ≥ 0,

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S) =⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε;

(ii) asymptotic state agreement on S if it has the property of state agreement
on S and in addition ∀ε > 0, ∀c > 0, ∃T > 0 such that ∀t0 ≥ 0,

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S) =⇒ (∃ζ ∈ S)(∀t ≥ t0 + T )(∀i) ‖xi(t) − ζ‖ ≤ ε;

(iii) global asymptotic state agreement if it has the property of asymptotic state
agreement on R

m.

S S

Fig. 3.2. Asymptotic state agreement on S.

These definitions are illustrated in Figure 3.2 and can be stated, roughly speaking,
as follows. State agreement (the left-hand figure) means that, for every point ζ in S,
the agents stay arbitrarily close to ζ if they start sufficiently close to ζ, uniformly with
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respect to the starting time. Asymptotic state agreement (the two figures together)
means, in addition, that the agents converge to a common location in S.

These state agreement definitions are related to stability with respect to a set.
Let Ω denote the set of aggregate states such that the subsystem states are all equal
and in S, i.e.,

Ω = {x ∈ R
nm : x1 = · · · = xn ∈ S}.

Then state agreement is equivalent to uniform stability with respect to Ω.
Finally, we give the following new definition of positive invariance specially for

interconnected systems.
Definition 3.5. A set A ⊂ R

m is said to be positively invariant for the switched
interconnected system (3.2) if

(∀t0 ≥ 0)(∀i) xi(t0) ∈ A =⇒ (∀t ≥ t0)(∀i) xi(t) ∈ A.

Our first result establishes the positive invariance property of any compact convex
set in S without needing any property of the interaction digraph. This result can
perhaps be understood intuitively as follows. For m = 2, all agents move in the
plane. Let A be a compact convex set in S and assume all agents start in A. Let C(t)
denote the convex hull of the agents’ locations at time t. Because A is convex, clearly
C(0) ⊂ A. Now invoke assumption A2. An agent that is initially in the interior of C(0)
can head off in any direction at t = 0, but an agent that is initially on the boundary
of C(0) is constrained to head into its interior. In this way, C(t) is nonincreasing (if
t2 > t1, then C(t2) ⊂ C(t1)), and A is therefore positively invariant for the switched
interconnected system (3.2).

Theorem 3.6. Let A ⊂ S be a compact convex set. Then A is positively invariant
for the switched interconnected system (3.2).

The second result establishes state agreement of the system, again without need-
ing any property of the interaction digraph.

Theorem 3.7. Suppose S is closed and convex. The switched interconnected
system (3.2) has the property of state agreement on S.

Proof. Let ζ ∈ S and ε > 0 be arbitrary, and let

Aε(ζ) = {y ∈ S : ‖y − ζ‖ ≤ ε}.(3.3)

By Theorem 3.6, it follows that Aε(ζ) is positively invariant since it is a compact
convex set in S. We have thus proved that ∀ζ ∈ S, ∀ε > 0, ∃δ = ε such that ∀t0 ≥ 0,

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S) =⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε.

The conclusion follows by Definition 3.4.
Now comes our main result.
Theorem 3.8. Suppose S is closed and convex. The switched interconnected

system (3.2) has the property of asymptotic state agreement on S if and only if the
dynamic interaction digraph Gσ(t) is UQSC.

This section concludes with a few remarks.
If S = R

m in assumptions A1 and A2, then the switched interconnected system
(3.2) has the global asymptotic state agreement property if and only if Gσ(t) is UQSC.

When the vector fields in the family (3.1) are nonautonomous, suppose assump-
tions A1 and A2 are replaced by the following (keeping assumption A3 the same):
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A1′. f i
p(t, x) is locally Lipschitz with respect to x on Sn and piecewise continuous

with respect to t.
A2′. For all x ∈ Sn and all t ∈ R, f i

p(t, x) ∈ ri
(
T (xi, Ci

p(x))
)
.

It can be shown [21] that Theorem 3.8 no longer holds in general.
In the special case that the interaction graph is fixed (σ(t) is a constant signal),

then the property of UQSC is equivalent to QSC. Thus, we arrive at the following
special result.

Corollary 3.9. Suppose σ(t) = p and S = R
m. Then, the interconnected

system (3.2) has the globally asymptotic state agreement property if and only if Gp is
QSC.

For this special case we can actually relax the assumptions on the vector fields
f i
p : R

mn → R
m as follows:

A1′′. f i
p is continuous on R

mn.

A2′′. For all x ∈ R
mn, f i

p(x) ∈ T
(
xi, Ci

p(x)
)
. Moreover, f i

p(x) 
= 0 if Ci
p(x) is not

a singleton and xi is its vertex.
A sketch of the proof can be found in [24]. Unlike the proof of Theorem 3.8 here (see
section 5), the proof in [24] relies on LaSalle’s invariance principle. Finally, it is worth
pointing out that assumption A1′′ is too weak for sufficiency in Theorem 3.8 when
the interaction digraph is dynamic [21].

Application: Synchronization of coupled oscillators. The Kuramoto model
[17, 39] describes the dynamics of a set of n oscillators with angles θi with natural
frequencies ωi. The time evolution of the ith oscillator is given by

θ̇i = ωi + ki
∑

j∈Ni(t)

sin(θj − θi),

where ki > 0 is the coupling strength and Ni(t) is the set of neighbors of oscillator i
at time t. The interaction structure can be general up to this point in the paper; that
is, Ni(t) can be an arbitrary set of other nodes and can be dynamic.

The neighbor sets Ni(t) define Gσ(t) and the switched interconnected system

θ̇(t) = fσ(t) (θ(t)) ,

where θ = (θ1, . . . , θn) and σ(t) is a suitable switching signal. For identical frequencies
(i.e., ωi = ω ∀i), the transformation xi = θi − ωt yields

ẋi = ki
∑

j∈Ni(t)

sin(xj − xi), i = 1, . . . , n.(3.4)

Let a, b be any real numbers such that 0 ≤ b − a < π, and define S = [a, b]. It
can be checked that A1 and A2 are satisfied. Suppose σ(t) here is regular enough to
satisfy A3. Then from Theorem 3.8 it follows that, if and only if Gσ(t) is UQSC, the
switched interconnected system (3.4) has the property of asymptotic state agreement
on S. This implies that there exists x̄ ∈ R such that the oscillators asymptotically
synchronize:

θi(t) → x̄ + ωt, θ̇i(t) → ω.

This extends Theorem 1 in [17], which assumes the interaction graph is undirected
and static and the initial state θi(0) ∈

(
−π

2 ,
π
2

)
for all i.
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111 222

33 3

G1 G2 G3

Fig. 3.3. Three interaction digraphs Gp, p = 1, 2, 3.

As an example, three Kuramoto oscillators with time-varying interaction are sim-
ulated. The initial conditions are θ1 = 0, θ2 = 1, θ3 = −1. The natural frequency ωi

equals 1, and the coupling strength ki is set to 1 for all i. The interaction structure
switches among three possible interaction structures periodically, as shown in Fig-
ure 3.3. It can be checked that Gσ(t) is UQSC. Thus these three oscillators achieve
asymptotical synchronization by the main theorem. Figure 3.4 shows the plots of
sin(θi), i = 1, 2, 3, and of the switching signal σ(t). Synchronization is evident.
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Fig. 3.4. Synchronization of three oscillators with a dynamic interaction structure.

4. The rendezvous problem. Now we turn to the second main topic: the
rendezvous problem for autonomous mobile robots moving in continuous time. The
problem here is different because connectivity is state dependent instead of time de-
pendent a priori.

Suppose there are n robots, each having the simple kinematic model of velocity
control: ẋi = ui, where xi ∈ R

m is the position of robot i. Assume that, due to the
limited field of view of its sensor, each robot can sense only the relative positions of its
neighbor robots within radius r. Letting Ni(x) denote the set of neighbors of robot
i, where x is the aggregate state of n robots, we thus have that {yij = xj − xi : j ∈
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Ni(x)} is the information available to robot i. The rendezvous problem is to design
local distributed control laws ui, functions of {yij : j ∈ Ni(x)}, such that all states
{xi : i = 1, . . . , n} converge to a common value x̄ ∈ R

m.
The interaction digraph is state dependent, Gσ(x), because of the proximity sen-

sors, and the switched interconnected system takes the form

ẋ = fσ(x)(x),(4.1)

where σ : R
mn → P. Let us fix an initial state x0 ∈ R

mn and assume that (4.1) has
a solution x(t) defined for all t ≥ 0. Then the state-dependent switching rule can be
viewed as a time-dependent switching rule σ(x(t)), and the interaction graph becomes
time dependent too, Gσ(x(t)).

If some robots are initialized so far away from the rest that they never acquire
information from them, then the rendezvous problem obviously cannot be solved.
This corresponds to the situation where Gσ(x(0)) is not QSC. Thus it is natural to
assume that Gσ(x(0)) is QSC. Moreover, we wish the control laws ui to be devised
such that Gσ(x(t)) does not lose this property in the future, even though the controller
may cause changes in Gσ(x(t)). Intuitively, ui should make the maximum distance
between robot i and its neighbors nonincreasing.

Let Ii(x) denote the set of neighbor robots j ∈ Ni(x) that have maximum distance
from robot i (generically Ii(x) is a singleton).

Proposition 4.1. Assume that for each i the control law ui satisfies

(∀x) max
j∈Ii(x)

(xi − xj)
Tui ≤ 0.(4.2)

If Gσ(x0) is QSC and a solution x(t) to (4.1) exists for all t ≥ 0, then Gσ(x(t)) is QSC
for all t ≥ 0.

Proof. Define

V (x) = max
i

max
j∈Ni(x)

‖xi − xj‖2.

Notice that V (x) ≤ r, where r is the radius of the field of view of each robot. Also,
define

I(x) =
{
(i, j) : V (x) = ‖xi − xj‖2, j ∈ Ni(x)

}
,

the set of pairs of indices where the maximum is reached. By Lemma 2.2

D+V (x(t)) = 2 max
(i,j)∈I(x)

[
(xi − xj)

Tui + (xj − xi)
Tuj

]
≤ 2 max

(i,j)∈I(x)
(xi − xj)

Tui + 2 max
(i,j)∈I(x)

(xj − xi)
Tuj .

It follows from (4.2) that

max
(i,j)∈I(x)

(xi − xj)
Tui ≤ 0 and max

(i,j)∈I(x)
(xj − xi)

Tuj ≤ 0.

Hence D+V (x(t)) ≤ 0 for all t ≥ 0, which means the already linked arcs will never be
disconnected and therefore the conclusion follows.

Next, we show that if the distributed control law ui satisfies (4.2) as well as
assumptions A1′′ and A2′′, then a solution x(t) to (4.1) exists for all t ≥ 0, and the
robots rendezvous.
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Proposition 4.2. Suppose Gσ(x0) is QSC. If ui satisfies (4.2) as well as A1′′

and A2′′, then the robots rendezvous.
Proof. If Gσ(x0) is fully connected, then Gσ(x(t)) is fixed for all time t ≥ 0 since

no link will be dropped, by Proposition 4.1, and no link can be added. Then the
conclusion follows from Corollary 3.9.

If instead Gσ(x0) is not fully connected, then Gσ(x(t)) is dynamic and switches
for a finite number of times. To prove this, suppose by contradiction that for all
t ≥ 0, Gσ(x(t)) = Gσ(x0). Then by Corollary 3.9, all the robots converge to a common
location. So Gσ(x(t)) will become fully connected at some time t, which contradicts
the assumption that Gσ(x(t)) = Gσ(x0) is not fully connected. Hence, there is a t1 ≥ 0
such that Gσ(x(t1)) has more links than Gσ(x0) because no link will be dropped by
Proposition 4.1. Repeating this argument a finite number of times eventually leads
to the existence of ti such that Gσ(x(ti)) is fully connected, and thus, it is fixed after
ti. Then the conclusion follows from Corollary 3.9 by treating (ti, x(ti)) as the initial
condition.

The control law given next is based on the algorithm first proposed in [1].
Proposition 4.3. A possible choice of ui satisfying condition (4.2) as well as

assumptions A1′′ and A2′′ is ui = e(0, yij : j ∈ Ni(x)), the Euclidean center of the
set Z = {0, yij , j ∈ Ni(x)}.

Proof. The Euclidean center of the set Z is the unique point w that minimizes the
function g(w) := maxz∈Z ‖w − z‖. Interpreted geometrically, e(·) is the center of the
smallest m-sphere that contains the set of points {0, yij , j ∈ Ni(x)}. Furthermore, it

can be easily shown that it lies in the polytope C̃i
p = co{0, yij , j ∈ Ni(x)} but not at

its vertices if the polytope is not a singleton. Thus,

e (0, yij : j ∈ Ni(x)) = arg min
w∈C̃i

p

(
max
z∈Z

‖w − z‖
)
.

Then, by the maximum theorem [40], the function e(·) is continuous (but not locally
Lipschitz by some other arguments), and hence ui satisfies assumption A1′′.

Next, e(·) ∈ C̃i
p implies e(·) ∈ T (0, C̃i

p). Also, notice that Ci
p(x) = co{xi, xj : j ∈

Ni(x)} is the translation of C̃i
p to the point xi. Hence, e(·) ∈ T (xi, Ci

p(x)). In addition,

if Ci
p(x) is not a singleton and xi is its vertex, this means that C̃i

p is not a singleton

and 0 is its vertex. Then by the fact that e(·) lies in C̃i
p but not at its vertices, it

follows that ui = e(·) 
= 0. Thus ui satisfies assumption A2′′.
Finally, ui satisfies (4.2). This can be seen from geometry. We show the case

m = 2 for illustration. If ui = 0, then it trivially satisfies (4.2). If ui 
= 0, then the
picture is as in Figure 4.1. The solid circle C1 is the smallest circle enclosing the
points 0 and yij , j ∈ Ni(x). The dotted circle C2 is centered at the origin and goes
through the intersection points between C1 and its diameter, which is perpendicular
to ui. We know that if there are some yij in the closed shaded area, then one of them
achieves the maximal distance from the origin among all yij , j ∈ Ni(x). On the other
hand, there is at least one j ∈ Ni(x) such that yij is in the closed semicircle of C1,
since otherwise it is not the smallest circle. Hence, yij lies in the closed shaded area if
j ∈ Ii(x). Moreover, the angle between ui and such yij is less than π/2. This implies
that maxj∈Ii(x)(xi − xj)

Tui ≤ 0.

5. Proofs of the main results in section 3. Our proofs rely heavily on non-
smooth analysis involving the Dini derivative. They are partly inspired by a re-
sult of Narendra and Annaswamy [28], who show that with V̇ (x, t) ≤ 0 uniform
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yij1

yij2 yij3

yij4

ui

C1

C2

Fig. 4.1. The smallest enclosing circle.

asymptotic stability can be proved if there exists a positive T such that for all t,
V (x(t + T ), t + T ) − V (x(t), t) ≤ −γ(‖x(t)‖) < 0, where γ is a class K function.
The difference here is that we deal with stability with respect to a set—the set of
aggregate states where the subsystem states are all equal—rather than stability of
an equilibrium point; an additional complication is that the natural V -functions are
nondifferentiable.

Nagumo’s theorem concerning set invariance is stated first, for later reference.
Theorem 5.1 (see [3]). Consider the system ẏ = F (y), with F : R

l → R
l, and let

Y ⊂ R
l be a closed convex set. Assume that, for each y0 in Y, there exists ε(y0) > 0

such that the system admits a unique solution y(t, y0) defined for all t ∈
[
0, ε(y0)

)
.

Then,

y0 ∈ Y =⇒
(
∀t ∈

[
0, ε(y0)

))
y(t, y0) ∈ Y

if and only if F (y) ∈ T (y,Y) for all y ∈ Y.
Proof of Theorem 3.6. Let A be any compact convex set in S and consider any

initial state x0 ∈ An and any initial time t0. For any piecewise constant switching
signal σ(t), let x(t, t0, x

0) be the solution of the switched interconnected system (3.2)
with x(t0) = x0, and let [t0, t0 + ε(t0, x

0)) be its maximal interval of existence.
For any point x ∈ An, it is obvious that Ci

p(x) ⊂ A for all i ∈ I0 and p ∈ P, by
convexity of A. Thus, by property (i) in Lemma 2.1,

f i
p(x) ∈ ri

(
T (xi, Ci

p(x))
)
⊂ T (xi,A) ∀i ∈ I0, ∀p ∈ P,

and by property (ii) in the same lemma,

g(t, x) := fσ(t)(x) ∈ T (x,An) ∀t ∈ R, ∀x ∈ An.

Set y = (t, x) and construct the augmented system

ẏ = F (y) :=

[
1

g(y)

]
.(5.1)

Since g(t, x) admits a unique solution x(t, t0, x
0) defined for all t ∈ [t0, t0 + ε(t0, x

0)),
it follows that for all y0 = (t0, x

0) ∈ R×An, the augmented system (5.1) has a unique
solution y(t, y0) defined on [0, ε(y0)). Moreover,

F (y) ∈ T (t,R) × T (x,An) = T (y,R ×An) ∀y ∈ R ×An.
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Since R ×An is closed and convex, by Theorem 5.1 it follows that

y0 = (t0, x
0) ∈ R ×An =⇒ (∀τ ∈ [0, ε(y0))) y(τ) ∈ R ×An.(5.2)

The solution y(τ) to (5.1) with initial condition y0 = (t0, x
0) is related to the solution

x(t) to ẋ = g(t, x) with initial condition x(t0) = x0 as follows:

(∀t ∈ [t0, t0 + ε(t0, x
0))) (t, x(t)) = y(t− t0).

We thus rewrite condition (5.2) as

t0 ∈ R and x0 ∈ An =⇒ (∀t ∈ [t0, t0 + ε(t0, x
0))) x(t) ∈ An.

Since the set An is compact, it follows by Theorem 2.4 in [18] that, for all x0 ∈
An and all t0, ε(t0, x

0) = ∞ and the set A is positively invariant for the switched
interconnected system (3.2) by definition 3.5.

Now we need some additional notation. First, a hypercube in R
m:

Ar(z) = {y ∈ R
m : ‖y − z‖∞ ≤ r} .

Let c > 0 be large enough that Sc := S ∩ Ac(0) is not empty. Now consider any
x = (x1, . . . , xn), xi ∈ Sc. Each xi lives in R

m. Let C(x) denote the convex hull of
the points x1, . . . , xn; C(x) is a polytope in R

m.
To simplify notation, we focus on the first axis in R

m. Along this axis, let a1(x)
and b1(x) denote the upper and lower ordinates of C(x), as in Figure 5.1. The set
{y ∈ C(x) : y1 = a1(x)} is the first upper boundary of C(x). Finally, for small enough
r > 0, define

Hr(x) = {y ∈ C(x) : y1 ≤ a1(x) − r}.

The setup is summarized in Figure 5.1.

a1(x)

b1(x)

x1

x2
r

Sc

C(x)

Hr(x)

x = (x1, x2, . . . , xn)

Fig. 5.1. Illustration to define notation: C(x) is the convex hull of the points x1, . . . , xn;
a1(x), b1(x) are its upper and lower ordinates; Hr(x) is the part of the convex hull below the line
with ordinate a1(x) − r.

Now we need two technical lemmas for which we assume that the hypotheses of
Theorem 3.8 hold. Due to space limitation, we have to omit the proofs and refer the
reader to [21].
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Sc

i

a1(x(t′))

b1(x(t′))

ε

δ

Hε(x(t′))

Fig. 5.2. Illustration for Lemma 5.2: Agent i is in Hε(x(t′)) at time t1, and it cannot get into
the upper layer of width δ in the near future.

The first lemma is illustrated in Figure 5.2.

Lemma 5.2. For every sufficiently large c > 0, there exists a class KL function
γ : [0, 2c] × [0,∞) → [0,∞) such that γ(�, 0) =� and such that the following is true:
For every (t′, x(t′)) ∈ R × Sn

c , every ε > 0 sufficiently small, and every T > 0, if
xi(t1) ∈ Hε(x(t′)) at t1 ≥ t′, then xi(t) ∈ Hδ(x(t′)) for all t ∈ [t1, t1 + T ], where
δ = γ(ε, T ).

The second lemma is illustrated in Figure 5.3.

Sc

i
a1(x(t′))

b1(x(t′))

ε

δ

Hδ(x(t′))

j

Fig. 5.3. Illustration for Lemma 5.3: Agent i has the neighbor j in Hδ(x(t′)) and will conse-
quently be pulled into Hε(x(t′)).

Lemma 5.3. For every sufficiently large c > 0, there exists a class K function
ϕ : [0, 2c] → [0,∞) such that ϕ(�) <� for � 
= 0 and such that the following is true:
For every (t′, x(t′)) ∈ R × Sn

c and every δ > 0 sufficiently small, if there exist a pair
(i, j) and a t1 ≥ t′ such that j ∈ Ni(t) and xj(t) ∈ Hδ(x(t′)) for all t ∈ [t1, t1 + τD],
then there exists a t2 ∈ [t′, t1 + τD] such that xi(t2) ∈ Hε(x(t′)), where ε = ϕ(δ).

Proof of Theorem 3.8. (Necessity.) To prove the contrapositive form, assume that
Gσ(t) is not UQSC. That is, for every T > 0 there exists t∗ ≥ 0 such that G([t∗, t∗+T ])
is not QSC; i.e., it does not have a center. Then, in G([t∗, t∗ +T ]) there are two nodes
i∗ and j∗ such that for every node k either k 
→ i∗ or k 
→ j∗. Let V1 be the set of
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nodes l such that l → i∗ and let V2 be the set of nodes l such that l → j∗. Obviously,
V1 and V2 are disjoint. Moreover, for each node i ∈ V1 (resp., V2), the set of neighbors
of agent i in G([t∗, t∗ + T ]) is a subset of V1 (resp., V2). This implies that, for all
t ∈ [t∗, t∗ + T ] and for all (i, j) ∈ V1 × V2,

Ni(σ(t)) ⊆ V1 and Nj(σ(t)) ⊆ V2.

Choose any z1, z2 ∈ S such that z1 
= z2. Let t0 = t∗ and pick any initial condition
x(t0) such that

xi(t0) =

{
z1 if i ∈ V1,
z2 if i ∈ V2.

Then, by assumption A2, for all t ∈ [t0, t0 + T ],

xi(t) =

{
z1 ∀i ∈ V1,
z2 ∀i ∈ V2.

Let c = maxi ‖xi(t0)‖ and let ε be a positive scalar smaller than ‖z1−z2‖/2. We have
thus found ε > 0 and c > 0 such that, for all T > 0, there exists t0 = t∗ such that

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S), but (∀ζ ∈ S)(∃t = t0 + T )(∃i) ‖xi(t) − ζ‖ > ε.

Thus system (3.2) does not have the property of asymptotic state agreement on S.
(Sufficiency.) Assume Gσ(t) is UQSC. By Theorem 3.7 the switched interconnected

system (3.2) has the property of state agreement on S, so it remains to show that
∀ε > 0, ∀c > 0, ∃T ∗ > 0 such that ∀t0 ≥ 0

(∀i) xi(t0) ∈ Sc =⇒ (∃ζ ∈ S)(∀t ≥ t0 + T ∗)(∀i) xi(t) ∈ Aε(ζ).(5.3)

Let ε > 0, c > 0 be arbitrary. There exist a class KL function γ and a class
K function ϕ satisfying the properties in Lemmas 5.2 and 5.3, respectively. For any
given t0 ≥ 0 and x0 ∈ Sn

c , consider the solution x(t) of (3.2) with x(t0) = x0 and the
nonnegative function Vj(x) := aj(x) − bj(x), j = 1, . . . ,m. Thus Vj(x(t)) equals the
width in the jth direction of the convex hull of the agents at time t. By Theorem
3.6, for every t ≥ t′ ≥ t0, xi(t) ∈ C(x(t′)) ⊂ Sc for all i. It follows that Vj(x(t)) is
nonincreasing along the trajectory x(t).

Since Gσ(t) is UQSC, there is a T ′ > 0 such that for each t the union digraph
G([t, t + T ′]) is QSC. Let T = T ′ + 2τD, where τD is the dwell time.

Claim. There exists a class K function η such that for every t′ ≥ t0

V1(x(t′ + T̄ )) − V1(x(t′)) ≤ −η (V1(x(t′))) ,(5.4)

where T̄ = 2nT .
Let us postpone the proof of this claim and see how the theorem follows from the

claim. From (5.4) we have

V1

(
x(t0 + kT̄ )

)
≤ V1 (x(t0)) − η (V1(x(t0))) − · · · − η

(
V1(x(t0 + (k − 1)T̄ ))

)
.

Notice that x0 ∈ Sn
c (0) implies V1(x

0) ≤ 2c. In addition, considering the facts that η
is a class K function and that V1(x(t)) is nonincreasing, one obtains

V1(x(t0 + kT̄ )) ≤ 2c− kη(V1(x(t0 + kT̄ ))).
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This means there is a T ∗
1 = kT̄ > 0 (k large enough) such that V1(x(t)) < 2ε for all

t ≥ t0 + T ∗
1 . For each j = 2, . . . ,m, by the same argument, there is a T ∗

j > 0 such
that Vj(x(t)) < 2ε for all t ≥ t0 + T ∗

j . Let T ∗ = maxj T
∗
j . Thus Vj(x(t)) < 2ε for all

t ≥ t0 + T ∗ and all j = 1, . . . ,m. This in turn implies that there exists a ζ ∈ S such
that xi(t) ∈ Aε(ζ) for all i and all t ≥ t0 + T ∗. This proves (5.3).

Now we prove the claim. Inequality (5.4) says that the width, along the first axis,
of the convex hull of the agents reduces measurably from time t′ to time t′ + T̄ . The
proof is intricate and involves applying Lemmas 5.2 and 5.3 alternately.

We begin by constructing a family of parameters, ε1, δ1, ε2, . . . , εn−1, δn−1, εn.
First, ε1 is taken to be half the width at time t′: ε1 = V1(x(t′))/2. Then δ1 is
produced by applying Lemma 5.2: δ1 = γ(ε1, T̄ ). Then ε2 comes from Lemma 5.3,
ε2 = ϕ(δ1), and δ2 comes from Lemma 5.2, δ2 = γ(ε2, T̄ ). Continuing, we set

ε3 = ϕ(δ2),

δ3 = γ(ε3, T̄ )

...

εn−1 = ϕ(δn−2),

δn−1 = γ(εn−1, T̄ ),

εn = ϕ(δn−1).

Define γ̄(·) := γ(·, T̄ ). Then εn can be written as

εn = η (V1(x(t′))) ,

where η(·) := ϕ ◦ γ̄ ◦ · · · ◦ ϕ ◦ γ̄(·/2). It is a class K function since γ̄ and ϕ both are.
Since γ is class KL with the property γ(�, 0) =� and T̄ > 0, it follows that δk < εk.
In addition, εk+1 < δk because ϕ(�) <� for � 
= 0. Thus,

0 < εn < δn−1 < · · · < δ1 < ε1.

These parameters are used as in Figure 5.4.

ε1

ε2

δ1

Fig. 5.4. The parameters ε1, δ1, ε2, . . . , εn−1, δn−1, εn with respect to the convex hull and the
first axis.
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t′ t′ + T t′ + 2T t′ + 2nT

T ′T ′T ′ · · · · · ·

· · · · · ·

τ1 τ2 τ2n

Fig. 5.5. The time interval [t′, t′ + T̄ ].

Let V1 and V∗
1 be a partition of the node set V such that i ∈ V1 if xi(t

′) ∈ Hε1

and i ∈ V∗
1 otherwise. Thus V1 is the set of agents located in the lower half of the

convex hull in Figure 5.4 at time t′.
Next, we apply the two lemmas to construct a sequence of times at which certain

events are known to occur. In what follows, hopefully without causing confusion, we
use Hr to denote Hr(x(t′)) for simplicity. As shown in Figure 5.5, let

τ1 = t′ + τD,

τ2 = t′ + T + τD
...

τ2n = t′ + (2n− 1)T + τD.

For each k = 1, . . . , 2n, the digraph G([τk, τk + T ′]) is QSC, and therefore it has a
center, say ck. Now ck is either in V1 or in V∗

1 ; thus at least n elements in {c1, . . . , c2n}
lie in either V1 or V∗

1 . Assume without loss of generality that they lie in V1; thus there
exist indices 1 ≤ k1 < · · · < kn ≤ 2n such that cki

∈ V1.
At time t′, by definition, Hε1 has at least one agent (see Figure 5.4). Moreover,

by Lemma 5.2, for all i

xi(t
′) ∈ Hε1 =⇒ xi(t) ∈ Hδ1 ∀t ∈ [t′, t′ + T̄ ].(5.5)

Since G([τk1 , τk1 + T ′]) has a center ck1 in V1, there exists a pair (i, j) ∈ V∗
1 × V1

such that j is a neighbor of i in this digraph; otherwise there is no link from j
to i for any i ∈ V∗

1 and j ∈ V1, which contradicts the fact that the digraph has
a center in V1. This further implies that there is a τ ∈ [τk1

, τk1
+ T ′] such that

j ∈ Ni(τ). Since τ ∈ [τk1 , τk1 + T ′] = [t′ + (k1 − 1)T + τD, t′ + k1T − τD], it follows
that [τ − τD, τ + τD] ⊂ [t′ + (k1 − 1)T, t′ + k1T ]. Since σ(t) ∈ Sdwell(τD), there is
an interval [τ̄ , τ̄ + τD], which contains τ and is a subinterval of [t′, t′ + k1T ], such
that j ∈ Ni(t) for all t ∈ [τ̄ , τ̄ + τD]. In addition, since j ∈ V1 or, what is the same,
xj(t

′) ∈ Hε1 , from (5.5) we know that xj(t) ∈ Hδ1 for all t ∈ [t′, t′ + T̄ ] (and of course
for all t ∈ [τ̄ , τ̄ +τD]). Thus, by Lemma 5.3, there exists t1 ∈ [t′, τ̄ +τD] ⊆ [t′, t′+k1T ]
such that xi(t1) ∈ Hε2 .

So we have shown on the one hand that the agents not in Hε1 at t′ are in Hε2 at
t1. On the other hand, the agents in Hε1 at t′ remain in Hδ1 at t1 from (5.5), and
therefore remain in Hε2 at t1 because Hδ1 ⊂ Hε2 . Hence, at time t1, Hε2(x(t′)) has
at least two agents.

Let V2 and V∗
2 be a partition of the node set V such that i ∈ V2 if xi(t1) ∈ Hε2

and i ∈ V∗
2 otherwise. Note that by (5.5)

k ∈ V1 =⇒ xk(t
′) ∈ Hε1 =⇒

(5.5)
xk(t1) ∈ Hδ1 ⊂ Hε2 =⇒ k ∈ V2,

so V1 ⊂ V2. In particular ck2
, the center node of G([τk2

, τk2
+ T ′]), is in V2 because

it is in V1. Then we can apply the same argument to conclude that there are a
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t2 ∈ [t1, t
′ + k2T ] and an i in V∗

2 such that xi(t2) ∈ Hε3 and therefore, Hε3 has at
least three agents at t2.

Repeating this argument n − 1 times leads to the result that there is a tn−1 ∈
[t′, t′ + kn−1T ] ⊂ [t′, t′ + T̄ ] such that Hεn has n agents at tn−1. Hence,

V1(x(tn−1)) ≤ V1(x(t′)) − εn = V1(x(t′)) − η(V1(x(t′))),

and (5.4) follows.

6. Conclusions. In this paper we first studied the state agreement problem for a
class of switched interconnected large-scale systems with a family of admissible vector
fields. The interconnection structure is time varying and independent of the state.
The key assumption about the vector fields, A2, generalizes Moreau’s assumption
in discrete time. Necessary and sufficient conditions, in terms of the interaction
graph, are obtained to assure that the system achieves asymptotic state agreement.
These results can be understood as connective stability, as in the framework of [36].
Achieving asymptotic state agreement of a large-scale interconnected system is robust
with respect to either the coupling structure or parameter values. In addition, our
results and analysis may be of independent interest in the field of switched systems.

Second, we studied the rendezvous problem in continuous time. The intercon-
nection structure is defined in terms of the distances between agents and hence is
state independent. We proved that the circumcenter control law is a solution to the
problem.

The notion of state agreement in this paper is that the states of the subsystems
are all equal and constant. This notion can potentially be generalized in the following
two directions. First, state agreement could mean equality of all the trajectories of the
subsystems. In other words, the trajectories of a collection of subsystems will follow,
after some transient, the same path in time. This would be of interest in formation
control of multiagent systems. Second, state agreement could mean equality of all
the states after suitable state transformations. An example is a biochemical reaction
network studied in [21].

In many state-agreement problems, the interaction graphs are bidirectional. For
such cases, it is reasonable to conjecture that interconnected systems enjoy several
special properties. For instance, results similar to those in Theorem 3.8 may be
obtained with weaker assumptions on the smoothness of the vector fields.

Finally, we conjecture in the spirit of [2] that our result could be generalized by
replacing Ci

p(x) in assumption A2 by a set-valued map satisfying suitable properties.
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Abstract. A multisource quickest detection problem is considered. Assume there are two
independent Poisson processes X1 and X2 with disorder times θ1 and θ2, respectively; i.e., the
intensities of X1 and X2 change at random unobservable times θ1 and θ2, respectively. θ1 and θ2 are
independent of each other and are exponentially distributed. Define θ � θ1 ∧ θ2 = min{θ1, θ2}. For
any stopping time τ that is measurable with respect to the filtration generated by the observations,
define a penalty function of the form

Rτ = P(τ < θ) + cE
[
(τ − θ)+

]
,

where c > 0 and (τ − θ)+ is the positive part of τ − θ. It is of interest to find a stopping time
τ that minimizes the above performance index. This performance criterion can be useful, e.g., in
the following scenario: There are two assembly lines that produce products A and B, respectively.
Assume that the malfunctioning (disorder) of the machines producing A and B are independent
events. Later, the products A and B are to be put together to obtain another product C. A product
manager who is worried about the quality of C will want to detect the minimum of the disorder times
(as accurately as possible) in the assembly lines producing A and B. Another problem to which we
can apply our framework is the Internet surveillance problem: A router receives data from, say, n
channels. The channels are independent, and the disorder times of channels are θ1, . . . , θn. The
router is said to be under attack at θ = θ1 ∧ · · · ∧ θn. The administrator of the router is interested in
detecting θ as quickly as possible. Since both observations X1 and X2 reveal information about the
disorder time θ, even this simple problem is more involved than solving the disorder problems for X1

and X2 separately. This problem is formulated in terms of a three-dimensional sufficient statistic, and
the corresponding optimal stopping problem is examined. The solution is characterized by iterating
a suitable functional operator.

Key words. change detection, Poisson processes, optimal stopping
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1. Introduction. Consider two independent Poisson processes Xi = {Xi
t : t ≥

0} i ∈ {1, 2} with the same arrival rate β. At some random unobservable times θ1

and θ2, with distributions

(1.1) P(θi = 0) = πi, P(θi > t) = (1 − πi)e
−λt for t ≥ 0,

the arrival rates of the Poisson processes X1 and X2 change from β to α, respectively,
i.e.,

(1.2) Xi
t −
∫ t

0

hi(s)ds, t ≥ 0, i = 1, 2,

are martingales in which

(1.3) hi(t) = [β1{s<θi} + α1{s≥θi}], t ≥ 0, i = 1, 2.
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Here α and β are known positive constants. We seek a stopping rule τ that detects
the instant θ = θ1 ∧ θ2 of the first regime change as accurately as possible given the
past and the present observations of the processes X1 and X2. More precisely, we
wish to choose a stopping time τ of the history of the processes X1 and X2 that
minimizes the following penalty function:

(1.4) Rτ = P(τ < θ) + cE
[
(τ − θ)+

]
.

The first term in (1.4) penalizes the frequency of false alarms, and the second term
penalizes the detection delay. The disorder time demarcates two regimes, and in each
of these regimes the decision maker uses distinctly different strategies. Therefore, it
is in the decision maker’s interest to detect the disorder time as accurately as possible
from its observations. Here, we are solving the case when a decision maker has two
identical and independent sources to process. In section 9 we discuss how our analysis
can be extended to nonidentical sources.

Quickest detection problems arise in a variety of applications such as seismology,
machine monitoring, finance, health, and surveillance, among others (see, e.g., [1],
[10], [7], [11], and [14]). Because Poisson processes are often used to model abrupt
changes, Poisson disorder problems have potential applications to, e.g., to the effec-
tive control and prevention of infectious diseases, the quickest detection of quality and
reliability problems in industrial processes, and the surveillance of Internet traffic to
protect network servers from the attacks of malicious users. This is because the num-
ber of patients infected, the number of defected items produced, and the number of
packets arriving at a network node are usually modeled by Poisson processes. In these
examples the disorder time corresponds to the time when an outbreak occurs, when
a machine in an assembly line breaks down, or when a router is under attack, respec-
tively. The multisource quickest detection problem considered here can be applied to
tackle these problems when there are multiple sources of information. For example,
in the monitoring of industrial processes the minimum of disorder times represents
the first time when one of many assembly lines in a plant breaks down during the
production of a certain type of item. Let us be more specific: Assume that there are
two assembly lines that produce products A and B, respectively. Assume also that
the malfunctioning (disorder) of the machines producing A and B are independent
events. Later, the products A and B are to be put together to obtain another prod-
uct C. A product manager who is worried about the quality of C will want to detect
the minimum of the disorder times (as accurately as possible) in the assembly lines
producing A and B. The performance function (1.4) is an appropriate choice because
the product manager will worry about the quality of the end product C, not of the
individual pieces seperately. Another problem to which we can apply our framework
is the Internet surveillance problem: A router receives data from, say, n channels.
The channels are independent and the disorder times of the channels are θ1, . . . , θn.
The router is said to be under attack at θ = θ1 ∧ · · · ∧ θn. The administrator of the
router is interested in detecting θ as quickly as possible.

The one-dimensional Poisson disorder problem, i.e., the problem of detecting θ1 as
accurately as possible given the observations from the Poisson process X1, has recently
been solved (see [2] and [3] and the references therein). The two-dimensional disorder
problem we have introduced cannot be reduced to solving the corresponding one-
dimensional disorder problems since both X1 and X2 reveal some information about
θ whenever these processes jump. That is, if we take the minimum of the optimal
stopping times that solve the one-dimensional Poisson disorder problems, then we
obtain a stopping time that is a suboptimal solution to (1.4) (see Remark 4.1).



310 ERHAN BAYRAKTAR AND H. VINCENT POOR

We will show that the quickest detection problem of (1.4) can be reduced to
an optimal stopping problem for a three-dimensional piecewise-deterministic Markov
process. Continuous-time Markov optimal stopping problems are typically solved by
formulating them as free boundary problems associated with the infinitesimal gener-
ator of the Markov process. In this case, however the infinitesimal generator contains
differential delay operators. Solving free boundary problems involving differential
delay operators is a challenge even in the one-dimensional case, and the smooth fit
principle is expected to fail (see [2] and [3] and the references therein). Instead as in
[4] and [6] we work with an integral operator, iteration of which generates a monoton-
ically increasing sequence of functions converging exponentially to the value function
of the optimal stopping problem. That is, using the integral operator we reduce the
problem to a sequence of deterministic optimization problems. This approach pro-
vides a new numerical method for calculating and characterizing the value function
and the continuation region in addition to providing information about the shape and
the location of the optimal continuation region. Using the structure of the paths of
the piecewise-deterministic Markov process, we also provide a nontrivial bound on the
optimal stopping time which can be used to obtain approximate stopping strategies.

The remainder of this paper is organized as follows: In sections 2 and 3, we restate
the problem of interest under a suitable reference measure P0 that is equivalent to P.
Working under the reference measure P0 reduces the computations considerably, since
under this measure the observations X1 and X2 are simple Poisson processes that are
independent of the disorder times. Here we show that the quickest detection problem
reduces to solving an optimal stopping problem for a three-dimensional statistic. In
section 4, we analyze the path behavior of this sufficient statistic. In section 5, we
provide a tight upper bound on the continuation region of the optimal stopping prob-
lem, which can be used to determine approximate detection rules besides helping us to
determine the location and the shape of the continuation region. Here, we also show
that the smallest optimal stopping time of the problem under consideration has finite
expectation. In section 6, we convert the optimal stopping problem into sequences of
deterministic optimal stopping problems using a suitably defined integral operator.
In section 7, we construct optimal stopping times from sequences of stopping (alarm)
times that sound before the processes X1 and X2 jump a certain number of times.
In section 8 we discuss the structure of the optimal stopping regions. And finally, we
discuss how to extend our approach to the case with more than two sources and to
the case when the jump sizes are random and the jump size distribution changes at
the time of disorder.

2. Problem description. Let us start with a probability space (Ω,F ,P0) that
hosts two independent Poisson processes X1 and X2, both of which have rate β,
as well as two independent random variables θ1 and θ2 independent of the Poisson
processes with distributions

(2.1) P0(θi = 0) = πi and P0(θi > t) = (1 − πi)e
−λit

for 0 ≤ t < ∞, i ∈ {1, 2}, and for some known constants πi ∈ [0, 1) and λ > 0 for
i ∈ {1, 2}. We denote by F = {Ft}0≤t<∞ the filtration generated by X1 and X2, i.e.,
Ft = σ(X1

s , X
2
s , 0 ≤ s ≤ t), and denote by G = {Gt}0≤t<∞ the initial enlargement of

F by θ1 and θ2, i.e., Gt � σ(θ1, θ2, X
2
s , X

2
s : 0 ≤ s ≤ t). The processes X1 and X2

satisfy (1.2) under a new probability measure P, which is characterized by

(2.2)
dP

dP0

∣∣∣∣
Gt

� Zt � Z1
t Z

2
t ,
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where

(2.3) Zi
t � exp

(∫ t

0

log

(
hi(s−)

β

)
dXi

s −
∫ t

0

[hi(s) − β]ds

)
for t ≥ 0 and i ∈ {1, 2} are exponential martingales (see, e.g., [5]). Under this new
probability measure P of (2.2), θ1 and θ2 have the same distribution as they have
under the measure P0, i.e., their distribution is given by (1.1). This holds because θ1

and θ2 are G0-measurable and dP/dP0|G0 = 1, i.e., P and P0 coincide on G0. Under the
new probability measure P the processes X1 and X2 have measurable intensities h1

and h2, respectively. That is to say that (1.2) holds. In other words, the probability
space (Ω,F ,P) describes the model posited in (1.1) and (1.2). Now, our problem is
to find a quickest detection rule for the disorder times θ1 ∧ θ2, which is adapted to
the history F generated by the observed processes X1 and X2 because the complete
information (concerning θ1 and θ2) embodied in G is not available. We will achieve
our goal by finding an F-stopping time that minimizes (1.4).

In terms of the exponential likelihood processes

(2.4) Li
t �
(
α

β

)Xi
t

exp(−(α− β)t), t ≥ 0, i ∈ {1, 2},

we can write

(2.5) Zi
t = 1{θi>t} + 1{θi≤t}

Li
t

Li
θi

.

Let us introduce the posterior probability process

(2.6) Πt � P
(
θ ≤ t

∣∣Ft

)
=

E0

[
Zt1{θ≤t}

∣∣Ft

]
E0

[
Zt

∣∣Ft

] ,

where the second equality follows from the Bayes formula (see, e.g., [9]). Then it
follows from (2.5) and (2.6) that

(2.7) 1 − Πt =
(1 − π)e−2λt

E0

[
Zt

∣∣Ft

] , where

(2.8) π � 1 − (1 − π1)(1 − π2).

Let us now introduce the odds-ratio process

(2.9) Φt � Πt

1 − Πt
, 0 ≤ t < ∞.

Then observe from (2.6) and (2.7) that

(2.10) E0

[
Zt1{θ≤t}|Ft

]
= (1 − π)e−λtΦt,

t ≥ 0. Now, we will write the penalty function of (1.4) in terms of the odds-ratio
process:

E
[
(τ − θ)+

]
= E

[∫ ∞

0

1{τ>t}1{θ≤t}dt

]
=

∫ ∞

0

E0

[
1{τ>t}E0

[
Zt1{θ≤t}

∣∣Ft

]]
dt

= (1 − π)E0

∫ τ

0

e−2λtΦtdt.

(2.11)
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Since {τ < θ} ∈ Gθ we can write

(2.12) P(τ < θ) = E0

[
Zθ1{τ<θ}

]
= P0(τ < θ) = (1 − π)

(
1 − λE0

[∫ τ

0

e−2λtdt

])
,

where the second equality follows since Zθ = 1 almost surely under P0. Using (2.11)
and (2.12) we can write the penalty function as

(2.13) Rτ (π1, π2) = 1 − π + c(1 − π)E0

[∫ τ

0

e−2λt

(
Φt −

λ

c

)
dt

]
.

On the other hand the following lemma obtains a representation for the odds-ratio
process Φ.

Lemma 2.1. Let us denote

(2.14) Φi
t � eλt

1 − πi
E0

[
1{θi≤t}

Li
t

Li
θi

∣∣F i
t

]
=

P(θi ≤ t|Ft)

1 − P(θi ≤ t|Ft)

for t ≥ 0 and i ∈ {1, 2}. Then we can write the odds-ratio process Φ as

(2.15) Φt = Φ1
t + Φ2

t + Φ1
tΦ

2
t , t ≥ 0.

Proof. From (2.10)

Φt =
e2λt

(1 − π)
E0

[
Zt1{θ≤t}|Ft

]
=

e2λt

(1 − π)

{
P0(θ1 > t)E0

[
1{θ1≤t}

L1
t

L1
θ1

∣∣∣∣F1
t

]
+ P(θ2 > t)E0

[
1{θ2≤t}

L2
t

L2
θi

∣∣∣∣F i
t

]

+ E0

[
1{θ1≤t}

L1
t

L1
θ1

∣∣∣∣F1
t

]
E0

[
1{θ2≤t}

L2
t

L2
θ2

∣∣∣∣F2
t

]}
.

(2.16)

The second equality follows from (2.2), (2.5), and the independence of the sigma
algebras F1

t and F2
t . Now the claim follows from (2.1), (2.8), and (2.14).

Using the fact that the likelihood ratio process Li is the unique solution of the
equation

(2.17) dLi
t = [(α/β) − 1]Li

t−(dXi − αdt), Li
0 = 1

(see, e.g., [13]) and by means of the chain-rule, we obtain

(2.18) dΦi
t = (λ + (λ− α + β)Φi

t)dt + [(α/β) − 1]Φi
tdX

i
t , Φi

0 =
πi

1 − πi

for t ≥ 0 and i ∈ {1, 2} (see [3]). If we let

(2.19) Φ+
t � Φ1

t + Φ2
t , Φ×

t � Φ1
tΦ

2
t , t ≥ 0,

then using a change of variable formula for jump processes gives

dΦ×
t = [λΦ+

t + 2aΦ×
t ]dt + ((α/β) − 1)Φ×

t d(X
1
t + X2

t ),

dΦ+
t = [2λ + aΦ+

t ]dt + ((α/β) − 1)[Φ1
tdX

1
t + Φ2

tdX
2
t ],

(2.20)
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with Φ×
0 = π1π2/[(1 − π1)(1 − π2)] and Φ+

0 = π1/(1 − π1) + π2/(1 − π2), where
a � λ − α + β. Note that Xt � X1

t + X2
t , t ≥ 0, is a Poisson process with rate 2β

under P0.
It is clear from (2.18) and (2.20) that

(2.21) Υ � (Φ×,Φ+,Φ1)

is a piecewise-deterministic Markov process; therefore, the original change detection
problem with penalty function (1.4) has been reformulated as (2.13) and (2.18)–(2.21),
which is an optimal stopping problem for a two-dimensional Markov process driven
by a three-dimensional piecewise-deterministic Markov process.

We will denote by A the infinitesimal generator of Υ. Its action on a smooth test
function f : B

3
+ → R is given by

[Af ](φ×, φ+, φ1) = Dφ×f(φ×, φ+, φ1)[λφ+ + 2aφ+] + Dφ+f(φ×, φ+, φ1)[2λ + aφ+]

+ Dφ1f(φ×, φ+, φ1)[λ + aφ1] + β

[
f

(
α

β
φ×, φ+ +

(
α

β
− 1

)
φ1,

α

β
φ1

)
− f(φ×, φ+, φ1)

]
+ β

[
f

(
α

β
φ×,

α

β
φ+ −

(
α

β
− 1

)
φ1, φ1

)
− f(φ×, φ+, φ1)

]
.

(2.22)

Let us denote

(2.23) B
2
+ � {(x, y) ∈ R

2
+ : y ≥ 2

√
x} and

(2.24) B
3
+ � {(x, y, z) ∈ R

3
+ : y ≥ 2

√
x, y ≥ z}.

Now, for every (φ×, φ+, φ1) ∈ B
3
+, let us denote by x(t, φ×), y(t, φ+), and z(t, φ1),

t ∈ R, the solutions of

d

dt
x(t, φ×) = [λy(t, φ+) + 2ax(t, φ×)]dt, x(0, φ×) = φ×,

d

dt
y(t, φ+) = [2λ + ay(t, φ+)]dt, y(0, φ+) = φ+,

d

dt
z(t, φ1) = [λ + az(t, φ1)]dt, z(0, φ1) = φ1.

(2.25)

The solutions of (2.25), when a 	= 0, are explicitly given by

x(t, φ×) =
λ2

a2
+ e2at

[
φ× − λ2

a2

]
+ e2at(1 − e−at)

λ

a

(
φ+ +

2λ

a

)
,

y(t, φ+) = −2λ

a
+ eat

(
φ+ +

2λ

a

)
,

z(t, φ1) = −λ

a
+ eat

(
φ+ +

λ

a

)
.

(2.26)

Otherwise, x(t, φ×) = φ× + λtφ× + λ2t2, y(t, φ+) = φ+ + 2λt, and z(t, φ1) = φ1 +
λt. Note that the solution (x, y, z) of the system of equations in (2.25) satisfies the
semigroup property, i.e., for every s, t ∈ R,

(2.27)
x(t + s, φ0) = x(s, x(t, φ0)), y(t + s, φ1) = y(s, y(t, φ1)),

and z(t + s, φ1) = z(s, z(t, φ1)).
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Note from (2.18), (2.20), and (2.26) that

(2.28)
Φ×

t = x(t− σn,Φ
×
σn

), ,Φ+
t = y(t− σn,Φ

+
σn

), Φ1
t = z(t− σn,Φ

1
σn

),

σn ≤ t < σn+1, n ∈ N,

and

Φ×
σn+1

=
α

β
Φ×

σn+1− , Φ1
σn+1

=
α

β
Φ1

σn+1
1{X1

σn+1
�=X1

σn+1−
}, and

Φ+
σn+1

=

[
Φ+

σn+1− +

(
α

β
− 1

)
Φ1

σn+1−

]
1{X1

σn+1
�=X1

σn+1−
}

+

[
α

β
Φ+

σn+1− −
(
α

β
− 1

)
Φ1

σn+1−

]
1{X2

σn+1
�=X2

σn+1−
}.

(2.29)

Here, for any function h, h(t−) � lims↑t h(t). Note that an observer watching Υ is
able to tell whenever the processes X1 and X2 jump (see (2.18) and (2.20)), i.e., the
filtration generated by Υ is the same as F.

3. An optimal stopping problem. Let us denote the set of F-stopping times
by S. The value function of the quickest detection problem

(3.1) U(π1, π2) � inf
τ∈S

Rτ (π1, π2)

can be written as

(3.2) U(π1, π2) = (1 − π)

[
1 + cV

(
π1π2

1 − π
,
π1 + π2 − 2π1π2

1 − π
,

π1

1 − π1

)]
,

where V is the value function of the optimal stopping problem

(3.3) V (φ×, φ+, φ1) � inf
τ∈S

E
(φ×, φ+, φ1)
0

[∫ τ

0

e−λth
(
Φ×

t ,Φ
+
t

)
dt

]
in which (φ×, φ+, φ1) ∈ D

3
+ and h(x, y) � x + y − λ/c. Here E

(φ×, φ+, φ1)
0 is the

expectation under P0 given that Φ×
0 = φ×, Φ+

0 = φ+, and Φ1
0 = φ1.

It is clear from (3.3) that for both optimal stopping problems it is not optimal to
stop before (Φ×

t ,Φ
+
t ), t ≥ 0, leaves the advantageous region defined by

(3.4) C0 � {(φ×, φ+) ∈ B
2
+ : φ× + φ+ ≤ λ/c}.

Let us also denote

(3.5) C � {(φ×, φ+, φ1) ∈ B
3
+ : φ× + φ+ ≤ λ/c}.

Also note that the only reason not to stop at the time of the first exit from the
region C0 is the prospect of (Φ×

t ,Φ
+
t ), t ≥ 0, returning to C0 at a future time.

Remark 3.1. It is reasonable to question our choice of statisitc, since it is clear
that (Φ1

t ,Φ
2
t )t≥0 contains all the information X has to offer. Our choice (Υt)t≥0,

which is defined in (2.21), is motivated by the mere desire of having a concave value
function U and a convex optimal stopping region. The concavity is due to the linearity
of the function h (see Lemma 6.2 and its proof along with Lemma 6.1, (6.1), and
Theorem 6.1).
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If we had chosen to work with (Φ1
t ,Φ

2
t )t≥0, then the relevant optimal stopping

problem becomes

(3.6) W (a, b) � inf
τ∈S

E
(a,b)
0

[∫ τ

0

e−λth̃
(
Φ1

t ,Φ
2
t

)
dt

]
in which

(3.7) h̃(x, y) � x + y + xy, (x, y) ∈ R
2
+.

Since h(·, ·) is nonlinear the concavity of the value function, i.e., W (·, ·), is not concave.
In fact, W (x, y) = V (xy, x+ y, x). The function V is concave, but W is not. So there
is a trade-off between concavity and the dimension of the statistic to be used.

In what follows, for the sake of the simplicity of notation, when the meaning is

clear, we will drop the superscripts of the expectation operators E
(φ×, φ+, φ1)
0 .

4. Sample paths of Ψ = (Φ×,Φ+). It is illustrative to look at the sample
paths of the sufficient statistic Ψ to understand the nature of the problem. Indeed, this
way, for a certain parameter range, we will be able to identify the optimal stopping
time without any further analysis.

From (2.26), we see that, if a > 0, then the paths of the processes Φ× and Φ+

increase between the jumps, and otherwise the paths of the processes Φ× and Φ+

mean-revert to the levels 2λ2/a2 and −2λ/a, respectively. Also observe that Φ× and
Φ+ increase (decrease) with a jump if α ≥ β (β > α). See (2.20).

Case 1 (α ≥ β, a > 0). The following theorem follows from the description of the
behavior of the paths above.

Theorem 4.1. If α > β and a > 0, then the stopping rule

(4.1) τ0 � inf{t ≥ 0 : Φ×
t + Φ+

t ≥ λ/c}

is optimal for (3.3).
Proof. Under the hypothesis of the theorem and whenever a path of (Φ×,Φ+)

leaves C0, it never returns.
In section 5, we will identify another case (another range of parameters) in which

the advantageous region C0 is the optimal continuation region and the stopping time
τ0 is optimal (see Cases 2B1a and 2B2a).

Remark 4.1. Let κi � inf{t ≥ 0 : Φi
t ≥ λ/c}. If α ≥ β and a > 0, then κi

is the optimal stopping time for the one-dimensional disorder problem with disorder
time θi (see [3]). Let us define κ � κ1 ∧ κ2. Since with this choice of parameters
Φ×

κ + Φ+
κ > λ/c, it follows that τ0 < κ almost surely. Therefore, if we follow the rule

dictated by the stopping time κ, then we pay an extra penalty for detection delay. This
example illustrates that solving the two one-dimensional quickest detection problems
separately in order to minimize the penalty function of (1.4) is suboptimal.

In what follows, we will consider the remaining cases: α ≥ β and a < 0; α < β.

5. Construction of a bound on the continuation region. In this section the
purpose is to show that the continuation region of (3.3) is bounded. The construction
of upper bounds is carried out in the next two theorems. These upper bounds are
tight as the next theorem shows and might be used to construct useful approximations
to the two optimal stopping times solving the problems defined in (3.3). We will carry
out the analysis for a = λ−α+β 	= 0. A similar analysis for this case can be similarly
performed. As a result of Theorem 5.3 we are also able to conclude that the (smallest)
optimal stopping time has a finite expectation.
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The first two theorems in this section assume that an optimal stopping time of
(3.3) exists and in particular the stopping time

(5.1) τ∗(a, b, c) � inf{t ≥ 0 : V (Υt) = 0, Υ0 = (a, b, c)},

is optimal. In section 7, we will verify that this assumption holds. We will denote by

(5.2) Γ � {(a, b, c) ∈ B
3
+ : v(a, b, c) = 0}, C � B

3
+ − Γ

the optimal stopping region and optimal continuation region of (3.3), respectively.
Theorem 5.1. In this theorem the standing assumption is that α ≥ β and that

a < 0 (Case 2).
Case 2A. Let us further assume that λ/a2 − 2/a ≤ 1/c and denote

(5.3) D0 �
{

(x, y) ∈ B
2
+ : x ·

(
1

2(λ− a)

)
+ y ·

(
3λ− 2a

2(λ− a)(2λ− a)

)
+ k > 0

}
in which

(5.4) k � λ

2a2
− 1

a
− 1

2c
+

λ2

2a2(λ− a)
+

1

2λ− a
+ 2

(
λ

a
− λ2

a2

)
.

Let (φ0, φ1) ∈ D0 ∩ (B2
+ − C0). Then for any φ2 ≤ φ1, (φ0, φ1, φ2) is in the stopping

region of (3.3).
Case 2B. Assume that λ/a2 − 2/a ≥ 1/c (standing assumption in the rest of the

theorem). Consider the four different possible ranges of parameters.
Case 2B1. If λ + a ≤ 0
• and if −a/c− 1 ≤ 0 (Case 2B1a), then C in (3.5) is the optimal continuation

region for (3.3);
• else if −a/c− 1 > 0 (Case 2B1b), then a superset of the continuation region

can be constructed as follows. Let us introduce the line segment

(5.5) C � {(x, y) ∈ B
2
+ : x + y = λ/c}

and define

C1 �
{
(x, y) ∈ B

2
+ : x = x(t, x∗), y = y(t, 0) for t ∈ [0, t∗]

}
⋃{

(x, y) ∈ C : x <
λ

c
+

2λ

λ− a

(
1 +

a

c

)
, y > − 2λ

λ− a

(
1 +

a

c

)}
.

(5.6)

Here, t∗ is the solution of y(−t∗,− 2λ
λ−a (1 + a

c )) = 0, and x∗ = x(−t∗, λ
c +

2λ
λ−a (1 + a

c )). The curve C1 separates R
2
+ into two connected regions. Let us

denote the region that lies above the curve C1 by

(5.7)
D1 � {(x, y) ∈ B

2
+ : there exists a positive number ỹ(x) < y

such that (x, ỹ(x)) ∈ C1}.

Then [(B2
+ − D1) × R+] ∩ B

3
+ is an upper bound on the continuation region

of (3.3).
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Case 2B2. If λ + a > 0
• and if −a/c− 1 < 0 (Case 2B2a), then C in (3.5) is the optimal continuation

region for (3.3);
• else if −a/c − 1 > 0, then [(B2

+ − D1) × R+] ∩ B
3
+ is an upper bound on the

continuation region of (3.3).
Note that all the supersets of the continuation we constructed are bounded subsets
of R

3
+.

Proof. Note that

(5.8) Φ+
t ≥ y(t, φ1), Φ×

t ≥ x(t, φ0), t ≥ 0,

almost surely if Φ+
0 = φ1 and Φ×

0 = φ0. This is because Φ× and Φ+ increase with
jumps.

From this observation we obtain the following inequality:

inf
τ∈S

E0

[∫ τ

0

e−2λsh(Φ×
s ,Φ

+
s )ds

]
≥ inf

τ∈S
E0

[∫ τ

0

e−2λsh(x(s, φ0), y(s, φ1))ds

]
(5.9)

= inf
t∈[0,∞]

∫ t

0

e−2λsh(x(s, φ0), y(s, φ1))ds.(5.10)

Note that if for a given (φ0, φ1) the expression in (5.10) is equal to zero, then the
infimum on the left-hand side of (5.9) is attained by setting τ = 0. In what follows we
will find a subset of the stopping region of the optimal stopping problem using this
argument.

Case 2A (λ/a2 − 2/a ≤ 1/c). In this case the mean reversion level of the path
(x(·, φ0), y(·, φ1)), (φ0, φ1) ∈ B

2
+, namely, (λ2/a2,−2λ/a), is inside the region C0

which is defined in (3.4). In this case, for any (φ0, φ1) ∈ B
2
+ − C0 the minimizer

topt(φ0, φ1) of the expression in (5.10) is either 0 or ∞ by the following argument:
For any (φ0, φ1) ∈ B

2
+ − C0 the path (x(·, φ0), y(·, φ1)) is in the advantageous region

C0 all the time except for possibly a finite duration. Therefore if

(5.11)

∫ ∞

0

e−2λsh(x(s, φ0), y(s, φ1))ds < 0,

then in order to minimize (5.10) it is never optimal to stop. On the other hand if
(5.11) is positive, then it is not worth taking the journey into the advantageous region,
and it is optimal to stop immediately in order to minimize (5.10).

We shall find the pairs (φ0, φ1) for which topt = 0. Using (2.26) we can write

(5.12)

∫ ∞

0

e−2λsh(x(s, φ0), y(s, φ1))ds = φ0

(
− 1

α− β

)
+ φ1

(
a

(α− β)2

)
+ k,

where k is given by (5.4). Note that if (φ0, φ1) ∈ D0 ∩ (B2
+ − C0), then by (5.9) and

(5.10) we can see that the infimum in (5.10) is equal to 0. Therefore [((B2
+ − D0) ∪

C0) × R+] ∩ B
3
+ is a superset of the optimal continuation region of (3.3).

Case 2B (λ/a2 − 2/a ≥ 1/c). In this case the mean reversion level of t →
(x(t, φ0), y(t, φ1)) is outside C0. Therefore, the minimizer of (5.10) is topt(φ0, φ1) ∈
{0, tc(φ0, φ1),∞}, where tc(φ0, φ1) is the exit time of the path (x(t, φ0), y(t, φ1)) from
C0. The derivative

(5.13)
d

dt
[x(t, φ0) + y(t, φ1)] = (λ + a)y(t, φ1) + 2ax(t, φ1) + 2λ
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vanishes if (x(t, φ0), y(t, φ1)) meets the line segment

(5.14) L = {(x, y) ∈ B
2
+ : (λ + a)y + 2ax + 2λ = 0}.

Note that the mean reversion level belongs to L, i.e.,

(5.15)

(
λ2

a2
,−2λ

a

)
∈ L.

Case 2B1 (λ + a < 0). (In addition to α > β, a < 0 and λ/a2 − 2/a ≥ 1/c.) In
this case the line L is decreasing (as a function of x).

Case 2B1a (−a/c− 2 < 0). (In addition to α > β, a < 0, λ/a2 − 2/a ≥ 1/c, and
λ + a < 0.) In this case the line segment C in (5.5) lies entirely below L. Assume
that a path (x(·, φ0), y(·, φ1)) originating at (φ0, φ1) ∈ B

2
+ − C0 enters C0 at time

t0 > 0. This path must leave C0 at time t1 < ∞ since the mean reversion level
(λ2/a2,−λ/a) /∈ C0. This implies that, for any t ∈ (t0, t1), x(t, φ0) + y(t, φ1) < λ/c
and x(t0, φ0)+y(t0, φ1) = λ/c. This yields a contradiction, because λ+a < 0 together
with (5.13) implies that t → x(t, φ0) + y(t, φ1) is increasing below the line segment
L. Therefore the minimizer topt(φ0, φ1) of (5.10) is equal to 0 if (φ0, φ1) /∈ C0, and it
is equal to tc(φ0, φ1) if (φ0, φ1) ∈ C0. From (5.9) we can conclude that C is equal to
the optimal continuation region of (3.3).

Case 2B1b (−a/c − 1 > 0). In this case the line segments C and L intersect at
I = (xI , yI) � (λc + 2λ

λ−a (1 + a
c ),− 2λ

λ−a (1 + a
c )). By running the paths backward in

time, we can find x∗ such that

(5.16) (x∗, 0) =
(
x
(
−t∗, xI

)
, y
(
−t∗, yI

))
.

By the semigroup property (2.27), we have

x(t∗, x∗) = x
(
t∗, x

(
−t∗, xI

))
= x

(
t∗ + (−t∗), xI

)
= x

(
0, xI

)
= xI .

(5.17)

Similarly, y(t∗, 0) = yI . The function t → x(t, x∗)+y(t, 0) is decreasing on (0, t∗) and
increasing on (t∗,∞). It follows that the path t → (x(t, x∗), y(t, 0)) is tangential to C
at I and lies above the region C0.

We will now show that if a path (x(·, φ0), y(·, φ1)) originates in D1, then it stays
in D1. Let us first consider a pair (φ0, φ1) ∈ D1 such that φ1 < −2λ/a. Consider the
curve

(5.18) P �
{
(x, y) ∈ B

2
+ : x = x(t, x∗), y = y(t, 0) for t ∈ [0,∞)

}
.

The following remark will be useful in completing the proof.
Remark 5.1. The semigroup property in (2.27) implies that two distinct curves

(x(·, φa
0) , y(·, φa

1)) and (x(·, φb
0), y(·, φb

1)) do not intersect. If

(5.19) (x(ta, φa
0), y(ta, φa

1)) = (x(tb, φb
0), y(t

b, φb
1)) = (φ0, φ1)

for some ta, tb ∈ R, then (2.27) implies that

(x(t, φa
0), y(t, φa

1)) = (x(ta + (t− ta), φa
0), y(ta + (t− ta), φa

1))

= (x(t− ta, φ0), y(t− ta, φ1))

= (x(tb + (t− ta), φb
0), y(t

b + (t− ta), φb
1))

= (x(tb − ta + t, φb
0), y(t

b − ta + t, φb
1)) for all t ∈ R,

(5.20)

i.e., the two curves are identical after a reparametrization.
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If the point (φ0, φ1) lies above P and we recall that P lies above C0, then by
Remark 5.1 the path (x(·, φ0), y(·, φ1)) will lie above C0. If the point (φ0, φ1) lies
between P and C0, then the path (x(·, φ0), y(·, φ1)) will lie below the line segment
L. This observation together with the fact that λ + a < 0 implies (using (5.13)) that
the function t → x(t, φ0)+y(t, φ1) is increasing. Therefore the path (x(·, φ0), y(·, φ1))
cannot intersect C0.

Now let us consider a pair (φ0, φ1) ∈ D1 such that φ1 > −2λ/a. If (φ0, φ1) lies
above L, then the function t → x(t, φ0) + y(t, φ1) is decreasing and its range is [φ0 +
φ1, 2λ/a(λ/a−1)), which is always above λ/c, and therefore the path (x(·, φ0), y(·, φ1))
does not enter C0. If the point (φ0, φ1) lies below L, then t → x(t, φ0) + y(t, φ1) is
increasing. This monotonicity implies that the path (x(·, φ0), y(·, φ1)) cannot visit C0.
If φ1 = −2λ/a, then y(t, φ1) = −2λ/a for all t ≥ 0. x(t, φ0) increases or decreases
depending on whether (φ0,−2λ/a) is below or above L. Therefore if (φ0,−2λ/a) /∈
C0, then (x(·, φ0), y(·, φ1)) never visits C0. These arguments show that if a path
(x(·, φ0), y(·, φ1)) originates in D1, then it stays in D1. Therefore if (φ0, φ1) ∈ D1,
then the infimum in (5.10) is equal to 0 (by (5.9) and (5.10)). Therefore [(B2

+ −D1)×
R+] ∩ B

3
+ is a superset of the optimal continuation region of (3.3).

Case 2B2 (λ + a > 0). In this case L is increasing (as a function of x). The
function t → x(t, φ0)+y(t, φ1) is increasing if (φ0, φ1) lies above L, and it is decreasing
otherwise.

Case 2B2a (−a/c−1 ≤ 0). In this case the line segments L and C do not intersect.
Let us first consider a pair (φ0, φ1) ∈ B

2
+ such that φ1 < −2λ/a. If (φ0, φ1) /∈ C0

lies above the line segment L, then t → x(t, φ0) + y(t, φ1) is increasing and the path
(x(·, φ0), y(·, φ1)) cannot enter C0. Consider the curve

(5.21) P̃ �
{

(x, y) ∈ B
2
+ : x = x

(
t,−λ

a

)
, y = y(t, 0) for t ∈ [0,∞)

}
,

which starts at the intersection of L with the x-axis. The semigroup property Re-
mark 5.1 implies that no path starting to the right of P̃ intersects P̃ and therefore lies
to the right of the region C0. Therefore, if (φ0, φ1) is below the line segment L, then
the path (x(·, φ0), y(·, φ1)) never visits the advantageous region C0. (Note that if the
path (x(·, φ0), y(·, φ1)) meets the line L at time tL(φ0, φ1), then t → (x(t, φ0)+y(t, φ1))
is decreasing (increasing) on [0, tL] ([tL,∞)).

Now let us consider a point (φ0, φ1) ∈ B
2
+ −C0 such that φ1 > −2λ/a. Then t →

(x(t, φ0)+y(t, φ1)) is increasing on [0, tL(φ0, φ1)] and is decreasing on (tL(φ0, φ1),∞)
(it decreases to −2λ/a+λ2/a2 > λ/c). And the monotonicity of t → x(t, φ0)+y(t, φ1)
on [0, tL(φ0, φ1)] implies that x(t, φ0) + y(t, φ1) > λ/c for t ∈ [0, tL(φ0, φ1)]. If φ1 =
−2λ/a, then y(t, φ1) = −2λ/a for all t ≥ 0. x(t, φ0) increases (decreases) depending
on whether (φ0,−2λ/a) is above or below L. These arguments show that if a path
(x(·, φ0), y(·, φ1)) originates in B

2
+ − C0, then it stays in B

2
+ − C0. Therefore the

minimizer topt(φ0, φ1) of (5.10) for any φ0, φ1 ∈ B
2
+ − C0 is equal to zero. Now using

(5.9) and (5.10) the optimal continuation region of (3.3) is equal to C.
Case 2B2b (−a/c − 1 > 0). In this case the line segments C and L intersect at

I = (xI , yI). Arguments similar to those of Case 2B1b show that [(B2
+−D1)×R+]∩B

3
+,

in which D1 is defined in (5.7), is a superset of the optimal continuation region of
(3.3).

Theorem 5.2. Let us assume that α < β (Case 3, α < β) and define

(5.22) D2 �
{

(x, y) ∈ B
2
+ : x + y ≥ λ + 2β

c

}
.
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Then [(B2
+ −D1)×R+]∩B

3
+, which is a bounded region in R

3
+, is an upper bound on

the continuation region of (3.3).
Proof. Note that in this case a > 0. The paths of the processes Φ× and Φ+

increase between the jumps and decrease with a jump. If τ ∈ S, then there is a
constant t ≥ 0 such that τ ∧ σ1 = t ∧ σ1 almost surely. Hence we can write

E0

[∫ τ

0

e−λsh(Ψs)ds

]
= E0

[∫ τ∧σ1

0

e−λsh(Ψs)ds

]
+ E0

[
1{τ≥σ1}

∫ τ

σ1

e−λsh(Ψs)ds

]
= E0

[∫ t∧σ1

0

e−λsh(Ψs)ds

]
+ E0

[
1{t≥σ1}

∫ τ

σ1

e−λsh(Ψs)ds

]
≥ E0

[∫ t∧σ1

0

e−λsh(Ψs)ds

]
− 1

c
E0

[
1{t≥σ1}e

−λσ1
]

=

∫ t

0

e−(λ+2β)s

[
h(x(s, φ0), y(s, φ1)) −

2β

c

]
ds

(5.23)

using also the fact that σ1 has exponential distribution with rate 2β. From (5.23) it
follows that if x(s, φ0) + y(s, φ1) − (λ + 2β)/c > 0, then E0

[∫ τ

0
e−λsh(Ψs)ds

]
> 0 for

every stopping time τ 	= 0, τ ∈ S. Since the paths x(t, φ0) and y(t, φ1) are increasing,
we can conclude that stopping immediately is optimal for (3.3). That is, τ = 0 is
optimal for (3.3) if (φ0, φ1) ∈ D2 and φ2 ≤ φ1, in which D2 is as in (5.22).

Theorems 5.1 and 5.2 can be used to determine approximate detection rules be-
sides helping us to determine the location and the shape of the continuation region.
As we have seen in Cases 2B1a and 2B2a, these approximate rules turn out to be
tight. The next theorem is essential in proving the fact that the smallest optimal
stopping time of (3.3) has a finite expectation.

Theorem 5.3. Let τD be the exit time of the process Υ from a bounded region

D ⊂ B
3
+. Then Eφ×,φ+,φ1

0 [τD] < ∞ for every (φ×, φ+, φ1) ∈ B
3
+. Hence τ∗ defined in

(5.1) has a finite expectation.
Proof. Let f(φ×, φ+, φ1) � φ× + φ+. Then it follows from (2.22) that

[Af ](φ×, φ+, φ1) = λφ+ + 2aφ× + 2λ + aφ+

+ β

[
α

β
φ+ + φ× +

(
α

β
− 1

)
φ1 − φ× − φ+

]
+ β

[
α

β
φ+ +

α

β
φ× −

(
α

β
− 1

)
φ1 − φ× − φ+

]
= 2λ(φ× + φ+ + 1) ≥ 2λ

(5.24)

for every (φ×, φ+, φ1) ∈ B
3
+. Since f is bounded on D and τD ∧ t is a bounded

F-stopping time, we have

(5.25) E0 [f(ΥτD∧t)] = f(Υ0) + E0

[∫ τD∧t

0

[Af ](Υs)ds

]
≥ 2λE0[τD ∧ t].

On the other hand

E0 [f(ΥτD∧t)] ≤
α

β
ξ

in which ξ = min{a ∈ R+ : for any (x, y, z) ∈ D,max(x, y, z) ≤ a} < ∞. An applica-
tion of the monotone convergence theorem implies that E0[τD] < ∞.
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The results of this section can be used to determine approximate detection rules
besides helping us to determine the location and the shape of the continuation region.
As we have seen in Cases 2B1a and 2B2a, these approximate rules turn out to be
tight.

6. Optimal stopping with time horizon σn. In this section, we will first
approximate the optimal stopping problem (3.3) by a sequence of optimal stopping
problems. Let us denote

(6.1) Vn(a, b, c) � inf
τ∈S

E
a,b,c
0

[∫ τ∧σn

0

e−λth
(
Φ×

t ,Φ
+
t

)
dt

]

for all (a, b, c) ∈ B
3
+ and n ∈ N. Here, σn is the nth jump time of the process X.

Observe that (Vn)n∈N is a decreasing sequence and that each of its members
satisfies −1/c < Vn < 0. Therefore the pointwise limit limn Vn exists. It can be
shown that more is true using the fact that the function h is bounded from below and
σn is a sum of independent exponential random variables.

Lemma 6.1. For any (a, b, c) ∈ B
3
+,

0 ≤ Vn(a, b, c) − V (a, b, c) ≤ 1

c

(
2β

2β + λ

)n

.(6.2)

Proof. For any τ ∈ S,

E0

[∫ τ

0

e−λth
(
Φ×

t ,Φ
+
t

)
dt

]
= E0

[∫ τ∧σn

0

e−λth
(
Φ×

t ,Φ
+
t

)
dt

]
+ E0

[
1{τ≥σn}

∫ τ

σn

e−λth(Φ×
t ,Φ

+
t )dt

]
.

(6.3)

The first term on the right-hand side of (6.3) is greater than Vn. Since h(·, ·) > −λ/c
we can show that the second term is greater than

(6.4) −λ

c
E
φ0,φ1

0

[
1{τ≥σn}

∫ τ

σn

e−λsds

]
≥ −1

c
E
φ0,φ1

0

[
e−λσn

]
≥ −1

c

(
2β

λ + 2β

)n

.

To show the last inequality we have used the fact that σn is a sum of n independent
and identically distributed exponential random variables with rate 2β. Now, the proof
of the lemma follows immediately.

As in [4] and [6], to calculate the value functions Vn iteratively we introduce
the functional operators J , Jt. These operators are defined through their actions on
bounded functions g : B

3
+ → R as follows:

[Jg](t, a, b, c) � E
a,b,c
0

[∫ t∧σ1

0

e−λsh(Φ×
s ,Φ

+
s )ds +1{t≥σ1}e

−λσ1g(Φ×
σ1
,Φ+

σ1
,Φ1

σ1
)

]
, and

[Jtg](a, b, c) � inf
s∈[t,∞]

[Jg](s, a, b, c), t ∈ [0,∞].

(6.5)
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Observe that

E0

[
1{t≥σ1}e

−λσ1g(Φ×
σ1
,Φ+

σ1
,Φ1

σ1
)
]

= E0

[(
g

(
α

β
Φ×

σ1−,Φ
+
σ1− +

(
α

β
− 1

)
Φ1

σ1−,
α

β
Φ1

σ1−

)
1{X1

σ1
�=X1

σ1−}

+ g

(
α

β
Φ×

σ1−,
α

β
Φ+

σ1− −
(
α

β
− 1

)
Φ1

σ1−,Φ
1
σ1−

)
1{X2

σ1
�=X2

σ1−}

)
1{t≥σ1}e

−λσ1

]
=

1

2

∫ t

0

2βe−(λ+2β)sg

(
α

β
x(s, a), y(s, b) +

(
α

β
− 1

)
z(s, c),

α

β
z(s, c)

)
ds

+
1

2

∫ t

0

2βe−(λ+2β)sg

(
α

β
x(s, a),

α

β
y(s, b) −

(
α

β
− 1

)
z(s, c), z(s, c)

)
ds.

(6.6)

To derive (6.6) we used the fact that σ1 has exponential distribution with rate 2β;
the dynamics in (2.20); and the fact that conditioned on the event in which there is
a jump, it has 1/2 probability of coming from X1.

Using (6.6) and Fubini’s theorem we can write

(6.7) [Jg](t, a, b, c) =

∫ t

0

e−(λ+2β)s(h + β · g ◦ (F1 + F2))(x(s, a), y(s, b), z(s, c))ds,

where

(6.8) Fi(a, b, c) =

(
α

β
a,

(
α

β

)i−1

b + (−1)i
(
α

β
− 1

)
c,

(
α

β

)2−i

c

)
, i ∈ {1, 2}.

Using (2.26) it can be shown that

(6.9) lim
t→∞

[Jg](t, a, b, c) = [Jg](∞, a, b, c) < ∞.

Lemma 6.2. For every bounded function f , the mapping J0f is bounded. If f is a
concave function, then J0f is also a concave function. If f1 ≤ f2, then J0f1 ≤ J0f2.

Proof. The third assertion of the lemma directly follows from the representation
(6.7). The first assertion holds since h is bounded from below and J0f(a, b, ) ≤
Jf(0, a, b, c) = 0. The second assertion follows from the linearity of the functions
x(t, ·), y(t, ·), h(·, ·), F1(·, ·, ·), and F2(·, ·, ·).

Using Lemma 6.2 we can prove the following corollary.
Corollary 6.1. Let us define the sequences of function (vn)n∈N by

(6.10) v0 � 0, vn � J0vn−1.

Then every n ∈ N, vn is bounded and concave, and vn+1 ≤ vn. Therefore, the limit
v = limn vn exists and is bounded and concave. Moreover, vn for all n ∈ N and v are
increasing in each of their arguments.

Proof. The proof of the first part directly follows from Lemma 6.2. That vn for
all n ∈ N and v are increasing in each of their arguments follows from the fact that
these functions are bounded from above and below and that they are concave.

We will need the following lemma to give a characterization of the stopping times
of the filtration F (see [5]).

Lemma 6.3. For every τ ∈ S, there are Fσn
-measurable random variables ξn :

Ω → ∞ such that τ ∧ σn+1 = (σn + ξn) ∧ σn+1 P0 almost surely on {τ ≥ σn}.
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The main theorem of this section can be proven by induction using Lemma 6.3
and the strong Markov property.

Theorem 6.1. For every n ∈ N, vn defined in Corollary 6.1 is equal to Vn. For
ε ≥ 0, let us denote

rεn(a, b, c) � inf{t ∈ (0,∞] : [Jvn](t, (a, b, c)) ≤ [J0vn](a, b, c) + ε}.(6.11)

And let us define a sequence of stopping times by Sε
1 � rε0(Υ0) ∧ σ1 and

(6.12) Sε
n+1 �

{
r
ε/2
n (Υ0) if σ1 ≥ r

ε/2
n (Υ0),

σ1 + S
ε/2
n ◦ θσ1

otherwise.

Here θs is the shift operator on Ω, i.e., Xt ◦ θs = Xs+t. Then Sε
n is an ε-optimal

stopping time of (6.1), i.e.,

(6.13) E
a,b,c
0

[∫ Sε
n

0

e−λth(Ψt)dt

]
≤ vn(a, b, c) + ε

in which Ψt = (Φ×
t ,Φ

+
t ), t ≥ 0.

Proof. See the appendix.
Theorem 6.1 shows that the value function Vn of the optimal stopping problem

defined in (6.1) and the function vn introduced in Corollary 6.1 by an iterative ap-
plication of the operator J0 are equal. This implies that the value function of the
optimal stopping problem of (6.1) can be found by solving a sequence of deterministic
minimization problems.

7. Optimal stopping time.
Theorem 7.1. τ∗ defined in (5.1) is the smallest optimal stopping time for (3.3).
This theorem shows that Γ defined in (5.2) is indeed an optimal stopping region.

We will divide the proof of this theorem into several lemmas.
The following dynamic programming principle can be proven by the special repre-

sentation of the stopping times of a jump process (Lemma 6.3) and the strong Markov
property.

Lemma 7.1. For any bounded function g : B
3
+ → R we have

(7.1) [Jtg](a, b, c) = [Jg](t, a, b, c) + e−(λ+2β)t[J0g](x(t, a), y(t, b), z(t, c)).

Let us denote

(7.2) rn(a, b, c) � r0
n(a, b, c),

which is well defined because of (6.9) and the continuity of the function
t → [Jf ](t, a, b, c), t ≥ 0. (See (6.11) for the definition of r0

n.) Let us also denote

(7.3) r(a, b, c) � inf{t ≥ 0 : [JV ](t, a, b, c) = J0V (a, b, c)}.

Corollary 7.1. The functions rn and r defined by (7.2) and (7.3), respectively,
satisfy

rn(a, b, c) = {t ≥ 0 : vn+1(x(t, a), y(t, b), z(t, c)) = 0},
r(a, b, c) = {t ≥ 0 : v(x(t, a), y(t, b), z(t, c)) = 0},

(7.4)
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with the convention that inf ∅ = 0. Together with (7.4), Corollary 6.1 implies that
rn(a, b, c) ↑ r(a, b, c) as n ↑ ∞.

Proof. Suppose that rn(a, b, c) < ∞. Then from (6.11) it follows that

[Jvn](rn(a, b, c), a, b, c) = [J0vn](a, b, c) = [Jrn(a,b,c)vn](a, b, c)

= [Jvn](rn(a, b, c), a, b, c)

+ e−(λ+2β)rn(a,b,c)vn+1(x(rn(a, b, c), a), y(rn(a, b, c), b), z(rn(a, b, c), c)).

(7.5)

Here the second equality follows from the definition of the operator Jt in (6.5), and
the third equation follows from Lemma 7.1 and the fact that J0vn = vn+1. From
(7.5) it follows that vn+1(x(rn(a, b, c), a), y(rn(a, b, c), b), z(rn(a, b, c), c)) = 0. For
t ∈ (0, rn(a, b, c)) we have [Jvn](t, a, b, c) > [J0vn](a, b, c) = [Jrn(a,b,c)vn](a, b, c) =
Jtvn(a, b, c), since the function s → [Jsvn](a, b, c) is nondecreasing. Using Lemma 7.1
we can write

[J0vn](a, b, c) = [Jtvn](a, b, c) = [Jvn](t, a, b, c) + e−(λ+2β)vn+1(x(t, a), y(t, b), z(t, c)),

(7.6)

which implies that vn+1(x(t, a), y(t, b), z(t, c)) < 0 for all t < rn(a, b, c).
Now, suppose that rn(a, b, c) = ∞. Then vn+1(x(t, a), y(t, b), z(t, c)) < 0 for

every t ∈ (0,∞) which can be shown using the same arguments as above. Therefore
{t > 0 : vn+1(x(t, a), y(t, b), z(t, c)) = 0} = ∅, and (7.4) holds.

The proof for the representation of r can be proven using the same line of argument
and the fact that J0V = V . The fact that J0V = V can be proven by the dominated
convergence theorem, since the sequences (vn(a, b, c))n≥0 and ([Jvn](t, a, b, c))n≥0 are
decreasing and since vn is a bounded function for all n ∈ N.

In the next lemma we construct optimal stopping times for the family of problems
introduced in (6.1).

Lemma 7.2. Let us denote Sn � S0
n, where Sε

n is defined in Theorem 6.1 for
ε ≥ 0. Then the sequence (Sn)n∈N is an almost surely increasing sequence. Moreover
Sn < τ∗ almost surely for all n.

Proof. Since r1 > 0, using Corollary 7.1 we can write

S2 − S1 =

⎧⎪⎨⎪⎩
r1 − r0 if σ1 > r1

σ1 − r0 + S1 ◦ θσ1 if r0 < σ1 ≤ r1

S1 ◦ θσ1 if σ1 ≤ r0

⎫⎪⎬⎪⎭ > 0.(7.7)

Now, let us assume that Sn −Sn−1 > 0 almost surely. From Lemma 7.1 we have that
rn > rn−1. Using this fact and the induction hypothesis we can write

Sn+1 − Sn =

⎧⎪⎨⎪⎩
rn − rn−1 if σ1 > rn

σ1 − rn−1 + Sn ◦ θσ1 if rn−1 < σ1 ≤ rn

(Sn − Sn−1) ◦ θσ1
if σ1 ≤ rn−1

⎫⎪⎬⎪⎭ > 0,(7.8)

which proves the first assertion of the lemma.
From Corollary 7.1 and the definition of τ∗ it follows that τ∗ ∧ σ1 = r ∧ σ1.

Therefore τ∗ ∧σ1 > r0 ∧σ1 = S1 since r0 < r. Now, we will assume that Sn < τ∗ and
show that Sn+1 < τ∗. On {σ1 ≤ rn} we have that

(7.9) Sn+1 = σ1 + Sn ◦ θσ1 < σ1 + τ∗ ◦ θσ1 .
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Since τ∗ ∧ σ1 = r ∧ σ1 and r > rn, if σ1 ≤ rn, then τ∗ ∧ σ1 = σ1. Because τ∗ is a
hitting time, on the set {σ1 ≤ rn} ⊂ {σ1 ≤ τ∗} the following holds:

Sn+1 ≤ σ1 + τ∗ ◦ θσ1 = τ∗.

On the other hand if σ1 > rn, then τ∗ ∧ σ1 = r ∧ σ1 > rn. Therefore on {σ1 > rn},
Sn+1 = rn < τ∗. This concludes the proof of the second assertion.

Lemma 7.3. Let us denote Ψt = (Φ×
t ,Φ

+
t ), t ≥ 0. If S∗ � limn Sn, then S∗ = τ∗

almost surely. Moreover, τ∗ is an optimal stopping time, i.e.,

V (a, b, c) = E
a,b,c
0

[∫ S∗

0

e−λsh(Ψs)ds

]
.

Proof. The limit S∗ � limn Sn exists since (Sn)n∈N is increasing and Sn ≤ τ∗ < ∞
(as a corollary of Theorem 5.3) for all n. Let us show that S∗ is optimal.

E0

[
lim
n

∫ Sn

0

e−λth(Ψt)dt

]
≤ lim inf

n
E0

[∫ Sn

0

e−λth(Ψt)dt

]
= lim

n
Vn(a, b, c) = V (a, b, c).

(7.10)

The first inequality follows from Fatou’s lemma, which we can apply since∫ Sn

0

e−λth(Ψt)dt ≥
∫ ∞

0

e−λth(Ψt)dt ≥ −
√

2

c
almost surely.

The first equality in (7.10) follows from Theorem 6.1. Now it can be seen from (7.10)
that S∗ is an optimal stopping time. Taking the limit of (6.12) as n → ∞ and using
Corollary 7.1, we conclude that τ∗ = S∗.

Proof of Theorem 7.1. The proof of the optimality of τ∗ follows directly from
Lemma 7.3. We will show that τ∗ is the smallest optimal stopping time.

Given any F-stopping time τ < τ∗, let us define

(7.11) τ̃ � τ + τ∗ ◦ θτ .

Then the stopping time τ̃ satisfies

E
a,b,c
0

[∫ τ̃

0

e−λsh(Ψs)ds

]
= E

a,b,c
0

[∫ τ

0

e−λsh(Ψs)ds +

∫ τ̃

τ

e−λsh(Ψs)ds

]

= E
a,b,c
0

[∫ τ

0

e−λsh(Ψs)ds + e−λτ

∫ τ∗◦θτ

0

e−λsh(Ψs+τ )ds

]

= E
a,b,c
0

[∫ τ

0

e−λsh(Ψs)ds + e−λτV (Υτ )

]
< E

a,b,c
0

[∫ τ

0

e−λsh(Ψs)ds

]
.

(7.12)

Here the third equality follows from the strong Markov property of the process Υ,
and the inequality follows since V (Υτ ) < 0. Equation (7.12) shows that any optimal
stopping time τ < τ∗ cannot be optimal.
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8. Structure of the continuation and stopping regions. Let us recall (5.2)
and denote

Γn � {(a, b, c) ∈ B
3
+ : vn(a, b, c) = 0}, Cn � B

3
+ − Γn.(8.1)

We have shown in Theorem 7.1 that the Γ of (5.2) is the optimal stopping region
for (3.3) and the first hitting time τ∗ of Υ to this set is optimal. On the other hand
although Γn is an optimal stopping region for (6.1), the description of the optimal
stopping times S0

n (see (6.12)) is more involved. These optimal stopping times are
not hitting times of the sets Γn. S0

n prescribes to stop if Υ hits Γn before it jumps.
Otherwise if there is a jump before Υ reaches Γn, then S0

n prescribes to stop when
the process hits Γn−1 before the next jump, and so on.

Theorem 6.1 shows that Vn of (6.1) and the functions vn introduced in Corollary
6.1 are equal. Therefore, their respective limits V and v are also equal. Recall that
V n converges to V uniformly and the convergence rate is exponential (see Lemma
6.1). Since (vn)n∈N is a decreasing sequence with limit v, the stopping regions in (8.1)
are nested and satisfy Γ ⊂ · · · ⊂ Γn ⊂ Γn−1 ⊂ · · ·Γ1 and Γ = ∩∞

n=1Γn.
By Corollary 6.1 we know that each vn is concave and bounded, which also implies

that the limit v is concave and bounded. This in turn implies that the stopping regions
Γn and Γ are convex and closed. Since we show in section 5 that the continuation
region is bounded, it can readily be shown that the stopping regions Γn and Γ are the
epigraphs of some mappings γn and γ which are convex and strictly decreasing and
the numbers xn � inf{y ∈ R+ : γn(y) = 0} and x � inf{y ∈ R+ : γ(x) = 0} are finite.

9. Extensions.

9.1. Nonidentical sources. Consider two independent Poisson processes X1

and X2 with arrival rates β1 and β2, respectively. At some random unobservable
times θ1 and θ2, with distributions

(9.1) P(θi = 0) = πi, P(θi > t) = (1 − πi)e
−λit for t ≥ 0,

the arrival rates of the Poisson processes X1 and X2 change from βi to αi, respectively,
i.e.,

(9.2) Xi
t −
∫ t

0

hi(s)ds, t ≥ 0, i = 1, 2,

are martingales, in which

(9.3) hi(t) = [βi1{s<θi} + αi1{s≥θi}], t ≥ 0, i = 1, 2.

Here α1, α2, β1, and β2 are known positive constants. Then the dynamics of Φ×

defined in (2.19) becomes

dΦ×
t = [λ2Φ

1
t + λ1Φ

2
t + (a1 + a2)Φ

+
t ]dt + Φ×

t

[
((α1/β1) − 1)dX1

t + ((α2/β2) − 1)dX2
t

](9.4)

in which ai = λi − αi + βi, i ∈ {1, 2}. Let us introduce

x(t, φ0) = e(a1+a2)tφ0 +

∫ t

0

e(a1+a2)(t−u)(λ2y(u, φ1) + λ1z(u, φ2))du in which

y(t, φ1) = −λ1

a1
+ ea1t

(
φ1 +

λ

a

)
, z(t, φ2) = −λ2

a2
+ ea2t

(
φ2 +

λ2

a2

)
.

(9.5)
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Then Φ×
t , Φ1

t , and Φ2
t , t ≥ 0, can be written as

(9.6)
Φ×

t = x(t− σn,Φ
×
σn

), Φ1
t = y(t− σn,Φ

+
σn

), Φ2
t = z(t− σn,Φ

1
σn

),

σn ≤ t < σn+1, n ∈ N,

and

Φ×
σn+1

=

(
α1

β1
1{X1

σn+1
�=X1

σn+1−
} +

α2

β2
1{X2

σn+1
�=X2

σn+1−
}

)
Φ×

σn+1− ,

Φ1
σn+1

=
α1

β1
1{X1

σn+1
�=X1

σn+1−
} Φ1

σ(n+1)−
, Φ2

σn+1
=

α2

β2
1{X2

σn+1
�=X2

σn+1−
} Φ1

σ(n+1)−
.

(9.7)

Choosing Υt =
(
Φ×

t ,Φ
1
t ,Φ

2
t

)
, t ≥ 0, as the Markovian statistic to work with, we can

extend our analysis to deal with nonidentical sources.

9.2. When there are more than two sources. We have solved a two-source
quickest detection problem in which the aim is to detect the minimum of two dis-
order times. Our approach can easily be generalized to problems including several
dimensions. To clarify how this generalization works, let us show what the sufficient
statistics are when there are three independent sources. Assume that the observations
come from the independent sources X1, X2, and X3. Let Φt be the odds ratio defined
in (2.9). Then

(9.8) Φt = Φ1
t + Φ2

t + Φ3
t + Φ1

tΦ
2
t + Φ1

tΦ
3
t + Φ2

tΦ
3
t + Φ1

tΦ
2
tΦ

3
t

in which Φi, i ∈ {1, 2, 3}, is defined as in (2.14). Let us denote Φ
(i,j)
t � Φi

tΦ
j
t ,

i, j ∈ {1, 2, 3}, and Φ
(x)
t � Φ1

tΦ
2
tΦ

3
t , t ≥ 0. The dynamics of these processes can be

written as

dΦ
(i,j)
t = [λ(Φi

t + Φj
t ) + 2(λ− α + β)Φ

(i,j)
t ]dt +

(
α

β
− 1

)
Φ

(i,j)
t d(Xi

t + Xj
t ),

dΦ
(x)
t =

[
λ
(
Φ

(1,2)
t + Φ

(1,3)
t + Φ

(2,3)
t

)
+ 3(λ− α + β)Φ

(x)
t

]
dt

+

(
α

β
− 1

)
Φ

(x)
t d(X1

t + X2
t + X3

t ).

(9.9)

We can see from (2.13) and (9.9) that Υ � (Φ1,Φ2,Φ3,Φ
(1,2)
t ,Φ

(1,3)
t ,Φ

(2,3)
t ,Φ(x))

is a seven-dimensional Markovian statistic whose natural filtration is equal to the
filtration generated by X1, X2, and X3. From this one can see that the results of
sections 6 and 7 can be extended to the three-dimensional case since these results
rely only on the fact that the sufficient statistic Υ is a strong Markov process. The
boundedness of the continuation region can also be shown as in section 5 since these
results can be derived from the sample path properties of the sufficient statistic.

As a result, our results are applicable for decision making with large-scale dis-
tributed networks of information sources. In the future, using the techniques devel-
oped here, we would like to solve a multisource detection problem where the obser-
vations come from correlated sources. We also would like to extend our results and
develop change detection algorithms that can be applied effectively to multiple source
data that involves both continuous and discrete event phenomena.
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9.3. When the jump sizes of the observations are random. Consider two
independent compound Poisson processes Xi = {Xi

t : t ≥ 0}, i ∈ {1, 2}, where

(9.10) Xi
t = Xi

0 +

Ni
t∑

j=1

Y i
j

in which N i, i ∈ {1, 2}, are two independent Poisson processes whose common rate
β > 0 changes to α at some random unobservable times θi, i ∈ {1, 2}, respectively.
The random variables Y i

j ∈ R
d, i ∈ {1, 2}, which are also termed as “marks,” are

independent and identically distributed with a common distribution, ν, which is called
as the “mark distribution.” At the change time θi the mark distribution of the process
Xi changes from ν to μ. We will assume that μ is absolutely continuous with respect
to ν and denote the Radon–Nikodym derivative by r(y) � dμ

dν (y), y ∈ R
d. In this case

Li
t in (2.4) becomes

(9.11) Li
t = e−(α−β)t

Ni
t∏

k=1

(
α

β
r(Y i

k )

)
.

The likelihood ratio process Li is the unique solution of the stochastic differential
equation (see, e.g., [8])

(9.12) dLi
t = Li

t

(
−(α− β)dt +

∫
y∈Rd

(
α

β
r(y) − 1

)
p(dtdy)

)
, Li

0 = 1,

where p is a random measure that is defined as

(9.13) pi((0, t] ×A) �
∞∑
k=1

1{σi
k≤t}1{Y i

k∈A}, t ≥ 0,

and for any A that is a Borel measurable subset of R
d. Here σi

k is the kth jump time
of the process Xi. Now using the change of variable formula for semimartingales (see,
e.g., [12]), we can write

(9.14) dΦi
t = (λ+(λ−α+β)Φi

t)dt+Φi
t−

∫
y∈Rd

(
α

β
r(y) − 1

)
pi(dtdy), Φi

0 =
πi

1 − πi

for t ≥ 0 and i ∈ {1, 2}. Note that Φi
σn

= α
β r(Yn)Φi

σn− at the nth jump time of the

process Xi. Using a change of variable formula for semimartingales, the dynamics of
Φ× and Φ+ in (2.19) can be written as

dΦ×
t = [λΦ+

t + aΦ×
t ]dt + Φ×

t−

∫
y∈Rd

(
α

β
r(y) − 1

)
(p1 + p2)(dtdy),

dΦ+
t = [2λ + aΦ+

t ]dt + Φ1
t−

∫
y∈Rd

(
α

β
r(y) − 1

)
p1(dtdy)

+ Φ2
t−

∫
y∈Rd

(
α

β
r(y) − 1

)
p2(dtdy),

(9.15)

with initial conditions Φ×
0 = π1π2/[(1−π1)(1−π2)] and Φ+

0 = π1/(1−π1)+π2/(1−π2).
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The bounds on the continuation region constructed for the simple Poisson disorder
problem in section 5 can also be shown to bound the continuation region of the
compound Poisson disorder problem. On the other hand the results in sections 6 and
7 can be shown to hold. The only change will be the form of the operator J in (6.7).
But this new operator can be shown to share the same properties as its counterpart
for the unmarked case.

10. Appendix.
Proof of Theorem 6.1. We will prove only that Vn = vn and Sε

n is an ε-optimal
stopping time of (6.1).

The proof will be carried out in three steps.
(i) First we will show that Vn ≥ vn. To establish this fact, it is enough to show

that for any stopping time τ ∈ S

(10.1) E
a,b,c
0

[∫ τ∧σn

0

e−λth(Ψt)dt

]
≥ vn(a, b, c).

In order to prove (10.1) we will show that

E0

[∫ τ∧σn

0

e−λth(Ψt)dt

]
≥ E0

[∫ τ∧σn−k+1

0

e−λth(Ψt)dt + 1{τ≥σn−k+1}e
−λσn−k+1vk−1(Υσn−k+1

)

](10.2)

for k ∈ {1, 2, . . . , n + 1}. Note that (10.1) follows from (10.2) if we set k = n + 1. In
what follows we will show (10.2) by induction.

When k = 1, (10.2) is satisfied since v0 = 0. Assume that (10.2) holds for
1 ≤ k ≤ n + 1. Let us denote the right-hand side of (10.2) by ρk−1. We can write
ρk−1 = ρ1

k−1 + ρ2
k−1, where

ρ1
k−1 � E0

[∫ τ∧σn−k

0

e−λth(Ψt)dt

]
and

ρ2
k−1 � E0

[
1{τ≥σn−k}

(∫ τ∧σn−k+1

σn−k

e−λth(Ψt)dt

+ 1{τ≥σn−k+1}e
−λσn−k+1vk−1(Υσn−k+1

)

)]
.

(10.3)

Now by Lemma 6.3, there exists an Fσn−k
-measurable random variable ξn−k such that

(10.4) τ ∧ σn−k+1 = (σn−k + ξn−k) ∧ σn−k+1 almost surely on {τ ≥ σn−k}.

Equation (10.4) together with the strong Markov property of Υ (with respect to the
filtration F) implies that

(10.5) ρ2
k−1 = E0

[
1{τ≥σn−k}e

−λσn−kfk−1(ξn−k,Υσn−k
)
]

in which

fk−1(r, (a, b, c)) � E
a,b,c
0

[∫ r∧σ1

0

e−λth(Ψt)dt + 1{r≥σ1}e
−λσ1vk−1(Υσ1

)

]
= Jvk−1(r, (a, b, c)) ≥ J0vk−1(a, b, c) = vk(a, b, c)

(10.6)
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in which the second equality and the first inequality follow from (6.5) and the last
equality follows from (6.10). Therefore

(10.7) ρ2
k−1 ≥ E0

[
1{τ≥σn−k}e

−λσn−kvk(Υσn−k
)
]
.

Now using (10.2), (10.3), and (10.7) we obtain that (10.2) holds when k is replaced by
k+1. At this point we have proved by induction that (10.2) holds for k = 1, 2, . . . , n+1.

(ii) The converse of (i), Vn ≤ vn, follows from (6.13) since Sε
n ≤ σn by construction

(see (6.12)).
(iii) What is left to prove is (6.13). If n = 1, then the left-hand side of (6.13)

becomes

E
a,b,c
0

[∫ rε0(a,b,c)∧σ1

0

e−λth(Ψt)dt

]
= Jv0(r

ε
0(a, b, c), a, b, c)

≤ J0v0(a, b, c) + ε = v1(a, b, c) + ε.

(10.8)

Now, suppose that (6.13) holds for all ε > 0 for some n. Using the fact that Sε
n+1∧σ1 =

r
ε/2
n ∧ σ1 almost surely and the strong Markov property of Υ, we can write

E0

[∫ Sε
n+1

0

e−λth(Ψt)dt

]

= E0

[∫ Sε
n+1∧σ1

0

e−λth(Ψt)dt + 1{Sε
n+1≥σ1}

∫ Sε
n+1

σ1

e−λth(Ψt)dt

]

= E0

[∫ rε/2
n (a,b,c)∧σ1

0

e−λth(Ψt)dt

]
+ E0

[
1{rε/2

n (a,b,c)≥σ1}e
−λσ1gn(Υσ1)

]

(10.9)

in which

(10.10) gn(a, b, c) � E
a,b,c
0

[∫ Sε/2
n

0

e−λth(Ψt)dt

]
≤ vn(a, b, c) + ε/2.

The inequality in (10.10) follows from the induction hypothesis. Using (10.10) we can
write (10.9) as

E
a,b,c
0

[∫ Sε
n+1

0

e−λth(Ψt)dt

]

≤ E
a,b,c
0

[ ∫ rε/2
n (a,b,c)∧σ1

0

e−λth(Ψt)dt + 1{rε/2
n (a,b,c)≥σ1}e

−λσ1vn(Υσ1)

]
+ ε/2

= Jvn(rε/2n (a, b, c), a, b, c) + ε/2 ≤ vn+1(a, b, c) + ε.

(10.11)

This proves (6.13) when n is replaced by n + 1.
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UNIQUENESS OF CONSTRAINED VISCOSITY SOLUTIONS IN
HYBRID CONTROL SYSTEMS∗

MINYI HUANG†

Abstract. We study constrained viscosity solutions with an unbounded growth for a class of
first order Hamilton–Jacobi–Bellman equations arising in hybrid control systems. To deal with the
boundary constraint and rapid growth of the solutions, we construct a particular set of test functions
and under very mild conditions establish a comparison theorem which gives the estimate of distance
between the subsolution and the supersolution. The comparison theorem implies uniqueness of the
constrained viscosity solution if its existence is ensured; and under some additional assumptions we
give an existence result by showing that the value function is a constrained viscosity solution. We
then apply the obtained uniqueness results to an optimal scheduling problem and finally to stochastic
manufacturing systems.

Key words. hybrid control systems, optimal control, HJB equations, constrained viscosity
solutions, fluid models, manufacturing systems
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1. Introduction. This paper is concerned with the analysis of a class of first
order Hamilton–Jacobi–Bellman (HJB) equations with discrete transitions and state
constraints. Such equations arise naturally in the optimal control of stochastic systems
with random structural changes in dynamics, which are modeled as Markovian jumps.
These systems involve both continuum and discrete components in their evolution and
are referred to as hybrid systems, and they have been investigated from a wide range
of backgrounds including production planning subject to random machine breakdown
and repair [20] and the control of fluid queueing models for communication networks
[19, 7, 17], among others [6, 9, 14, 24, 28]. Due to physical limitation, a typical
feature for many control models is that the system state is restricted to a certain set;
for instance, the level for buffers must be maintained nonnegative [20, 25]. To deal
with the resulting HJB equation, one needs to take into account both the discrete
transitions and the state space constraints and to adopt the notion of appropriately
defined constrained viscosity solutions first introduced in [22].

Specifically, Soner studied an optimal control problem and introduced first or-
der constrained viscosity solutions in [22], where the deterministic state trajectory
is restricted to a given subset of R

n, and in a companion work [23] along this line,
viscosity solutions were analyzed for controlled piecewise deterministic Markov pro-
cesses [6] defined on a subset of R, which leads to an integral HJB equation. Later on,
the result in [22] was generalized in [18] by identifying weaker sufficient conditions for
ensuring continuity of the value function and in [12] by an additional boundary char-
acterization of the subsolution via a so-called inward Hamiltonian reflecting boundary
constraints.
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Fig. 1. (a) A manufacturing system with n machines (Mi, 1 ≤ i ≤ n) and n− 1 buffers; (b) a
multihop communication network where the source S and destination D are connected by n buffers.

For HJB equations involving finite state Markov chains, viscosity solutions have
been studied in [20, 8, 26, 27]. In particular, the authors in [26, 27] considered
controlled random transitions but there were no state constraints.

Although viscosity solutions with state constraints are of importance and have
their primary motivation in optimal control, in many application problems, the ex-
isting results face limitation. Notably, in the sequence of work [22, 18, 12] consid-
ering first order HJB equations for deterministic systems, uniqueness is obtained for
uniformly continuous and bounded solutions. In [15] and [5], bounded continuous
solutions were analyzed on a bounded domain. Also, in a singular perturbation con-
trol problem with partial state constraints [1], uniqueness and existence theorems
were established with bounded continuous solutions. For illustrating the limitation of
those previous results, we consider the optimal control of a single buffer fluid model
with controlled input and output and, as a well-motivated practice, introduce a linear
holding cost for a positive buffer level (see section 6 for details). This readily leads
to unbounded value functions, and existing results for constrained viscosity solutions
are difficult to apply.

In this work we study uniqueness of constrained viscosity solutions for a class of
stochastic hybrid systems. We concentrate our attention to two concrete types of do-
mains for the state variable. The particular structure of the state space has adequate
generality and is frequently encountered in a wide range of application problems aris-
ing in manufacturing systems and communication networks [20, 25, 19] (see Figure 1
for illustration), though a generalization of the state space to other forms is possible.
In introducing our solution notion, we generalize the definition of constrained viscos-
ity solutions for standard HJB equations of deterministic models to a coupled HJB
equation system. Resulting from the state space constraints, this definition leads to
specifying the viscosity sub/supersolution in two different regions, respectively, i.e.,
characterizing the subsolution in a smaller region—the interior of the constrained state
space. Such a differentiation by two regions is important for developing a solution
framework for uniqueness analysis. We prove uniqueness of the solution within the
class of functions satisfying a polynomial growth and local Hölder continuity. In es-
tablishing the comparison result in this paper, a crucial step is to obtain suitable test
functions involved in the definition of constrained viscosity solutions. Towards this
end, we construct the auxiliary function Φ by first dominating the sub/supersolution
growth by an exponential function and then introducing a pair of perturbation pa-
rameters (τ, ε) [see (11)] such that the resulting maxima (w.r.t. x) can be tuned to
the interior of the state space to generate desired test functions for the subsolution.
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The proof of the comparison theorem depends on generalizing typical techniques for
deterministic systems [22, 2].

For proving existence results in the general model, a quite difficult step is to
show continuity of the value function. The key idea in our analysis is to truncate a
small time interval by the jump time of the Markov chain so that locally the system
dynamics act like a time-invariant model. This resulting feature enables us to use
a certain time-shifting technique to construct auxiliary admissible controls for cost
estimates. In particular, using a recursive estimation procedure, we obtain Hölder
continuity of the value function, and we mention that as a byproduct this method
can be used to strengthen some existing continuity results in the literature for state
constrained optimal control problems.

Our work differs from most existing analysis on constrained viscosity solutions for
deterministic systems in that we need to deal with a system of coupled equations and
the solution growth is rapid. Our solution notion for the coupled HJB equation system
and the uniqueness results provide a unified analytical basis for the optimal control
of this class of hybrid systems. In particular, our uniqueness results are applicable to
classical stochastic manufacturing models (see, e.g., [20]), where to our best knowledge
the existing work has not provided uniqueness results for the coupled HJB equations
when nonnegative buffer level constraints are imposed.

The organization of the paper is as follows. In section 2, we first describe the
optimal control problem for the hybrid system and introduce the notion of constrained
viscosity solutions. The comparison result and uniqueness theorem are stated in
section 3. The proof of the comparison theorem is technical and postponed to section
4. For the general hybrid system model, section 5 first shows Hölder continuity of
the value function under some technical conditions and proves that it is the unique
constrained viscosity solution. In section 6, we study an optimal data traffic scheduling
problem and prove the existence and uniqueness of constrained viscosity solutions by
applying the result in section 3. In section 7, we further apply the results in section
3 to a well-studied stochastic manufacturing system, which complements existence
theorems in the manufacturing literature [20]. Finally, a few concluding remarks are
presented in section 8.

2. The HJB equation and constrained viscosity solutions. Consider a
hybrid control system described by the following differential equation:

dX(t)

dt
= F (X(t), θ(t), u(t)), t ≥ 0,(1)

with initial condition X(0) ∈ Q̄. Here X and θ are called the state and mode variables,
respectively. The trajectory of X on [0,∞) is required to be in Q̄, which is a closed
subset of R

n with a nonempty interior Q. Moreover, θ is a continuous time Markov
chain with state space Θ = {1, 2, . . . ,m} and transition probability rate matrix Πθ =
(πij)m×m, which is also called the generator. It is assumed that, with probability one,
the trajectory of θ is right continuous with left limit. Given θ(t) = k, the control u(t)
takes values from a compact set Uk ⊂ R

d. Let Ft denote the σ-algebra generated by
the Markov chain θ up to time t, i.e., Ft = σ(θ(s), s ≤ t). Associated with X(0) = x
and θ(0) = k, the admissible control set is written as Ux,k consisting of all controls
u(·) satisfying u(t) ∈ Uθ(t) and adapted to Ft such that P{X(t) ∈ Q̄, ∀ t ≥ 0} = 1.
We make the convention that for all (x, k) ∈ Q̄ × Θ, Ux,k is nonempty and that the
state process X(t) associated with an admissible control is uniquely determined on
[0,∞) with exception on a null set of samples. Given initial condition (x, k) ∈ Q̄×Θ
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at t = 0, let the cost function be given by

v(x, k) = inf
u∈Ux,k

J(x, k, u)

�
= inf

u∈Ux,k

E
[ ∫ ∞

0

e−ρtL(X(t), θ(t), u(t))dt|X(0) = x, θ(0) = k
]
,(2)

where ρ > 0 is a discount factor and L is the cost integrand before discount.
To facilitate the subsequent analysis, we set some convention on notation. We

may alternatively denote X(t) as Xt with a real-valued subscript t ≥ 0, and the same
convention holds for u(t) and θ(t), etc. The letter u may stand for a value in Uk for
a certain k ∈ Θ or a control adapted to Ft; the specific interpretation should be clear
from the context. Throughout the paper, for a real-valued vector y, |y| denotes its
Euclidean norm.

For any function ϕ : Θ → R, we define the map

[Πθϕ(·)](i) =
∑
j �=i

πij [ϕ(j) − ϕ(i)],(3)

where πii +
∑

j �=i πij = 0.
We assume for any given k ∈ Θ, both F (x, k, u) and L(x, k, u) are continuous in

(x, u) ∈ Q̄×Uk. A formal application of dynamic programming leads to the following
equation system:

ρv(x, k) = inf
u∈Uk

[
vTx (x, k)F (x, k, u) + [Πθv(x, ·)](k) + L(x, k, u)

]
,(4)

where (x, k) ∈ Q̄ × Θ and the superscript (·)T denotes the transpose of a vector or
matrix. Note that due to the action of the generator, (4) gives a system of m coupled
equations. For convenience of exposition, we simply refer to (4) as the HJB equation
for the underlying optimal control problem. Write

H̃(x, k, vx(x, k), v(x, ·), u) = vTx (x, k)F (x, k, u) + [Πθv(x, ·)](k) + L(x, k, u).

Then the HJB equation (4) may be written in the compact form:

ρv(x, k) = inf
u∈Uk

H̃(x, k, vx(x, k), v(x, ·), u)

�
= H(x, k, vx(x, k), v(x, ·)), (x, k) ∈ Q̄× Θ,(5)

where the dot entry in (5) indicates that for each fixed k, the term H depends on the
whole vector [v(x, 1), . . . , v(x,m)].

Definition 1. Let v(x, k), v(x, k), and v(x, k) be functions from Q̄ × Θ to R,
each being continuous in x for all k ∈ Θ.

(i) v(x, k) is a viscosity subsolution to (5) on Q × Θ if for any k0 ∈ Θ and any
function φ ∈ C1(Q̄), we have

(6) ρv(x0, k0) −H(x0, k0, φx(x0), v(x0, ·)) ≤ 0

at x0, whenever v(x, k0) − φ(x) attains a local maximum at x = x0 ∈ Q.
(ii) v(x, k) is a viscosity supersolution to (5) on Q̄ × Θ if for any k0 ∈ Θ and

φ ∈ C1(Q̄), we have

(7) ρv(x0, k0) −H(x0, k0, φx(x0), v(x0, ·)) ≥ 0

at x0, whenever v(x, k0) − φ(x) attains a local minimum at x = x0 ∈ Q̄.
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(iii) v(k, x) is called a constrained viscosity solution on Q̄× Θ to (5) if it is both
a viscosity subsolution on Q× Θ and a viscosity supersolution on Q̄× Θ.

In the definition of the viscosity supersolution, the minima x0 may lie on the
boundary of Q̄. The function φ involved in either (i) or (ii) in Definition 1 is called
the test function.

Denote by Cp(Q̄ × Θ) the set of functions g(x, k) from Q̄ × Θ to R, which are
continuous in x ∈ Q̄ for any given k ∈ Θ and have a polynomial growth rate, i.e.,
for any g ∈ Cp(Q̄ × Θ), one can find positive constants C and b, depending on that
particular function, such that |g(x, k)| ≤ C(1 + |x|b) for all (x, k) ∈ Q̄ × Θ. For
a1, a2 ∈ R, denote a1 ∨ a2 = max{a1, a2}, and a1 ∧ a2 = min{a1, a2}. Given γ ∈ (0, 1]
and g ∈ Cp(Q̄× Θ), define

Hol(g, γ,R)
�
= sup

k∈Θ
sup

|x|∨|x′|≤R

|g(k, x′) − g(k, x)|
|x′ − x|γ ,

where x, x′ ∈ Q̄ and 0 < R < ∞. The value Hol(g, γ,R) ≤ ∞ is called the local
Hölder constant for g associated with R > 0, where γ is the Hölder exponent. For
the case γ = 1, Hol(g, 1, R) reduces to the local Lipschitz constant and is denoted as
Lip(g,R).

Define Cloc
p,Hol(Q̄×Θ) as the class of functions g ∈ Cp(Q̄×Θ) satisfying local Hölder

continuity; i.e., there exists a Hölder exponent γ ∈ (0, 1] such that Hol(g, γ,R) < ∞
for all R > 0. Furthermore, we define Cloc

p,Lip(Q̄ × Θ) as the class of functions g ∈
Cp(Q̄×Θ) satisfying local Lipschitz continuity in x; i.e., Lip(g,R) < ∞ for all R > 0.

Obviously, Cloc
p,Lip(Q̄ × Θ) ⊂ Cloc

p,Hol(Q̄ × Θ). In addition, if g ∈ Cloc
p,Hol(Q̄ × Θ)

with Hölder exponent γ2 and 0 < γ1 < γ2 ≤ 1, g is also locally Hölder continuous
with exponent γ1.

In establishing our main results, we concentrate on two types of structures for Q̄.
Case (i). For state constraint in a subspace:

Q̄a
�
= [0,∞)n−1 × (−∞,∞),

where the integer n ≥ 2. The interior of the set is Qa = (0,∞)n−1 × (−∞,∞).
Case (ii). For state constraint in full space:

Q̄b
�
= [0,∞)n,

where n ≥ 1. The interior of the set is Qb = (0,∞)n.
Corresponding to Q̄a and Q̄b, the state variable x is restricted to the positive

orthant of R
n or its n − 1-dimensional subspace. Indeed, cases (i) and (ii) can cover

fairly general application models as shown in Figure 1, and they are also applicable
to systems with more complicated buffer interconnection; see, e.g., [21]. It is worth
noting that in the manufacturing fluid model given by Figure 1(a), the first n−1 entries
in x correspond to buffer levels and must be positive; the last entry xn, which denotes
the inventory level of the final product, however, can be negative and interpreted as
backlog. Although our technique developed in this paper may be extended to deal
with other forms of Q̄, we do not intend to treat the most general form.

3. The comparison theorem and uniqueness of solutions. The objective
of this section is to establish a comparison result which plays an important role in
proving uniqueness. Existence analysis will be presented for the general model in
section 5 and for more concrete models in sections 6 and 7.
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Let Li(x, k, u), i = 1, 2, be two functions with u ∈ Uk and (x, k) ∈ Q̄ × Θ.
Replacing L(x, k, u) by Li(x, k, u) in the original HJB equation (4), we write two new
equations:

ρv(x, k) = H1(x, k, vx(x, k), v(x, ·)),(8)

ρv(x, k) = H2(x, k, vx(x, k), v(x, ·)),(9)

where (x, k) ∈ Q̄× Θ and the construction for Hi, i = 1, 2, is obvious.

3.1. Main results. We make the following assumptions.
(A1) For any given k ∈ Θ, F (x, k, u) and Li(x, k, u), i = 1, 2, are continuous in

(x, u) ∈ Q̄× Uk.
(A1′) For any given k ∈ Θ, F (x, k, u) and L(x, k, u) are continuous in (x, u) ∈

Q̄× Uk.

(A2) Fmax
�
= sup(x,k)∈Q̄×Θ supu∈Uk

|F (x, k, u)| < ∞.
Under (A1) and (A1′), we have the following equicontinuity in x on compact sets.

Let ϕ stand for F , L, or Li. For a given compact subset BQ̄ of Q̄, when x, x′ ∈ BQ̄

and |x− x′| → 0, we have

|ϕ(x, k, u) − ϕ(x′, k, u)| → 0(10)

with a vanishing rate not depending on (k, u).
Theorem 2. Let Q̄ be either Q̄a or Q̄b, and suppose (A1)–(A2) hold. If v1,

v2 ∈ Cloc
p,Hol(Q̄ × Θ) are, respectively, a viscosity subsolution to (8) on Q × Θ and a

viscosity supersolution to (9) on Q̄× Θ, then the inequality holds:

sup
Q̄×Θ

[v1(x, k) − v2(x, k)] ≤ ρ−1 sup
Q̄×Θ

sup
Uk

[L1(x, k, u) − L2(x, k, u)].

Theorem 2 is the so-called comparison theorem, and it immediately implies the
following uniqueness theorem.

Theorem 3. Let Q̄ be either Q̄a or Q̄b, and suppose (A1′) and (A2) hold. If
v ∈ Cloc

p,Hol(Q̄ × Θ) is a constrained viscosity solution to (5), then it is unique in the

function class Cloc
p,Hol(Q̄× Θ).

3.2. Some preliminary lemmas. To prove Theorem 2, we need to establish a
sequence of preliminary results. The basic approach is to introduce a suitable compar-
ison function Φ for the construction of smooth test functions φ to generate the local
minima and maxima and then to apply the definition of viscosity sub/supersolutions.
A key technique will be developed such that the obtained maxima for v1 −φ, as spec-
ified during the proof of Theorem 2, do not occur at the boundary of Q̄, which is
crucial for subsequently applying the definition of viscosity subsolutions.

Let v1 and v2 be the viscosity sub/supersolution, respectively. For both Case
(i) Q̄ = Q̄a = [0,∞)n−1 × (−∞,∞) and Case (ii) Q̄ = Q̄b = [0,∞)n, we use the
same function Φ(x, y, k) constructed as follows. Denote 1n = (1, 1, . . . , 1)T , and for
v1, v2 ∈ Cloc

p,Hol(Q̄× Θ), let

Φ(x, y, k) = v1(x, k) − v2(y, k) −
∣∣∣∣x− y

ε
− τ1n

∣∣∣∣2(11)

−α[ζ(x) + ζ(y)], x, y ∈ Q̄,

where ζ(x) = exp(β
√
|x|2 + 1), with β = ρF−1

max, and ε, τ, α are all parameters chosen
within the interval (0, 1] throughout sections 3 and 4.
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The construction of Φ is based on the methods in [20, 22, 11, 5]; however, with
the simultaneous appearance of state constraints and rapid growth, it is necessary
to predominate v1 and v2 by the exponential term ζ(x) and subsequently insert the
small perturbation term τ1n, the magnitude of which can be adjusted independently.
This differs from the technique in [22, 5]. During the maximization of Φ, τ causes a
useful asymmetry between x and y in producing the increment of Φ. Such an effect
is further amplified by reducing ε provided that τ is fixed first, and this ensures that
x can be tuned to the interior of Q̄ leading to desired test functions.

Since both v1 and v2 have a polynomial growth rate, it is clear that there exists

(x̂, ŷ, k̂) ∈ Q̄× Q̄× Θ
�
= Γ such that

Φ(x̂, ŷ, k̂) = sup
(x,y,k)∈Γ

Φ(x, y, k),(12)

where the values of x̂, ŷ, and k̂ depend on ε, τ and α. However, for a given α ∈ (0, 1],
we may obtain a uniform bound for |x̂| and |ŷ| when the value of ε and τ varies on
(0, 1].

Lemma 4. Suppose Q̄ = Q̄a or Q̄b. Let v1, v2 ∈ Cloc
p,Hol(Q̄ × Θ) be given in (11)

and (x̂, ŷ, k̂) be obtained from (12). Then there exists a positive constant, depending
only on α and denoted as Cα, such that

|x̂| ∨ |ŷ| ≤ Cα.

Proof. It suffices to analyze for Q̄ = Q̄a. Since Φ(x̂, ŷ, k̂) ≥ Φ(0, 0, k̂), it follows
that

v1(x̂, k̂) − v2(ŷ, k̂) −
∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣2 − α[ζ(x̂) + ζ(ŷ)]

≥ v1(0, k̂) − v2(0, k̂) − nτ2 − α[ζ(0) + ζ(0)],

which gives

α[ζ(x̂) + ζ(ŷ)] +

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣2
≤ v1(x̂, k̂) − v1(0, k̂) − v2(ŷ, k̂) + v2(0, k̂) + nτ2 + α[ζ(0) + ζ(0)].

Without loss of generality, assume C0 > 0 and b0 > 0 have been found such that
|v1(x, k)| ∨ |v2(x, k)| ≤ C0(1 + |x|b0), for (x, k) ∈ Q̄× Θ. Since

α[ζ(x̂) + ζ(ŷ)] ≤ C0(4 + |x̂|b0 + |ŷ|b0) + n + [ζ(0) + ζ(0)],

there exists Cα > 0, depending on α but not on ε and τ , such that |x̂| ∨ |ŷ|
≤ Cα.

Notice that the selection of Cα implicitly depends on the associated parameters
C0 and b0. However, for convenience of presentation, in our analysis we simply say it
depends only on α, since v1 and v2 are assumed to be picked out from Cloc

p,Hol(Q̄×Θ)
and hence fixed.

Lemma 5. Suppose Q̄ = Q̄a or Q̄b and fix α ∈ (0, 1]. For (x̂, ŷ, k̂) given in (12),
the following properties hold: (i) supε∈(0,1] ε

−1|x̂− ŷ| = O(1), where the right-hand
side is independent of τ , and (ii) limε→0+ |x̂− ŷ| = 0 uniformly w.r.t. τ .
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Proof. It is adequate to consider Q̄ = Q̄a. Since 2Φ(x̂, ŷ, k̂) ≥ Φ(x̂, x̂, k̂) +

Φ(ŷ, ŷ, k̂), we get

2v1(x̂, k̂) − 2v2(ŷ, k̂) − 2

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣2 − 2α[ζ(x̂) + ζ(ŷ)]

≥ v1(x̂, k̂) − v2(x̂, k̂) − nτ2 − 2αζ(x̂) + v1(ŷ, k̂) − v2(ŷ, k̂) − nτ2 − 2αζ(ŷ).

Suppose v1, v2 have exponent γ1, γ2 ∈ (0, 1], respectively, for local Hölder continuity.
Hence∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣2 ≤ 1

2
[v1(x̂, k̂) − v1(ŷ, k̂) + v2(x̂, k̂) − v2(ŷ, k̂)] + nτ2

≤ 1

2
[Hol(v1, γ1, Cα)|x̂− ŷ|γ1 + Hol(v2, γ2, Cα)|x̂− ŷ|γ2 ] + nτ2

≤ (1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2,(13)

since x̂ ∨ ŷ ≤ Cα by Lemma 4.
By use of the triangular inequality for norms, for τ ∈ (0, 1], we get∣∣∣∣ x̂− ŷ

ε

∣∣∣∣ ≤ ∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣+ |τ1n|

≤
√

(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2 + nτ

≤
√

(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + n + n,

which implies assertion (i) and subsequently (ii). This completes the proof.
The proof of Lemmas 4 and 5 adopts the techniques in [11, 20] dealing with

unbounded viscosity solutions for first order HJB equations. The next lemma is
essential for deriving the comparison result in section 4.

Lemma 6. Let (x̂, ŷ, k̂) be given by (12) and x̂ = [x̂1, . . . , x̂n]T , ŷ = [ŷ1, . . . , ŷn]T .
For given τ, α ∈ (0, 1], if ε > 0 is sufficiently small, we have (i) x̂i > ŷi for 1 ≤ i ≤
n − 1, if Q̄ = Q̄a, or (ii) x̂i > ŷi for 1 ≤ i ≤ n, if Q̄ = Q̄b, which further implies
x̂ ∈ Q for both cases.

Proof. We give only the proof for assertion (i). The proof for assertion (ii) can
be handled similarly. The proof is quite technical, and we break it into three steps.

Step 1. Let α and τ be given with Q̄ = Q̄a. We assume assertion (i) is invalid,
and hence there exists a sequence εi ↓ 0, i ≥ 1, such that there is at least one (denoted
as the nith) coordinate component satisfying

x̂(i)
ni

− ŷ(i)
ni

≤ 0,(14)

where (x̂(i), ŷ(i), k̂(i)) is determined from (12) by taking ε = εi. Obviously, each ni is
picked out from the index set {1, 2, . . . , n− 1}.

If necessary, we may take a subsequence SJ
�
= {εij , j ≥ 1} such that both the

coordinate index ni and k̂(i) take constant values along SJ . In all of the following we
base the analysis on the subsequence SJ ; however, to simplify the notation we simply
represent SJ using the sequence {εi, i ≥ 1} and without loss of generality take ni ≡ 1

and k̂(i) = k̂.
Hence, we rewrite (14) as

x̂
(i)
1 − ŷ

(i)
1 ≤ 0, i ≥ 1.(15)
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By definition, we have

Φ(x̂(i), ŷ(i), k̂) = sup
Q̄×Q̄×Θ

Φ(x, y, k) ≥ Φ(x̂(i) + χδ, ŷ
(i), k̂)(16)

for any 0 < δ ≤ 1, where we denote the vector χδ = (δ, 0, . . . , 0)T . Since x̂(i) ∈ Q̄, it
is clear that x̂(i) + χδ ∈ Q̄.

Step 2. Now we show that (15) together with (16) leads to a contradiction. By
(16), we have

Φ(x̂(i), ŷ(i), k̂)

= v1(x̂
(i), k̂) − v2(ŷ

(i), k̂) −
∣∣∣∣ x̂(i) − ŷ(i)

εi
− τ1n

∣∣∣∣2 − α[ζ(x̂(i)) + ζ(ŷ(i))]

≥ v1(x̂
(i) + χδ, k̂) − v2(ŷ

(i), k̂) −
∣∣∣∣ x̂(i) + χδ − ŷ(i)

εi
− τ1n

∣∣∣∣2 − α[ζ(x̂(i) + χδ) + ζ(ŷ(i))],

which readily yields

Ti
�
=

∣∣∣∣∣ x̂
(i)
1 − ŷ

(i)
1

εi
− τ

∣∣∣∣∣
2

−
∣∣∣∣∣ x̂

(i)
1 + δ − ŷ

(i)
1

εi
− τ

∣∣∣∣∣
2

≤v1(x̂
(i), k̂) − v1(x̂

(i) + χδ, k̂) + αζ(x̂(i) + χδ) − αζ(x̂(i)).(17)

Obviously, for δ ∈ (0, 1] we have |x̂(i)| ∨ |x̂(i) +χδ| ≤ Cα + 1 by Lemma 4. Denote the
constant Dζ,α = sup|x|≤Cα+1 |ζ ′(x)|.

By (15) and then using the local Hölder and local Lipschitz continuity of v1 and
ζ, respectively, it is easy to check that

Ti = −δ2

ε2
i

+
2δ

εi

∣∣∣ |x̂(i)
1 − ŷ

(i)
1 |

εi
+ τ

∣∣∣ ≤ δγ1Hol(v1, γ1, Cα + 1) + δαDζ,α,

where γ1 ∈ (0, 1] is the Hölder exponent for v1, and therefore

2δτ

εi
≤ δ2

ε2
i

+ δγ1Hol(v1, γ1, Cα + 1) + δαDζ,α.(18)

Since (18) holds for all 0 < δ ≤ 1, for the case with subscript index i, we take

δ = ε
2

2−γ1
i to obtain

2τε
−γ1
2−γ1
i ≤ 1 + Hol(v1, γ1, Cα + 1) + ε

2(1−γ1)

2−γ1
i αDξ,α.(19)

Letting i → ∞, since τ > 0 is fixed, (19) leads to

Hol(v1, γ1, Cα + 1) ≥ ∞,

which is a contradiction since v1 ∈ Cloc
p,Hol(Q̄× Θ) with the exponent γ1.

Step 3. Combining Steps 1 and 2 above, we see that the initial assumption that (i)
is invalid does not hold. Hence assertion (i) is proven. Since ŷi ≥ 0 for 1 ≤ i ≤ n− 1,
it follows that x̂i > 0 for i ≤ n− 1, and consequently x̂ ∈ Q.

Notice that in order to derive the contradiction in Step 2 of the proof, it is neces-
sary to take τ as an independent variable such that its magnitude may be controlled
separately.
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4. Proof of Theorem 2. We give only the proof for Case (i) Q̄ = Q̄a, and Case

(ii) Q̄ = Q̄b can be treated without further difficulty. Let (x̂, ŷ, k̂) be obtained from
(12). For given τ and α, by Lemma 6 we can pick a sufficiently small ετ,α depending
on the pair (τ, α) such that for all 0 < ε ≤ ετ,α, its associated (x̂, ŷ) is in the set
Q× Q̄. In the following analysis we assume ε ≤ ετ,α is always satisfied. In particular,
x̂ is in the open set Q.

Let φ1(x) = v2(ŷ) + |x−ŷ
ε − τ1n|2 + α[ζ(x) + ζ(ŷ)] and φ2(y) = v1(x̂) − | x̂−y

ε −
τ1n|2 − α[ζ(x̂) + ζ(y)] be two test functions. Then on Q̄, v1(x) − φ1(x) attains its
maximum at x̂ ∈ Q, and v2(y)−φ2(y) attains its minimum at ŷ ∈ Q̄. Hence we apply
Definition 1 for viscosity sub/supersolutions to get

ρv1(x̂, k̂) − inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(x̂)

]T
F (x̂, k̂, u)(20)

+ Πθ[v1(x̂, ·)](k̂) + L1(x̂, k̂, u)

}
≤ 0,

ρv2(ŷ, k̂) − inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(ŷ)

]T
F (ŷ, k̂, u)(21)

+ Πθ[v2(ŷ, ·)](k̂) + L2(ŷ, k̂, u)

}
≥ 0.

The pair of inequalities (20) and (21) yields

ρv1(x̂, k̂) − ρv2(ŷ, k̂)

≤ inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
+ αζ ′(x̂)

]T
F (x̂, k̂, u)

+ Πθ[v1(x̂, ·)](k̂) + L1(x̂, k̂, u)

}

− inf
u∈Uk̂

{[
2

(
x̂− ŷ

ε
− τ1n

)
− αζ ′(ŷ)

]T
F (ŷ, k̂, u)

+ Πθ[v2(ŷ, ·)](k̂) + L2(ŷ, k̂, u)

}

≤ sup
u∈Uk̂

2

∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣ · |F (x̂, k̂, u) − F (ŷ, k̂, u)|

+ sup
u∈Uk̂

α|FT (x̂, k̂, u)ζ ′(x̂) + FT (ŷ, k̂, u)ζ ′(ŷ)|

+ sup
u∈Uk̂

[L1(x̂, k̂, u) − L2(ŷ, k̂, u)] +
{

Πθ[v1(x̂, ·)](k̂) − Πθ[v2(ŷ, ·)](k̂)
}

�
= A1(ε, x̂, ŷ, k̂) + A2(x̂, ŷ, k̂) + A3(x̂, ŷ, k̂) + A4(x̂, ŷ, k̂).(22)

Let α and τ be fixed first. Now in (22) we take a sequence εi ↓ 0 with the

associated (x̂i, ŷi, k̂i) determined by (12). Here the subscript i ≥ 1 in x̂i is used to
label the sequence and should not be confused as the index of a coordinate component.
Since |x̂i| ∨ |ŷi| ≤ Cα for all i ≥ 1 by Lemma 4, there exists a subsequence denoted by
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Sx,y,k = {(x̂ij , ŷij , k̂ij ), j ≥ 1}, which converges to a limit (x∗, x∗, k∗) in view of the
fact that limεi→0+ |x̂i − ŷi| = 0 by Lemma 5. From (13) in the proof of Lemma 5, it
is seen that∣∣∣∣ x̂− ŷ

ε
− τ1n

∣∣∣∣ ≤ √
(1 + Cα)[Hol(v1, γ1, Cα) + Hol(v2, γ2, Cα)] + nτ2,(23)

where the fixed parameter γi is the Hölder exponent of vi ∈ Cloc
p,Hol(Q̄× Θ), i = 1, 2.

We combine (23) with the uniform continuity of F (x, k, u) in x for |x| ≤ Cα (see (10))
to get

lim
j→∞

A1(εij , x̂ij , ŷij , k̂ij ) = 0.

Using the continuity of F , L1, and L2 with respect to x, it can be checked that both
A2(x̂, ŷ, k̂) and A3(x̂, ŷ, k̂) are continuous in the arguments (x̂, ŷ). Then we have

lim
j→∞

(A2 + A3)(x̂ij , ŷij , k̂ij ) = 2α sup
u∈Uk∗

|ζ ′(x∗)F (x∗, k∗, u)|

+ sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)].

Now it readily follows from (22) that

ρv1(x
∗, k∗) − ρv2(x

∗, k∗) ≤ 2α sup
u∈Uk∗

|ζ ′(x∗)F (x∗, k∗, u)|

+ sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)] + A4(x
∗, x∗, k∗).(24)

On the other hand, for any (x, x, k) ∈ Q̄ × Q̄ × Θ and the set of parameters

(εij , τ, α), we have Φ(x, x, k) ≤ Φ(x̂ij , ŷij , k̂ij ), i.e.,

v1(x, k) − v2(x, k) − nτ2 − 2αζ(x)

≤ v1(x̂ij , k̂ij ) − v2(ŷij , k̂ij ) −
∣∣∣∣ x̂ij − ŷij

εij
− τ1n

∣∣∣∣2 − α(ζ(x̂ij ) + ζ(ŷij ))

≤ v1(x̂ij , k̂ij ) − v2(ŷij , k̂ij ) − α(ζ(x̂ij ) + ζ(ŷij )).(25)

Taking j → ∞ in (25) and invoking (24), we get

v1(x, k) − v2(x, k) ≤ v1(x
∗, k∗) − v2(x

∗, k∗) + nτ2 + 2αζ(x) − 2αζ(x∗)(26)

≤ 2αρ−1 sup
u∈Uk∗

|F (x∗, k∗, u)| · |ζ ′(x∗)|

+ ρ−1 sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)]

+ ρ−1A4(x
∗, x∗, k∗) + nτ2 + 2αζ(x) − 2αζ(x∗).(27)

By setting x = x∗ on both sides of (26), we have

v1(x
∗, k) − v2(x

∗, k) ≤ v1(x
∗, k∗) − v2(x

∗, k∗) + nτ2
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for all k ∈ Θ, which gives

A4(x
∗, x∗, k∗) =

∑
k �=k∗

πk∗k[v1(x
∗, k) − v1(x

∗, k∗)] −
∑
k �=k∗

πk∗k[v2(x
∗, k) − v2(x

∗, k∗)]

=
∑
k �=k∗

πk∗k

{
[v1(x

∗, k) − v2(x
∗, k)] − [v1(x

∗, k∗) − v2(x
∗, k∗)]

}
≤ nτ2

∑
k �=k∗

πk∗k = nτ2|πk∗k∗ |.

By use of the expression for ζ(x), it can be shown that

ρ−1 sup
k∈Θ

sup
u∈Uk

|F (x, k, u)| · |ζ ′(x)| ≤ ζ(x)

for all x ∈ R, and hence it follows from (27) that

v1(x, k) − v2(x, k) ≤ nτ2 + 2αζ(x) + ρ−1 sup
u∈Uk∗

[L1(x
∗, k∗, u) − L2(x

∗, k∗, u)]

+ ρ−1nτ2|πk∗k∗ |
≤ nτ2 + 2αζ(x) + ρ−1 sup

Q̄×Θ

sup
u∈Uk

[L1(x, k, u) − L2(x, k, u)]

+ ρ−1nτ2 max
k

|πkk|.

Taking τ → 0+ and then α → 0+, we get

v1(x, k) − v2(x, k) ≤ ρ−1 sup
Q̄×Θ

sup
u∈Uk

[L1(x, k, u) − L2(x, k, u)],

which completes the proof.

5. The value function as a constrained viscosity solution. In this section
we give an existence result by showing that the value function v associated with (1)
and (2) gives a constrained viscosity solution. Under Definition 1, we first need to show
that v(x, k) is continuous in x, which is rather technical with the state constraints
involved. To this end, we need some restrictions on the control set and the cost
integrand in this general model. Here we take the state space to be Q̄b, and the case
for Q̄a can be treated analogously.

5.1. Hölder continuity of the value function and existence theorem. For
deterministic systems, there has been a fair amount of work on continuity of infinite
horizon value functions with state constraints, and usually only uniform continuity
is proven; see [2] and references therein. By assuming a sufficiently large discount
factor, Lipschitz continuity was obtained in [16, 12]. The proof in [12] made use
of the viscosity sub/supersolution properties after showing that the value function is
continuous and is the unique viscosity solution, and this method was extended to prove
Hölder regularity in a state constrained diffusion model [13]. Here we take a different
approach to obtain Hölder continuity by recursive upper bound estimates. Unlike
[12, 16], our method does not involve the HJB equation and there is no restriction on
the discount factor.

Theorem 7. Suppose Q̄ = Q̄b, and (A1′)–(A2) hold. In addition, we assume
that:

(i) each Uk, k ∈ Θ, is equal to the same compact set U ⊂ R
m;
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(ii) there exist positive constants Ki < ∞, i = 1, 2, 3, such that

|F (x, u, k) − F (y, u, k)| ≤ K1|x− y|, ∀ x, y ∈ R
n, u ∈ U, k ∈ Θ,

sup
x∈Rn,u∈U,k∈Θ

|F (x, u, k)| ≤ K2, sup
x∈Rn,u∈U,k∈Θ

|L(x, u, k)| ≤ K3;

(iii) there exist a continuous function h : ∂Q̄ → U and constant β1 > 0 such that

Fi(x, h(x), k) ≥ β1(28)

for x ∈ ∂Q̄, k ∈ Θ and each i ∈ {1, . . . , n}, where ∂Q̄ denotes the boundary
of Q̄, and Fi is the ith component of F .

Then for the value function v defined in (2), we have the assertions:
(a) v is bounded and Hölder continuous on Q̄ (w.r.t. x), and
(b) v is a unique constrained viscosity solution to (5) within the function class

Cloc
p,Hol(Q̄× Θ).

Remark. The proof of continuity relies on a modifying procedure, which consists
of taking the control u = h(x̂) for a short period when hitting x̂ ∈ ∂Q̄ and switching
back to a shifted version of the original control. Condition (i) ensures the admissibility
of the modified control.

Remark. Condition (iii) is based on the idea of controllability on boundary ini-
tially due to Soner [22]; also see, e.g., [2, Chapter 5]. It means the state trajectory
can be lifted inward at the boundary points and may be relaxed to other forms. For
illustration, consider the example Q̄ = [0,∞)× [0,∞) and fix r > 0. Then in addition
to (28) being restricted on x ∈ ∂Q̄∩ {x, |x| ≤ r}, we may relax (iii) by only requiring
F1(x, h(x), k) ≥ β1 if x = (0, x2), where x2 ≥ r, and a similar requirement for F2 in
the case x = (x1, 0), x1 > r.

Remark. We establish uniqueness in the class Cloc
p,Hol(Q̄ × Θ), although v is

bounded.
For the value function v and r > 0, define

ν(r) = sup{|v(x, k) − v(y, k)| : |x− y| < r, and x, y ∈ Q̄, k ∈ Θ}.(29)

Before proving Theorem 7, we give the following lemma on Hölder continuity. The
proof is based on recursive estimation by gradually approaching the origin with small
intervals for r. As an interesting byproduct for deterministic problems, Lemma 8
implies that the uniform continuity results in [22, 2] may be strengthened to Hölder
regularity.

Lemma 8. For ν : (0,∞) → R defined in (29), suppose v is bounded and there
exist constants C > 0, 0 < α < 1, and D > 1 such that

ν(r) ≤ Cr + αν(Dr)(30)

for all r > 0, and let ε0 be selected to satisfy either case (i) 0 < ε0 < −(lnα)/(lnD)
and ε0 ≤ 1 or case (ii) ε0 = −(lnα)/(lnD) provided that −(lnα)/(lnD) < 1. Then v
is Hölder continuous on Q̄ with exponent ε0, i.e.,

sup
k∈Θ,x �=y

|v(x, k) − v(y, k)|
|x− y|ε0 < ∞.

Proof. Note that for sufficiently small ε0 > 0, it always satisfies case (i). It
is obvious that ν(r) monotonically increases with r > 0 and is bounded since v is
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bounded. For the estimate below, it suffices to restrict r to the interval (0, 1]. We
denote Ψ(r) = ν(r)r−ε0 , and it follows from (30) that

Ψ(r) ≤ Cr1−ε0 + αDε0Ψ(Dr).(31)

We take the decomposition (0, 1] = ∪∞
i=0Ii, where Ii = (D−(i+1), D−i]. It is clear that

supr∈I0 Ψ(r) < ∞ since v is bounded. For r ∈ (D−(i+2), D−(i+1)] and i ≥ 0, we have

Dr ∈ (D−(i+1), D−i], which in conjunction with (31) gives

sup
r∈Ii

Ψ(r) ≤ CD−(1−ε0)i + αDε0 sup
r∈Ii−1

Ψ(r), i ≥ 1.(32)

By iterating (32), it follows that

sup
r∈Ik

Ψ(r) ≤ C

k−1∑
i=0

D−(1−ε0)(k−i)(αDε0)i + (αDε0)k sup
r∈I0

Ψ(r).(33)

Denote Sk = C
∑k−1

i=0 D−(1−ε0)(k−i)(αDε0)i. For case (i), we have αDε0 < 1 and
Sk ≤ C

∑∞
i=0(αD

ε0)i = C(1 − αDε0)−1. For case (ii), we have αDε0 = 1, 1 − ε0 > 0,

and therefore Sk = C
∑k−1

i=0 D−(1−ε0)(k−i) < C(D1−ε0 − 1)−1.
Combining cases (i) and (ii), we see that the right-hand side of (33) is bounded

by a constant independent of k. Hence we conclude that

sup
k∈Θ,0<|x−y|≤1

|v(x, k) − v(y, k)|
|x− y|ε0 ≤ sup

r∈(0,1]

Ψ(r) < ∞,

for ε0 determined by either case (i) or case (ii), which implies the Hölder continuity
of v.

Remark. If αD < 1 holds, (30) implies Lipschitz continuity of v since we may
take ε0 = 1 for case (i).

5.2. Proof of Theorem 7. We begin by proving assertion (a), which is broken
into two steps.

Step 1. Let (z, k) ∈ Q̄× Θ be the initial condition at t = 0 and τk the first jump
time of θ(t) starting from k ∈ Θ. If k is an absorbing state of θ(t), we simply have
τk ≡ ∞. We write Uz,k as Uz since all Uk = U . Following the same method as in
[22, 2], we first show that there exist a small t∗ > 0 and a constant C1 > 0 such that
for all (z, k) ∈ Q̄× Θ and u adapted to Ft = σ(θ(s), s ≤ t), there is ū ∈ Uz such that

|Jt∗∧τk(z, k, u) − Jt∗∧τk(z, k, ū)| ≤ C1 sup
0≤t≤t∗∧τk

d(X(t, z, k, u), Q̄),(34)

where Jt∗∧τk =
∫ t∗∧τk
0

e−ρtL(X,u, θ)(t)dt with the initial condition (z, k) at t = 0,
X(t, z, k, u) is the state at time t associated with the initial condition (z, k) and
control u, and d(X(t, z, k, u), Q̄) denotes the distance between the state and Q̄ on
that particular sample ω.

For proving (34), we need to determine two constants t∗, κ > 0 below. Be-
fore proceeding to do so, we set t0 = τz,k,u ∧ t∗, where we define τz,k,u = inf{0 ≤
t ≤ t∗, X(t, z, k, u) ∈ ∂Q̄}, if X(t, z, k, u) reaches ∂Q̄ before t∗, or τz,k,u = t∗, if
X(t, z, k, u) ∈ Q for all t ≤ t∗, and ε = sup0≤t≤t∗∧τk

d(X(t, z, k, u), Q̄). Let u be any
control adapted to Ft. We construct the new control

û(t) = u(t)1[0,t0) + h(X(t0))1[t0,t0+κε] + u(t− kε)1(t0+κε,∞),(35)
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which is adapted to Ft. Below we will show that X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk
after t∗ and κ are appropriately chosen; by repeating this construction procedure on
successive small intervals covering [0,∞), we obtain ū ∈ Uz and ū ≡ û on [0, t∗ ∧ τk].
Once this is done, the nonemptiness of Uz and supQ̄×U×Θ |L(x, u, k)| < ∞ implies

that v is bounded on Q̄× Θ.
By uniform continuity of F (w.r.t. x), there exists δ > 0 such that Fi(z, h(z0), k) ≥

β1/2 provided that |z − z0| ≤ δ and z0 ∈ ∂Q̄.
We first make the restriction t∗ < δ/(2K2). If d(z, ∂Q̄) ≥ δ/2, then t0 = t∗

and X(t, z, k, u) ∈ Q for t ≤ t∗. Now it suffices to consider the case t0 = τz,k,u <
t∗ < δ/(2K2). It can be checked that |X(t, z, k, û) −X(t0, z, k, u)| ≤ δ, and therefore
Fi(X(t, z, k, û), h(X(t0, z, k, u)), θt) ≥ β1/2, 1 ≤ i ≤ n, for t ≤ t∗. It is obvious that
X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ (t0 + κε) by the construction of û; for the case
t∗ ∧ τk ≤ (t0 + κε), we immediately have X(t, z, k, û) ∈ Q̄ for t ≤ t∗ ∧ τk.

If t∗ ∧ τk > (t0 + κε), we apply a similar method as in [2, pp. 272–274] to show
that X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk. Indeed, for t0 + κε ≤ t ≤ t∗ ∧ τk, we may
write

X̂
(i)
t ≥ X

(i)
t0 +

β1

2
κε +

∫ t

t0+κε

Fi(X̂s, ûs, θs)ds

= X
(i)
t0 +

β1

2
κε +

∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds

+

∫ t

t0+κε

Fi(X̂s, ûs, θs)ds−
∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds,(36)

where X̂t = X(t, z, k, û), Xt = X(t, z, k, u), and we use the superscript i in X̂t,
Xt to denote the ith component in the vector. Recalling the construction of û for
t0 + κε ≤ t ≤ t∗ ∧ τk, we have

X
(i)
t0 +

∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds = X
(i)
t0 +

∫ t−κε

t0

Fi(Xs, us, θs+κε)ds

= X
(i)
t0 +

∫ t−κε

t0

Fi(Xs, us, θs)ds

= X
(i)
t−κε ≥ −ε,(37)

where the inequality in (37) holds by the definition of ε. On the other hand, by the
Lipschitz continuity of Fi, we have∣∣∣∣∫ t

t0+κε

Fi(X̂s, ûs, θs)ds−
∫ t

t0+κε

Fi(Xs−κε, ûs, θs)ds

∣∣∣∣
≤ K1

∫ t

t0+κε

|X̂s −Xs−κε|ds

≤ K1|X̂t0+κε −Xt0 |
∫ t

t0+κε

eK1(s−t0−κε)ds(38)

≤ |X̂t0+κε −Xt0 |(eK1(t−t0−κε) − 1) ≤ κεK2(e
K1(t−t0−κε) − 1),(39)

where (38) is obtained by estimating |X̂s −Xs−κε| via Gronwall inequality.
Hence for t0 + κε ≤ t ≤ t∗ ∧ τk, it follows from (36), (37), and (39) that

X̂
(i)
t ≥ β1

2
κε− ε− κεK2(e

K1(t−t0−κε) − 1).(40)
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We conclude that if we take t∗ = min{ 1
K1

ln( β1

4K2
+ 1), δ

3K2
} and κ = 4/β1, then

X̂t = X(t, z, k, û) ∈ Q̄ for all t ≤ t∗ ∧ τk. This completes the construction of û and
subsequently that of ū ∈ Uz. The inequality (34) is obtained by use of the boundedness
of L and simple integral estimates as in [2].

Step 2. Now we proceed to prove continuity of the value function. Let t∗ be
determined as above and |z − y| < r, where z, y ∈ Q̄. For any δ1 > 0, by the
optimality principle we may find u ∈ Uz such that

E[Jt∗∧τk(z, k, u) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, z, k, u), θt∗∧τk)] ≤ v(z, k) + δ1.

Based on u we construct ū ∈ Uy by use of (35). By basic estimates similar to those
in [2, pp. 274–275] we can show |X(t∗ ∧ τk, z, k, u) − X(t∗ ∧ τk, y, k, ū)| ≤ C2r and
|Jt∗∧τk(z, k, u) − Jt∗∧τk(y, k, ū)| ≤ C3r for constants C2 > 1, C3 > 0. Subsequently,
we get

v(y, k) − v(z, k) ≤ E[Jt∗∧τk(y, k, ū) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, y, k, ū), θt∗∧τk)]

− E[Jt∗∧τk(z, k, u) + e−ρ(t∗∧τk)v(X(t∗ ∧ τk, z, k, u), θt∗∧τk)] + δ1.

By arbitrariness of δ1 > 0, it follows that ν(r) ≤ C3r + Ee−ρ(t∗∧τk)ν(C2r). If k is

an absorbing state, we have 0 < Ee−ρ(t∗∧τk) = e−ρt∗ �
= α1 < 1; otherwise, τk is

exponentially distributed with the density function λke
−λkt on [0,∞), where λk =

−πkk > 0, and we have Ee−ρ(t∗∧τk) = λk/(λk + ρ)+ρe−(λk+ρ)t∗/(λk +ρ) ≤ 1−ρ(1−
e−ρt∗)/(λ∗ + ρ)

�
= α2 < 1, where λ∗ = maxk∈Θ{|πkk|}. Hence we obtain

ν(r) ≤ C3r + αν(C2r),(41)

where α = max{α1, α2} < 1 and C2 > 1. This leads to Hölder continuity of v by
Lemma 8.

For proving assertion (b), the verification of the constrained viscosity solution
property is similar to the state unconstrained case, and we omit the details here.
Uniqueness of the constrained viscosity solution follows from Theorem 3.

Remark. For brevity, we only give a detailed proof of existence in Theorem 11
which deals with a composite mode variable, and the steps there can be adapted to
this theorem in a straightforward manner to verify the constrained viscosity solution
property of the value function.

Remark. For the estimation in section 5.2, it is necessary to apply truncation by
the jump time τk; otherwise the derivation for (37) and (38) is invalid. Also note that
F in the dynamics and the cost integrand L are restricted to be bounded. With a
more general growth condition in x for F and L, the corresponding ODE estimates
will be more challenging.

6. An optimal scheduling problem. As an application of the results in sec-
tion 3, we consider a fluid buffer control problem for data traffic relay arising in
communication networks; relevant background information can be found in the wire-
less application work [10] and references therein. Suppose a relay buffer is deployed
to connect a source and a destination; see Figure 2. The incoming and outgoing links
are described by two continuous time independent finite state Markov chains y(t)
and z(t), indicating a certain channel quality. Suppose that y(t) and z(t) have state
spaces Sy = {1, . . . ,m1}, Sz = {1, . . . ,m2} and transition probability rate matrices
Πy = (pij)m1×m1

,Πz = (qij)m2×m2
, respectively.
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Fig. 2. The fluid buffer model.

Let X ≥ 0 denote the buffer level (number of data packets), and let ui, i = 1, 2,
be the transmission rate (packets per second) at the incoming and outgoing links,
respectively. Write the buffer level dynamics in the form:

dX(t)

dt
= [u1f1(y, u1) − u2f2(z, u2)](t)

�
= F (y, z, u)(t), t ≥ 0,(42)

subject to X ≥ 0. Here fi, i = 1, 2, is the success probability of transmission given the
link state y or z and rate ui, and u = [u1, u2]

T . Notice that the buffer level decrease
rate is only a fraction of u2 since a packet which fails to reach the destination is
not immediately deleted and will stay for retransmission. Furthermore, for limiting
interference, at a given time it is allowed to transmit at only one link, either the
incoming or the outgoing link [10].

We define the discounted utility function as

Jut(x, i, j, u) =(43)

E

[ ∫ ∞

0

e−ρt[F1(y, u1) + F2(z, u2) − λX](t)dt|X(0) = x, y(0) = i, z(0) = j

]
,

where ρ > 0, λ > 0, F1(y, u1)
�
= u1f1(y, u1), and F2(z, u1)

�
= u2f2(z, u2). The

term λX corresponds to a linear holding cost for the buffer level. The function
J0(y, u1, z, u2) = F1 + F2 is naturally interpreted as the instantaneous aggregate
utility of the buffer in successfully transporting infinitesimal traffic volume by one
hop—operating in either the receiving or the transmitting mode.

Let Ui = [Ri, R̄i], i = 1, 2, where 0 < Ri < R̄i < ∞. The control at a given time

is denoted as u = (u1, u2)
T ∈ U

�
= (U1 × {0}) ∪ ({0} × U2). Define the σ-algebra

Ft = σ(y(s), z(s), s ≤ t).
The objective for the optimal scheduling problem is to maximize Jut or, equiv-

alently, to minimize −Jut. Specializing the general formulation in section 2 to the
current setting, we denote the admissible control set Ux,i,j with the initial condition
(x, i, j) for (X(t), y(t), z(t)). Let v(x, i, j) denote the value function for minimiz-

ing J(x, i, j, u)
�
= −Jut(x, i, j, u), where x ∈ [0,∞), i ∈ Sy, and j ∈ Sz, and write

L(x, i, j, u) = −F1(i, u1)− F2(j, u2) + λx. The following assumption is used through-
out this section.

(A3) f1 (resp., f2) is a function mapping Sy × U1(resp., Sz × U2) → [0, 1] and is
continuous in u1 (resp., u2).

6.1. Existence and uniqueness of viscosity solutions. For a function ϕ(x, i, j)
continuous in x ∈ [0,∞), define the operator

[Πϕ(x, ·, ·)](i, j) =
∑
i′ �=i

pii′ [ϕ(x, i′, j) − ϕ(x, i, j)]

+
∑
j �=j′

qjj′ [ϕ(x, i, j′) − ϕ(x, i, j)],
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where Πy = (pij)m1×m1
and Πz = (qij)m2×m2

. For the value function v, we write the
HJB equation in the compact form:

ρv(x, i, j) = [Πv(x, ·, ·)](i, j) + inf
u∈U

[
vx(x, i, j)(F1(i, u1) − F2(j, u2)) + L(x, i, j, u)

]
= H(x, i, j, vx(x, i, j), v(x, ·, ·)).(44)

Notice that after introducing a new set of indices for the joint Markov chain
(y, z) with its associated transition probability rate matrix, (44) can be written in the
standard form in section 2. The details for such a conversion are omitted here. Before
proving that the value function v is a constrained viscosity solution to (44), we show
that v is continuous in x.

Lemma 9. Let 0 ≤ x̂ < x < ∞ be given and (y(0), z(0)) = (i, j) ∈ Sy × Sz be
fixed. For any u ∈ Ux,i,j, there exists û ∈ Ux̂,i,j such that

(i) supt≥0 |X̂(t) −X(t)| ≤ |x̂− x|, and
(ii) with probability one, we have∣∣∣ ∫ t

0

{
[F1(y, û1) − F1(y, u1)] + [F2(z, u2) − F2(z, û2)]

}
(s)ds

∣∣∣ ≤ 2|x̂− x|

for all t > 0, where X(t) and X̂(t) are, respectively, the solution associated with the
control u, û and the initial condition x, x̂.

Proof. For u ∈ Ux,i,j , let X(t, x̂, u) denote the state at time t with the initial
condition x̂ ≥ 0 and control u. Let τ1 = inf{t ≥ 0|X(t, x̂, u) = 0} and τ1 = ∞ on
{X(t, x̂, u) > 0, ∀ t ≥ 0}. Denote δ = |x − x̂|/(R̄1 + R̄2). We construct the control
u(1) as follows:

u(1)(t) =

⎧⎨⎩
u(t) for t < τ1,
[R̄1, 0]T for t ∈ [τ1, τ1 + δ),
u(t) for t ≥ τ1 + δ.

(45)

Suppose τk and u(k), k ≥ 1, have been constructed. Define τk+1 = inf{t ≥ τk +
δ|X(t, x̂, u(k)) = 0} on {τk < ∞}, τk+1 = ∞ on {τk = ∞} ∪ {τk < ∞, and
X(t, x̂, u(k)) > 0, ∀ t ≥ τk + δ}; define u(k+1) by setting (u, τ1) as (u(k), τk+1) on
the right-hand side of (45). This procedure may be terminated if the stopping time
τk at a certain stage k equals ∞ with probability one. Let û(t) = u(k)(t) for t ≤ τk+1,
and it can be shown that this gives a well-defined control on [0,∞) and û ∈ Ux̂,i,j .

In (46) below, X(t) and X̂(t) are associated with u and û, respectively. By the
construction of û, it is easy to check that X̂(t) −X(t) ≥ −|x̂− x| for all t ≥ 0. Now
we show that for all t ≥ 0, X̂(t) −X(t) ≤ |x̂ − x|, which obviously holds for t ≤ τ1.
Suppose t ∈ [τk, τk+1). Since 0 = X̂(τk) ≤ X(τk), we have

X̂(t) −X(t) = X̂(τk) +

∫ t

τk

(F̂1 − F̂2)(s)ds−X(τk) −
∫ t

τk

(F1 − F2)(s)ds

≤
∫ t∧(τk+δ)

τk

(F̂1 − F̂2)(s)ds−
∫ t∧(τk+δ)

τk

(F1 − F2)(s)ds

=

∫ t∧(τk+δ)

τk

(F̂1 − F1)(s)ds +

∫ t∧(τk+δ)

τk

(F2 − F̂2)(s)ds

≤ R̄1δ + R̄2δ = |x̂− x|,(46)
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where we denote F1 = F1(y, u1), F̂1 = F1(y, û1), F2 = F2(z, u2), etc. Hence
supt≥0 |X̂(t) −X(t)| ≤ |x̂− x|, and (i) follows. On the other hand, we have

X̂(t) −X(t) = x̂− x +

∫ t

0

[(F̂1 − F1) + (F2 − F̂2)](s)ds.(47)

By use of (47) and (i) we get

sup
t≥0

∣∣∣ ∫ t

0

[(F̂1 − F1) + (F2 − F̂2)](s)ds
∣∣∣ ≤ sup

t≥0
|X̂(t) −X(t)| + |x̂− x| ≤ 2|x̂− x|,

and (ii) follows.
Lemma 10. The value function v(x, i, j) is Lipschitz continuous with respect to

x ∈ [0,∞).
Proof. Take 0 ≤ x̂ < x. We need to estimate |v(x̂, i, j)− v(x, i, j)|. For any ε > 0,

there exists uε ∈ Ux,i,j such that v(x, i, j) ≤ J(x, i, j, uε) ≤ v(x, i, j) + ε. Based on
uε, we construct ûε ∈ Ux̂,i,j satisfying (i) and (ii) in Lemma 9. Using the same set of

notation as in (46) and noticing F̂1 − F1 ≥ 0, F2 − F̂2 ≥ 0, we have∣∣∣∣∫ ∞

0

e−ρt(F̂1 + F̂2)dt−
∫ ∞

0

e−ρt(F1 + F2)dt

∣∣∣∣
=

∣∣∣∣∫ ∞

0

e−ρt(F̂1 − F1)dt +

∫ ∞

0

e−ρt(F̂2 − F2)dt

∣∣∣∣
≤

∣∣∣∣∫ ∞

0

e−ρt(F̂1 − F1)dt +

∫ ∞

0

e−ρt(F2 − F̂2)dt

∣∣∣∣
≤

∣∣∣∣∫ ∞

0

[(F̂1 − F1) + (F2 − F̂2)]dt

∣∣∣∣ ≤ 2|x̂− x|,(48)

where the last inequality follows from Lemma 9(ii).
By (48) and Lemma 9(i), we can check that

|J(x̂, i, j, ûε) − J(x, i, j, uε)| ≤ 2|x̂− x| + E

∫ ∞

0

e−ρtλ|X̂(t) −X(t)|dt

≤ (2 + λ/ρ)|x̂− x|.

Hence v(x̂, i, j) ≤ v(x, i, j) + ε + (2 + λ/ρ)|x̂ − x|. On the other hand, suppose ûε

has been found such that J(x̂, i, j, ûε) ≤ v(x̂, i, j) + ε; then obviously ûε ∈ Ux,i,j , and
we can verify that J(x, i, j, ûε) ≤ J(x̂, i, j, ûε) + (λ/ρ)|x̂ − x| and hence v(x, i, j) ≤
v(x̂, i, j) + ε + (λ/ρ)|x̂− x|.

Thus |v(x̂, i, j)− v(x, i, j)| ≤ (2 + λ/ρ)|x̂− x|+ ε. Since ε > 0 is arbitrary, we get
|v(x̂, i, j) − v(x, i, j)| ≤ (2 + λ/ρ)|x̂− x|, and the lemma follows.

Theorem 11. The value function v : [0,∞)×Sy×Sz → R is a unique constrained
viscosity solution to (44) in the function class Cloc

p,Lip([0,∞) × Sy × Sz).
Proof. See the appendix.

7. Application to stochastic manufacturing systems. In this section we
consider production rate control involving n machines in a tandem queue with n− 1
buffers between neighboring machines. The associated optimal control problem has
been well studied in the stochastic manufacturing literature; see [20, 21]. Let the
system model be given as

dX(t)

dt
= (Au + Bz)(t), t ≥ 0,(49)
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where X ∈ R
n, u ∈ R

n
+, and z ∈ R+, and

A =

⎡⎢⎢⎢⎣
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
0 0 0 · · · 1

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
0
...
0
−1

⎤⎥⎥⎥⎦ .

Here all upper subdiagonal entries in A are −1. The state space for X is Q̄
�
=

[0,∞)n−1 × (−∞,∞). Notice that the last component in X is the inventory level
of the final product, which may be negative and accordingly interpreted as backlog.
The first n− 1 entries in X denote the buffer levels and hence are nonnegative. The
variable z denotes a finite state Markov chain describing the random demanding rate.
The cost function to be minimized is of the form

J(x, k, z, u) = E

[ ∫ ∞

0

e−ρtL(X(t), u(t))dt|X(0) = x, k(0) = k, z(0) = z

]
,

where (x, k, z) is the initial condition. Here k(t) ∈ R
n is vector Markov process with

discrete values describing the machine capacity. Let the state space and generator
for (k, z) be denoted by C × D and Π, respectively. For the initial condition (x, k, z),
the admissible control set Ux,k,z consists of controls such that (i) u(t) is adapted to
Ft = σ(k(s), z(s), s ≤ t), (ii) 0 ≤ u(t) ≤ k(t) (holding entrywise), and (iii) X(t) ∈ Q̄
at all times t ≥ 0. We also assume

|L(x, u) − L(x′, u′)| ≤ C(1 + |x|d + |x′|d)(|x− x′| + |u− u′|),

where d > 0 is a constant. For a given mode k(t) = k = (k1, . . . , kn) ∈ C, let the
machine capacity region be denoted by Uk = {u = (u1, . . . , un)T |0 ≤ ui ≤ ki, i =
1, . . . , n}. Let v(x, k, z) be the value function associated with the cost J(x, k, z, u)
and the admissible control set Ux,k,z. The interested reader is referred to [20, Chapter
4] for a detailed account of this class of problems.

We write the HJB equation

ρv(x, k, z) = inf
u∈Uk

[
vx(x, k, z)(Au + Bz) + [Πv(x, ·, ·)](k, z) + L(x, u)

]
,(50)

where (x, k, z) ∈ Q̄× C ×D and Πv(x, ·, ·) is determined in an obvious manner. Set

H̃(x, k, z, vx(x, k, z), v(x, ·, ·), u) = vx(x, k, z)(Au + Bz) + [Πv(x, ·, ·)](k, z) + L(x, u).

Then (50) may be written in the compact form:

ρv(x, k, z) = inf
u∈Uk

H̃(x, k, z, vx(x, k, z), v(x, ·, ·), u)

�
= H(x, k, z, vx(x, k, z), v(x, ·, ·)), (x, k, z) ∈ Q̄× C ×D.(51)

Now we apply the results in section 3 and characterize the value function as the
unique constrained viscosity solution to (51).

Theorem 12. The value function v : Q̄ × C × D → R is the unique constrained
viscosity solution to the HJB equation (51) in the function class Cloc

p,Lip(Q̄× C ×D).
Proof. The continuity and growth estimates have been given in [20, Chapter

4]. The viscosity sub/supersolution properties for v under Definition 1 can be verified
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by a similar method as in proving Theorem 11, and uniqueness follows from
Theorem 3.

It is worthwhile to note that within our solution notion, for x on the boundary
of Q̄, the right-hand side of (50) is calculated by minimizing over Uk, and the state
space constraint is not explicitly involved, which differs from [20, pp. 65–71] in dealing
with state constraints. The key reason here is that the viscosity subsolution property
is specified only on Q, and by use of this slightly weaker specification, we can still
establish uniqueness on Q̄ owing to the continuity of the solution.

8. Concluding remarks. In this paper we study optimal control of a class of
stochastic hybrid systems with state space constraints. The notion of constrained
viscosity solutions is introduced. We establish a comparison theorem for the subso-
lution and supersolution, and under some mild conditions for the general model, the
value function is characterized as the unique constrained viscosity solution to the HJB
equation. The uniqueness result obtained in the general setting is further applied to
a communication buffer model and a standard manufacturing system.

For future research, it is of interest to generalize the state constrained viscosity
solution analysis to systems with switch cost. To gain some motivation, we consider
the fluid communication buffer model in section 6. Intuitively, a high buffer level will
produce a high holding cost, and on the other hand, a very low buffer level limits the
controller in choosing a more beneficial action. Hence, with a certain combination of
values for the buffer level x and mode variable (y, z), the control may switch rapidly
between positive u1 and positive u2 in order to attain or approximate the optimal
cost. This leads to the so-called chattering effect, which is undesirable in practical
applications. We note that this kind of chattering may also occur in manufacturing
systems where the machine’s operation switches between the production of multiple
products [20]. It is of interest to develop numerical methods to identify the critical
buffer levels where chattering may occur. Furthermore, for chattering avoidance,
an effective means is to introduce a switch cost, and then one needs to deal with
quasi-variational inequalities [3, 4] instead of a usual HJB equation. A detailed study
of optimization and numerical computation of these hybrid systems with both state
space constraints and switch cost will be reported in future work.

Appendix. Proof of Theorem 11.
It is obvious that v ∈ Cloc

p,Lip([0,∞) × Sy × Sz). It suffices to show that v
is a constrained viscosity solution, and uniqueness follows from Theorem 3 since
Cloc

p,Lip([0,∞) × Sy × Sz) ⊂ Cloc
p,Hol([0,∞) × Sy × Sz).

We give the proof by carrying out elementary estimates. Denote Q̄ = [0,∞) and
Q = (0,∞). After suitably labeling, we may denote the joint process (y(t), z(t)) by
an equivalent integer-valued Markov chain θ(t) with state space P = {1, 2, . . . ,m}
containing m = m1 ×m2 entries, and let the associated generator for θ(s) be Πθ =
(πij)m×m. All of our estimates below may easily translate into a form in terms of the
process (y, z), and we omit the details. First, we show v is a subsolution on Q × P.
The functions v(x, k), L(x, k, u), and F (k, u), k ≥ 1 (instead of v(x, i, j), etc.), are
used in an obvious manner. For any given k0 ∈ P, suppose v(x, k0) − φ(x) attains a
local maximum at x0 ∈ Q in a neighborhood Nx0

⊂ Q, where φ ∈ C1(Q̄). Without
loss of generality, we assume v(x0, k0) = φ(x0), since otherwise φ(x) may be replaced
by φ(x)−φ(x0)+v(x0, k0). It is easy to check that v(x, k0) ≤ v(x0, k0)−φ(x0)+φ(x)
for all x ∈ Nx0 .
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For a given initial state x0 ∈ Q and any ū ∈ U , there exist a sufficiently small
interval [0, δ] and an admissible control ũ defined on [0,∞) such that ũ(t) ≡ ū on
[0, δ] and x(t) ∈ Nx0 for all 0 < t ≤ δ. For the given x0, δ > 0 may be selected
independently of the control. Let τ be the first jump time of θ(t) with initial state
k0 ∈ P. If k0 is nonabsorbing, τ has an exponential probability density function
|πk0k0

|eπk0k0
t, t ≥ 0. The estimates below are applicable to both nonabsorbing and

absorbing k0. By the dynamic programming principle, for h ∈ (0, δ), we have

φ(x0) = v(x0, k0) ≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(X(h), θ(h))

≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(X(h), θ(h))1(h<τ)

+ Ee−ρhv(X(h), θ(h))1(h≥τ)

≤ E

∫ h

0

e−ρsL(X, θ, ũ)(s)ds + Ee−ρhv(x0, k0)1(h<τ)

+ Ee−ρh[φ(X(h)) − φ(x0)]1(h<τ) + Ee−ρhv(X(h), θ(h))1(h≥τ)

�
= I1 + I2 + I3 + I4.(A.1)

It is easy to obtain the estimates

I1 = L(x0, k0, ū)h + o(h),

I2 = [1 − ρh + o(h)]v(x0, k0)e
πk0k0

h

= v(x0, k0) − ρv(x0, k0)h + v(x0, k0)πk0k0
h + o(h),

I3 = Ee−ρh[φ(X(h)) − φ(x0)] − Ee−ρh[φ(X(h)) − φ(x0)]1(h≥τ)

= φx(x0)F (k0, ū)h + o(h) + O
((

E|φ(X(h)) − φ(x0)|2 · E|1(h≥τ)|2
) 1

2

)
= φx(x0)F (k0, ū)h + o(h),

I4 = Ee−ρhv(x0, θ(h))1(h≥τ) + Ee−ρh[v(X(h), θ(h)) − v(x0, θ(h))]1(h≥τ)

= Ee−ρhv(x0, θ(h))1(h≥τ)

+ O
((

E|v(X(h), θ(h)) − v(x0, θ(h))|2 · E|1(h≥τ)|2
) 1

2

)
= Ee−ρhv(x0, θ(h))1(h≥τ) + o(h)(A.2)

= h
∑
k �=k0

πk0kv(x0, k) + o(h),

where (A.2) is obtained by the continuity of v with respect to x. Recalling v(x0, k0) =
φ(x0), we get

0 ≤ I1 + I2 + I3 + I4 − φ(x0)

= L(x0, k0, ū)h− ρv(x0, k0)h + v(x0, k0)hπk0k0

+ φx(x0)F (k0, ū)h + h
∑
k �=k0

πk0kv(x0, k) + o(h)

= −ρv(x0, k0)h + φx(x0)F (k0, ū)h + h
∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)]

+ L(x0, k0, ū)h + o(h)
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since πk0k0
+
∑

k �=k0
πk0,k = 0. Letting h → 0, we get the desired inequality for the

viscosity subsolution since ū is arbitrary.
Now we show v is also a viscosity supersolution. Suppose there exists a neighbor-

hood Nx0 such that v(x, k0) − φ(x) attains a local minimum at x0 ∈ Nx0 ∩ Q̄ for a
given k0 ∈ P; for any given ε > 0, we can find a sequence of admissible controls u(i),
i ≥ 1, such that

v(x0, k0) +
ε

i
≥ E

∫ 1
i

0

e−ρsL(X, θ, u(i))(s)ds + Ee−
ρ
i v(X( 1

i ), θ(
1
i ))

�
= I1 + I2 + I3 + I4,(A.3)

where we express the right-hand side by use of the same set of notation Ii, 1 ≤ i ≤ 4,
as in (A.1) with ũ replaced by u(i). Now we give the estimates as follows:

I1 + I3 = E

∫ 1
i

0

e−ρsL(x0, k0, u
(i))(s)ds + Ee−

ρ
i [φ(X( 1

i )) − φ(x0)] + o

(
1

i

)
= E

∫ 1
i

0

L(x0, k0, u
(i))(s)ds + E[φ(X( 1

i )) − φ(x0)] + o

(
1

i

)
= E

∫ 1
i

0

[L(x0, k0, u
(i)) + φx(X)F (k0, u

(i))](s)ds + o

(
1

i

)
= E

∫ 1
i

0

[L(x0, k0, u
(i)) + φx(x0)F (k0, u

(i))](s)ds + o

(
1

i

)
≥ 1

i
inf
u∈U

[L(x0, k0, u
(i)) + φx(x0)F (k0, u

(i))] + o

(
1

i

)
,(A.4)

I2 + I4 = v(x0, k0) −
ρ

i
v(x0, k0) +

1

i

∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)] + o

(
1

i

)
,(A.5)

where the higher order term o( 1
i ) is derived via basic estimates using the dynamics

of X(t) and the Markov chain θ(t) and holds uniformly with respect to ε. Taking
i → ∞, it follows from (A.3)–(A.5) that

ρv(x0, k0) + ε ≥ inf
u∈U

{
φx(x0)F (k0, ū) +

∑
k �=k0

πk0k[v(x0, k) − v(x0, k0)] + L(x0, k0, ū)
}
.

Since ε > 0 is arbitrary, it follows that v is a viscosity supersolution on Q̄× P.
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EQUATION ON HILBERT SPACE AND OPTIMAL CONTROL∗
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Abstract. This paper deals with optimal feedback control of measure-valued solutions of non-
linear diffusion governed by McKean–Vlasov equations. Questions of existence, uniqueness, and reg-
ularity properties of measure-valued solutions are addressed. A class of feedback controls furnished
with a weak topology is introduced, and some important topological properties of the attainable set
corresponding to these controls are presented. We consider several typical control problems with
objective functionals which are functions of measures and prove the existence of optimal controls.
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1. Introduction. Let H be a separable Hilbert space, let P(H) the space of
probability measures defined on B(H) (the Borel field of subsets of H), and let Ck(H)
the space of k-times Fréchet differentiable functions on H. In this paper we consider
the control problem associated to a measure-valued function μt described by the
following McKean–Vlasov equation (written in weak form) in P(H):

(1)

{
d
dt 〈μt, ϕ〉 = 〈μt, L

u(μt)ϕ〉 t ∈ [0, T ],
μ0 = ν ∈ P(H) initial data,

where ϕ ∈ C(H) is a smooth test function, u : I × H → E is a control law, and
{Lu(μ) : μ ∈ P} is a family of second-order differential operators on C2(H) defined
by

(2) Lu(μ)ϕ(x) =
1

2
Tr(QD2ϕ) + (A∗Dϕ, x) + (f(x, μ), Dϕ) + (g(x, u), Dϕ),

where A : D(A) ⊂ H −→ H is the infinitesimal generator of a C0 semigroup of
bounded linear operators S(t), t ≥ 0 on H; f : H×P(H) −→ H and g : H×E −→ H
are suitable maps where E is a separable Banach space. The operator Dk denotes the
Fréchet derivative of order k = 1, 2, . . . . We shall make more precise assumptions on
f and g later.

Under suitable conditions as shown in section 3, for each given initial data ν ∈
P(H) and control u, (1) has a unique measure-valued solution {μu

t : t ∈ [0, T ]}. One
of the control problems studied in this paper can be stated as follows: Find a feedback
control law u so that the corresponding cost functional J defined by

(3) J(u) ≡ Φ(μu
T )

is minimum, where Φ is a given real-valued function on P(H).
Three physically motivated examples are presented in section 5 illustrating the

practical relevance of the theory developed in this paper. In general, motivations
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for studying such control problems are twofold. First, control problems related to
measure-valued functions are very interesting both mathematically and practically,
and there are very few papers in the literature focusing on this area. For finite
dimensional systems see [2]. Second, the above problem arises quite naturally in the
study of stochastic control for nonlinear diffusion processes described by the following
Ito stochastic equation in H:

(4)

⎧⎨⎩
dXt = AXtdt + f(Xt, μt)dt + g(Xt, u(t,Xt))dt +

√
QdW t ∈ [0, T ],

μt = probability law of Xt,
X0 = ξ has initial distribution ν,

where W is a H-valued cylindrical Wiener process, and ξ is a given H-valued random
variable. For instance, one may be interested in finding a feedback control u to
minimize the quantity

(5) E(C(Xu
T )),

where Xu
T denotes the value at time T of the solution process of (4) corresponding to a

feedback control law u, and C is a given cost function. Using the Yosida approximation
of the operator A and Ito’s formula, it is easy to verify that the probability distribution
of the solution process Xu satisfies the controlled McKean–Vlasov equation (1), and
the cost functional (5) is a special case of (3) with Φ(μ) = 〈μ,C〉. Another interesting
situation is where the terminal probability distribution is required to approximate as
closely as possible to a desired (target) probability measure μd. In this case Φ may be
chosen as

Φ(μ) ≡ dP (μ, μd),

where dP is the Prohorov metric on P(H) or any other metric compatible with the
weak topology. Since A is generally an unbounded operator, (1) needs delicate treat-
ment. This can be done using the Ornstein–Uhlenbeck semigroup generated by the
Gaussian process Y , which is given by the solution of the linear SDE

dY (t) = AY (t)dt +
√

QdW (t), t ∈ I,

Y (0) ≡ Y0 = x.(6)

Let ϕ ∈ BC(H) (space of bounded continuous real-valued functions on H) and define
the transition (operator) semigroup Pt, t ≥ 0, through the conditional expectation,

(Ptϕ)(x) ≡ E{ϕ(Yt)|Y0 = x}, t ≥ 0.

It is clear that this is a contraction semigroup on B(H) (bounded Borel measurable
functions with the supnorm topology) but not strongly continuous. This is because A
is generally an unbounded operator. It is known from a result of Da Prato and Zabczyk
[3, 5] that if A is the generator of an exponentially stable C0 semigroup S(t), t ≥ 0
on H, and Q is a nuclear operator in H (or more generally supt≥0 TrQt < ∞, where

Qt ≡
∫ t

0
S(r)QS∗(r)dr), then there exists an invariant measure μ∗ associated with

the operator Pt in the sense that

μ∗(Ptϕ) = μ∗(ϕ) ∀ ϕ ∈ B(H) and t ≥ 0,

where μ(ψ) ≡
∫
H
ψ(x)μ(dx). Using this invariant measure one can construct the

Hilbert space L2(H,μ∗) ⊃ B(H). Then the semigroup Pt admits a continuous exten-
sion to the Hilbert space L2(H,μ∗) which we shall continue to denote by the same
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symbol Pt, t ≥ 0. The corresponding infinitesimal generator is the closed extension of
the original generator A of the Markov process {Y }, where

Aϕ(x) ≡ (1/2)Tr(D2ϕ(x)Q) + (A∗Dϕ(x), x).(7)

We denote the closed extension by A itself. We introduce two other operators associ-
ated with (1) as follows:

F (μ)ϕ(x) ≡ 〈f(x, μ), Dϕ(x)〉H , G(u)ϕ(x) ≡ 〈g(x, u), Dϕ(x)〉H(8)

for x ∈ H and ϕ ∈ C1(H). Then (1) can be written in the weak form as follows:

d

dt
μt(ϕ) = μt(Aϕ) + μt(F (μt)ϕ) + μt(G(u)ϕ),(9)

μ0(ϕ) = ν(ϕ).

Using the adjoint of the Ornstein–Uhlenbeck semigroup and the variation of constants
formula, we can formulate the problem (9) as an integral equation

μt = P ∗
t ν +

∫ t

0

P ∗
t−sF

∗(μs)μsds +

∫ t

0

P ∗
t−sG

∗(us)μsds, t ∈ I(10)

on the space Mλ2(H). A solution of this equation (if one exists) is the mild solution
of (9). We use this integral equation throughout the paper.

The McKean–Vlasov equation has been studied extensively in the literature start-
ing from McKean himself [14], Dawson [6], Gärtner [11], Dawson and Gärtner [7],
Léonard [13], Funaki [10], Ahmed and Ding [1, 2], and others (see the references
therein). For linear diffusions in finite dimensional spaces, control theory is well de-
veloped as seen in Fleming [8] and Fleming and Soner [9]. Recently Mahmudov and
McKibben [16] have considered a class of second-order evolution equations of the
McKean–Vlasov type on Hilbert space proving the existence of solutions including
some controllability results. Optimal control problems for nonlinear diffusions of the
McKean–Vlasov type seem to have been treated only for finite dimensional systems
[2]. To the knowledge of the author infinite dimensional problems seem to be un-
touched. Here we consider optimal control problems for nonlinear diffusions of the
McKean–Vlasov type on infinite dimensional Hilbert spaces.

The rest of the paper is organized as follows. Basic notations and function spaces
are introduced in section 2. In section 3, questions of the existence of solutions and
their regularity properties are addressed. In section 4, some necessary topological
properties of attainable sets are presented, and questions of existence of optimal con-
trols for several control problems are studied.

2. Some basic notations. Define λ(x) ≡ 1 + |x|H = (1 + |x|) and introduce
the family of Banach spaces

Cρ(H) ≡
{
ϕ ∈ C(H) :‖ ϕ ‖ρ≡ sup

x∈H

|ϕ(x)|
λ2(x)

+ sup
x�=y

|ϕ(x) − ϕ(y)|
|x− y| < ∞

}
,(11)

Cλk(H) ≡
{
ϕ ∈ C(H) :‖ ϕ ‖λk≡ sup

x∈H

|ϕ(x)|
λk(x)

< ∞
}
, k = 1, 2, . . . ,(12)

and

C1
λ(H) ≡

{
ϕ ∈ C(H) :‖ ϕ ‖C1

λ
≡ sup

x∈H

|ϕ(x)|
λ(x)

+ sup
x∈H

|Dϕ(x)|H
λ(x)

< ∞
}
.(13)



OPTIMAL CONTROL OF MCKEAN–VLASOV DIFFUSION 359

It is easy to see that the embeddings C1
λ ↪→ Cλ ↪→ Cλ2 are continuous and that the

embedding Cλ ↪→ Cλ2 is continuous and dense.
For 1 ≤ p < ∞, let Ms

λp(H) denote the Banach space of signed Borel measures
on B(H) such that

‖ μ ‖pλp≡
∫
H

λp(x)|μ|(dx) < ∞,

and set Mλ2(H) ≡ Ms
λ2(H) ∩ P(H), where |μ|(C), C ∈ B(H), denotes the total

variation of μ over C, |μ| = μ1 +μ2 and μ = μ1−μ2 is the Jordan decomposition of μ,
with μ1, μ2 being bounded positive measures. We furnish Mλ2(H) with the following
metric topologies:

(M1) : ρ(μ, ν) ≡ sup{〈μ− ν, ϕ〉, ϕ ∈ Cρ(H) and ‖ ϕ ‖ρ≤ 1};(14)

and

(M2) : ρ∗(μ, ν) ≡ sup{〈μ− ν, ϕ〉, ϕ ∈ Cλ2(H) and ‖ ϕ ‖Cλ2 (H)≤ 1}.(15)

Note that

ρ(μ, ν) ≤ ρ∗(μ, ν) ∀ μ, ν ∈ Mλ2(H).

Since solutions of (9) are expected to be functions of time taking values from the
space of measures Mλ2(H), we need the topological spaces C(I, (Mλ2(H), ρ)) and
C(I, (Mλ2(H), ρ∗)). It is easy to see that these are metric spaces with respect to the
metric topologies: d(μ, ϑ) ≡ sup{ρ(μt, ϑt), t ∈ I} and d∗(μ, ϑ) ≡ sup{ρ∗(μt, ϑt), t ∈
I}. Later in the paper we will have to consider a family of such metric spaces indexed
by the end point of the interval [0, τ ], 0 < τ ≤ T. We shall denote such spaces by

(Cτ , d) ≡ C([0, τ ], (Mλ2(H), ρ)), (Cτ , d
∗) ≡ C([0, τ ], (Mλ2(H), ρ∗)),

with d, d∗ restricted to the time interval [0, τ ]. So in this notation the original spaces
are denoted by (CT , d) and (CT , d

∗), respectively. These function spaces were used in
[1, 2].

3. Existence and regularity of solutions. First we introduce the class of
admissible controls. Let E be a separable Banach space and denote Bλ(H,E) to be
the class of Borel measurable maps from H to E. Furnished with the norm topology

|u|λ ≡ sup

{
|u(x)|E
λ(x)

, x ∈ H

}
,

this is a Banach space. Let B(I,Bλ(H,E)) denote the space of bounded Borel mea-
surable functions from the interval I to the Banach space Bλ(H,E). Again, furnished
with the sup norm topology

‖ u ‖λ≡ sup
{
|u(t, ·)|λ ≡ |ut|λ, t ∈ I

}
,

B(I,Bλ(H,E)) is also a Banach space. Note that B(I,Bλ(H,E)) is isometrically
isomorphic with the space Bλ(I ×H,E) of Borel measurable functions on I ×H with
values in E and furnished with the norm topology given by

‖ u ‖Bλ(I×H,E)≡ sup

{
|u(t, x)|E

λ(x)
, (t, x) ∈ I ×H

}
.

Later, for purposes of optimal controls, we will introduce a weaker topology on the
Banach space Bλ(I ×H,E).
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Assumptions. The basic assumptions used in the paper are the following.
Assumption 1. A is the generator of an exponentially stable C0 semigroup of

operators S(t), t ≥ 0, on H, and Q is a positive nuclear operator so that supt≥0 TrQt <

∞, where Qt ≡
∫ t

0
S(r)QS∗(r)dr is the covariance operator of the Orstein–Uhlenbeck

process Y.

Assumption 2. For all t ≥ 0, ImS(t) ⊂ ImQ
1/2
t , and there exists a constant c > 0

and α ∈ [0, 1) so that ‖ B(t) ‖≡‖ Q
−1/2
t S(t) ‖≤ c/tα, t > 0.

Assumption 3. f : H × (Mλ2(H), ρ) −→ H satisfying the following properties:
There exist �, k > 0 such that

(i): |f(x, μ)|H ≤ �(1 + |x|+ ‖ μ ‖λ), ∀ x ∈ H,μ ∈ (Mλ2(H), ρ),

(ii): |f(x, μ) − f(y, ν)| ≤ k
(
|x− y| + ρ(μ, ν)

)
∀x, y ∈ H,μ, ν ∈ (Mλ2(H), ρ).

Assumption 4. g : H × E −→ H satisfying the following properties: There exist
L,K > 0 such that

(i): |g(x, u)| ≤ L(1 + |x| + |u|E), ∀ x ∈ H,u ∈ E,

(ii): |g(x, u) − g(y, v)| ≤ K(|x− y| + |u− v|E), ∀ x, y ∈ H and u, v ∈ E.

These are natural variations used in [1, 2] of standard assumptions used in the
study of stochastic differential equations; see Da Prato and Zabczyk [3, 4, 5]. The
first part of Assumption 2 is equivalent to null controllability of the linear system
ẋ = Ax+

√
Qu and the strong Feller property of the semigroup Pt, t ≥ 0. The second

part can be relaxed by simply requiring the function to be locally integrable. The
first part of the assumption guarantees the existence of a unique invariant measure
μ∗ for the transition semigroup Pt, t ≥ 0. For more details see Da Prato and Zabczyk
[5, section 7.2]. Now we are prepared to prove the existence of a solution to (9). First
we need an a priori bound.

Lemma 3.1. Suppose Assumptions 1–4 hold and let μ be a solution of (9) (weak
sense) corresponding to a control u ∈ Bλ(I ×H,E) and the initial state ν ∈ Mλ2(H).
Then for each t ∈ I, μt ∈ Mλ2(H), and there exists a finite number R > 0 such that
‖ μt ‖Mλ2 (H)≤ R for all t ∈ I.

Proof. First we replace the unbounded operator A by its Yosida approximation
An ≡ nAR(n,A), where R(n,A) is the resolvent of the operator A corresponding to
n ∈ ρ(A)∩N , with ρ(A) being the resolvent set of A. Then let μn be the corresponding
weak solution of (9)n(≡ (16)), which is given by

d

dt
μn
t (ϕ) = μn

t (Anϕ) + μn
t (F (μn

t )ϕ) + μn
t (G(u)ϕ),(16)

μn
0 (ϕ) = ν(ϕ),

where An is the operator A given by the expression (7) with A replaced by An.
Let {ei} ⊂ D(A) be a complete orthonormal basis of H. Take ϕi(x) ≡ (x, ei)

2 and
substitute in (17). By straightforward computation, one can verify that∑

i≥1

μn
t (ϕi) =

∑
i≥1

(Qn
t ei, ei) ≡ Tr(Qn

t ),

∑
i≥1

μn
t (Anϕi) =

∑
i≥1

(Qei, ei) + 2

∫
H

∑
i≥1

{(ei, x)(ei, Anx)}μn
t (dx)

= TrQ +

∫
H

(Anx, x), μn
t (dx),
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∑
i≥1

μn
t (F (μn

t )ϕi) = 2

∫
H

∑
i≥1

(f(x, μn
t ), ei)(x, ei)μ

n
t (dx),

= 2

∫
H

(f(x, μn
t ), x)μn

t (dx),

∑
i≥1

μn
t (G(u)ϕi) = 2

∫
H

∑
i≥1

(g(x, ut), ei)(x, ei)μ
n
t (dx)

= 2

∫
H

(g(x, ut), x)μn
t (dx).

Substituting these in (17), we obtain the following identity:

d

dt
Tr(Qn

t ) = TrQ +

∫
H

(Anx, x)μn
t (dx)

+ 2

∫
H

(f(x, μn
t ), x)μn

t (dx) + 2

∫
H

(g(x, u), x)μn
t (dx),

TrQn
0 = TrQν ,(17)

where Qν is given by

(Qνh, h) ≡
∫
H

(h, x)2ν(dx).(18)

Since A is dissipative, it is not difficult to verify that its Yosida approximation An is
also dissipative. Integrating (17) and employing the dissipativity property of An we
obtain the following inequality:

TrQn
t ≤ TrQν + t TrQ + 2

∫ t

0

∫
H

(f(x, μn
s ), x)μn

s (dx)ds

+2

∫ t

0

∫
H

(g(x, us), x)μn
s (dx)ds.(19)

Using Assumption 3(i), one can easily verify that

2

∣∣∣∣∫
H

(f(x, μn
s ), x)μn

s (dx)

∣∣∣∣ ≤ 2�(1 + 3Tr(Qn
s )), s ∈ I.(20)

Since u ∈ Bλ(I ×H,E) there exists a finite positive number ru such that

|us(x)|E ≤ ruλ(x) = ru(1 + |x|), ∀ x ∈ H, s ∈ I.

Using this and Assumption 4(i), one can again verify that

2

∣∣∣∣∫
H

(g(x, us), x)μn
s (dx)

∣∣∣∣ ≤ L(1 + ru)(1 + 3TrQn
s ).(21)

Defining a1 ≡ 2� + L(1 + ru), a2 ≡ 6� + 3L(1 + ru), it follows from (19)–(21) that

TrQn
t ≤ TrQν + tTrQ + a1t + a2

∫ t

0

TrQn
s ds.(22)
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Hence by Gronwall’s lemma we obtain

TrQn
t ≤ a3 exp a2t, t ∈ I,(23)

where a3 ≡ TrQν + T (a1 + TrQ). Since the right-hand side of this expression is
independent of n we have supn≥1 Tr(Qn

t ) < ∞. In other words,

sup
n≥1

∫
H

|x|2Hμn
t (dx) < ∞.(24)

Thus if μu
t , t ∈ I, is any solution of (9) corresponding to any admissible control u, we

have

‖ μu
t ‖λ2 ≡

∫
H

λ2(x)μu
t (dx) ≤ 2(1 + TrQu

t )

≤ 2(1 + a3 exp a2T ) ≡ R < ∞, ∀ t ∈ I = [0, T ],(25)

where the constant R depends on the data {T, u,Qν , Q}. This completes the
proof.

Corollary 3.2. Suppose the assumptions of Lemma 3.1 hold, and let Λ ≡
{μn} ⊂ (CT , d

∗) be the family of probability measure-valued functions with μn solving
the McKean–Vlasov equation (9)n = (16) over the time interval [0, T ]. Then each
t-section of Λ denoted by Λ(t) is a relatively weakly compact subset of Mλ2(H).

Proof. By Lemma 3.1 the set Λ is a bounded subset of (CT , d
∗). Thus each t-

section Λ(t) ≡ {μn
t : μn ∈ Λ} is a bounded subset of Mλ2(H). We have also seen

that for each t ∈ I, supn TrQn
t < ∞ for all positive integers n. Thus the family of

covariance operators {Qn
t }(∈ L+

N (H) the space of positive nuclear operators) are nu-
clear uniformly with respect to n. This means that Λ(t) is tight and hence a relatively
weakly compact subset of Mλ2(H).

Now we are prepared to prove the existence and uniqueness of the solution of (9).
We prove that it has a mild solution in the sense that the integral equation (10) has a
solution. In our paper [1, Ahmed and Ding] the stochastic method, involving the Ito
stochastic differential equation, was used to prove the existence of the solution. Here
we use a direct analytic approach.

Theorem 3.3. Suppose the assumptions of Lemma 3.1 hold. Then for every
initial data ν ∈ Mλ2(H) and control u ∈ Bλ(I × H,E), (10) has a unique solution
μ ≡ μu ∈ C(I, (Mλ2(H), ρ∗)).

Proof. We use the integral equation (10) to prove existence. Let γ ∈ (CT , d
∗),

u ∈ Bλ(I ×H,E) be fixed but arbitrary and consider the integral equation

μt = P ∗
t ν +

∫ t

0

P ∗
t−sF

∗(γs)μsds +

∫ t

0

P ∗
t−sG

∗(us)μsds, t ∈ I.(26)

This is a linear integral equation on Mλ2(H), and it is relatively easy to verify that
this equation has a unique solution μ ∈ (CT , d

∗). We present a brief outline of this.
Define the operator Γ by

(Γμ)t ≡ P ∗
t ν +

∫ t

0

P ∗
t−sF

∗(γs)μsds +

∫ t

0

P ∗
t−sG

∗(us)μsds, t ∈ I.(27)
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We show that Γ has a unique fixed point in (CT , d
∗). Let μ, ϑ ∈ (CT , d

∗); then

(Γμ)t − (Γϑ)t =

∫ t

0

P ∗
t−s

(
F ∗(γs)(μs − ϑs)

)
ds

+

∫ t

0

P ∗
t−s

(
G∗(us)(μs − ϑs)

)
ds, t ∈ I.(28)

It is known from a result of Ahmed and Ding [1, Lemma 1(b), p. 79] that

Pt : Cλ(H) −→ C1
λ(H)

and that there exists a constant b > 0 such that

‖ Pt ‖L(Cλ(H),C1
λ(H)≤ b/tα, t > 0,

where α ∈ [0, 1) is as given in Assumption 2. Thus P ∗
t : (C1

λ(H))∗ −→ (Cλ(H))∗, and

‖ P ∗
t ‖L((C1

λ(H))∗,(Cλ(H))∗)≤ b/tα

also. Since Cλ(H) is dense in Cλ2(H), we have

‖ Γμt − Γϑt ‖(Cλ(H))∗= ρ∗(Γμt,Γϑt).

Using this and the preceding estimate it follows from (28) that

ρ∗(Γμt,Γϑt) ≤
∫ t

0

(b/(t− s)α) ‖ (F ∗(γs)(μs − ϑs) ‖(C1
λ)∗ ds

+

∫ t

0

(b/(t− s)α) ‖ (G∗(us)(μs − ϑs) ‖(C1
λ)∗ ds.(29)

Following similar steps as in [1] and using the fact that ρ(μ, ϑ) ≤ ρ∗(μ, ϑ) we find that

|〈F ∗(γs)μs − F ∗(γs)ϑs, ϕ〉| ≤ b2ρ
∗(μs, ϑs) ‖ ϕ ‖C1

λ(H),(30)

where b2 ≡ �(1 + R), and R ≡ sup{|γs|λ, s ∈ I}. Since γ ∈ (CT , d
∗), R < ∞. Hence

we conclude that

‖ (F ∗(γs)(μs − ϑs) ‖(C1
λ)∗ ≤ b2 ρ∗(μs, ϑs).(31)

Similarly, considering the second term in (29) we find that

|〈G∗(us)μs −G∗(us)ϑs, ϕ〉| =

∣∣∣∣∫
H

(g(x, us), Dϕ)(μs − ϑs)(dx)

∣∣∣∣
≤ L(1 + ru)ρ∗(μs, ϑs)|ϕ|C1

λ(H).(32)

Hence we have

|G∗(us)μs −G∗(us)ϑs|(Ci
λ)∗ ≤ b3 ρ∗(μs, ϑs),(33)

where b3 ≡ L(1+ru). Defining b4 ≡ b(b2 + b3) it follows from (29), (31), and (33) that

ρ∗(Γμt,Γϑt) ≤ b4

∫ t

0

(1/(t− s)α)ρ∗(μs, ϑs)ds, t ∈ I.(34)
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By successive substitution of (34) into itself, after n steps one finds that, for t ∈ I,

ρ∗(Γnμt,Γ
nϑt)

≤ bn4

n−1∏
m=1

β(1 − α,m(1 − α))

∫ t

0

(t− s)n(1−α)−1ρ∗(μs, ϑs)ds,(35)

where β(p, q) denotes the standard beta function. Using this expression, one can
deduce that

d∗(Γnμ,Γnϑ) ≤ ηn d∗(μ, ϑ),(36)

where ηn is given by the product

ηn ≡
(
bn4T

n(1−α)/n(1 − α)
) n−1∏
m=1

β(1 − α,m(1 − α)).

For sufficiently large n, we have ηn < 1, and hence the operator Γn is a contraction
on (CT , d

∗). Thus by the Banach fixed point theorem Γn and hence Γ has a unique
fixed point. This proves the existence of a unique mild solution of the linear integral
equation (26) for every given γ ∈ (CT , d

∗) and u ∈ Bλ(I×H,E). Now we are prepared
to prove the existence of the solution of the nonlinear integral equation (10). For fixed
initial data ν ∈ Mλ2(H) and u ∈ Bλ(I ×H,E), consider the map

γ −→ μγ ≡ Ψ(γ)

from (CT , d
∗) to itself. This is the solution map determined by (26). Clearly it follows

from the proof given above that this map is uniquely defined. For the proof of the
existence of the solution of the nonlinear problem (10) it suffices to prove the existence
of a fixed point of the operator Ψ. Let γ, θ ∈ (CT , d

∗), and let μγ ≡ Ψ(γ), μθ ≡ Ψ(θ)
denote the unique solutions of the following integral equations:

μγ
t = P ∗

t ν +

∫ t

0

P ∗
t−sF

∗(γs)μ
γ
sds +

∫ t

0

P ∗
t−sG

∗(us)μ
γ
sds, t ∈ I,(37)

μθ
t = P ∗

t ν +

∫ t

0

P ∗
t−sF

∗(θs)μ
θ
sds +

∫ t

0

P ∗
t−sG

∗(us)μ
θ
sds, t ∈ I.(38)

Since γ, μγ , θ, μθ ∈ (CT , d
∗) there exists a positive number R (not necessarily the same

R as used previously) such that

sup{‖ γt ‖Mλ2 , ‖ μγ
t ‖Mλ2 , ‖ θt ‖Mλ2 , ‖ μθ

t ‖Mλ2 , t ∈ I} ≤ R.

Subtracting (38) from (37) we obtain

μγ
t − μθ

t =

∫ t

0

P ∗
t−s

(
F ∗(γs)μ

γ
s − F ∗(θs)μ

θ
s

)
ds

+

∫ t

0

P ∗
t−sG

∗(us)(μ
γ
s − μθ

s)ds, t ∈ I.(39)

Using (39) and carrying out similar computations as in the first part of the proof, we
obtain

‖
(
F ∗(γs)μ

γ
s − F ∗(θs)μ

θ
s

)
‖(C1

λ)∗ ≤ �(1 + |γs|λ)ρ∗(μγ
s , μ

θ
s) + k|μθ

s|λρ∗(γs, θs)
≤ �(1 + R)ρ∗(μγ

s , μ
θ
s) + kRρ∗(γs, θs),(40)
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‖
(
G∗(us)[μ

γ
s − μθ

s]
)
‖(C1

λ)∗≤ L(1 + |us|λ)ρ∗(μγ
s , μ

θ
s),(41)

and hence

ρ∗(μγ
t , μ

θ
t ) ≤

∫ t

0

(C1/(t− s)α)ρ∗(γs, θs)ds

+

∫ t

0

(C2/(t− s)α)ρ∗(μγ
s , μ

θ
s)ds(42)

for t > 0, where C1 = bKR and C2 = b{�(1 + R) + L(1+ ‖ u ‖λ)}. For any τ ∈ (0, T ]
and any �, σ ∈ (CT , d

∗), define

d∗τ (�, σ) ≡ sup{ρ∗(�s, σs), 0 ≤ s ≤ τ}.

Using this notation, one can readily deduce from (42) that

d∗τ (μ
γ , μθ) ≤ C3(τ)d∗τ (γ, θ) + C4(τ)d∗τ (μ

γ , μθ),(43)

where

C3(τ) = (C1/(1 − α))τ1−α, C4(τ) = (C2/(1 − α))τ1−α.

Since α ∈ [0, 1), it is clear that C3 and C4 are positive, increasing, and continuous
functions of τ ∈ I starting from C3(0) = C4(0) = 0. Hence there exists a τ1 ∈ (0, T ]
such that

C3(τ1) < (1/2), C4(τ1) < (1/2).

For such a choice of τ1, there exists a κ ∈ (0, 1) such that (43) reduces to

d∗τ1(Ψ(γ),Ψ(θ)) ≡ d∗τ1(μ
γ , μθ) ≤ κ d∗τ1(γ, θ).(44)

Thus the map Ψ is a contraction on the metric space (Cτ1 , d
∗
τ1), and hence it has a

unique fixed point μo ∈ (Cτ1 , d
∗
τ1). Clearly μo

τ1 ∈ Mλ2(H). Starting with ν = μo
τ1 and

continuing this process with the integral equation

μt = P ∗
t−τ1μ

o
τ1 +

∫ t

τ1

P ∗
t−sF

∗(μs)μsds +

∫ t

τ1

P ∗
t−sG

∗(us)μsds

for t ∈ (τ1, T ], again we can find a nonempty interval (τ1, τ2] on which the above
equation has a unique solution. If τ2 ≥ T, the process terminates; otherwise, it is
continued. Since I is a compact interval, the process terminates in a finite number
of steps. Piecing together the solutions constructed on each of the subintervals as
indicated above, we obtain a unique solution μo defined for the entire interval I. Thus
we have proved the existence of a unique solution of our original problem. We may
denote this solution by μo ≡ μu to indicate its dependence on the control. This
completes the proof.

Remark. Under an additional assumption we can prove that w − limt↓0 μ
o
t = ν.

Indeed, suppose the assumptions of Theorem 3.3 hold and ν is absolutely continu-
ous with respect to the invariant measure μ∗ with the Radon–Nikodým derivative
dν/dμ∗ = h∗ ∈ L2(H,μ∗). Then the solution of (10) satisfies the property

w − lim
t↓0

μo
t = ν.
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4. Optimal control. First we introduce a weak topology on the Banach space
Bλ(I ×H,E). We recall our assumption that H is a separable Hilbert space and E
is any separable Banach space. A sequence {un} is said to converge weakly to an
element u ∈ Bλ(I ×H,E) if and only if for every η ∈ Bλ(I ×H,E∗) and ϑ ∈ (CT , d

∗)
we have ∫

I×H

〈un(t, x) − u(t, x), η(t, x)〉ϑt(dx)dt −→ 0.

Note that any weakly convergent sequence in the sense of the topology introduced
above has a unique limit. Let U be a closed convex subset of E and r a finite positive
number. Consider the set

U0 ≡
{
u ∈ Bλ(I ×H,E) : u(t, x) ∈ U ∀ (t, x) ∈ I ×H,

and ‖ u ‖λ≤ r < ∞
}
.

We assume that it is furnished with the relative weak topology. Since U is a closed
convex set, it follows from the Hahn–Banach theorem that U0 is weakly (sequentially)
closed. For admissible controls we choose a weakly compact subset Uad of the set U0.

For control problems considered in this paper we restrict ourselves to system (9)
with g given by

g(x, u) = g1(x) + g0(x)u,

where g1 : H −→ H and g0(x) ∈ L(E,H), with

sup
x∈H

{‖ g0(x) ‖L(E,H)} ≤ K0 < ∞.

Since g1 can be included in f , without loss of generality we may assume that g1 = 0.
In this case the operator G(u) is replaced by

G0(u)ϕ = (g0u,Dϕ)H = 〈u, g∗0Dϕ〉E,E∗ .

In other words the system is linear in control. Let Lk(E,H) denote the class of
compact operators from E to H, a subset of the space of bounded linear operators
L(E,H). We introduce the following additional assumption on the operator-valued
function g0:

Assumption 5. g0 : H −→ Lk(E,H) is bounded Borel measurable satisfying

sup{‖ g0(x) ‖L(E,H), x ∈ H} ≤ K0.

Control problems. Throughout this section we consider the system (9) replaced
by the following system:

d

dt
μt(ϕ) = μt(Aϕ) + μt(F (μt)ϕ) + μt(G0(u)ϕ),(45)

μ0(ϕ) = ν(ϕ),

where G0 takes the place of the operator G. We are interested in the following control
problems.
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Problem 1. Find a control u ∈ Uad that minimizes the functional

J(u) ≡ Ψ(μu
T ),

where Ψ is a real-valued function on Mλ2(H) and μu is the mild solution of system
equation (45) corresponding to the control u.

Problem 2. Find a control u ∈ Uad that maximizes the functional

J(u) ≡ F (μu
t1(ϕ1), μ

u
t2(ϕ), . . . , μu

tm(ϕm)),

where F : Rm −→ R, {ti, i = 1, 2, . . . ,m} are distinct points from the interval I,
and {ϕi, i = 1, 2, . . . ,m} are elements of BC(H), the space of bounded continuous
functions on H.

Problem 3. Find a control u ∈ Uad that minimizes the functional

J(u) ≡
∫
I×H

{
�0(t, x, μ

u
t ) + |ut(x)|E

}
μu
t (dx)dt,(46)

where μu is the mild solution of the system equation (45) corresponding to the control
u ∈ Uad. Here �0 : I ×H ×Mλ2(H) −→ R is the cost integrand.

In order to prove the existence of optimal controls we must prove that the attain-
able sets are closed. Denote by Ξ the family of (probability) measure-valued functions
which are solutions of (45) corresponding to the admissible set of controls Uad. This
is denoted by

Ξ ≡ {μu ∈ (CT , d
∗), μu solves (45) : u ∈ Uad}.

Similarly, for each t ∈ I, define the attainable set as being the set of states in Mλ2(H)
described by the system (45) at time t as u describes the set Uad. This is given by the
t-section

Ξ(t) ≡ {μu
t : μu ∈ Ξ}

of the set Ξ. For attainable sets we have the following result.
Theorem 4.1. Consider the system (45) with the admissible controls Uad as

introduced above, and suppose that the assumptions of Theorem 3.3 hold and that
the operator-valued function g0 satisfies the hypothesis 5. Then for each t ∈ I, the
attainable set Ξ(t) is a weakly compact subset of Mλ2(H).

Proof. We prove that the set Ξ(t) is bounded and a relatively (weakly) compact
subset of Mλ2(H). The proof is then concluded by demonstrating that it is also weakly
closed. Considering the question of boundedness, it follows from Lemma 3.1 that

sup{TrQu
t , t ∈ I} ≤ a3 exp a2T,(47)

where

a3 = TrQν + T (a1 + TrQ), a1 = 2� + L(1 + ru), a2 = 6� + 3�(1 + ru)

and

ru =‖ u ‖λ≡ sup{|u(t, x)|E/λ(x) : (t, x) ∈ I ×H}.

By our choice of the set of admissible controls we have

sup{ru, u ∈ Uad} ≤ r.
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Hence all of the parameters {a1, a2, a3} are bounded above by a finite positive number,
and therefore there exists a finite positive number R̃ such that

sup
u∈Uad

sup
t∈I

{TrQu
t } ≤ R̃.(48)

From this estimate two conclusions can be drawn. Since

‖ μu
t ‖Mλ2 (H)≤ 2(1 + TrQu

t )

it follows from (48) that

sup
u∈Uad

sup
t∈I

‖ μu
t ‖Mλ2 (H)≤ 2(1 + R̃).

This shows that the set Ξ and each of its t-sections Ξ(t) are bounded. Since, for each
t ∈ I,

sup
u∈Uad

Tr(Qu
t ) ≤ R̃,

the family of covariance operators {Qu
t , u ∈ Uad} is a compact subset of the space

L+
N (H) (the space of positive, symmetric, nuclear operators on H). Then it follows

from a well-known result on weak compactness of a subset of the space of probability
measures on Hilbert spaces [12, Theorem 2, p. 377] that the set Ξ(t) is relatively weakly
compact. For compactness we must prove that it is weakly closed. Let σn ∈ Ξ(t) with
weak limit σo. We show that σo ∈ Ξ(t). Since σn ∈ Ξ(t), there exists an admissible
control un ∈ Uad and the corresponding (unique) mild solution μn ∈ (CT , d

∗) of
Equation (10) with G replaced by G0 (see Equation (45)) such that σn = μn

t . Since
Uad is weakly compact, there exists a subsequence of the sequence {un}, relabeled as

the original sequence, and an element uo ∈ Uad so that un τw−→ uo. Let μo ∈ (CT , d
∗)

denote the solution of (10) corresponding to the control uo. We show that μn
t

ρ∗

−→ μo
t .

It follows from (10) that

〈(μn
t − μo

t ), ϕ〉 =

∫ t

0

〈
[
F ∗(μn

s )μn
s − F ∗(μo

s)μ
o
s)
]
, Pt−sϕ〉ds

+

∫ t

0

〈
[
G∗

0(u
n
s )μn

s −G∗
0(u

o
s)μ

o
s)
]
, Pt−sϕ〉ds.(49)

We split this into several parts as follows:

〈(μn
t − μo

t ), ϕ〉 =

∫ t

0

∫
H

〈(f(x, μn
θ ) − f(x, μo

θ), DPt−θϕ〉μn
θ (dx)dθ

+

∫ t

0

∫
H

〈f(x, μo
θ), DPt−θϕ〉(μn

θ − μo
θ)(dx)dθ

+

∫ t

0

∫
H

〈g0u
n
θ , DPt−θϕ〉(μn

θ − μo
θ)(dx)dθ

+

∫ t

0

∫
H

〈un
θ − uo

θ, g
∗
0DPt−θϕ〉μo

θ(dx)dθ.(50)

Following similar computations as in the first part of the proof of Theorem 3.3, it
follows from (50) that for each t ∈ I we have

ρ∗(μn
t , μ

o
t ) ≤

∫ t

0

(C/(t− θ)α)ρ∗(μn
θ , μ

o
θ)dθ + En(t),(51)
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where the constant C is dependent only on the parameters {�, k, r, R̃, b,K0, T}, and
the function En is given by

En(t) ≡ sup{en(t, ϕ) : ϕ ∈ B1(Cλ(H))},

with en given by

en(t, ϕ) =

∫ t

0

∫
H

〈un
θ − uo

θ, g
∗
0DPt−θϕ〉E,E∗μo

θ(dx)dθ.(52)

It is well known that a bounded linear operator is compact if and only if its adjoint
is compact. Thus g∗0(x) is compact for each x ∈ H, and hence g∗0 : H −→ Lk(H,E∗).
Since un converges weakly to uo, g∗0(x) is compact, and Pt : Cλ(H) −→ C1

λ(H), it
follows from (52) that

en(t, ϕ) −→ 0 uniformly with respect to ϕ ∈ B1(Cλ(H)).

Hence for any t ∈ I we have

lim
n→∞

En(t) = 0.(53)

Using (53) in (51) one can easily verify that for any t ∈ I

lim
n→∞

d∗t (μ
n, μo) = 0.(54)

Thus, in particular, μn
t

w−→ μo
t . This, combined with the uniqueness of the weak limit,

implies the identity σo = μo
t and therefore σo ∈ Ξ(t) and so Ξ(t) is weakly closed.

Thus for each t ∈ I the attainable set Ξ(t) is a weakly compact subset of Mλ2(H).
This completes our proof.

The question of continuity of the map u −→ μu is very important in the study of
control problems. As a corollary of the previous result we have the following result.

Corollary 4.2. For the system (45), the solution map u −→ μu is sequentially
continuous with respect to the weak topology on Bλ(I ×H,E) and the metric topology
on C(I,Mλ2(H), ρ∗)).

Proof (outline). Let un ∈ Bλ(I × H,E), and suppose it converges to uo ∈
Bλ(I ×H,E) in the weak topology with μn and μo being the corresponding solutions
of (45). Then following similar steps as in the preceding theorem one arrives at the
same expression (51) leading to the conclusion (54). Since this is valid for every t ∈ I
and d∗ = d∗T , we have

lim
n→∞

d∗(μn, μo) −→ 0.

This completes the outline of the proof.
Now we consider the following terminal control problem.
Problem 1. Find u ∈ Uad that minimizes the functional

J(u) ≡ Ψ(μu
T ).

Theorem 4.3. Consider the system (45) and suppose the assumptions of Theo-
rem 4.1 hold. Let Ψ be a weakly lower semicontinuous function on Mλ2(H) and

inf{Ψ(μ), μ ∈ Ξ(T )} > −∞.

Then there exists an optimal control that solves Problem 1.
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Proof. By hypothesis inf{Ψ(μ), μ ∈ Ξ(T )} ≡ m0 > −∞. Let {νn}, from the
attainable set Ξ(T ), be a minimizing sequence for Ψ. Since this set is compact in
the weak topology, there exists a subsequence of the sequence {νn}, relabeled as the

original sequence, and an element νo ∈ Ξ(T ) so that νn
w−→ νo. Now it follows from

lower semicontinuity of Ψ and the minimizing property of the sequence {νn} that

Ψ(νo) ≤ limn→∞Ψ(νn) = lim
n→∞

Ψ(νn) = m0.

Since νo ∈ Ξ(T ), it is evident that Ψ(νo) ≥ m0. Combining the above inequalities we
obtain Ψ(νo) = m0. Thus Ψ attains its minimum on Ξ(T ). Since Ξ(T ) is the attainable
set, there exists a control uo ∈ Uad so that the corresponding solution μuo

has the
terminal value μuo

T = νo. This proves the existence of an optimal control.
Examples. Some simple examples of Ψ are the following.
Example 1. Ψ(μ) =

∫
H
V (x)μ(dx) for V ∈ Cλ2(H).

Example 2. Ψ(μ) ≡ μ(D), where D is any open set in H.
Example 3. Ψ(μ) ≡ ρ∗(μd, μ), where μd is the target measure. Clearly this is a

continuous function.
Another control problem of similar nature is the following.
Problem 2. Find a control that maximizes the functional

J(u) ≡ F (μu
t1(ϕ1), μ

u
t2(ϕ2), . . . , μ

u
tm(ϕm)),

where {t1, t2, . . . , tm} are distinct points from the set I, {ϕi, i = 1, 2, . . .m} are ele-
ments of BC(H), and

μ(ϕ) ≡
∫
H

ϕ(x)μ(dx), μ ∈ Mλ2(H).

Theorem 4.4. Consider the system (45) with the control problem 2, and suppose
the assumptions of Theorem 4.1 hold. Let F : Rm −→ R be an upper semicontinuous
function bounded on bounded sets and {ϕi} ∈ BC(H). Then Problem 2 has a solution.

Proof. Upper semicontinuity of F on Rm implies upper semicontinuity of J on
Uad in the weak topology. This follows from similar arguments as in the proof of
Theorem 4.3 for a single index T. Since F is bounded on bounded sets of Rm and
sup{|μu

t (ϕi)|, u ∈ Uad} < ∞ for each t ∈ I, we have

sup{J(u), u ∈ Uad} < ∞.

The existence of optimal control now follows from weak compactness of the set of
admissible controls Uad and upper semicontinuity of J .

One physical interpretation of Problem 2 is that it demands a control that max-
imizes the probability of visiting (or hitting) certain sites at specified points of time.
Considering nonnegative functions {ϕi}, the sites are determined by the supports of
the functions {ϕi}.

Now we consider the Lagrange problem 3.
Theorem 4.5. Consider the system (45) and the Lagrange problem 3, and sup-

pose the assumptions of Theorem 4.1 hold with the exception that E is now a separable
Hilbert space. Further suppose �0 : I ×H ×Mλ2(H) −→ R is a nonnegative map sat-
isfying the following conditions: There exists a positive number L0 such that

(C1): |�0(t, x, ν) − �0(t, x, ϑ)| ≤ L0 ρ∗(ν, ϑ) ∀‘ν, ϑ ∈ Mλ2(H), (t, x) ∈ I ×H;
(C2): |�0(t, x, ν)| ≤ L0

(
λ2(x) + |ν|2λ

)
∀ (t, x) ∈ I ×H, and ν ∈ Mλ2(H);
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(C3): ν −→ �0(t, x, ν) is lower semicontinuous on (Mλ2(H), ρ∗) for all (t, x) ∈
I ×H.

Then there exists an optimal control for the Lagrange problem 3.
Proof. Since Uad is weakly compact and J(u) ≥ 0 for all u ∈ Uad, it suffices to

prove that the functional u −→ J(u), as given by (46), is lower semicontinuous. Let
{un} be a sequence of controls from Uad which converges in the weak topology to an
element uo ∈ Uad, and let {μn} and μo denote the corresponding (mild) solutions of
(45) associated with the controls {un} and uo, respectively. It follows from Corollary

4.2 that, along a subsequence if necessary, μn d∗
−→ μo. Since {μn} is a convergent

sequence and μo ∈ (CT , d
∗), there exists a finite positive number R (not necessarily

the same as the previous ones) such that

sup{|μn
t |λ2 , |μo

t |λ2 , t ∈ I} ≤ R.

Consider the objective functional (46) decomposed into two parts J(u) ≡ J1(u)+J2(u)
evaluated at uo. Focusing on the first part, we can rewrite this as follows:

J1(u
o) =

∫
I×H

�0(t, x, μ
o
t )(μ

o
t − μn

t )(dx)dt

+

∫
I×H

(
�0(t, x, μ

o
t ) − �0(t, x, μ

n
t )
)
μn
t (dx)dt + J1(u

n).(55)

Denoting the first term on the right by J1,1 and the second by J1,2, it is easy to verify
that

|J1,1| ≤ L0(1 + R2)

∫
I

ρ∗(μn
t , μ

o
t ) dt,(56)

|J1,2| ≤ L0R

∫
I

ρ∗(μo
t , μ

n
t ) dt.(57)

By Corollary 4.2, weak convergence of un to uo implies d∗ convergence of μn to μo.
Thus ρ∗(μn

t , μ
o
t ) −→ 0 for each t ∈ I. Further, as seen in Theorem 4.1, the set Ξ is

bounded, and hence there exists a finite positive number R̂ such that ρ∗(μn
t , μ

o
t ) ≤ 2R̂

for all n ∈ N and for all t ∈ I. Hence by the Lebesgue dominated convergence theorem∫
I

ρ∗(μn
t , μ

o
t )dt −→ 0 as n → ∞.(58)

Clearly it follows from (55)–(58) that

J1(u
o) ≤ lim infn→∞J1(u

n).(59)

Now consider the part J2 evaluated at uo given by

J2(u
o) ≡

∫
I×H

|uo
t (x)|E μo

t (dx)dt.(60)

By the Riesz representation theorem for Hilbert spaces, there exists a Borel measur-
able function vot (x) such that |vot (x)|E = 1 for all (t, x) ∈ I × H. In fact one can
choose

vot (x) =

{
uo
t (x)/|uo

t (x)| if |uo
t (x)|E �= 0,

0 otherwise.
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Clearly this is a Borel measurable function since uo is. Thus J2 can be written as

J2(u
o) ≡

∫
I×H

〈uo
t (x), vot (x)〉E μo

t (dx)dt

=

∫
I×H

〈uo
t (x) − un

t (x), vot (x)〉E μo
t (dx)dt

+

∫
I×H

〈un
t (x), vot (x)〉E (μo

t − μn
t )(dx)dt

+

∫
I×H

〈un
t (x), vot (x)〉E μn

t (dx)

≡ J2,1 + J2,2 + J2,3.(61)

Since un τw−→ uo, the first term converges to zero as n → ∞. For the second term, it
follows from boundedness of the set Uad that

|J2,2| ≤ r

∫
I

ρ∗(μo
t , μ

n
t )dt.(62)

Hence again by the dominated convergence theorem we have∫
I

ρ∗(μn
t , μ

o
t )dt −→ 0 as n → ∞.(63)

For the third term we have

|J2,3| ≤ J2(u
n).(64)

Combining (60)–(63) we find that

J2(u
o) ≤ lim inf

n→∞
J2(u

n).(65)

Thus it follows from (59) and (65) that

J(uo) ≤ lim inf
n→∞

J(un),

and hence the functional J given by (46) is weakly lower semicontinuous on Uad. This
completes the proof.

Another control problem of significant interest is to find a control that maximizes
the probability of following a moving (set-valued) target as closely as possible. Let
Υ(t) ⊂ H denote a set-valued function (target). The problem is to find a control that
maximizes the objective functional given by

J(u) ≡
∫
I

w(t) μu
t (Υ(t))dt,(66)

where w is a nonnegative weighting function.
Theorem 4.6. Consider the system (45), and let t → Υ(t) be a nonempty set-

valued function with closed values in H and continuous in the Hausdorff metric, and
let w be a continuous nonnegative real-valued function. Then there exists a control
uo ∈ Uad at which J(u) given by (66) attains its maximum.

Proof. Clearly

0 ≤ J(u) ≤
∫
I

w(t)dt < ∞.
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Thus it suffices to prove that J is upper semicontinuous. Let {un} ∈ Uad, and suppose

un τw−→ uo. Since Uad is τw compact, uo ∈ Uad. Let {μn, μo} denote the corresponding

solutions of (45). Then by Corollary 4.2, along a subsequence if necessary, μn d∗
−→ μo.

Since Υ(t) is closed-valued and μn
t

w−→ μo
t it follows from [15, Theorem 6.1, p. 40]

that

lim sup
n→∞

μn
t (Υ(t)) ≤ μo

t (Υ(t)) ∀ t ∈ I.

Since w is nonnegative, it follows from the above inequality that

lim sup
n→∞

w(t)μn
t (Υ(t)) ≤ w(t)μo(Υ(t)) ∀ t ∈ I

also. Hence

lim sup
n→∞

∫
I

{w(t)μn
t (Υ(t))}dt ≤

∫
I

lim sup
n→∞

{w(t)μn
t (Υ(t))}dt

≤
∫
I

{w(t)μo
t (Υ(t))}dt.(67)

Clearly it follows from the definition of J (see (66)) and the inequality (67) that

lim sup
n→∞

J(un) ≤ J(uo),

proving upper semicontinuity of J. Hence there exists an admissible control maximiz-
ing J. This completes the proof.

Remark 1. Theorem 4.6 holds under much more general conditions than those
stated. For example, w ∈ L+

1 (I) and t −→ Υ(t) a measurable multifunction with
closed values.

Remark 2. Assuming continuity of the multifunction t −→ Υ(t) from I to 2H \ ∅
we can also admit J of the form

J(u) ≡
∫
I

μu
t (Υ(t)) ρ(dt)

provided ρ is a countably additive bounded positive measure on I having bounded
total variation. For example, ρ may be given by a weighted sum of a finite number of
Dirac measures.

Time optimal control is another interesting topic. Let μd ∈ Mλ2(H) be a target
measure, and suppose

μd ∈
⋃

0≤t<∞
Ξ(t);

that is, the system is controllable in finite time.
Problem 4. The problem is to find a control uo ∈ Uad such that μd = μuo

τo and
μu
t �= μd for any t < τo and any u ∈ Uad. In other words, uo is the time optimal

control and τo is the optimal time.
Theorem 4.7. Consider the system (45), suppose the assumptions of Theorem

4.1 hold, let μd(�= ν) ∈ Mλ2(H), and suppose the system is controllable in finite time.
Then Problem 4 has a solution.
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Proof. Define the function T given by

T (t) ≡ ρ∗(μd,Ξ(t)), t ≥ 0.(68)

This is a well-defined continuous function since the solutions are elements of (CT , d
∗)

for every finite T > 0. By assumption the system is controllable in finite time implying
the existence of a finite T > 0 such that μd ∈

⋃
t∈[0,T ] Ξ(t) �= ∅. This implies that

the set Rc ≡ {t ≥ 0 : T (t) = 0} is nonempty and inf Rc ≡ τo < ∞. The proof now
follows from the facts that T is continuous and the attainable sets Ξ(t), t ≥ 0, are
closed. Thus there exists a control uo so that the corresponding solution of (45) hits
the target μd at time τo, and there exists no other control that drives the system to
the target earlier. This completes the proof.

5. Some examples. For illustration we present a few examples. We have al-
ready mentioned the general case in the introduction which says that any stochastic
differential equation in which the coefficients are dependent on the probability law of
the process itself gives rise to McKean–Vlasov diffusion. This phenomenon is common
in physical sciences dealing with the dynamics of charge density waves (CDW), mean-
field dynamics of soft spins (SDW), chemical reactions, population biology, power flow
in mobile communication network, etc. Another example is Kushner’s equation arising
in the study of nonlinear filtering. Given the history of observation, the conditional
probability law is governed by an equation of the McKean–Vlasov type. Here we
present some simple examples that arise naturally from applications.

Example 1 (mobile communication). In the study of stochastic power control of a
wireless network, Olama, Djouadi, and Charalambos [17] have proposed a stochastic
differential equation model that describes the dynamics of power flow between mo-
bile transreceivers and a base station. Considering radial distance r separating the
transmitter from the base station (receiver) as the spatial coordinate, the logarithm of
power denoted by {X(t, r)} is a stochastic process governed by a differential equation
of the form

dX(t, r) = β(t, r)(X(t, r) −X(t, r))dt + δ(t, r)dw(t)(69)

for r ∈ D ⊂ (0, R) and t ≥ 0, where X(t, r) denotes the mean of the process X, w is the
standard scalar Brownian motion, and the variables β and δ are certain given functions
of space and time which we may assume to be bounded measurable. The authors call
this mean-reverting SDE. Numerical results presented by the authors seem to indicate
that the model is a good approximation of the power distribution actually measured
on the site. Since the noise level may also depend on the geographical position, we
propose to replace the stochastic term by a space-time Brownian motion and add a
diffusion term representing dissipation of power in the environment, giving

∂tX(t, r) = ∂/∂r(e(r)∂X/∂r)dt + β(t, r)(X(t, r) −X(t, r))dt

+ dW (t, r),(70)

where e(r) is a strictly positive function representing the diffusivity property of the
medium. We use a homogeneous Dirichlet boundary condition of the form

X(t, 0) = 0, X(t, R) = 0,(71)

and add a term u to represent the (log of) power transmitted which we may consider
as the control variable. Thus the controlled version of (70) is given by

∂tY (t, r) = ∂/∂r(e(r)∂Y/∂r)dt + β(t, r)(Y (t, r) − Y (t, r))dt

+u(t, r)dt + dW (t, r),(72)
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with a homogeneous Dirichlet boundary condition. We introduce the Hilbert space
H ≡ L2(D) and define the operator A by

D(A) ≡ H1
0 (D) ∩H2(D),(73)

(Aϕ)(r) ≡ ∂/∂r
(
e(r)∂ϕ/∂r

)
for ϕ ∈ D(A).

The operator f : R+ × P(H) ×H −→ H is given by

f(t, μ, y) ≡ β(t, ·)
(∫

H

ξμ(dξ) − y(·)
)
,(74)

and the control operator is given by Bu = u (B identity operator in H). We introduce
the H-valued Brownian motion W (t) ≡ {W (t, r), r ∈ D} with the covariance given
by

E{(W (t), h)(W (τ), g)} = t ∧ τ(Qh, g),

where

(Qh, g) ≡
∫
D×D

q(r, s)h(r)g(s)drds,

with q being a positive symmetric Hilbert–Schmidt kernel belonging to L2(D × D).
Defining y(t) ≡ Y (t, ·), using cylindrical Brownian motion, and denoting it by the
same symbol W , we can rewrite the basic equation in our abstract form on the Hilbert
space H as follows:

dy = Aydt + f(t, μt, y)dt + Budt +
√

QdW, y(0) = y0,(75)

μt = Ly(t), t ≥ 0.(76)

Assuming e(r) > γ > 0, it is easy to verify that A generates an exponentially stable
C0 semigroup on H. The rest of the assumptions of our existence theorem are obvi-
ously satisfied since f is linear, the operator B is bounded in H, and

√
Q is nuclear.

An interesting control problem for the mobile station is to find a control law that
maximizes the power delivery to the base station, at any given time, say, T. One may
formulate the problem as follows. For the control space E choose E = L2(D) = H.
Since the transmitter power is limited, we may choose a closed bounded convex set
U ⊂ E, and for admissible feedback policies we use the set

Uad ≡ {u ∈ Bλ(I ×H,H) : u(t, y) ∈ U ∀ (t, y) ∈ I ×H}.

Then choose any ϕ ∈ L2(D) having support that contains the mobile, and choose a
control from the admissible class Uad that maximizes the functional

u −→ E exp

{∫
D

Y u(T, r)ϕ(r)dr

}
≡

∫
H

e(y,ϕ)μu
T (dy).

For example, let Γ(t), t ≥ 0, be a closed convex set with values in 2D \ ∅ representing
the closed neighborhood of the location of the mobile, and choose ϕ(r) ≡ χΓ(t)(r). In
this case the problem looks like

u −→ E exp

(∫
Γ(t)

Y u(t, r)dr

)
=

∫
H

e(y,ϕ)μu
t (dy) −→ sup .
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This is a special case of Theorem 4.4 and hence the existence of optimal control follows
from it.

Example 2 (Brussellator). In the study of chemical kinetics, certain trimolecular
reactions are known to exhibit periodic behavior. This was discovered by a group
of scientists from Brussell, and in their honor the name Brussellator was adopted.
In the well-stirred case, this is described by a pair of stochastic ordinary differential
equations containing the mean-field coupling:

dx1 = (a− (b + 1)x1 + x2
1x2)dt + D1(x1 − x1)dt + σ1(x1)dw1,(77)

dx2 = (bx1 − x2
1x2)dt + D2(x2 − x2)dt + σ2(x2)dw2,(78)

where the vector {x1, x2} denotes the concentration of the two chemicals (product
of reaction). This model is obtained from the McKean–Vlasov limit of a model due
to Dawson (see [6] and the references in [18]). For a complete justification of the
model see [18]. Under certain assumptions on the parameters {a, b,D1, D2} it was
proved by Scheutzow [18, Theorem 3.4, p. 446] that the system has a solution whose
law μt, t ≥ 0, is supported on R+ × R+ and that this law is periodic in time. A
self-organizing property is commonly observed in biological species. It is an amazing
fact that this property has been observed in some chemical reactions also. This may
have a profound significance on the origin of biological species.

The model described above is based on the assumption that the concentration of
the chemicals is uniformly distributed throughout the volume of the reactor. This re-
quires controlling the mixing by a stirrer and possibly by a heat source controlling the
temperature. Thus in fact the concentration of the chemicals should be considered as
functions of time and position in the reactor volume Ω ⊂ R3. Including a multiplica-
tive control, and assuming uniform diffusivity, the PDE version of this, describing the
evolution of concentration distribution in the reactor Ω, is given by

dx = Axdt + f(x, μ)dt + G0(x)udt + σdW,(79)

where the operator A is given by the matrix of Laplacians

A ≡
(

Δ 0
0 Δ

)
subject to a homogeneous Dirichlet (zero) boundary condion on the boundary ∂Ω.
The drift f is easily identified from (77)–(78), the operator σ is identified as

σ ≡
(

σ1 0
0 σ2

)
,

and W is the space-time Brownian motion. For the state space we choose H ≡ L2(Ω)×
L2(Ω), for the control space E ≡ Lp(Ω), p ∈ [1,∞), with G0 a bounded operator-
valued function on H with values in L(E,H). More specifically we assume that
sup{‖ G0(x) ‖L(E,H), x ∈ H} < ∞. This provides a multiplicative and possibly
reactive control. Since σ is allowed to depend on the state and f has quadratic
nonlinearity, strictly speaking our theory fails to cover this case. However, due to
conservation of mass, the concentration of chemicals can never be unbounded. Thus
by appropriate truncation we may replace f by fr(x) ≡ f(ρr(x)), where ρr is the
retract of the ball Br ⊂ H of radius r around the origin (∞ > r ≥ the total mass of
the reactor including its contents). For this fr with σ independent of the state and
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√
σσ∗ positive nuclear our results hold. For example, let Γ ⊂ H be a target set of

concentration, and suppose it is required to reach this target at time T with maxi-
mum probability. The problem is to find a control law that maximizes the functional
J(u) ≡ μu

T (Γ). Under the assumptions used for admissible controls (section 4), if Γ is
a nonempty closed convex set, there is an optimal control that solves the problem.

Example 3 (charge density waves/spin density waves). The discrete mean-field
version of the Fukuyama–Lee model for CDW as presented by Bonilla [19] is given by
a system of coupled stochastic ordinary differential equations:

dΘi =

(
E − α sin(Θi − β) −K

(
Θi − (1/N)

N∑
1

Θj

))
dt +

√
γdwi,(80)

i = 1, 2, . . . , N,(81)

where Θi is the phase at the site i, K is the stiffnes of coupling of CDW, and E is
the applied electric field which can be used as the control. Again the interaction is
of the mean-field type. The parameters {α, β, γ} are fixed, α representing impurity
potential and β the pinning angle, and {wi} are independent standard Brownian
motions. Again the McKean–Vlasov limit (N → ∞) of this equation is an equation of
the form (9) describing the temporal evolution of phase density or the corresponding
measure. The operators are identified as follows:

Aϕ ≡ (1/2)γD2ϕ, (F (μ)ϕ)(θ) = f(θ, θ)Dϕ, G(u)ϕ ≡ uDϕ,

θ ≡
∫
R

θμ(dθ), μ ≡ L(θ), f(y, z) ≡ −α sin(y − β) −K(y − z),

where Dϕ and D2ϕ denote the first and second partials of ϕ with respect to θ,
respectively. Note that this is a scalar McKean–Vlasov equation with H = E = R.
For an excellent physical interpretation of this model the reader is referred to [19]. It
is known that by slowly increasing the electric field u = E to a threshold value, one
can break free the CDW from impurities and force sliding, thereby causing flow of
current. It is claimed by physicists that CDW has great industrial potential, with the
prospect of developing switches, capacitors, detectors, superconductors, etc. Since all
of our assumptions hold, without going into details we simply mention that our results
on optimal control apply to this problem. For example, let Γ0 denote the region of
phase space in which the CDW behaves as an insulator and Γc the region in which it
acts as a (super)conductor. Suppose at time zero μ0(Γ0) = 1 and that the set

{t ≥ 0, u ∈ Uad : μu
t (Γc) = 1} �= ∅.

The problem is to find a driving force that minimizes the transit time from the set Γ0

to the set Γc. In other words, find a control policy that minimizes the cost functional

J(u) ≡ inf{t ≥ 0 : μu
t (Γc) = 1}.

This is a time optimal control as treated in section 4.
Remark. In this paper we have been concerned with the questions of the exis-

tence of optimal controls. We have not attempted to develop necessary conditions of
optimality. This remains an open problem for the future.
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NULL CONTROLLABILITY OF SOME SYSTEMS OF TWO
PARABOLIC EQUATIONS WITH ONE CONTROL FORCE∗
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Abstract. In this paper we establish some exact controllability results for systems of two
parabolic equations. First, we prove the existence of insensitizing controls for the L2 norm of the
gradient of solutions of linear heat equations. Then, in the worst situation where null controllability
for a system of two parabolic equations can hold, we prove this result for some general couplings.
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1. Introduction. Let Ω ⊂ R
N (N ≥ 1) be a bounded connected open set whose

boundary ∂Ω is regular enough. Let T > 0, and let ω ⊂ Ω be a (small) nonempty
open subset which will usually be referred to as a control domain. We will use the
notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

The main objective of this paper is to establish some new controllability results
for coupled parabolic equations.

The first main result of this paper concerns insensitizing controls. More precisely,
we want to insensitize a functional associated with a state system, which is a lin-
ear parabolic equation. Let us introduce an open set O ⊂ Ω, which is called the
observatory (or observation open set).

In order to state our problem, we introduce the following system:⎧⎪⎪⎨⎪⎪⎩
yt − Δy + ay + B · ∇y = v1ω + f in Q,

y = 0 on Σ,

y|t=0 = y0 + τ ŷ0 in Ω.

(1)

Here, v is the control, y0 ∈ L2(Ω), and a ∈ R and B ∈ RN are constants. Fur-
thermore, we suppose that ŷ0 is unknown with ‖ŷ0‖L2(Ω) = 1 and that τ is a small
unknown real number. Then, the interpretation of system (1) is that y is the tem-
perature of a body, v is a localized heat source, (where we have access to the body)
to be chosen, f is another heat source, and the initial state of the body is partially
unknown.

In general, the functional Jτ we would like to insensitize (which is called sentinel)
has to be differentiable. In this framework, the task is to find a control v such that
the influence of the unknown data τ ŷ0 is not perceptible for Jτ (see (3) below).

In the literature, the usual functional is given by the L2 norm of the state (see
[4], [6], or [19], for instance). Here, we are interested in insensitizing the L2 norm of
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the gradient of the state (solution of (1)). Thus, let us introduce the functional

Jτ (y) =

∫∫
O×(0,T )

|∇y|2 dx dt,(2)

where y is the solution of (1).
Our objective is to find a control v such that the presence of the unknown data

is imperceptible for Jτ , that is to say, such that

∂Jτ
∂τ

(y)|τ=0 = 0 ∀ ŷ0 ∈ L2(Ω) such that ‖ŷ0‖L2(Ω) = 1.(3)

If this holds, we will say that the control v insensitizes the functional Jτ .
Usually, insensitizing problems are formulated in an equivalent way as a control-

lability problems of a cascade system (see, for instance, [17] and [4] for a rigorous
deduction of this fact). Indeed, if we consider the adjoint state of (1) (or apply the
Lagrange principle), it is very easy to see that condition (3) is equivalent to w|t=0 ≡ 0
in Ω, where w together with z fulfills⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zt − Δz + az + B · ∇z = v1ω + f in Q,

−wt − Δw + aw −B · ∇w = ∇ · (∇z1O) in Q,

z = 0, w = 0 on Σ,

z|t=0 = y0, w|t=T = 0 in Ω.

(4)

Here, we have denoted z ≡ y|τ=0. Assume for a moment that y0 ∈ L2(Ω) and
f, v ∈ L2(Q). Then, it is not difficult to prove that there exists a unique solution
(z, w) of (4) which belongs to L2(0, T ;H1

0 (Ω))2 and depends continuously on (y0, f, v)
in L2(Ω) × L2(Q)2.

To our best knowledge, the first time this kind of problem was addressed was
in [18] for second and fourth order parabolic equations of the heat kind and for the
Navier–Stokes system. As we said above, all results around this subject concern the
functional J̃τ (y) = ‖y‖2

L2(O×(0,T )) with y a solution of a parabolic system. In [4], the

authors prove the existence of ε-insensitizing controls (i. e., such that |J ′
τ (y)|τ=0| ≤ ε)

for solutions of a semilinear heat system with C1 and globally Lipschitz nonlinearities.
In [6], the author proved the existence of insensitizing controls for the same system.
For an extension of this result to more general nonlinearities, see [5] and the references
therein.

As we shall see in the statement of Theorem 1 below, we will take y0 ≡ 0. For
a justification of this fact and a possible choice of more general initial conditions, see
[6].

Throughout this paper we will suppose that ω ∩ O �= ∅. This is a condition
that has always been imposed in the literature where insensitizing controls are con-
cerned. Recently, for the (simpler) situation of looking for an ε-insensitizing control
and the functional J̃τ , it has been demonstrated that this condition is not necessary
for solutions of linear heat equations (see [7]).

The controllability result for system (4) is given in the following theorem.
Theorem 1. Let m > 3 be a real number and y0 ≡ 0. Then, there exists a

constant K0 > 0 depending on Ω, ω,O, T, a, and B such that for any f ∈ L2(Q)
satisfying ‖eK0/t

m

f‖L2(Q) < +∞, there exists a control v such that the corresponding
solution (w, z) of (4) satisfies w|t=0 ≡ 0 in Ω.
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Corollary 2. There exists insensitizing controls v of the functional Jτ given by
(2).

Remark 1. The same result holds when a and B are functions which depends
only on the time variable t and are in L∞(0, T ). The proof of this fact is direct from
that of Theorem 1.

Let us briefly explain the difficulties a controllability result for system (4) pos-
sesses. For this, we introduce the associated adjoint system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ψt − Δψ + aψ −B · ∇ψ = ∇ · ((∇ϕ)1O) in Q,

ϕt − Δϕ + aϕ + B · ∇ϕ = 0 in Q,

ψ = 0, ϕ = 0 on Σ,

ψ|t=T = 0, ϕ|t=0 = ϕ0 in Ω.

(5)

It is by now a classical fact that the null controllability result we want to prove for
system (4) is equivalent to the following observability inequality:∫∫

Q

e−K0/t
m |ϕ|2 dx dt ≤ C

∫∫
ω×(0,T )

|ψ|2 dx dt,(6)

where m is some positive number and C and K0 are two positive constants depending
on Ω, ω,O, T , a, and B but independent of ϕ0 (see, for instance, [14] or [11]). The
main idea one usually follows in order to prove (6) is a combination of observability
inequalities for ψ and ϕ (as solutions of heat equations) and trying to eliminate
the local term (concentrated in ω × (0, T )) concerning ϕ. The great difficulty one
encounters when trying this for system (5) is that no local estimate of the kind∫∫

ω̃×(0,T )

|ϕ|2 dx dt ≤ C

∫∫
ω×(0,T )

|Δϕ|2 dx dt, ω̃ ⊂ ω,

can be obtained using local arguments (observe that ω can be taken as small as we
want, so we can always suppose that ω ∩ ∂Ω = ∅).

This means that we have to find another way to locally relate ϕ and ψ. The idea
we follow here is to first obtain an observability inequality of the kind∫∫

Q

e−K1/t
m |ϕ|2 dx dt ≤ C

∫∫
ω×(0,T )

|Δϕ|2 dx dt.(7)

The reason why an estimate like (7) is not easy to prove relies on the fact that no
boundary conditions are known for Δϕ. More details about this are given in subsection
2.1, below.

Remark 2. Is this result true when the coefficients a and B depend on the space
variable? We observe here that, in this situation, not even the following unique
continuation property is known:

ψ = 0 in ω × (0, T ) ⇒ ϕ,ψ ≡ 0 in Ω × (0, T ).

As an extension of the result stated in Theorem 1, some insensibilization proper-
ties have recently been demonstrated for the more complicated situation of a system
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of the Stokes kind. More precisely, we consider the functional J̃τ , with y the solution
of ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yt − Δy + ay + B · ∇y + ∇p = v1ω + f in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y|t=0 = τ ŷ0 in Ω,

with a and B constants. In [13], the existence of controls insensitizing J̃τ is estab-
lished. See also [13] for an extension of this to more general functionals and further
controllability results for coupled Stokes-like systems.

The second and main objective of this paper is to extend the previous control-
lability result to more intrinsic coupled parabolic systems. The question is, Which
coupling do we need to be able to control the whole system with only one control
force?

As far as the controllability of strongly coupled parabolic equations is concerned,
in the literature the local exact controllability of phase field systems was proved in [3],
while the global version was later proved in [1]. For more general coupled parabolic
equations with only one control force, some results have been given in [2] and [12].

In this paper, we will concentrate on studying the null controllability of systems
of two parabolic equations, where the coupling terms are first order space derivatives
in one equation and second order space derivatives in the other. In this situation,
we will be again interested in controlling only one of the two equations while driving
both states to zero at t = T .

We consider, for instance, the case where we control the lower order coupling term
equation. We set the following control coupled system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wt − Δw + cw + E · ∇w = P2(t, x;D)(z θ2) in Q,

zt − Δz + hz + K · ∇z = P1(t, x;D)(w θ1) + v1ω in Q,

w = z = 0 on Σ,

w|t=0 = w0, z|t=0 = z0 in Ω,

(8)

where c, E, h, and K are constants and Pi(t, x;D) (i = 1, 2) is a partial differential
operator in the space variables of order i such that

Pi(t, x;D)u =
∑
|β|≤i

mi,β(t, x)∂β
xu, mi,β ∈ L∞(0, T ;W 2/i,∞(Ω))(9)

(that is to say, m2,β , ∂x(m2,β), m1,β , ∂x(m1,β), ∂2
x(m1,β) ∈ L∞(Q)). In (8), θi ∈

C2(Ω) (1 ≤ i ≤ 2). We assume that there exists a nonempty open set ω2 ⊂ ω and a
constant C > 0 such that |θ2| ≥ C > 0 in ω2. Observe that, in particular, one can
take θ1 and θ2 to have a support as small as we want (one can also take θ1 ≡ θ2 ≡ 1
in Ω, which is the best possible situation).

Also for system (8) we have the existence and uniqueness of solution (w, z). For
instance, if v ∈ L2(Q) and (w0, z0) ∈ L2(Ω)2, then (w, z) ∈ L2(0, T ;H1

0 (Ω))2, which
depends continuously on (v, w0, z0) ∈ L2(Q) × L2(Ω)2.
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Our objective here is to drive both w and z to zero at time T by means of the
control v. Accordingly, we consider the corresponding adjoint system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ϕt − Δϕ + cϕ− E · ∇ϕ = (P ∗
1 (t, x;D)ψ)θ1 in Q,

−ψt − Δψ + hψ −K · ∇ψ = (P ∗
2 (t, x;D)ϕ)θ2 in Q,

ϕ = ψ = 0 on Σ,

ϕ|t=T = ϕ0, ψ|t=T = ψ0 in Ω,

(10)

where P ∗
1 and P ∗

2 are the adjoint operators of P1 and P2, respectively.
It is very easy to prove the classical fact that the previous controllability property

is equivalent to the following observability inequality:

‖ϕ|t=0‖2
L2(Ω) + ‖ψ|t=0‖2

L2(Ω) ≤ C

∫∫
ω×(0,T )

|ψ|2 dx dt,

with C = C(Ω, ω, T ) > 0 independent of (ϕ0, ψ0).
In order to achieve this, we need the following properties to hold for the differential

operator P2:

m2,β are constant(11)

and

‖u‖H2(Ω) ≤ C‖P ∗
2 u‖L2(Ω) ∀u ∈ H2(Ω) ∩H1

0 (Ω),(12)

for some C = C(Ω) > 0.
Observe that no boundary condition for P ∗

2 ϕ is demanded.
Theorem 3. Assume that conditions (11)–(12) hold. Then, there exists a control

v such that the solution of (8) satisfies w|t=T ≡ z|t=T ≡ 0 in Ω.
Remark 3. Other boundary conditions can be considered in system (8). For

instance, if one imposes Neumann boundary conditions, Theorem 3 also holds when
we impose

‖u‖H2(Ω) ≤ C‖P ∗
2 u‖L2(Ω) ∀u ∈ H2(Ω),

∂u

∂n
|Σ = 0(13)

instead of (12).
In general, if one imposes Bw|Σ = 0 as a boundary condition for w in (8), Theorem

3 holds if

‖u‖H2(Ω) ≤ C‖P ∗
2 u‖L2(Ω) ∀u ∈ H2(Ω), Bu|Σ = 0.(14)

Remark 4. One can extend the result stated in Theorem 3 to the case where c, E
h, and K are functions which depend on time and belong to L∞(0, T ), no matter
which boundary conditions are considered.

Remark 5. Instead of the operator P2, one could have also considered an operator
L containing a first order time derivative. Indeed, let

Lu =
∑
|γ|≤1

	γ ∂
γ
t u, 	γ constants.
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Then, Theorem 3 holds for L instead of P2. Observe that the proof in this situation
is simpler, since the boundary conditions satisfied by ϕ are also satisfied by L∗ϕ.

Remark 6. A combination of Theorem 3, Remark 3, and Remark 5 yields that
when we consider the differential operator

Qu =
∑

|γ|≤1,|β|≤2

(	γ ∂
γ
t + mβ∂

β
x )u, 	γ ,mβ constants

instead of P2, the result stated in Theorem 3 holds as long as

‖u‖H2(Ω) ≤ C‖Q∗u‖L2(Ω) C = C(Ω) > 0,

for any u ∈ H2(Ω) satisfying the same boundary conditions as w in (8).
Finally, we consider the situation where we control the higher order coupling term

equation. Thus, let us introduce the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pt − Δp + cp + E · ∇p =
−→
P2(t, x;D)(q θ4) + v1ω in Q,

qt − Δq + hq + K · ∇q = P1(t, x;D)(p θ3) in Q,

p = q = 0 on Σ,

p|t=0 = p0, q|t=0 = q0 in Ω.

(15)

Here, p is a vector-valued function and
−→
P2 a vectorial differential operator of order 2

in space such that each component is given by (9) for i = 2. On the other hand, q is
a scalar-valued function and P1 is a divergence-type operator, that is to say, P1f ∈ R
for f a vector-valued function. Finally, θi ∈ C2(Ω) (3 ≤ i ≤ 4) and we assume the
existence of a nonempty open subset ω3 ⊂ ω and a positive constant C such that
θ3 ≥ C > 0 in ω3.

For v ∈ L2(Q)N and (p0, q0) ∈ L2(Ω)N+1, there exists a unique solution (p, q) ∈
L2(0, T ;H1

0 (Ω))N+1 which depends continuously on (v,p0, q0) ∈ L2(Q)N×L2(Ω)N+1.
Observe that now we are controlling the first equation. Obviously, the adjoint

system associated with (15) is again (10). In order to establish the corresponding
null controllability result, this time we need to impose the following conditions on the
operator P1:

m1,β are constant(16)

and

‖u‖L2(0,T ;H1(Ω)) ≤ C‖−→P ∗
1 u‖L2(Q)N ∀u ∈ H1

0 (Ω).(17)

The corresponding result in this situation is presented in the following theorem.
Theorem 4. Assume conditions (16)–(17) are satisfied. Then, there exists a

control v such that the solution of (15) satisfies p|t=T ≡ q|t=T ≡ 0 in Ω.
Once Theorem 3 is demonstrated, one can follow the same ideas in order to prove

Theorem 4 by just adapting the corresponding arguments.
For the sake of completeness, we present a system for which Theorem 4 applies

(for simplicity, we take θ3 ≡ θ4 ≡ 1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pt − Δp + cp + E · ∇p = (P2,1, . . . , P2,N )q,+v1ω in Q,

qt − Δq + hq + K · ∇q = ∇ · p in Q,

p = q = 0 on Σ,

p|t=0 = p0, q|t=0 = q0 in Ω,



CONTROLLABILITY OF SYSTEMS OF PARABOLIC EQUATIONS 385

with P2,j differential operators of order 2 in the x variable satisfying (9).

This paper is organized as follows. In section 2, we prove Theorem 1. In subsection
2.1 we prove new Carleman-type estimates, which will be crucial for this proof, and
in subsection 2.2 we combine some results and conclude its proof. Finally, in section
3 we prove Theorem 3.

2. Insensitizing controls for the functional Jτ . As we saw in the introduc-
tion, we can restrict ourselves to proving the null controllability of the coupled system
(4), that is to say, Theorem 1.

As usual, in order to prove this result we concentrate on the corresponding adjoint
system: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ϕt − Δψ + aψ −B · ∇ψ = ∇ · ((∇ϕ)1O) in Q,

ϕt − Δϕ + aϕ + B · ∇ϕ = 0 in Q,

ψ = 0, ϕ = 0 on Σ,

ψ|t=T = 0, ϕ|t=0 = ϕ0 in Ω,

(18)

where ϕ0 ∈ L2(Ω). As explained in the introduction, in the framework of control-
lability it is a classical fact that the null controllability property for system (4) is
equivalent to the following observability inequality:∫∫

Q

e−K0/t
m |ψ|2 dx dt ≤ C

∫∫
ω×(0,T )

|ψ|2 dx dt,(19)

for certain positive constants K0 and C which are independent of ψ0, and for some
positive m.

For the proof of (19), we will follow a classical approach consisting of obtaining
a suitable weighted-like estimate (the so-called Carleman estimate) similar to the
observability inequality. For a systematic use of this kind of estimate see, for instance,
[14] or [11].

In order to establish this Carleman inequality, we need to define some weight
functions:

αm(x, t) =
exp{k(m+1)

m λ‖η0‖∞} − exp{λ(k‖η0‖∞ + η0(x))}
tm(T − t)m

,

α∗
m(t) = max

x∈Ω
αm(x, t) = αm|∂Ω(x, t), ξm(x, t) =

eλ(k‖η0‖∞+η0(x))

tm(T − t)m
,

ξ∗m(t) = min
x∈Ω

ξm(x, t) = ξm|∂Ω(x, t),

(20)

where m > 3 and k > m are fixed. Here, η0 ∈ C2(Ω) satisfies

|∇η0| ≥ C > 0 in Ω \ ω0, η0 > 0 in Ω, and η0 ≡ 0 on ∂Ω,(21)

with ∅ �= ω0 ⊂ ω ∩ O an open set. The proof of the existence of such a function
η0 is given in [11]. The weights (20) were first considered in [10] in order to obtain
Carleman estimates for the three-dimensional micropolar fluid model.
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Accordingly, we define I(s, λ; ·) as follows:

I(s, λ; g) := s−1

∫∫
Q

e−2sαmξ−1
m

(
|gt|2 + |Δg|2

)
dx dt

+ sλ2

∫∫
Q

e−2sαmξm|∇g|2 dx dt + s3λ4

∫∫
Q

e−2sαmξ3
m|g|2 dx dt.

(22)

Furthermore, we denote by Iw(s, λ, ·) the terms in the expression of I(s, λ, ·) con-
cerning the L2(Q) and L2(0, T ;H1

0 (Ω)) norms (that is, the integrals appearing in the
second line of (22)).

With this notation, we can prove the following result.
Proposition 5. There exists a positive constant C which depends on Ω, ω, and

T such that

Iw(Δϕ) + s2λ4

∫∫
Q

e−3sαmξ2
m(s2λ2ξ2

m|ψ|2 + |∇ψ|2) dx dt

≤ C(1 + T 2)s7λ8

∫∫
ω×(0,T )

e−2sαmξ7
m|ψ|2 dx dt,

(23)

for any λ ≥ C and s ≥ C(T 2m + Tm).
Remark 7. From the Carleman inequality (23), one can readily deduce the ob-

servability inequality (19). Indeed, it suffices to combine the fact that ψ|t=T ≡ 0
with the dissipation of ‖∇ϕ(t)‖L2(Ω) as t goes to T (see, for instance, [11]). As a
consequence, the proof of Theorem 1 is achieved.

The proof of Proposition 5 is divided into two steps, which correspond to subsec-
tions 2.1 and 2.2. The first, and more important, step deals with the equation satisfied
by ϕ (which is independent of ψ). In the second step, we combine both equations in
order to conclude the desired inequality (23).

Before starting with this, we recall a Carleman estimate which will be essential
in our proof.

This estimate concerns energy solutions of heat equations with nonhomogeneous
Neumann boundary conditions.

Lemma 6. Let u0 ∈ L2(Ω), f1 ∈ L2(Q), f2 ∈ L2(Q)N , and f3 ∈ L2(Σ). Then
there exists a constant C(Ω, ω0) > 0 such that the solution u ∈ L2(0, T ;H1(Ω)) ∩
L∞(0, T ;L2(Ω)) of ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − Δu = f1 + ∇ · f2 in Q,

∂u

∂n
+ f2.n = f3 on Σ,

u|t=T = u0 in Ω

satisfies

Iw(u) ≤ C

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|u|2 dx dt

+

∫∫
Q

e−2sαm |f1|2 dx dt + s2λ2

∫∫
Q

e−2sαmξ2
m|f2|2 dx dt

+ sλ

∫∫
Σ

e−2sα∗
mξ∗m|f3|2 dσ dt

)
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for any λ ≥ C and s ≥ C(T 2m + T 2m−1).
This lemma was essentially proved in [8]. In fact, the inequality proved in [8]

concerned the same weight functions as in (24), but with m = 1. Then one can follow
the steps of the proof in [8] (see Theorem 1 in that reference) and adapt the arguments
by just taking into account that

∂tαm := αm,t ≤ CTξ(m+1)/m
m and ∂ttαm := αm,tt ≤ CT 2ξ(m+2)/m

m ,

with C > 0 independent of s, λ, and T .

2.1. New Carleman estimate for ϕ. Here we deal with the problem⎧⎪⎪⎨⎪⎪⎩
ϕt − Δϕ + aϕ + B · ∇ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ|t=0 = ϕ0 in Ω.

(24)

Recall that a ∈ R and B ∈ RN are constants.
For this system, we prove the following estimate.
Lemma 7. There exists a positive constant C depending on Ω and ω0 such that

Iw(Δϕ) ≤ Cs3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|Δϕ|2 dx dt,(25)

for any λ ≥ C and s ≥ C(T 2m + Tm).
Remark 8. Observe that, in particular, we deduce from this inequality the fol-

lowing well-known unique continuation property:

Δϕ = 0 in ω0 × (0, T ) ⇒ ϕ ≡ 0 in Ω × (0, T ).(26)

As far as we know, it is a new fact that (26) can be quantified in terms of an inequality
like (25). On the other hand, we do not know if (26) holds when a and B are not
constant with respect to the space variable.

Proof of Lemma 7. We first look at the equation satisfied by Δϕ:

(Δϕ)t − Δ(Δϕ) + aΔϕ + B · ∇Δϕ = 0 in Q.

Observe that no boundary conditions are prescribed for Δϕ. At this point, we can
apply Lemma 6 (with f2 ≡ 0) and deduce the existence of a constant C = C(Ω, ω0) > 0
such that

Iw(Δϕ) ≤ C

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|Δϕ|2 dx dt

+ sλ

∫∫
Σ

e−2sα∗
mξ∗m

∣∣∣∣∂Δϕ

∂n

∣∣∣∣2
)

dx dt

(27)

for any λ ≥ C and s ≥ C(T 2m + T 2m−1).
The next step will be to eliminate the last term in the right-hand side of (27). In

order to do this, we introduce the function ϕ∗ := η(t)ϕ, where

η(t) = s(1/2)−(1/m)λe−sα∗
m(t)(ξ∗m)(1/2)−(1/m)(t).(28)
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In view of (24), it fulfills⎧⎪⎪⎨⎪⎪⎩
ϕ∗
t − Δϕ∗ + aϕ∗ + B · ∇ϕ∗ = ηtϕ in Ω,

ϕ∗ = 0 on ∂Ω,

ϕ∗|t=0 = 0 in Ω.

(29)

Thanks to (27), we are going to deduce that ϕ∗ is a very regular function. In fact, we
have that ηtϕ ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)), since ηtΔϕ ∈ L2(Ω) and

‖ηtΔϕ‖L2(Q) ≤ CTs(3/2)−(1/m)λ‖e−sα∗
m(ξ∗m)3/2Δϕ‖L2(Q)

≤ Cs3/2λ‖e−sα∗
m(ξ∗m)3/2Δϕ‖L2(Q),

for s ≥ CTm. The square of this last quantity is bounded by the left-hand side of
(27) (recall that e−sα∗

m is the minimum of e−sαm).
Consequently, we have that ϕ∗ ∈ L2(0, T ; (H4 ∩H1

0 )(Ω)) (see, for instance, [16])
and

‖ϕ∗‖2
L2(0,T ;H4(Ω)) = s1−2/mλ2

∫ T

0

e−2sα∗
m(ξ∗m)1−2/m‖ϕ‖2

H4(Ω) dt

≤ CIw(Δϕ).

(30)

Taking this into account, by a simple integration by parts we deduce that

s2−1/mλ3

∫ T

0

e−2sα∗
m(ξ∗m)2−1/m‖ϕ‖2

H3(Ω) dt ≤ CIw(Δϕ).(31)

From (30) and (31), we obtain in particular that

s(3/2)−3/(2m)λ3

∫ T

0

e−2sα∗
m(ξ∗m)(3/2)−3/(2m)

∥∥∥∥∂Δϕ

∂n

∥∥∥∥2

L2(Σ)

dt ≤ CIw(Δϕ).(32)

Since m > 3, this justifies that the second term in the right-hand side of (27) is
absorbed by the left-hand side. As a conclusion, we obtain the desired inequality
(25).

2.2. Carleman estimate for ϕ and conclusion. Finally, we will deal with
the particular coupling of ψ and ϕ.

First, assuming ϕ is given, we apply a Carleman estimate to the weak solution ψ
of (18) (observe that the right-hand side of the equation satisfied by ψ belongs, for
instance, to L2(0, T ;H−1(Ω))), which can be found in [15] (for the explicit dependence
with respect to λ and T , see [9]):

s4λ6

∫∫
Q

e−3sαmξ4
m|ψ|2 dx dt + s2λ4

∫∫
Q

e−3sαmξ2
m|∇ψ|2 dx dt

≤ C

(
s4λ6

∫∫
ω0×(0,T )

e−3sαmξ4
m|ψ|2 dx dt

+ s3λ4

∫∫
O×(0,T )

e−3sαmξ3
m|∇ϕ|2 dx dt

)
,

(33)
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for any λ ≥ C and s ≥ C(T 2m + T 2m−1). Observe that we have chosen to apply this
result for smaller exponentials, that is to say, for e−3sαm instead of e−2sαm .

Then we easily see that the last integral in the right-hand side of (33) is bounded
by Iw(Δϕ), as long as λ is large enough. In fact, if we denote α̂m(t) = minx∈Ω αm(x, t)

and ξ̂m(t) = maxx∈Ω ξm(x, t), we have

s3λ4

∫∫
O×(0,T )

e−3sαmξ3
m|∇ϕ|2 dx dt ≤ s3λ4

∫ T

0

e−3sα̂m(ξ̂m)3‖∇ϕ‖2
L2(Ω) dt

≤ Cs3λ4

∫ T

0

e−3sα̂m(ξ̂m)3‖Δϕ‖2
L2(Ω) dt ≤ Cs3λ4

∫∫
Q

e−2sαmξ3
m|Δϕ|2 dx dt,

for λ ≥ C. Here we have used the fact that ϕ has null trace.
Combining this with (25) and (33), we obtain

s2λ4

∫∫
Q

e−3sαmξ2
m(s2λ2ξ2

m|ψ|2 + |∇ψ|2) dx dt + Iw(Δϕ)

≤ C

(
s3λ4

∫∫
ω0×(0,T )

ξ3
m

(
sλ2e−3sαmξm|ψ|2 + e−2sαm |Δϕ|2

)
dx dt

)
,

(34)

for any λ ≥ C and s ≥ C(T 2m + Tm).
Now, since ω0 ⊂ O, from the equation satisfied by ψ, we find

Δϕ = −ψt − Δψ + aψ −B · ∇ψ in ω0 × (0, T ).

Then we plug this into the expression of the last integral in (34) and obtain

s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|Δϕ|2 dx dt

= s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m(Δϕ)(−ψt − Δψ + aψ −B · ∇ψ) dx dt.

We define a positive function θ ∈ C2
c (ω) such that θ ≡ 1 in ω0. Then the task turns

to estimating the following integral:

s3λ4

∫∫
ω×(0,T )

θe−2sαmξ3
m(Δϕ)(−ψt − Δψ + aψ −B · ∇ψ) dx dt.

After several integration by parts (getting all derivatives out of ψ) with respect to
both space and time, we get

s3λ4

∫∫
ω×(0,T )

θe−2sαmξ3
m(Δϕ)(−ψt − Δψ + aψ −B · ∇ψ) dx dt

= s3λ4

∫∫
ω×(0,T )

θ(e−2sαmξ3
m)t Δϕψ dx dt

− s3λ4

∫∫
ω×(0,T )

Δ(θe−2sαmξ3
m) Δϕψ dx dt

− 2s3λ4

∫∫
ω×(0,T )

∇(θe−2sαmξ3
m) · ∇Δϕψ dx dt

+ s3λ4

∫∫
ω×(0,T )

B · ∇(θe−2sαmξ3
m) Δϕψ dx dt.
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Here, we have used the equation satisfied by ϕ and the fact that θ has compact support
in ω. Let us do some computations involving the weight functions:

(e−2sαmξ3
m)t ≤ CTse−2sαm(ξm)4+1/m,

for s ≥ CT 2m and

Δ(e−2sαmξ3
m) ≤ Cs2λ2e−2sαmξ5

m,

for s ≥ CT 2m and λ ≥ C. With this, we obtain

s3λ4

∫∫
ω×(0,T )

θe−2sαmξ3
m(Δϕ)(−ψt − Δψ + aψ −B · ∇ψ) dx dt

≤ εIw(Δϕ) + C(1 + T 2)s7λ8

∫∫
ω×(0,T )

e−2sαmξ7
m|ψ|2 dx dt,

which, combined with (34), gives the desired inequality (23).

3. Proof of Theorem 3. In this section we will prove Theorem 3. As indicated
in the introduction, in order to prove Theorem 4 one can follow the same ideas of the
proof of Theorem 3.

For simplicity, in this section we will keep the notation η0 for the function defined
in (21). In the present situation, ω0 will stand for an open set contained in ω2, which
was also contained in ω (see the paragraph between (9) and (10)).

Throughout this section we will work with the following system (see (10)):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ϕt − Δϕ + cϕ− E · ∇ϕ = (P ∗
1 (t, x;D)ψ)θ1 in Q,

−ψt − Δψ + hψ −K · ∇ψ = (P ∗
2 ϕ)θ2 in Q,

ϕ = ψ = 0 on Σ,

ϕ|t=T = ϕ0, ψ|t=T = ψ0 in Ω.

(35)

Recall that, by (11), P ∗
2 is a second order differential operator in space with constant

coefficients.
In order to prove Theorem 3, it suffices to establish the following observability

inequality for the solutions of (35).
Proposition 8. There exists C(Ω, ω, T ) > 0 independent of (ϕ0, ψ0) such that

‖ϕ|t=0‖2
L2(Ω) + ‖ψ|t=0‖2

L2(Ω) ≤ C

∫∫
ω×(0,T )

|ψ|2 dx dt.(36)

As in the previous section, the strategy will consist of proving the corresponding
Carleman inequality for system (35). It is presented in the following lemma.

Lemma 9. There exists a positive constant C(Ω, ω) such that

Iw(P ∗
2 ϕ) + s6λ8

∫∫
Q

e−2sαmξ6
m|ψ|2 dx dt

≤ C(1 + T 2)s10λ8

∫∫
ω×(0,T )

e−6sαm+4sα∗
mξ10

m |ψ|2 dx dt
(37)

for any λ ≥ C and s ≥ C(T 2m + Tm).
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Thanks to (12), the observability inequality (36) readily follows from (37).
As in the proof of Lemma 7, we first deal with the heat equation satisfied by ϕ

and we try to obtain an independent Carleman inequality, viewing (P ∗
1 (t, x;D)ψ)θ1

as a right-hand side. More precisely, we consider the heat equation satisfied by P ∗
2 ϕ:

(P ∗
2 ϕ)t + Δ(P ∗

2 ϕ) + cP ∗
2 ϕ + E · ∇(P ∗

2 ϕ) = Δ((P ∗
1 (t, x;D)ψ)θ1) in Q.

To P ∗
2 ϕ (as solution of the previous heat equation), we apply Lemma 6 and we obtain

Iw(P ∗
2 ϕ) ≤

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

+ sλ

∫∫
Σ

e−2sα∗
mξ∗m

(∣∣∣∣∂P ∗
2 ϕ

∂n

∣∣∣∣2 +

∣∣∣∣ ∂

∂n
(P ∗

1 (t, x;D)ψ)

∣∣∣∣2
)

dx dt

+ s2λ2

∫∫
Q

e−2sαmξ2
m(|Δψ|2 + |∇ψ|2 + |ψ|2) dx dt

)
,

(38)

for any λ ≥ C and s ≥ C(T 2m + T 2m−1).
Next, we estimate the boundary term in the right-hand side of (38). To this end,

we define ϕ∗ = η(t)ϕ, with η(t) given by (28). This function fulfills the following
system: ⎧⎪⎪⎨⎪⎪⎩

ϕ∗
t + Δϕ∗ + cϕ∗ + E · ∇ϕ∗ = η(t)(P ∗

1 (t, x;D)ψ)θ1 + ηtϕ in Ω,

ϕ∗ = 0 on ∂Ω,

ϕ∗|t=T = 0 in Ω.

(39)

Assuming that the right-hand side of (39) belongs to L2(0, T ;H2(Ω)), we have ϕ∗ ∈
L2(0, T ; (H4 ∩H1

0 )(Ω)) ∩H1(0, T ;H2(Ω)) (see, for instance, [16]) and

‖ϕ∗‖2
L2(0,T ;H4(Ω)) + ‖ϕ∗

t ‖2
L2(0,T ;H2(Ω))

≤ C(Iw(P ∗
2 ϕ) + ‖η(t)(P ∗

1 (t, x;D)ψ)θ1‖L2(0,T ;H2(Ω))).
(40)

Here we have used (12).
With the same argument as in the previous section, we get

s(3/2)−3/(2m)λ3

∫ T

0

e−2sα∗
m(ξ∗m)(3/2)−3/(2m)

∥∥∥∥∂P ∗
2 ϕ

∂n

∥∥∥∥2

L2(Σ)

dt

≤ C(Iw(P ∗
2 ϕ) + ‖η(t)(P ∗

1 (t, x;D)ψ)θ1‖L2(0,T ;H2(Ω))).

(41)

Again, since m > 3, this justifies that the second term in the right-hand side of (38)
is absorbed.

As a conclusion, we obtain from (38)

Iw(P ∗
2 ϕ) ≤ C

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

+ s1−2/mλ2

∫ T

0

e−2sα∗
m(ξ∗m)1−2/m‖(P ∗

1 (t, x;D)ψ)θ1‖2
H2(Ω) dt

+ s2λ2

∫∫
Q

e−2sαmξ2
m(|Δψ|2 + |∇ψ|2 + |ψ|2) dx dt

)
,

(42)
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for any λ ≥ C and s ≥ C(T 2m + Tm).
Now we deal with the equation satisfied by ψ. Thus, we apply the classical

Carleman inequality for the heat equation with right-hand side in L2(Q). Let us
define

I0(ψ) = s6λ8

∫∫
Q

e−2sαmξ6
m|ψ|2 dx dt + s4λ6

∫∫
Q

e−2sαmξ4
m|∇ψ|2 dx dt

+ s2λ4

∫∫
Q

e−2sαmξ2
m|Δψ|2 dx dt.

Then we have

I0(ψ) ≤ C

(
s6λ8

∫∫
ω0×(0,T )

e−2sαmξ6
m|ψ|2 dx dt

+ s3λ4

∫∫
Q

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt
)
,

for λ ≥ C and s ≥ C(T 2m + T 2m−1). Combining this with (42), we obtain

I0(ψ) + Iw(P ∗
2 ϕ) ≤ C

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

+ s1−2/mλ2

∫ T

0

e−2sα∗
m(ξ∗m)1−2/m‖ψ‖2

H3(Ω) dt

+ s6λ8

∫∫
ω0×(0,T )

e−2sαmξ6
m|ψ|2 dx dt

)
,

(43)

for λ ≥ C and s ≥ C(T 2m + Tm).

Let us now introduce the function ψ̂ = ρ0(t)ψ, with

ρ0(t) = s1/2λe−sα∗
m(ξ∗m)1/2.

Then ψ̂ satisfies⎧⎪⎪⎨⎪⎪⎩
ψ̂t + Δψ̂ + hψ̂ + K · ∇ψ̂ = ρ0(t)(P

∗
2 ϕ)θ2 + ρ0,tψ in Ω,

ψ̂ = 0 on ∂Ω,

ψ̂|t=T = 0 in Ω.

(44)

Since the right-hand side belongs to L2(0, T ;H1(Ω)), we deduce that ψ̂ ∈ L2(0, T ;H3(Ω))
and

‖ψ̂‖2
L2(0,T ;H3(Ω)) ≤ C

(
sλ2

∫∫
Q

e−2sαmξm(|∇(P ∗
2 ϕ)|2 + |P ∗

2 ϕ|2) dx dt

+ T 2s3λ2

∫∫
Q

e−2sα∗
m(ξ∗m)3+2/m|∇ψ|2 dx dt

)
≤ C(I0(ψ) + Iw(P ∗

2 ϕ)).

(45)

Observe that in inequality (45) we did not use all the information we had about ϕ,
because in the argument of estimating the normal derivative of P ∗

2 ϕ, we obtained
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good estimates for ‖ϕ‖2
L2(0,T ;H3(Ω)) with the power s2−1/m. We chose not to profit

from this for the sake of simplicity.
In particular, from (45) we deduce that the second term in the right-hand side of

(43) is absorbed.
For the moment, we have

I0(ψ) + Iw(P ∗
2 ϕ) + ‖ψ̂‖2

L2(0,T ;H3(Ω))

≤ C

(
s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

+ s6λ8

∫∫
ω0×(0,T )

e−2sαmξ6
m|ψ|2 dx dt

)
,

(46)

for λ ≥ C and s ≥ C(T 2m + Tm).
We will finally estimate the local term concerning P ∗

2 ϕ. From the equation satis-
fied by ψ, we have

P ∗
2 ϕ = ψt + Δψ + hψ + K · ∇ψ in ω0 × (0, T )

(recall that supp θ2 ⊂ ω2 and ω0 ⊂ ω2). This gives

s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

= s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m(P ∗

2 ϕ)(ψt + Δψ + hψ + K · ∇ψ) dx dt.

As in the previous section, with the help of a cut-off function θ0 ∈ C2
c (ω) with θ0 ≡ 1

in ω0, we can integrate by parts with respect to both time and space, and we find

s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt ≤ ε(Iw(Δϕ) + I0(ψ))

+ C(1 + T 2)s6λ6

∫∫
ω×(0,T )

f(θ0)e
−4sαm+2sα∗

mξ6
m(|ψ|2 + |∇ψ|2) dx dt,

for some f(θ0) ∈ C1
c (ω). Observe that in order to estimate the first term∫∫

ω×(0,T )

e−2sαmξ3
mθ0 P

∗
2 ϕψt dx dt,

we have integrated in time and used (40) for the integral∫∫
ω×(0,T )

e−2sαmξ3
mθ0 P

∗
2 ϕt ψ dx dt.

We integrate by parts again and obtain

s3λ4

∫∫
ω0×(0,T )

e−2sαmξ3
m|P ∗

2 ϕ|2 dx dt

≤ ε

(
Iw(P ∗

2 ϕ) + I0(ψ) + s2λ4

∫∫
Q

e−2sαmξ2
m|Δψ|2 dx dt

)
+ C(1 + T 2)s10λ8

∫∫
ω×(0,T )

e−6sαm+4sα∗
mξ10

m |ψ|2 dx dt.
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From this and (46), we deduce the desired Carleman inequality (37). This finishes
the proof of Theorem 3.
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son, Paris, 1992.
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EXPLICIT SOLUTION TO AN OPTIMAL SWITCHING PROBLEM
IN THE TWO-REGIME CASE∗

VATHANA LY VATH† AND HUYÊN PHAM†

Abstract. This paper considers the problem of determining the optimal sequence of stopping
times for a diffusion process subject to regime switching decisions. This is motivated in the economics
literature by the investment problem under uncertainty for a multi-activity firm involving opening and
closing decisions. We use a viscosity solutions approach combined with the smooth-fit property, and
explicitly solve the problem in the two-regime case when the state process is of geometric Brownian
nature. The results of our analysis take several qualitatively different forms, depending on model
parameter values.

Key words. optimal switching, system of variational inequalities, viscosity solutions, smooth-fit
principle
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1. Introduction. The theory of optimal stopping and its generalization, thor-
oughly studied in the 1970s, has received a renewed interest with a variety of appli-
cations in economics and finance. These applications include asset pricing (American
options, swing options), firm investment, and real options. We refer to [4] for a
classical and well-documented reference on the subject.

In this paper, we consider the optimal switching problem for a one-dimensional
stochastic process X. The diffusion process X may take a finite number of regimes
that are switched at stopping time decisions. For example, in the firm’s investment
problem under uncertainty, a company (oil tanker, electricity station, etc.) manages
several production activities operating in different modes or regimes representing a
number of different economic outlooks (e.g., state of economic growth, open or closed
production activity). The process X is the price of input or output goods of the firm
and its dynamics may differ according to the regimes. The firm’s project yields a
running payoff that depends on the commodity price X and on the regime choice.
The transition from one regime to another is realized sequentially at time decisions
and incurs certain fixed costs. The problem is to find the switching strategy that
maximizes the expected value of profits resulting from the project.

Optimal switching problems were studied by several authors; see [1] or [10]. These
control problems lead, via the dynamic programming principle, to a system of varia-
tional inequalities. Applications to option pricing, real options, and investment under
uncertainty were considered in [2], [5], and [7]. In this last paper, the drift and
volatility of the state process depend on an uncontrolled finite-state Markov chain,
and the author provides an explicit solution to the optimal stopping problem with
applications to Russian options. In [2], an explicit solution is found for a resource
extraction problem with two regimes (open or closed field), a linear profit function,
and a price process following a geometric Brownian motion. In [5], a similar model is
solved with a general profit function in one regime and equal to zero in the other. In
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both models [2], [5], there is no switching in the diffusion process: changes of regimes
affect only the payoff functions. Their method of resolution is to construct a solution
to the dynamic programming system by guessing a priori the form of the strategy, and
then validate a posteriori the optimality of their candidate by a verification argument.
Our model combines regime switchings on both the diffusion process and the general
profit functions. We use a viscosity solutions approach for determining the solution to
the system of variational inequalities. In particular, we derive directly the smooth-fit
property of the value functions and the structure of the switching regions. Explicit
solutions are provided in the following cases:

• the drift and volatility terms of the diffusion take two different regime values,
and the profit functions are identical of power type;

• there is no switching on the diffusion process, and the two different profit
functions satisfy a general condition, including typically power functions.

We also consider the cases for which both switching costs are positive, and for which
one of the two is negative. This last case is interesting in applications where a firm
chooses between an open or closed activity, and may regain a fraction of its opening
costs when it decides to close. The results of our analysis take several qualitatively
different forms, depending on model parameter values, essentially the payoff functions
and the switching costs.

The paper is organized as follows. We formulate in section 2 the optimal switching
problem. In section 3, we state the system of variational inequalities satisfied by the
value functions in the viscosity sense. The smooth-fit property for this problem,
proved in [9], plays an important role in our subsequent analysis. We also state
some useful properties on the switching regions. In section 4, we explicitly solve
the problem in the two-regime case when the state process is of geometric Brownian
nature.

2. Formulation of the optimal switching problem. We consider a stochas-
tic system that can operate in d modes or regimes. The regimes can be switched at
a sequence of stopping times decided by the operator (individual, firm, etc.). The
indicator of the regimes is modeled by a cadlag process It valued in Id = {1, . . . , d}.
The stochastic system X (commodity price, salary, etc.) is valued in R

∗
+ = (0,∞)

and satisfies the SDE.

dXt = b
It
Xtdt + σ

It
XtdWt,(2.1)

where W is a standard Brownian motion on a filtered probability space (Ω,F ,F =
(Ft)t≥0, P ) satisfying the usual conditions. bi ∈ R and σi > 0 are the drift and
volatility, respectively, of the system X once in regime It = i at time t.

A strategy decision for the operator is an impulse control α consisting of a double
sequence τ1, . . . , τn, . . . , κ1, . . . , κn, . . . , n ∈ N

∗ = N \ {0}, where τn are stopping
times, τn < τn+1 and τn → ∞ a.s., representing the switching regimes time decisions,
and κn are Fτn-measurable valued in Id representing the new value of the regime at
time t = τn. We denote by A the set of all such impulse controls. Now, for any
initial condition (x, i) ∈ (0,∞) × Id, and any control α = (τn, κn)n≥1 ∈ A, there
exists a unique strong solution valued in (0,∞) × Id to the controlled stochastic
system:

X0 = x, I0− = i,(2.2)

dXt = bκn
Xtdt + σκn

XtdWt, It = κn, τn ≤ t < τn+1, n ≥ 0.(2.3)
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Here, we set τ0 = 0 and κ0 = i. We denote by (Xx,i, Ii) this solution (as usual, we
omit the dependence in α for notational simplicity). We notice that Xx,i is a contin-
uous process and Ii is a cadlag process, possibly with a jump at time 0 if τ1 = 0, and
so I0 = κ1.

We are given a running profit function f : R+ × Id → R and we set fi(.) = f(., i)
for i ∈ Id. We assume that for each i ∈ Id, the function fi is nonnegative and is
Hölder continuous on R+: there exists γi ∈ (0, 1] such that (s.t.)

|fi(x) − fi(x̂)| ≤ C|x− x̂|γi ∀x, x̂ ∈ R+,(2.4)

for some positive constant C. Without loss of generality (see Remark 2.1), we may
assume that fi(0) = 0. We also assume that for all i ∈ Id, the conjugate of fi is finite
on (0,∞):

f̃i(y) := sup
x≥0

[
fi(x) − xy

]
< ∞ ∀y > 0.(2.5)

The cost for switching from regime i to j is a constant equal to gij , with the convention
gii = 0, and we assume the triangular condition

gik < gij + gjk, j �= i, k.(2.6)

This last condition means that it is less expensive to switch directly in one step from
regime i to k than in two steps via an intermediate regime j. Notice that a switching
cost gij may be negative, and condition (2.6) for i = k prevents arbitrage by switching
back and forth, i.e.,

gij + gji > 0, i �= j ∈ Id.(2.7)

The expected total profit of running the system when the initial state is (x, i) and
when using the impulse control α = (τn, κn)n≥1 ∈ A is

Ji(x, α) = E

[∫ ∞

0

e−rtf(Xx,i
t , Iit)dt−

∞∑
n=1

e−rτng
κn−1,κn

]
.

Here r > 0 is a positive discount factor, and we use the convention that e−rτn(ω) = 0
when τn(ω) = ∞. We also make the standing assumption

r > b := max
i∈Id

bi.(2.8)

The objective is to maximize this expected total profit over all strategies α. Accord-
ingly, we define the value functions

vi(x) = sup
α∈A

Ji(x, α), x ∈ R
∗
+, i ∈ Id.(2.9)

We shall see in the next section that under (2.5) and (2.8), the expectation defining
Ji(x) is well defined and the value function vi is finite.

Remark 2.1. The initial values fi(0) of the running profit functions received
by the firm manager (the controller) before any decisions occur are considered to
be included in the switching costs during changing of the regime. This means that



398 VATHANA LY VATH AND HUYÊN PHAM

w.l.o.g. we may assume that fi(0) = 0. Indeed, for any profit function fi, and by
setting f̃i = fi − fi(0), we have for all x > 0, α ∈ A,

Ji(x, α) = E

[ ∞∑
n=1

∫ τn

τn−1

e−rtf(Xx,i
t , κn−1)dt−

∞∑
n=1

e−rτng
κn−1,κn

]

= E

[ ∞∑
n=1

∫ τn

τn−1

e−rt
(
f̃(Xx,i

t , κn−1) + fκn−1(0)
)
dt −

∞∑
n=1

e−rτngκn−1,κn

]

= E

[ ∞∑
n=1

∫ τn

τn−1

e−rtf̃(Xx,i
t , κn−1)dt +

fκ0
(0)

r

−
∞∑

n=1

e−rτn

(
g
κn−1,κn

+
fκn(0) − fκn−1(0)

r

)]

=
fi(0)

r
+ E

[∫ ∞

0

e−rtf̃(Xx,i
t , Iit)dt−

∞∑
n=1

e−rτn g̃κn−1,κn

]
,

with modified switching costs that take into account the possibly different initial
values of the profit functions,

g̃ij = gij +
fj(0) − fi(0)

r
,

and that are assumed to satisfy the triangle inequality g̃ik < g̃ij + g̃jk, j �= i, k.

3. System of variational inequalities, switching regions, and viscosity
solutions. We first state the linear growth property and the boundary condition on
the value functions.

Lemma 3.1. We have for all i ∈ Id,

max
j∈Id

[−gij ] ≤vi(x) ≤ xy

r − b
+ max

j∈Id

f̃j(y)

r
+ max

j∈Id

[−gij ] ∀x > 0 ∀y > 0.(3.1)

In particular, we have vi(0
+) = maxj∈Id

[−gij ].
Proof. By considering the particular strategy α̃ = (τ̃n, κ̃n) of immediately switch-

ing from the initial state (x, i) to state (x, j), j ∈ Id (eventually equal to i), at cost
gij and then doing nothing, i.e., τ̃1 = 0, κ̃1 = j, τ̃n = ∞, κ̃n = j for all n ≥ 2, we
have

Ji(x, α̃) = E

[∫ ∞

0

e−rtfj(X̃
x,j
t )dt− gij

]
,

where X̃x,j denotes the geometric Brownian in regime j starting from x at time 0.
Since fj is nonnegative, and by the arbitrariness of j, we get the lower bound in (3.1).

Given an initial state (X0, I0−) = (x, i) and an arbitrary impulse control α =
(τn, κn), we get from the dynamics (2.2)–(2.3) the following explicit expression of
Xx,i:

Xx,i
t = xYt(i)

:= x

(
n−1∏
l=0

ebκl
(τl+1−τl)Zκl

τl,τl+1

)
ebκn (t−τn)Zκn

τn,t, τn ≤ t < τn+1, n ∈ N,(3.2)
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where

Zj
s,t = exp

(
σj(Wt −Ws) −

σ2
j

2
(t− s)

)
, 0 ≤ s ≤ t, j ∈ Id.(3.3)

Here, we used the conventions that τ0 = 0, κ0 = i, and that the product term from
l to n − 1 in (3.2) is equal to 1 when n = 1. We then deduce the inequality Xx,i

t ≤
xebtMt for all t, where

Mt =

(
n−1∏
l=0

Zκl
τl,τl+1

)
Zκn
τn,t, τn ≤ t < τn+1, n ∈ N.(3.4)

Now, we notice that (Mt) is a martingale obtained by continuously patching the
martingales (Z

κn−1

τn−1,t) and (Zκn
τn,t) at the stopping times τn, n ≥ 1. In particular, we

have E[Mt] = M0 = 1 for all t.
We set f̃(y) = maxj∈Id

f̃i(y), y > 0, and we notice by definition of f̃i in (2.5) that

f(Xx,i
t , Iit) ≤ yXx,i

t + f̃(y) for all t, y. Moreover, we show by induction on N that for
all N ≥ 1, τ1 ≤ · · · ≤ τN , κ0 = i, κn ∈ Id, n = 1, . . . , N ,

−
N∑

n=1

e−rτng
κn−1,κn

≤ max
j∈Id

[−gij ] a.s.

Indeed, the above assertion is obviously true for N = 1. Suppose now it holds true
at step N . Then, at step N + 1, we distinguish two cases:

• If gκN,κN+1
≥ 0, then we have −

∑N+1
n=1 e−rτngκn−1,κn

≤ −
∑N

n=1 e
−rτngκn−1,κn

and we conclude by the induction hypothesis at step N .
• If g

κN,κN+1
< 0, then by (2.6), and since τN ≤ τN+1, we have −e−rτN g

κN−1,κN
−

e−rτN+1g
κN,κN+1

≤ e−rτN g
κN−1,κN+1

, and so −
∑N+1

n=1 e−rτng
κn−1,κn

≤
−
∑N

n=1 e
−rτng

κ̃n−1,κ̃n
, with κ̃n = κn for n = 1, . . . , N − 1, κ̃N = κN+1.

We then conclude by the induction hypothesis at step N .
It follows that

Ji(x, α) ≤ E

[∫ ∞

0

e−rt
(
yxebtMt + f̃(y)

)
dt + max

j∈Id

[−gij ]

]
=

∫ ∞

0

e−(r−b)tyxE[Mt]dt +

∫ ∞

0

e−rtf̃(y)dt + max
j∈Id

[−gij ]

=
xy

r − b
+

f̃(y)

r
+ max

j∈Id

[−gij ].

From the arbitrariness of α, this shows the upper bound for vi.
By sending x to zero and then y to infinity into the r.h.s. of (3.1), and recalling

that f̃i(∞) = fi(0) = 0 for i ∈ Id, we conclude that vi goes to maxj∈Id
[−gij ] when x

tends to zero.
We next show the Hölder continuity of the value functions.
Lemma 3.2. For all i ∈ Id, vi is Hölder continuous on (0,∞):

|vi(x) − vi(x̂)| ≤ C|x− x̂|γ ∀x, x̂ ∈ (0,∞) with |x− x̂| ≤ 1,

for some positive constant C, and where γ = mini∈Id
γi of condition (2.4).
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Proof. By definition (2.9) of vi and under condition (2.4), we have for all x, x̂ ∈
(0,∞), with |x− x̂| ≤ 1,

|vi(x) − vi(x̂)| ≤ sup
α∈A

|Ji(x, α) − Ji(x̂, α)|

≤ sup
α∈A

E

[∫ ∞

0

e−rt
∣∣∣f(Xx,i

t , Iit) − f(X x̂,i
t , Iit)

∣∣∣ dt]
≤ C sup

α∈A
E

[∫ ∞

0

e−rt
∣∣∣Xx,i

t −X x̂,i
t

∣∣∣γIit dt

]
= C sup

α∈A

∫ ∞

0

E
[
e−rt|x− x̂|γIit |Yt(i)|

γ
Iit dt

]
≤ C|x− x̂|γ sup

α∈A

∫ ∞

0

e−(r−b)tE|Mt|
γ
Iit dt(3.5)

by (3.2) and (3.4). For any α = (τn, κn)n ∈ A, by the independence of (Zκn
τn,τn+1

)n in
(3.3), and since

E
[∣∣∣Zκn

τn,τn+1

∣∣∣γκn
∣∣∣Fτn

]
= E

[
exp

(
γκn(γκn − 1)

σ2
κn

2
(τn+1 − τn)

)∣∣∣∣Fτn

]
≤ 1 a.s.,

we clearly see that E|Mt|
γ
Iit ≤ 1 for all t ≥ 0. We thus conclude with (3.5).

The dynamic programming principle combined with the notion of viscosity solu-
tions is known to be a general and powerful tool for characterizing the value function
of a stochastic control problem via a PDE representation; see [6]. We recall the
definition of viscosity solutions for a PDE in the form

H(x, v,Dxv,D
2
xxv) = 0, x ∈ O,(3.6)

where O is an open subset in R
n and H is a continuous function and nonincreasing

in its last argument (with respect to the order of symmetric matrices).
Definition 3.3. Let v be a continuous function on O. We say that v is a

viscosity solution to (3.6) on O if it is
(i) a viscosity supersolution to (3.6) on O: For any x̄ ∈ O and any C2 function

ϕ in a neighborhood of x̄ s.t. x̄ is a local minimum of v − ϕ, we have

H(x̄, v(x̄), Dxϕ(x̄), D2
xxϕ(x̄)) ≥ 0;

and
(ii) a viscosity subsolution to (3.6) on O: For any x̄ ∈ O and any C2 function ϕ

in a neighborhood of x̄ s.t. x̄ is a local maximum of v − ϕ, we have

H(x̄, v(x̄), Dxϕ(x̄), D2
xxϕ(x̄)) ≤ 0.

Remark 3.1. 1. By misuse of notation, we shall say that v is a viscosity superso-
lution (resp., subsolution) to (3.6) by writing

H(x, v,Dxv,D
2
xxv) ≥ (resp., ≤) 0, x ∈ O,(3.7)

2. We recall that if v is a smooth C2 function on O, supersolution (resp., sub-
solution) in the classical sense to (3.7), then v is a viscosity supersolution (resp.,
subsolution) to (3.7).
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3. There is an equivalent formulation of viscosity solutions, which is useful for
proving uniqueness results (see [3]).

(i) A continuous function v on O is a viscosity supersolution to (3.6) if

H(x, v(x), p,M) ≥ 0 ∀x ∈ O, ∀(p,M) ∈ J2,−v(x).

(ii) A continuous function v on O is a viscosity subsolution to (3.6) if

H(x, v(x), p,M) ≤ 0 ∀x ∈ O, ∀(p,M) ∈ J2,+v(x).

Here J2,+v(x) is the second order superjet defined by

J2,+v(x) =

⎧⎨⎩(p,M) ∈ R
n × Sn :

lim sup
x′ → x
x ∈ O

v(x′) − v(x) − p.(x′ − x) − 1
2 (x′ − x).M(x′ − x)

|x′ − x|2 ≤ 0

⎫⎬⎭ ,

Sn is the set of symmetric n× n matrices, and J2,−v(x) = −J2,+(−v)(x).
In what follows, we shall denote by Li the second order operator associated with

the diffusion X when we are in regime i: for any C2 function ϕ on (0,∞),

Liϕ =
1

2
σ2
i x

2ϕ′′ + bixϕ
′.

We then have the following PDE characterization of the value functions vi by
means of viscosity solutions.

Theorem 3.4. The value functions vi, i ∈ Id, are the unique viscosity so-
lutions, with linear growth conditions on (0,∞) and boundary conditions vi(0

+) =
maxj∈Id

[−gij ], to the system of variational inequalities:

min

{
rvi − Livi − fi , vi − max

j �=i
(vj − gij)

}
= 0, x ∈ (0,∞), i ∈ Id.(3.8)

This means we have the following properties.
(1) Viscosity property. For each i ∈ Id, vi is a viscosity solution to

min

{
rvi − Livi − fi , vi − max

j �=i
(vj − gij)

}
= 0, x ∈ (0,∞).(3.9)

(2) Uniqueness property. If wi, i ∈ Id, are viscosity solutions, with linear growth
conditions on (0,∞) and boundary conditions wi(0

+) = maxj∈Id
[−gij ], to the system

of variational inequalities (3.8), then vi = wi on (0,∞).
Proof. (1) The viscosity property follows from the dynamic programming principle

and is proved in [9].
(2) Uniqueness results for switching problems have been proved in [10] in the finite
horizon case under different conditions. For sake of completeness, we provide in the
appendix a proof of the comparison principle in our infinite horizon context, which
implies the uniqueness result.

Remark 3.2. For fixed i ∈ Id, we also have uniqueness of viscosity solutions to
(3.9) in the class of continuous functions with linear growth conditions on (0,∞) and
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given boundary conditions on 0. In the next section, we shall use either uniqueness
of viscosity solutions to the system (3.8) or for fixed i to (3.9), for the identification
of an explicit solution in the two-regime case d = 2.

We shall also combine the uniqueness result for the viscosity solutions with the
smooth-fit property on the value functions that we state below.

For any regime i ∈ Id, we introduce the switching region

Si =

{
x ∈ (0,∞) : vi(x) = max

j �=i
(vj − gij)(x)

}
.

Si is a closed subset of (0,∞) and corresponds to the region where it is optimal for
the operator to change regime. The complement set Ci of Si in (0,∞) is the so-called
continuation region:

Ci =

{
x ∈ (0,∞) : vi(x) > max

j �=i
(vj − gij)(x)

}
,

where the operator remains in regime i. In this open domain, the value function vi is
smooth C2 on Ci and satisfies, in a classical sense,

rvi(x) − Livi(x) − fi(x) = 0, x ∈ Ci.

As a consequence of the condition (2.6), we have the following elementary partition
property of the switching regions (see Lemma 4.2 in [9]):

Si = ∪j �=iSij , i ∈ Id,

where

Sij = {x ∈ Cj : vi(x) = (vj − gij)(x)} .

Sij represents the region where it is optimal to switch from regime i to regime j and to
remain for a moment, i.e., without changing instantaneously from regime j to another
regime. The following lemma gives some partial information about the structure of
the switching regions.

Lemma 3.5. For all i �= j in Id, we have

Sij ⊂ Qij := {x ∈ Cj : (Lj − Li)vj(x) + (fj − fi)(x) − rgij ≥ 0} .

Proof. Let x ∈ Sij . By setting ϕj = vj − gij , this means that x is a minimum
of vi − ϕj with vi(x) = ϕj(x). Moreover, since x lies in the open set Cj where vj is
smooth, we have that ϕj is C2 in a neighborhood of x. By the supersolution viscosity
property of vi to the PDE (3.8), this yields

rϕj(x) − Liϕj(x) − fi(x) ≥ 0.(3.10)

Now recall that for x ∈ Cj , we have

rvj(x) − Ljvj(x) − fj(x) = 0,

so that by substituting into (3.10), we obtain

(Lj − Li)vj(x) + (fj − fi)(x) − rgij ≥ 0,
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which is the required result.
We quote the smooth-fit property on the value functions, proved in [9].
Theorem 3.6. For all i ∈ Id, the value function vi is continuously differentiable

on (0,∞).
Remark 3.3. In a given regime i, the variational inequality satisfied by the value

function vi is a free-boundary problem as in the optimal stopping problem, which
divides the state space into the switching region (stopping region in the pure optimal
stopping problem) and the continuation region. The main difficulty with regard to
optimal stopping problems for proving the smooth-fit property through the bound-
aries of the switching regions, is that the switching region for the value function vi
depends also on the other value functions vj . The method in [9] uses viscosity so-
lutions arguments, and the condition of one-dimensional state space is critical for
proving the smooth-fit property. The crucial conditions in this paper require that the
diffusion coefficient in any regime of the system X be strictly positive on the interior
of the state space, which is the case here since σi > 0 for all i ∈ Id, and a triangular
condition (2.6) on the switching costs. Under these conditions, on a point x of the
switching region Si for regime i, there exists some j �= i s.t. x ∈ Sij , i.e., vi(x) =
vj(x) − gij , and the C1 property of the value functions is written as v′i(x) = v′j(x)
since gij is constant.

The next result provides suitable conditions for determining a viscosity solution
to the variational inequality type arising in our switching problem.

Lemma 3.7. Fix i ∈ Id. Let C be an open set in (0,∞), S = (0,∞)\C assumed to
be the union of a finite number of closed intervals in (0,∞), and w, h two continuous
functions on (0,∞), with w = h on S such that

w is C1 on ∂S,(3.11)

w ≥ h on C,(3.12)

w is C2 on C, solution to

rw − Liw − fi = 0 on C,(3.13)

and w is a viscosity supersolution to

rw − Liw − fi ≥ 0 on int(S).(3.14)

Here int(S) is the interior of S and ∂S = S \ int(S) its boundary. Then, w is a
viscosity solution to

min {rw − Liw − fi, w − h} = 0 on (0,∞).(3.15)

Proof. Take some x̄ ∈ (0,∞) and distinguish the following cases:
• x̄ ∈ C. Since w = v is C2 on C and satisfies rw(x̄) − Liw(x̄) − fi(x̄) = 0 by

(3.13), and recalling w(x̄) ≥ h(x̄) by (3.12), we obtain the classical solution property,
and so a fortiori the viscosity solution property (3.15) of w at x̄.

• x̄ ∈ S. Then w(x̄) = h(x̄) and the viscosity subsolution property is trivial at
x̄. It remains to show the viscosity supersolution property at x̄. If x̄ ∈ int(S), this
follows directly from (3.14). Suppose now x̄ ∈ ∂S, and to fix the idea, we consider
that x̄ is on the left-boundary of S so that from the assumption on the form of S,
there exists ε > 0 s.t. (x̄ − ε, x̄) ⊂ C on which w is smooth C2 (the same argument
holds true when x̄ is on the right-boundary of S). Take some smooth C2 function ϕ
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s.t. x̄ is a local minimum of w − ϕ. Since w is C1 by (3.11), we have ϕ′(x̄) = w′(x̄).
We may also assume w.l.o.g. (by taking ε small enough) that (w−ϕ)(x̄) ≤ (w−ϕ)(x)
for x ∈ (x̄− ε, x̄). Moreover, by Taylor’s formula, we have

w(x̄− η) = w(x̄) − η

∫ 1

0

w′(x̄− tη)dt,ϕ(x̄− η) = ϕ(x̄) − η

∫ 1

0

ϕ′(x̄− tη)dt,

so that ∫ 1

0

ϕ′(x̄− tη) − w′(x̄− tη) dt ≥ 0 ∀ 0 < η < ε.

Since ϕ′(x̄) = w′(x̄), this last inequality is written as∫ 1

0

ϕ′(x̄− tη) − ϕ′(x̄)

η
− w′(x̄− tη) − w′(x̄)

η
dt ≥ 0 ∀ 0 < η < ε.(3.16)

Now, from (3.13), we have rw(x)−Liw(x)− fi(x) = 0 for x ∈ (x̄− ε, x̄). By sending
x towards x̄ into this last equality, this shows that w′′(x̄−) = limx↗x̄ w

′′(x) exists,
and

rw(x̄) − bix̄w
′(x̄) − 1

2
σ2
i x̄

2w′′(x̄−) − fi(x̄) = 0.(3.17)

Moreover, by sending η to zero into (3.16), we obtain∫ 1

0

t
[
− ϕ′′(x̄) + w′′(x̄−)

]
dt ≥ 0,

and so ϕ′′(x̄) ≤ w′′(x̄−). By substituting into (3.17), and recalling that w′(x̄) = ϕ′(x̄),
we then obtain

rw(x̄) − Liϕ(x̄) − fi(x̄) ≥ 0,

which is the required supersolution inequality and ends the proof.
Remark 3.4. Since w = h on S, relation (3.14) means equivalently that h is a

viscosity supersolution to

rh− Lih− fi ≥ 0 on int(S).(3.18)

Practically, Lemma 3.7 shall be used as follows in the next section: We consider two
C1 functions v and h on (0,∞) s.t.

v(x) = h(x), v′(x) = h′(x), x ∈ ∂S,
v ≥ h on C,

v is C2 on C, solution to

rv − Liv − fi = 0 on C,

and h is a viscosity supersolution to (3.18). Then, the function w defined on (0,∞)
by

w(x) =

{
v(x), x ∈ C,
h(x), x ∈ S
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satisfies the conditions of Lemma 3.7 and is a viscosity solution to (3.15). This lemma
combined with uniqueness viscosity solution results may be viewed as an alternative to
the classical verification approach in the identification of the value function. Moreover,
with our viscosity solutions approach, we shall see in section 4.2 that Lemma 3.5
and the smooth-fit property of the value functions in Theorem 3.6 provide a direct
derivation for the structure of the switching regions, and thus of the solution to our
problem.

4. Explicit solution in the two-regime case. In this section, we consider the
case where d = 2. In this two-regime case, we know from Theorem 3.4 that the value
functions vi, i = 1, 2, are the unique continuous viscosity solutions, with linear growth
conditions on (0,∞), and boundary conditions vi(0

+) = (−gij)+ := max(−gij , 0), j
�= i, to the system

min {rv
1 − L1v1 − f1, v1 − (v2 − g12)} = 0,(4.1)

min {rv2 − L2v2 − f2, v2 − (v1 − g21)} = 0.(4.2)

Moreover, the switching regions are

Si = Sij = {x > 0 : vi(x) = vj(x) − gij} , i, j = 1, 2, i �= j.

We set

x∗
i = inf Si ∈ [0,∞]x̄∗

i = supSi ∈ [0,∞],

with the usual convention that inf ∅ = ∞.
Let us also introduce some other notation. We consider the second order ODE

for i = 1, 2:

rv − Liv − fi = 0,(4.3)

whose general solution (without second member fi) is given by

v(x) = Axm+
i + Bxm−

i ,

for some constants A, B, and where

m−
i = − bi

σ2
i

+
1

2
−

√(
− bi
σ2
i

+
1

2

)2

+
2r

σ2
i

< 0,

m+
i = − bi

σ2
i

+
1

2
+

√(
− bi
σ2
i

+
1

2

)2

+
2r

σ2
i

> 1.

We also denote

V̂i(x) = E

[∫ ∞

0

e−rtfi(X̂
x,i
t )dt

]
,

with X̂x,i the solution to the SDE dX̂t = biX̂tdt + σiX̂tdWt, X̂0 = x. Actually, V̂i

is a particular solution to ODE (4.3), with boundary condition V̂i(0
+) = fi(0) = 0.

It corresponds to the reward function associated with the no switching strategy from
initial state (x, i), and so V̂i ≤ vi.
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Remark 4.1. If gij > 0, then from (2.7), we have vi(0
+) = 0 > (−gji)+ − gij =

vj(0
+)−gij . Therefore, by continuity of the value functions on (0,∞), we get x∗

i > 0.
We now give the explicit solution to our problem in the following two situations:
• The diffusion operators are different and the running profit functions are

identical.
• The diffusion operators are identical and the running profit functions are

different.
We also consider the cases for which both switching costs are positive, and for

which one of the two is negative, the other being then positive according to (2.7).
This last case is interesting in applications where a firm chooses between an open or
closed activity, and may regain a fraction of its opening costs when it decides to close.

4.1. Identical profit functions with different diffusion operators. In this
subsection, we suppose that the running functions are identical in the form

f1(x) = f2(x) = xγ , 0 < γ < 1,(4.4)

and the diffusion operators are different. A straightforward calculation shows that
under (4.4), we have

V̂i(x) = Kix
γ with Ki =

1

r − biγ + 1
2σ

2
i γ(1 − γ)

> 0, i = 1, 2.

We show that the structure of the switching regions depends actually only on the
sign of K2 −K1, and of the sign of the switching costs g12 and g21. More precisely,
we have the following explicit result.

Theorem 4.1. Let i, j = 1, 2, i �= j.
(1) If Ki = Kj, then

vi(x) = V̂i(x) + (−gij)+, x ∈ (0,∞),

Si =

{
∅ if gij > 0,

(0,∞) if gij ≤ 0.

It is always optimal to switch from regime i to j if the corresponding switching cost is
nonpositive, and never optimal to switch otherwise.

(2) If Kj > Ki, then we have the following situations depending on the switching
costs:

(a) gij ≤ 0: We have Si = (0,∞), Sj = ∅, and

vi = V̂j − gij ,vj = V̂j .

(b) gij > 0:
• If gji ≥ 0, then Si = [x∗

i ,∞) with x∗
i ∈ (0,∞), Sj = ∅, and

vi(x) =

{
Axm+

i + V̂i(x), x < x∗
i ,

vj(x) − gij , x ≥ x∗
i ,

(4.5)

vj(x) = V̂j(x), x ∈ (0,∞),(4.6)

where the constants A and x∗
i are determined by the continuity and

smooth-fit conditions of vi at x∗
i , and explicitly given by

x∗
i =

(
m+

i

m+
i − γ

gij
Kj −Ki

) 1
γ

,(4.7)

A = (Kj −Ki)
γ

m+
i

(x∗
i )

γ−m+
i .(4.8)
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When we are in regime i, it is optimal to switch to regime j whenever
the state process X exceeds the threshold x∗

i , while when we are in regime
j, it is optimal to never switch.

• If gji < 0, then Si = [x∗
i ,∞) with x∗

i ∈ (0,∞), Sj = (0, x̄∗
j ], and

vi(x) =

{
Axm+

i + V̂i(x), x < x∗
i ,

vj(x) − gij , x ≥ x∗
i ,

(4.9)

vj(x) =

{
vi(x) − gji, x ≤ x̄∗

j ,

Bxm−
j + V̂j(x), x > x̄∗

i ,
(4.10)

where the constants A, B and x̄∗
j < x∗

i are determined by the continuity
and smooth-fit conditions of vi and vj at x∗

i and x̄∗
j , and explicitly given

by

x
j =

[
−m−

j (gji + g
ij
ym

+
i )

(Ki −Kj)(γ −m−
j )(1 − ym

+
i −γ)

] 1
γ

,

x
i
=

xj

y
,

B =
(Ki −Kj)(m

+
i − γ)x

γ−m−
j

i + m+
i gijx

−mj
i

m+
i −m−

j

,

A = Bx
m−

j −m+
i

i − (Ki −Kj)x
γ−m+

i
i

− gijx
−m+

i
i

,

with y solution in (
0,

(
−
gji

gij

) 1

m
+
i

)

to the equation

m+
i (γ −m−

j )
(
1 − ym

+
i −γ

)(
g
ijy

m−
j + g

ji

)
+ m−

j (m+
i − γ)

(
1 − ym

−
j −γ

)(
g
ijy

m+
i + gji

)
= 0.

When we are in regime i, it is optimal to switch to regime j whenever
the state process X exceeds the threshold x∗

i , while when we are in regime
j, it is optimal to switch to regime i for values of the state process X
under the threshold x̄∗

j .

Economic interpretation. In the particular case where σ1 = σ2, we have that
K2 − K1 > 0 means that regime 2 provides a higher expected return b2 than b1 of
regime 1 for the same volatility coefficient σi. Moreover, if the switching cost g21 from
regime 2 to regime 1 is nonnegative, it is intuitively clear that it is in our best interest
to always stay in regime 2, which is formalized by the property that S

2 = ∅. However,
if one receives some gain compensation to switch from regime 2 to regime 1, i.e., the
corresponding cost g

21 is negative, then it is in our best interest to change regime for
small values of the current state. This is formalized by the property that S2 = (0, x̄∗

2].
On the other hand, in regime 1, our best interest is to switch to regime 2, for all current



408 VATHANA LY VATH AND HUYÊN PHAM

22 V̂v

x

x

continue

0g0,g,KK,ff:I.1.aFigure 21122121

continue

2Regime

1Regime
11 V̂v x

x

2112 gV̂v

0g0,g,KK,ff:I.1.bFigure 21122121

continue

switch

11 V̂v

2Regime

1Regime

x

x
2Regime

1Regime

continue

1221 gV̂vswitch

22 V̂v

0g,KK,ff:I.2.aFigure 121221

x

x
2Regime

1Regime

continue

switchcontinue

22 V̂v

0g0,g,KK,ff:I.2.biFigure 21121221

1
m

1 V̂Axv 1 1221 gV̂v
*
1x

x

x
2Regime

1Regime
*
1x

continue

continue

*
2x

switch

switch

0g0,g,KK,ff:I.2.biiFigure 21121221

Fig. 1.

values of the state if the corresponding switching cost g
12

is nonpositive, or from a
certain threshold x∗

1 if the switching cost g12 is positive. A similar interpretation holds
when b1 = b2, and K2 −K1 > 0, i.e., σ2 < σ1. Theorem 4.1 extends these results for
general coefficients bi and σi, and shows that the critical parameter value determining
the form of the optimal strategy is given by the sign of K2 − K1 and the switching
costs. The different optimal strategy structures are depicted in Figure 1.

Proof of Theorem 4.1.
(1) If Ki = Kj , then V̂i = V̂j . We consider the smooth functions wi = V̂i+(−gij)+

for i, j = 1, 2 and j �= i. Since V̂i are solutions to (4.3), we see that wi satisfy

rwi − Lwi − fi = r(−gij)+,(4.11)

wi − (wj − gij) = gij + (−gij)+ − (−gji)+.(4.12)

Notice that the l.h.s. of (4.11) and (4.12) are both nonnegative by (2.7). Moreover,
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if gij > 0, then the l.h.s. of (4.11) is zero, and if gij ≤ 0, then gji > 0 and the l.h.s.
of (4.12) is zero. Therefore, wi, i = 1, 2 is solution to the system

min {rwi − Liwi − fi, wi − (wj − gij)} = 0.

Since V̂i(0
+) = 0, we have wi(0

+) = (−gij)+. Moreover, wi like V̂i satisfies a linear
growth condition. Therefore, from the uniqueness solutions to the PDE system (4.1)–
(4.2), we deduce that vi = wi. As observed above, if gij ≤ 0, then the l.h.s. of (4.12)
is zero, and so Si = (0,∞). Finally, if gij > 0, then the l.h.s. of (4.12) is positive, and
so Si = ∅.

(2) We now suppose w.l.o.g. that K2 > K1.
(a) Consider first the case where g

12
≤ 0, and so g

21
> 0. We set w1 =

V̂2 − g12 and w2 = V̂2. Then, by construction, we have w1 = w2 − g
12

on (0,∞), and
by definition of V̂1 and V̂2:

rw1(x) − L1w1(x) − f1(x) =
K2 −K1

K1
xγ − rg

12 > 0 ∀ x > 0.

On the other hand, we also have rw2 −L2w2 − f2 = 0 on (0,∞), and w2 ≥ w1 − g
21

since g
12

+ g
21

≥ 0. Hence, w1 and w2 are smooth (hence, viscosity) solutions to the
system (4.1)–(4.2), with linear growth conditions and boundary conditions w1(0

+) =
V1(0

+) − g12 = (−g12)+, w2(0
+) = V̂2(0

+) = 0 = (−g21)+. By the uniqueness result
of Theorem 3.4, we deduce that v1 = w1, v2 = w2, and thus S1 = (0,∞), S2 = ∅.

(b) Consider now the case where g
12

> 0. We already know from Remark 4.1
that x∗

1
> 0, and we claim that x∗

1
< ∞. Otherwise, v1 should be equal to V̂1 . Since

v
1 ≥ v2 − g12 ≥ V̂2 − g12 , this would imply (V̂2 − V̂1)(x) = (K2 −K1)x

γ ≤ g12 for all
x > 0, an obvious contradiction. By definition of x∗

1
, we have (0, x∗

1) ⊂ C1. We shall
prove actually the equality (0, x∗

1
) = C1, i.e., S1 = [x∗

1
,∞). On the other hand, the

form of S2 will depend on the sign of g21 .
Case: g

21 ≥ 0.
We shall prove that C2 = (0,∞), i.e., S2 = ∅. To this end, let us consider the

function

w
1
(x) =

{
Axm+

1 + V̂
1
(x), 0 < x < x1 ,

V̂
2(x) − g12 , x ≥ x1 ,

where the positive constants A and x
1

satisfy

Axm+
1

1
+ V̂1(x1) = V̂2(x1) − g12 ,(4.13)

Am+
1 x

m+
1 −1

1
+ V̂ ′

1
(x1) = V̂ ′

2
(x1),(4.14)

and are explicitly determined by

(K2 −K1)x
γ
1

=
m+

1

m+
1 − γ

g12
,(4.15)

A = (K2 −K1)
γ

m+
1

xγ−m+
1

1
.(4.16)

Notice that by construction, w1 is C2 on (0, x1) ∪ (x1 ,∞), and C1 on x1 .
By using Lemma 3.7, we now show that w1 is a viscosity solution to

min
{
rw

1 − L1w1 − f1, w1 − (V̂2 − g12)
}

= 0 on (0,∞).(4.17)
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We first check that

w1(x) ≥ V̂2(x) − g12 ∀ 0 < x < x1 ,(4.18)

i.e.,

G(x) := Axm+
1 + V̂

1
(x) − V̂

2
(x) + g

12
≥ 0 ∀ 0 < x < x

1
.

Since A > 0, 0 < γ < 1 < m+
1 , K2−K1 > 0, a direct derivation shows that the second

derivative of G is positive, i.e., G is strictly convex. By (4.14), we have G′(x1) = 0,
and so G′ is negative, i.e., G is strictly decreasing on (0, x1). Now, by (4.13), we have
G(x

1
) = 0, and thus G is positive on (0, x

1
), which proves (4.18).

By definition of w1 on (0, x
1
), we have in the classical sense

rw1 − L1w1 − f1 = 0 on (0, x1).(4.19)

We now check that

rw1
− L1w1

− f1 ≥ 0 on (x
1
,∞)(4.20)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition
of w1 on (x1 ,∞), and K1, we have for all x > x1 ,

rw1(x) − L1w1(x) − f1(x) =
K2 −K1

K1
xγ − rg12 ∀x > x

1 ,

so that (4.20) is satisfied iff K2−K1

K1
xγ

1
− rg

12
≥ 0, or equivalently by (4.15),

m+
1

m+
1 − γ

≥ rK1 =
r

r − b1γ + 1
2σ

2
1γ(1 − γ)

.(4.21)

Now, since γ < 1 < m+
1 , and by definition of m+

1 , we have

1

2
σ2

1m
+
1 (γ − 1) <

1

2
σ2

1m
+
1 (m+

1 − 1) = r − b1m
+
1 ,

which proves (4.21) and thus (4.20).
Relations (4.13)–(4.14) and (4.18)–(4.20) mean that the conditions of Lemma 3.7

are satisfied with C = (0, x
1), h = V̂2 − g12 , and we thus get the required assertion

(4.17).
On the other hand, we check that

V̂2
(x) ≥ w1(x) − g21 ∀x > 0,(4.22)

which amounts to showing

H(x) := Axm+
1 + V̂

1
(x) − V̂

2
(x) − g

21
≤ 0 ∀ 0 < x < x

1
.

Since A > 0, 0 < γ < 1 < m+
1 , K2−K1 > 0, a direct derivation shows that the second

derivative of H is positive, i.e., H is strictly convex. By (4.14), we have H ′(x1) = 0
and so H ′ is negative, i.e., H is strictly decreasing on (0, x1). Now, we have H(0) =
−g21 ≤ 0 and thus H is negative on (0, x1), which proves (4.22). Recalling that V̂2 is
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a solution to rV̂2
− L2V̂2

− f2 = 0 on (0,∞), we deduce that, obviously from (4.22),
V̂

2 is a classical, hence a viscosity, solution to

min
{
rV̂2 − L2V̂2 − f2, V̂2 − (w1 − g21)

}
= 0 on (0,∞).(4.23)

Since w
1(0

+) = 0 = (−g12)+, V̂2(0
+) = 0 = (−g21)+, and w1 , V̂2 satisfy a linear

growth condition, we deduce from (4.17), (4.23), and uniqueness to the PDE system
(4.1)–(4.2) that

v1 = w
1
,v

2
= V̂

2
on (0,∞).

This proves x∗
1

= x1 , S1 = [x
1
,∞), and S

2
= ∅.

Case: g
21 < 0.

We shall prove that S2 = (0, x̄∗
2]. To this end, let us consider the functions

w
1(x) =

{
Axm+

1 + V̂
1
(x), x < x

1
,

w2(x) − g12 , x ≥ x
1
,

w
2(x) =

{
w1(x) − g21 , x ≤ x̄2 ,

Bxm−
2 + V̂

2
(x), x > x̄

2
,

where the positive constants A, B, x
1
> x̄

2
, are the solution to

Axm+
1

1
+ V̂

1
(x

1
) = w2

(x
1
) − g12 = Bxm−

2
1

+ V̂2(x1
) − g12 ,(4.24)

Am+
1 x

m+
1 −1

1
+ V̂ ′

1
(x

1
) = w′

2
(x

1
) = Bm−

2 x
m−

2 −1
1

+ V̂ ′
2
(x

1
),(4.25)

Ax̄m+
1

2
+ V̂

1
(x̄

2
) − g

21
= w

1
(x̄

2
) − g

21
= Bx̄m−

2
2

+ V̂
2
(x̄

2
),(4.26)

Am+
1 x̄

m+
1 −1

2
+ V̂ ′

1
(x̄

2
) = w′

1
(x̄

2
) = Bm−

2 x̄
m−

2 −1
2

+ V̂ ′
2
(x̄

2
),(4.27)

exist and are explicitly determined after some calculations by

x
2 =

[
−m−

2 (g
21

+ g
12
ym

+
1 )

(K1 −K2)(γ −m−
2 )(1 − ym

+
1 −γ)

] 1
γ

,(4.28)

x
1

=
x2

y
,(4.29)

B =
(K1 −K2)(m

+
1 − γ)xγ−m−

2
1

+ m+
1 g12x

−m2
1

m+
1 −m−

2

,(4.30)

A = Bxm−
2 −m+

1
1

− (K1 −K2)x
γ−m+

1
1

− g12x
−m+

1
1

,(4.31)

with y a solution in (
0,

(
−g21

g
12

) 1

m
+
1

)

to the equation

m+
1 (γ −m−

2 )
(
1 − ym

+
1 −γ

)(
g

12y
m−

2 + g21

)
+ m−

2 (m+
1 − γ)

(
1 − ym

−
2 −γ

)(
g

12
ym

+
1 + g

21

)
= 0.(4.32)
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Using (2.7), we have y <
(
− g21

g
12

) 1

m
+
1 < 1. As such, 0 < x̄2 < x1. Furthermore, by

using (4.29), and (4.32) satisfied by y, we may easily check that A and B are positive
constants.

Notice that by construction, w
1 (resp., w2) is C2 on (0, x

1
) ∪ (x

1
,∞) (resp.,

(0, x̄
2) ∪ (x̄2 ,∞)) and C1 at x

1
(resp., x̄

2
).

By using Lemma 3.7, we now show that wi, i = 1, 2, is a viscosity solution to the
system

min {rwi − Liwi − fi, wi − (wj − gij)} = 0 on (0,∞), i, j = 1, 2, j �= i.(4.33)

Since the proof is similar for both wi, i = 1, 2, we prove the result only for w1. We
first check that

w1 ≥ w2 − g
12

∀ 0 < x < x
1
.(4.34)

From the definition of w1 and w2 and using the fact that g
12

+ g
21

> 0, it is straight-
forward to see that

w1 ≥ w2 − g12 ∀ 0 < x ≤ x2 .(4.35)

Now, we need to prove that

G(x) := Axm+
1 + V̂

1
(x) −Bxm−

2 − V̂
2
(x) + g

12
≥ 0 ∀ x

2
< x < x

1
.(4.36)

We have G(x̄2) = g12 + g21 > 0 and G(x
1
) = 0. Suppose that there exists some

x
0
∈ (x̄

2 , x1
) such that G(x

0) = 0. We then deduce that there exists x3 ∈ (x̄0 , x1
)

such that G′(x
3
) = 0. As such, the equation G′(x) = 0 admits at least three solutions

in [x̄2 , x1
]:
{
x̄2 , x3 , x1

}
. However, a straightforward study of the function G shows

that G′ can take the value zero at most at two points in (0,∞). This leads to a
contradiction, proving therefore (4.36).

By definition of w1, we have in the classical sense

rw1 − L1w1 − f = 0 on (0, x
1
).(4.37)

We now check that

rw1 − L1w1 − f ≥ 0 on (x
1
,∞)(4.38)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition
of w

1
on (x

1
,∞), and K1, we have for all x > x

1
,

(4.39)

H(x) := rw1(x) − L1w1(x) − f(x) =
K2 −K1

K1
xγ + m−

2 LBxm−
2 − rg

12
∀x > x

1
,

where L = 1
2 (σ2

2 − σ2
1)(m−

2 − 1) + b2 − b1.
We distinguish two cases:

• First, if L ≥ 0, the function H would be nondecreasing on (0,∞) with limx→0+

H(x) = −∞ and limx→∞ H(x) = +∞. As such, it suffices to show that H(x1) ≥ 0.
From (4.24)–(4.25), we have

H(x1) = (K2 −K1)

[
m+

1 −m−
2

K1
− (m+

1 − γ)m−
2 L

]
− rg12 + m+

1 m
−
2 g12L.
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Using relations (4.21), (4.24), (4.25), (4.29), and the definition of m+
1 and m−

2 , we
then obtain

H(x1) =
m+

1 (m+
1 −m−

2 )

K1(m
+
1 − γ)

− r ≥ m+
1

K1(m
+
1 − γ)

− r ≥ 0.

• Second, if L < 0, it suffices to show that

K2 −K1

K1
xγ − rg12 ≥ 0 ∀ x > x1,

which is rather straightforward from (4.21) and (4.29).
Relations (4.34), (4.37), (4.38), and the regularity of wi, i = 1, 2, as constructed,

mean that the conditions of Lemma 3.7 are satisfied and we thus get the required
assertion (4.33).

Since w
1(0

+) = 0 = (−g12)+, w2(0
+) = −g21 = (−g21)+, and w

1
, V̂

2
satisfy a

linear growth condition, we deduce from (4.33) and uniqueness to the PDE system
(4.1)–(4.2) that

v1 = w1 ,v2 = w2 on (0,∞).

This proves x∗
1

= x
1
, S

1
= [x

1
,∞) and x̄∗

2 = x̄2, S2
= (0, x̄2].

4.2. Identical diffusion operators with different profit functions. In this
subsection, we suppose that L1 = L2 = L, i.e., b1 = b2 = b, σ1 = σ2 = σ > 0. We
then set m+ = m+

1 = m+
2 , m− = m−

1 = m−
2 , and X̂x = X̂x,1 = X̂x,2. Notice that in

this case, the set Qij , i, j = 1, 2, i �= j, introduced in Lemma 3.5, satisfies

Qij = {x ∈ Cj : (fj − fi)(x) − rgij ≥ 0}
⊂ Q̂ij := {x > 0 : (fj − fi)(x) − rgij ≥ 0} .(4.40)

Once we are given the profit functions fi, fj , the set Q̂ij can be explicitly computed.

Moreover, we prove in the next key lemma that the structure of Q̂ij , when it is
connected, determines the same structure for the switching region Si.

Lemma 4.2. Let i, j = 1, 2, i �= j.
(1) Assume that

sup
x>0

(V̂j − V̂i)(x) > gij .(4.41)

(a) If there exists 0 < xij < ∞ such that

Q̂ij = [xij ,∞),(4.42)

then 0 < x∗
i < ∞ and

Si = [x∗
i ,∞).

(b) If gij ≤ 0 and there exists 0 < x̄ij < ∞ such that

Q̂ij = (0, x̄ij ],(4.43)

then 0 < x̄∗
i < ∞ and

Si = (0, x̄∗
i ].
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(2) If there exist 0 < xij < x̄ij < ∞ such that

Q̂ij = [xij , x̄ij ],(4.44)

then 0 < x∗
i < x̄∗

i < ∞ and

Si = [x∗
i , x̄

∗
i ].

(3) If gij ≤ 0 and Q̂ij = (0,∞), then Si = (0,∞) and Sj = ∅.
Proof. (1a) Consider the case of condition (4.42). Since Si ⊂ Q̂ij by Lemma 3.5,

this implies x∗
i := inf Si ≥ xij > 0. We now claim that x∗

i < ∞. On the contrary, the
switching region Si would be empty, and so vi would satisfy on (0,∞)

rvi − Lvi − fi = 0 on (0,∞).

Then, vi would be in the form

vi(x) = Axm+

+ Bxm−
+ V̂i(x), x > 0.

Since 0 ≤ vi(0
+) < ∞ and vi is a nonnegative function satisfying a linear growth

condition, and using the fact that m− < 0 and m+ > 1, we deduce that vi should be
equal to V̂i. Now, since we have vi ≥ vj − gij ≥ V̂j − gij , this would imply

V̂j(x) − V̂i(x) ≤ gij ∀x > 0.

This contradicts condition (4.41), and so 0 < x∗
i < ∞.

By definition of x∗
i , we already know that (0, x∗

i ) ⊂ Ci. We prove actually the
equality, i.e., Si = [x∗

i ,∞) or vi(x) = vj(x)− gij for all x ≥ x∗
i . Consider the function

wi(x) =

{
vi(x), 0 < x < x∗

i ,
vj(x) − gij , x ≥ x∗

i .

We now check that wi is a viscosity solution of

min {rwi − Lwi − fi , wi − (vj − gij)} = 0 on (0,∞).(4.45)

From Theorem 3.6, the function wi is C1 on (0,∞) and in particular at x∗
i , where

w′
i(x

∗
i ) = v′i(x

∗
i ) = v′j(x

∗
i ). We also know that wi = vi is C2 on (0, x∗

i ) ⊂ Ci, and
satisfies rwi − Lwi − fi = 0, wi ≥ (vj − gij) on (0, x∗

i ). Hence, from Lemma 3.7, we
need only check the viscosity supersolution property of wi to

rwi − Lwi − fi ≥ 0 on (x∗
i ,∞).(4.46)

For this, take some point x̄ > x∗
i and some smooth test function ϕ s.t. x̄ is a local

minimum of wi−ϕ. Then, x̄ is a local minimum of vj − (ϕ+gij), and by the viscosity
solution property of vj to its Bellman PDE, we have

rvj(x̄) − Lϕ(x̄) − fj(x̄) ≥ 0.

Now, since x∗
i ≥ xij , we have x̄ > xij and so by (4.42), x̄ ∈ Q̂ij . Hence,

(fj − fi)(x̄) − rgij ≥ 0.
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By adding the two previous inequalities, we also obtain the required supersolution
inequality:

rwi(x̄) − Lϕ(x̄) − fi(x̄) ≥ 0,

and so (4.45) is proved.

Since wi(0
+) = vi(0

+) and wi satisfies a linear growth condition, and from unique-
ness of the viscosity solution to PDE (4.45), we deduce that wi is equal to vi. In
particular, we have vi(x) = vj(x) − gij for x ≥ x∗

i , which shows that Si = [x∗
i ,∞).

(1b) The case of condition (4.43) is dealt with by same arguments as above: we
first observe that 0 < x̄∗

i := supSi < ∞ under (4.41), and then show with Lemma 3.7
that the function

wi(x) =

{
vj(x) − gij , 0 < x < x̄∗

i ,
vi(x), x ≥ x̄∗

i ,

is a viscosity solution to

min {rwi − Lwi − fi , wi − (vj − gij)} = 0 on (0,∞).

Then, under the condition that gij ≤ 0, we see that gji > 0 by (2.7), and so vi(0
+)

= −gij = (−gji)+ − gij = vj(0
+) − gij = wi(0

+). From uniqueness of the viscosity
solution to PDE (4.45), we conclude that vi = wi, and so Si = (0, x̄∗

i ].

(2) By Lemma 3.5 and (4.40), condition (4.44) implies 0 < xij ≤ x∗
i ≤ x̄∗

i ≤ x̄ij

< ∞. We claim that x∗
i < x̄∗

i . Otherwise, S
i
= {x̄∗

i } and vi would satisfy rvi−Lvi−fi
= 0 on (0, x̄∗

i ) ∪ (x̄∗
i ,∞). By continuity and the smooth-fit condition of vi at x̄∗

i , this
implies that vi satisfies actually

rvi − Lvi − fi = 0, x ∈ (0,∞),

and so is in the form

vi(x) = Axm+

+ Bxm−
+ V̂i(x), x ∈ (0,∞).

Since 0 ≤ vi(0
+) < ∞ and vi is a nonnegative function satisfying a linear growth

condition, this implies A = B = 0. Therefore, vi is equal to V̂i, which also means that
Si = ∅, a contradiction.

We now prove that Si = [x∗
i , x̄

∗
i ]. Let us consider the function

wi(x) =

{
vi(x), x ∈ (0, x∗

i ) ∪ (x̄∗
i ,∞),

vj(x) − gij , x ∈ [x∗
i , x̄

∗
i ],

which is C1 on (0,∞) and in particular on x∗
i and x̄∗

i from Theorem 3.6. Hence, by
similar arguments as in case (1), using Lemma 3.7, we then show that wi is a viscosity
solution of

min {rwi − Lwi − fi , wi − (vj − gij)} = 0.(4.47)

Since wi(0
+) = vi(0

+) and wi satisfies a linear growth condition, and from uniqueness
of the viscosity solution to PDE (4.47), we deduce that wi is equal to vi. In particular,
we have vi(x) = vj(x) − gij for x ∈ [x∗

i , x̄
∗
i ], which shows that Si = [x∗

i , x̄
∗
i ].



416 VATHANA LY VATH AND HUYÊN PHAM

(3) Suppose that gij ≤ 0 and Q̂ij = (0,∞). We shall prove that Si = (0,∞) and

Sj = ∅. To this end, we consider the smooth functions wi = V̂j − gij and wj = V̂j .

Then, recalling the ODE satisfied by V̂j , and inequality (2.7), we get

rwj − Lwj − fj = 0,wj − (wi − gji) = gij + gji ≥ 0.

Therefore wj is a smooth (and so a viscosity) solution to

min
[
rwj − Lwj − fj , wj − (wi − gji)

]
= 0 on (0,∞).

On the other hand, by definition of Q̂ij , which is assumed equal to (0,∞), we have

rwi(x) − Lwi(x) − fi(x) = rV̂j(x) − LV̂j(x) − fj(x) + fj(x) − fi(x) − rgij

= fj(x) − fi(x) − rgij ≥ 0 ∀x > 0.

Moreover, by construction we have wi = wj − gij . Therefore wi is a smooth (and so
a viscosity) solution to

min
[
rwi − Lwi − fi, wi − (wj − gij)

]
= 0 on (0,∞).

Notice also that gji > 0 by (2.7) and since gij ≤ 0. Hence, wi(0
+) = −gij = (−gij)+

= vi(0
+), wj(0

+) = 0 = (−gji)+ = vj(0
+). From the uniqueness result of Theorem

3.4, we deduce that vi = wi, vj = wj , which proves that Si = (0,∞), Sj = ∅.
We shall now provide explicit solutions to the switching problem under general

assumptions on the running profit functions, which include several interesting cases
for applications:

(HF) There exists x̂ ∈ R+ s.t. the function F := f
2
− f

1

is decreasing on (0, x̂), increasing on [x̂,∞),

and F (∞) := lim
x→∞

F (x) > 0, g
12 > 0.

Under (HF), there exists some x̄ ∈ R+ (x̄ > x̂ if x̂ > 0 and x̄ = 0 if x̂ = 0) from
which F is positive: F (x) > 0 for x > x̄. Economically speaking, condition (HF)
means that the profit in regime 2 is “better” than the profit in regime 1 from a certain
level x̄, and the improvement then becomes better and better. Moreover, since profit
in regime 2 is better than in regime 1, it is natural to assume that the corresponding
switching cost g

12
from regime 1 to 2 should be positive. However, we shall consider

both cases, where g
21 is positive and nonpositive. Notice that F (x̂) < 0 if x̂ > 0, F (x̂)

= 0 if x̂ = 0, and we do not assume necessarily F (∞) = ∞.
Example 4.1. A typical example of different running profit functions satisfying

(HF) is given by

fi(x) = kix
γi , i = 1, 2, with 0 < γ1 < γ2 < 1, k1 ∈ R+, k2 > 0.(4.48)

In this case, x̂ =
(
k1γ1

k2γ2

) 1
γ2−γ1 , and limx→∞ F (x) = ∞.

Another example of profit functions of interest in applications is the case when
the profit function in regime 1 is f1 = 0, and the other f2 is increasing. In this case,
assumption (HF) is satisfied with x̂ = 0.

The next proposition states the form of the switching regions in regimes 1 and 2,
depending on the parameter values.

Proposition 4.3. Assume that (HF) holds.
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(1)
(i) If rg12 ≥ F (∞), then x∗

1
= ∞, i.e., S1 = ∅.

(ii) If rg
12 < F (∞), then x∗

1
∈ (0,∞) and S1 = [x∗

1
,∞).

(2)
(i) If rg

21 ≥ −F (x̂), then S2 = ∅.
(ii) If 0 < rg

21
< −F (x̂), then 0 < x∗

2
< x̄∗

2
< x∗

1
, and S

2
= [x∗

2
, x̄∗

2
].

(iii) If g
21 ≤ 0 and −F (∞) < rg

21
< −F (x̂), then 0 = x∗

2
< x̄∗

2
< x∗

1
, and

S2 = (0, x̄∗
2
].

(iv) If rg21 ≤ −F (∞), then S2 = (0,∞).
Proof. (1) From Lemma 3.5, we have

Q̂
12

= {x > 0 : F (x) ≥ rg
12
} .(4.49)

Since g
12 > 0, and fi(0) = 0, we have F (0) = 0 < rg12 . Under (HF), we then

distinguish the two following cases:
(i) If rg

12
≥ F (∞), then Q̂

12
= ∅, and so by Lemma 3.5 and (4.40), S1 = ∅.

(ii) If rg
12 < F (∞), then there exists x̂

12
∈ (0,∞) such that

Q̂
12 = [x

12
,∞).(4.50)

Moreover, since

(V̂2 − V̂1)(x) = E

[∫ ∞

0

e−rtF (X̂x
t )dt

]
∀x > 0,

and F is lower bounded, we obtain by Fatou’s lemma:

lim inf
x→∞

(V̂2 − V̂1)(x) ≥ E

[∫ ∞

0

e−rtF (∞)dt

]
=

F (∞)

r
> g

12
.

Hence, conditions (4.41)–(4.42) with i = 1, j = 2, are satisfied, and we obtain the
first assertion by Lemma 4.2(1).

(2) From Lemma 3.5, we have

Q̂
21 = {x > 0 : −F (x) ≥ rg

21
} .(4.51)

Under (HF), we distinguish the following cases:
(i1) If rg

21 > −F (x̂), then Q̂21 = ∅, and so S2 = ∅.
(i2) If rg

21
= −F (x̂), then either x̂ = 0 and so S2 = Q̂

21
= ∅, or x̂ > 0 and

so Q̂21 = {x̂}, S2 ⊂ {x̂}. In this last case, v2 satisfies rv2 − Lv2 − f2 = 0 on (0, x̂)
∪ (x̂,∞). By continuity and the smooth-fit condition of v2

at x̂, this implies that v
2

satisfies actually

rv
2 − Lv2 − f2 = 0, x ∈ (0,∞),

and so is in the form

v
2(x) = Axm+

+ Bxm−
+ V̂

2
(x), x ∈ (0,∞).

Recalling that 0 ≤ v2(0
+) < ∞ and v

2
is a nonnegative function satisfying a linear

growth condition, this implies A = B = 0. Therefore, v2 is equal to V̂
2
, which also

means that S2 = ∅.
If rg21 < −F (x̂), we need to distinguish three subcases depending on g21 :
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• If g
21

> 0, then there exist 0 < x
21

< x̂ < x̄
21

< ∞ such that

Q̂21 = [x
21
, x̄21 ].(4.52)

We then conclude with Lemma 4.2(2) for i = 2, j = 1.
• If g

21 ≤ 0 with rg21 > −F (∞), then there exists x̄21 < ∞ s.t.

Q̂21
= (0, x̄

21
].

Moreover, we clearly have supx>0(V̂1 − V̂2)(x) > (V̂1 − V̂2)(0) = 0 ≥ g21 .
Hence, conditions (4.41) and (4.43) with i = 2, j = 1, are satisfied, and we
deduce from Lemma 4.2(1) that S2 = (0, x̄∗

2] with 0 < x̄∗
2 < ∞.

• If rg
21 ≤ −F (∞), then Q̂21 = (0,∞), and we deduce from Lemma 4.2(3) for

i = 2, j = 1, that S2 = (0,∞).
Finally, in the two above subcases when S2 = [x∗

2
, x̄∗

2
] or (0, x̄∗

2
], we notice that x̄∗

2
<

x∗
1

since S2 ⊂ C1 = (0,∞) \ S1, which is equal, from (1), either to (0,∞) when x∗
1

=
∞ or to (0, x∗

1
).

Remark 4.2. In our viscosity solutions approach, the structure of the switching
regions is derived from the smooth-fit property of the value functions, uniqueness
result for viscosity solutions, and Lemma 3.5. This contrasts with the classical veri-
fication approach, where the structure of switching regions should be guessed ad hoc
and checked a posteriori by a verification argument.

Economic interpretation. The previous proposition shows that, under (HF),
the switching region in regime 1 has two forms depending on the size of its
corresponding positive switching cost: If g

12 is larger than the “maximum net” profit
F (∞) that one can expect by changing regime (case 1(i), which may occur only if
F (∞) < ∞), then one has no interest in switching regime, and one always stays in
regime 1, i.e., C1 = (0,∞). However, if this switching cost is smaller than F (∞) (case
1(ii), which always holds true when F (∞) = ∞), then there is some positive threshold
from which it is optimal to change regime.

The structure of the switching region in regime 2 exhibits several different forms
depending on the sign and size of its corresponding switching cost g

21
with respect to

the values −F (∞) < 0 and −F (x̂) ≥ 0. If g
21 is nonnegative larger than −F (x̂) (case

2(i)), then one has no interest in switching regime, and one always stays in regime
2, i.e., C2 = (0,∞). If g21 is positive, but not too large (case 2(ii)), then there exists
some bounded closed interval, which is not a neighborhood of zero, where it is optimal
to change regime. Finally, when the switching cost g21 is negative, it is optimal to
switch to regime 1 at least for small values of the state. Actually, if the negative cost
g

21 is larger than −F (∞) (case 2(iii), which always holds true for negative cost when
F (∞) = ∞), then the switching region is a bounded neighborhood of 0. Moreover, if
the cost is negative large enough (case 2(iv), which may occur only if F (∞) < ∞),
then it is optimal to change regime for every value of the state.

By combining the different cases for regimes 1 and 2, and observing that case
2(iv) is not compatible with case 1(ii) by (2.7), we then have a priori seven different
forms for both switching regions. These forms reduce actually to three when F (∞)
= ∞. The various structures of the switching regions are depicted in Figure 2.

Finally, we complete results of Proposition 4.3 by providing the explicit solutions
for the value functions and the corresponding boundaries of the switching regions in
the seven different cases depending on the model parameter values.

Theorem 4.4. Assume that (HF) holds.
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Fig. 2.

(1) If rg12 < F (∞) and rg21 ≥ −F (x̂), then

v
1(x) =

{
Axm+

+ V̂
1
(x), x < x∗

1
,

v2(x) − g12 , x ≥ x∗
1
,

v
2(x) = V̂2(x),
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where the constants A and x∗
1

are determined by the continuity and smooth-fit condi-
tions of v

1 at x∗
1
:

A(x∗
1
)m

+

+ V̂
1
(x∗

1
) = V̂

2
(x∗

1
) − g

12
,

Am+(x∗
1
)m

+−1 + V̂ ′
1
(x∗

1
) = V̂ ′

2
(x∗

1
).

In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds
the threshold x∗

1
, while when we are in regime 2, it is optimal to never switch.

(2) If rg
12 < F (∞) and 0 < rg21 < −F (x̂), then

v
1(x) =

{
A1x

m+

+ V̂
1
(x), x < x∗

1
,

v
2(x) − g12 , x ≥ x∗

1
,

(4.53)

v2(x) =

⎧⎨⎩
A2x

m+

+ V̂2(x), x < x∗
2
,

v1(x) − g21 , x∗
2
≤ x ≤ x̄∗

2
,

B2x
m−

+ V̂2(x), x > x̄∗
2
,

(4.54)

where the constants A1 and x∗
1

are determined by the continuity and smooth-fit condi-
tions of v

1 at x∗
1
, and the constants A2, B2, x

∗
2
, x̄∗

2
are determined by the continuity

and smooth-fit conditions of v
2

at x∗
2

and x̄∗
2
:

A1(x
∗
1
)m

+

+ V̂
1
(x∗

1
) = B2(x

∗
1
)m

−
+ V̂2(x

∗
1
) − g

12
,(4.55)

A1m
+(x∗

1
)m

+−1 + V̂ ′
1
(x∗

1
) = B2m

−(x∗
1
)m

−−1 + V̂ ′
2
(x∗

1
),(4.56)

A2(x
∗
2
)m

+

+ V̂2(x
∗
2
) = A1(x

∗
2
)m

+

+ V̂1(x
∗
2
) − g21 ,(4.57)

A2m
+(x∗

2
)m

+−1 + V̂ ′
2
(x∗

2
) = A1m

+(x∗
2
)m

+−1 + V̂ ′
1
(x∗

2
),(4.58)

A1(x̄
∗
2
)m

+

+ V̂1(x̄
∗
2
) − g21 = B2(x̄

∗
2
)m

−
+ V̂2(x̄

∗
2
),(4.59)

A1m
+(x̄∗

2
)m

+−1 + V̂ ′
1
(x̄∗

2
) = B2m

−(x̄∗
2
)m

−−1 + V̂ ′
2
(x̄∗

2
).(4.60)

In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds
the threshold x∗

1
, while when we are in regime 2, it is optimal to switch to regime 1

whenever the state process lies between x∗
2

and x̄∗
2
.

(3) If rg
12

< F (∞) and g
21

≤ 0 with −F (∞) < rg
21

< −F (x̂), then

v
1(x) =

{
Axm+

+ V̂
1(x), x < x∗

1
,

v
2
(x) − g

12
, x ≥ x∗

1
,

v2(x) =

{
v1(x) − g21 , 0 < x ≤ x̄∗

2
,

Bxm−
+ V̂

2
(x), x > x̄∗

2
,

where the constants A and x∗
1

are determined by the continuity and smooth-fit condi-
tions of v1 at x∗

1
, and the constants B and x̄∗

2
are determined by the continuity and

smooth-fit conditions of v
2 at x̄∗

2
:

A(x∗
1
)m

+

+ V̂1(x
∗
1
) = B(x∗

1
)m

−
+ V̂2(x

∗
1
) − g12 ,

Am+(x∗
1
)m

+−1 + V̂ ′
1
(x∗

1
) = Bm−(x∗

1
)m

−−1 + V̂ ′
2
(x∗

1
),

A(x̄∗
2
)m

+

+ V̂1(x̄
∗
2
) − g21 = B(x̄∗

2
)m

−
+ V̂2(x̄

∗
2
),

Am+(x̄∗
2
)m

+−1 + V̂ ′
1
(x̄∗

2
) = Bm−(x̄∗

2
)m

−−1 + V̂ ′
2
(x̄∗

2
).
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(4) If rg12
≥ F (∞) and rg

21
≥ −F (x̂), then v

1
= V̂1, v2

= V̂2. It is optimal to
never switch in both regimes 1 and 2.

(5) If rg
12 ≥ F (∞) and 0 < rg21 < −F (x̂), then

v
1(x) = V̂1(x),

v
2
(x) =

⎧⎨⎩
Axm+

+ V̂
2
(x), x < x∗

2
,

v
1(x) − g21 , x∗

2
≤ x ≤ x̄∗

2
,

Bxm−
+ V̂2(x), x > x̄∗

2
,

where the constants A, B, x∗
2
, x̄∗

2
are determined by the continuity and smooth-fit

conditions of v
2 at x∗

2
and x̄∗

2
:

A(x∗
2
)m

+

+ V̂2(x
∗
2
) = V̂1(x

∗
2
) − g21 ,

Am+(x∗
2
)m

+−1 + V̂ ′
2
(x∗

2
) = V̂ ′

1
(x∗

2
),

V̂
1
(x̄∗

2
) − g

21
= B(x̄∗

2
)m

−
+ V̂2(x̄

∗
2
),

V̂ ′
1
(x̄∗

2
) = Bm−(x̄∗

2
)m

−−1 + V̂ ′
2
(x̄∗

2
).

In regime 1, it is optimal to never switch, while when we are in regime 2, it is optimal
to switch to regime 1 whenever the state process lies between x∗

2
and x̄∗

2
.

(6) If rg12 ≥ F (∞) and g21 ≤ 0 with −F (∞) < rg21 < −F (x̂), then

v
1
(x) = V̂

1
(x),

v
2(x) =

{
v1

(x) − g
21
, 0 < x ≤ x̄∗

2
,

Bxm−
+ V̂

2
(x), x > x̄∗

2
,

where the constants B and x̄∗
2

are determined by the continuity and smooth-fit condi-
tions of v

2 at x̄∗
2
:

V̂1
(x̄∗

2
) − g

21
= B(x̄∗

2
)m

−
+ V̂2(x̄

∗
2
),

V̂ ′
1
(x̄∗

2
) = Bm−(x̄∗

2
)m

−−1 + V̂ ′
2
(x̄∗

2
).

In regime 1, it is optimal to never switch, while when we are in regime 2, it is optimal
to switch to regime 1 whenever the state process lies below x̄∗

2
.

(7) If rg
12 ≥ F (∞) and rg21 ≤ −F (∞), then v1 = V̂1 and v2 = v1 − g12 . In

regime 1, it is optimal to never switch, while when we are in regime 2, it is always
optimal to switch to regime 1.

Proof. We prove the result only for case (2) since the other cases are dealt with
similarly and are even simpler. Case (2) corresponds to the combination of cases 1(ii)
and 2(ii) in Proposition 4.3. We then have S

1 = [x∗
1
,∞), which means that v1 =

v2 − g12 on [x∗
1
,∞) and v1 is a solution to rv1 − Lv1 − f1 = 0 on (0, x∗

1
). Since 0 ≤

v1(0
+) < ∞, v1 should have the form expressed in (4.53). Moreover, S2 = [x∗

2
, x̄∗

2
],

which means that v2 = v1 − g21 on [x∗
2
, x̄∗

2
], and v2 satisfies rv2 −Lv2 − f2 = 0 on C2

= (0, x∗
2
) ∪ (x̄∗

2
,∞). Recalling again that 0 ≤ v2(0

+) < ∞ and v2 satisfies a linear
growth condition, we deduce that v

2 has the form expressed in (4.54). Finally, the
constants A1, x

∗
1
, which completely characterize v1 , and the constants A2, B2, x

∗
2
, x̄∗

2
,

which completely characterize v
2 , are determined by the six relations (4.55)–(4.60)

resulting from the continuity and smooth-fit conditions of v
1

at x∗
1

and v
2

at x∗
2

and
x̄∗

2
, and from recalling that x̄∗

2
< x∗

1
.
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Remark 4.3. In the classical approach, for instance in case (2), we construct a
priori a candidate solution in the form (4.53)–(4.54) and we have to check the existence
of a sextuple solution to (4.55)–(4.60), which may be somewhat tedious! Here, by the
viscosity solutions approach, and since we already state the smooth-fit C1 property
of the value functions, we know a priori the existence of a sextuple solution to (4.55)–
(4.60).

Appendix A. Proof of comparison principle. In this section, we prove a
comparison principle for the system of variational inequalities (3.8). The comparison
result in [10] for switching problems in a finite horizon does not apply in our context.
Inspired by [8], we first produce some suitable perturbation of a viscosity supersolution
to deal with the switching obstacle, and then follow the general viscosity solution
technique; see, e.g., [3].

Theorem A.1. Suppose ui, i ∈ Id, are continuous viscosity subsolutions to
the system of variational inequalities (3.8) on (0,∞), and wi, i ∈ Id, are continu-
ous viscosity supersolutions to the system of variational inequalities (3.8) on (0,∞),
satisfying the boundary conditions ui(0

+) ≤ wi(0
+), i ∈ Id, and the linear growth

condition

|ui(x)| + |wi(x)| ≤ C1 + C2x ∀x ∈ (0,∞), i ∈ Id,(A.1)

for some positive constants C1 and C2. Then,

ui ≤ wi on (0,∞) ∀i ∈ Id.

Proof. Step 1. Let ui and wi, i ∈ Id, as in Theorem A.1. We first construct strict
supersolutions to the system (3.8) with suitable perturbations of wi, i ∈ Id. We set

h(x) = C ′
1 + C ′

2x
p, x > 0,

where C ′
1, C

′
2 > 0, and p > 1 are positive constants to be determined later. We then

define for all λ ∈ (0, 1) the continuous functions on (0,∞) by

wλ
i = (1 − λ)wi + λ(h + αi), i ∈ Id,

where αi = minj �=i gji. We then see that for all λ ∈ (0, 1), i ∈ Id,

wλ
i − max

j �=i
(wλ

j − gij) = λαi + (1 − λ)wi − max
j �=i

[(1 − λ)(wj − gij) + λαj − λgij ]

≥ (1 − λ)[wi − max
j �=i

(wj − gij)] + λ

(
αi + min

j �=i
(gij − αj)

)
≥ λmin

i∈Id

(
αi + min

j �=i
(gij − αj)

)
≥ λν,(A.2)

where ν := mini∈Id
[αi + minj �=i(gij − αj)] is a constant independent of i. We now

check that ν > 0, i.e., νi := αi +minj �=i(gij −αj) > 0, ∀i ∈ Id. Indeed, fix i ∈ Id, and
let k ∈ Id such that minj �=i(gij − αj) = gik − αk and set i such that αi = minj �=i gji
= gii. We then have

νi = gii + gik − min
j �=k

gjk > gik − min
j �=k

gjk ≥ 0
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by (2.6) and thus ν > 0.
By definition of the Fenchel–Legendre function in (2.5), and by setting f̃(1) =

maxi∈Id
f̃i(1), we have for all i ∈ Id,

fi(x) ≤ f̃(1) + x ≤ f̃(1) + 1 + xp ∀x > 0.

Moreover, recalling that r > b := maxi bi, we can choose p > 1 s.t.

ρ := r − pb− 1

2
σ2p(p− 1) > 0,

where we set σ := maxi σi > 0. By choosing

C ′
1 ≥ 2 + f̃(1)

r
− min

i
αi,C

′
2 ≥ 1

ρ
,

we then have for all i ∈ Id,

rh(x) − Lih(x) − fi(x) = rC ′
1 + C ′

2x
p

[
r − pbi −

1

2
σ2
i p(p− 1)

]
− fi(x)

≥ rC ′
1 + ρC ′

2x
p − fi(x)

≥ 1 ∀x > 0.(A.3)

From (A.2) and (A.3), we then deduce that for all i ∈ Id, λ ∈ (0, 1), wλ
i is a superso-

lution to

min

{
rwλ

i − Liw
λ
i − fi, w

λ
i − max

j �=i
(wλ

j − gij)

}
≥ λδ on (0,∞),(A.4)

where δ = ν ∧ 1 > 0.
Step 2. In order to prove the comparison principle, it suffices to show that for all

λ ∈ (0, 1),

max
j∈Id

sup
(0,+∞)

(uj − wλ
j ) ≤ 0

since the required result is obtained by letting λ go to 0. We argue by contradiction
and suppose that there exist some λ ∈ (0, 1) and i ∈ Id s.t.

θ := max
j∈Id

sup
(0,+∞)

(uj − wλ
j ) = sup

(0,+∞)

(ui − wλ
i ) > 0.(A.5)

From the linear growth condition (A.1), and since p > 1, we observe that ui(x)−wλ
i (x)

goes to −∞ when x goes to infinity. By choosing also C ′
1 ≥ maxi wi(0

+), we then
have ui(0

+)−wλ
i (0+) = ui(0

+)−wi(0
+) + λ(wi(0

+)−C ′
1) ≤ 0. Hence, by continuity

of the functions ui and wλ
i , there exists x0 ∈ (0,∞) s.t.

θ = ui(x0) − wλ
i (x0).

For any ε > 0, we consider the functions

Φε(x, y) = ui(x) − wλ
i (y) − φε(x, y),

φε(x, y) =
1

4
|x− x0|4 +

1

2ε
|x− y|2
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for all x, y ∈ (0,∞). By standard arguments in the comparison principle, the function
Φε attains a maximum in (xε, yε) ∈ (0,∞)2, which converges (up to a subsequence)
to (x0, x0) when ε goes to zero. Moreover,

lim
ε→0

|xε − yε|2
ε

= 0.(A.6)

Applying Theorem 3.2 in [3], we get the existence of Mε, Nε ∈ R such that

(pε,Mε) ∈ J2,+ui(xε),

(qε, Nε) ∈ J2,−wλ
i (yε),

where

pε = Dxφε(xε, yε) =
1

ε
(xε − yε) + (xε − x

0
)3,

qε = −Dyφε(xε, yε) =
1

ε
(xε − yε),

and (
Mε 0
0 −Nε

)
≤ D2φε(xε, yε) + ε

(
D2φε(xε, yε)

)2
(A.7)

with

D2φε(xε, yε) =

(
3(xε − x

0
)2 + 1

ε − 1
ε

− 1
ε

1
ε

)
.

By writing the viscosity subsolution property (3.9) of ui and the viscosity strict su-
persolution property (A.4) of wλ

i , we have the following inequalities:

min

{
rui(xε) −

(
1

ε
(xε − yε) + (xε − x0)

3

)
bixε −

1

2
σ2
i x

2
εMε − fi(xε),

ui(xε) − max
j �=i

(uj − gij)(xε)

}
≤ 0,(A.8)

min

{
rwλ

i (yε) −
1

ε
(xε − yε)biyε −

1

2
σ2
i y

2
εNε − fi(yε),

wλ
i (yε) − max

j �=i
(wλ

j − gij)(yε)

}
≥ λδ.(A.9)

We then distinguish the following two cases:
(1) ui(xε) − maxj �=i(uj − gij)(xε) ≤ 0 in (A.8).
By sending ε → 0, this implies

ui(x0) − max
j �=i

(uj − gij)(x0) ≤ 0.(A.10)

On the other hand, we have by (A.9):

wλ
i (yε) − max

j �=i
(wλ

j − gij)(yε) ≥ λδ,
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so that by sending ε to zero,

wλ
i (x0) − max

j �=i
(wλ

j − gij)(x0) ≥ λδ.(A.11)

Combining (A.10) and (A.11), we obtain

θ = ui(x0) − wλ
i (x0) ≤ −λδ + max

j �=i
(uj − gij)(x0) − max

j �=i
(wλ

j − gij)(x0)

≤ −λδ + max
j �=i

(uj − wλ
j )(x0)

≤ −λδ + θ,

which is a contradiction.
(2) rui(xε) −

(
1
ε (xε − yε) + (xε − x0)

3
)
bixε − 1

2σ
2
i x

2
εMε − fi(xε) ≤ 0 in (A.8).

Since by (A.9), we also have

rwλ
i (yε) −

1

ε
(xε − yε)biyε −

1

2
σ2
i y

2
εNε − fi(yε) ≥ λδ,

this yields, by combining the above two inequalities,

rui(xε) − rwλ
i (yε) −

1

ε
bi(xε − yε)

2 − (xε − x0)
3bixε

+
1

2
σ2
i y

2
εNε −

1

2
σ2
i x

2
εMε + fi(yε) − fi(xε) ≤ −λδ.(A.12)

Now, from (A.7), we have

1

2
σ2
i x

2
εMε −

1

2
σ2
i y

2
εNε ≤

3

2ε
σ2
i (xε − yε)

2 +
3

2
σ2
i x

2
ε(xε − x0)

2
(
3ε(xε − x0)

2 + 2
)
,

so that by plugging into (A.12), we have

r
(
ui(xε) − wλ

i (yε)
)
≤ 1

ε
bi(xε − yε)

2 + (xε − x0)
3bixε +

3

2ε
σ2
i (xε − yε)

2

+
3

2
σ2
i x

2
ε(xε − x0)

2
(
3ε(xε − x0)

2 + 2
)

+ fi(yε) − fi(xε) − λδ.

By sending ε to zero, and using (A.6), continuity of fi, we obtain the required con-
tradiction that rθ ≤ −λδ < 0. This ends the proof of Theorem A.1.
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THE RELAXED STOCHASTIC MAXIMUM PRINCIPLE IN
SINGULAR OPTIMAL CONTROL OF DIFFUSIONS∗

SEID BAHLALI† , BOUALEM DJEHICHE‡ , AND BRAHIM MEZERDI†

Abstract. This paper studies optimal control of systems driven by stochastic differential equa-
tions, where the control variable has two components, the first being absolutely continuous and the
second singular. Our main result is a stochastic maximum principle for relaxed controls, where the
first part of the control is a measure valued process. To achieve this result, we establish first order
optimality necessary conditions for strict controls by using strong perturbation on the absolutely
continuous component of the control and a convex perturbation on the singular one. The proof of
the main result is based on the strict maximum principle, Ekeland’s variational principle, and some
stability properties of the trajectories and adjoint processes with respect to the control variable.

Key words. singular control, maximum principle, adjoint process, variational inequality, relaxed
control, variational principle

AMS subject classification. 93Exx

DOI. 10.1137/050644744

1. Introduction. We consider in this paper mixed, relaxed-singular stochastic
control problems of systems governed by stochastic differential equations (SDEs),
where the control variable has two components, the first being measure valued and
the second singular. More precisely the system under consideration evolves according
to the SDE {

dxq
t =

∫
A1

b (t, xq
t , a) qt (da) dt + σ (t, xq

t ) dBt + Gtdξt,

xq(0) = x0,

where b, σ, and G are given deterministic functions, x0 is the initial state, and B =
(Bt)t≥0 is a standard Brownian motion, defined on a probability space (Ω,F , P ) ,
equipped with a filtration (Ft)t≥0 satisfying the usual conditions. The control variable
is a suitable process (q, ξ), where q : Ω × [0, T ] −→ P (A1), ξ : Ω × [0, T ] −→ A2 =
([0,∞))

m
are F ⊗ B [0, T ] measurable, (Ft) adapted, and ξ is an increasing process

(componentwise), continuous on the left with limits on the right such that ξ0 = 0.
The expected cost to be minimized over the class of admissible controls has the

form

J(q, ξ) = E

[
g (xq

T ) +

∫ T

0

∫
A1

h (t, xq
t , a) qt(da) +

∫ T

0

ktdξt

]
.

A control process that solves this problem is called optimal.
Singular control problems have been studied by many authors including Benĕs,

Shepp, and Witsenhausen [3], Chow, Menaldi, and Robin [6], Karatzas and Shreve
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[13], Davis and Norman [7], and Haussmann and Suo [10, 11, 12]. See [10] for a com-
plete list of references on the subject. The approaches used in these papers are mainly
based on dynamic programming. It was shown in particular that the value function is
a solution of a variational inequality, and the optimal state is a reflected diffusion at
the free boundary. Note that in [10], the authors apply the compactification method
to show existence of an optimal relaxed singular control.

The second major method for solving control problems is to derive necessary con-
ditions satisfied by some optimal control, known as the stochastic maximum principle.
The first version of the stochastic maximum principle that covers singular control
problems was obtained by Cadenillas and Haussmann [5] for linear systems. Second
order necessary conditions for optimality for nonlinear SDEs with a controlled diffu-
sion matrix were obtained by Bahlali and Mezerdi [2], extending the Peng maximum
principle [17] to singular control problems. A first order weak maximum principle
has been derived by Bahlali and Chala [1] in which convex perturbations are used for
both absolutely continuous and singular components.

Our main goal in this paper is to establish a maximum principle for relaxed-
singular controls, where the first part of the control is a measure valued process.
This leads to necessary conditions of optimality satisfied by an optimal control, which
exists under general conditions on the coefficients (see [10]). To achieve this pro-
gram, we first prove a first order stochastic maximum principle for strict controls by
using spike variation of the absolutely continuous part of the control and a convex
perturbation of the singular part. Then by applying Ekeland’s variational principle,
we are able to prove necessary conditions for near optimality, satisfied by a sequence
of strict controls converging in some sense to the relaxed optimal control, by the so-
called chattering lemma. The relaxed maximum principle is then derived by using
some stability properties of the trajectories and the adjoint processes with respect to
the control variable. Our result generalizes the classical relaxed maximum principle
proved in Mezerdi and Bahlali [16], to relaxed-singular control problems. However, we
note that our maximum principle does not cover the work of Cadenillas and Hauss-
mann [5]. The systems considered in [5] are linear but with random coefficients. In
addition, the control variable in [5] is allowed to enter into the diffusion coefficient.

The plan of the rest of the paper is as follows. In section 2, we formulate the
control problem and describe the assumptions of the model. In section 3, we derive
the maximum principle for strict controls. The last section is devoted to the maximum
principle for relaxed controls, which is the main result of this paper.

2. Assumptions. Let T be a fixed strictly positive real number and (Ω,F ,Ft, P )
be a filtered probability space satisfying the usual conditions, on which a d-dimensional
Brownian motion B = (Bt)t is defined. We assume that (Ft)t is the natural filtration
of (Bt) augmented by P -null sets of F .

Consider the following sets. A1 is a nonempty subset of Rk and A2 = ([0,∞))
m
.

Definition 2.1. An admissible strict control is a pair (u,ξ) of (A1 ×A2)-valued,
measurable, Ft-adapted processes, such that

(i) ξ is of bounded variation, nondecreasing left-continuous with right limits and
ξ0 = 0.

(ii)

E

[
sup

t∈[0,T ]

|ut|2 + |ξT |2
]
< ∞.

We denote by U = U1 × U2 the set of admissible strict controls.
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For any (u, ξ) ∈ U , we consider the SDE

(2.1)

{
dxt = b (t, xt, ut) dt + σ (t, xt) dBt + Gtdξt,
x (0) = x0,

where

b : [0, T ] × R
n ×A1 −→ R

n,
σ : [0, T ]×R

n −→ Mn×d (R) ,
G : [0, T ] −→ Mn×m (R) .

The expected cost is given by

(2.2) J (u, ξ) = E

[
g (xT ) +

∫ T

0

h (t, xt, ut) dt +

∫ T

0

ktdξt

]
,

where

g : R
n −→ R,

h : [0, T ] × R
n ×A1 −→ R,

k : [0, T ] −→ ([0,∞))
m
.

The strict optimal control problem is to minimize the functional J (.) over U . A
control that solves this problem is called optimal.

The following assumptions will be in force throughout this paper:

b, σ, g, h are continuously differentiable with respect to x. They and all their

derivatives, bx, σx, gx, , hx, are continuous in (x, u) .

The derivatives σx, gx are bounded and bx, hx are bounded uniformly in u.(2.3)

b, σ are bounded by C (1 + |x| + |u|) .
G and k are continuous and G is bounded.

Under the above hypothesis, (2.1) has a unique strong solution and the cost is well
defined from U into R.

We need the following matrix notation. We denote by Mn×d (R) the space of
n× d real matrices and by Md

n×n (R) the linear space of vectors M = (M1, . . . ,Md) ,
where Mi ∈ Mn×n (R).

For any M,N ∈ Md
n×n (R), L,Q ∈ Mn×d (R), x, y ∈ R

n, and z ∈ R
d, we use the

following notations:

xy =
n∑

i=1

xiyi ∈ R is the product scalar in R
n;

LQ =

d∑
i=1

LiQi ∈ R, where Li and Qi are the ith columns of L and Q;

ML =

d∑
i=1

MiLi ∈ R
n;

Mxz =
d∑

i=1

(Mix) zi ∈ R
n;

MN =

d∑
i=1

MiNi ∈ Mn×n (R);
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MLN =

d∑
i=1

MiLNi ∈ Mn×n (R);

MLz =

d∑
i=1

MiLzi ∈ Mn×n (R).

We denote by L∗ the transpose of the matrix L and M∗ = (M∗
1 , . . . ,M

∗
d ).

3. The maximum principle for strict controls. Facing a control problem,
one may ask for necessary conditions satisfied by some optimal control. Throughout
this section, let us suppose that (u, ξ) ∈ U is an optimal strict control and denote
by (xt) the corresponding optimal trajectory, i.e., the solution of (2.1) controlled by
(u, ξ) . The strict maximum principle will be proved in two steps. First we define a
family of perturbed controls

(
uθ, ξ

)
, where uθ is a spike variation of the absolutely

continuous part u on a small time interval. The first variational inequality is derived
from the fact that

J
(
uθ, ξ

)
− J (u, ξ) ≥ 0.

The second step is to introduce another family of perturbed controls
(
u, ξθ

)
, where

ξθ is a convex perturbation of ξ. The second variational inequality is then obtained
from the inequality

J
(
u, ξθ

)
− J (u, ξ) ≥ 0.

3.1. The first variational inequality. To obtain the first variational inequal-
ity in the stochastic maximum principle, we define the strong perturbation of the
absolutely continuous part of the control, sometimes called the spike variation,

(3.1)
(
uθ
t , ξt

)
=

{
(v, ξt) if t ∈ [τ, τ + θ] ,
(ut, ξt) otherwise,

where 0 ≤ τ < T is fixed, θ > 0 is sufficiently small, and v is an arbitrary A1-valued,
Fτ -measurable random variable such that E[|v|2] < +∞. Note that the singular part
is not affected by the perturbation.

If x
(uθ,ξ)
t denotes the trajectory associated with

(
uθ, ξ

)
, then

x
(uθ,ξ)
t = xt, t ≤ τ,

dx
(uθ,ξ)
t = b

(
t, x

(uθ,ξ)
t , v

)
dt + σ

(
t, x

(uθ,ξ)
t

)
dBt + Gtdξt, τ < t < τ + θ,

dx
(uθ,ξ)
t = b

(
t, x

(uθ,ξ)
t , ut

)
dt + σ

(
t, x

(uθ,ξ)
t

)
dBt + Gtdξt, τ + θ < t < T.

It is easy to check by standard arguments that

(3.2) E

(
sup

t∈[0,T ]

∣∣∣∣x(uθ,ξ)
t − xt

∣∣∣∣2
)

−→ 0 as θ −→ 0.

Since (u, ξ) is optimal, then

J (u, ξ) ≤ J
(
uθ, ξ

)
= J (u, ξ) + θ

dJ
(
uθ, ξ

)
dθ

∣∣∣∣∣
θ=0

+ o(θ)
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if the indicated derivative exists. Thus a necessary condition for optimality is that

dJ
(
uθ, ξ

)
dθ

∣∣∣∣∣
θ=0

≥ 0.

The rest of this subsection is devoted to the computation of this derivative.
Note that since b(t, x, u) and h(t, x, u) are sufficiently integrable, then the follow-

ing property holds:

(3.3)
1

θ

∫ t+θ

t

E
[
|f(s, xs, us) − f(t, xt, ut)|2

]
−→ 0 as θ −→ 0, dt− a.e,

where f stands for b or h.
Choose τ such that (3.3) holds. We define y as the solution of the linear SDE

(3.4)

{
dyt = bx (s, xs, us) ysds + σx (s, xs) ysdBs, τ ≤ s ≤ T,
yτ = b (τ, xτ , v) − b (τ, xτ , uτ )

and define ς by {
dςt = hx (s, xs, us) ysds, τ ≤ s ≤ T,
ςτ = h (τ, xτ , v) − h (τ, xτ , uτ ) .

Lemma 3.1.

(3.5a) lim
θ→0

E

⎡⎢⎣
∣∣∣∣∣∣x

(uθ,ξ)
T − xT

θ
− yT

∣∣∣∣∣∣
2
⎤⎥⎦ = 0,

(3.5b) lim
θ→0

E

⎡⎣∣∣∣∣∣1θ
∫ T

τ

(
h
(
t, xt, u

θ
t

)
− h (t, xt, ut)

)
dt− ςT

∣∣∣∣∣
2
⎤⎦ = 0.

Proof. Since x
(uθ,ξ)
T − xT does not depend on the singular part, the proof follows

that of [4, Lemma 2.2].
Corollary 3.2.

(3.6)
dJ

(
uθ, ξ

)
dθ

∣∣∣∣∣
θ=0

= E [gx (xT ) .yT + ςT ] .

Proof. See [4, Corollary 2.1].
Let us introduce the adjoint process and the first variational inequality from (3.6).

We proceed as in Bensoussan [4].
Let Φ(t, τ) be the solution of the linear equation

(3.7)

{
dΦ(t, τ) = bx(t, xt, ut)Φ(t, τ)dt + σx(t, xt)Φ(t, τ)dBt, t > τ,
Φ(τ, τ) = Id.

This equation is linear with bounded coefficients. Hence it admits a unique strong
solution which is invertible, and its inverse Ψt is the unique solution of

(3.8)

{
dΨt = [σx(t, xt)Ψtσ

∗
x(t, xt) − Ψtbx (t, xt, ut)] dt− Ψtσx (t, xt) dBt, t > τ,

Ψ(τ, τ) = Id.
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Moreover Φ(t, τ) satisfies a semigroup property; that is, if t > s > r, then Φ(t, r) =
Φ(t, s).Φ(s, r), which implies in particular that Φ(t, τ) = Φ(t)Ψ(τ), where Φ(t) =
Φ(t, 0) and Ψ(t) = Ψ(t, 0).

By the uniqueness property, it is easy to check that

y(t) = Φ(t, τ) (b (τ, xτ , v) − b (τ, xτ , uτ )) .

Then replacing y(t) with its value in (3.4), it holds that

dJ
(
uθ, ξ

)
dθ

∣∣∣∣∣
θ=0

= E (gx (xT ) .Φ(T, τ) (b (τ, xτ , v) − b (τ, xτ , uτ )))

+ E (h (τ, xτ , v) − h (τ, xτ , uτ ))

+ E

(∫ T

τ

hx (s, xs, us) Φ(s, τ) (b (τ, xτ , v) − b (τ, xτ , uτ )) ds

)
.

Now if we define the adjoint process by

(3.9) pt = E

[
Ψ∗

tΦ
∗
T gx(xT ) + Ψ∗

t

∫ T

t

Φ∗
shx (s, xs, us) ds/ Ft

]
,

it follows that

dJ
(
uθ, ξ

)
dθ

∣∣∣∣∣
θ=0

= E [pt. (b (τ, xτ , v) − b (τ, xτ , uτ )) + (h (τ, xτ , v) − h (τ, xτ , uτ ))] .

If we define the Hamiltonian H from [0, T ] × R
n ×A1 × R

n into R by

H (t, x, v, p) = h (t, x, v) + p.b (t, x, v) ,

then we get from the optimality of (u, ξ) the first variational inequality

(3.10) 0 ≤ E [H (τ, xτ , v, pτ ) −H (τ, xτ , uτ , pτ )] , dτ − a.e.

3.2. The second variational inequality. To obtain the second variational
inequality of the stochastic maximum principle, we introduce the convex perturbation

(3.11)
(
ut, ξ

θ
t

)
= (ut, ξt + θ (ηt − ξt)) ,

where θ > 0 and η is an arbitrary element of U2. Note that the first part of the control
is not affected by the perturbation. Since (u, ξ) is an optimal control, we’ll derive the
second variational inequality from the fact that

(3.12) 0 ≤ J
(
u, ξθ

)
− J (u, ξ) .

Lemma 3.3. Let x
(u,ξθ)
t be the trajectory associated with

(
u, ξθ

)
. Then the follow-

ing estimation holds:

(3.13) lim
θ→0

E

[
sup

t∈[0,T ]

∣∣∣∣x(u,ξθ)
t − xt

∣∣∣∣2
]

= 0.
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Proof. From assumption (2.3) and by using the Burkholder–Davis–Gundy in-
equality for the martingale part, we get

E

[
sup

t∈[0,T ]

∣∣∣∣x(u,ξθ)
t − xt

∣∣∣∣2
]
≤ 6KE

∫ t

0

sup
α∈[0,s]

∣∣∣∣x(u,ξθ)
α − xα

∣∣∣∣2 ds + 3Mθ2E |ηT − ξT |2 .

From Definition 2.1 and using Gronwall’s inequality, the result follows immediately
by letting θ go to zero.

Lemma 3.4. Under assumption (2.3), the following estimation holds:

(3.14) lim
θ→0

E

⎡⎢⎣
∣∣∣∣∣∣x

(u,ξθ)
t − xt

θ
− zt

∣∣∣∣∣∣
2
⎤⎥⎦ = 0,

where z is the solution of the integral equation

zt =

∫ t

0

bx (s, xs, us) zsds +

∫ t

0

σx (s, xs) zsdBs +

∫ t

0

Gsd (η − ξ)s .

Proof. From Definition 2.1 and assumption (2.3), it is easy to verify by Gronwall’s
inequality that

(3.15) E

[
sup

t∈[0,T ]

|zt|2
]
< ∞.

Let

γθ
t =

x
(u,ξθ)
t − x

(u,ξ)
t

θ
− zt.

It is easy to see that

E
∣∣γθ

t

∣∣2 ≤ 3

∫ t

0

E

∣∣∣∣∫ 1

0

bx

(
s, x

(u,ξθ)
s + λ

[
x
(u,ξθ)
s − xs

]
, us

)
γθ
t dλ

∣∣∣∣2 dt
+ 3

∫ t

0

E

∣∣∣∣∫ 1

0

σx

(
s, x

(u,ξθ)
s + λ

[
x
(u,ξθ)
s − xs

])
γθ
t dλ

∣∣∣∣2 ds + 3E
∣∣ρθt ∣∣2 ,

where ρθt is given by

ρθt =

∫ t

0

∫ 1

0

zs

[
bx

(
s, x

(u,ξθ)
s + λ

[
x
(u,ξθ)
s − xs

]
, us

)
− bx (s, xs, us)

]
dλds

+

∫ t

0

∫ 1

0

zs

[
σx

(
s, x

(u,ξθ)
s + λ

[
x
(u,ξθ)
s − xs

])
− σx (s, xs)

]
dλdBs.

Since bx, σx are bounded, it holds that

E
∣∣γθ

t

∣∣2 ≤ 6C

∫ t

0

E
∣∣γθ

s

∣∣2 dt + 3E
∣∣ρθt ∣∣2 .

By using (3.13) and (3.15), the dominated convergence theorem, we obtain

lim
θ→0

E
∣∣ρθt ∣∣2 = 0.
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We conclude by applying Gronwall’s lemma and letting θ go to zero.
Lemma 3.5. The following inequality holds:

(3.16) 0 ≤ E [gx (xT ) zT ] + E

∫ T

0

hx (t, xt, ut) ztdt + E

∫ T

0

ktd (η − ξ)t .

Proof. From (3.12), we have

0 ≤ 1

θ
E

[
g

(
x
(u,ξθ)
T

)
− g (xT )

]
+

1

θ
E

∫ T

0

(
h

(
t, x

(u,ξθ)
t , ut

)
− h (t, xt, ut)

)
dt

+ E

∫ T

0

ktd (ηt − ξt)

= E

∫ 1

0

⎛⎝x
(u,ξθ)
T − xt

θ

⎞⎠ gx

(
xt + λ

(
x
(u,ξθ)
T − xt

))
dλ

+ E

∫ T

0

∫ 1

0

⎛⎝x
(u,ξθ)
T − xt

θ

⎞⎠hx

(
t, xt + λ

(
x
(u,ξθ)
T − xt

)
, ut

)
dλdt

+ E

∫ T

0

ktd (η − ξ)t .

Since the derivatives gx and hx are continuous and bounded, by letting θ go to 0, we
see that the result follows from (3.13) and (3.14).

By the same method as in the last section, we are able to derive the second
variational inequality from (3.16). If Φ(t, s) denotes the solution of (3.7), it is easy to
check that zt is given explicitly by

zt =

∫ t

0

Φ(t, s).Gsd (η − ξ)s .

Replacing zt with its value, we obtain the second variational inequality

(3.17) 0 ≤ E

∫ T

0

(kt + G∗
t pt) d (η − ξ)t ,

where pt is the adjoint process defined in the last subsection by (3.9).

3.3. The adjoint equation and the stochastic maximum principle. Ap-
plying Itô’s formula to pt given by (3.9), it is easy to see that pt satisfies the linear
backward SDE

(3.18)

{
−dpt = [hx (t, xt, ut) + b∗x (t, xt, ut) pt + σ∗

x (t, xt)Kt] dt−KtdBt,
pT = gx(xT ),

where Kt is given by

(3.19) Kt = Ψ∗
tQt − σ∗

x (t, xt) pt; Kt ∈ L2
(
[0, T ] ; Rn×d

)
,

and Qt is given by the Itô representation of Brownian martingales∫ t

0

QsdBs = E

[
Φ∗

T gx(xT ) +

∫ T

0

Φ∗
thx(t, xt, ut)dt / Ft

]
(3.20)

− E

[
Φ∗

T gx(xT ) +

∫ T

0

Φ∗
thx(t, xt, ut)dt

]
.
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The stochastic maximum principle in its integral form is given by the following theo-
rem.

Theorem 3.6 (the strict stochastic maximum principle in integral form). Let
(u, ξ) be a strict optimal control minimizing the cost J over U , and let x be the cor-
responding optimal trajectory. Then there exists a unique pair of adapted processes

(p,K) ∈ L2 ([0, T ] ; Rn) × L2
(
[0, T ] ; Rn×d

)
,

which is the solution of the backward SDE (3.18) such that for all a ∈ A1 and η ∈ U2,

(3.21) H (t, xt, ut, pt) ≤ H (t, xt, a, pt) , P − a.s, dt− a.e,

(3.22) 0 ≤ E

∫ T

0

(kt + G∗
t pt) d (η − ξ)t .

Proof. From (3.10) we have

0 ≤ E [H (t, xt, v, pt) −H (t, xt, ut, pt)] , dt− pp,

for every bounded A1-valued, Ft-measurable random variable v such that E |v|2 <
+∞.
Let a ∈ A1 be a deterministic element and F be an arbitrary element of the σ-algebra
Ft, and set

wt = a1F + ut1Ω−F .

It is obvious that w is an admissible control. Applying (3.10) with w we get

E [1F (H (t, xt, a, pt) −H (t, xt, ut, pt))] ≥ 0 ∀F ∈ Ft,

which implies that E [(H (t, xt, a, pt) −H (t, xt, ut, pt)) /Ft] ≥ 0.
The quantity inside the conditional expectation is Ft-measurable, and thus the

result follows immediately.
The second variational inequality (3.22) is proved in subsection 3.2.
Theorem 3.7 (the strict stochastic maximum principle). Let (u, ξ) be an op-

timal control minimizing the cost J over U , and let x be the corresponding optimal
trajectory. Then there exists a unique pair of adapted processes

(p,K) ∈ L2 ([0, T ] ; Rn) × L2
(
[0, T ] ; Rn×d

)
,

which is the solution of the backward SDE (3.18), such that

(3.23) H (t, xt, ut, pt) = min
a∈A1

H (t, xt, a, pt) , dt− a.e, P − a.s,

(3.24) P {∀t ∈ [0, T ] , ∀i ; ki (t) + G∗
i (t) pt ≥ 0} = 1,

(3.25) P

{
m∑
i=1

1{ki(t)+G∗
i (t)pt≥0}dξ

i
t = 0

}
= 1.
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Proof. To prove (3.24) and (3.25) we follow [5, Theorem 4.2]. Since (u, ξ) is
optimal, the inequality

E

∫ T

0

(kt + G∗
t pt) d (η − ξ)t ≥ 0

holds for every η ∈ U2. In particular, let η ∈ U2 be defined by

dηit =

{
0 if ki (t) + G∗

i (t) pt > 0,
dξit otherwise.

Then

E

∫ T

0

(kt + G∗
t pt) d (η − ξ)t

= E

[
m∑
i=1

∫ T

0

(ki (t) + G∗
i (t) pt) 1{ki(t)+G∗

i (t)pt>0}d
(
−ξit

)]
≥ 0,

which implies that

E

[
m∑
i=1

∫ T

0

(ki (t) + G∗
i (t) pt) 1{ki(t)+G∗

i (t)pt>0}dξ
i
t

]
= 0,

and relation (3.25) follows immediately.
Let us prove (3.24). For each i ∈ {1, 2, . . . ,m}, let

Ai
t = {ω ∈ Ω : ki (t) + G∗

i (t) pt < 0} ,

Ai = {(t, ω) ∈ [0, T ] × Ω : ki (t) + G∗
i (t) pt < 0} ,

and define

ηit = ξit +

∫ t

0

1Ai(s, ω)ds.

It is easy to see that ηt = (η1
t , η

2
t , . . . , η

m
t ) is in U2. Moreover

E

∫ T

0

(kt + G∗
t pt) d (η − ξ)t = E

[
m∑
i=1

∫ T

0

(ki (t) + G∗
i (t) pt) 1Aidt

]
< 0,

which contradicts (3.22), unless for every i ∈ {1, 2, . . . ,m} , dt ⊗ P (Ai) = 0. This
proves the desired result since k, G, and p are continuous.

4. The relaxed model. The strict control problem, as defined in section 3,
may fail to have an optimal solution. The reason is that the set U of strict controls
is too narrow and should be embedded into a wider class with a richer topological
structure for which the control problem becomes solvable (see [10]). Our main goal
in this section is to establish a maximum principle for relaxed-singular controls. This
leads to necessary conditions satisfied by an optimal relaxed-singular control, which
exists under general assumptions on the coefficients.
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Let us begin by a deterministic example which shows that even in simple cases,
existence of a strict optimal control is not ensured. The problem is to minimize the
cost function

J(u) =

∫ T

0

xu(t)2dt,

over the set Uad of open loop controls, i.e., measurable functions u : [0, T ] −→ {−1, 1} .
Let xu(t) denote the solution of

dxu
t = u dt, x(0) = 0.

It is clear that infu∈U J(u) = 0. Indeed, consider the sequence of controls

un(t) = (−1)k if
k

n
≤ t ≤ k + 1

n
, 0 ≤ k ≤ n− 1.

Clearly |xun(t)| ≤ 1
n and |J(un)| ≤ T

n2 , which implies that infu∈U J(u) = 0. There
is, however, no control u such that J(u) = 0. If this were the case, then for every t,
xu(t) = 0. This in turn would imply that ut = 0, which is impossible. The problem
is that the sequence (un) has no limit in the space of strict controls. This limit, if it
exists, will be the natural candidate for optimality. If we identify un(t) with the Dirac
measure δun(t)(da) and set qn(dt, du) = δun(t)(du)dt, we get a measure on [0, 1]×A1.

Then (qn(dt, du))n converges weakly to 1
2dt · [δ−1 + δ1] (da).

The idea of relaxed control is to replace the absolutely continuous part of the
control (ut) with a P (A1)-valued process (qt), where P (A1) denotes the space of
probability measures equipped with the topology of weak convergence.

Definition 4.1. A relaxed-singular control is a pair (q, η) of processes such that
(i) q is a P (A1)–valued process, progressively measurable with respect to (Ft) and

such that for each t, 1(0,t].q is Ft measurable.
(ii) η ∈ U2.

We denote by R = R1 × U2 the set of relaxed-singular controls.
For any (q, η) ∈ R, we consider the relaxed SDE

(4.1)

{
dxq

t =
∫
A1

b (t, xq
t , a) qt (da) dt + σ (t, xq

t ) dBt + Gtdηt,

xq(0) = x0.

The expected cost associated with a relaxed control (q, η) is defined as

(4.2) J(q, η) = E

[
g (xq

T ) +

∫ T

0

∫
A1

h (t, xq
t , a) qt(da) +

∫ T

0

ktdηt

]
.

The set U1 is embedded into the set R1 of P (A1)-valued processes by the mapping

Ψ : u ∈ U1 	−→ Ψ (u)t (da) = δu(t)(da) ∈ R1,

where δu denotes the Dirac measure at a single point u.
Throughout this section we suppose that

b and h are bounded,(4.3)

A1 is compact.(4.4)

Using the compactification method, Haussmann and Suo [10] proved that the relaxed-
singular control problem admits an optimal solution. See also [9] for a complete study
of relaxed controls for classical control problems.
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4.1. Approximation of trajectories. The next lemma, known as the chatter-
ing lemma, tells us that any relaxed control is a weak limit of a sequence of strict
controls. This lemma was first proved for deterministic measures and then extended
to random measures in [9].

Lemma 4.2 (chattering lemma). Let (qt) be a predictable process with values
in the space of probability measures on A1. Then there exists a sequence of pre-
dictable processes (un) with values in A1 such that the sequence of random measures(
δun

t
(da) dt

)
converges weakly to qt(da) dt, P − a.s.

The next lemma gives the stability of the controlled SDE with respect to the
control variable.

Lemma 4.3. Let (q, η) ∈ R be a relaxed control, and let xq be the corresponding
trajectory. Then there exists a sequence (vn, η)n ⊂ U such that

(4.5) lim
n→∞

E

[
sup

t∈[0,T ]

|xn
t − xq

t |
2

]
= 0,

(4.6) lim
n→∞

J(vn, η) = J(q, η),

where xn denotes the solution of (2.1) associated with (vn, η).
Proof. (i) Applying the Burkholder–Davis–Gundy inequality for the martingale

part, we get

E

[
sup

t∈[0,T ]

|xn
t − xq

t |
2

]
≤ αn

t + 3

∫ t

0

E |b(s, xn
s , v

n
s ) − b(s, xq

s, v
n
s )|2 ds

+ 3

∫ t

0

E |σ(s, xn
s ) − σ (s, xq

s)|
2
ds,

where qns (da) = δvn
s
(da) and αn

t is given by

αn
t = 4E

∣∣∣∣∫ t

0

∫
A1

b(s, xq
s, a)q

n
s (da)ds−

∫ t

0

∫
A1

b(s, xq
s, a)qs(da)ds

∣∣∣∣2 .
Since the coefficients b and σ are Lipshitz in the state variable x, then

E

(
sup

t∈[0,T ]

|xq
t − xn

t |
2

)
≤ αn

t + 6M

∫ t

0

E

(
sup

t∈[0,T ]

|xn
s − xq

s|
2

)
ds,

b is bounded and continuous, and then from Lemma 4.2 and using the dominated
convergence theorem, we obtain

lim
n→∞

αn
t = 0.

The result follows from Gronwall’s lemma.
(ii) On the other hand, since g and h are Lipshitz continuous in x, by using the

Cauchy–Schwarz inequality, we get

|J(qn, η) − J(q, η)| ≤ C
(
E |xn

T − xq
T |

2
)1/2

+ C

∫ T

0

(
E |xn

t − xq
t |

2
)1/2

ds

+

⎛⎝E

∣∣∣∣∣
∫ T

0

∫
A1

h(t, xq
t , v

n
t )dt−

∫ T

0

∫
A1

h(t, xq
t , a)qt (da) dt

∣∣∣∣∣
2
⎞⎠1/2

.
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From (4.5), the first and second terms in the right-hand side converge to zero. Since
h is continuous and bounded, by using the dominated convergence theorem, we have
that the third term in the right-hand side tends to zero.

Remark. As a consequence, it is easy to see that the strict and relaxed optimal
control problems have the same value function.

4.2. Maximum principle for near optimal controls. In this section we
establish necessary conditions of near optimality satisfied by a sequence of nearly
optimal strict controls. This result is based on Ekeland’s variational principle, which
is given by the following.

Lemma 4.4 (Ekeland [8]). Let (E, d) be a complete metric space and f : E −→ R

be lower semicontinuous and bounded from below. Given ε > 0, suppose uε ∈ E
satisfies f (uε) ≤ inf (f) + ε. Then for any λ > 0, there exists v ∈ E such that

1. f (v) ≤ f (uε) .
2. d (uε, v) ≤ λ.
3. f (v) < f (w) + ε

λd (v, w) for all w �= v.
To apply Ekeland’s variational principle, we have to endow the set U of strict

controls with an appropriate metric. For any (u, ξ) , (v, η) ∈ U , we set

d1 (u, v) = P ⊗ dt {(ω, t) ∈ Ω × [0, T ] , u (t, ω) �= v (t, ω)} ,

d2 (ξ, η) = E

(
sup

t∈[0,T ]

|ξt − ηt|2
)1/2

,

d [(u, ξ) , (v, η)] = d1 (u, v) + d2 (ξ, η) ,

where P ⊗ dt is the product measure of P with the Lebesgue measure dt.
Let us summarize some of the properties satisfied by d.
Lemma 4.5.

1. (U , d) is a complete metric space.
2. The cost functional J is continuous from U into R.

Proof. 1. It is clear that (U2, d2) is a complete metric space. Moreover, it was
shown in [15] that (U1, d1) is a complete metric space. Hence (U , d) is a complete
metric space as a product of two complete metric spaces.

Item 2 is proved as in [15].
Now let (μ, ξ) ∈ R be an optimal relaxed control and denote by xμ the trajectory

of the system controlled by (μ, ξ). From Lemmas 4.2 and 4.3, there exists a sequence
(un)n of strict controls such that

dtμn
t (da) = dtδun

t
(da) −→

n−→∞
dtμt (da) weakly, P − a.s,

E

[
sup

t∈[0,T ]

|xn
t − xμ

t |
2

]
−→

n−→∞
0,

where xn
t is the solution of (4.1) corresponding to the control μn.

According to the optimality of (μ, ξ) and (4.6), there exists a sequence (εn) of
positive real numbers with limn→∞ εn = 0 such that

J (un, ξ) = J (μn, ξ) ≤ J (μ, ξ) + εn.

A suitable version of Lemma 4.4 implies that, given any εn > 0, there exists
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(un, ξ) ∈ U such that

J (un, ξ) ≤ inf
(v,η)∈U

J (v, η) + εn,

J (un, ξ) ≤ J (v, η) + εnd [(un, ξ) ; (v, η)] ∀ (v, η) ∈ U .(4.7)

Let us define the two perturbations

(4.8)
(
un,θ
t , ξt

)
=

{
(v, ξt) if t ∈ [τ, τ + θ] ,
(un

t , ξt) otherwise,

(4.9)
(
un
t , ξ

θ
t

)
= (un

t , ξt + θ (ηt − ξt)) .

From (4.7) we have

0 ≤ J
(
un,θ
t , ξt

)
− J (un, ξ) + εnd

[
(un, ξ) ;

(
un,θ, ξ

)]
,

0 ≤ J
(
un
t , ξ

θ
t

)
− J (un, ξ) + εnd

[
(un, ξ) ;

(
un, ξθ

)]
.

From the definition of the metric d, we obtain

0 ≤ J
(
un,θ
t , ξt

)
− J (un, ξ) + εnd1

(
un, un,θ

)
,

0 ≤ J
(
un
t , ξ

θ
t

)
− J (un, ξ) + εnd2

(
ξ, ξθ

)
.

Using the definitions of d1 and d2, it holds that

(4.10) 0 ≤ J
(
un,θ
t , ξt

)
− J (un, ξ) + εnM1θ,

(4.11) 0 ≤ J
(
un
t , ξ

θ
t

)
− J (un, ξ) + εnM2θ,

where Mi is a positive constant.
From these above inequalities, we shall establish necessary conditions for near

optimality.
Theorem 4.6 (the near maximum principle in integral form). For each εn > 0,

there exists (un, ξ) ∈ U such that there exists a unique pair of adapted processes

(pn,Kn) ∈ L2 ([0, T ] ; Rn) × L2
(
[0, T ] ; Rn×d

)
,

which is the solution of the backward SDE

(4.12)

{
−dpnt = [hx (t, xn

t , u
n
t ) + b∗x (t, xn

t , u
n
t ) pnt + σ∗

x (t, xn
t )Kn

t ] dt−Kn
t dBt,

pnT = gx(xn
T ),

such that for all (v, η) ∈ U ,

0 ≤ E [H (t, xn
t , v, p

n
t ) −H (t, xn

t , u
n
t , p

n
t )] + M1εn,(4.13)

0 ≤ E

∫ T

0

(kt + G∗
t p

n
t ) d (η − ξ)t + M2εn,(4.14)

where Mi is a positive constant.
Proof. From inequalities (4.10) and (4.11), respectively, we use the same method

as in subsection 3.3 to obtain, respectively, (4.13) and (4.14).
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4.3. The relaxed stochastic maximum principle.
Theorem 4.7 (the relaxed maximum principle in integral form). Let (μ, ξ) be an

optimal relaxed control minimizing the cost J over R, and let xμ
t be the corresponding

optimal trajectory. Then there exists a unique pair of adapted processes

(pμ,Kμ) ∈ L2 ([0, T ] ; Rn) × L2
(
[0, T ] ; Rn×d

)
,

which is the solution of the backward SDE

(4.15)

⎧⎪⎨⎪⎩
−dpμt =

[∫
A1

hx (t, xμ
t , a)μt (da) +

∫
A1

b∗x (t, xμ
t , a)μt (da) pμt

]
dt

+ σ∗
x (t, xμ

t )Kμ
t dt−Kμ

t dBt,
pμT = gx(xμ

T ),

such that for all (v, η) ∈ U1 × U2, we have

0 ≤ E [H (t, xμ
t , v, p

μ
t ) −H (t, xμ

t , μt, p
μ
t )] ,(4.16)

0 ≤ E

∫ T

0

G∗
t p

μ
t d (η − ξ)t ,(4.17)

where H (t, xμ
t , μt, p

μ
t ) =

∫
A1

H (t, xμ
t , a, p

μ
t )μt (da) .

To prove Theorem 4.7, we need the following lemma.
Lemma 4.8. Let (pn,Kn) and (pμ,Kμ), respectively, be the solutions of (4.12)

and (4.15). Then we have

(4.18) lim
n−→∞

(
E

[
sup

t∈[0,T ]

|pnt − pμt |
2

]
+ E

∫ T

0

|Kn
t −Kμ

t |
2
ds

)
= 0.

Proof. For simplicity of notation we set

bμt =

∫
A1

b∗x (t, xμ
t , a)μt(da), bnt =

∫
A1

b∗x (t, xn
t , a)μ

n
t (da),

σμ
t = σ∗

x (t, xμ
t ) , σn

t = σ∗
x (t, xn

t ) ,

hμ
t =

∫
A1

hx (t, xμ
t , a)μt(da), hn

t =

∫
A1

hx (t, xn
t , a)μ

n
t (da),

μn
t (da) = δun

t
(da).

Since bx, σx, and hx are continuous and bounded, by using Lemmas 4.2 and 4.3 and
the dominated convergence theorem, we get

(4.19) lim
n−→∞

E |bnt − bμt |
2

= lim
n−→∞

E |σn
t − σμ

t |
2

= lim
n−→∞

E |hn
t − hμ

t |
2

= 0.

Applying Itô’s formula to (pnt − pμt )2, it follows that

E |pnt − pμt |
2

+

∫ T

t

E |Kn
s −Kμ

s |
2
ds = E |gx(xn

T ) − gx(xμ
T )|2

+ 2

∫ T

t

E |(pμs − pns ) (Fn
s − Fμ

s )| ds,

where Fμ
t and Fn

t are given by

Fμ
t = bμt p

μ
t + σμ

t K
μ
t + hμ

t ,

Fn
t = bnt p

n
t + σn

t Q
n
t + hn

t .
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Using Young’s inequality |c1c2| ≤ ε
2 |c1|

2
+ 1

2ε |c2|
2
, we obtain

E |pnt − pμt |
2

+

∫ T

t

E |Kn
t −Kμ

s |
2
dt ≤ E |gx(xn

T ) − gx(xμ
T )|2 +

1

ε

∫ T

t

E |pμs − pns |
2
ds

+ ε

∫ T

t

E |Fn
s − Fμ

s |
2
ds

≤
(

1

ε
+ 6Mε

)∫ T

t

E |pμs − pns |
2
ds

+ 6Mε

∫ T

t

E |Kn
s −Kμ

s |
2
ds + εξnt ,

where ξnt is given by

ξnt =
1

ε

(
E |gx(xn

T ) − gx(xμ
T )|2

)
+ 6E

∫ T

t

|(bns − bμs ) pns |
2
ds(4.20)

+ 6E

∫ T

t

|(σn
s − σμ

s )Kn
s |

2
ds + 3E

∫ T

t

|hn
s − hμ

s |
2
ds.

Choose ε = 1
12M . It follows that

E |pnt − pμt |
2

+
1

2

∫ T

t

E |Kn
s −Kμ

s |
2
ds ≤ C

∫ T

t

E |pμs − pns |
2
ds + Cξnt ,

with C = max
{

1
12M , 12M + 1

2

}
.

Hence

E |pnt − pμt |
2 ≤ C

∫ T

t

E |pμs − pns |
2
ds + Cξnt ,(4.21) ∫ T

t

E |Kn
s −Kμ

s |
2
ds ≤ 2C

∫ T

t

E |pμs − pns |
2
ds + 2Cξnt .(4.22)

Let us prove that limn−→∞ ξnt = 0.
Since bx is bounded, we have

(4.23) |(bns − bμs ) pns | ≤ 2M |pns | .

Then by the Cauchy–Schwarz inequality we get

E

∫ T

t

|(bns − bμs ) pns | ds ≤
∫ T

t

(
E |bns − bμs |

2
)1/2 (

E |pns |
2
)1/2

ds

≤ c

∫ T

t

(
E |bns − bμs |

2
)1/2

ds.

Now from (4.19), we have

(4.24) lim
n−→∞

E

∫ T

t

|(bns − bμs ) pns | ds = 0,

and from (4.23), (4.24), and the dominated convergence theorem, we obtain

(4.25) lim
n−→∞

E

∫ T

t

|(bns − bμs ) pns |
2
ds = 0.
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Using the same arguments, it follows that

(4.26) lim
n−→∞

E

∫ T

t

|(σn
s − σμ

s )Kn
s |

2
ds = 0.

Now since gx is continuous and bounded,

(4.27) lim
n−→∞

E |gx(xn
T ) − gx(xμ

T )|2 = 0.

Now it is easy to see that by using the above results, limn−→∞ ξnt = 0.
The desired result follows from Gronwall’s inequality.
Proof of Theorem 4.6. Let (μ, ξ) be an optimal relaxed control. From Theorem

4.6, there exists a sequence (un, ξ)n in U such that for all (v, η) ∈ U , the variational
equations (4.13) and (4.14) hold. The result follows immediately by letting n go to
infinity in (4.13) and (4.14) and using Lemma 4.8.

Theorem 4.9 (the relaxed maximum principle). Let (μ, ξ) be an optimal relaxed
control minimizing the functional cost J over R and let xμ

t be the trajectory of the
system controlled by (μ, ξ). Then there exists a unique pair of adapted processes

(pμ,Kμ) ∈ L2 ([0, T ] ; Rn) × L2
(
[0, T ] ; Rn×d

)
,

which is the solution of the backward SDE (4.15), such that

(4.28) H (t, xμ
t , μt, p

μ
t ) = min

a∈A1

H (t, xμ
t , a, p

μ
t ) ; dt− a.e , P − a.s,

(4.29) P {∀t ∈ [0, T ] , ∀i ; ki (t) + G∗
i (t) .pμt ≥ 0} = 1,

(4.30) P

{
m∑
i=1

1{ki(t)+G∗
i (t).pμ

t ≥0}dξ
i
t = 0

}
= 1.

Proof. From (4.16), we immediately deduce (4.28) by applying the same argu-
ments as in the proof of Theorem 3.6. Using (4.17), we see that assertions (4.29) and
(4.30) are proved exactly as in Theorem 3.7.

Remarks. (1) If G = k = 0, we recover the relaxed stochastic maximum principle
for classical controls (see Mezerdi and Bahlali [16]).

(2) If μt(da) = δu(t)(da), we recover the strict maximum principle (Theorem 3.7).
(3) If μt(da) = δu(t)(da) and G = k = 0, we obtain Kushner’s stochastic maximum

principle [14].
Corollary 4.10. Under the same conditions as in Theorem 4.9, we have

(4.31) H (t, xμ
t , μt, p

μ
t ) = min

q∈P (A1)
H (t, xμ

t , q, p
μ
t ) ; dt− a.e, P − a.s,

P {∀t ∈ [0, T ] , ∀i ; ki (t) + G∗
i (t) .pμt ≥ 0} = 1,

P

{
m∑
i=1

1{ki(t)+G∗
i (t).pμ

t ≥0}dξ
i
t = 0

}
= 1.

Proof. Equation (4.31) is proved as in [16, Corollary 4.2].
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STABILIZING FEEDBACK CONTROLS FOR QUANTUM SYSTEMS∗

MAZYAR MIRRAHIMI† AND RAMON VAN HANDEL‡

Abstract. No quantum measurement can give full information on the state of a quantum system;
hence any quantum feedback control problem is necessarily one with partial observations and can
generally be converted into a completely observed control problem for an appropriate quantum filter
as in classical stochastic control theory. Here we study the properties of controlled quantum filtering
equations as classical stochastic differential equations. We then develop methods, using a combination
of geometric control and classical probabilistic techniques, for global feedback stabilization of a class
of quantum filters around a particular eigenstate of the measurement operator.

Key words. quantum feedback control, quantum filtering equations, stochastic stabilization

AMS subject classifications. 81P15, 81V80, 93D15, 93E15

DOI. 10.1137/050644793

1. Introduction. Though they are both probabilistic theories, probability the-
ory and quantum mechanics have historically developed along very different lines.
Nonetheless, the two theories are remarkably close, and indeed a rigorous develop-
ment of quantum probability [27, 9] contains classical probability theory as a special
case. The embedding of classical into quantum probability has a natural interpre-
tation that is central to the idea of a quantum measurement: any set of commuting
quantum observables can be represented as random variables on some probability
space, and, conversely, any set of random variables can be encoded as commuting
observables in a quantum model. The quantum probability model then describes the
statistics of any set of measurements that we are allowed to make, whereas the sets of
random variables obtained from commuting observables describe measurements that
can be performed in a single realization of an experiment. As we are not allowed to
make noncommuting observations in a single realization, any quantum measurement
yields even in principle only partial information about the system.

The situation in quantum feedback control [18, 19] is thus very close to classical
stochastic control with partial observations [7]. A typical quantum control scenario,
representative of experiments in quantum optics, is shown in Figure 1.1. We wish to
control the state of a cloud of atoms; e.g., we could be interested in controlling their
collective angular momentum. To observe the atoms, we scatter a laser probe field
off the atoms and measure the scattered light using a homodyne detector (a cavity
can be used to increase the interaction strength between the light and the atoms).
The observation process is fed into a controller which can feed back a control signal
to the atoms through some actuator, e.g., a time-varying magnetic field. The entire
setup can be described by a Schrödinger equation for the atoms and the probe field,
which takes the form of a “quantum stochastic differential equation” in a Markovian
limit. The controller, however, has access only to the observations of the probe. The
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Fig. 1.1. A typical feedback control scenario in quantum optics. A probe laser scatters off a
cloud of atoms in an optical cavity and is ultimately detected. The detected signal is processed by a
controller which feeds back to the system through a time-varying magnetic field.

laser probe itself contributes quantum fluctuations to the observations; hence the
observation process can be considered as a noisy observation of an atomic variable.

As in classical stochastic control we can use the properties of the conditional
expectation to convert the output feedback control problem into one with complete
observations. The conditional expectation πt(X) of an observable X given the ob-
servations {Ys : 0 ≤ s ≤ t} is the least mean square estimate of Xt (the observable
X at time t) given Ys≤t. One can obtain a quantum filtering equation [6, 9] that
propagates πt(X) or, alternatively, the conditional density matrix ρt defined by the
relation πt(X) = Tr[ρtX]. This is the quantum counterpart of the classical Kushner–
Stratonovich equation and plays an equivalent role in quantum stochastic control.
In particular, as EXt = Eπt(X) we can control the expectations of observables by
designing a state feedback control law based on the filter.

Note that as the observation process Ys≤t is measured in a single experimental
realization, it is equivalent to a classical stochastic process (i.e., the observables Yt

commute with each other at different times). But as the filter depends only on the
observations, it is thus equivalent to a classical stochastic equation; in fact, the filter
can be expressed as a classical (Itô) stochastic differential equation for the conditional
density matrix ρt. Hence ultimately any quantum control problem of this form is
reduced to a classical stochastic control problem for the filter.

In this paper we consider a class of quantum control problems of the following
form. Rather than specifying a cost function to minimize, as in optimal control the-
ory, we desire to asymptotically prepare a particular quantum state ρf in the sense
that EXt → Tr[ρfX] as t → ∞ for all X (for a deterministic version, see, e.g., [30]).
As EXt = Eπt(X), this comes down to finding a feedback control that will ensure the
convergence ρt → ρf of the conditional density ρt. In addition to this convergence,
we will show that our controllers also render the filter stochastically stable around
the target state, which suggests some degree of robustness to perturbations. (This
statement should be interpreted with care, however. See the remark after Proposition
3.4; we will not dwell on this issue.) In section 4 we will discuss the preparation of
states in a cloud of atoms where the z-component of the angular momentum has zero
variance, whereas in section 5 we will discuss the preparation of correlated states of
two spins. Despite their relatively simple description, the creation of such states is
not simple. Quantum feedback control may provide a desirable method for reliably
preparing such states in practice (though other issues, e.g., the reduction of quan-
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tum filters [17] for efficient real-time implementation, must be resolved before such
schemes can be realized experimentally; see [15] for a state-of-the-art experimental
demonstration of a related quantum control scenario).

Other work. Though we have attempted to indicate the origin of the control prob-
lems studied here, a detailed review of the physical and mathematical considerations
behind our models is beyond the scope of this paper; nor can we do justice to the
full history of the subject, or to results which do not relate directly to the control
problems studied in this paper. In these respects we restrict ourselves to providing
here a brief historical overview. In the remainder of the paper we will consider the
quantum filtering equation as our starting point and concern ourselves exclusively
with the associated classical stochastic control problem. For further details on the
physical and mathematical basis for our models we refer the reader to the references
below.

The theory of quantum nonlinear filtering was developed by Belavkin [6, 5]. The
models used in the theory are based on the Hudson–Parthasarathy quantum stochastic
calculus [21] and the theory of continuous quantum measurements as in the work of
Barchielli and Lupieri [2]; a discrete-time version of the theory that did not require
these tools can be found in Belavkin’s earlier paper [4]. The potential for feedback
control was already realized at that time; [4] develops discrete-time optimal controls
for the models considered there, and a continuous-time version was sketched in [5]. We
refer the reader to [8] and [14] for recent developments in quantum optimal feedback
control, and to [9] for an accessible introduction to quantum probability and filtering.
The control problems studied in this paper are not of the optimal control type; they
have their origins in [33, 18]. See also [19] for further references.

In the physics literature the theory was independently developed by Carmichael
[10] based on earlier work by Davies [11]. The connection to classical filtering theory
(as in [6, 5]) was realized only much later; see, e.g., [12]. Wiseman [35] realized that
Carmichael’s work could be used to describe feedback in the quantum setting, but
the controllers used in his work were of a restricted and somewhat unrealistic form:
direct (unfiltered) linear feedback of white noise photocurrents with a deterministic
gain. We do not consider this type of system here (see [36] for some remarks).

Structure of the paper. In section 2 we first introduce some tools from stochastic
stability theory and stochastic analysis that we will use in our proofs. In section 3
we introduce the quantum filtering equation and study issues such as existence and
uniqueness of solutions, continuity of the paths, etc. Though some of these issues
have been considered in the literature in the absence of control (but in a more general
setting; see, e.g., [3] and the references therein), to our knowledge such results are not
available in the controlled case. In section 4 we pose the problem of stabilizing an
angular momentum eigenstate and prove global stability under a particular control
law. It is our expectation that the methods of section 4 are sufficiently flexible to be
applied to a wide class of quantum state preparation scenarios. As an example, we
use in section 5 the techniques developed in section 4 to stabilize particular entangled
states of two spins. Additional results and numerical simulations will appear in [29].

2. Geometric tools for stochastic processes. In this section we briefly re-
view two methods that will allow us to apply geometric control techniques to stochastic
systems. The first is a stochastic version of the classical Lyapunov and LaSalle invari-
ance theorems. The second, a support theorem for stochastic differential equations,
will allow us to infer properties of stochastic sample paths through the study of a
related deterministic system. We refer the reader to the references for proofs of the
theorems.
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2.1. Lyapunov and LaSalle invariance theorems. The Lyapunov stability
theory and LaSalle’s invariance theorem are important tools in the analysis of and
control design for deterministic systems. Similarly, their stochastic counterparts will
play an essential role in what follows. The subject of stochastic stability was studied
extensively by Has’minskĭı [20] and by Kushner [24]. We will cite a small selection of
the results that will be needed in the following: a Lyapunov (local) stability theorem
for Markov processes and the LaSalle invariance theorem of Kushner [24, 25, 26].

Definition 2.1. Let xz
t be a diffusion process on the metric state space X, started

at x0 = z, and let z̃ denote an equilibrium position of the diffusion, i.e., xz̃
t = z̃. Then

1. the equilibrium z̃ is said to be stable in probability if

(2.1) lim
z→z̃

P

(
sup

0≤t<∞
‖xz

t − z̃‖ ≥ ε

)
= 0 ∀ε > 0,

2. the equilibrium z̃ is globally stable if it is stable in probability and additionally

(2.2) P

(
lim
t→∞

xz
t = z̃

)
= 1 ∀z ∈ X.

In the theorems below we will make the following assumptions.
1. The state space X is a complete separable metric space, and xz

t is a homoge-
neous strong Markov process on X with continuous sample paths.

2. V (·) is a nonnegative real-valued continuous function on X.
3. For λ > 0, let Qλ = {x ∈ X : V (x) < λ} and assume Qλ is nonempty. Let

τλ = inf{t : xz
t 	∈ Qλ} and define the stopped process x̃z

t = xz
t∧τλ

.
4. Aλ is the weak infinitesimal operator of x̃t, and V is in the domain of Aλ.

The following theorems can be found in Kushner [24, 25, 26].
Theorem 2.2 (local stability). Let AλV ≤ 0 in Qλ. Then the following hold:
1. limt→∞ V (x̃z

t ) exists a.s., so V (xz
t ) converges for a.e. path remaining in Qλ.

2. P-limt→∞AλV (x̃z
t ) = 0, so AλV (xz

t ) → 0 in probability as t → ∞ for almost
all paths which never leave Qλ.

3. For z ∈ Qλ and α ≤ λ we have the uniform estimate

(2.3) P

(
sup

0≤t<∞
V (xz

t ) ≥ α

)
= P

(
sup

0≤t<∞
V (x̃z

t ) ≥ α

)
≤ V (z)

α
.

4. If V (z̃) = 0 and V (x) 	= 0 for x 	= z̃, then z̃ is stable in probability.
The following theorem is a stochastic version of the LaSalle invariance theorem.

Recall that a diffusion xz
t is said to be Feller continuous if for fixed t, EG(xz

t ) is
continuous in z for any bounded continuous G.

Theorem 2.3 (invariance). Let AλV ≤ 0 in Qλ. Suppose Qλ has compact
closure, x̃z

t is Feller continuous, and that P(‖x̃z
t −z‖ > ε) → 0 as t → 0 for any ε > 0,

uniformly for z ∈ Qλ. Then x̃z
t converges in probability to the largest invariant set

contained in Cλ = {x ∈ Qλ : AλV (x) = 0}. Hence xz
t converges in probability to the

largest invariant set contained in Cλ for almost all paths which never leave Qλ.

2.2. The support theorem. In the nonlinear control of deterministic systems
an important role is played by the application of geometric methods, e.g., Lie algebra
techniques, to the vector fields generating the control system. Such methods usually
cannot be directly applied to stochastic systems, however, as the processes involved
are not (sufficiently) differentiable. The support theorem for stochastic differential
equations, in its original form due to Stroock and Varadhan [34], connects events of
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probability one for a stochastic differential equation to the solution properties of an
associated deterministic system. One can then apply classical techniques to the latter
and invoke the support theorem to apply the results to the stochastic system; see,
e.g., [22] for the application of Lie algebraic methods to stochastic systems.

We quote the following form of the theorem [23, 22].
Theorem 2.4. Let M be a connected, paracompact C∞-manifold and let Xk,

k = 0, . . . , n, be C∞ vector fields on M such that all linear sums of Xk are complete.
Let Xk =

∑
l X

l
k(x)∂l in local coordinates and consider the Stratonovich equation

(2.4) dxt = X0(xt) dt +

n∑
k=1

Xk(xt) ◦ dW k
t , x0 = x.

Consider in addition the associated deterministic control system

(2.5)
d

dt
xu
t = X0(x

u
t ) +

n∑
k=1

Xk(x
u
t )uk(t), xu

0 = x,

with uk ∈ U , the set of all piecewise constant functions from R+ to R. Then

(2.6) Sx = {xu
· : u ∈ U n} ⊂ Wx,

where Wx is the set of all continuous paths from R+ to M starting at x, equipped with
the topology of uniform convergence on compact sets, and Sx is the smallest closed
subset of Wx such that P({ω ∈ Ω : x·(ω) ∈ Sx}) = 1.

3. Solution properties of quantum filters. The purpose of this section is to
introduce the dynamical equations for a general quantum system with feedback and
to establish their basic solution properties.

We will consider quantum systems with finite dimension 1 < N < ∞. The state
space of such a system is given by the set of density matrices

(3.1) S = {ρ ∈ C
N×N : ρ = ρ∗, Tr ρ = 1, ρ ≥ 0},

where ρ∗ denotes Hermitian conjugation. In noncommutative probability the space
P is the analogue of the set of probability measures of an N -state random vari-
able. Finite-dimensional quantum systems are ubiquitous in contemporary quantum
physics; a system with dimension N = 2n, for example, can represent the collective
state of n qubits in the setting of quantum computing, and N = 2J + 1 represents a
system with fixed angular momentum J . The following lemma describes the structure
of S.

Lemma 3.1. S is the convex hull of {ρ ∈ C
N×N : ρ = vv∗, v ∈ C

N , v∗v = 1}.
Proof. The statement is easily verified by diagonalizing the elements of P.
We now consider continuous measurement of such a system, e.g., by weakly cou-

pling it to an optical probe field and performing a diffusive observation of the field.
When the state of the system is conditioned on the observation process, we obtain the
following matrix-valued Itô equation for the conditional density, which is a quantum
analogue of the Kushner–Stratonovich equation of nonlinear filtering [6, 9, 18]:

dρt = −i(Htρt − ρtHt) dt + (cρtc
∗ − 1

2 (c∗cρt + ρtc
∗c)) dt

+
√
η (cρt + ρtc

∗ − Tr[(c + c∗)ρt]ρt) dWt.
(3.2)

Here we have introduced the following quantities:
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• The Wiener process Wt is the innovation dWt = dyt −
√
ηTr[(c + c∗)ρt]dt.

Here yt, a continuous semimartingale with quadratic variation 〈y, y〉t = t, is
the observation process obtained from the system.

• Ht = H∗
t is a Hamiltonian matrix which describes the action of external forces

on the system. We will consider Ht of the form Ht = F + utG with F = F ∗,
G = G∗, and the (real) scalar control input ut.

• ut is a bounded real càdlàg process that is adapted to Fy
t = σ(ys, 0 ≤ s ≤ t),

the filtration generated by the observations up to time t.
• c is a matrix which determines the coupling to the external (readout) field.
• 0 < η ≤ 1 is the detector efficiency.

Let us begin by studying a different form of (3.2). Consider the linear Itô equation

(3.3) dρ̃t = −i(Htρ̃t − ρ̃tHt) dt + (cρ̃tc
∗ − 1

2 (c∗cρ̃t + ρ̃tc
∗c)) dt +

√
η (cρ̃t + ρ̃tc

∗) dyt,

which is the quantum analogue of the Zakai equation. As it obeys a global (random)
Lipschitz condition, this equation has a unique strong solution [32, pp. 249–253].

Lemma 3.2. The set of nonnegative nonzero matrices is a.s. invariant for (3.3).
Proof. We begin by expanding ρ̃0 into its eigenstates, i.e., ρ̃0 =

∑
i λiv

i
0v

i∗
0 with

vi0 ∈ C
N being the ith eigenvector and λi the ith eigenvalue. As ρ̃0 is nonnegative,

all the λi are nonnegative. Now consider the set of equations

(3.4) dρit = −i(Htρ
i
t − ρitHt) dt + (cρitc

∗ − 1
2 (c∗cρit + ρitc

∗c)) dt + (cρit + ρitc
∗) dW ′

t

with ρi0 = vi0v
i∗
0 . Here we have extended our probability space to admit a Wiener

process Ŵt that is independent of yt, and W ′
t =

√
η yt +

√
1 − η Ŵt. The process ρ̃t

is then equivalent in law to E[ρ′t|F
y
t ], where ρ′t =

∑
i λiρ

i
t.

Now note that the solution of the set of equations

(3.5) dvit = −iHtv
i
t dt− 1

2c
∗c vit dt + c vit dW

′
t , vit ∈ C

N ,

satisfies ρit = vitv
i∗
t , as is readily verified by Itô’s rule. By [32, pp. 326], we have that

vit = Utv
i
0, where the random matrix Ut is a.s. invertible for all t. Hence a.s. vit 	= 0

for any finite time unless vi0 = 0. Thus clearly ρ′t is a.s. a nonnegative nonzero matrix
for all t, and the result follows.

Proposition 3.3. Equation (3.2) has a unique strong solution ρt = ρ̃t/Tr ρ̃t in
S.

Clearly this must be satisfied if (3.2) is to propagate a density.
Proof. As the set of nonnegative nonzero matrices is invariant for ρ̃t, this implies

in particular that Tr ρ̃t > 0 for all t a.s. Thus the result follows simply from application
of Itô’s rule to (3.3) and from the fact that if M =

∑
i λivi is a nonnegative nonzero

matrix, then M/TrM =
∑

i(λi/
∑

j λj)vi ∈ S.
Proposition 3.4. The following uniform estimate holds for (3.2):

(3.6) P

(
sup

0≤δ≤Δ
‖ρt+δ − ρt‖ > ε

)
≤ CΔ(1 + Δ) ∀ε > 0,

where 0 < C < ∞ depends only on ε and ‖ · ‖ is the Frobenius norm. Hence the
solution of (3.2) is stochastically continuous uniformly in t and ρ0.

Proof. Write ρt = ρ0 + Φt + Ξt, where

(3.7) Φt =

∫ t

0

[
−i(Hsρs − ρsHs) + (cρsc

∗ − 1
2 (c∗cρs + ρsc

∗c))
]
ds,
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(3.8) Ξt =

∫ t

0

√
η (cρs + ρsc

∗ − Tr[(c + c∗)ρs]ρs) dWs.

For Ξt we have the estimate [1, pp. 81]

(3.9) E

(
sup

0≤δ≤Δ
‖Ξt+δ − Ξt‖2

)
≤ 4η

∫ t+Δ

t

E‖cρs + ρsc
∗ − Tr[(c + c∗)ρs]ρs‖2 ds.

As the integrand is bounded clearly, this expression is bounded by C1Δ for some
positive constant C1 < ∞. For Φt we can write
(3.10)

E

(
sup

0≤δ≤Δ
‖Φt+δ − Φt‖2

)
≤ E

[
sup

0≤δ≤Δ

∫ t+δ

t

‖Gs‖ ds
]2

= E

[∫ t+Δ

t

‖Gs‖ ds
]2

,

where Gs denotes the integrand of (3.7). As ‖Gs‖ is bounded, we can estimate this
expression by C2Δ

2 with C2 < ∞. Using ‖A + B‖2 ≤ 2(‖A‖2 + ‖B‖2), we can write

(3.11) sup
0≤δ≤Δ

‖ρt+δ − ρt‖2 ≤ 2

(
sup

0≤δ≤Δ
‖Φt+δ − Φt‖2 + sup

0≤δ≤Δ
‖Ξt+δ − Ξt‖2

)
.

Finally, Chebyshev’s inequality gives

(3.12) P

(
sup

0≤δ≤Δ
‖ρt+δ − ρt‖ > ε

)
≤ 1

ε2
E

(
sup

0≤δ≤Δ
‖ρt+δ − ρt‖2

)
≤ 2C1Δ + 2C2Δ

2

ε2
,

from which the result follows.
Remark. The statistics of the observation process yt should, of course, depend

both on the control ut that is applied to the system and on the initial state ρ0.
We will always assume that the filter initial state ρ0 matches the state in which the
system is initially prepared (i.e., we do not consider “wrongly initialized” filters) and
that the same control ut is applied to the system and to the filter (see Figure 1.1).
Quantum filtering theory then guarantees that the innovation Wt is a Wiener process.
To simplify our proofs, we make from this point on the following choice: for all initial
states and control policies, the corresponding observation processes are defined in such
a way that they give rise to the same innovation process Wt.

1

We now specialize to the following case:
• ut = u(ρt) with u ∈ C1(S,R).

In this simple feedback case we can prove several important properties of the solutions.
First, however, we must show existence and uniqueness for the filtering equation with
feedback: it is not a priori obvious that the feedback ut = u(ρt) results in a well-
defined càdlàg control.

1This is contrary to the usual stochastic control setup: there the system and observation noises are
fixed Wiener processes, and every initial state and control policy gives rise to a different innovation
(Wiener) process. However, in the quantum case the system and observation noises do not even
commute with the observations process, and thus we cannot use them to fix the innovations. In fact,
the observation process yt that emerges from the quantum probability model is defined only in a
“weak” sense as a ∗-isomorphism between an algebra of observables and a set of random variables
on (Ω,F ,P) [9]. Hence we might as well choose the isomorphism for each initial state and control in
such a way that all observations yt[ρ0, ut] give rise to the fixed innovations process Wt, regardless
of ρ0, ut. Note that the only results that depend on the precise choice of yt[ρ0, ut] on (Ω,F ,P) are
joint statistics of the filter sample paths for different initial states or controls. However, such results
are physically meaningless as the corresponding quantum models generally do not commute.
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Proposition 3.5. Equation (3.2) with ut = u(ρt), u ∈ C1, and ρ0 = ρ ∈ S has
a unique strong solution ρt ≡ ϕt(ρ, u) in S, and ut is a continuous bounded control.

Proof. As S is compact, we can find an open set T ⊂ C
N×N such that S is strictly

contained in T . Let C(ρ) : C
N×N → [0, 1] be a smooth function with compact support

such that C(ρ) = 1 for ρ ∈ T , and let U(ρ) be a C1(CN×N ,R) function such that
U(ρ) = u(ρ) for ρ ∈ S. Then the equation

dρ̄t = −iC(ρ̄t)[F + U(ρ̄t)G, ρ̄t] dt + C(ρ̄t)(cρ̄tc
∗ − 1

2 (c∗cρ̄t + ρ̄tc
∗c)) dt

+ C(ρ̄t)
√
η (cρ̄t + ρ̄tc

∗ − Tr[(c + c∗)ρ̄t]ρ̄t) dWt,

where [A,B] = AB − BA, has global Lipschitz coefficients and hence has a unique
strong solution in C

N×N and a.s. continuous adapted sample paths [32]. Moreover,
ρ̄t must be bounded as C(ρ) has compact support. Hence Ut = U(ρ̄t) is an a.s.
continuous, bounded adapted process.

Now consider the solution ρt of (3.2) with ut = U(ρ̄t) and ρ0 = ρ̄0 ∈ S. As both
ρt and ρ̄t have a unique solution, the solutions must coincide up to the first exit time
from T . But we have already established that ρt remains in S for all t > 0, so ρ̄t can
certainly never exit T . Hence ρ̄t = ρt for all t > 0, and the result follows.

In the following, we will denote by ϕt(ρ, u) the solution of (3.2) at time t with
the control ut = u(ρt) and initial condition ρ0 = ρ ∈ S.

Proposition 3.6. If V (ρ) is continuous, then EV (ϕt(ρ, u)) is continuous in ρ;
i.e., the diffusion (3.2) is Feller continuous.

Proof. Let {ρn ∈ S} be a sequence of points converging to ρ∞ ∈ S. Let us write
ρnt = ϕt(ρ

n, u) and ρ∞t = ϕt(ρ
∞, u). First, we will show that

(3.13) E‖ρnt − ρ∞t ‖2 → 0 as n → ∞,

where ‖ · ‖ is the Frobenius norm (‖A‖2 = (A,A) with the inner product (A,B) =
Tr (A∗B)). We will write δnt = ρnt − ρ∞t . Using Itô’s rule we obtain

E‖δnt ‖2 = ‖δn0 ‖2 +

∫ t

0

ηETr
(
(cδns + δns c

∗ − Tr[(c + c∗)ρns ]ρns + Tr[(c + c∗)ρ∞s ]ρ∞s )2
)
ds

+

∫ t

0

2 E
[
Tr ((i[ρns , H(ρns )] − i[ρ∞s , H(ρ∞s )])δns ) + Tr

(
cδns c

∗δns − c∗c(δns )2
)]

ds,

(3.14)

where [A,B] = AB −BA. Let us estimate each of these terms. We have

Tr
(
c∗c(δnt )2

)
= ‖cδnt ‖2 ≤ C1‖δnt ‖2,

Tr (cδnt c
∗δnt ) = (δnt c, cδ

n
t ) ≤ ‖δnt c‖ ‖cδnt ‖ ≤ C2‖δnt ‖2,

(3.15)

where we have used the Cauchy–Schwarz inequality and the fact that all the operators
are bounded. Next we tackle

(3.16) Tr ((i[ρnt , H(ρnt )] − i[ρ∞t , H(ρ∞t )])δnt ) ≤ ‖i[ρnt , H(ρnt )] − i[ρ∞t , H(ρ∞t )]‖ ‖δnt ‖.

Now note that S(ρ) = i[ρ,H(ρ)] = i[ρ, F + u(ρ)G] is C1 in the matrix elements of
ρ, and that its derivatives are bounded as S is compact. Hence S(ρ) is Lipschitz
continuous, and we have

(3.17) ‖S(ρnt ) − S(ρ∞t )‖ ≤ C3‖ρnt − ρ∞t ‖ = C3‖δnt ‖,
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which implies

(3.18) Tr ((i[ρnt , H(ρnt )] − i[ρ∞t , H(ρ∞t )])δnt ) ≤ C3‖δnt ‖2.

Finally, we have ‖cδnt + δnt c
∗‖ ≤ C4‖δnt ‖ due to boundedness of multiplication with

c, and a Lipschitz argument similar to the one above can be applied to S′(ρ) =
Tr[(c + c∗)ρ]ρ, giving

(3.19) ‖Tr[(c + c∗)ρnt ]ρnt − Tr[(c + c∗)ρ∞t ]ρ∞t ‖ ≤ C5‖δnt ‖.

We can now use ‖A + B‖2 ≤ ‖A‖2 + 2‖A‖ ‖B‖ + ‖B‖2 to estimate the last term in
(3.14) by C6‖δnt ‖2. Putting all these together, we obtain

(3.20) E‖δnt ‖2 ≤ ‖δn0 ‖2 + C

∫ t

0

E‖δns ‖2ds,

and thus by Gronwall’s lemma

(3.21) E‖δnt ‖2 ≤ eCt‖δn0 ‖2 = eCt‖ρn − ρ∞‖2.

As t is fixed, (3.13) follows.
We have now proved that ρnt → ρ∞t in mean square as n → ∞, which implies

convergence in probability. But then for any continuous V , V (ρnt ) → V (ρ∞t ) in
probability [16, pp. 60]. As S is compact, V is bounded, and we have

(3.22) EV (ρ∞t ) = E[P-lim
n→∞

V (ρnt )] = lim
n→∞

EV (ρnt )

by dominated convergence [16, pp. 72]. But as this holds for any convergent sequence
ρn, the result follows.

Proposition 3.7. ϕt(ρ, u) is a strong Markov process in S.
Proof. The proof of the Markov property in [31, pp. 109–110] carries over to our

case. But then the strong Markov property follows from Feller continuity [24].
Proposition 3.8. Let τ be the first exit time of ρt from an open set Q ⊂ S

and consider the stopped process ρQt = ϕt∧τ (ρ, u). Then ρQt is also a strong Markov
process in S. Furthermore, for V s.t. A V exists and is continuous, where A is the
weak infinitesimal operator associated to ϕt(ρ, u), we have AQV (x) = A V (x) if x ∈ Q

and AQV (x) = 0 if x 	= Q for the weak infinitesimal operator AQ associated to ρQt .
Proof. This follows from [24, pp. 11–12] and Proposition 3.4.

4. Angular momentum systems. In this section we consider a quantum sys-
tem with fixed angular momentum J (2J ∈ N), e.g., an atomic ensemble, which is
detected through a dispersive optical probe [19]. After conditioning, such systems are
described by an equation of the form (3.2), where

• the Hilbert space dimension N = 2J + 1;
• c = βFz, F = 0, and G = γFy with β, γ > 0.

Here Fy and Fz are the (self-adjoint) angular momentum operators defined as follows.
Let {ψk : k = 0, . . . , 2J} be the standard basis in C

N ; i.e., ψi is the vector with a
single nonzero element ψi

i = 1. Then [28]

Fyψk = ick−Jψk+1 − icJ−kψk−1,

Fzψk = (k − J)ψk

(4.1)
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with cm = 1
2

√
(J −m)(J + m + 1). Without loss of generality we will choose β =

γ = 1, as we can always rescale time and ut to obtain any β, γ.

Let us begin by studying the dynamical behavior of the resulting equation,

(4.2) dρt = −iut[Fy, ρt] dt− 1
2 [Fz, [Fz, ρt]] dt +

√
η (Fzρt + ρtFz − 2 Tr[Fzρt]ρt) dWt

without feedback ut = 0.

Proposition 4.1 (quantum state reduction). For any ρ0 ∈ S, the solution ρt of
(4.2) with ut = 0 converges a.s. as t → ∞ to one of ψmψ∗

m.

Proof. We will apply Theorem 2.2 with Qλ = S. Consider the Lyapunov function
v(ρ) = Tr[F 2

z ρ]−(Tr[Fzρ])
2. One easily calculates A v(ρ) = −4η v(ρ)2 ≤ 0, and hence

(4.3) Ev(ρt) = v(ρ0) − 4η

∫ t

0

Ev(ρs)
2 ds

by using Itô’s rule. Note that v(ρ) ≥ 0, so

(4.4) 4η

∫ t

0

Ev(ρs)
2 ds = v(ρ0) − Ev(ρt) ≤ v(ρ0) < ∞.

Thus we have by monotone convergence

(4.5) E

∫ ∞

0

v(ρs)
2 ds < ∞ =⇒

∫ ∞

0

v(ρs)
2 ds < ∞ a.s.

By Theorem 2.2 the limit of v(ρt) as t → ∞ exists a.s., and hence (4.5) implies that
v(ρt) → 0 a.s. But the only states ρ that satisfy v(ρ) = 0 are ρ = ψmψ∗

m.

The main goal of this section is to provide a feedback control law that globally
stabilizes (4.2) around the equilibrium solution (ρt ≡ ρf , u ≡ 0), where we select a
target state ρf = vfv

∗
f from one of vf = ψm.

Stabilization of quantum state reduction for low-dimensional angular momentum
systems has been studied in [18]. It is shown that the main challenge in such a sta-
bilization problem is due to the geometric symmetry hidden in the state space of the
system. Many natural feedback laws fail to stabilize the closed-loop system around the
equilibrium point ρf because of this symmetry: the ω-limit set contains points other
than ρf . The approach of [18] uses computer searches to find continuous control laws
that break this symmetry and globally stabilize the desired state. Unfortunately, the
method is computationally involved and can be applied only to low-dimensional sys-
tems. Additionally, it is difficult to prove stability in this way for arbitrary parameter
values, as the method is not analytical.

Here we present a different approach which avoids the unwanted limit points by
changing the feedback law around them. The approach is entirely analytical and
globally stabilizes the desired target state for any dimension N and 0 < η ≤ 1. The
main result of this section can be stated as the following theorem.

Theorem 4.2. Consider the system (4.2) evolving in the set S. Let ρf = vfv
∗
f ,

where vf is one of ψm, and let γ > 0. Consider the following control law:

1. ut = −Tr (i[Fy, ρt]ρf ) if Tr (ρtρf ) ≥ γ.
2. ut = 1 if Tr (ρtρf ) ≤ γ/2.
3. If ρt ∈ B = {ρ : γ/2 < Tr (ρρf ) < γ}, then ut = −Tr (i[Fy, ρt]ρf ) if ρt last

entered B through the boundary Tr (ρρf ) = γ, and ut = 1 otherwise.
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Then there exists γ > 0 s.t. ut globally stabilizes (4.2) around ρf and Eρt → ρf as
t → ∞.

Throughout the proofs we use the “natural” distance function

V (ρ) = 1 − Tr (ρρf ) : S → [0, 1]

from the state ρ to the target state ρf . For future reference, let us define for each
α ∈ [0, 1] the level set Sα to be

Sα = {ρ ∈ S : V (ρ) = α}.

Furthermore, we define the following sets:

S>α = {ρ ∈ S : α < V (ρ) ≤ 1},
S≥α = {ρ ∈ S : α ≤ V (ρ) ≤ 1},
S<α = {ρ ∈ S : 0 ≤ V (ρ) < α},
S≤α = {ρ ∈ S : 0 ≤ V (ρ) ≤ α}.

The proof of Theorem 4.2 proceeds in four steps.
1. In the first step we show that when the initial state lies in the set S1, the

constant control field u = 1 ensures the exit of the trajectories (at least) in
expectation from the level set S1.

2. In the second step we use the result of step 1 to show that there exists a γ > 0
such that whenever the initial state lies inside the set S>1−γ and the control
field is taken to be u = 1, the expectation value of the first exit time from
this set takes a finite value. Thus if we start the controlled system in the set
S>1−γ , it will exit this set in finite time with probability one.

3. In the third step we show that whenever the initial state lies inside the set
S≤1−γ and the control is given by the feedback law u(t) = −Tr (i[Fy, ρt]ρf ),
the sample paths never exit the set S<1−γ/2 with a probability uniformly
larger than a strictly positive value. We also show that almost all paths that
never leave S<1−γ/2 converge to the equilibrium point ρf .

4. In the final step, we prove that there is a unique solution ρt under the
control ut by piecing together the solutions with fixed controls u = 1 and
u = −Tr (i[Fy, ρt]ρf ). Combining the results of the second and third steps,
we show that the resulting trajectories of the system eventually converge
toward the equilibrium state ρf with probability one.

Step 1. Let us take a fixed time T > 0 and define the nonnegative function

χ(ρ) = min
t∈[0,T ]

EV (ϕt(ρ, 1)), ρ ∈ S.

Recall that ϕt(ρ, 1) denotes the solution of (4.2) at time t with the control ut = 1 and
initial condition ρ0 = ρ. The goal of the first step is to show the following result.

Lemma 4.3. χ(ρ) < 1 for all ρ ∈ S1.
To prove this statement we will first show the following deterministic result.
Lemma 4.4. Consider the deterministic differential equation

(4.6)
d

dt
vt = (−iFy − F 2

z + CFz)vt, v0 ∈ C
N \ {0}.

For sufficiently large C � 1, vt exits the set {v : v∗vf = 0} in the interval [0, T ]; i.e.,
there exists t ∈ [0, T ] such that v∗t vf 	= 0.
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Proof. The matrices Fz and Fy are of the form

Fz =

⎛⎜⎜⎜⎜⎜⎝
∗ 0

∗
. . .

∗
0 ∗

⎞⎟⎟⎟⎟⎟⎠ , Fy =

⎛⎜⎜⎜⎜⎜⎝
0 ∗ 0
∗ 0 ∗

. . .
. . .

. . .

∗ 0 ∗
0 ∗ 0

⎞⎟⎟⎟⎟⎟⎠ ,

where Fz has no repeated diagonal entries (Fz has a nondegenerate spectrum) and
the starred elements directly above and below the diagonal of Fy are all nonzero.

Now choose a constant κ so that the matrix

A = −iFy − F 2
z + κFz

admits distinct eigenvalues. This is always possible by choosing sufficiently large κ,
as Fz has nondegenerate eigenvalues and the eigenvalues of A depend continuously2

on κ. For k ∈ {1, . . . , N} define the matrices Ak−1 and Ãk+1 to be

Ak−1 = [Aij ]1≤i,j≤k−1, Ãk+1 = [Aij ]k+1≤i,j≤N .

The fact that the matrices [(Fz)ij ]1≤i,j≤k−1 and [(Fz)ij ]k+1≤i,j≤N have different eigen-

values then implies that for sufficiently large κ the matrices Ak−1 and Ãk+1 have
disjoint spectra as well.

Suppose that the solution of

v̇ = Av, v|t=0 = v0,

never leaves the set {v : v∗vf = 0} in the interval t ∈ [0, T ]. Then in particular

dn

dtn
v∗vf |t=0 = (Anv0)

∗vf = 0, n = 0, 1, . . . .

The matrix A is diagonalizable as it has distinct eigenvalues; i.e., A = PDP−1 where
D is a diagonal matrix. Thus

(4.7) (Dnṽ0)
∗ṽf = 0, n = 0, 1, . . . ,

where ṽ0 = P−1v0 and ṽf = P ∗vf . Equation (4.7) implies that Mṽ0 = 0, where

M =

⎛⎜⎜⎜⎜⎜⎝
(ṽf )∗1 . . . (ṽf )∗N

(ṽf )∗1D11 . . . (ṽf )∗NDNN

(ṽf )∗1D
2
11 . . . (ṽf )∗ND2

NN
...

...
...

(ṽf )∗1D
N−1
11 . . . (ṽf )∗NDN−1

NN

⎞⎟⎟⎟⎟⎟⎠ .

The determinant of this Vandermonde matrix is

detM = (ṽf )∗1 · · · (ṽf )∗N
∏
i>j

(Dii −Djj).

2Note that the coefficients of the characteristic polynomial of A are continuous functions of κ,
and the roots of a polynomial depend continuously on the polynomial coefficients.
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As the matrix A has distinct eigenvalues, all the entries D11, D22, . . . , DNN are dif-
ferent. Thus if we can show that all the entries of the vector ṽf are nonzero, then the
matrix M must be invertible. But then Mṽ0 = 0 implies that ṽ0 = 0, and hence v0 = 0
is the only initial state for which the dynamics does not leave the set {v : v∗vf = 0}
in the interval t ∈ [0, T ], proving our assertion.

Let us thus show that in fact all elements of ṽf are nonzero. Note that

(ṽf )k = (P ∗vf )k = P ∗
fk,

and hence it suffices to show that the eigenvectors of the matrix A have only nonzero
elements. Suppose that an eigenvector Ξ of A admits a zero entry, i.e.,

AΞ = λΞ, Ξk = 0 for some k ∈ {1, . . . , N}.

Defining χk−1 = [Ξj ]j=1,...,k−1 and χ̃k+1 = [Ξj ]j=k+1,...,N , a straightforward compu-
tation shows that due to the structure of the matrix A

Ak−1χk−1 = λχk−1 and Ãk+1χ̃k+1 = λχ̃k+1.

But by the discussion above, Ak−1 and Ãk+1 have disjoint spectra, so Ξ can be an
eigenvector only if either χk−1 = 0 or χ̃k+1 = 0.

Let us consider the case where χk−1 = 0; the treatment of the second case follows
an identical argument. Let j > k be the first nonzero entry of Ξ, i.e.,

(4.8) Ξ1 = Ξ2 = · · · = Ξj−1 = 0 and Ξj 	= 0.

As AΞ = λΞ, we have that

0 = λΞj−1 = Aj−1,j−2Ξj−2 + Aj−1,j−1Ξj−1 + Aj−1,jΞj = Aj−1,jΞj = −i(Fy)j−1,jΞj .

As (Fy)j−1,j 	= 0, this relation ensures that Ξj = 0. But this is in contradiction
with (4.8) and thus Ξ cannot admit any zero entry. This completes the proof.

Proof of Lemma 4.3. We begin by restating the problem as in the proof of Lemma
3.2. We can write ϕt(ρ, 1) = ρ̃t/Tr ρ̃t with ρ̃t =

∑
i λiE[vitv

i∗
t |Fy

t ], where λi are convex
weights and vit are given by the equations

(4.9) dvit = −iFyv
i
t dt− 1

2F
2
z v

i
t dt + Fzv

i
t dW

′
t , vi0 ∈ C

N \ {0}.

Note that ETr[ϕt(ρ, 1)ρf ] = 0 if and only if ETr[ρ̃tρf ] =
∑

i λiE[vi∗t ρfv
i
t] = 0. But as

vi∗t ρfv
i
t ≥ 0, we obtain EV (ϕt(ρ, 1)) = 1 if and only if vi∗t vf = 0 a.s. for all i.

To prove the assertion of the lemma, it suffices to show that there exists a t ∈ [0, T ]
such that EV (ϕt(ρ, 1)) < 1. Thus it is sufficient to prove that

(4.10) ∃t ∈ [0, T ] s.t. P(v∗t vf 	= 0) > 0,

where vt is the solution of an equation of the form (4.9). To this end we will use the
support theorem, Theorem 2.4, together with Lemma 4.4.

To apply the support theorem we must first take care of two preliminary issues.
First, the support theorem in the form of Theorem 2.4 must be applied to stochastic
differential equations with a Wiener process as the driving noise, whereas the noise
W ′

t of (4.9) is a Wiener process with (bounded) drift:

(4.11) dW ′
t =

√
η dyt +

√
1 − η dŴt = 2ηTr[Fzρt]dt +

√
η dWt +

√
1 − η dŴt.
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Using Girsanov’s theorem, however, we can find a new measure Q that is equivalent
to P, such that W ′

t is a Wiener process under Q on the interval [0, T ]. But as the two
measures are equivalent,

(4.12) ∃t ∈ [0, T ] s.t. Q(v∗t vf 	= 0) > 0

implies (4.10). Second, the support theorem refers to an equation in the Stratonovich
form; however, we can easily find the Stratonovich form

(4.13) dvt = −iFyvt dt− F 2
z vt dt + Fzvt ◦ dW ′

t

which is equivalent to (4.9). It is easily verified that this linear equation satisfies all
the requirements of the support theorem.

To proceed, let us suppose that (4.12) does not hold true. Then

(4.14) Q(v∗t vf = 0) = 1 ∀t ∈ [0, T ].

Recall the following sets: Wv0 is the set of continuous paths starting at v0, and Sv0

is the smallest closed subset of Wv0 such that Q({ω ∈ Ω : v·(ω) ∈ Sv0}) = 1. Now
denote by Tv0,t the subset of Wv0 such that v∗t vf = 0, and note that Tv0,t is closed in
the compact uniform topology for any t. Then (4.14) would imply that Sv0 ⊂ Tv0,t

for all t ∈ [0, T ]. But by the support theorem the solutions of (4.6) are elements of
Sv0 , and by Lemma 4.4 there exist a time t ∈ [0, T ] and a constant C such that the
solution of (4.6) is not an element of Tv0,t. Hence we have a contradiction, and the
assertion is proved.

Step 2. We begin by extending the result of Lemma 4.3 to hold uniformly in a
neighborhood of the level set S1.

Lemma 4.5. There exists γ > 0 such that χ(ρ) < 1 − γ for all ρ ∈ S≥1−γ .
Proof. Suppose that for every ξ > 0 there exists a matrix ρξ ∈ S>1−ξ such that

1 − ξ < χ(ρξ) ≤ 1.

By extracting a subsequence ξn ↘ 0 and using the compactness of S, we can assume
that ρξn → ρ∞ ∈ S1 and that χ(ρξn) → 1. But by Lemma 4.3 χ(ρ∞) = 1 − ε < 1.
Now choose s ∈ [0, T ] such that

EV (ϕs(ρ∞, 1)) = 1 − ε.

Using Feller continuity, Proposition 3.6, we can now write

1 = lim
n→∞

χ(ρξn) ≤ lim
n→∞

EV (ϕs(ρξn , 1)) = EV (ϕs(ρ∞, 1)) = 1 − ε < 1,

which is a contradiction. Hence there exists ξ > 0 such that χ(ρ) ≤ 1 − ξ for all
ρ ∈ S>1−ξ. The result follows by choosing γ = ξ/2.

The following lemma is the main result of Step 2.
Lemma 4.6. Let τρ(S>1−γ) be the first exit time of ϕt(ρ, 1) from S>1−γ . Then

sup
ρ∈S>1−γ

Eτρ(S>1−γ) < ∞.

Proof. The following result can be found in Dynkin [13, Lemma 4.3, pp. 111]:

Eτρ(S>1−γ) ≤ T

1 − supζ∈S P{τζ(S>1−γ) > T} .
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We will show that

(4.15) sup
ζ∈S

P{τζ(S>1−γ) > T} < 1.

This holds trivially for ζ ∈ S≤1−γ , as then τζ(S>1−γ) = 0. Let us thus suppose that

∀ε > 0 ∃ζε ∈ S>1−γ such that P{τζε(S>1−γ) > T} > 1 − ε.

Then for all s ∈ [0, T ], we have that

EV (ϕs(ζε, 1)) > (1 − ε) inf
ρ∈S>1−γ

V (ρ) = (1 − ε)(1 − γ).

By compactness there exist a sequence εn ↘ 0 and ζ∞ ∈ S≥1−γ such that ζεn → ζ∞
as n → ∞. Thus by Proposition 3.6

EV (ϕs(ζ∞, 1)) > 1 − γ ∀s ∈ [0, T ].

But this is in contradiction with the result of Lemma 4.5. Hence there exists an ε > 0
such that supζ∈S P{τζ(S>1−γ) > T} = 1 − ε, and we obtain

E(τρ(S>1−γ)) ≤ T

1 − (1 − ε)
=

T

ε
< ∞

uniformly in ρ. This completes the proof.
Step 3. In this step we deal with the situation where the initial state lies inside the

set S≤1−γ . We will denote by u1(ρ) = −Tr (i[Fy, ρ]ρf ) and by ϕt(ρ, u1) the solution of
(4.2) with ρ0 = ρ and with ut = u1(ρt). Denote by A the weak infinitesimal operator
of ϕt(ρ, u1). We will apply the stochastic Lyapunov theorems with Qλ = S.

We begin by showing that there is a nonzero probability p > 0 that whenever the
initial state lies inside S≤1−γ the trajectories of the system never exit the set S<1−γ/2.

Lemma 4.7. For all ρ ∈ S≤1−γ

P

[
sup

0≤t<∞
V (ϕt(ρ, u1)) ≥ 1 − γ/2

]
≤ 1 − p =

1 − γ

1 − γ/2
< 1.

Proof. This follows from Theorem 2.2 and A V (ρ) = −u1(ρ)
2 ≤ 0.

We now restrict ourselves to the paths that never leave S<1−γ/2. We will first
show that these paths converge toward ρf in probability. We then extend this result
to prove almost sure convergence.

Lemma 4.8. The sample paths of ϕt(ρ, u1) that never exit the set S<1−γ/2 con-
verge in probability to ρf as t → ∞.

Proof. Consider the Lyapunov function

V(ρ) = 1 − Tr (ρρf )
2
.

It is easily verified that V(ρ) ≥ 0 for all ρ ∈ S and that V(ρ) = 0 if and only if ρ = ρf .
A straightforward computation gives

A V(ρ) = −2u1(ρ)
2 Tr (ρρf ) − 4η (λf − Tr (ρFz))

2 Tr (ρρf )
2 ≤ 0,

where λf is the eigenvalue of Fz associated to vf . Now note that all the conditions
of Theorem 2.3 are satisfied by virtue of Propositions 3.6 and 3.4. Hence ϕt(ρ, u1)
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converges in probability to the largest invariant set contained in C = {ρ ∈ S : A V(ρ) =
0}.

In order to satisfy the condition A V(ρ) = 0, we must have u1(ρ)
2 Tr (ρρf ) = 0 as

well as (λf − Tr (ρFz))
2 Tr (ρρf )

2
= 0. The latter implies that

either Tr (ρρf ) = 0 or Tr (ρFz) = λf .

Let us investigate the largest invariant set contained in C′ = {ρ ∈ S : Tr (ρFz) = λf}.
Clearly this invariant set can contain only ρ ∈ C′ for which Tr (ϕt(ρ, u1)Fz) is constant.
Using Itô’s rule we obtain

dTr (ρtFz) = −iu1(ρt) Tr ([Fy, ρt]Fz) dt + 2
√
η (Tr (F 2

z ρt) − Tr (Fzρt)
2
) dWt.

Hence in order for Tr (ϕt(ρ, u1)Fz) to be constant, we must at least have

Tr
(
F 2
z ρ

)
− Tr (Fzρ)

2
= 0.

But as in the proof of Proposition 4.1, this implies that ρ = ψmψ∗
m for some m, and

thus the only possibilities are V (ρ) = 0 (for ρ = vfv
∗
f ) or V (ρ) = 1.

From the discussion above it is evident that the largest invariant set contained
in C must be contained inside the set {ρf} ∪ S1. But then the paths that never exit
S<1−γ/2 must converge in probability to ρf . Thus the assertion is proved.

Lemma 4.9. ϕt(ρ, u1) converges to ρf as t → ∞ for almost all paths that never
exit the set S<1−γ/2.

Proof. Define the event P ρ
<1−γ/2 = {ω ∈ Ω : ϕt(ρ, u1) never exits S<1−γ/2}.

Then Lemma 4.8 implies that

lim
t→∞

P

(
‖ϕt(ρ, u1) − ρf‖ > ε

∣∣∣P ρ
<1−γ/2

)
= 0 ∀ε > 0.

By continuity of V , this also implies

lim
t→∞

P

(
V (ϕt(ρ, u1)) > ε

∣∣∣P ρ
<1−γ/2

)
= 0 ∀ε > 0.

As V (ρ) ≤ 1, we have

E

(
V (ϕt(ρ, u1))

∣∣∣P ρ
<1−γ/2

)
≤ P

(
V (ϕt(ρ, u1)) > ε

∣∣∣P ρ
<1−γ/2

)
+ ε

[
1 − P

(
V (ϕt(ρ, u1)) > ε

∣∣∣P ρ
<1−γ/2

)]
.

Thus

lim sup
t→∞

E

(
V (ϕt(ρ, u1))

∣∣∣P ρ
<1−γ/2

)
≤ ε ∀ε > 0,

which implies

lim
t→∞

E

(
V (ϕt(ρ, u1))

∣∣∣P ρ
<1−γ/2

)
= 0.

But we know by Theorem 2.2 that V (ϕt(ρ, u1)) converges a.s. As V is bounded, we
obtain by dominated convergence

E

(
lim
t→∞

V (ϕt(ρ, u1))
∣∣∣P ρ

<1−γ/2

)
= 0,
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from which the result follows immediately.
Step 4. It remains to combine the results of Steps 2 and 3 to prove existence,

uniqueness, and global stability of the solution ρt. We will denote by u the control
law of Theorem 4.2 and by ϕt(ρ, u) the associated solution. Note that ϕt(ρ, u) is not
a Markov process, as the control u depends on the past history of the solution. We
will construct ϕt(ρ, u) by pasting together the strong Markov processes ϕt(ρ, 1) and
ϕt(ρ, u1) at the times where the control switches.

Lemma 4.10. There is a unique solution ϕt(ρ, u) for all t ∈ R+. Moreover, for
almost every sample path of ϕt(ρ, u) there exists a time T < ∞ after which the path
never exits the set S<1−γ/2 and the active control law is u1.

Proof. Fix the initial state ρ. We begin by constructing a solution ϕt∧n(ρ, u) up
to (at most) an integer time n ∈ N. To this end, define the predictable stopping time

τn1 = inf{t ≥ 0 : ϕt(ρ, 1) ∈ S≤1−γ} ∧ n.

Then we can define ρτn
1

= ϕτn
1
(ρ, 1) and ϕt∧n(ρ, u) = ϕt(ρ, 1) for t < τn1 . In the

following, we will need the two-parameter solution ϕs,t(ρ, u
′) of the filtering equation

under the simple control u′, given the initial state ρ at time s. Define

σn
1 = inf{t ≥ τn1 : ϕτn

1 ,t(ρτn
1
, u1) ∈ S≥1−γ/2} ∧ n.

We can extend our solution by

ϕt∧n(ρ, u) = χt<τn
1
ϕt(ρ, 1) + χτn

1 ≤t<σn
1
ϕτn

1 ,t(ρτn
1
, u1), t < σn

1 ,

where χA is the indicator function on the set A. To extend the solution further, we
continue again with the control law u = 1. Recursively, we define an entire sequence
of predictable stopping times

σn
k = inf{t ≥ τnk : ϕτn

k ,t(ρτn
k
, u1) ∈ S≥1−γ/2} ∧ n,

τnk = inf{t ≥ σn
k−1 : ϕσn

k−1,t
(ρσn

k−1
, 1) ∈ S≤1−γ} ∧ n,

where

ρσn
k

= ϕτn
k ,σn

k
(ρτn

k
, u1), ρτn

k
= ϕσn

k−1,τ
n
k
(ρσn

k−1
, 1).

We can use these times to construct the solution

ϕt∧n(ρ, u) = χt<τn
1
ϕt(ρ, 1) +

∞∑
k=1

[
χτn

k ≤t<σn
k
ϕτn

k ,t(ρτn
k
, u1) + χσn

k≤t<τn
k+1

ϕσn
k ,t(ρσn

k
, 1)

]
for all times t < Σn = limk→∞ σn

k ≤ n (the limit exists, as σk is a nondecreasing
sequence of stopping times.) Moreover, the solution is a.s. unique, as the segments
between each two stopping times are a.s. uniquely defined.

Now note that as anticipated by the notation, it is not difficult to verify that
ϕt∧(n+1)(ρ, u) = ϕt∧n(ρ, u) a.s. for t < Σn, and, moreover, Σn = Σ ∧ n, τnk = τk ∧ n,
σn
k = σk ∧ n, where Σ = limt→∞ Σn, etc. Hence we can let n → ∞ to obtain the

unique solution ϕt(ρ, u) defined up to the accumulation time Σ, where τk, σk are the
consecutive times at which the control switches. It remains to prove that the solution
exists for all time, i.e., that Σ = ∞ a.s. In particular, this uniquely defines a càdlàg



462 MAZYAR MIRRAHIMI AND RAMON VAN HANDEL

control ut, so that by uniqueness ϕt(ρ, u) must coincide with the solution of (3.2) with
the control ut. Below we will prove that a.s., only finitely many σk are finite. This is
sufficient to prove not only existence but also the second statement of the lemma.

To proceed, we use the fact that the strong Markov property holds on each seg-
ment between consecutive switching times τn ≤ t < σn and σn ≤ t < τn+1. Thus

P(σn < ∞ and τn < ∞)

=

∫
χτn<∞(ω̃) P(ϕt(ρτn(ω̃), u1) exits S<1−γ/2 in finite time) P(dω̃),

which implies

P(σn < ∞| τn < ∞)

=

∫
P(ϕt(ρτn(ω̃), u1) exits S<1−γ/2 in finite time) P(dω̃ | τn < ∞).

But ρτn ∈ S≤1−γ on a set Ωτn with P(Ωτn | τn < ∞) = 1. Hence by Lemma 4.7

P(σn < ∞| τn < ∞) ≤ 1 − p.

Through a similar argument, and using Lemma 4.6, we obtain

P(τn < ∞|σn−1 < ∞) = 1.

But note that by construction

P(τn < ∞|σn < ∞) = P(σn−1 < ∞| τn < ∞) = 1.

Hence we obtain

P(σn < ∞)

P(σn−1 < ∞)
=

P(τn < ∞|σn < ∞)P(σn < ∞)

P(τn < ∞)

P(σn−1 < ∞| τn < ∞)P(τn < ∞)

P(σn−1 < ∞)

= P(σn < ∞| τn < ∞) P(τn < ∞|σn−1 < ∞) ≤ 1 − p.

But P(σ1 < ∞) = P(σ1 < ∞| τ1 < ∞) ≤ 1 − p as τ1 < ∞ a.s. Hence

P(σn < ∞) ≤ (1 − p)n,

and thus

∞∑
n=1

P(σn < ∞) ≤
∞∑

n=1

(1 − p)n =
1 − p

p
< ∞.

By the Borel–Cantelli lemma, we conclude that

P(σn < ∞ for infinitely many n) = 0.

Hence Σ = ∞ a.s., and for almost every sample path, there exists an integer N < ∞
such that σn = ∞ (and hence also τn+1 = ∞) for all n ≥ N , and such that σn < ∞
(and hence also τn+1 < ∞) for all n < N , which implies the assertion.

Finally, we can now put together all the ingredients and complete the proof of
Theorem 4.2.
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Proof of Theorem 4.2. We must check three things: that the target state ρf is
(locally) stable in probability; that almost all sample paths are attracted to the target
state as t → ∞; and that this is also true in expectation. Existence and uniqueness
of the solution follows from Lemma 4.10.

(i) To study local stability, we can restrict ourselves to the stopped process

ϕt∧τ̃ (ρ, u) = ϕt∧τ̃ (ρ, u1), τ̃ = inf{t : ϕt(ρ, u) 	∈ S<1−γ/2}.

Denote by Ã the weak infinitesimal operator of ϕt∧τ̃ (ρ, u1), and note that Proposition

3.8 allows us to calculate Ã V from (4.2) in the usual way. In particular, we find

Ã V (ρ) = −u1(ρ)
2 ≤ 0 for ρ ∈ S<1−γ/2. Hence we can apply Theorem 2.2 with

Qλ = S<1−γ/2 to conclude stability in probability.
(ii) From Lemmas 4.9 and 4.10, it follows that ϕt(ρ, u) → ρf a.s. as t → ∞.
(iii) We have shown that

E

[
lim
t→∞

V (ϕt(ρ, u))
]

= V (ρf ) = 0.

But as V is uniformly bounded, we obtain by dominated convergence

V
(

lim
t→∞

Eϕt(ρ, u)
)

= lim
t→∞

E [V (ϕt(ρ, u))] = 0,

where we have used that V is linear and continuous. Hence Eϕt(ρ, u) → ρf .

5. Two-qubit systems. The methods employed in the previous section can be
extended to other quantum feedback control problems. As an example, we treat the
case of two qubits in a symmetric dispersive interaction with an optical probe field.
Qubits, i.e., two-level quantum systems (having a Hilbert space of dimension two), and
in particular correlated (entangled) states of multiple such qubits, play an important
role in quantum information processing. Here we investigate the stabilization of two
such states in the two-qubit system.

We begin by defining the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

and we define the basis ψ↑ = (1 0)∗ and ψ↓ = (0 1)∗ in C
2. A system of two qubits

lives on the four-dimensional space C
2 ⊗ C

2 with the standard basis {ψ↑↑ = ψ↑ ⊗ ψ↑,
ψ↑↓ = ψ↑ ⊗ψ↓, ψ↓↑ = ψ↓ ⊗ψ↑, ψ↓↓ = ψ↓ ⊗ψ↓}. We denote by σ1

x,y,z = σx,y,z ⊗� and
σ2
x,y,z = �⊗ σx,y,z the Pauli matrices on the first and second qubit, respectively, and

by Fx,y,z = σ1
x,y,z+σ2

x,y,z the (unnormalized) collective angular momentum operators.
The quantum filtering equation for the two-qubit system is given by an equation

of the form (3.2):

dρt = −iu1(t)[σ
1
y, ρt] dt− iu2(t)[σ

2
y, ρt] dt

− 1
2 [Fz, [Fz, ρt]] dt +

√
η (Fzρt + ρtFz − 2 Tr (Fzρt) ρt) dWt,

(5.1)

where u1 and u2 are two independent controls acting as local magnetic fields in the
y-direction on each of the qubits. The main goal of this section is to stabilize this
system around two interesting target states,

ρs =
1

2
(ψ↑↓ + ψ↓↑)(ψ↑↓ + ψ↓↑)

∗, ρa =
1

2
(ψ↑↓ − ψ↓↑)(ψ↑↓ − ψ↓↑)

∗.

Here ρs is a symmetric and ρa is an antisymmetric qubit state.
Theorem 5.1. Consider the following control law:
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1. u1(t) = 1 − Tr
(
i[σ1

y, ρt]ρa
)
, u2(t) = 1 − Tr

(
i[σ2

y, ρt]ρa
)

if Tr (ρρa) ≥ γ;
2. u1(t) = 1, u2(t) = 0 if Tr (ρρa) ≤ γ/2;
3. if ρt ∈ Ba = {ρ : γ/2 < Tr (ρρa) < γ}, then take u1(t) = 1 − Tr

(
i[σ1

y, ρt]ρa
)
,

u2(t) = 1 − Tr
(
i[σ2

y, ρt]ρa
)

if ρt last entered the set Ba through the boundary
Tr (ρρa) = γ, and u1(t) = 1, u2(t) = 0 otherwise.

Then there exists γ > 0 s.t. (5.1) is globally stable around ρa and Eρt → ρa as t → ∞.
Similarly, consider the following control law:

1. u1(t) = 1 − Tr
(
i[σ1

y, ρt]ρs
)
, u2(t) = −1 − Tr

(
i[σ2

y, ρt]ρs
)

if Tr (ρρs) ≥ γ;
2. u1(t) = 1, u2(t) = 0 if Tr (ρρs) ≤ γ/2;
3. if ρt ∈ Bs = {ρ : γ/2 < Tr (ρρs) < γ}, then take u1(t) = 1 − Tr

(
i[σ1

y, ρt]ρs
)
,

u2(t) = −1−Tr
(
i[σ2

y, ρt]ρs
)

if ρt last entered the set Bs through the boundary
Tr (ρρs) = γ, and u1(t) = 1, u2(t) = 0 otherwise.

This stabilizes the system around the symmetric state ρs.
We will prove the result for the antisymmetric case; the proof for the symmetric

case may be done exactly in the same manner. We proceed in the same way as in the
proof of Theorem 4.2.

Step 1. The proof of Lemma 4.3 carries over directly to the two-qubit case. The
proof of Lemma 4.4 also carries over after minor modifications; in particular, in the
two-qubit case we can explicitly compute that

A = −iσ1
y − F 2

z + 2Fz =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 −8

⎞⎟⎟⎠
admits the diagonalization A = PDP−1 with

P =

⎛⎜⎜⎝
1 1 0 0
−i i 0 0
0 0 1 1
0 0 .1270 7.8730

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
i 0 0 0
0 −i 0 0
0 0 −.1270 0
0 0 0 −7.8730

⎞⎟⎟⎠ .

Hence the matrix A has a nondegenerate spectrum, and, moreover,

ṽa = 1√
2
P ∗(ψ↑↓ − ψ↓↑) = 1√

2
(i − i − 1 − 1)∗

has only nonzero entries. The remainder of the proof is identical to that of Lemma 4.3.
Step 2. The proofs of Lemmas 4.5 and 4.6 carry over directly.
Step 3. The proofs of Lemmas 4.7 and 4.9 carry over directly. The following

replaces Lemma 4.8. We denote by U1(ρ) = 1 − Tr
(
i[σ1

y, ρ]ρa
)
, by U2(ρ) = 1 −

Tr
(
i[σ2

y, ρ]ρa
)
, and by ϕt(ρ, U1, U2) the associated solution of (5.1).

Lemma 5.2. The sample paths of ϕt(ρ, U1, U2) that never exit the set S<1−γ/2

converge in probability to ρa as t → ∞.
Proof. Consider the Lyapunov function

V(ρ) = 1 − Tr (ρρa)
2
.

It is easily verified that V(ρ) ≥ 0 for all ρ ∈ S and that V(ρ) = 0 if and only if ρ = ρa.
A straightforward computation gives

A V(ρ) = −2
[
(U1(ρ) − 1)2 + (U2(ρ) − 1)2

]
Tr (ρρa) − 4ηTr (ρFz)

2
Tr (ρρa)

2 ≤ 0,
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where A is the weak infinitesimal operator associated to ϕt(ρ, U1, U2) (here we have
used [Fy, ρa] = 0 in calculating this expression). Now note that all the conditions of
Theorem 2.3 are satisfied by virtue of Propositions 3.6 and 3.4. Hence ϕt(ρ, U1, U2)
converges in probability to the largest invariant set contained in C = {ρ ∈ S : A V(ρ) =
0}.

In order to satisfy the condition A V(ρ) = 0 we must have at least

either Tr (ρρa) = 0 or Tr (ρFz) = 0.

Let us investigate the largest invariant set contained in C′ = {ρ ∈ S : Tr (ρFz) = 0}.
Clearly this invariant set can contain only ρ ∈ C′ for which Tr (ϕt(ρ, U1, U2)Fz) is
constant. Using Itô’s rule we obtain

dTr (ρtFz) = −
2∑

j=1

Uj(ρt) Tr
(
i[σj

y, ρt]Fz

)
dt + 2

√
η (Tr

(
F 2
z ρt

)
− Tr (Fzρt)

2
) dWt.

Hence in order for Tr (ϕt(ρ, U1, U2)Fz) to be constant, we must at least have

Tr
(
F 2
z ρ

)
− Tr (Fzρ)

2
= 0,

which implies that ρ must be an eigenstate of Fz. The latter can take only one of the
following forms: either ρ = ψ↑↑ψ

∗
↑↑ or ρ = ψ↓↓ψ

∗
↓↓, or ρ is any state of the form

(5.2) ρ = αψ↑↓ψ
∗
↑↓ + βψ↑↓ψ

∗
↓↑ + β∗ψ↓↑ψ

∗
↑↓ + (1 − α)ψ↓↑ψ

∗
↓↑.

Let us investigate in particular the latter case. Note that any density matrix of the
form (5.2) satisfies Fzρ = ρFz = 0. Suppose that (5.1) with u1 = U1, u2 = U2 leaves
the set (5.2) invariant; then the solution at time t of

(5.3)
d

dt
ρt = −i[Fy, ρt]

must coincide with ϕt(ρ, U1, U2) when ρ is of the form (5.2), and in particular (5.3)
must leave the set (5.2) invariant (here we have used that U1(ρ) = U2(ρ) = 1 for ρ
of the form (5.2)). We claim that this is only the case if ρ = ρa, which implies that
of all states of the form (5.2) only ρa is in fact invariant. To see this, note that by
Lemma 3.1 we can write any ρ of the form (5.2) as a convex combination

∑
i λiψ

iψi∗

of unit vectors ψi ∈ span{ψ↑↓, ψ↓↑}. Thus the solution of (5.3) at time t is given by∑
i λiψ

i
tψ

i∗
t with

d

dt
ψi
t = −iFyψ

i
t, ψi

0 = ψi.

But Fyψ
i 	∈ span{ψ↑↓, ψ↓↑} unless ψi ∝ ψ↑↓ − ψ↓↑, which implies the assertion.

From the discussion above it is evident that the largest invariant set contained
in C must be contained inside the set {ρa} ∪ S1. But then the paths that never exit
S<1−γ/2 must converge in probability to ρa. Thus the lemma is proved.

Step 4. The remainder of the proof of Theorem 5.1 carries over directly.
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Abstract. Semidefinite programs (SDPs) arising from the Kalman–Yakubovich–Popov (KYP)
lemma are frequently encountered in systems robustness analysis, filter design, and other con-
trol/signal processing related applications. These programs possess a special structure that can
be exploited to construct specialized algorithms that substantially outperform general-purpose SDP
solvers. In this paper, a new interior path-following algorithm that utilizes this structure is proposed.
The main idea behind the algorithm is a new barrier function for these specially structured SDPs.
Convergence of the new algorithm is shown and a measure of the accuracy of suboptimal solutions
produced by the algorithm is provided. The algorithm is tested in numerical experiments and the
results indicate that the new algorithm is indeed favorable against general-purpose SDP solvers in
many circumstances.
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robustness analysis

AMS subject classification. 93D09

DOI. 10.1137/050623796

1. Introduction. Consider a semidefinite problem (SDP) of the form

inf
λ,P

c′λ subject to

F(P, λ) :=

[
PA + A′P PB

B′P 0

]
+ M0 +

n∑
i=1

λiMi > 0,
(1.1)

where the variables to be optimized are the vector λ ∈ Rn and the matrix P . The real
matrices A and B are of dimensions m×m and m× p, respectively. The matrix A is
assumed to be Hurwitz; i.e., the real part of each eigenvalue of A is strictly negative.
The matrices P and Mi, i = 0, 1, . . . , n are symmetric. The inequality sign in (1.1)
denotes matrix inequality; i.e., X > 0 means v′Xv > 0 for all nonzero v.

The SDP (1.1) is referred to as the KYP–SDP for its tight connection to the
Kalman–Yakubovich–Popov lemma [21, 33]. The KYP–SDP frequently appears in
control and signal processing related applications. A partial list includes systems
robustness analysis [5, 18, 23, 31, 32], filter design [1], and linear control system
synthesis [3, 9]. We note that in (1.1), the number of decision variables in P is
proportional to the square of the dimension of the matrix A, while the matrices A
and B usually correspond to the state space realization of the linear time-invariant
(LTI) part of the system to be analyzed or designed. Hence, in practical applications
where the LTI systems under consideration have state spaces of large dimension,
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the number of decision variables in P is often order-of-magnitude larger than the
number of decision variables in λ. In these cases, the matrix variable P becomes the
major computational burden in solving SDP (1.1). It is often observed that when the
dimension of A is of several hundred, SDP (1.1) becomes difficult or even impossible
to solve using a general-purpose SDP solver. It is not unusual in control system
applications to encounter complex dynamical systems having many states. Typical
examples of such systems are aircraft autopilots, electrical power grids, large-scale
networked control systems, and vibration controllers for flexible structures. Hence,
it is of practical importance to develop more efficient and specialized solvers to solve
SDPs in the form of (1.1).

To improve the efficiency of the conventional SDP approach, some specialized al-
gorithms have been proposed recently [7, 8, 25, 28, 29, 30]. These algorithms are based
on the primal-dual interior point algorithms for solving standard SDPs. Efficiency is
achieved by exploring and exploiting the special structure of (1.1). In [25, 29], it
is reported that such specialized algorithms are able to solve KYP–SDPs with tens
of thousands of decision variables at a reasonable speed, while general-purpose SDP
solvers either fail to solve the problem due to lack of sufficient computer memory or be-
come extremely slow, occupying most of the computational capacity of the computer
for days.

On the other hand, since computing the matrix variable P constitutes the main
computational burden when solving a KYP–SDP, another approach for improving
computational efficiency is to avoid this matrix variable. According to the KYP
lemma, the SDP (1.1) can be equivalently formulated as the following SDP:

inf
λ

c′λ subject to[
(jωI −A)−1

B

]∗(
M0 +

n∑
i=1

λiMi

)[
(jωI −A)−1

B

]
> 0 ∀ ω ∈ [0,∞],

(1.2)

where the feasible set is defined by an infinite number of linear matrix inequalities.
Furthermore, the KYP lemma also gives rise to a computationally efficient algorithm
for checking the feasibility of a given λ. Based on these observations, several cutting
plane algorithms were proposed to solve KYP–SDP (1.1) [14, 15, 20]. These algo-
rithms appear to work well, especially when the size of A is large and the number
of decision variables in λ is relatively small. However, a common disadvantage of
cutting plane and similar methods is that they generally require many iterations to
converge to a suboptimal solution of good accuracy, and the number of iterations
grows rapidly as the number of decision variables increases. Furthermore, it is com-
monly known that when attempting to find a very accurate suboptimal solution using
such algorithms one often encounters numerical difficulty.

In light of the disadvantage of the cutting plane algorithm, we propose a new
interior point algorithm for solving KYP–SDP (1.1). The main idea behind the algo-
rithm is a new barrier function defined on the feasible set of the equivalent SDP (1.2).
The barrier function is efficiently computable: the main computation for obtaining
the barrier function’s first and second derivatives is to solve Lyapunov equations, for
which efficient computational routines are widely available. Based on the new bar-
rier function, a path-following algorithm for solving KYP–SDP (1.2) is developed.
Results of several numerical experiments indicate that the proposed path-following
algorithm is able to solve the KYP–SDP in a much more efficient fashion. Regard-
ing the issue of computational complexity, it can be shown that the proposed barrier
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function is self-concordant. However, the self-concordant coefficient appears to be
dependent on the problem data, and the exact dependency is yet to be discovered.
Hence, Nesterov and Nemirovskii’s theorem regarding polynomial-time complexity of
the path-following methods [19] is not applicable to the algorithm proposed in this
paper, and its worst-case complexity is still to be determined.

The main contribution of this paper is twofold. On the technical side, while the
path-following algorithm described in this paper is rather standard and well known,
the barrier function on which the algorithm is based has not been considered previ-
ously for KYP–SDP (1.1). We show how to evaluate the function and calculate the
gradient and the Hessian at any given point in an efficient fashion. On the practical
side, the proposed algorithm is implemented, tested in a number of numerical exper-
iments, and compared against SeDuMi [24], a popular general-purpose SDP solver.
The results show that the proposed algorithm is indeed favorable in many circum-
stances.

The paper is organized as follows. In the rest of this section, notations and
terminology used throughout the paper are defined. In section 2, the semi-infinite
optimization problem equivalent to KYP–SDP (1.1) is formally defined and its dual
problem is stated. Section 3 contains the main technical results of the paper, where
the new barrier function is described. Furthermore, how to efficiently evaluate the
function and compute its gradient and Hessian are shown. In sections 4 and 5 the
central path of the semi-infinite optimization problem and the path-following algo-
rithm based on the new barrier function are discussed. Convergence of the algorithm
is shown, and a measure of the accuracy of the suboptimal solution produced by the
algorithm is provided. In section 6, we explain why the proposed algorithm is more
efficient than the general-purpose SDP solvers from the point of view of computa-
tional complexity. Numerical experiments are conducted for testing the efficiency of
the proposed algorithm. The results and a comparison against the general-purpose
SDP solver SeDuMi are presented in section 7. Concluding remarks are drawn in
section 8.

Notations and terminology. Given a function F (λ) : Rn → R, the notations
∇F (λ) and ∇2F (λ) are used to denote the gradient vector and the Hessian matrix
of F (λ) (the gradient and the Hessian for short), respectively. The partial derivative
of F (λ) with respect to the ith component of λ is denoted by ∂iF (λ). The second
partial derivative of F (λ) with respect to the ith and jth components of λ is denoted
by ∂2

ijF (λ). If F (λ) is at least k times differentiable, then the notation

∇kF (λ)[h1, . . . , hk]

denotes the value of the kth differential of F taken at λ along the collection of direc-
tions h1, . . . , hk, where hi ∈ Rn.

We use In to denote the n × n identity matrix. Sometimes the subscript n is
dropped when the dimension of In is obvious from the context. Given a matrix M ,
the transposition and the conjugate transposition are denoted by M ′ and M∗, re-
spectively. We call a matrix M symmetric if M = M ′, and Hermitian if M = M∗.
As mentioned before, the notation M > 0 is used to denote positive definiteness.
The positive semidefiniteness, negative definiteness, and negative semidefiniteness are
denoted using ≥, <, and ≤, respectively. A matrix M is called Hurwitz if all its
eigenvalues have strictly negative real part. The notation tr(M) denotes the trace of
M . The Frobenius norm of a square matrix M is defined as ‖M‖F :=

√
tr(M ′M).
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Let M1, . . . ,Mn be square matrices. Then M = diag(M1, . . . ,Mn) (sometimes abbre-
viated as M = diagi(Mi)) defines the block diagonal matrix

M =

⎡⎢⎣M1

. . .

Mn

⎤⎥⎦ .

2. The semi-infinite optimization problem and its dual problem. Con-
sider the KYP–SDP (1.1) and its equivalent semi-infinite optimization problem (1.2).
To simplify the notation, let Hi(ω, λ), i = 0, . . . , n, be

Hi(ω) =

[
(jωIm −A)−1B

Ip

]∗
Mi

[
(jωIm −A)−1B

Ip

]
.

For the development in the sequential sections, let Mi be further partitioned into

(2.1)

[
Qi Si

S′
i Ri

]
,

where Qi and Ri are m×m and p× p symmetric matrices, respectively. Also let us
define Q(λ), F (λ), and R(λ) to be

(2.2) Q0 +

n∑
i=1

λiQi, S0 +

n∑
i=1

λiSi, R0 +

n∑
i=1

λiRi.

Finally, define H(ω, λ) to be H0(ω)+
∑n

i=1 λiHi(ω), and the semi-infinite optimization
problem (1.2) can be stated as

inf
λ

c′λ subject to H(ω, λ) > 0 ∀ ω ∈ [0,∞].(2.3)

The feasible set of problem (2.3) is denoted as Ω, i.e.,

(2.4) Ω := {λ | H(ω, λ) > 0 ∀ ω ∈ [0,∞]}.

Without loss of generality, matrices Mi are assumed to be linearly independent, which
ensures that none of the decision variables is redundant. Furthermore, we also assume
that Ω is bounded and nonempty.

Note that the constraint in (2.3) and (2.4) should be understood as: there exist
an ε > 0 such that H(ω, λ) ≥ εIp for all ω ∈ [0,∞). Hence, by definition, R(λF ) is
(strictly) positive definite for any λF ∈ Ω.

The semi-infinite optimization problem (2.3) and the KYP–SDP (1.1) are equiv-
alent in the sense that for any pair (λF , PF ) that is feasible to (1.1), λF is a feasible
solution of (2.3). On the other hand, given any feasible solution λF of (2.3), there
exists a matrix PF such that (λF , PF ) is feasible to (1.1).

The Lagrange dual problem associated with problem (2.3) is given as

sup
Z(ω)

− 〈H0(ω), Z(ω)〉 subject to

〈Hi(ω), Z(ω)〉 = ci, i = 1, . . . , n, and Z(ω) ∈ Pm×m
NBV ,

(2.5)

where 〈Hi(ω), Z(ω)〉 is defined by the Stieltjes integral∫ ∞

−∞
tr(Hi(ω)dZ(ω)) := 2 lim

N→∞

N∑
k=1

tr(Hi(ωk−1)(Z(ωk) − Z(ωk−1))),
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where 0 = ω0 ≤ ω1 ≤ · · · ≤ ωN = ∞ is a partition of [0,∞] which satisfies

max
k∈{1,...,N−1}

|ωk − ωk−1| → 0 and ωN−1 → ∞ as N → ∞.

Pm×m
NBV is the positive cone defined as

Pm×m
NBV := {Z(ω) ∈ Sm×m

NBV | Z(ω1) ≥ Z(ω2) ∀ ω1 ≥ ω2 > 0},

where Sm×m
NBV denotes the space of normalized bounded variation functions which map

R ∪ {∞} to the space of m × m complex-valued Hermitian matrices. Readers are
referred to [17] for the properties of Sm×m

NBV and Pm×m
NBV .

Given any pair of primal-dual feasible solution (λ,Z(ω)), we have

c′λ + 〈H0(ω), Z(ω)〉 = 〈H(ω, λ), Z(ω)〉 ≥ 0.

The last inequality follows H(ω, λ) > 0 for all ω ∈ [0,∞] and Z(ω) ∈ Pm×m
NBV . Hence,

the weak duality theorem holds. The strong duality theorem, which states that the
primal and the dual optimization problems have the same optimal objectives, holds
under standard regularity assumption. See [10, 11] for details.

3. The barrier function for the semi-infinite optimization problem.
Consider the following function from Ω to R:

(3.1) B(λ) = log G(λ),

where

(3.2) G(λ) :=
1

π

∫ ∞

−∞
tr(H(ω, λ)−1)

dω

1 + ω2
.

It is obvious that B(λ) is smooth on Ω. The ith element of the gradient and the (i, j)
entry of the Hessian of B(λ) are given as follows:

∂iB(λ) = G(λ)−1∂iG(λ),(3.3)

∂2
ijB(λ) = G(λ)−1∂2

ijG(λ) − G−2(λ)∂iG(λ)∂jG(λ)′,(3.4)

where

∂iG(λ) = − 1

π

∫ ∞

−∞
tr(H(ω, λ)−1Hi(ω)H(ω, λ)−1)

dω

1 + ω2
,(3.5)

∂2
ijG(λ) =

1

π

∫ ∞

−∞
tr(H(ω, λ)−1Hi(λ)H(ω, λ)−1Hj(ω)H(ω, λ)−1)

dω

1 + ω2

+
1

π

∫ ∞

−∞
tr(H(ω, λ)−1Hj(λ)H(ω, λ)−1Hi(ω)H(ω, λ)−1)

dω

1 + ω2
.

(3.6)

The following proposition shows that B(λ) is also a convex function.
Proposition 3.1. B(λ) is a convex function.
Proof. We show that the Hessian of B(λ) is strictly positive definite on Ω. It can

be easily verified that

∇2B(λ) = G−1(λ)∇2G(λ) −∇G(λ)G−2(λ)∇G(λ)′.
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Since G(λ) > 0 for any λ ∈ Ω, therefore, given any λ ∈ Ω, ∇2B(λ) > 0 if and only if

∇2G(λ) −∇G(λ)G−1(λ)∇G(λ)′ > 0.

To prove ∇2G(λ) −∇G(λ)G−1(λ)∇G(λ)′ > 0, it is sufficient to show that[
∇2G(λ) ∇G(λ)
∇G(λ)′ G(λ)

]
> 0.(3.7)

Matrix inequality (3.7) holds if ∇2G(λ)[h, h] + 2∇G(λ)[h] + G(λ) > 0 for all nonzero
h in Rn. Let A =

∑n
i hiHi(ω). By (3.5) and (3.6), we have

∇2G(λ)[h, h] + 2∇G(λ)[h] + G(λ) =
∑
i,j

hihj∂
2
ijG(λ) + 2

∑
i

hi∂iG(λ) + G(λ)

=
1

π

∫ ∞

−∞
tr(2H−1AH−1AH−1−2H−1AH−1 + H−1)

dω

1 + ω2

=
1

π

∫ ∞

−∞
(2‖H− 1

2AH−1 − 0.5H
1
2 ‖2

F + 0.5‖H− 1
2 ‖2

F )
dω

1 + ω2
.

Hence, for any λ ∈ Ω, ∇2G(λ)[h, h] + 2∇G(λ)[h] + G(λ) > 0 for all h = 0. This in
turn implies that ∇2B(λ) > 0 for all λ ∈ Ω, and thus B(λ) is a convex function.

Although the integral over an infinite horizon makes it seemingly difficult to
evaluate B(λ) for any given λ, the evaluation can be performed by using a rather
efficient computational procedure. The main computation for evaluating B(λ) is to
solve one Riccati equation and one Lyapunov equation. Furthermore, it can also be
shown that the value of B(λ) approaches infinity as λ approaches the boundary of Ω.
This property, together with smoothness and convexity, makes B(λ) a natural barrier
for Ω.

Given λF ∈ Ω, the following factorization formulas for H(ω, λF ) lead to an effi-
cient computational procedure for evaluating B(λF ).

Proposition 3.2. Suppose that A ∈ Rm×m is a Hurwitz matrix. Given λF ∈ Ω,
the following factorization formulas hold for H(ω, λF ):

(1) H(ω, λF )−1 can be factorized as DH + GH(jω) + GH(jω)∗, where

GH(s) = CH(sI −AH)−1BH ,(3.8)

AH = A−BR−1
F (PB + SF )′,(3.9)

BH = BR−1
F − Y (PB + SF )R−1

F ,(3.10)

CH = −R−1
F (PB + SF )′,(3.11)

DH = R−1
F ,(3.12)

and P , Y satisfy the following Riccati and Lyapunov equations, respectively:

PA + A′P + QF − (PB + SF )R−1
F (PB + SF )′ = 0,(3.13)

AHY + Y A′
H + BR−1

F B′ = 0.(3.14)

Matrices QF , SF , and RF are equal to Q(λF ), S(λF ), and R(λF ), respec-
tively. Furthermore, matrix AH is also a Hurwitz matrix and the dimension
of AH is the same as that of A.
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(2) H(ω, λF )−1 can be factorized as Ψ(jω)Ψ(jω)∗, where

(3.15) Ψ(s) = R
− 1

2

F + CH(sI −AH)−1BR
− 1

2

F .

Proof. See Appendix A.
The next proposition offers an algebraic form (as opposed to the integral form) for

G(λ). Hence, computation of G(λ) and B(λ) can be performed without numerically
integrating 1

1+ω2 tr(H(ω, λ)−1) over an infinite horizon.

Proposition 3.3. Let λF ∈ Ω. Then G(λF ) = tr(DH)+2tr(CH(I−AH)−1BH),
where AH , BH , CH , DH are defined as in (3.9)–(3.12).

Proof. First, notice that the orders of the trace operator and the integral operator
can be exchanged; therefore, by the first factorization formula given in Proposition 3.2,
we have

G(λF ) = tr

(
1

π

∫ ∞

−∞
(DH + GH(jω) + GH(jω)∗)

dω

1 + ω2

)
= tr(DH) + tr

(
1

π

∫ ∞

−∞
(GH(jω) + GH(jω)∗)

dω

1 + ω2

)
.

Now, if we treat GH(jω) as the Fourier transform of the stable causal system GH(s)
and let g(t) be the impulse response of GH(s), by the Plancherel theorem,

1

π

∫ ∞

−∞
GH(jω)

1

1 + ω2
dω =

1

2π

∫ ∞

−∞
GH(jω)

2

1 + ω2
dω = g(t) ∗ e−|t|

∣∣∣
t=0

,

where ∗ denotes the convolution operator. Since GH(s) is stable and causal, we have

g(t) ∗ e−|t|
∣∣∣
t=0

=

∫ ∞

0

g(τ)e−τdτ = GH(1) = CH(I −AH)−1BH .

Similarly, we have

1

π

∫ ∞

−∞
GH(jω)∗

1

1 + ω2
dω = CH(I −AH)−1BH .

This concludes the proof.
Therefore, the computation of G(λ) mainly involves solving Riccati equation (3.13)

and Lyapunov equation (3.14). Solving Riccati equations and Lyapunov equations
has been well studied. Efficient computational routines for solving such equations are
widely available.

The following proposition shows that B(λ) approaches infinity as λ approaches
the boundary of Ω.

Proposition 3.4. The value of the barrier function B(λ) is unbounded on the
boundary of Ω.

Proof. Let λb belong to the boundary Ω; i.e., H(ω, λb) is only semipositive definite.
Suppose that H(ω, λb) is singular at the set Γ = {±ωi, i = 1, . . . , l}. It can then be
shown (Chapter 13.4 of [33]) that

(1) matrix Rb := R(λb) is singular if ∞ ∈ Γ.
(2) the corresponding AH has pure imaginary eigenvalues jωi, ωi ∈ Γ, ωi = ±∞.

If Rb is singular, unboundedness of G(λb) and B(λb) immediately follows (3.12). If
Rb is not singular, then H(ω, λb) can be factorized as Ψ(jω)Ψ(jω)∗, where Ψ(s) is
defined as in (3.15). Note that

(3.16)
1

π

∫ ∞

−∞
tr(H(ω, λb)

−1)
dω

1 + ω2
= 2

(
1

2π

∫ ∞

−∞
tr(Ψ̃(jω)Ψ̃(jω)∗)dω

)
,
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where Ψ̃(s) = 1
s+1Ψ(s). The integral in the parentheses gives the H2-norm of Ψ̃(s).

Since AH has eigenvalues on the imaginary axis, Ψ̃(s) is not a stable transfer matrix.
Therefore, its H2-norm is unbounded, which in turn implies that G(λb) is unbounded,
and thus so is B(λb). This concludes the proof.

3.1. Gradients and Hessians of B(λ). Proposition 3.3 gives the following
equivalent expression for G(λ):

(3.17) G(λ) = tr(DH(λ) + 2CH(λ)(I −AH(λ))−1BH(λ)),

where AH(λ), BH(λ), CH(λ), and DH(λ) are defined as in (3.8)–(3.14) with QF , SF ,
and RF replaced by Q(λ), F (λ), and R(λ). Differentiating (3.17) with respect to λi,
we obtain the following expressions for the ith component of the gradient of G(λ):

∂iG(λ) = tr(∂iDH + 2(∂iCH)(I −AH)−1BH − 2CH(I −AH)−1(∂iAH)(I −AH)−1BH

+ 2CH(I −AH)−1(∂iBH))

= tr(∂iDH + 2(I + CH(I −AH)−1B)((∂iCH)(I −AH)−1BH)

+ 2CH(I −AH)−1(∂iBH)),(3.18)

where the second equality is obtained by noting that ∂iAH = B(∂iCH). It can be
easily verified that the partial derivatives of BH , CH , and DH with respect to λ1 have
the following expressions:

∂iBH = (∂iY )C ′
H + Y (∂iCH)′,(3.19)

∂iCH = R−1RiR
−1(PB + F )′ −R−1((∂iP )B + Fi)

′,(3.20)

∂iDH = −R−1RiR
−1,(3.21)

and the partial derivatives of P and Y with respect to λi satisfy the following equa-
tions:

(∂iP )AH + A′
H(∂iP ) + (Qi + FiCH + C ′

HF ′
i + C ′

HRiCH) = 0,(3.22)

AH(∂iY ) + (∂iY )A′
H + (B(∂iCH)Y + Y (∂iCH)′B′ −BR−1RiR

−1B′) = 0.(3.23)

For a given point λ ∈ Ω, computation of ∂iB(λ) can be performed as follows: First,
notice that for a fixed λ, (3.22) is a Lyapunov equation with respect to ∂iP . Thus,
the value of ∂iP can be obtained by solving the Lyapunov equation. Then the values
of ∂iDH and ∂iCH can be computed according to expressions (3.21) and (3.20), re-
spectively. As soon as the value of ∂iCH is available, one can solve another Lyapunov
equation in the form of (3.23) to obtain the value of ∂iY , and then ∂iBH can be
computed using expression (3.19). Finally, ∂iG(λ) can be evaluated using (3.18) and
∂iB(λ) evaluated using (3.3).

If we further differentiate (3.18) with respect to λj , we obtain an expression for
∂ijG(λ):

∂ijG(λ) = tr(∂2
ijDH)

+ 2tr(CH(I −AH)−1(∂2
ijBH) + (I + CH(I −AH)−1B)T1),

(3.24)
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where

T1 = (∂2
ijCH)(I −AH)−1BH + (∂iCH)(I −AH)−1(∂jBH + B(∂jCH)

× (I −AH)−1BH) + (∂jCH)(I −AH)−1(∂iBH) + B(∂iCH)

× (I −AH)−1BH),

(3.25)

∂2
ijBH = (∂2

ijY )C ′
H + Y (∂2

ijCH)′ + (∂iY )(∂jCH)′ + (∂jY )(∂iCH)′,(3.26)

∂2
ijCH = −R−1(Rj(∂iCH) + Ri(∂jCH) + B′(∂2

ijP )′),(3.27)

∂2
ijDH = R−1RiR

−1RjR
−1 + R−1RjR

−1RiR
−1.(3.28)

∂2
ijP and ∂2

ijY satisfy the following Lyapunov equations:

(∂2
ijP )AH + A′

H(∂2
ijP ) + (T2 + T ′

2) = 0,(3.29)

(∂2
ijY )AH + A′

H(∂2
ijY ) + (T3 + T ′

3) = 0,(3.30)

where T2 and T3 denote the following expressions:

T2 = ((∂iP )B + CHRi + Fi)(∂jCH),(3.31)

T3 = B((∂iCH)(∂jY ) + (∂jCH)(∂iY ) + (∂2
ijCH)Y ) + BR−1RiR

−1RjR
−1B′.(3.32)

For a given λ ∈ Ω, the computational procedure of evaluating ∂2
ijB(λ) is similar to that

of computing ∂iB(λ). Assume that the values of the first partial derivatives of BH ,
CH , DH , P , and Y are available. Then, T2 can be evaluated, and Lyapunov equation
(3.29) can be solved for the value of ∂2

ijP . As soon as the value of ∂2
ijP is available,

one can evaluate ∂2
ijCH and ∂2

ijDH using expressions (3.27) and (3.28). Once the

value of ∂2
ijCH is obtained, Lyapunov equation (3.30) can be solved for the value of

∂2
ijY , which in turn is used to obtain the value of ∂2

ijBH using (3.26). Finally, ∂2
ijG(λ)

can be computed according to expression (3.24) and ∂2
ijB(λ) computed by (3.4).

The computational complexity of evaluating the barrier function and its deriva-
tives can be estimated as follows: The computation mainly involves solving one Riccati
equation of the form (3.13), solving O(n2) Lyapunov equations of the form (3.14),
inverting matrices of sizes m×m and p× p, and multiplying matrices of sizes m×m,
m × p, p ×m, and p × p. The computational complexity of solving (3.13) is O(m3).
Complexity of solving (3.14) is also O(m3), or O(m2) if diagonalization of the AH

matrix is permissible. The complexity of inverting an m×m matrix is O(m3), as is
the complexity of multiplying two m×m matrices. Therefore, the complexity of the
algorithm for evaluating the barrier function and its derivatives is estimated to be
O(n2(m3 + p3)).

4. The central path. In this section we describe the central path of the primal
optimization problem (2.3) and give some of its properties. Let t ≥ 1 and define

ϕt(λ) = tc′λ + B(λ).

For any fixed t, consider the minimization problem

(4.1) inf ϕt(λ) subject to λ ∈ Ω.

Problem (4.1) is often referred to as centering, and the minimizer λ�(t) is called the
center of (4.1). Note that ϕt(λ) is a convex function, which becomes unbounded at
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the boundary of Ω. Under the assumption imposed on H(ω, λ), problem (4.1) has a
unique minimizer, which is strictly inside Ω. The curve λ�(t), parameterized by t ≥ 1,
is referred to as the primal central path.

The minimizer λ�(t) of (4.1) is characterized by the optimality condition ∇ϕt(λ) =
0. Using expression (3.5), we have

tci =

(∫ ∞

−∞
tr(H(ω, λ�)−1)

dω

1 + ω2

)−1 ∫ ∞

−∞
tr(H(ω, λ�)−1Hi(ω)H(ω, λ�)−1)

dω

1 + ω2

for i = 1, . . . , n. Hence, the matrix function Z�(ω, t), which satisfies

(4.2)
dZ�(ω, t)

dω
=

1

t

(∫ ∞

−∞
tr(H(ω, λ�(t))−1)

dω

1 + ω2

)−1
1

1 + ω2
H−2(ω, λ�(t)),

is strictly dual feasible. Therefore, the primal-dual duality gap associated with λ�(t)
and Z�(ω, t) can be found as follows:

c′λ�(t) + 〈H0(ω), Z�(ω, t)〉 =

〈
n∑

k=1

Hi(ω)λ�
i (t), Z

�(ω, t)

〉
+ 〈H0(ω), Z�(ω, t)〉

= 〈H(ω, λ�), Z(ω, t)〉 =
1

t
.

(4.3)

This implies that the central path converges to the solution of the semi-infinite opti-
mization (2.3) as t approaches infinity.

Newton’s method for centering. Consider the minimization problem (4.1).
We employ Newton’s method with line search to solve this problem.

Newton’s method for minimizing ϕt(λ).
Start at a strictly feasible point λ0. Select tolerance ε and set n = 0.
Repeat
(a) Compute the Newton descent direction δλn = −(∇2ϕt(λn))−1∇ϕt(λn).

(b) Compute ρ = (∇ϕt(λn)′(∇2ϕt(λn))−1∇ϕt(λn))
1
2 .

(c) Line minimization: compute α� = argmin ϕt(λn + α · δλn).
(d) Update λn+1 := λn + α�δλn and n := n + 1.
(e) If ρ < ε, then stop the loop and return λn.

End
The quantity ρ is called the Newton decrement, which is used to measure the closeness
to the central path for a strictly feasible λ.

It is well known that Newton’s method converges quadratically asymptotically.
The global convergence of Newton’s method was analyzed by Nesterov and Ne-
mirovskii. In [19] they show that if the function to be minimized has a certain property
called self-concordance, Newton’s method converges in polynomial time. The bound
on the number of iterations before the algorithm terminated is also explicitly given.

Let X ⊂ Rn be a convex open set. A smooth convex function F : X → R is
called self-concordant with the parameter value a (or a-self-concordant for short) if
there exists a constant a such that the following inequality holds for all x ∈ X and
for all h ∈ Rn:

|∇3F (x)[h, h, h]| ≤ 2a
−1
2 (∇2F (x)[h, h])

3
2 .

F (x) is called strongly a-self-concordant if F (x) → ∞ as x approaches the bound-
ary of X. Nesterov and Nemirovskii gave a complete characterization of the speed
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of convergence of Newton’s method applied to minimize a strongly self-concordant
function. Readers interested in this result are referred to Chapter 2 of [19]. Since any
linear function is trivially self-concordant, ϕt(λ) is self-concordant if B(λ) is. It can
be shown that the barrier function B(λ) is indeed self-concordant.

Theorem 4.1. For a given B(λ), there exists a constant a such that

(4.4) |∇3B(λ)[h, h, h]| ≤ a(∇2B(λ)[h, h])
3
2 ∀ h ∈ Rn

holds for all λ ∈ Ω.
Proof. See Appendix B.
The proof of Theorem 4.1 is based on asymptotic analysis. Basically, what is

shown is that the ratio

|∇3B(λ)[h, h, h]|
(∇2B(λ)[h, h])

3
2

does not become unbounded as λ approaches the boundary of Ω. However, neither
the value nor an upper bound of a is obtained in our proof. Since such information
is essential for applying Nesterov and Nemirovskii’s results to construct polynomial-
time algorithms, the complexity of minimizing ϕt(λ) is yet to be determined. Note
that Theorem 4.1 plays no important role in our algorithm and is not claimed to be
a major contribution of this paper.

5. Path-following algorithms. Path-following algorithms can be dated back
to Fiacco and McCormick’s work in [6], where the path-following algorithm was called
the sequential unconstrained minimization method. Worst-case convergence analysis
was first attempted by Renegar, who proved the polynomial complexity of a path-
following algorithm for linear programming [22]. In the case of general nonlinear
convex optimization problems, convergence analysis was studied by Nesterov and
Nemirovskii [19]. They proved worst-case polynomial complexity for the case when
the barriers used in the path-following algorithms are self-concordant. Interested
readers are referred to [19] for an historical overview.

Barrier functions B(λ) are used to construct path-following algorithms for solving
the semi-infinite optimization problem (2.3). The algorithms we consider here are
standard, which follows the basic principles described below:

Given: λ0 ∈ Ω.
Initialization: Select μ > 1 and ε > 0. Let t = 1.
Repeat
(1) Centering: starting from λ0, find an approximate solution λ�(t) to the

problem
min
λ

ϕt(λ),

where tc′λ + B(λ), using Newton’s method.
(2) Update λ0: set λ0 := λ�(t).
(3) Update t: set t := μt.

Until (c′(λ�(t) − λopt) ≤ ε).
Here λopt denotes the optimal solution of (2.3). The initial feasible point λ0 can be

found (or determined not to exist) using the so-called big-M method [4]. The path-
following algorithm for the big-M method is essentially the same as the algorithm
described above. Note that, should the problem be feasible, the big-M method will
produce a feasible solution λ0, which is sufficiently centered. The algorithm terminates
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when a certificate that proves c′(λ�(t) − λopt) ≤ ε is obtained. How to obtain such a
certificate is discussed in the next section.

The centering step is often referred to as the inner loop, and the loop that involves
increasing t by a factor μ and finding λ�(μt) from λ�(t) is called the outer loop. While
the inner loop is to find feasible solutions that are close to the central path, the outer
loop serves to bring λ�(t) toward the optimal solution λopt.

The selection of μ involves a certain trade-off. A large μ incurs a large increase on
t per outer iteration, and hence less outer steps are required for approximate central
solutions to converge to the optimal one. However, a large μ also implies that λ�(μt)
is sufficiently far away from λ�(t), and hence more steps in the inner loop are required
for centralization.

There are various strategies for selecting the factor μ. The strategy ultimately
dictates the overall complexity of the path-following algorithm. In [19], variants in
selecting μ are discussed and the complexity of the corresponding path-following algo-
rithms is given under the assumption that the barrier functions used in the algorithms
are self-concordant. Since the complexity of minimizing ϕt(λ) by Newton’s method
is yet to be determined, we will not pursue the issue of how to select μ from the
theoretical prospect in this paper. Instead, we test different values of μ in numerical
experiments, results of which are reported in section 7.

Stopping criterion. The weak and strong duality theorems imply that given
any pair of primal and dual feasible solutions (λ, Z(ω)), the inequality

c′λ− c′λopt ≤ c′λ + 〈H0(ω), Z(ω)〉

holds, where λopt is the optimal solution of (2.3). Furthermore, from (4.3) we see
that when a centralized feasible solution λ�(t) is found, a dual solution Z�(ω, t) is
immediately given, as in (4.2), which allows us to conclude that c′λ�(t)−c′λopt ≤ 1/t.

Practically, a feasible solution on the central path never could be obtained exactly,
and an approximation only up to a certain degree of accuracy can be found. Hence,
the form (4.2) for obtaining a dual feasible solution is not directly useful in practice,
and so seems the bound (4.3). However, when a feasible solution is sufficiently close to
the central path, a dual feasible solution can be constructed according to the following
proposition.

Proposition 5.1. Given λF ∈ Ω, let HF (ω) and vN denote H(ω, λF ) and the
Newton descent direction at λF ; i.e.,

vN = −(∇2ϕt(λF ))−1∇ϕt(λF ).

Furthermore, let κ = 1 − G(λF )−1∇G(λF )′vN and consider Z(ω, t), which satisfies

dZ(ω, t)

dω
=

1

tπ
G(λF )−1 1

1 + ω2

⎛⎝κHF (ω)−2 − HF (ω)−2

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠
× HF (ω)−1 − HF (ω)−1

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠HF (ω)−2

⎞⎠ .

(5.1)

Then Z(ω, t) satisfies 〈Hi(ω), Z(ω, t)〉 = ci. Moreover, if

(5.2)
κ

2
HF (ω) ≥

n∑
i=1

vN,iHi(ω) ∀ ω ∈ [0,∞],
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then Z(ω, t) is dual feasible and c′λF + 〈H0(ω), Z(ω, t)〉 is equal to
(1 + G(λF )−1∇G(λF )′vN )/t.

Proof. The following equation can be easily verified:

∇2G(λF )vN + κ∇G(λF ) = −G(λF )tc,

which implies

−G(λF )tci =
1

π

∫ ∞

−∞
tr

(
HF (ω)−1

(
n∑

j=1

vN,jHj(ω)

)
HF (ω)−1Hi(ω)HF (ω)−1

)
dω

1 + ω2

+
1

π

∫ ∞

−∞
tr

(
HF (ω)−1Hi(ω)HF (ω)−1

(
n∑

j=1

vN,jHj(ω)

)
HF (ω)−1

)
dω

1 + ω2

− κ

π

∫ ∞

−∞
tr(HF (ω)−1Hi(ω)HF (ω)−1)

dω

1 + ω2
.

Hence,

ci =

∫ ∞

−∞
tr

⎛⎝Hi(ω)
−1

tπ
G(λF )−1HF (ω)−2

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠HF (ω)−1

⎞⎠ dω

1 + ω2

+

∫ ∞

−∞
tr

⎛⎝Hi(ω)
−1

tπ
G(λF )−1HF (ω)−1

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠HF (ω)−2

⎞⎠ dω

1 + ω2

+

∫ ∞

−∞
tr
(
Hi(ω)

κ

tπ
G(λF )−1HF (ω)−2

) dω

1 + ω2
.

This shows that Z(ω, t) as defined in (5.1) satisfies 〈Hi(ω), Z(ω, t)〉 = ci. Furthermore,
if (5.2) holds, then

κHF (ω)2 − HF (ω)

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠−

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠HF (ω) ≥ 0 ∀ ω ∈ [0,∞],

which in turn implies that

dZ(ω, t)

dω
≥ 0 ∀ ω ∈ [0,∞]

and that Z(ω, t) ∈ Pm×m
NBV . Hence, Z(ω, t) is dual feasible.

To see c′λF + 〈H0(ω), Z(ω, t)〉 = (1 + G(λF )−1∇G(λF )′vN )/t, note that c′λF +
〈H0(ω), Z(ω, t)〉 = 〈HF (ω), Z(ω, t)〉, and therefore

c′λF + 〈H0(ω), Z(ω, t)〉 =
1

tπ
G(λF )−1

∫ ∞

−∞
κ · tr(HF (ω)−1)

dω

1 + ω2
− 2

1

tπ
G(λF )−1

×
∫ ∞

−∞
tr

⎛⎝HF (ω)−1

⎛⎝ n∑
j=1

vN,jHj(ω)

⎞⎠HF (ω)−1

⎞⎠ dω

1 + ω2

=
1

t
(κ + 2G(λF )−1∇G(λF )′vN )

=
1

t
(1 + G(λF )−1∇G(λF )′vN ).
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This concludes the proof.
Note that if λF is on the central path, i.e., λF minimizes ϕt(λ), then vN ≡ 0,

κ = 1, and expression (5.1) reduces to expression (4.2) with inequality (5.2) trivially
satisfied. Hence, as λF is sufficiently close to the central path, a dual feasible solution
can be obtained as the form of (5.1), which serves as a certificate for proving c′λ −
c′λopt ≤ (1 + G(λF )−1∇G(λF )′vN )/t.

Although a prescribed measure of the “closeness” of λF to the central path can
be derived and described in terms of the H∞ norms of Hi(ω) and HF (ω), the length
of λF and vN , and the value of G(λF ), such a measure may be too conservative
for all practical purposes. In practice, it may be more favorable to verify inequality
(5.2) numerically as the algorithm proceeds, because checking (5.2) can be done rather
efficiently by computing the eigenvalues of a certain Hamiltonian matrix of size 2n×2n.
See Chapter 13.4 of [33] for details.

6. Remarks on computational complexity. In this section, we comment
on the computational complexities of solving (2.3) using the proposed interior path-
following algorithm, and solving (1.1) using general-purpose SDP solvers. Arguments
are given to explain why the proposed algorithm may outperform a general-purpose
SDP solver, which solves (1.1) without exploiting the special structure of the problem.
We recall that the dimension of matrix A is m × m, the dimension of matrix B is
m× p, and the number of the decision variables is n.

Problem (1.1) has a well-known, strongly self-concordant barrier −log det(F(P, λ)).
The primal-dual interior-point algorithm for solving (1.1) can be proved to converge
in O(

√
m + p log m+p

ε ) Newton steps [19, 26]. In each Newton step, without utilizing
the special structure of the problem, the computational complexity of evaluating the

gradient is estimated to be O((m + p)3(m
2

2 + n)). This involves matrix inversion of

an (m+ p)× (m+ p) matrix, and O(m
2

2 + n) matrix multiplications, where the mul-
tiplicands and multipliers are all (m + p) × (m + p). The complexity for evaluating

the Hessian is O((m + p)2(m
2

2 + n)2). The calculation involves O((m
2

2 + n)2) vector
multiplications, where the dimension of the vectors is (m + p)2. Finally, calculat-

ing the Newton descent direction requires inversion of an (m
2+m
2 + n) × (m

2+m
2 + n)

matrix, which has complexity O((m
2

2 + n)3). Therefore, the overall complexity is

O(
√
m + p log m+p

ε ) · (O((m+p)3(m
2

2 +n))+O((m+p)2(m
2

2 +n)2)+O((m
2

2 +n)3)).
For the interior path-following algorithm proposed in this paper, the total num-

ber of Newton steps required for the algorithms to converge is yet to be determined.
However, the complexity of each Newton step of the algorithm can be estimated as
follows: In each Newton step, the algorithm involves evaluating the gradient, eval-
uating the Hessian, calculating the Newton descent direction, and performing a line
search to find a new point, which requires O(1) evaluations of the barrier function.
The overall complexity of evaluating the barrier function, its gradient, and Hessian is
O(n2(m + p)3) as discussed at the end of section 3.1. The complexity of calculating
the Newton descent direction is O(n3). Therefore, the estimated complexity of each
Newton step is roughly O(n2(m + p)3) + O(n3).

Suppose that m and p are of the same order, and n � m. Then each Newton
step of a general-purpose SDP solver solving (1.1) requires O(m6) arithmetic oper-
ations, while each Newton step of the interior path-following algorithm proposed in
section 4 requires only O(n2m3). This is why the algorithms proposed in this paper
are more efficient. Furthermore, we expect that when the ratio m/n is large enough,
the algorithm proposed in section 4 will perform significantly better than the con-
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ventional method. The argument here is based on the assumption that the number
of iterations which the proposed path-following algorithm requires to solve (2.3) is
roughly the same as the number of iterations which a general-purpose SDP solver
requires to solve (1.1). According to the numerical experiments demonstrated in the
next section, this assumption seems to hold in practice. As we will see, results of the
numerical experiments agree with the arguments presented above.

7. Numerical experiments. Consider the standard block diagram for robust-
ness analysis in Figure 7.1. The nominal system G is LTI and has a state space
representation

ẋ = Ax + B1w1 + B2w2,

z1 = C1x + D11w1 + D22w2,

z2 = C2x + D21w1 + D22w2,

where A is an m × m Hurwitz matrix, and w1, w2, z1, z2 are vector-valued signals.
Each of them has n components. The uncertainty Δ corresponds to a diagonal,
gain bounded, linear time-varying operator. That is, if z2i and w2i denote the ith
components of signals z2 and w2, respectively, then z2i = δi(t)w2i, where |δi(t)| ≤ 1
for all t. We note that the uncertain system described above captures a large class of
practical problems [2].

z1

z2

w1

w2
G

Δ

Fig. 7.1. Standard block diagram for robustness analysis.

In the experiments, we would like to compute an upper bound of the L2-gain
of the system in Figure 7.1. By the standard integral quadratic constraint (IQC)
analysis, an upper bound of the L2-gain can be found by solving

inf
λ

λn+1

subject to H(ω, λ) > 0 ∀ ω ∈ [0,∞],

λi > 0, i = 1, . . . , n + 1,

(7.1)

where

H(ω, λ) :=

⎡⎢⎢⎣
G11(jω) G12(jω)
G21(jω) G22(jω)

I 0
0 I

⎤⎥⎥⎦
∗ ⎡⎢⎢⎣

−I 0 0 0
0 −Λ 0 0
0 0 λn+1I 0
0 0 0 Λ

⎤⎥⎥⎦
⎡⎢⎢⎣
G11(jω) G12(jω)
G21(jω) G22(jω)

I 0
0 I

⎤⎥⎥⎦ ,

Grs(jω) = Cr(jωI −A)−1Bs +Drs, and Λ = diag(λ1, . . . , λn). The equivalent KYP–
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SDP of problem (7.1) can be expressed as

inf
P,λ

λn+1

subject to F(P, λ) > 0,

P = P ′, λi > 0, i = 1, . . . , n + 1,

(7.2)

where P is a matrix variable and

F(P, λ) :=

[
PA + A′P PB

B′P 0

]
+

[
C D
0 I

]′ [
M1 0
0 M2

] [
C D
0 I

]
.

Matrices B, C, D, M1, and M2 are defined as follows:

B =
[
B1 B2

]
, C =

[
C1

C2

]
, D =

[
D11 D12

D21 D22

]
,M1 =

[
−I 0
0 −Λ

]
,M2 =

[
λn+1I 0

0 Λ

]
.

Comparison with a general-purpose solver. Let n = 10 and m = 10, 20,
. . . , 120. For each pair of (n,m), 15 problems of the form (7.2) are randomly generated
using an algorithm which is virtually identical to that given in Example 3 of [8],
except for some minor numerical values. The algorithm is included in Appendix C
for interested readers.

These problems are solved using the proposed specialized interior path-following
algorithm (SIPA), and the general-purpose SDP solver SeDuMi (version 1.0.5) [24] via
the YALMIP interface [16]. The experiments were performed on a 3.2 GHz Pentium
IV PC with 2 GB of memory. The solvers were executed on MATLAB platform
version 7.0.4.

Figure 7.2 shows the CPU times (in seconds) that SIPA and SeDuMi spent solving
the randomly generated L2-gain minimization problems. Times that SIPA spent are
represented by circles, while times that SeDuMi spent are represented by triangles.
The solvers stop when either infeasibility is proved or a feasible solution which achieves
accuracy no worse than 10−4 (proved by a solution of the dual problem) is obtained.
We observe that SIPA starts to outperform SeDuMi when the dimension of matrix
A (indicated by the number m) reaches 60 × 60. Significantly better performance of
SIPA is observed when m reaches 80 and, when m is equal to 110, SIPA is order-
of-magnitude faster than SeDuMi. When m is equal to 120, SeDuMi encounters an
out-of-memory problem, while it took only 6 to 12 minutes for SIPA to solve each of
the 15 problems. The average CPU times in seconds that the two solvers spent are
shown in Table 7.1. Table 7.2 shows the average CPU times per iteration (in seconds)
that SIPA and SeDuMi spent solving the randomly generated L2-gain minimization
problems. We can see that, for SeDuMi, the per-iteration CPU time grows much
faster, which conforms to the analysis given in section 6.

We note that SIPA is only crudely implemented in MATLAB language. Its
custom-made codes are not optimized in any way and its efficiency can be further
improved. Hence, the SIPA algorithm potentially could perform faster than it does
now.

Comparison with a specialized solver. In this section, comparison is made
with a specialized KYP–SDP solver, KYPD [25, 27, 28, 29]. KYPD is a collection
of MATLAB functions which implement the dual method described in [25, 28, 29].
The main idea behind KYPD is to reformulate the KYP–SDP into its dual formula-
tion. The dual problem is then solved using any general-purpose SDP solver. KYPD
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Fig. 7.2. Comparison of SIPA and SeDuMi. Times that SIPA spent are represented by circles,
while times that SeDuMi spent are represented by triangles.

uses YALMIP to interface with MATLAB. KYPD comes with no SDP solver; the
underlying SDP solver we used with KYPD was SeDuMi.

The same sets of problems were solved by KYPD/SeDuMi. The solver is set
to terminate when either a feasible solution which achieves accuracy no worse than
10−4 is found or infeasibility is proved. Performances of KYPD and SIPA are shown in
Figure 7.3. The average CPU times which the two solvers spent are given in Table 7.3,
while the average per-iteration CPU times are shown in Table 7.4.

We observed that when m is between 20 and 50, SIPA and KYPD have rather
similar performances. Noticeably better performance of SIPA is observed when m
reaches 70. When m reaches 90, SIPA is about 2.5 times faster than KYPD on

Table 7.1

Comparison of SIPA and SeDuMi. Shown above are the average CPU times (in seconds) that
SIPA and SeDuMi spent solving the randomly generated L2-gain minimization problems.

m = 30 40 50 60 70 80 90 100 110 120
SIPA 12.3 25.9 41.8 71.8 99.1 133 195 232 293 407
SeDuMi 1.9 7.9 23.7 68.8 165.1 341 640 1173 2033 —

Table 7.2

The average“per-iteration” CPU times (in seconds) that SIPA and SeDuMi used to solve the
randomly generated L2-gain minimization problems.

m = 30 40 50 60 70 80 90 100 110 120
SIPA 0.26 0.49 0.82 1.28 2.02 2.59 3.42 4.29 5.73 7.46
SeDuMi 0.22 0.79 2.56 6.84 15.7 32.5 61.9 111.3 187.1 —
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Fig. 7.3. Comparison of SIPA and KYPD. Times that SIPA spent are represented by circles,
while times that KYPD spent are represented by triangles.

average. Also notice that, according to these tests, the average performance of KYPD
is no better than the general-purpose solver SeDuMi when m ≤ 70. KYPD began
to outperform SeDuMi when m reaches 80. Another interesting observation is the
memory usage of the three solvers. Under the current implementation, the memory
required by SeDuMi and KYPD grows very fast with respect to m, the dimension
of the A matrix. Given the same memory space (2 GB), KYPD was able to solve
problems with A matrices up to 90 × 90, while SeDuMi holds up to 110 × 110. In
contrast, SIPA appears to be the most efficient in this regard. The memory space
which SIPA requires for all problems is below 400 MB.

Remark. To explain why KYPD broke down at m = 100, we note that the value of
p (the number of columns of the B matrix) is 20 in all tests. When m = 100, the dual

Table 7.3

Comparison of SIPA and KYPD. Shown are the average CPU times (in seconds) that SIPA
and KYPD spent solving the randomly generated L2-gain minimization problems.

m = 10 20 30 40 50 60 70 80 90 100
SIPA 2.9 5.3 12.3 25.9 41.8 71.8 99.1 132.5 194.8 231.8
KYPD 1.5 4.8 13.3 32.0 60.1 112.2 197.6 314.2 486.0 —

Table 7.4

The average “per-iteration” CPU times (in seconds) that SIPA and KYPD used to solve the
randomly generated L2-gain minimization problems.

m = 10 20 30 40 50 60 70 80 90 100
SIPA 0.07 0.11 0.26 0.49 0.82 1.28 2.02 2.59 3.42 4.29
KYPD 0.18 0.65 1.77 3.89 7.65 13.04 20.93 33.07 52.61 —
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formulation of the KYP–SDP involves a 120× 120 positive-definite symmetric matrix
variable Z which must satisfy certain equality constraints. The KYPD reduces the
number of the variables in the dual formulation by calculating a set of bases for Z and
by representing Z using those bases. When m = 100 and p = 20, the number of bases
is equal to 2210. It was this huge amount of data—more than two thousand 120×120
matrices—which somehow ate up all the memory resource. As far as we can see, the
program broke when YALMIP was processing the data for SeDuMi. We believe that
the dual method described in [25, 28, 29] is computationally efficient, especially when
p is very small; however, care is required for memory resource management when it
comes to implementation.

Remark. By these test results, the authors by no means wish to claim that the
proposed SIPA algorithm is superior to KYPD or any other specialized algorithms for
KYP–SDP in that regard. The main purpose of this paper, as well as of the selected
numerical experiments, is to demonstrate that there is much to gain in computational
speed by taking into account the special structure of the KYP–SDP. As much as
we agree that a careful comparison among the existing specialized algorithms for
KYP–SDP is necessary and important, we believe such a comparison (in terms of
computational speed, numerical stability, and required computational resources) must
be done by testing the algorithms on a wider range of problems, which is beyond the
scope of this paper.

The selection of μ. Recall that in section 5 we refer to the factor by which
the weighting coefficient t is increased per outer iteration as μ. Here we present
results of numerical experiments which show how the value of μ affects the speed of
centralization and overall convergence.

Four randomly generated L2-gain minimizations were solved using the SIPA algo-
rithm with different values of μ. For different values of μ, the algorithm starts at the
same feasible point in each test. In each outer iteration, centralization is considered
completed when both of the following conditions are satisfied: (1) a primal feasible
solution λF is found such that the number G(λF )−1∇G(λF )′vN is less than 0.05 in
absolute value, where vN is the Newton descent direction at λF ; (2) the solution
λF and the corresponding Newton descent direction vN allow a dual solution to be
constructed using formula (5.1).

The results of the tests are shown in Table 7.5. Under each value of μ, the columns
“Cen’l” show the average number of Newton steps per outer iteration; namely, these
are the average numbers of Newton steps executed for computing a new primal feasible
solution, which satisfies the above-mentioned conditions after the weighting coefficient
t is increased by a factor of μ. The columns “Tot’l” show the numbers of total Newton
steps executed for obtaining a feasible solution of desired accuracy. The observation
here is consistent with what is commonly known for the path-following algorithm: the
larger the μ is, the smaller the number of outer iterations is required for computing
a solution with a prespecified accuracy. On the other hand, the larger the μ is, the
larger the number of Newton steps is required for recentering. Hence, the selection of
μ involves the trade-off between the number of total outer iterations and the number
of Newton steps required for centralization. For the numerical experiments presented
here, the most suitable value of μ is apparently between 50 and 100.

8. Concluding remarks. In this paper, a new interior-point method is pro-
posed to efficiently solve the KYP–SDP. The main idea this paper proposes is not
to solve the original KYP–SDP but to solve an equivalent semi-infinite optimiza-
tion problem. The main technical contribution of this paper is to give a new bar-
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Table 7.5

The effect of different values of μ on centralization and overall convergence.

μ 2 10 50 100 300

Cen’l Tot’l Cen’l Tot’l Cen’l Tot’l Cen’l Tot’l Cen’l Tot’l
Test 1 1.2 48 2.3 27 3.0 21 3.5 21 4.8 24
Test 2 1.5 58 2.6 31 3.7 26 4.5 27 6.8 34
Test 3 1.4 56 2.7 32 3.7 26 5.0 30 6.2 31
Test 4 1.4 54 2.3 27 3.9 27 4.2 25 6.4 32

rier function for the semi-infinite optimization problem, which allows the standard
path-following algorithm to be applied to solve the problem. Numerical experiments
show that the proposed path-following method can solve the semi-infinite optimiza-
tion problem much faster than a general-purpose SDP solver solves the corresponding
KYP–SDP. The computational savings are mainly due to the fact that computing a
Newton descent direction in the proposed path-following algorithm can be performed
much more efficiently than in the algorithms used to solve the corresponding KYP–
SDP.

Another natural candidate for the barrier function is the “inverse” barrier; i.e.,
the function G(λ) itself. We have also investigated this option [12, 13]. The reasons
that we consider G(λ) less preferable are

• that function G(λ) is not self-concordant [12], and
• more important, that the primal central path associated with G(λ) does not

give a good characterization of convergence.
To be more specific on the second point, we let λ�(t) be at the primal central path
associated with G(λ) and let Z�(ω, t) be the corresponding dual feasible solution which
satisfies

dZ�(ω, t)

dω
=

1

πt

1

1 + ω2
H−2(ω, λ�(t)).

It can be easily verified that the duality gap c′λ�(t) + 〈H0(ω), Z�(ω, t)〉 is equal to
G(λ�(t))/t. Since G(λ) approaches infinity as λ approaches the boundary of the fea-
sible set, the quantity G(λ�(t))/t does not give a useful measure of the optimality of
λ�(t). Although this may not imply that G(λ) is inferior to log G(λ) in practice, we
prefer the latter because it offers a better measure of global convergence with respect
to t.

Appendix A. Proof of Proposition 3.2. Throughout this section, the notation

G :=

[
A B
C D

]
is used to denote a rational transfer matrix G(s) = C(sI − A)−1B + D. Note that
G−1(s) exists if and only if D is invertible. In such cases,

G−1 =

[
A−BD−1C BD−1

−D−1C D−1

]
.

Furthermore, given two rational transfer matrices of compatible dimensions

G1 :=

[
A1 B1

C1 D1

]
, G2 :=

[
A2 B2

C2 D2

]
,
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the following formulas hold:

G1 + G2 =

⎡⎣ A1 0 B1

0 A2 B2

C1 C2 D1 + D2

⎤⎦ , G1G2 =

⎡⎣ A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

⎤⎦ .

Now consider Proposition 3.2. Given λF ∈ Ω, H(ω, λF ) is a matrix function on
ω which has the form[

(jωI −A)−1

B

]∗ [
QF SF

S′
F RF

] [
(jωI −A)−1

B

]
.

Hence, H(ω, λF ) can also be expressed as Φ(jω), where Φ(s) is the rational transfer
matrix

Φ :=

⎡⎣ A 0 B
QF −A′ SF

S′
F −B′ RF

⎤⎦ .

Let P be a solution of the Riccati equation (3.13), and observe that[
I 0
P I

] [
A 0
QF −A′

] [
I 0
P I

]−1

=

[
A 0

(PB + SF )R−1
F (PB + SF )′ −A′

]
,[

I 0
P I

] [
B
SF

]
=

[
B

PB + SF

]
,
[
S′
F −B′] [I 0

P I

]−1

=
[
(PB + SF )′ −B′] .

Therefore, the rational transfer matrix Φ(s) can also be expressed as⎡⎣ A 0 B
(PB + SF )R−1

F (PB + SF )′ −A′ PB + SF

(PB + SF )′ −B′ RF

⎤⎦ ,

which in turn can be factorized as Φ
1
2 (−s)

′
Φ

1
2 (s), where

Φ
1
2 (s) :=

[
A B

(R
− 1

2

F )′(PB + SF )′ R
1
2

F

]
.

Now, it can be readily verified that H(ω, λF )−1 is equal to Φ(jω)−1, which in turn is
equal to Ψ(jω)Ψ(jω)∗, where

Ψ(s) = Φ− 1
2 (s) =

[
A−BR−1

F (PB + SF )′ BR
− 1

2

F

−R−1
F (PB + SF )′ R

− 1
2

F

]
=

[
AH BR

− 1
2

F

CH R
− 1

2

F

]
.

This proves the second factorization. To prove the first factorization, we will show
that

DH + GH(−s)′ + GH(s) = Ψ(s)Ψ(−s)′.

Note that

Ψ(s)Ψ(−s)′ =

⎡⎣ AH −BR−1
F B′ BR−1

F

0 −A′
H C ′

H

CH −R−1
F B′ R−1

F

⎤⎦ .
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Let Y be a solution of the Lyapunov equation (3.14). We see[
I Y
0 I

] [
AH −BR−1

F B′

0 −A′
H

] [
I Y
0 I

]−1

=

[
AH 0
0 −A′

H

]
,[

I Y
0 I

] [
BR−1

F

C ′
H

]
=

[
BR−1

F + Y C ′
H

C ′
H

]
=

[
BH

C ′
H

]
,

[
CH −R−1

F B′] [I Y
0 I

]−1

=
[
CH −CHY −R−1

F B′] =
[
CH −B′

H

]
.

Therefore

Ψ(s)Ψ(−s)′ =

⎡⎣ AH 0 BH

0 −A′
H C ′

H

CH −B′
H R−1

F

⎤⎦ = DH + GH(s) + GH(s)′.

Finally, existence of a solution P for (3.13) such that AH := A − BR−1
F (PB + SF )′

is Hurwitz is guaranteed as long as λF ∈ Ω. Proof of this is established by results in
Chapters 13.2–13.4 of [33]. Existence of a solution Y for (3.14) is guaranteed because
AH has no eigenvalue on the imaginary axis.

Appendix B. Proof of Theorem 4.1. The following two lemmas will be used
in the proof.

Lemma B.1. Let ω0 be a real number and β ≥ 2 be a positive even integer. Let

(B.1) G(t, ω) =
r0(t) + r1(t)(ω − ω0)

β + · · · + rn−1(t)(ω − ω0)
β(n−1)

(p(t) + (ω − ω0)βq(t))n
,

where p(t), q(t), ri(t), i = 0, . . . , n − 1, are polynomial functions in t. Consider the
integral

(B.2) F (t) :=

∫ ω0+ε

ω0−ε

G(t, ω)dω,

where ε is a positive number. F (t) can be expressed as

(B.3) F (t) =
n−1∑
i=0

ci(t; ε) · ri(t)p(t)i+
1
β−nq(t)−(i+ 1

β ),

where each ci(t; ε) is positive and bounded for all t and ε.
Proof. Fix t and let

ω = ω0 +

(
p(t)

q(t)

) 1
β

ω̃.

We have∫ ω0+ε

ω0−ε

ri(t)(ω − ω0)
β·i

(p(t) + (ω − ω0)βq(t))n
dω =

∫ η

−η

ri(t)p(t)
i+ 1

β q(t)−(i+ 1
β )ω̃βi

p(t)n(1 + ω̃β)n
dω̃

= ri(t)p(t)
i+ 1

β−nq(t)−(i+ 1
β )

∫ η

−η

ω̃βi

(1 + ω̃β)n
dω̃,
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where η = ε
(

p(t)
q(t)

)− 1
β

. Now we define

(B.4) ci(t; ε) :=

∫ η

−η

ω̃βi

(1 + ω̃β)n
dω̃,

and we reach the expression of F (t). Finally, to see that ci(t; ε) is bounded, note that
the following inequalities hold for all i = 0, . . . , n− 1:∫ η

−η

ω̃βi

(1 + ω̃β)n
dω̃ ≤

∫ ∞

−∞

ω̃βi

(1 + ω̃β)n
dω̃ ≤

∫ ∞

−∞

1

(1 + ω̃β)n−i
dω̃ = constant.

This concludes the proof.
Lemma B.2. Let α ≥ 1 be an integer and β ≥ 2 be an even integer. Let

G(t, ω) =
r(t)

tαp(t) + (ω − ω0)βq(t)
, F (t) =

∫ ω0+ε

ω0−ε

G(t, ω) dω,

where ε is a given positive number. Functions p(t), q(t), r(t) are polynomials in t
which satisfy r(0) = 0, p(0) = 0, and q(0) = 0. Then

F (t) = t−ns0(t), Ḟ (t) = t−n−1s1(t),(B.5)

F̈ (t) = t−n−2s2(t),
...
F (t) = t−n−3s3(t),(B.6)

where n = α− α
β , and each si(t) satisfies si(0) = 0 and si(0) < ∞.

Proof. Notice that G(t) is in the form of (B.1). The corresponding r0(t), p(t),
q(t), and n are r(t), tαp(t), q(t), and 1, respectively. Therefore, by Lemma B.1, we
have

F (t) = c0(t; ε)r(t)(t
αp(t))

1
β−1q(t)−

1
β = t−α+α

β c(t)r(t)p(t)
1
β−1q(t)−

1
β ,

which is exactly of the form described in (B.5) with s0(t) = c0(t; ε)r(t)p(t)
1
β−1q(t)−

1
β .

Note that c0(t; ε) is of the form (B.4). Since p(0) = 0, c0(0; ε) is strictly positive and
bounded. This, together with q(0) = 0 and r(0) = 0, implies that s0(0) = 0 and is
bounded.

Now, consider the derivatives of F (t). We have

Ḟ (t) =

∫ ω0+ε

ω0−ε

Ġ(t, ω) dω, F̈ (t) =

∫ ω0+ε

ω0−ε

G̈(t, ω) dω,
...
F (t) =

∫ ω0+ε

ω0−ε

...
G(t, ω) dω,

where

Ġ(t, ω) =
d10(t) + d11(t)(ω − ω0)

β

(tαp(t) + (ω − ω0)βq(t))2
,

G̈(t, ω) =
d20(t) + d21(t)(ω − ω0)

β + d22(t)(ω − ω0)
2β

(tαp(t) + (ω − ω0)βq(t))3
,

...
G(t, ω) =

d30(t) + d31(t)(ω − ω0)
β + d32(t)(ω − ω0)

2β + d33(t)(ω − ω0)
3β

(tαp(t) + (ω − ω0)βq(t))4
,

and dij(t) are polynomial functions in t. We note that

d10(t) = ṙtαp− r(αtα−1p + tαṗ) = −αtα−1rp + P(tα),

d20(t) = ḋ10t
αp− 2d10(αt

α−1p + tαṗ) = α(α + 1)t2α−2rp2 + P(t2α−1),

d30(t) = ḋ20t
αp− 3d20(αt

α−1p + tαṗ) = −α(α + 1)(α + 2)t3α−3rp3 + P(t3α−2).
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Here we use P(tk) to denote any polynomial in t, where each term has at least power
k. Furthermore,

d11(t) = ṙq − rq̇ = P(tγ1),

d21(t) = tαḋ11p + ḋ10q − 2(d11(αt
α−1p + tαṗ) + d10q̇) =

{
P(tα−2) if α ≥ 2,

P(t0) if α = 1,

d22(t) = ḋ11q − 2d11q̇ = P(tγ2),

d31(t) = tαḋ21p + ḋ20q − 3(d21(αt
α−1p + tαṗ) + d20q̇) =

{
P(t2α−3) if α ≥ 2,

P(t0) if α = 1,

d32(t) = tαḋ22p + ḋ21q − 3(d22(αt
α−1p + tαṗ) + d21q̇) =

{
P(tα−3) if α ≥ 3,

P(t0) if α = 2, 1,

d33(t) = ḋ22q − 3d22q̇ = P(tγ3),

where γi are some nonnegative integers. By Lemma B.1,

Ḟ (t) = c0(t; ε)d10(t)t
−2α+α

β p(t)
1
β−2q(t)−

1
β + c1(t; ε)d11(t)t

−α+α
β p(t)

1
β−1q(t)−( 1

β +1).

Substituting d10(t) and d11(t) in the above expression, we obtain

Ḟ (t) = t−2α+α
β (−αtα−1r(t)p(t) + P(tα))c0(t; ε)p(t)

1
β−2q(t)−

1
β

+ t−α+α
β P(tγ1)c1(t; ε)p(t)

1
β−1q(t)−( 1

β +1)

= t−n−1(−αc0(t; ε)r(t)p(t)
1
β−1q(t)−

1
β + P(t)c0(t; ε)p(t)

1
β−2q(t)−

1
β

+ P(tγ1+1)c1(t; ε)p(t)
1
β−1q(t)−( 1

β +1))

= t−n−1s1(t).

Note that s1(0) = −αc0(0; ε)r(0)2p(0)
1
β−1q(0)−

1
β = −αs0(0). Hence, s1(0) = 0 and is

bounded above. This concludes that Ḟ (t) is of the form described in (B.5). A similar
derivation leads to the forms described in (B.6) for F̈ (t) and

...
F (t), where s2(t) and

s3(t) satisfy s2(0) = 0 and s3(0) = 0, and where both are bounded above.
Proof of Theorem 4.1. We are now ready to prove Theorem 4.1. Recall that

B(λ) = log(G(λ)) and G(λ) =

(
1

π

∫ ∞

−∞
tr(H(ω, λ)−1)

dω

1 + ω2

)
.

Given any λ ∈ Ω and any h ∈ Rn, let T be the bounded open interval {t : λ+th ∈ Ω}.
Now, define F (t) : T → R := G(λ + th) and E(t) : T → R := B(λ + th) = log(F (t)).
Let γ(t) :=

...
E(t)2/Ë(t)3. The idea is to show that the supremum of γ(t) over T is

bounded from above. Since γ(t) is a continuous function, this property would imply
that γ(t) is finite as t approaches the boundary of T , which in turn implies that (4.4)
holds.

Note that one may express tr(H(ω, λ+th)−1)/(π(1+ω2)) as r(ω, t)/s(ω, t), where
r(ω, t) and s(ω, t) are polynomials in ω and t. Without loss of generality, let us assume
that 0 is a boundary point of T and H(ω, λ + th) is singular at ω = ω1, . . . , ωn at
t = 0, where each ωi < ∞. In the case when H(ω, λ + th) has singularity at infinity,
tr(H(ω, λ+ th)−1)/(π(1+ω2)) can be expressed as r(ω, t)/s(ω, t)+1/(tν ·π(1+ω2)),
and the analysis is completely analogous to what is presented below.
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Under these assumptions, we have the following expression for s(ω, t):

s(ω, t) = tαp(ω, t) + q(ω, t)Πn
i=1(ω − ωi)

βi ,

where α is an integer greater than or equal to 1 and each βi is an even integer greater
than or equal to 2. Furthermore, r(ω, t), p(ω, t), and q(ω, t) satisfy r(ωi, 0) = 0,
p(ωi, 0) = 0, and q(ωi, 0) = 0 for i = 1, . . . , n. Let

Gi(ω, t) =
ri(t)

tαpi(t) + qi(t)(ω − ωi)βi
,

where ri(t) := r(ωi, t), pi(t) := p(ωi, t), and qi(t) := q(ωi, t). Let ε be a small
positive number and Σ =

⋃n
k=1[ωk − ε, ωk + ε]. Note that when ε is sufficiently small,

r(ω, t)/s(ω, t) ≈ Gi(ω, t) for ω ∈ [ωi − ε, ωi + ε]. Therefore, the following hold:

F (t) =
n∑

i=1

∫ ωi+ε

ωi−ε

r(ω, t)

s(ω, t)
dω +

∫
[−∞, ∞]\Σ

r(ω, t)

s(ω, t)
dω(B.7)

≈
n∑

i=1

∫ ωi+ε

ωi−ε

Gi(ω, t)dω + M(t),(B.8)

where M(t) ≤ M < ∞ for all t ∈ T . To see this, we note that s(ω, t) is bounded
away from 0 for all t ∈ T and for all ω ∈ [−∞, ∞] \ Σ; therefore, the second integral
in (B.7) is bounded above for all t ∈ T .

Now consider the kth derivative of F (t). We have

dk

dtk
F (t) =

n∑
i=1

∫ ωi+ε

ωi−ε

dk

dtk

(
r(ω, t)

s(ω, t)

)
dω +

∫
[−∞, ∞]\Σ

dk

dtk

(
r(ω, t)

s(ω, t)

)
dω

=
n∑

i=1

∫ ωi+ε

ωi−ε

r̄k(ω, t)

s(ω, t)k
dω +

∫
[−∞, ∞]\Σ

r̄k(ω, t)

s(ω, t)k
dω,

where r̄k(ω, t) is a polynomial in ω and t. Similarly, since s(ω, t)k is bounded away
from 0 for all t ∈ T and for all ω ∈ [−∞, ∞] \ Σ, and for any t̄ ∈ T ,

dk

dtk

(
r(ω, t̄)

s(ω, t̄)

)
≈ dk

dtk
Gi(ω, t̄) for ω ∈ [ωi − ε, ωi + ε],

we conclude that

(B.9)
dk

dtk
F (t) ≈

n∑
i=1

∫ ωi+ε

ωi−ε

dk

dtk
Gi(ω, t)dω + Mk(t),

where Mk(t) ≤ Mk < ∞ for all t ∈ T . Now, let

Fi(t) =

∫ ωi+ε

ωi−ε

Gi(ω, t)dω, i = 1, . . . , n.

By virtue of Lemma B.2, we have Fi(t) = t−misi0(t), Ḟi(t) = t−mi−1si1(t), F̈i(t) =
t−mi−2si2(t),

...
F i(t) = t−mi−3si3(t), where mi = α− α

βk
, and each sij(t), j = 0, . . . , 3,
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satisfies that sij(0) = 0 and is bounded above. Without loss of generality, let us
assume m1 ≥ m2 ≥ · · · ≥ mn. Then (B.8) and (B.9) imply that

F (t) ≈ t−m1s0(t), Ḟ (t) ≈ t−m1−1s1(t),(B.10)

F̈ (t) ≈ t−m1−2s2(t),
...
F (t) ≈ t−m1−3s3(t).(B.11)

Again, in (B.10) and (B.11), each si(t), i = 0, . . . , 3, satisfies that si(0) = 0 and is
bounded above. Now, consider E(t) = logF (t). It can be readily verified that

(B.12) γ(t) :=

...
E(t)2

Ë(t)3
=

(F (t)2
...
F (t) − 3F (t)Ḟ (t)F̈ (t) + 2Ḟ (t)3)2

(F (t)F̈ (t) − Ḟ (t)2)3
.

Substituting (B.10) and (B.11) in (B.12), we obtain

γ(t) ≈ t−6m1−6(s0(t)
2s3(t) − 3s0(t)s1(t)s2(t) + 2s1(t)

3)2

t−6m1−6(s0(t)s2(t) − s1(t)2)3
.

Therefore, as t → 0, we have

γ(0) ≈ (s0(0)2s3(0) − 3s0(0)s1(0)s2(0) + 2s1(0)3)2

(s0(0)s2(0) − s1(0)2)3
,

which is a finite number. This shows that the supremum of
...
E(t)2/Ë(t)3 over T is

bounded, which in turn implies that B(λ) satisfies (4.4).

Appendix C. The algorithm for generating the random systems in sec-
tion 7. The random systems in section 7 were generated using an algorithm which
is virtually identical to that given in Example 3 of [8]. The algorithm works as fol-
lows. Let νij , i = 1, . . . , 10, j = 1, . . . , l, be drawn from a uniform distribution
on [−ν0

l ,−ν0
l + 1], where ν0

l , l = 1, . . . , 12, have the following numerical values, re-
spectively: 4.8, 3.0, 2.5, 2.1, 2.0, 1.95, 1.85, 1.85, 1.84, 1.83, 1.82, 1.81. Define
Āi = diagj(νij) + A0, where A0 is an l × l matrix of zeros, except for the first

superdiagonal, which has all elements equal to 1. Then let Ā = diagi(Āi). For

B̄, we first define B̄i ∈ Rl×1 to be
[
0 0 · · · 1

]′
and let B̄t = diagi(B̄i). Fi-

nally, define B̄ =
[
Bt 2Bt

]
. For C̄, the construction is similar: first we introduce

C̄i =
[
1 0 · · · 0

]
∈ R1×l and let C̄t = diagi(C̄i). Finally, let C̄ = [C̄t 2C̄t]. The

dimensions of Ā, B̄, and C̄ are m×m, m× p, and p×m, where m = 10l and p = 20.
By changing l, we vary the dimensions of the systems from 10 to 120. In order to
couple all inputs with all outputs, random unitary transformations are introduced.
For this, we produce two matrices Υm ∈ Rm×m and Υp ∈ Rp×p, whose entries are
drawn from a uniform distribution on [0, 1]. Let the singular value decompositions of
Υm and Υp be UmΣmV ′

m and UpΣpV
′
p , respectively. Finally, we define A = U ′

mĀUm,

B = U ′
mB̄Vp, and C = U ′

pC̄Um. The random systems in section 7 are realized by the
pair of matrices (A,B,C, 0p×p).
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Abstract. Fast Fourier transforms (FFTs) are fast algorithms, i.e., of low complexity, for the
computation of the discrete Fourier transform (DFT) on a finite abelian group. They are among
the most important algorithms in applied and engineering mathematics and in computer science, in
particular for one- and multidimensional systems theory and signal processing. We give a relatively
short survey of the FFT for arbitrary finite abelian groups, cyclic or not, with complete and partially
novel proofs, the main distinction being explicit induction formulas for the FFT in all cases which
generalize the original FFT-algorithm due to Cooley and Tukey and, much earlier, to Gauß. We
believe that our approach has didactic advantages over the usual ones. We also present the application
of the FFT to fast convolution algorithms, and the so-called number theoretic transforms over finite
coefficient rings. We do not treat those algorithms which decrease the multiplicative complexity at
the expense of many more rational linear combinations, which in this context are considered costless,
nor do we discuss the DFT for nonabelian finite groups.
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1. Introduction. Fast Fourier transforms (FFTs) are fast algorithms, i.e., of
low complexity, for the computation of the discrete Fourier transform (DFT) on a
finite abelian group which, in turn, is a special case of the Fourier transform on a
locally compact abelian group. The FFTs are among the most important algorithms
in applied and engineering mathematics and in computer science, in particular for one-
and multidimensional systems theory and signal processing, as evidenced by references
[4], [11], [14], [17], [21], [24], [25], [31], [32], [37]. Various textbooks on the FFT are
mentioned at the end of this introduction.

The present article gives a relatively short survey of the FFT for arbitrary finite
abelian groups, cyclic or not, with complete and partially novel proofs which in our
opinion have didactic advantages over the usual ones. The main distinction consists
in explicit induction formulas for the FFT, proven and announced in 1988 [27], [28],
for all possible cases which generalize the FFT-algorithm on the group Z/Z2r due to
Cooley and Tukey [16] and, much earlier, to Gauß. We also treat the applications of
the FFT to fast convolution algorithms. We do not discuss the algorithms with fewer
essential multiplications at the expense of many more rational linear combinations,
i.e., those with low multiplicative complexity, for instance, those of Winograd [40].
Nor do we treat the FFT for noncommutative finite groups [5], [12].

An algorithm is called fast if it has low complexity, where the complexity is the
number of elementary computation steps necessary to execute it. In this paper and
in most computer processors such a step is of the form ax + y with numbers a, x, y;
i.e., it consists of one multiplication together with one addition.

The following motivational remarks taken from [6] and [22] on the Fourier theory
for general locally compact abelian groups or harmonic analysis will not be used in
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any way in the rest of this article. For the group G = R
r the Fourier transform of a

function a ∈ L1(Rr) is the bounded, continuous function

â(y) :=
∫

Rr a(x) exp(−2πix • y)dx, y ∈ R
r, where x • y := x1y1 + · · · + xryr

is the standard scalar product. Under suitable assumptions, for instance, if â is
absolutely integrable, too [20, p. 164], the Fourier inversion formula

a(x) =
∫

Rr â(y) exp(+2πix • y)dy

holds almost everywhere. For fixed y the map x �→ 〈x, y〉 := exp(−2πix • y) is a char-
acter on R

r, i.e., a continuous group homomorphism from R
r into the circle group

S1 := {z ∈ C; | z |= 1}. Let Grcont(R
r,S1) denote the multiplicative group of all

characters with the multiplication of functions. Then, more precisely, the continuous,
symmetric, bimultiplicative form 〈−,−〉 is nondegenerate, i.e., induces the (topologi-
cal) isomorphism

R
r ∼= Grcont(R

r,S1), y �→ 〈−, y〉,

and the Fourier inversion has the form

â(y) :=
∫

Rr a(x)〈x, y〉dx,
a(x) :=

∫
Rr â(y)〈−x, y〉dy, 〈−x, y〉 = 〈x, y〉−1 = 〈x, y〉.

In general, the character group Ĝ := Grcont(G,S1) of a locally compact abelian group

G is not isomorphic to G, for instance, Ẑr ∼= (S1)r, but the form 〈−,−〉 : G × Ĝ →
S1, 〈g, ĝ〉 := ĝ(g), is nondegenerate in the sense that the map G → Grcont(Ĝ,S1), g �→
〈g,−〉, is a (topological) isomorphism and the Fourier inversion has the form

â(ĝ) :=
∫
G
a(g)〈g, ĝ〉dg, a ∈ L1(G),

a(g) :=
∫
Ĝ
â(ĝ)〈−g, ĝ〉dĝ, 〈−g, ĝ〉 = 〈g, ĝ〉−1 = 〈g, ĝ〉,

where dg, respectively, dĝ, are the suitably normalized Haar measures on G, respec-
tively, Ĝ.

We specialize the preceding considerations to the simple case of a finite abelian
group G of exponent d > 0, i.e., satisfying dG = 0. In various ways one can choose a
group Ĝ ∼= G, for instance, Ĝ = G, and a biadditive form

• : G× Ĝ → Z/Zd such that

Ĝ ∼= Hom(G,Z/Zd), ĝ �→ (−) • ĝ, and G ∼= Hom(Ĝ,Z/Zd), g �→ g • (−),

are isomorphisms, the latter signifying that the form • is nondegenerate. In the engi-
neering literature the groups G and Ĝ are called the time, respectively, the frequency
domain, in the standard one-dimensional case of time signals. We choose a primitive
dth root of one in C, for instance, ζ := exp(− 2πi

d ); hence

Z/Zd ∼= μ := 〈ζ〉 = {1, ζ, · · · , ζd−1} ⊆ S1, k �→ ζk := ζk.

The nondegenerate form • thus induces the nondegenerate bimultiplicative form

〈−,−〉 : G× Ĝ → μ, 〈g, ĝ〉 := ζg•ĝ, such that

Ĝ ∼= Gr(G,μ), ĝ �→ 〈−, ĝ〉, and G ∼= Gr(Ĝ, μ), g �→ 〈g,−〉.
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Here Gr(G,μ) denotes the multiplicative abelian group of homomorphisms from the
additive abelian group G into the multiplicative abelian group μ. The canonical group
isomorphisms

Ĝ ∼= Hom(G,Z/Zd) ∼= Gr(G,μ) = Gr(G,S1)

hold. In this article we use the chosen group Ĝ instead of the isomorphic character
group Gr(G,μ) for the development of the theory. The standard choices for the one-
dimensional DFT are

d > 0, G := Ĝ = Z/Zd, k • l = kl, 〈k, l〉 = exp
(
−2πikld

)
.

It is a well-known and simple, but for this paper essential, observation that the con-
travariant duality functor G �→ Ĝ ∼= Gr(G,μ) is exact on finite abelian groups of
exponent d. The Haar integral on C

G which is unique up to a multiplicative positive
constant is the map C

G → C, a �→
∑

g∈G a(g). Therefore we define two DFTs

FourG : C
G → C

Ĝ, a �→ â, â(ĝ) :=
∑

g∈G a(g)〈g, ĝ〉, and

FourĜ : C
Ĝ → C

G, b �→ b̂, b̂(g) :=
∑

ĝ∈Ĝ b(ĝ)〈g, ĝ〉.

The map FourĜ is sometimes called the inverse discrete Fourier transform (IDFT).
The Fourier inversion formula has the form

N−1̂̂a(−g) = a(g), where a ∈ C
G, N := ord(G).

The form 〈−,−〉 and the Fourier transform can also be defined if C is replaced by
an arbitrary commutative ring K and if ζ is a primitive dth root of one in K, and
we will do this in these notes. However, the Fourier inversion holds under additional
assumptions on ζ only [26], [15], [18]. Interesting cases concern finite factor rings
K = Z/ZM of Z, where the corresponding DFT is also called a number theoretic
transform (NTT), or rings of algebraic integers. In our opinion the change of the
coefficient ring does not justify a change of the terminology, so we will always talk of
the DFT.

Any filtration or increasing sequence of subgroups 0 = G0 ⊆ G1 ⊆ · · · ⊆ Gr = G
of G gives rise to an FFT-algorithm for the computation of FourG. That nontrivial
subgroups H of G and their factor groups G/H are significant for the construction of
an FFT for FourG has been one of the basic observations in this field since [16], and
the book [5], for instance, stresses this point of view. For groups of prime order there
are no FFTs in this sense, and different algorithms have been designed, the first one
by Rader [33]. Our description of the recursive FFT-algorithms gives simple explicit
recursion formulas and makes essential use of the exactness of the duality functor. For
the important case of cyclic groups similar formulas are contained in [8, pp. 188–191].

The central and novel sections of this survey paper are those on the FFT. The sec-
tions on duality theory, the DFT, and the complexity of linear maps contain necessary
preliminaries and are simple adaptions from the literature. The two short sections
on fast convolution algorithms derived from the FFT and on NTTs are included for
completeness’ sake and are also simple variants of the literature [26].

Since the FFT is so important in engineering applications there are very many
papers and books on this subject, too numerous to be available to and be read and
known by the author. Therefore the list of references at the end of this survey paper
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contains only books and papers which are actually mentioned in the text, and omission
of an article is no comment whatsoever on its historical or practical significance.
Standard textbooks on the FFT are those of Brigham [8], Nussbaumer [26], and Beth
[5] (in German), newer books are those of Clausen and Baum [12], Chu and George
[13], and Garg [18]. Besides the signal processing and systems textbooks quoted
above, the book [8] and especially that of Briggs and Henson [7] give surveys of the
many mathematical and technical applications of the DFT and thus of the FFT from
an engineering point of view, for instance, to the computation of Fourier integrals and
coefficients, to trigonometric interpolation, and to digital filtering.

We discuss briefly the literature on the construction of FFT and convolution al-
gorithms which minimize the multiplicative complexity according to Winograd and
which are otherwise not treated in the present paper. The seminal papers in this
direction are those of Winograd, Auslander, and Tolimieri and their coworkers [39],
[40], [2], [1], [35]. In [29], [38], and the book [30], which unfortunately has not yet
appeared, we constructed the optimal fast Fourier and Hartley, respectively, Gelfand,
transforms on arbitrary finite abelian groups, respectively, finite-dimensional, commu-
tative, semisimple Q-algebras, i.e., algorithms for these transformations of minimal
multiplicative complexity, and computed the exact value of the latter with the help of
[3]. The recent paper [36] emphasizes the renewed interest in such algorithms.

The present paper presupposes the algebraic knowledge of a mathematics student
at the end of the second university year. Some results are recalled under the heading
Reminder.

2. Duality.
Reminder 1 (see [23, p. 46]). Let G = (G,+) be a finite abelian group, written

additively. Then there are numbers d1 > 0, · · · , dr > 0 and an isomorphism

(1) G ∼= Z/Zd1 × · · · × Z/Zdr.

The least common multiple

(2) exp(G) := lcm(d1, · · · , dr) with Z exp(G) = {k ∈ Z; kG = 0}

is called the exponent of G. If, in addition, d� divides d�+1 for all � = 1, · · · , r − 1,
then the d� are unique and are called the invariant factors of G and exp(G) = dr. If
d is a multiple of exp(G) or, in other words, if dG = 0, we say that G is a group of
exponent d.

If G and H are additively written abelian groups, the group of all additive or
Z-linear homomorphisms from G to H is denoted by Hom(G,H) = HomZ(G,H) as
usual.

If r > 0 and K is a field, the map

• : Kr ×Kr → K, x • y := x1y1 + · · · + xryr for x = (x1, · · · , xr),

is a nondegenerate symmetric bilinear form; i.e., the induced map

Kr → HomK(Kr,K), y �→ (−) • y = y • (−),

is a K-isomorphism.
The following symmetric bilinear form is the analogue of the preceding one for

finite abelian groups.
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Theorem 2 (nondegenerate bilinear form). Let

G = Z/Zd1 × · · · × Z/Zdr 	 g = (g1, · · · , gr), g� ∈ Z,

be the finite abelian group of exponent d > 0, i.e., dG = 0. Then the map

(3) • : G×G → Z/Zd, g • h :=
∑r

�=1 g�h�
d
d�
,

is well defined and is a nondegenerate, symmetric Z-bilinear form; i.e., the following
hold.

(1) The definition is independent of the representatives g�, h�.
(2) g • h = h • g, g • (h + h′) = g • h + g • h′ for all g, h, h′ in G.
(3) G ∼= Hom(G,Z/Zd), h �→ (−) • h.
Proof. (1) The map is well defined: Let g = (g1, · · · , gr) = (g′1, · · · , g′r); hence

g′� = g� + k�d�, k� ∈ Z, for � = 1, . . . , r. But then∑r
�=1 g

′
�h�

d
d�

=
∑r

�=1 g�h�
d
d�

+
∑r

�=1 g�h�k�d ∈
∑r

�=1 g�h�
d
d�

+ Zd, and hence∑r
�=1 g

′
�h�

d
d�

=
∑r

�=1 g�h�
d
d�

= g • h.

The independence of the representatives h� is shown in the same fashion.
(2) The symmetry and bilinearity follow trivially from the definition.
(3) It remains to show that G → Hom(G,Z/Zd), h • (−) = (−) • h, is an isomor-

phism.
(i) Monomorphism: Assume that (−) • h = 0. For � = 1, . . . , r let δ� :=

(0, · · · , 0,
�

1, 0, · · · , 0) denote the analogue of the standard basis such that (g1, · · · , gr) =∑r
�=1 g�δ� for all g ∈ G. Then

0 = δ� • h = h�
d
d�

∈ Z/Zd; hence for � = 1, . . . , r

d | h�
d
d�

or d� | h� and h� = 0 in Z/Zd�, i.e., h = 0.

(ii) Epimorphism: Let ϕ : G → Z/Zd be any homomorphism. The equation

d�δ� = 0 implies d�ϕ(δ�) = 0 in Z/Zd; hence ϕ(δ�) = h�
d
d�

= δ� • h, h� ∈ Z,

and for g ∈ G : ϕ(g) = ϕ(
∑r

�=1 g�δ�) =
∑r

�=1 g�ϕ(δ�)

=
∑r

�=1 g�δ� • h = (
∑r

�=1 g�δ�) • h = g • h and ϕ = (−) • h.

Corollary 3. With the data of the preceding theorem, let G1 and G2 be two
groups which are isomorphic to G and let ϕi : Gi

∼= G, i = 1, 2, be two isomorphisms.
Then

(4) • : G1 ×G2 → Z/Zd, g1 • g2 := ϕ1(g1) • ϕ2(g2),

is a nondegenerate bilinear form; i.e., the maps

G1 → Hom(G2,Z/Zd), g1 �→ g1•(−), and G2 → Hom(G1,Z/Zd), g2 �→ (−)•g2,

are isomorphisms.
The proof is obvious. The corollary implies that the following assumptions can

be realized in various ways.
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Assumption 4. Let d > 0. In what follows we consider finite abelian groups G
with dG = 0. For each such G we choose a group Ĝ and a nondegenerate bilinear
form • : G× Ĝ → Z/Zd, hence the canonical isomorphisms
(5)

can : G ∼= Hom(Ĝ,Z/Zd), g �→ g • (−), and can : Ĝ ∼= Hom(G,Z/Zd), ĝ �→ (−) • ĝ.

For the groups G = Z/Zd1 × · · · × Z/Zdr the canonical choices are Ĝ = G and the

symmetric form of (3). In the context of the FFT the groups G (resp., Ĝ) are often
called the time domain (resp., the frequency domain), and therefore it is advantageous

to make a notational distinction between G and Ĝ even if G = Ĝ.
If G is any finite abelian group, the theory applies for d = exp(G).
Reminder 5 (see [23, pp. 76,77]). Hom(G,H) is an additive functor in its two

variables G and H. In particular, a homomorphism ϕ : G1 → G2 of abelian groups
induces the homomorphism

Hom(ϕ,Z/Zd) : Hom(G2,Z/Zd) → Hom(G1,Z/Zd), χ2 �→ χ2ϕ,

in the reverse direction. This assignment satisfies the relations

Hom(idG,Z/Zd) = idHom(G,Z/Zd),

Hom(ϕ1,Z/Zd) Hom(ϕ2,Z/Zd) = Hom(ϕ2ϕ1,Z/Zd) for G1
ϕ1−→ G2

ϕ2−→ G3,

Hom(ϕ−1,Z/Zd) = Hom(ϕ,Z/Zd)−1 if ϕ : G1
∼= G2.

Corollary 6. For each finite abelian group G of exponent d > 0 there is a
noncanonical isomorphism G ∼= Ĝ.

Proof. Choose an isomorphism ϕ : H = Z/Zd1 × · · · × Z/Zdr → G and on H the
bilinear form from (3) which induces the isomorphism H ∼= Hom(H,Z/Zd). Then

Ĝ ∼= Hom(G,Z/Zd)
Hom(ϕ,Z/Zd)∼= Hom(H,Z/Zd) ∼= H ∼= G.

Remark 7. If K is a field, V a finite-dimensional K-vector space, and V � :=
HomK(V,K) its dual space, the canonical Gelfand map

Gelf : V → V ��, v �→ Gelf(v), Gelf(v)(v�) := v�(v),

is a K-isomorphism. The following result is the analogue for finite abelian groups.
Theorem 8. There is the unique canonical Gelfand isomorphism

(6) GelfG : G ∼= ̂̂
G with g • ĝ = ĝ • GelfG(g) for all g ∈ G, ĝ ∈ Ĝ.

Proof.

G ∼= Hom(Ĝ,Z/Zd) ∼= ̂̂
G, g → g • (−) = (−) • GelfG(g) ← GelfG(g).

Lemma and Definition 9. 1. For each homomorphism ϕ : G1 → G2 there is a
unique homomorphism

(7) ϕ� : Ĝ2 → Ĝ1 such that ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2) for all g1 ∈ G1, ĝ2 ∈ Ĝ2.

The map ϕ� is called the adjoint of ϕ.

2. The relations id�
G = idĜ and ϕ�

1ϕ
�
2 = (ϕ2ϕ1)

� for G1
ϕ1−→ G2

ϕ2−→ G3 hold.
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Hence the assignment G �→ Ĝ, ϕ �→ ϕ�, is a contravariant functor on finite
abelian groups of exponent d > 0 and is called the duality functor in this article.
Observe that Ĝ ∼= Hom(G,Z/Zd) can be chosen in various ways.

Proof. 1. There is a unique homomorphism ϕ� such that the following diagram
with vertical isomorphisms is commutative:

(8)

Ĝ2
ϕ�

−→ Ĝ1

↓ can2 ↓ can1

Hom(G2,Z/Zd)
Hom(ϕ,Z/Zd)−→ Hom(G1,Z/Zd)

ĝ2 �→ ϕ�(ĝ2)
↓ ↓

χ2 := (−) • ĝ2 �→ χ2ϕ = ϕ(−) • ĝ2 = (−) • ϕ�(ĝ2)

;

viz., ϕ� := can−1
1 ◦Hom(ϕ,Z/Zd) ◦ can2. The commutativity signifies that

ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2) for all g1 ∈ G1, ĝ2 ∈ Ĝ2.

2. The relations follow from the commutative diagram (8) and Reminder 5.
Lemma 10. The Gelfand map is a natural transformation; i.e., for ϕ : G1 → G2

the following diagram is commutative:

(9)

G1
ϕ−→ G2

↓ Gelf1 ↓ Gelf2̂̂
G1

ϕ��

−→ ̂̂
G2

.

Proof. For all g1 ∈ G1 and ĝ2 ∈ Ĝ2 we have

ĝ2 • Gelf2(ϕ(g1)) = ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2)

= ϕ�(ĝ2) • Gelf1(g1) = ĝ2 • ϕ��(Gelf1(g1)); hence

Gelf2(ϕ(g1)) = ϕ��(Gelf1(g1)).

Reminder 11 (exactness [25, pp. 16, 77]). 1. Consider a sequence of abelian
groups and homomorphisms

(10) G1
ϕ1−→ G2

ϕ2−→ G3.

The sequence is called a complex if ϕ2ϕ1 = 0 or im(ϕ1) ⊆ ker(ϕ2).
2. The sequence (10) is called exact if im(ϕ1) = ker(ϕ2).
3. A possibly infinite sequence

(11) G∗ : · · · → Gi+1
di+1−→ Gi

di−→ Gi−1 → · · · , i ∈ Z,

is called a complex (resp., exact) if and only if all three member subsequences have
this property, i.e. Bi := im(di+1) ⊆ Zi := ker(di) (resp., Bi = Zi) for all i. The
groups Hi(G∗) := Zi/Bi are called the homology groups of the complex and are all
zero if and only if G∗ is exact.

4. For a sequence

(12) 0 −→ G1
ϕ1−→ G2

ϕ2−→ G3

the following properties are equivalent.
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(a) The sequence is exact.
(b) ker(ϕ1) = 0, i.e., ϕ1 is a monomorphism, and im(ϕ1) = ker(ϕ2).
(c) The map ϕ1 induces an isomorphism ϕ1,ind : G1

∼= ker(ϕ2).
5. For a sequence

(13) G1
ϕ1−→ G2

ϕ2−→ G3 −→ 0

and the cokernel cok(ϕ1) := G2/ im(ϕ1) the following properties are equivalent.
(a) The sequence is exact.
(b) im(ϕ2) = G3, i.e., ϕ2 is an epimorphism, and im(ϕ1) = ker(ϕ2).
(c) The map ϕ2 induces the isomorphism ϕ2,ind : cok(ϕ1) ∼= G3, g2 �→ ϕ2(g2).
6. The Hom-functor is left exact. Moreover, the sequence (13) is exact if and

only if for all abelian groups X the derived sequence

(14) Hom(G1, X)
Hom(ϕ1,X)←− Hom(G2, X)

Hom(ϕ2,X)←− Hom(G3, X) ←− 0

is exact.
The next duality theorem states that the duality functor G �→ Ĝ preserves and

reflects exactness.
Theorem 12 (duality theorem). A sequence

(15) G1
ϕ1−→ G2

ϕ2−→ G3

of finite abelian groups G of exponent d (dG = 0) is exact if and only if its dual
sequence

(16) Ĝ1
ϕ�

1←− Ĝ2
ϕ�

2←− Ĝ3

has this property.
Proof. ⇒ : 1. Assume first that the sequence

(17) G1
ϕ1−→ G2

ϕ2−→ G3 −→ 0

is exact, i.e., ϕ2 is surjective. Lemma 9 implies the commutative diagram

Ĝ1
ϕ�

1←− Ĝ2
ϕ�

2←− Ĝ3 ← 0
↓ can1 ↓ can2 ↓ can3

Hom(G1,Z/Zd)
Hom(ϕ1,Z/Zd)←− Hom(G2,Z/Zd)

Hom(ϕ2,Z/Zd)←− Hom(G3,Z/Zd) ← 0

with vertical isomorphisms whose lower row is exact according to part 6 of Re-
minder 11. The commutativity then implies that also the upper row is exact.

2. We prove that ϕ� is an epimorphism if ϕ : G1 → G2 is a monomorphism.
The sequence

0 ← C := cok(ϕ�)
can←− Ĝ1

ϕ�

←− Ĝ2

is exact. Part 1 of this proof and Lemma 10 imply the commutative diagram

G1
ϕ−→ G2

↓ Gelf1 ↓ Gelf2

0 → Ĉ
can�

−→ ̂̂
G1

ϕ��

−→ ̂̂
G2
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with exact row and vertical isomorphisms. Since ϕ is a monomorphism, so is ϕ��, and
hence Ĉ = 0. Since C and Ĉ are isomorphic, we obtain C = cok(ϕ�) = 0 or that ϕ�

is surjective.
3. The exact sequence (15) gives rise to the commutative diagram

G1
ϕ1−→ G2

can−→ C := cok(ϕ1) −→ 0
↓ ϕ2 ↓ ψ
G3 = G3

,

where ψ(g2) = ϕ2(g2). Since C = G2/ im(ϕ1) = G2/ ker(ϕ2), the homomorphism
theorem implies that ψ is a monomorphism. Dual to the preceding one is the com-
mutative diagram

Ĝ1
ϕ�

1←− Ĝ2
can�

←− Ĉ ←− 0
↑ ϕ�

2 ↑ ψ�

Ĝ3 = Ĝ3

.

Its first row is exact, and ψ� is an epimorphism according to parts 1 and 2 of the
proof. Since ϕ�

2 = can� ψ�, we conclude that im(ϕ�
2) = im(can�) = ker(ϕ�

1) and thus
the exactness of (16).

⇐ : Assume that (16) is exact. There results the diagram

G1
ϕ1−→ G2

ϕ2−→ G3

↓ Gelf1 ↓ Gelf2 ↓ Gelf3̂̂
G1

ϕ��
1−→ ̂̂

G2
ϕ��

2−→ ̂̂
G3

.

The exactness of (16) and the proof “⇒” imply the exactness of its lower row, and
Lemma 10 implies its commutativity. Since the Gelfand maps are isomorphisms, the
wanted exactness of the upper row follows.

3. The discrete Fourier transform. In this section we define and investigate
the DFT for K-valued functions on a finite abelian group where K denotes a suitable
coefficient field or even ring.

Assumption 13. The assumptions of section 2 remain in force, in particular d > 0.
We consider finite additively written abelian groups G of exponent d (dG = 0) and the

nondegenerate bilinear forms • : G× Ĝ → Z/Zd. Let K be a commutative coefficient
ring. Then KG is the K-module of functions from G to K with its argumentwise
addition and scalar multiplication. The standard case for the FFT will be the coef-
ficient field C of complex numbers. However, since we are also going to discuss the
so-called arithmetic transforms with a finite coefficient ring or field, we consider the
more general situation from Assumption 13. Let U(K) denote the group of units
or invertible elements of K. For the definition of the DFT on KG we also need an
analogue of the circle group S1 = {z ∈ C; | z |= 1} ⊂ U(C) in the standard case of
complex Fourier transforms. Therefore we make the following additional assumption
for the ring K.

Assumption 14. Let ζ ∈ U(K) be a primitive dth root of one in K, i.e.,

ζd = 1, μ := 〈ζ〉 = {1, ζ, · · · , ζd−1} ⊆ U(K), ord(ζ) = ord(μ) = d.

Examples 15.



THE FAST FOURIER TRANSFORM 505

(1) Let

K := C, ζ := exp
(
− 2πi

d

)
. Then μ := 〈ζ〉 = {η ∈ C; ηd = 1}

is the group of all dth roots of one in C and consists of the vertices of the
regular d-gon. These data are those of the standard complex DFT.

(2) Let d := 2, K := R, ζ := −1. These data are used for the discrete Walsh–
Fourier transform.

(3) Let K := C × C, ζ := (ζ1, ζ2) := (exp(− 2πi
d ), 1). This is a primitive dth root

of one, but it does not generate the finite group of all dth roots of one which
consists of the elements (ζm1 , ζn1 ).

(4) Let K be a finite field of characteristic p and dimension [K : Z/Zp] = n,
hence with q := pn elements. The group U(K) = K \ {0} is cyclic and hence
generated by a primitive root of order d := q−1. For instance, U(Z/Z7) = 〈3〉,
whereas ord(2) = 3.

If G1 and G2 are arbitrary abelian groups and one of them is multiplicatively
written, we denote the group of all homomorphisms from G1 to G2 by Gr(G1, G2)
instead of Hom(G1, G2).

Lemma 16. Consider the situation of Example 15(1) and a finite abelian group
G with dG = 0. Then Gr(G,μ) = Gr(G,S1) is the group of all complex characters
on G.

Proof. Let χ : G → S1 be any character, i.e., homomorphism. The relations
dg = 0 for g ∈ G imply χ(g)d = 1 and hence χ(g) ∈ μ since μ is the group of all roots
of 1.

This result suggests that we consider the group Gr(G,μ) as a suitable analogue
of the character group for general coefficient rings, and we will do this; i.e, we call
this group the character group of G. Notice that, in general, this group depends on
the choice of ζ in contrast to the complex case.

Corollary and Definition 17. The maps

(18)
Z/Zd ∼= μ = 〈ζ〉, k �→ ζk := ζk, hence also

Hom(G,Z/Zd) ∼= Gr(G,μ), ϕ �→ χ, χ(g) = ζϕ(g),

are isomorphisms. For each group G (finite abelian, dG = 0) the nondegenerate

bilinear form • : G× Ĝ → Z/Zd induces the nondegenerate bimultiplicative form

(19) 〈−,−〉 : G× Ĝ → μ = 〈ζ〉, 〈g, ĝ〉 := ζg•ĝ; i.e.,

(1) for all g1, g2 ∈ G and ĝ1, ĝ2 ∈ Ĝ

〈g1, ĝ1 + ĝ2〉 = 〈g, ĝ1〉〈g, ĝ2〉, 〈g1 + g2, ĝ〉 = 〈g1, ĝ〉〈g2, ĝ〉,

(2)

G ∼= Gr(Ĝ, μ), g �→ 〈g,−〉, Ĝ ∼= Gr(G,μ), ĝ �→ 〈−, ĝ〉.

The proof of this corollary is obvious since it consists in just replacing the additive
group Z/Zd by the multiplicative group μ = 〈ζ〉.

Reminder 18. The K-module KG of all functions a = (a(g))g∈G : G → K has
the standard basis δh := (δh,g)g∈G, h ∈ G, and the basis representation is

a = (a(g))g∈G =
∑

g∈G a(g)δg.
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We also consider the function module KĜ with the corresponding structure.
Lemma and Definition 19 (DFT). The data are as introduced above. The map

FourG : KG → KĜ, a �→ â, â(ĝ) :=
∑

g∈Ga(g)〈g, ĝ〉,

is K-linear and is called the discrete Fourier transform (DFT). The function â ∈ KĜ

is also called the Fourier transform of a. The analogous map

FourĜ : KĜ → KG, b �→ b̂, b̂(g) :=
∑

ĝ∈Ĝb(ĝ)〈g, ĝ〉,

is called the Fourier transform on KĜ or inverse discrete Fourier transform (IDFT).

Notice that FourĜ maps into KG and not into K
̂̂
G.

The Fourier transform depends on the choice of the nondegenerate form • and of
the primitive dth root ζ.

Examples 20. (1) Let d := n > 0, K := C, ζ := exp(− 2πi
n ), and G := Zn :=

Z/Zn = Ĝ with k • l := kl ∈ Zn and hence 〈k̂, l̂〉 = ζkl = exp(−2πikln ).
We identify

G = Zn = {0, · · · , n− 1} = {0, · · · , n− 1},

C
G = C

Ĝ = C
Zn = C

n 	 a = (a(k))k∈Zn

= (a(0), · · · , a(n− 1) = (a(0), · · · , a(n− 1)), and hence

FourG = FourĜ : C
n → C

n.

The Fourier transform of a = (a(0), · · · , a(n− 1)) is

â = (â(0), · · · , â(n− 1)),

â(l) =
∑

k∈Zn
a(k)〈k, l〉 =

∑n−1
k=0 a(k)ζkl =

∑n−1
k=0 a(k) exp

(
−2πikln

)
.

(2) Let d := 2, K := R, ζ := −1, and let G = Z
r
2 	 g = (g1, · · · , gr) be the

finite-dimensional Z2-vector space which is the typical finite group of exponent 2. We
choose

Ĝ := G, g • h := g1h1 + · · · + grhr, and hence 〈g, h〉 = (−1)g•h.

The Fourier transform â of a ∈ R
G is given by â(h) =

∑
g∈G a(g)(−1)g•h. One also

talks about the Walsh–Fourier transform in this case.
Lemma 21. For each g ∈ G the Fourier transform of

δg ∈ KG is δ̂g = 〈g,−〉 ∈ Gr(Ĝ, μ) ⊂ KĜ.

Proof. δ̂g(ĝ) =
∑

h∈G δg(h)〈h, ĝ〉 = 〈g, ĝ〉.
The K-module KG admits two structures as commutative K-algebras which are

both significant for the DFT.
Lemma and Definition 22. With the argumentwise multiplication

(20) (a1a2)(g) := a1(g)a2(g), a1, a2 ∈ KG, g ∈ G,

the K-module KG is a commutative K-algebra whose identity 1KG is the constant
function with value 1. The standard basis consists of complete orthogonal idempotents,
i.e., ∑

g∈G δg = 1, δgδh = δg,hδg.
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The proof is obvious.
Lemma and Definition 23. With the convolution multiplication

(21)
(a1 ∗ a2)(g) :=

∑
g1+g2=g a1(g1)a2(g2) =

∑
h∈G a1(g − h)a2(h)

=
∑

h∈G a1(h)a2(g − h)

the K-module KG is a commutative K-algebra with the identity δ0. One writes
K[G] := (KG, ∗) and calls this algebra the group algebra of G with coefficients in
K. The map

(22) δ : G → U(K[G]), g �→ δg,

is a group monomorphism, i.e., injective with

δ0 = 1, δg1+g2
= δg1

∗ δg2
, hence δ−1

g = δ−g.

The proof is analogous to that for the polynomial algebra K[X] := K[N] and is
omitted.

The map δ : G → U(K[G]) has the following universal property. For two K-
algebras A and B let AlK(A,B) denote the set of K-algebra homomorphisms from A
to B.

Theorem 24 (universal property). For each K-algebra B the map

(23) AlK(K[G], B) → Gr(G,U(B)), ϕ �→ χ := ϕ ◦ δ,

is bijective. The inverse map is given by

χ �→ ϕ, ϕ(a) =
∑

g∈G a(g)χ(g), a ∈ KG.

Proof. The map is injective since χ := ϕ ◦ δ, χ(g) = ϕ(δg), implies

(24) ϕ(a) = ϕ
(∑

g∈G a(g)δg
)

=
∑
g∈G

a(g)ϕ(δg) =
∑
g∈G

a(g)χ(g).

Let, conversely, χ be given and define ϕ via the K-linear map (24), in particular,

ϕ(δg) = χ(g) and ϕ(1K[G]) = ϕ(δ0) = χ(0) = 1B .

Then

ϕ(δg1 ∗ δg2
) = ϕ(δg1+g2

) = χ(g1 + g2) = χ(g1)χ(g2) = ϕ(δg1
)ϕ(δg2

).

Therefore ϕ is multiplicative on the standard basis and therefore a K-algebra homo-
morphism by bilinear extension.

Corollary 25. For B := K there results the bijection

AlK(K[G],K) ∼= Gr(G,U(K)), ϕ �→ ϕ ◦ δ.

In particular, for every ĝ ∈ Ĝ, the group homomorphism 〈−, ĝ〉 : G → μ ⊆ U(K)
induces the K-algebra homomorphism

K[G] = (KG, ∗) → K, a �→
∑
g∈G

a(g)〈g, ĝ〉 = â(ĝ).
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Theorem 26 (convolution theorem). The K-linear Fourier transform FourG :

K[G] → KĜ is an algebra homomorphism, i.e.,

δ̂0 = 〈0,−〉 = 1
KĜ , â1 ∗ a2(ĝ) = â1(ĝ)â2(ĝ).

Proof. Since KĜ is supplied with the argumentwise multiplication, the theorem
is a direct consequence of Corollary 25.

Corollary and Definition 27 (antipode). The group automorphism g �→ −g
of G induces the algebra automorphism

SG : KG ∼= KG, δg �→ δ−g, SG(a)(g) = a(−g),

with respect to both multiplications on KG. This map is called the antipode on KG

and is an involution, i.e., S2
G = idKG or S−1

G = SG . We likewise define SĜ on KĜ.
Proof. For the convolution multiplication this follows from the universal property

of K[G], and for the argumentwise multiplication directly from the definition.
Lemma 28. The antipode commutes with the Fourier transform, i.e., the diagram

KG FourG−→ KĜ

↓ SG ↓ SĜ

KG FourG−→ KĜ

is commmutative or FourG SG = SĜ FourG .

Proof. The following sequence of equations is valid:

FourG SG(δg) = FourG(δ−g) = 〈−g,−〉 = SĜ(〈g,−〉) = SĜ FourG(δg).

For the proof of the Fourier inversion theorem we need an additional assumption
on the root ζ.

Assumption 29 (see [15, Satz 2.8]). For the data of Assumption 14 we assume in
what follows that d is invertible in K and that for each divisor m > 1 of d and the
root η := ζ

d
m of order ord(η) = m the relation

1 + η + · · · + ηm−1 = 0

holds. In Theorem 80 we will give several equivalent conditions for this assumption
as in [15, Satz 2.8].

Recall that all considered groups G are finite abelian of exponent d (dG = 0).
Let N := ord(G) denote the order of G.

Corollary 30. The preceding Assumption 29 is satisfied if K is a field.
Proof. The second property follows from the relation

0 = ηm − 1 = (η − 1)(ηm−1 + · · · + η + 1)

since ord(η) = m �= 1; hence η �= 1. Assume that the characteristic p of K divides d
or d = 0 in K. Then p is prime and

d = pk ⇒ 0 = ζd − 1 = (ζk)p − 1p = (ζk − 1)p ⇒ ζk = 1 ⇒ ord(ζ) ≤ k < d,

a contradiction to ord(ζ) = d.
Corollary 31. Under Assumption 29 the order N := ord(G) of G is also

invertible in K.
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Proof. If G ∼= Z/Zd1 × · · · × Z/Zdr with d� | d, then N = d1 ∗ · · · ∗ dr divides dr

and therefore is invertible like d.
Lemma 32. Under Assumption 29 any character χ ∈ Gr(G,μ) of the group G

satisfies the relation

∑
g∈G χ(g) = Nδ1,χ =

{
N if χ = 1,

0 if χ �= 1.

Here 1 : G → μ, g �→ 1, denotes the trivial character which is the neutral element of
the character group.

Proof. The assertion is obvious for χ = 1. Assume therefore that χ �= 1 and that
the image im(χ) has the order m �= 1. Then im(χ) is the unique subgroup of order

m of the cyclic group μ = 〈ζ〉 and is generated by η := ζ
d
m ; hence im(χ) = 〈η〉 =

{1, η, · · · , ηm−1}. Let η = χ(g). The isomorphism

G/ ker(χ) ∼= im(χ) = 〈η〉, ig �→ χ(ig) = χ(g)i = ηi,

implies that every element h ∈ G has a unique representation

h = ig + k, 0 ≤ i ≤ m− 1, k ∈ ker(χ).

We infer ∑
h∈G χ(h) =

∑
{χ(ig + k); 0 ≤ i ≤ m− 1, k ∈ ker(χ)}

=
∑

i,k χ(g)i =
∑

k

(∑m−1
i=0 ηi

)
= 0,

where
∑m−1

i=0 ηi = 0 according to Assumption 29.

Theorem 33. The following equations hold for a ∈ KG, b ∈ KĜ, g ∈ G, ĝ ∈ Ĝ:

Na(0) =
∑

ĝ∈Ĝ â(ĝ), Nb(0) =
∑

g∈G b̂(g),

Nδ0,g =
∑

ĝ∈Ĝ〈g, ĝ〉, Nδ0,ĝ =
∑

g∈G〈g, ĝ〉.

Proof. Since δ̂g = 〈g,−〉 and δ̂ĝ = 〈−, ĝ〉, only the first equation has to be shown.

With χ := 〈g,−〉 : Ĝ → μ Lemma 32 implies
∑

ĝ∈Ĝ〈g, ĝ〉 = Nδ0,g; hence∑
ĝ∈Ĝ â(ĝ) =

∑
ĝ∈Ĝ,g∈G a(g)〈g, ĝ〉

=
∑

g a(g)
∑

ĝ〈g, ĝ〉 =
∑

g a(g)Nδ0,g = Na(0).

Theorem 34 (Fourier inversion theorem). Under Assumption 29 the Fourier
transform FourG is an isomorphism and

FourĜ ◦FourG = N SG or Four−1
G = N−1 SG FourĜ = N−1 FourĜ SĜ or̂̂a(g) = Na(−g) or ̂̂a = N SG(a).

Proof. All assertions follow from the last equation which has to be shown for the
standard basis vectors only, from the invertibility of N and of the antipode and the
same properties for FourĜ instead of FourG. But for g, h ∈ G

̂̂
δh(g) = 〈̂h,−〉(g) =

∑
ĝ∈Ĝ〈h, ĝ〉〈g, ĝ〉 =

∑
ĝ∈Ĝ〈g + h, ĝ〉

= Nδ0,g+h = Nδ−h(g) = N SG(δh)(g); hence
̂̂
δh = N SG(δh).
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Example 35. In the situation of Example 20(1), with d = N = n the Fourier
inversion has the form

a ↔ â, â(l) =
∑n−1

k=0 a(k) exp
(
−2πikln

)
, a(k) = n−1

∑n−1
l=0 â(l) exp

(
+2πikln

)
.

Theorem 36 (product theorem). The map N−1 FourG : KG → K[Ĝ] is an
algebra isomorphism; i.e.,

N−1â1a2 = N−1â1 ∗N−1â2 or â1a2 = N−1â1 ∗ â2 and N−11̂ = δ0 or 1̂ = Nδ0.

Proof. The Fourier inversion theorem (Theorem 34) and Lemma 28 imply that

N−1 SG FourĜ : KĜ → K[G] and SG : K[G] → K[G] are algebra isomorphisms. The
same follows for N−1 FourĜ and then also for N−1 FourG.

The action of the group G on itself by translation induces an action on KG by
K-algebra automorphisms, viz.,

(25) ◦ : G×KG, (g, a) �→ g ◦ a := δg ∗ a, (g ◦ a)(h) = a(h− g).

Similarly Ĝ acts on KĜ.
Theorem 37 (shift theorem). For a ∈ KG, g ∈ G, and ĝ ∈ Ĝ the following

relations hold:

(26) FourG(g ◦ a) = 〈g,−〉â, FourG(〈−, ĝ〉a) = (−ĝ) ◦ â.

Proof. The first equation follows from the convolution theorem since

ĝ ◦ a = δ̂g ∗ a = δ̂gâ = 〈g,−〉â,

and the second from

FourG(〈−, ĝ1〉a)(ĝ2) =
∑

g∈G〈g, ĝ1〉a(g)〈g, ĝ2〉
=

∑
g∈G a(g)〈g, ĝ1 + ĝ2〉 = â(ĝ1 + ĝ2) = ((−ĝ1) ◦ â)(ĝ2).

Corollary and Definition 38 (correlation). The correlation function a ◦ b ∈
KG of two functions a, b ∈ KG is defined as

a ◦ b := (SG a) ∗ b, i.e. ,

(a ◦ b)(h) :=
∑

g∈G(SG a)(g)b(h− g)

=
∑

g∈G a(−g)b(h− g) =
∑

g∈G a(g)b(h + g).

Then

b ◦ a = SG(a ◦ b) and FourG(a ◦ b) = (SĜ â)̂b.

Proof. Since SG is an involution and an algebra homomorphism, we infer

SG(a ◦ b) = S2
Ga ∗ SGb = SGb ∗ a = b ◦ a.

The second equation follows from the convolution theorem and from SĜ FourG =
FourG SG.

For the coefficient field K := C the preceding considerations can be slightly
changed. For a function a ∈ C

G we define the complex conjugate function a ∈
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C
G as a(g) := a(g) and likewise for a ∈ C

Ĝ. On C
G and likewise on C

Ĝ we define the
standard hermitian inner product

(a1, a2) :=
∑

g∈G a1(g)a2(g) =
∑

g∈G(Sa1)(−g)a2(g) = (Sa1 ∗ a2)(0) = (a1 ◦ a2)(0),

(27)

where S denotes either SG or SĜ.

Lemma 39. â = Sâ, and hence Sâ = â.
Proof.

â(ĝ) =
∑

g a(g)〈g, ĝ〉 =
∑

g a(g)〈g,−ĝ〉 = Sâ(ĝ).

Theorem 40 (Plancherel). For a1, a2 ∈ C
G : N(a1, a2) = (â1, â2).

Proof. Using (27), Theorem 33, Corollary 38, and finally the preceding lemma,
we get

N(a1, a2) = N(a1 ◦ a2)(0) =
∑

ĝ∈Ĝ â1 ◦ a2(ĝ)

=
∑

ĝ∈Ĝ((Sâ1)â2)(ĝ) =
∑

ĝ∈Ĝ(â1â2)(ĝ) = (â1, â2).

Corollary 41 (orthogonality relations). For two characters ai := 〈−, ĝi〉, ĝ1,

ĝ2 ∈ Ĝ, on G one obtains the orthogonality relation

(a1, a2) = N(δĝ1
, δĝ2

) = Nδĝ1,ĝ2
.

Hence the characters 〈−, ĝ〉 are an orthogonal basis of C
G.

Proof. This follows from the preceding theorem and δ̂ĝi = 〈−, ĝi〉 with the roles

of G and Ĝ interchanged.

4. Linear complexity. The FFT is a fast algorithm for the computation of the
DFT. An algorithm is called fast if it has low complexity. In this section we define
the linear complexity [9, Chap. 13] of matrices and in particular of the DFT to make
this terminology precise. See [34] or the book [9] for a comprehensive treatment of
algebraic complexity theory.

Let K again denote a commutative ring and I, J finite sets, for instance, G and
Ĝ in the preceding section. We consider the free column module KJ := KJ×1 with
the column vectors ξ = (ξj)j∈J , the free row module K1×J with the row vectors
x = (xj)j∈J and the standard basis δj , j ∈ J, and the free module KI×J of I × J
matrices with coefficients in K. We identify

(28)
KI×J = HomK(KJ ,KI), A = (ξ �→ Aξ), in particular,

K1×J = HomK(KJ ,K), x = (ξ �→ xξ =
∑

j∈J xjξj).

The following considerations will be applied mainly to the Fourier transform FourG ∈
KĜ×G = homK(KG,KĜ). In the complexity theoretic arguments below we will
mostly assume A ∈ Km×n.

Motivation 42. For A ∈ KI×J the complexity or cost of an algorithm for the
computation of Aξ for arbitrary ξ will be the number of necessary elementary com-
putation steps whose cost is defined to be 1. Such a step could be an addition or a
multiplication, but we will use steps of the form (x, y) �→ ax+ y of one multiplication
and one addition for numbers a, x, y in K as realized in many standard computer pro-
cessors. If, more generally, a ∈ K is a constant and v, w ∈ K1×J , ξ ∈ KJ are vectors,
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then (av + w)ξ = a(vξ) + (wξ); i.e., the result is obtained from the numbers vξ and
wξ with one elementary computation step. This motivates the following definitions
of an algorithm and its complexity.

Definition 43. Let I, J be finite sets and let A ∈ KI×J . A sequential algorithm
of complexity or cost M ≥ 0 for A or, in more detail, for the computation of Aξ
for all ξ ∈ KJ is a sequence v1, · · · , vM of row vectors in K1×J with the following
properties.

(1) Each row Ai−, i ∈ I, belongs to V := {δj ; j ∈ J} ∪ {0} ∪ {v1, · · · , vM}.
(2) For each k = 1, . . . ,M the vector vk is given in the form vk = av +w, where

a ∈ K and v, w ∈ {δj ; j ∈ J} ∪ {0} ∪ {v1, · · · , vk−1}.
The data a, v, w depend on k, but do not get an index for notational simplic-

ity. The algorithm to compute Aξ for arbitrary ξ computes the list of M values
v1ξ, · · · , vMξ with M elementary computation steps vkξ = a(vξ) + (wξ) for values
vξ and wξ computed earlier, and the (Aξ)i = Ai−ξ, i ∈ I, are among these by con-
dition (1) of Definition 43. In contrast, the computation of 0ξ = 0 and δjξ = ξj is
costless. This signifies that the access time to the components of ξ on a real computer
is neglected.

Lemma 44. For the computation of A ∈ Km×n there is an algorithm of complexity
≤ mn.

Proof. The algorithm is the standard one for the matrix-vector product and is
given by the sequence of vectors

v1,1 := A11δ1 · · · v1,j = A1jδj + v1,j−1 · · · v1,n = A1− = A1nδn + v1,n−1

· · · · · · · · · · · · · · ·
vi,1 := Ai1δ1 · · · vi,j = Aijδj + vi,j−1 · · · vi,n = Ai− = Ainδn + vi,n−1

· · · · · · · · · · · · · · ·
vm,1 := Am1δ1 · · · vm,j = Amjδj + vm,j−1 · · · vm,n = Am− = Amnδn + vm,n−1.

If in the preceding proof Aij = 0 and hence vi,j = vi,j−1, one of these vectors can
be omitted and hence the following corollary holds.

Corollary 45. If N is the number of nonzero components of a matrix A ∈
Km×n, then there is an algorithm for A of complexity N .

Definition and Corollary 46. The linear complexity μ(A) of a matrix A ∈
KI×J is the minimal complexity of an algorithm for A. Then

(1) μ(A) ≤ N , where N is the number of nonzero components of A;
(2) μ(A) = 0 if and only if each row of A is either zero or a standard basis vector;
(3) μ(1, a2, · · · , an) ≤ n− 1 for a2, · · · , an ∈ K.

More generally, if KW and KV are free K-modules of finite dimension n := [W : K]
(resp., m := [V : K]), if w = (w1, · · · , wn) (resp., v = (v1, · · · , vm)) are fixed chosen
bases of these modules, and if f : W → V, f(w) = vA, is a linear map with the matrix
A with respect to the chosen bases, then we define the complexity

μ(f) := μw,v(f) := μ(A)

as that of the matrix A. Of course, basis transformations of V do not have complexity
zero in general.

Proof. Concerning the last item the 1 × n matrix A := (1, a2, · · · , an) admits
the algorithm v2 := δ1 + a2δ2, · · · , vn := A since the computation of 1ξ1 = ξ1 is of
complexity zero.

Corollary 47. If Assumption 29 holds and G is a group of order N , the

complexity of the Fourier transform FourG = (〈g, ĝ〉)ĝ∈Ĝ,g∈G ∈ KĜ×G is at most

N(N − 1).
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Proof. This follows like item 3 of Corollary 46 since for the column index g := 0
and any row index ĝ the entry of FourG is 〈0, ĝ〉 = 1.

Definition and Corollary 48. If α : I → J is any map between finite index
sets, the map

Kα : KJ → KI , ξ = (ξj)j∈J �→ ξ ◦ α = (ξα(i))i∈I

is called an index transformation and is of complexity zero.

Proof. The computation of Kα(ξ)i = ξα(i) just reads off one component of ξ, and
these operations are costless.

The following theorem is decisive for the computation of an upper bound of the
FFT.

Theorem 49. If A ∈ Km×n and B ∈ Kn×p, then μ(AB) ≤ μ(A) + μ(B).

Proof. Let v1, · · · , vM (resp., w1, · · · , wN ) be algorithms for A (resp., B) of mini-
mal complexity M := μ(A) and N := μ(B). We are going to show that w1, · · · , wN , v1B,
· · · , vMB is an algorithm for AB; hence μ(AB) ≤ M + N = μ(A) + μ(B). Let

VA := {δi; i = 1, . . . , n} ∪ {0} ∪ {v1, · · · , vM},
VB := {δj ; j = 1, . . . , p} ∪ {0} ∪ {w1, · · · , wN},

VAB := {δj ; j = 1, . . . , p} ∪ {0} ∪ {w1, · · · , wN , v1B, · · · , vMB}.

By definition VB ⊆ VAB . We have to show that VAB satisfies properties (1) and (2)
from Definition 43.

(1) We use Ai− ∈ VA, Bj− ∈ VB and show that (AB)i− = Ai−B ∈ VAB .

Case 1. Ai− = 0 ⇒ Ai−B = 0 ∈ VAB .

Case 2. Ai− = δk ⇒ Ai−B = δkB = Bk− ∈ VB ⊆ VAB .

Case 3. Ai− = vk ⇒ Ai−B = vkB ∈ VAB .

(2) We have to show that each vector x in {w1, · · · , vMB} is obtained from vectors
in VAB preceding x by an elementary computation step. For the vectors wl ∈ VB this
is obvious. Therefore consider a vector x = vkB ∈ VAB , where vk = au1 + u2 with
a ∈ K and vectors u1, u2 ∈ VA preceding vk. Then x = vkB = a(u1B) + (u2B), and
we have to show that u1B and u2B precede x in VAB .

Case 1. uj = 0 ⇒ ujB = 0 ∈ VAB preceding x.

Case 2. uj = standard basis vector ⇒ ujB = row of B ⇒ ujB ∈ VB ⊆ VAB

preceding x = vkB.

Case 3. uj = vl, l < k ⇒ ujB = vlB ∈ VAB preceding x = vkB.

Hence VAB has the properties of an algorithm.

Corollary 50. The complexity of block matrices satisfies

μ

((
A 0
0 B

))
≤ μ(A) + μ(B), A,B ∈ K•×• of arbitrary size.
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Proof. Theorem 49, (A 0
0 B ) =

(
A 0
0 id

) (
id 0
0 B

)
, and the trivial relation μ

(
A 0
0 id

)
=

μ(A) yield the result.

Remark 51 (multiplicative complexity). Let (X − x1) ∗ · · · ∗ (X − xn) ∈ Q[X] ⊂
C[X] be a rational polynomial with n distinct rational roots xi, i = 1, . . . , n. Then
Lagrange interpolation or the Chinese remainder theorem implies the canonical C-
isomorphism

ϕ : C[X]<n
∼= C

n, f �→ (f(x1), · · · , f(xn)),

where C[X]〈n is the space of polynomials of degree less than n. The domain (resp.,
the codomain) of ϕ has the basis 1, · · · , Xn−1 (resp., the standard basis δ1, · · · , δn).
For fixed j and f = an−1X

n−1 + · · · + a0 ∈ C[X] euclidean division furnishes

f = g(X − xj) + f(xj), g := bn−2X
n−2 + · · · + b0 with

bn−2 = an−1, bi−1 = ai + xjbi, i = n− 2, . . . , 1, f(xj) = a0 + xjb0.

This shows that f(xj) can be computed from f with n − 1 elementary computation
steps and hence μ(ϕ) ≤ n(n−1). Observe, however, that the necessary multiplications
have the rational factor xj . In the multiplicative complexity theory due to Winograd
[40] which is, for instance, also used in [26] or [18], these rational multiplications—at
least if the xj are small integers—and rational linear combinations are considered
costless, and therefore the complexity of ϕ is considered to be zero. This is not
justified for those computers where the elementary computation step consists of one
multiplication and one addition. The same cautionary remarks apply to almost all
fast algorithms which use the Chinese remainder theorem and which are not discussed
in this paper.

5. The fast Fourier transform (FFT). This is the central section of this
article. Assumptions 14 and 29 are in force; in particular all groups are finite abelian
of exponent d > 0.

Reminder 52. If ϕ : G → H is a group epimorphism of additive groups, a map
σ : H → G is called a section of ϕ if ϕσ = idH . Then σ is injective, and the elements
σ(h), h ∈ H, are a system of representatives of G/ ker(ϕ); i.e., the map

(29) H × ker(ϕ) → G, (h, k) �→ σ(h) + k,

is bijective. The map (29) is an isomorphism, and especially G = σ(H) ⊕ ker(ϕ) if
and only if σ is a monomorphism, but, in general, these properties do not hold.

We construct the FFT algorithm by means of a given filtration or sequence of
subgroups

(30) G0 = 0 ⊆ G1 ⊆ · · · ⊆ Gr = G.

A filtration (30) gives rise to the commutative exact diagrams (with exact rows and
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columns) for i = 1, . . . , r:

(31)

0⏐⏐�
0 Gi/Gi−1⏐⏐� ⏐⏐�γi:=inj

0 −−−−→ Gi−1
αi−1:=inj−−−−−−→ G

λi−1:=can−−−−−−−→ G/Gi−1 −−−−→ 0⏐⏐�βi:=inj

∥∥∥ ⏐⏐�νi:=can

0 −−−−→ Gi
αi:=inj−−−−−→ G

λi:=can−−−−−→ G/Gi −−−−→ 0⏐⏐�μi:=can

⏐⏐�
Gi/Gi−1 0⏐⏐�

0

,

where inj (resp., can) are the canonical injections (resp., surjections). Moreover, λ0

and αr are isomorphisms, and the compatibility relations λi−1αi = γiμi hold. For
more flexibility we now make the following, slightly more general assumption.

Assumption 53. Assume that Assumptions 14 and 29 are satisfied and that
commutative exact diagrams (32) are given for i = 1, . . . , r:

(32)

0⏐⏐�
0 Ki⏐⏐� ⏐⏐�γi

0 −−−−→ Gi−1
αi−1−−−−→ G

λi−1−−−−→ Hi−1 −−−−→ 0⏐⏐�βi

∥∥∥ ⏐⏐�νi

0 −−−−→ Gi
αi−−−−→ G

λi−−−−→ Hi −−−−→ 0⏐⏐�μi

⏐⏐�
Ki 0⏐⏐�
0

such that the following additional properties hold:
(1) G0 and Hr are zero or λ0 and αr are isomorphisms.
(2) The compatibility relations λi−1αi = γiμi, i = 1, . . . , r, hold.
(3) Sections σi : Ki → Gi, i = 1, . . . , r, with μiσi = idKi

and σi(0) = 0 are chosen
arbitrarily.
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These diagrams, in turn, induce the filtration 0 ⊆ α1(G1) ⊆ · · · ⊆ αr(Gr) = G
and the isomorphisms

G/αi(Gi) ∼= Hi, ḡ �→ λi(g),

Gi/βi(Gi−1) ∼= αi(Gi)/αi−1(Gi−1) ∼= Ki, gi �→ αi(gi) �→ μi(gi).

In the situation of the preceding assumption we define

(33) N := ord(G) and e� := ord(K�); hence N = e1 ∗ · · · ∗ er.

Recall that every group admits a Jordan–Hölder series, i.e., a filtration (30) or dia-
grams (31) or (32) with the property that the factors K�

∼= G�/G�−1 are simple or
have prime order e�, and that these prime numbers are uniquely determined by G.

Application of the duality functor G �→ Ĝ to the preceding diagram yields further
commutative exact diagrams.

Corollary 54. Under Assumption 53 the following diagrams are commutative
and exact:

(34)

0⏐⏐�
0 K̂j⏐⏐� ⏐⏐�μ�

j

0 −−−−→ Ĥj

λ�
j−−−−→ Ĝ

α�
j−−−−→ Ĝj −−−−→ 0⏐⏐�ν�

j

∥∥∥ ⏐⏐�β�
j

0 −−−−→ Ĥj−1

λ�
j−1−−−−→ Ĝ

α�
j−1−−−−→ Ĝj−1 −−−−→ 0⏐⏐�γ�

j

⏐⏐�
K̂j 0⏐⏐�
0

for j = r, r − 1, . . . , 1. Furthermore, they have the additional properties that
1. λ�

0 and α�
r are isomorphisms,

2. α�
jλ

�
j−1 = μ�

jγ
�
j , and

3. sections σ̂j : K̂j → Ĥj−1 with γ�
j σ̂j = id

K̂j
and σ̂j(0) = 0 are chosen arbitrar-

ily.
Thus, up to the reverse numbering, the diagrams from (34) satisfy the same

properties as the diagrams (32) of Assumption 53, and the same arguments apply to
both of them.

Lemma 55. Under Assumption 53 the map

ind :
∏r

i=1 Ki → G, k = (ki)i=1,...,r �→ ind(k) :=
∑r

i=1 αiσi(ki),

is bijective; i.e., every g ∈ G admits a unique representation g =
∑r

i=1 αiσi(ki) with
ki ∈ Ki.
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Proof. By induction on i = 0, . . . , r we show that g = αi(gi) ∈ αi(Gi), gi ∈ Gi,
admits a unique representation

g =

i∑
j=0

αjσj(kj), kj ∈ Kj .

The assertion is trivial for i = 0 and α0(G0) = 0. For i > 0 the exact sequence

0 → Gi−1
βi→ Gi

μi

�
σi

Ki → 0

with the section σi of μi and (29) imply the unique representation

gi = βi(gi−1) + σi(ki), gi−1 ∈ Gi−1, ki ∈ Ki,

and

g = αi(gi) = αiβi(gi−1) + αiσi(ki) = αi−1(gi−1) + αiσi(ki).

By induction there are unique kj ∈ Kj , j = 0, . . . , i− 1, with

αi−1(gi−1) =

i−1∑
j=0

αjσj(kj); hence g = αi(gi) =

i∑
j=0

αjσj(kj).

Application of Lemma 55 to diagram (34) yields the corollary.

Corollary 56. Under Assumption 53 every ĝ ∈ Ĝ has a unique representation

ĝ =

r∑
j=1

λ�
j−1σ̂j(k̂j), k̂j ∈ K̂j ,

or, in other terms, the map

înd :
∏r

j=1 K̂j → Ĝ, k̂ = (k̂j)j=1,...,r �→ înd(k̂) :=
∑r

j=1 λ
�
j−1σ̂j(k̂j),

is bijective.
Corollary and Definition 57 (index transformations). The maps

Ind := K ind : KG → K
∏r

i=1 Ki , a �→ a0 := a ◦ ind,

a0(k1, · · · , kr) = a (
∑r

i=1 αiσi(ki)) , ki ∈ Ki,

and

Înd := K înd : KĜ → K
∏r

j=1 K̂j , b �→ br := b ◦ înd,

br(k̂1, · · · , k̂r) = b
(∑r

j=1 λ
�
j−1σ̂j(k̂j)

)
are K-isomorphisms and index transformations according to Definition and Corol-
lary 48, and hence are of complexity zero.

The following easy considerations are central for the fast computation of the
Fourier transform â of a function a ∈ KG given by â(ĝ) =

∑
g∈G a(g)〈g, ĝ〉. According

to Lemmas 55 and 56 we write g and ĝ as

g = ind(k) =
∑r

i=1 αiσi(ki), k = (ki)i=1,...,r ∈
∏r

i=1 Ki,

ĝ = înd(k̂) =
∑r

j=1 λ
�
j−1σ̂j(k̂j), k̂ = (k̂j)j=1,...,r ∈

∏r
j=1 K̂j ,
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and compute the bimultiplicative form 〈g, ĝ〉 as

(35)
〈g, ĝ〉 =

〈∑r
i=1 αiσi(ki),

∑r
j=1 λ

�
j−1σ̂j(k̂j)

〉
=

∏r
i,j=1 factij(k, k̂), where

factij(k, k̂) := 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉 = 〈λj−1αiσi(ki), σ̂j(k̂j)〉.

For j > i the commutativity of the diagram (32) furnishes

λj−1 ◦ αi = νj−1 ◦ · · · ◦ νi+1 ◦ λi ◦ αi = 0 since

λi ◦ αi = 0; hence facti,j(k, k̂) = 〈0, σ̂j(k̂j)〉 = 1.

For j = i we use the compatibility condition (2) from Assumption 53 and infer

factii(k, k̂) = 〈λi−1αiσi(ki), σ̂i(k̂i)〉 = 〈γiμiσi(ki), σ̂i(k̂i)〉
= 〈μiσi(ki), γ

�
i σ̂i(k̂i)〉 = 〈ki, k̂i〉.

Thus

(36) factij(k, k̂) = 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉 =

{
〈ki, k̂i〉 if i = j,

1 if i < j.

From (35) and (36) we infer

(37)

〈g, ĝ〉 =
∏

j≤i factij(k, k̂) =
∏r

i=1

∏i
j=1 factij(k, k̂)

=
∏r

i=1 ϕi(ki; k̂1, · · · , k̂i), where ϕi : Ki × K̂1 × · · · × K̂i → K,

ϕi(ki; k̂1, · · · , k̂i) :=
∏i

j=1 factij(k, k̂) =
〈
αiσi(ki),

∑i
j=1 λ

�
j−1σ̂j(k̂j)

〉
.

The decisive property of the functions ϕi is that they depend on the first i components
k̂1, · · · , k̂i of k̂ only. In the same fashion (35) and (36) give rise to the representation

(38)

〈g, ĝ〉 =
∏r

j=1

∏r
i=j factij(k, k̂) =

∏r
j=1 ϕ̂j(kj , · · · , kr; k̂j) with

ϕ̂j : Kj × · · · ×Kr × K̂j → K,

ϕ̂j(kj , · · · , kr; k̂j) :=
∏r

i=j factij(k, k̂) =
〈∑r

i=j αiσi(ki), λ
�
j−1σ̂j(k̂j)

〉
.

For fixed ĝ = înd(k̂) ∈ Ĝ Lemma 55 and (37) imply

(39)
â(ĝ) =

∑
g∈G a(g)〈g, ĝ〉 =

∑
k∈

∏r
i=1 Ki

a(ind(k))〈ind(k), înd(k̂)〉

=
∑

k1∈K1, ··· , kr∈Kr
a0(k1, · · · , kr)

∏r
i=1 ϕi(ki; k̂1, · · · , k̂i),

where a0 = a◦ ind = Ind(a) according to Corollary 57. This formula for â(ĝ) suggests
that we define, for � = 1, . . . , r, intermediate functions

(40)

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k1∈K1, ··· , k�∈K�

a0(k1, · · · , kr)
∏�

i=1 ϕi(ki; k̂1, · · · , k̂i).

By definition and according to (39), we have

a0(k1, · · · , kr) = a(ind(k)) and ar(k̂1, · · · , k̂r) = â(înd(k̂)).
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The next theorem is the most important result of this paper. Its main idea, viz., the
recursive computation of the DFT, is due to Cooley and Tukey [16] who developed
the algorithm for the group G = Z/Z2r on the basis of the filtration

G0 := 0 ⊂ G1 := Z2r−1/Z2r ⊂ · · · ⊂ Gi := Z2r−i/Z2r ⊂ · · · ⊂ Gr = G.

Later it turned out that the same idea had been used before, in particular, by Gauss.
See the introduction of [8] for a short historical survey. The “decimation in time”
and “decimation in frequency” terminology used below comes from the application
of the DFT to the computation of one-dimensional Fourier integrals or series where
R or Z are interpreted as time or frequency models, and has been adapted from [8,
pp. 188–191].

Theorem 58 (Cooley–Tukey FFT or decimation in time). The following recur-

sive algorithm computes the Fourier transform â ∈ KĜ of a function a ∈ KG. By
induction on � = 0, . . . , r define functions

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K by

a0(k1, · · · , kr) := a (
∑r

i=1 αiσi(ki)) and for 1 ≤ � ≤ r

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k�∈K�

a�−1(k̂1, · · · , k̂�−1, k�, k�+1, · · · , kr)ϕ�(k�; k̂1, · · · , k̂�), where

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
.

Then

â(ĝ) = ar(k̂1, · · · , k̂r) for ĝ = înd(k̂) =

r∑
j=1

λ�
j−1σ̂j(k̂j) ∈ Ĝ, k̂j ∈ K̂j .

Proof. It remains to show that the functions a� defined in (40) satisfy these
recursive relations. But for � > 0

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
=

∑
k1, ··· , k�

a0(k1, · · · , kr)
∏�

i=1 ϕi(ki; k̂1, · · · , k̂i)

=
∑

k�∈K�
ϕ�(k�; k̂1, · · · , k̂�)

∑
k1, ··· , k�−1

a0(k1, · · · , kr)
∏�−1

i=1 ϕi(ki; k̂1, · · · , k̂i)

=
∑

k�∈K�
ϕ�(k�; k̂1, · · · , k̂�)a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr).

The induction formula of the preceding theorem can be given another traditional
form. From the definition of ϕ� in (37) and from (36) we infer

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
= 〈k�, k̂�〉

〈
α�σ�(k�),

∑�−1
j=1 λ

�
j−1σ̂j(k̂j)

〉
or

(41)
ϕ�(k�; k̂1, · · · , k̂�) = 〈k�, k̂�〉τ�(k�; k̂1, · · · , k̂�−1) with

τ�(k�; k̂1, · · · , k̂�−1) :=
〈
α�σ�(k�),

∑�−1
j=1 λ

�
j−1σ̂j(k̂j)

〉
.
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The elements τ� are roots of unity and hence nonzero and are usually called the
twiddle factors [8, p. 191], [5, p. 121]. With their help we define, for � = 1, . . . , r, the
isomorphisms

(42)

T� : KK̂1×···×K̂�−1×K�×···×Kr → KK̂1×···×K̂�×K�+1×···×Kr ,

T�(c)(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k�∈K�

c(k̂1, · · · , k̂�−1, k�, · · · , kr)ϕ�(k�; k̂1, · · · , k̂�)

= FourK� [c(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)τ�(−; k̂1, · · · , k̂�−1)](k̂�).

Here the argument of FourK� is a function in KK� which depends on the parameters

k̂1, · · · , k̂�−1, k�+1, · · · , kr. The map T� is an isomorphism since the multiplication
with τ� and the Fourier transform FourK� are bijective.

Theorem 59. In the situation of Theorem 58 the induction formula computing
a� from a�−1 can be expressed as a� = T�(a�−1), � = 1, . . . , r; hence

FourG = Înd
−1

◦ Tr ◦ · · · ◦ T1 ◦ Ind : KG → KĜ.

With e� := ord(K�) and N := e1 ∗ · · · ∗ er = ord(G) the complexity satisfies

μ(FourG) ≤ N(e1 + · · · + er − r).

Proof. The first assertion is obvious. Concerning the complexity recall the con-
dition σ�(0) = 0 from Assumption 53 and

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
; hence ϕ�(0; k̂1, · · · , k̂�) = 1.

From this and (42) we infer μ(T�) ≤ N(e�−1) as in the proof of part 3 of Corollary 46.
Since index transformations are costless according to Definition and Corollary 48, we
conclude by means of Theorem 49 that

μ(FourG) ≤
∑

� μ(T�) ≤ N(e1 − 1 + · · · + er − 1) = N(e1 + · · · + er − r).

Remark 60 (butterfly diagrams). In the literature special cases of the induction
formula of Theorem 58 are often represented by means of a directed graph or so-called
butterfly diagram. Such a graph can be introduced in general; it is, however, useless
for the actual execution of the fast algorithm. Its graphical representation in the
plane is also of no practical significance and, moreover, is complicated except in the
simplest cases such as G = Z/Z8 where it is usually shown. Indeed, consider the
graph Γ := (V,E) with vertex (resp., edge) sets V (resp., E), where

V :=
⊎r

�=0 V�, V� := K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr, E ⊂ V × V,

with edges from (k̂1, · · · , k̂�−1, k�, · · · , kr) to (k̂1, · · · , k̂�, k�+1, · · · , kr) or from V�−1

to V� only. For w = (k̂1, · · · , k̂�, k�+1, · · · , kr) ∈ V�, � ≥ 1, there results the bijection

K�
∼= {(v, w); (v, w) is an edge of Γ with endpoint w},

k� �→ (v, w), v := (k̂1, · · · , k̂�−1, k�, · · · , kr) ∈ V�−1.
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With the abbreviation a(v) := a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) the recursion formula
of Theorem 58 has the form

a(w) =
∑

a(v)ϕ�(k�; k̂1, · · · , k̂�),

where v = (k̂1, · · · , k̂�−1, k�, · · · , kr) runs over all sources of edges with sink w.

The next theorem on the “decimation in frequency” FFT computes FourĜ : KĜ →
KG and is proved in the same fashion as Theorem 58 on the basis of (38) instead of

(37). For the choice Ĝ = G it yields a second fast algorithm for the computation of
FourG (compare [8, p. 192]).

Theorem 61 (Sande–Tukey FFT or decimation in frequency). Using data from
Assumption 53 and Corollary 54, the following algorithm computes the Fourier trans-

form b̂ ∈ KG of a function b ∈ KĜ. By recursion from � = r to 0 define functions

b� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K, � = r, . . . , 0,

br(k̂1, · · · , k̂r) := b
(∑r

j=1 λ
�
j−1σ̂j(k̂j)

)
, k̂j ∈ K̂j , and for r ≥ � > 0

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
:=

∑
k̂�∈K̂�

b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ϕ̂�(k�, · · · , kr; k̂�).

Then

b̂(g) =
∑

ĝ∈Ĝ b(ĝ)〈g, ĝ〉 = b0(k1, · · · , kr) for g =
∑r

i=1 αiσi(ki) ∈ G, ki ∈ Ki.

Proof. According to (38) we have

b̂(g) =
∑

k̂∈
∏r

j=1 K̂j
b(înd(k̂))〈ind k, înd(k̂)〉

=
∑

k̂1∈K̂1, ··· , k̂r∈K̂r
br(k̂1, · · · , k̂r)

∏r
j=1 ϕ̂j(kj , · · · , kr; k̂j).

In analogy to (40) we define functions b�, r ≥ � ≥ 0, by

br(k̂1, · · · , k̂r) := b(înd(k̂)) and for � < r by

b�(k̂1, · · · , k̂�, k�+1, · · · , kr)
=

∑
k̂�+1∈K̂�+1, ··· , k̂r∈K̂r

br(k̂1, · · · , k̂r)
∏r

j=�+1 ϕ̂j(kj , · · · , kr; k̂j),

and show that they satisfy the recursive relations from which the theorem follows
directly. But, indeed,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
=

∑
k̂�∈K̂�

ϕ̂�(k�, · · · , kr; k̂�)
∑

k̂�+1∈K̂�+1, ··· , k̂r∈K̂r
br(k̂1, · · · , k̂r)

∗
∏r

j=�+1 ϕ̂j(kj , · · · , kr; k̂j)

=
∑

k̂�∈K̂�
ϕ̂�(k�, · · · , kr; k̂�)b�(k̂1, · · · , k̂�, k�+1, · · · , kr).

In analogy to (41) and (42) we also obtain, for � = r, . . . , 1,

(43)
ϕ̂�(k�, · · · , kr; k̂�) = 〈k�, k̂�〉τ̂�(k�+1, · · · , kr; k̂�),

τ̂�(k�+1, · · · , kr; k̂�) :=
〈∑r

i=�+1 αiσi(ki), λ
�
�−1σ̂�(k̂�)

〉
,



522 ULRICH OBERST

and define the isomorphism

(44)
T̂� : KK̂1×···×K̂�×K�+1×···×Kr ∼= KK̂1×···×K̂�−1×K�×···×Kr ,

T̂�(c) := Four
K̂�

[c(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)τ̂�(k�+1, · · · , kr;−)].

Theorem 62. In the situation of Theorem 61 and with the isomorphisms T̂�

from (44) and Ind, Înd from Corollary 57, we have

FourĜ = Ind−1 ◦T̂1 ◦ · · · ◦ T̂r ◦ Înd and

μ(FourĜ) ≤ N(e1 + · · · + er − r),

where e� := ord(K�) and N := e1 ∗ · · · ∗ er = ord(G).
Theorems 59 and 62 signify that the FFT-algorithms in Theorems 58 and 61 are

fast, i.e., of relatively low complexity N(e1 + · · · + er − r) instead of the N(N − 1)
of the direct computation of FourG. Recall that the algorithms and their complexity
depend on the diagrams from Assumption 53.

The best FFT-algorithms according to the preceding theorems are obtained when
the diagrams from Assumption 53 are constructed by means of a Jordan–Hölder series
of G (see the explanation after (33)). Then N = e1 ∗ · · · ∗ er is the prime factor
decomposition of G.

For the next theorem we introduce a logarithm type arithmetic function Λ. Let
N := {0, 1, · · · } denote the additive monoid of natural numbers and N>0 := {1, 2, · · · }
the multiplicative monoid of positive numbers. Every N ∈ N>0 admits the unique
prime factor decomposition

N =
∏

p∈P pordp(N), ordp(N) = 0 for almost all p,

where P = {2, 3, 5, · · · } is the set of prime numbers. The standard isomorphism

N>0
∼= N

(P) := {ν ∈ N
P ; ν(p) = 0 for almost all p ∈ P}, N �→ (ordp(N))p∈P ,

follows and induces the composed epimorphism

(45) Λ : N>0
∼= N

(P) → N, N �→ (ordp(N))p∈P �→ Λ(N) :=
∑

p∈P(p− 1) ordp(N);

hence Λ(1) = 0, and Λ(M ∗N) = Λ(M) + Λ(N). The obvious inequality

1 + (p− 1)m < (1 + p− 1)m = pm for m ≥ 2 implies Λ(N) ≤ N − 1 and

Λ(N) = N − 1 ⇔ N = 1 or N is prime.

Theorem 63. Let G be an abelian group of exponent d and order N . Then

μ(FourG) ≤ NΛ(N) ≤ N(N − 1).

The equality N(N − 1) = NΛ(N) holds if and only if G is simple or zero.
Proof. Choose a Jordan–Hölder series of G, the corresponding diagrams (31)

as those in (32), and the FFT-algorithms derived from these diagrams. Then the
numbers e� are exactly the prime factors of N = e1 ∗ · · · ∗ er and

Λ(e�) = e� − 1, Λ(N) = Λ(e1 ∗ · · · ∗ er) =
∑

� Λ(e�) =
∑

�(e� − 1); hence

μ(FourG) ≤ N(e1 − 1 + · · · + er − 1) = NΛ(N).

Examples 64. Let G be a group of order N .
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(1) The first standard case was that of Cooley and Tukey [16]:

N = 2r, Λ(N) = (2 − 1) ∗ r = r, μ(FourG) ≤ 2r ∗ r = N log2(N).

(2)

N = 675 = 33 ∗ 52, Λ(N) = (3 − 1) ∗ 3 + (5 − 1) ∗ 2 = 14 and

NΛ(N) = 675 ∗ 14 = 9450 < N(N − 1) = 454950.

(3) G := Z/Z210 × Z/Z210, N = 220. This group can be considered as a lattice
with approximately one million points and may, for instance, be used for
digital image processing. The direct computation of FourG has complexity
N(N − 1) ∼ 240, whereas that of the FFT is 20 ∗ 220 = 1, 25 ∗ 224. The
improvement of the complexity is dramatic.

6. The FFT in the standard cases. Assumption 29 remains in force. In this
section we derive the standard special cases of the FFT and start with that of a cyclic
group G = Z/Zn of exponent d > 0, i.e., with n | d. As usual in the engineering
literature we often identify

(46) Z/Zn = {0, 1, · · · , n− 1}, k = k, 0 ≤ k ≤ n− 1,

and emphasize that the necessary care has to be taken in context with this identifi-
cation. For G = Z/Zn we choose

(47) Ĝ := G = Z/Zn, 〈k, l〉 := ζkld/n, k, l ∈ Z/Zn,

according to Theorem 2. A factorization n = n1n2 of n gives rise to the exact sequence
with a natural section σ : Z/Zn2 → Z/Zn:
(48)

0 −−−−→ Z/Zn1
inj−−−−→ Z/Zn

can−−−−→ Z/Zn2 −−−−→ 0

‖ ‖ ‖

{0, · · · , n1 − 1} {0, · · · , n− 1} {0, · · · , n2 − 1},

where inj(k1) := k1n2, can(k) := k, σ(k2) := k2 if 0 ≤ k2 ≤ n2 − 1. For k ∈ Z/Zn
and k2 ∈ Z/Zn2 the equations

〈can(k), k2〉Z/Zn2
= ζkk2d/n2 = ζk(k2n1)d/n = 〈k, inj(k2)〉Z/Zn

prove can�(k2) = inj(k2); hence

(49)
(can : Z/Zn → Z/Zn2)

� = inj : Z/Zn2 → Z/Zn and

(inj : Z/Zn1 → Z/Zn)� = can : Z/Zn → Z/Zn1,

the second equality following from the first by means of inj� = (can�)� = can. Now
assume that a factorization of d is given from which we derive the following data:

(50)

d = e1 ∗ · · · ∗ er, d1(i) := e1 ∗ · · · ∗ ei, i = 0, . . . , r; hence

d1(0) = 1, d1(i) = d1(i− 1) ∗ ei,
d2(j) := d/d1(j) = ej+1 ∗ · · · ∗ er, j = r, . . . , 0,

d2(r) = 1, d2(j − 1) = d2(j) ∗ ej .
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From (50) and by means of (48) we construct commutative exact diagrams of the
type (53):

(51)

0⏐⏐�
0 Z/Zei⏐⏐� ⏐⏐�γi=inj

0 −−−−→ Z/Zd1(i− 1)
αi−1=inj−−−−−−→ Z/Zd

λi−1=can−−−−−−→ Z/Zd2(i− 1) −−−−→ 0⏐⏐�βi=inj

∥∥∥ ⏐⏐�νi=can

0 −−−−→ Z/Zd1(i)
αi=inj−−−−→ Z/Zd

λi=can−−−−−→ Z/Zd2(i) −−−−→ 0⏐⏐�μi=can

⏐⏐�
Z/Zei 0⏐⏐�

0

with the natural sections σ from (48) in Z/Zd1(i)
μi=can

�
σi=σ

Z/Zei. Application of the

exact duality functor H �→ Ĥ = H to the cyclic groups of the preceding diagram and
the identities (49) yield the dual commutative exact diagrams of the type (34):

(52)

0⏐⏐�
0 Z/Zej⏐⏐� ⏐⏐�μ�

j=inj

0 −−−−→ Z/Zd2(j)
λ�
j=inj

−−−−→ Z/Zd
α�

j=can
−−−−−→ Z/Zd1(j) −−−−→ 0⏐⏐�ν�

j =inj

∥∥∥ ⏐⏐�β�
j =can

0 −−−−→ Z/Zd2(j − 1)
λ�
j−1=inj

−−−−−−→ Z/Zd
α�

j−1=can
−−−−−−→ Z/Zd1(j − 1) −−−−→ 0⏐⏐�γ�

j =can

⏐⏐�
Z/Zej 0⏐⏐�

0

with the natural sections σ̂ from (48) in Z/Zd2(j − 1)
γ�
j =can

�
σ̂j=σ

Z/Zej . According to

Lemma 55 the diagram (51) gives rise to the index bijection
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(53)

ind :
∏r

i=1 Z/Zei =
∏r

i=1{0, · · · , ei − 1} ∼= Z/Zd = {0, · · · , d− 1},
ind(k1, · · · , kr) =

∑r
i=1 αiσi(ki) =

∑r
i=1 kid/d1(i)

=
∑r

i=1 kid2(i) =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er.

Likewise, the diagram (52) induces the bijection

(54)

înd :
∏r

j=1 Z/Zej =
∏r

j=1{0, · · · , ej − 1} ∼= Z/Zd = {0, · · · , d− 1},

înd(k̂1, · · · , k̂r) =
∑r

j=1 λ
�
j−1σ̂j(k̂j) =

∑r
j=1 k̂jd/d2(j − 1)

=
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1.

Corollary 65. The unique representation

n =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ n < d, 0 ≤ ki < ei, i = 1, . . . , r,

according to (53) is obtained by recursion with respect to i as

nr := n, ni := ni−1 ∗ ei + ki, 0 ≤ ki < ei, i = r, . . . , 1.

Likewise, the unique representation

n =
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ n < d, 0 ≤ k̂j < ej , j = 1, . . . , r,

according to (54) is obtained by induction with respect to j as

n̂0 := n, n̂j−1 = n̂j ∗ ej + k̂j , 0 ≤ k̂j < ej , j = 1, . . . , r.

Proof. The proof is the same as that of the q-adic representation of a natural
number for q > 1. For instance,

d > n =: nr := nr−1 ∗ er + kr, 0 ≤ kr < er, nr−1 ≤ n
er

< d
er

= e1 ∗ · · · ∗ er−1,

d > n =: n̂0 = n̂1 ∗ e1 + k̂1, 0 ≤ k̂1 < e1, n̂1 < e2 ∗ · · · ∗ er.

For vectors (ki; k̂1, · · · , k̂i) with components ki, k̂i ∈ Z/Zei = {0, · · · , ei−1} the
function ϕi according to (37) is defined by
(55)

ϕi(ki; k̂1, · · · , k̂i) =
〈
αiσi(ki),

∑i
j=1 λ

�
j−1σ̂j(k̂j)

〉
=

〈
kid/d1(i),

∑i
j=1 k̂jd/d2(j − 1)

〉
= ζεi(ki;k̂1, ··· , k̂i), where

εi(ki; k̂1, · · · , k̂i) := ki ∗ ei+1 ∗ · · · ∗ er ∗
∑i

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ ki, k̂i < ei.

Similarly the function ϕ̂j from (38) has the form
(56)

ϕ̂j(kj , · · · , kr; k̂j) = ζ ε̂j(kj , ··· , kr;k̂j), j = 1, · · · , r, where

ε̂j(kj , · · · , kr; k̂j) := k̂j ∗ e1 ∗ · · · ∗ ej−1 ∗
∑r

i=j ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ ki, k̂i < ei.

Theorem 58 applied to the preceding situation now implies the following theorem.
Theorem 66 (FFT for cyclic groups [8, pp. 188–191]). Consider a number d > 0

with a factorization d = e1 ∗ · · · ∗ er, the cyclic group G := Z/Zd, and the associated
DFT

FourZ/Zd : KZ/Zd = K{0, ··· , d−1} = Kd → Kd, a �→ â,

â(l) :=
∑d−1

k=0 a(k)ζkl, 0 ≤ l < d.
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1. The following “decimation in time” algorithm computes â from a with com-
plexity d(e1 + · · · + er − r). Inductively define functions

a� :
∏r

i=1{0, · · · , ei − 1} → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a (
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er) ,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑e�−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζε�(k�;k̂1, ··· , k̂�)

with ε� from (55). Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ l < d, 0 ≤ k̂j < ej .

2. The following “decimation in frequency” algorithm also computes â with com-
plexity d(e1 + · · · + er − r). Recursively define functions

b� :
∏r

�=1{0, · · · , e� − 1} → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) =
∑e�−1

k̂�=0
b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;k̂�)

with ε̂� from (56). Then

â(k) = b0(k1, · · · , kr) for k =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ k < d, 0 ≤ ki < ei.

Example 67. In the situation of the preceding theorem we choose

K := C, d = 6 = 2 ∗ 3, G := Z/Z6 = {0, · · · , 5},
ζ := exp(2πi/6) = 1/2 + i

√
3/2, ζ6 = 1,

â(l) =
∑5

k=0 a(k)ζkl, 0 ≤ k, l ≤ 5.

The FFT-algorithm of the preceding theorem computes â from a = (a(0), · · · , a(5))
with 6 ∗ (2 + 3 − 2) = 18 elementary computation steps. The root ζ satisfies the
cyclotomic equation φ6(ζ) = ζ2 − ζ + 1 = 0 or ζ2 = ζ − 1, hence the group table

k 0 1 2 3 4 5

ζk 1 ζ ζ − 1 −1 −ζ −ζ + 1

The index functions are

ind(k1, k2) = k1 ∗ e2 + k2 = 3k1 + k2 and

înd(k̂1, k̂2) = k̂1 + k̂2 ∗ e1 = k̂1 + 2k̂2, 0 ≤ k1, k̂1 ≤ 1, 0 ≤ k2, k̂2 ≤ 2.

The values of ind and înd are given in the following table:

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
ind(k1, k2) 0 1 2 3 4 5

înd(k1, k2) 0 2 4 1 3 5

The value table of a0 := a ◦ ind is

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
a0(k1, k2) a(0) a(1) a(2) a(3) a(4) a(5)
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For the computation of a1 we need the exponent ε1, where

ε1(k1; k̂1) = k1 ∗ k̂1 ∗ e2 = 3k1k̂1, ε1(0; k̂1) = 0, ε1(1; k̂1) = 3k̂1,

a1(k̂1, k2) = a0(0, k2) + a0(1, k2)ζ
3k̂1 .

In detail we get

a1(0, 0) = a0(0, 0) + a0(1, 0) = a(0) + a(3),
a1(0, 1) = a0(0, 1) + a0(1, 1) = a(1) + a(4),
a1(0, 2) = a0(0, 2) + a0(1, 2) = a(2) + a(5),
a1(1, 0) = a0(0, 0) + a0(1, 0)ζ3 = a(0) − a(3),
a1(1, 1) = a0(0, 1) − a0(1, 1)ζ3 = a(1) − a(4),
a1(1, 2) = a(0, 2) − a0(1, 2)ζ3 = a(2) − a(5).

For the computation of a2 we need ε2, where

ε2(k2; k̂1; k̂2) = k2(k̂1 + 2k̂2),

a2(k̂1, k̂2) = a1(k̂1, 0) + a1(k̂1, 1)ζ k̂1+2k̂2 + a1(k̂1, 2)ζ2(k̂1+2k̂2).

In detail, we obtain

â(0) = a2(0, 0) = a1(0, 0) + a1(0, 1) + a1(0, 2)

= a(0) + a(3) + a(1) + a(4) + a(2) + a(5) =
∑5

i=0 a(i)ζ
i∗0,

â(2) = a2(0, 1) = a1(0, 0) + a1(0, 1)ζ2 + a1(0, 2)ζ4

= a(0) + a(3) + (a(1) + a(4))ζ2 + (a(2) + a(5))(−ζ)

= a(0) + a(1)ζ2 + a(2)(−ζ) + a(3) + a(4)ζ2 + a(5)(−ζ)

=
∑5

i=0 a(i)ζ
i∗2,

â(4) = a2(0, 2) = a1(0, 0) + a1(0, 1)ζ4 + a1(0, 2)ζ8

= (a(0) + a(3)) + (a(1) + a(4))(−ζ) + (a(2) + a(5))ζ2

= a(0) + a(1)(−ζ) + a(2)ζ2 + a(3) + a(4)(−ζ) + a(5)ζ2

=
∑5

i=0 a(i)ζ
i∗4,

â(1) = a2(1, 0) = a1(1, 0) + a1(1, 1)ζ1 + a1(1, 2)ζ2

= (a(0) − a(3)) + (a(1) − a(4))ζ + (a(2) − a(5))ζ2

= a(0) + a(1)ζ + a(2)ζ2 + a(3)(−1) + a(4)(−ζ) + a(5)(−ζ2)

=
∑5

i=0 a(i)ζ
i∗1,

â(3) = a2(1, 1) = a1(1, 0) + a1(1, 1)ζ3 + a1(1, 2)ζ6

= (a(0) − a(3)) + (a(1) − a(4))(−1) + (a(2) − a(5))

= a(0) + a(1)(−1) + a(2) + a(3)(−1) + a(4) + a(5)(−1)

=
∑5

i=0 a(i)ζ
i∗3,

â(5) = a2(1, 2) = a1(1, 0) + a1(1, 1)ζ5 + a1(1, 2)ζ10

= (a(0) − a(3)) + (a(1) − a(4))(−ζ2) + (a(2) − a(5))(−ζ)

= a(0) + a(1)(−ζ2) + a(2)(−ζ) + a(3)(−1) + a(4)ζ2 + a(5)ζ

=
∑5

i=0 a(i)ζ
i∗5.

In the following corollary we assume that d in Theorem 66 is a power of a number
q; i.e.,

(57) d = qr, q > 1, r > 1, e1 = · · · = er = q, d1(i) = qi, d2(i) = qr−i.
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The associated index functions according to (53) and (54) are

(58)
ind(k1, · · · , kr) =

∑r
i=1 kiq

r−i =
∑r

j=1 kr+1−jq
j−1, 0 ≤ ki < q,

înd(k̂1, · · · , k̂r) =
∑r

j=1 k̂jq
j−1, 0 ≤ k̂j < q,

and they give the q-adic representation of a natural number. The map

(59)
înd

−1
◦ ind = ind−1 ◦ înd : {0, · · · , q − 1}r → {0, · · · , q − 1}r,

(k1, · · · , kr) �→ (kr, · · · , k1),

is usually called the bit reversal map for an obvious reason. The functions εi and ε̂j
from (55) and (56) are

εi(ki; k̂1, · · · , k̂i) =
∑i

j=1 kik̂jq
j−1+r−i, ε̂j(kj , · · · , kr; k̂j) =

∑r
i=j kik̂jq

j−1+r−i.

(60)

Corollary 68. Consider natural numbers q > 1, r > 1, and d := qr, the cyclic
group G := Z/Zqr, and the DFT

FourZ/Zqr K
G = Kqr → Kqr , a �→ â, â(l) :=

∑qr−1
k=0 a(k)ζkl, 0 ≤ l < qr.

1. The following “decimation in time” algorithm computes â from a with com-
plexity qr(q − 1)r. Inductively define functions

a� : {0, · · · , q − 1}r → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 kiq
r−i

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑q−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζε�(k�;k̂1, ··· , k̂�)

with ε� from (60). Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂jq
j−1, 0 ≤ l < qr, 0 ≤ k̂j < q.

2. The following “decimation in frequency” algorithm also computes â with com-
plexity qr(q − 1)r. Recursively define functions

b� : {0, · · · , q − 1}r → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂jq
j−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) =
∑q−1

k̂�=0
b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;k̂�)

with ε̂� from (60). Then

â(k) = b0(k1, · · · , kr) for k =
∑r

i=1 kiq
r−i, 0 ≤ k < qr, 0 ≤ ki < q.

Corollary 69 (see [16]). In the situation of Corollary 68 assume that q = 2 and
G = Z/Z2r. The FFT-algorithms reduce to the following algorithms. The functions
a, â and a�, b� belong to K2r

(resp., K{0,1}r

).
1. The following “decimation in time” algorithm computes â from a with com-

plexity r ∗ 2r. Inductively define functions

a� : {0, 1}r → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 ki2
r−i

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)

:= a�−1(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr)+a�−1(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)ζε�(1;k̂1, ··· , k̂�)
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with ε�(1; k̂1, · · · , k̂�) :=
∑�

j=1 k̂j2
j−1+r−�. Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂j2
j−1, 0 ≤ l < 2r, 0 ≤ k̂j ≤ 1.

2. The following “decimation in frequency” algorithm also computes â with com-
plexity r ∗ 2r. Recursively define functions

b� : {0, 1}r → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂j2
j−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
= b�(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr) + b�(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;1)

with ε̂�(k�, · · · , kr; 1) :=
∑r

i=� ki2
�−1+r−i. Then

â(k) = b0(k1, · · · , kr) for k =

r∑
i=1

ki2
r−i, 0 ≤ k < 2r, 0 ≤ ki ≤ 1.

Observe that the computation of a�(k̂1, · · · , k̂�, k�+1, · · · , kr) (resp., of b�−1(k̂1, · · · ,
k̂�−1, k�, · · · , kr)) from a�−1 (resp., b�) requires just one elementary computation step
α + λβ.

For the next application of Theorem 58 we assume that a direct decomposition
of the group G, i.e., an isomorphism

(61) ϕ :
∏r

i=1 Ki
∼= G,

is given. For every subset I of {1, · · · , r} we define

(62) G(I) :=
∏

i∈I Ki, especially Gi := G({1, · · · , i}), Hi := G({i + 1, · · · , r}).

For J ⊆ I there results the exact sequence

(63)

0 → G(J)
inj−→ G(I)

proj−−→ G(I \ J) → 0,

inj((lj)j∈J) := (ki)i∈I , where ki :=

{
li if i ∈ J,

0 if i ∈ I \ J,
proj((ki)i∈I) := (ki)i∈I\J ,

where, moreover, inj : G(I \ J) → G(I) is a homomorphic section of the canonical

projection proj. The groups K̂i and the forms 〈−,−〉Ki
being given arbitrarily, we

now choose

(64) Ĝ(I) :=
∏

i∈I K̂i, 〈(ki)i∈I , (k̂i)i∈I〉 :=
∏

i∈I〈ki, k̂i〉Ki .

It is then easily seen that

(65)
(inj : G(J) → G(I))� = proj : Ĝ(I) → Ĝ(J),

(proj : G(I) → G(J))� = inj : Ĝ(J) → Ĝ(I).
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The isomorphism ϕ from (61) and the exact sequences (63) and (65) now imply the
exact sequences

(66)
0 → Gi

ϕ◦inj−−−→ G
proj ◦ϕ−1

−−−−−−→ Hi → 0,

0 → Ĥi
(ϕ�)−1◦inj−−−−−−−→ Ĝ

proj ◦ϕ�

−−−−−→ Ĝi → 0.

Finally we use these data to construct the diagrams (32) and (34) in the form

(67)

0⏐⏐�
0 Ki⏐⏐� ⏐⏐�γi:=inj

0 −−−−→ Gi−1
αi−1:=ϕ◦inj−−−−−−−−→ G

λi−1:=proj ◦ϕ−1

−−−−−−−−−−−→ Hi−1 −−−−→ 0⏐⏐�βi:=inj

∥∥∥ ⏐⏐�νi:=proj

0 −−−−→ Gi
αi:=ϕ◦inj−−−−−−→ G

λi:=proj ◦ϕ−1

−−−−−−−−−→ Hi −−−−→ 0⏐⏐�μi:=proj

⏐⏐�
Ki 0⏐⏐�
0

(68)

0⏐⏐�
0 K̂j⏐⏐� ⏐⏐�μ�

j :=inj

0 −−−−→ Ĥj

λ�
j :=(ϕ�)−1◦inj

−−−−−−−−−−→ Ĝ
α�

j :=proj ◦ϕ�

−−−−−−−−→ Ĝj −−−−→ 0⏐⏐�ν�
j :=inj

∥∥∥ ⏐⏐�β�
j :=proj

0 −−−−→ Ĥj−1

λ�
j−1:=(ϕ�)−1◦inj

−−−−−−−−−−−→ Ĝ
α�

j−1:=proj ◦ϕ�

−−−−−−−−−−→ Ĝj−1 −−−−→ 0⏐⏐�γ�
j :=proj

⏐⏐�
K̂j 0⏐⏐�
0

with the canonical homomorphic sections

(69) σi := inj : Ki → Gi =
∏i

k=1 Kk and σ̂j := inj : K̂j → Ĥj−1 =
∏r

k=j K̂k.
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These diagrams induce the index transformations ind and înd from Corollaries 55
and 56; indeed

ind((ki)i=1, ··· , r) =
∑r

i=1 αiσi(ki) = ϕ (
∑r

i=1 inj ◦ inj(ki))

= ϕ (
∑r

i=1(0, · · · , 0, ki, 0, · · · , 0)) = ϕ((ki)i=1, ··· , r),

and hence

(70) ind = ϕ :
∏r

i=1 Ki
∼= G and likewise înd = (ϕ�)−1 :

∏r
j=1 K̂j

∼= Ĝ.

Also, with the notation from (35), we have

factij(k, k̂) = 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉

= 〈ϕ inj(ki), (ϕ
�)−1 inj(k̂j)〉 = 〈ϕ−1ϕ inj(ki), inj(k̂j)〉

= 〈(0, · · · , 0, ki, 0, · · · , 0), (0, · · · , 0, k̂j , 0, · · · , 0)〉 =

{
〈ki, k̂i〉 if i = j,

1 if i �= j,
and hence

ϕ�(k�; k̂1, · · · , k̂�) = 〈k�, k̂�〉, � = 1, · · · , r.

Theorem 58 now implies the following theorem.
Theorem 70. Assume that a group isomorphism ϕ :

∏r
i=1 Ki

∼= G is given.

Then the following recursive algorithm computes the Fourier transform â ∈ KĜ of
a function a ∈ KG with complexity N(e1 + · · · + er − r), where N := ord(G) and
ei := ord(Ki). Inductively define functions

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K for � = 0, . . . , r by a0 := a ◦ ϕ and

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑

k�∈K�
a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)〈k�, k̂�〉 or

a�(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr) := FourK�

(
a�−1(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)

)
.

Then â = ar ◦ ϕ�.

If, in particular, G :=
∏r

i=1 Ki and ϕ = id, then a0 = a and â = ar.
Example 71 (Walsh–Fourier FFT). We apply the preceding theorem to d := 2,

the group

G := Ĝ := (Z/Z2)r = {0, 1}r 	 k = (k1, · · · , kr), 0 ≤ ki ≤ 1,

of exponent 2 with the form k • l :=
∑r

i=1 kili ∈ Z/Z2, and a ring K in which 2 is
invertible so that Assumption 29 is satisfied for ζ := −1. The Walsh–Fourier DFT is
given by

FourG : KG ∼= KG, FourG(a)(k̂) := â(k̂1, · · · , k̂r) =
∑

k∈G a(k)(−1)k•k̂

and inductively computed with complexity r ∗ 2r by means of the algorithm

a0 := a and for 1 ≤ � ≤ r

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)

:= a�−1(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr) + a�−1(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)(−1)k̂� ,

â = ar.
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The next example contains the prime factor algorithm according to Good.
Example 72 (the Good FFT or the prime factor algorithm [19]). In the situa-

tion of Theorem 66 assume that the numbers ei are relatively prime. The euclidean
algorithm and the Chinese remainder theorem yield representations

1 = ri ∗ ei + si ∗ d/ei = ai + bi, bi := si ∗ d/ei,

and the group isomorphism

Δ : G := Z/Zd ∼=
∏r

i=1 Ki :=
∏r

i=1 Z/Zei, l �→ (l, · · · , l).

The inverse map of Δ is

ϕ := Δ−1 :
∏r

i=1 Z/Zei ∼= Z/Zd, ϕ(k1, · · · , kr) =
∑r

i=1 kibi.

For the application of Theorem 70 we compute ϕ�. The equations

〈ϕ(k1, · · · , kr), l〉 = ζ
∑r

i=1 kibil

= ζ
∑r

i=1 ki(sil)d/ei =
∏r

i=1〈ki, sil〉Ki = 〈k, (s1l, · · · , srl)〉

imply

ϕ�(l) = (s1l, · · · , srl) = (s1, · · · , sr)Δ(l) ∈
∏r

i=1 Z/Zei.

Application of Theorem 70 to the preceding data now shows that the following algo-
rithm computes â ∈ KG from a ∈ KG with complexity d(e1+ · · ·+er−r). Inductively
define functions

a� :
∏r

i=1{0, · · · , ei − 1} → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 kibi

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑e�−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζk�k̂�d/e� . Then

a(l) = ar(s1l, · · · , srl), l ∈ Z/Zd.

Consider, in particular, the case of Example 67, i.e., d = 6 = e1e2 = 2 ∗ 3. Then

1 = (−1) ∗ 2 + 1 ∗ 6/2 = 2 ∗ 6/3 + (−1) ∗ 3; hence s1 = 1, b1 = 3, s2 = 2, b2 = 4.

The maps

ϕ, (ϕ�)−1 : Z/Z2 × Z/Z3 = {0, 1} × {0, 1, 2} → Z/Z6 = {0, 1, 2, 3, 4, 5}

have the value table

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
ϕ(k1, k2) 0 4 2 3 1 5

(ϕ�)−1(k1, k2) 0 2 4 3 5 1

Since the maps ϕ and (ϕ�)−1 differ from the index maps ind and înd from Example 67,
the FFT-algorithms from Theorem 66 and Example 72 applied to the same case
d = e1 ∗ · · · ∗ er with relatively prime ei differ, too.
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7. Fast convolution. The assumptions of section 3 are in force; in particular,
the Fourier transform is invertible.

The FFT also induces a fast convolution algorithm for the group algebra K[G] and
the polynomial algebra K[z1, · · · , zr]. Let, more generally, A be a commmutative K-
algebra with a fixed chosen basis of length N , for instance, K[G] with the standard
basis. The multiplication A × A → A is K-bilinear, but not linear, and therefore
requires the notion of a bilinear or multiplicative complexity. Several papers and books
treat this type of complexity and construct fast algorithms of small multiplicative
complexity [40], [3], [1], [34], [9, Def. 14.7], [30], [18]. In the present paper we do not
treat these algorithms and use only the complexity of linear maps as introduced in
section 4. For fixed a ∈ A the map A → A, b �→ ab, is K-linear and therefore its
linear complexity (with respect to the chosen basis),

(71) μA(a) := μ(A → A, b �→ ab) ≤ N2 and then μlin(A) := maxb∈A μA(b) ≤ N2,

is defined according to Definition 46. It is obvious that KG with the argumentwise
multiplication and the standard basis has the complexity

(72) μlin(KG) ≤ N := ord(G)

since the corresponding matrices are diagonal matrices with at most N nonzero entries.
Theorem 73 (fast convolution). The data are as in Theorem 63. Let a ∈ K[G]

be an arbitrarily chosen but fixed function and consider the linear map f : K[G] →
K[G], b �→ a ∗ b. Then f is the composition of the maps

f : K[G]
FourG−→ KĜ â·(−)−→ KĜ N−1 Four

Ĝ−→ KG SG−→ KG,

and hence its complexity satisfies

μK[G](a) := μ(f) ≤ N(1 + 2Λ(N)) and thus also μlin(K[G]) ≤ N(1 + 2Λ(N)).

Proof. Let c := a ∗ b; hence ĉ := âb̂ by the convolution theorem. The Fourier
inversion theorem implies

f(b) = c = SG(N−1 FourĜ)(ĉ) = SG(N−1 FourĜ)(âb̂),

and f is indeed the asserted composition. According to Theorem 49 its complexity
is at most the sum of the complexities of its factors. The two Fourier transforms
have complexity at most NΛ(N) according to Theorem 63 and the argumentwise
multiplication with â at most N . The complexity of the antipode is zero since it is
an index transformation; see Definition and Corollary 48. The algorithm for FourĜ
from Theorem 61 can be adapted to the computation of N−1 FourĜ by replacing

ϕ̂r(kr, k̂r) = factrr(kr, k̂r) = 〈kr, k̂r〉

in the recursion step cr �→ cr−1 by N−1〈kr, k̂r〉. This implies that also N−1 FourĜ has
complexity at most NΛ(N), and therefore the complexity of b �→ a ∗ b and of K[G] is
indeed at most N(1 + 2Λ(N)).

Algorithm 74 (fast convolution). The fast algorithm for the convolution a ∗ b
in the group algebra K[G] consists of the following steps:

1. Precompute the Fourier transform â ∈ KĜ. This computation and its com-
plexity are not counted because â is assumed known when f is applied.
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2. Compute b̂ with the decimation in time FFT according to Theorems 58 and 63
with complexity NΛ(N).

3. Compute ĉ := âb̂, (âb̂)(ĝ) = â(ĝ)̂b(ĝ) with complexity at most N .

4. Compute N−1̂̂c with the slight modification of the decimation in frequency
FFT from Theorem 61 with complexity NΛ(N) and then apply the antipode
to the result to obtain c = a ∗ b.

It suffices to compute br(k̂) only in the first FFT-algorithm (see Theorem 58) and to

start the second FFT-algorithm with cr(k̂) = ar(k̂)br(k̂); i.e., the computation of the

elements ĝ = înd(k̂) =
∑r

j=1 λ
�
j−1σ̂j(k̂j) is superfluous.

Remark 75. If in the preceding algorithm for a ∗ b the complexity of computing â
is also counted, then the total complexity of the algorithm is N(1 + 3Λ(N)). Recall,
however, that in this article we gave only a formal definition for the complexity of a
linear, but not of a bilinear, map such as a ∗ b with variable a and b. Our complexity
counts all necessary elementary computation steps for the computation of c = a∗b and
not only the essential multiplications which enter into the multiplicative complexity.

The fast convolution also induces a fast algorithm for the multiplication of mul-
tivariate polynomials in K[z] = K[z1, · · · , zr]. For this purpose we consider the case

(73)

G = Ĝ = Z/Zd1 × · · · × Z/Zdr

=
ident.

I(d) := {0, · · · , d1 − 1} × · · · × {0, · · · , dr − 1} 	 μ = (μ1, · · · , μr),

μ • ν :=
∑r

i=1 μiνi
d
di

∈ Z/Zd, 〈μ, ν〉 = ζμ•ν .

The group algebra K[G] has the K-basis δμ, μ ∈ G. With

x := (x1, · · · , xr), xi := δ(0, ··· ,0,1,0, ··· ,0), 1 at the ith place, i = 1, . . . , r, we get

δμ = xμ and xdi
i − 1 = 0.

Lemma and Definition 76. The substitution homomorphism K[z] → K[G],
zi �→ xi, induces an isomorphism

(74) K[z]/〈zd1
1 − 1, · · · , zdr

r − 1〉 ∼= K[G], zμ �→ δμ = xμ, f �→ f(x).

In what follows we therefore identify these two algebras, i.e., for

f =
∑

μ∈Nr fμz
μ ∈ K[z] : f = f(x) =

∑
μ∈Nr fμx

μ =
∑

μ∈Nr fμδμ.

In particular, we get the K-linear isomorphism

K[z]I(d) := {f ∈ K[z]; for all i = 1, . . . , r : degzi(f) ≤ di − 1}
= ⊕μ∈I(d)Kzμ ∼= K[G], zμ �→ δμ = xμ.

In other words, one can reproduce f from f(x) if the degree bounds degzi(f) ≤ di − 1
are observed.

Proof. Induction by means of the canonical isomorphism

K[z]/〈zd1
1 − 1, · · · , zdr

r − 1〉
∼= (K[z1, · · · , zr−1]/〈zd1

1 − 1, · · · , zdr−1

r−1 − 1〉)[zr]/〈zdr
r − 1〉

shows that this algebra has the K-basis zμ, μ ∈ I(d). The induced homomorphism
(74) maps this K-basis onto the basis xμ, μ ∈ I(d) =

ident.
G of K[G], and is thus an

isomorphism.
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Now let m,n, d be vectors in N
r with the property

(75) mi + ni ≤ di + 1, i = 1, . . . , r, such that K[z]I(m) ×K[z]I(n)
mult−→ K[z]I(d)

is well defined.
Corollary 77 (fast multiplication of polynomials). The multiplication

(76)

K[z]I(m) ×K[z]I(n)
mult−→ K[z]I(d), (P,Q) �→ PQ,

P =
∑

μ∈I(m) aμz
μ, Q =

∑
ν∈I(n) bνz

ν ,

PQ =
∑

λ∈I(d)

∑
μ,ν, μ+ν=λ{aμbν , μj ≤ mj − 1, νj ≤ nj − 1}zλ

equals the composition of the maps
(77)

K[z]I(m) ×K[z]I(n)
inj× inj−→ K[z]I(d) ×K[z]I(d) ∼= K[G] ×K[G]

∗→ K[G] ∼= K[z]I(d).

If the product PQ is computed according to the algorithm in (76), the complexity is∏r
i=1 mini.

If, on the other hand, (77) is used with the fast convolution algorithm, Algorithm 74,
then the algorithm has the complexity

N(1 + 3Λ(N)), where N = ord(G) := d1 ∗ · · · ∗ dr.

Note that this algorithm depends on the choice of d1, · · · , dr.
Proof. The proof is obvious since in (77) all maps except the convolution have

complexity zero. See Remark 75 for the applied complexity notion.
In applications of the preceding algorithm (77) the degrees mj and nj are given in

general, whereas the numbers dj > mj +nj −2 may be suitably chosen. We illustrate
the case

r = 1, m1 = n1 = m, 2 ∗ (m− 1) < d = N.

Examples 78.

(1) The standard choice is

N = 2e, e ≥ 2, Λ(2e) = e, m ≤ 2e−1; hence

N(1 + 3Λ(N)) = 2e(1 + 3e). But

2e−2 ≤ 1 + 3e for 2 ≤ e ≤ 6; hence

m2 ≤ 22(e−1) ≤ 2e(1 + 3e) = N(1 + 3Λ(N)) for N = 2e, 2 ≤ e ≤ 6.

This signifies that for the convolution of polynomials of degree at most 31 the
direct computation of complexity m2 = 1024 is faster than the algorithm of
(77) with N = 26 and complexity 26 ∗ (1 + 3 ∗ 6) = 1216.

(2)

m := 36, N1 := 72 = 23 ∗ 32 < N2 = 128 = 27,

Λ(N1) = 3 ∗ 1 + 2 ∗ 2 = 7 = Λ(N2). Again

m2 = 1296 < N1(1 + 3Λ(N1)) = 1584 < N2(1 + 3Λ(N2) = 2816.

Also in this case the direct computation of the product is better than the two
algorithms (77) for N1 (resp., N2).
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(3)

m := 70, N1 = 144 = 24 ∗ 32, N2 := 28,

Λ(N1) = 4 + 2 ∗ 2 = 8 = Λ(N2). Then

N1(1 + 3Λ(N1)) = 3600 < m2 = 4900 < N2(1 + 3Λ(N2)) = 6400.

The algorithm for N1 is faster than the direct computation, while that for the
smallest power-of-two, 28, which exceeds 2∗69 is slower. This example shows
that the standard choice of the power-of-two Cooley–Tukey FFT may not
work at all or may give bad results for the fast multiplication of polynomials.

(4) This example is a multivariate one with

r > 1, but m1 = · · · = mr = n1 = · · · = nr = 2.

The polynomials P and Q are of degree at most one in each indeterminate
zi or contain only square-free monomials. The direct computation of PQ has
the total complexity

∏r
j=1 mjnj = 4r. The optimal choice for the dj is

d1 = · · · = dr = 3; hence N = 3r, Λ(N) = 2r.

The algorithm (77) for these data has the complexity

N(1 + 3Λ(N)) = 3r(1 + 6r) < 4r for r ≥ 16.

The best applicable power-of-two FFT is that with d1 = · · · = dr = 4 and
the ensuing multiplication complexity 4r(1 + 6r) which is much slower than
the direct multiplication.

8. Number theoretic transforms (NTT). The following considerations give
interesting examples of the DFT with coefficient rings instead of fields. They are
simple variants or special cases of those in [26, Chap. 8], [15], [18, Chap. 7], where
also the technical significance of these transforms is discussed. We adapt our notation
to that of [26] and consider N > 0, a commutative ring K, and a primitive Nth root
of one ζ ∈ K. Consider the groups

G := Ĝ := Z/ZN =
ident.

{0, · · · , N − 1} with k • l := kl ∈ Z/ZN, 〈k, l〉 := ζkl,

μ := 〈ζ〉 = {η0, · · · , ηi := ζi, · · · , ηN−1 := ζN−1}.

The Fourier transform Four := FourG on G is given as (see Example 20)

a, â := FourZ/ZN (a) ∈ KN , â(l) =
∑N−1

k=0 ζlka(k), or⎛⎜⎜⎝
â(0)
â(1)
· · ·

â(N − 1)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 · · · 1
η0 η1 · · · ηN−1

· · · · · · · · · · · ·
ηN−1
0 ηN−1

1 · · · ηN−1
N−1

⎞⎟⎟⎠
⎛⎜⎜⎝

a(0)
a(1)
· · ·

a(N − 1)

⎞⎟⎟⎠ .

The determinant of this Vandermonde matrix is

(78) det :=
∏

0≤i<j≤N−1(ηj − ηi) =
∏

0≤i<j≤N−1 ζ
i(ζj−i − 1),

whose factors are the units ζi and the η − 1, 1 �= η ∈ μ.
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Reminder 79 (see [23, pp. 203–207]). Let z := exp(2πi
N ) denote a complex prim-

itive Nth root of one and ν := 〈z〉 the cyclic group of all complex Nth roots of one.

If d ≥ 1 is a divisor of N , the set νd := {z N
d k; 1 ≤ k ≤ d − 1, gcd(k, d) = 1} consists

exactly of the ϕ(d) := ord(U(Z/Zd)) primitive dth roots of one, and the dth cyclo-
tomic polynomial Φd :=

∏
x∈νd

(X − x) is the (irreducible) minimal polynomial of all
its roots in Q[X] and has coefficients in Z, the latter property being derived from the
obvious product representation

(79) XN − 1 =
∏

x∈ν(X − x) =
∏

d|N
∏

x∈νd
(X − x) =

∏
d|N Φd.

Since Φd ∈ Z[X] the value Φd(x) is defined for every element x of any ring.
Theorem 80 (see [26, Thms. 8.3, 8.4], [15, Satz 2.8]). The following assertions

are equivalent.
(1) Assumption 29 is satisfied, and hence the Fourier inversion theorem, Theo-

rem 34, holds for all finite abelian groups of exponent N , i.e., (i) N ∈ U(K)
and (ii)

for all d > 1, d | N, η := ζ
N
d : 1 + η + · · · + ηd−1 = 0.

(2) The Fourier transform FourZ/ZN is an isomorphism.
(3) For all η �= 1 in μ = 〈ζ〉 the element η − 1 is a unit in K.
(4) (i) N ∈ U(K). (ii) ΦN (ζ) = 0.
Proof. (1) ⇒ (2): This is a special case.
(2) ⇔ (3): The Fourier transform is an isomorphism if and only if its (Van-

dermonde) determinant (78) is a unit, and this is the case if and only if all factors
η − 1, 1 �= η ∈ μ, of this determinant are units, the ζi being units by assumption.

(3) ⇒ (1): As just shown, FourZ/ZN is an isomorphism. Let d > 1 be a divisor of

N and let η := ζ
N
d be the root of order ord(η) = d; hence

0 = ηd − 1 = (η − 1)(ηd−1 + · · · + 1).

But

N

d
< N, ord(ζ) = N ⇒ η �= 1 ⇒

(3)
η − 1 ∈ U(K) ⇒ ηd−1 + · · · + 1 = 0,

and this is the second condition of Assumption 29. The proof of Theorem 34 then
implies that Four2

Z/ZN = NSZ/ZN . Since FourZ/ZN and SZ/ZN are isomorphisms, N
is invertible in K.

(1), (2), (3) ⇒ (4): Equation (79) implies

0 = ζN − 1 = ΦN (ζ)
∏

d|N, 1≤d<N Φd(ζ).

But Φd | Xd − 1 and condition (3) imply that

for all d with d | N, 1 ≤ d < N : Φd(ζ) ∈ U(K);

hence ΦN (ζ) = 0.
(4) ⇒ (1): Let 1 < d be a divisor of N and let

Y := X
N
d ; hence XN − 1 = Y d − 1 = (Y − 1)(Y d−1 + · · · + 1).
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The polynomial ΦN is irreducible in Z[X] and divides XN − 1, but not X
N
d − 1 since

d > 1; hence ΦN divides Y d−1 + · · · + 1. But then

ΦN (ζ) = 0, η := Y (ζ) = ζ
N
d , and thus ηd−1 + · · · + 1 = 0.

This is exactly the second condition of Assumption 29.
Reminder 81 (see [23, Exercise 7, p. 73]). Let

p = odd prime, m ≥ 1, K := Z/Zpm, can : K → Z/Zp, k �→ k. The group

U(K) = {η = k ∈ K; gcd(p, k) = 1 or can(η) �= 0 or can(η) ∈ U(Z/Zp)}

is cyclic of order ϕ(pm) = pm−1(p−1). More precisely, one obtains an exact sequence

1 → 〈1 + p〉 ⊂→ U(K)
can

�
σ

U(Z/Zp) → 1,

where 〈1 + p〉 is cyclic of order pm−1 and where σ is the unique section of can which
satisfies the condition σ(λp) = σ(λ)p; indeed, σ is the well-defined map

σ : U(Z/Zp) → U(K), k �→ kpm−1 ,

which is a monomorphism and induces the isomorphism

U(Z/Zp) × 〈1 + p〉 ∼= U(K), (λ, η) �→ σ(λ)η.

Since U(Z/Zp) is cyclic of order p−1 and gcd(pm−1, p−1) = 1, the Chinese remainder
theorem implies that U(K) is cyclic, too, and is generated by σ(λ)(1 + p), where λ is
a primitive (p− 1)st root of one in Z/Zp. If p = 2 and m ≥ 3, the group U(Z/Z2m)
is not cyclic and is uninteresting for the DFT as will be shown instantly.

Lemma 82. Let p be prime, m ≥ 1, K := Z/Zpm, and ζ ∈ K a primitive Nth
root of one which satisfies the equivalent conditions of Theorem 80. Then N divides
p− 1. In particular, if p = 2, then N = 1 and ζ = 1, and therefore the case p = 2 is
uninteresting within the context of the DFT.

Proof. Assume p− 1 < N . By Theorem 80, ζp−1 − 1 is a unit in K and hence so
is can(ζp−1 − 1) = can(ζ)p−1 − 1 = 0 in Z/Zp, which is a contradiction. On the other
hand, N divides the order ϕ(pm) = pm−1(p− 1) of U(K), and thus N is a divisor of
p− 1.

Theorem 83 (see [26, Thm. 8.6], [15, Satz 2.2]). Let M > 2 be an odd number,
M = pm1

1 ∗ · · · ∗ pms
s its prime factor decomposition, K = Z/ZM , and N > 0. Then

K contains an Nth root of one satisfying the equivalent conditions of Theorem 80 if
and only if N divides gcd(p1 − 1, · · · , ps − 1).

Proof. The Chinese remainder theorem furnishes the isomorphism

Δ : K = Z/ZM ∼= K1 ×· · ·×Ks := Z/Zpm1
1 ×· · ·×Z/Zpms

s , k �→ Δ(k) = (k, · · · , k).

Assume ζ ∈ K satisfies the assumptions of Theorem 80 and let

Δ(ζ) = (ζ1, · · · , ζs); hence N = ord(ζ) = lcm(N1, · · · , Ns), Ni := ord(ζi), and

Δ(ζm − 1) = (ζm1 − 1, · · · , ζms − 1).

The latter element is a unit if m := Ni < N , but ζNi
i − 1 = 0; hence N = N1 = · · · =

Ns and N | pi − 1, i = 1, . . . , s, by Lemma 82.
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If, conversely, for all i the number N divides pi−1, λi is a generator of U(Z/Zpi)
and σi : U(Z/Zpi) → U(Ki) is the section according to Reminder 81, then

ζ := Δ−1

(
σ1

(
λ

p1−1
N

1

)
, · · · , σs

(
λ

ps−1
N

1

))
is the asserted root of one.

We refer the reader to [26] and [18] for the discussion of special cases of the
preceding theorem, in particular, those of Mersenne and Fermat number transforms
with M = 2n − 1 (resp., M = 2n + 1).
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[25] H. D. Lüke, Signalübertragung, Springer, Berlin, 1990.
[26] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Springer, Berlin,

1981.
[27] U. Oberst, Explizite Rekursionsformeln zur schnellen Fouriertransformation, in Actes Sémi.

Loth. de Combinatoire 18, IRMA, University of Strasbourg, Strasbourg, France, 1988,
pp. 119–126.

[28] U. Oberst, The Fast Fourier Transform, Publ. 79, Centro Vito Volterra, Universita di Roma II,
Rome, 1991.

[29] U. Oberst, Galois Theory and the Fast Gelfand Transform, Publ. 99, Centro Vito Volterra,
Universita di Roma II, Rome, 1992.

[30] U. Oberst and S. Walch, The Optimal Fast Fourier, Gelfand and Hartley Transforms, in
preparation.

[31] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice–Hall, En-
glewood Cliffs, NJ, 1989.

[32] A. V. Oppenheim and A. S. Willsky, Signals and Systems, Prentice–Hall, Englewood Cliffs,
NJ, 1983.

[33] C. M. Rader, Discrete Fourier transforms when the number of data points is prime, Proc.
IEEE, 56 (1968), pp. 1107–1108.

[34] V. Strassen, Algebraic complexity theory, in Algorithms and Complexity, J. V. Leeuwen, ed.,
Elsevier, Amsterdam, 1990, pp. 633–672.

[35] R. Tolimieri, Multiplicative characters and the discrete Fourier transform, Adv. in Appl.
Math., 7 (1986), pp. 344–380.

[36] R. Tolimieri and M. An, Lesser known FFT algorithms, in Twentieth Century Harmonic
Analysis—A Celebration, J. S. Byrnes, ed., Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2001, pp. 151–162.

[37] R. Unbehauen, Systemtheorie, Oldenbourg Verlag, München, Germany, 1990.
[38] S. Walch and U. Oberst, Equivariant fast Gelfand and Fourier transforms: Algorithms and

computer implementations, in Mathematical Theory of Networks and Systems, Proceedings
of the MTNS-98 Symposium, Il Poligrafo, Padova, Italy, 1998, pp. 899–902.

[39] S. Winograd, On computing the discrete Fourier transform, Math. Comp., 32 (1978), pp. 175–
199.

[40] S. Winograd, On the multiplicative complexity of the discrete Fourier transform, Adv. in
Math., 32 (1979), pp. 83–117.



SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 2, pp. 541–561

PERFORMANCE BOUNDS IN Lp-NORM FOR APPROXIMATE
VALUE ITERATION∗

RÉMI MUNOS†

Abstract. Approximate value iteration (AVI) is a method for solving large Markov decision
problems by approximating the optimal value function with a sequence of value function represen-
tations Vn processed according to the iterations Vn+1 = AT Vn, where T is the so-called Bellman
operator and A an approximation operator, which may be implemented by a supervised learning
(SL) algorithm. Usual bounds on the asymptotic performance of AVI are established in terms of
the L∞-norm approximation errors induced by the SL algorithm. However, most widely used SL
algorithms (such as least squares regression) return a function (the best fit) that minimizes an em-
pirical approximation error in Lp-norm (p ≥ 1). In this paper, we extend the performance bounds
of AVI to weighted Lp-norms, which enables us to directly relate the performance of AVI to the
approximation power of the SL algorithm, hence assuring the tightness and practical relevance of
these bounds. The main result is a performance bound of the resulting policies expressed in terms
of the Lp-norm errors introduced by the successive approximations. The new bound takes into ac-
count a concentration coefficient that estimates how much the discounted future-state distributions
starting from a probability measure used to assess the performance of AVI can possibly differ from
the distribution used in the regression operation. We illustrate the tightness of the bounds on an
optimal replacement problem.

Key words. Markov decision processes, dynamic programming, optimal control, function ap-
proximation, error analysis, reinforcement learning, statistical learning

AMS subject classifications. 49L20, 90C40, 90C59, 93E20
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1. Introduction. We consider the problem of solving large state-space Markov
decision processes (MDPs) [29] in an infinite time horizon, discounted reward setting.

The value iteration algorithm is a method for computing the optimal value func-
tion V ∗ by processing a sequence of value function representations Vn according to
the iterations Vn+1 = T Vn, where T is the so-called Bellman operator. Due to a con-
traction property—in L∞-norm—of the Bellman operator, the iterates Vn converge
to V ∗ as n → ∞. However, this method is intractable when the number of states is
so large that an exact representation of the values is impossible. We therefore need
to represent the functions with a moderate number of coefficients and use methods
for finding an approximate solution.

A very popular algorithm is the approximate value iteration (AVI) algorithm.
It has long been implemented in many different settings in dynamic programming
(DP) [32, 5] with online variants in the field of reinforcement learning (RL) [7, 33].
It is defined by a sequence of value function representations Vn that are processed
recursively by means of the iterations

(1.1) Vn+1 = AT Vn,

where T is the Bellman operator and A an approximation operator, which may be
sampling-based implemented by a supervised learning (SL) algorithm (see, e.g., [15]).
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Since we will make use of different norms, let us now recall their definition: Let
u ∈ R

N . Its supremum (L∞) norm is defined by ||u||∞ := sup1≤x≤N |u(x)|. Now,
for μ being a probability measure on {1, . . . , N}, the weighted Lp-(semi)norm (for

p ≥ 1)—denoted by Lp,μ—of u is ||u||p,μ :=
[∑

1≤x≤N μ(x)|u(x)|p
]1/p

. In addition,
we denote by || · ||p the unweighted Lp-norm (i.e., when μ is uniform).

A typical implementation of AVI is fitted value iteration, which, given a func-
tion space F , computes at each iteration a new value representation Vn+1 ∈ F by
projecting onto F the Bellman image of the current estimate Vn. For illustration,
a sampling-based version of this algorithm could be defined as follows: At stage n,
we draw a set of independent states {xk ∼ μ}1≤k≤K , where μ is some probability
measure on the state space, compute the Bellman values {vk := T Vn(xk)}1≤k≤K for
the current approximation Vn at those states, then make a call to an SL algorithm
with the data {(xk, vk)}1≤k≤K ({xk} being the input and {vk} the desired output).
The SL algorithm would return a function Vn+1 (the best fit) that minimizes some
empirical loss

Vn+1 := arg min
g∈F

1

K

∑
1≤k≤K

l(g(xk) − vk),

where the loss function l is usually a square or an absolute function (or variants, such
as the ε-insensitive loss used in support vectors [36]).

This is a sampling-based version of the minimization problem in a weighted (by
μ) absolute or quadratic norm (Lp,μ-norm with p = 1 or 2, respectively)

arg min
g∈F

||g − T Vn||p,μ.

The field of statistical learning analyses the difference between the minimized em-
pirical loss 1

K

∑
1≤k≤K l(Vn+1(xk)−vk) and the corresponding Lp,μ-norm approxima-

tion error ||Vn+1−T Vn||p,μ in terms of the number of samples K and a capacity mea-
sure of the function space F (such as the covering number or the Vapnik–Chervonenkis
(VC) dimension [28, 36] of F).

It is therefore natural to search for bounds on the performance of AVI that rely
on weighted Lp-norms (p ≥ 1) of the approximation errors ||Vn+1 − T Vn||p,μ.

Unfortunately, the main field of investigation so far in approximate DP makes use
of the supremum norm [4, 5, 6, 29, 7, 16, 13]. For example, the asymptotic performance
of the policies deduced by the AVI algorithm may be bounded in terms of the L∞-
norm of the approximation errors ||Vn+1 − T Vn||∞ (see section 2). However, this
bound is not very useful since this uniform approximation error is difficult to control
in general and is not very practical because most currently known SL algorithms solve
an empirical minimization problem in Lp-norm (like least squares regression, neural
networks, support vector, and kernel regression). Since most approximation operators
provide good approximations in Lp-norm but a poor performance with respect to
(w.r.t.) the L∞-norm, it would be relevant to measure the algorithm performance
w.r.t. the former norm.

The purpose of this paper is to extend error bounds for AVI to Lp-norms. The
performance of AVI can therefore be directly related to the approximation power of
the SL algorithm.

To begin with, let us mention that of course norms are equivalent (in the case of
finite-dimensional spaces) since || · ||p ≤ || · ||∞ ≤ N1/p|| · ||p (with p ≥ 1 and N being
the number of states); thus the usual L∞ bound for AVI (detailed in section 2) may
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also be used to derive an Lp-norm bound. However, because of the N1/p factor, this
yields a very loose bound for large scale problems.

The bounds derived here (see Theorem 5.2 in section 5) depend on a new con-
centration (or stability) measure of the MDP: The concentration coefficient C(ν, μ)
measures how much the discounted average future-state distribution starting from
some distribution ν used to assess the performance of AVI (through the weighting
of the Lp-norm of the algorithm’s performance) can possibly diverge from the dis-
tribution μ used in the regression step (by the SL algorithm). This concentration
coefficient is defined as an upper bound, taken for any nonstationary policy, of the
derivative of the discounted future-state distribution (starting from ν and following a
policy) w.r.t. the regression distribution μ.

This coefficient is related to the so-called top-Lyapunov exponent, which is com-
monly used to analyze the stability of stochastic processes. Further discussion about
this concept in continuous spaces (where this coefficient is defined in terms of the
Radon–Nikodým derivative of the related probability measures) can be found in [27].

A sufficient condition for the concentration coefficient to be small is when the
MDP is “smooth” (i.e., when the transition probabilities are strongly stochastic, e.g.,
close to uniform distribution). Actually, we derive another bound, this time on the L∞
performance of the AVI algorithm (but still in terms of the Lp approximation errors)
using another concentration coefficient C(μ) that relates the immediate transition
probabilities of the MDP to the regression distribution μ. For a uniform μ, a smooth
MDP will define a small C(μ) value, and our bound will be sharp. However, for
an MDP with deterministic transitions, the coefficient C(μ) could depend heavily on
the number of states N , making our new bounds no more informative than a usual
L∞-norm bound. This is illustrated in the chain walk MDP (for which C(μ) = N)
described in subsection 5.5. However, even for deterministic MDPs, the concentration
coefficient C(ν, μ) may be small, and independent of N , as illustrated in the same
example. For such cases, the new Lp bound is arbitrarily better than the usual L∞
one.

The main intuition underlying this extension of usual L∞ bounds to Lp-norms
is actually simple (see the first paragraph of section 5) and is a consequence of the
componentwise bounds obtained in section 4.

To the best of our knowledge, this weighted Lp-norm analysis of AVI is new.
Previous Lp analyses in approximate dynamic programming (ADP) include temporal
difference learning (for the evaluation of a fixed policy) with linear approximation
[35] and approximate policy iteration [26] (and [1] in the continuous space, sampling-
based case). Let us mention that there is an important body of literature in the
domain of weighted L∞-norm analysis of ADP [7, 17], especially for the linear pro-
gramming approach [10]. Let us also remark that there exists an important related
field concerned with stability, ergodicity, and convergence properties of future state
distributions w.r.t. the invariant probability measure (in Markov chains [19] or MDPs
[18, 25]). This is not the direction followed in this paper since we are interested in
the discounted reward case (with a fixed discount factor) and not the average reward
case.

The paper is organized as follows: In section 2, we recall some approximation
results in L∞-norm. Section 3 is a rough survey of approximation operators and SL
algorithms. The main tool used in this paper is the derivation of the componentwise
bounds for AVI, detailed in section 4. The performance bounds in Lp-norms are stated
in section 5, and the main result of this paper is given in Theorem 5.2. A subsection
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provides some intuition on these results in case the AVI algorithm would converge,
which leads to bounds expressed in terms of the Lp Bellman residual. Section 6 details
practical implementations of AVI (a sampling-based method using state-action value
function approximation). The case of a continuous measurable state space is treated in
section 7, and a numerical experiment on an optimal replacement problem is detailed.

Preliminaries. We now describe the framework of MDPs in the infinite-time
horizon, discounted reward setting, considered here.

Let X be the state space, assumed to be finite with N states, and let A be a finite
action space. The results given in this paper extend to infinite state spaces (either
countable spaces or continuous spaces, the latter case being illustrated in section 7).
Let p(x, a, y) be the probability that the next state is y given that the current state
is x and the action a. Let r(x, a, y) be the (deterministic) reward received when a
transition (x, a) → y occurs.

We call a (Markov or stationary) policy π a mapping from X to A. We denote by
Pπ the N ×N matrix with elements Pπ(x, y) := p(x, π(x), y) and by rπ the N -vector
with components rπ(x) :=

∑
y p(x, π(x), y)r(x, π(x), y).

For a given policy π, the value function V π (considered as a vector with N
components) is defined as the expected sum of discounted rewards:

V π(x) := E

[ ∞∑
t=0

γt r(xt, at, xt+1)|x0 = x, at = π(xt)

]
,

where γ ∈ [0, 1) is the discount factor. It is well known that V π is the fixed-point of
the operator T π : R

N → R
N defined, for any vector W ∈ R

N , by T πW := rπ+γPπW.
The optimal value function V ∗ := supπ V

π is the fixed-point of the Bellman
operator T defined, for any W ∈ R

N , x ∈ X, by

T W (x) = max
a∈A

∑
y∈X

p(x, a, y)[r(x, a, y) + γW (y)].

We say that a policy π is greedy w.r.t. W ∈ R
N if for all x ∈ X,

π(x) ∈ arg max
a∈A

∑
y∈X

p(x, a, y)[r(x, a, y) + γW (y)].

The goal is to find an optimal policy π∗, which is such that for all x ∈ X,
V π∗

(x) = maxπ V
π(x). It is easy to see that a policy greedy w.r.t. V ∗ is optimal.

Since A is finite, such an optimal policy always exits.

2. Approximation results in L∞-norm. Consider the AVI algorithm defined
by (1.1) and define

(2.1) εn := T Vn − Vn+1 ∈ R
N

as the approximation error at stage n. In general, AVI does not converge, but nev-
ertheless its asymptotic behavior may be analyzed. If the approximation errors are
uniformly bounded ||εn||∞ ≤ ε, then a bound on the difference between the asymp-
totic performance of policies πn greedy w.r.t. Vn and the optimal policy is (see, e.g.,
[7])

(2.2) lim sup
n→∞

||V ∗ − V πn ||∞ ≤ 2γ

(1 − γ)2
ε.
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Since the proof is very simple, it is recalled here.
Proof. From the triangle inequality, the γ-contraction of the Bellman operators

T and T πn , and the fact that πn is greedy w.r.t. Vn (i.e., T πnVn = T Vn), we have

||V ∗ − V πn ||∞ ≤ ||T V ∗ − T πnVn||∞ + ||T πnVn − T πnV πn ||∞

≤ γ||V ∗ − Vn||∞ + γ(||Vn − V ∗||∞ + ||V ∗ − V πn ||∞),

and thus

(2.3) ||V ∗ − V πn ||∞ ≤ 2γ

1 − γ
||V ∗ − Vn||∞.

Moreover, ||V ∗−Vn+1||∞ ≤ ||T V ∗−T Vn||∞+||T Vn−Vn+1||∞ ≤ γ||V ∗−Vn||∞+ε.
Now, taking the upper limit yields lim supn→∞ ||V ∗ − Vn||∞ ≤ ε/(1 − γ), which
combined with (2.3) yields (2.2).

This L∞ bound is expressed in terms of the uniform approximation error over
all states, which is difficult to guarantee, especially for large state-space problems.
Moreover, it is not very useful in practice since most current approximation operators
and supervised learning methods perform a minimization problem in L1- or L2-norm
(although some exceptions of L∞ function approximation in the framework of DP
exist; see, e.g., [12, 14]).

3. Approximation operators and supervised learning algorithms. In this
section we present an overview of the problem of function approximation in the context
of statistical learning (see, e.g., [36, 15]). To illustrate, an example of a supervised
learning (SL) algorithm would take as input some data {(xk, vk)}1≤k≤K , where the
states {xk ∈ X} are drawn according to some distribution μ on X, and the values
{vk ∈ R} are unbiased estimates of some (unknown) random function with mean
f(xk). This SL algorithm would return a function (called the best fit) that minimizes
(within a given class of functions F) the empirical loss, solving

inf
g∈F

1

K

K∑
k=1

l(vk − g(xk)),

where the loss function l is usually an absolute or a quadratic function (or variants,
such as the ε-insensitive loss function used in support vectors or Huber loss function
used for robust regression [36]).

If the unknown function is deterministic (i.e., vk = f(xk)), A may be considered
as an approximation operator that returns a compact representation g ∈ F of an
unknown function f by minimizing some empirical Lp-norm (p = 1 or 2) based on
the data. This is a sampling-based version of a minimization problem in weighted
norm Lp,μ. Statistical learning theory establishes bounds on the error between the

minimized empirical loss 1
K

∑K
k=1 l(f(xk)− g(xk)) and the Lp,μ-norm difference ||f −

g||p,μ in terms of the number of samples K and the capacity (or complexity) measure of
the function space F , characterized, e.g., by the covering number or the VC dimension
[28, 36] of F .

The projection onto the span of a fixed family of functions (often called features)
is called linear approximation and include splines, radial basis, and Fourier or wavelet
decomposition. It is often the case that a better approximation is reached when choos-
ing the features according to f (i.e., feature selection). This nonlinear approximation
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is particularly efficient when f has piecewise regularities (e.g., in the adaptive wavelet
basis [24] such functions are compactly represented with few nonzero coefficients).
Greedy algorithms for selecting the best features among a given dictionary of func-
tions include the matching pursuit and variants [9]. Approximation theory studies
the approximation error in terms of the smoothness of f [11].

In statistical learning, SL algorithms include neural network, locally weighted
learning and kernel regression [2], support vectors, and reproducing kernels [37, 36].

Hence, given the fact that we may always bound the empirical minimized error
using statistical learning tools, in what follows, we will establish our bounds using the
Lp,μ-norm of the approximation errors. An extension of these results to sampling-
based AVI is described in [27] and a policy iteration algorithm with Bellman residual
minimization using a single sample-path is described in [1].

4. Componentwise performance bounds. In this section, we formulate com-
ponentwise performance bounds, from which Lp bounds will be derived in the next
section. The L∞ bound previously stated (2.2) is also an immediate consequence of
a componentwise bound.

4.1. Performance bound for AVI. A componentwise bound on the asymp-
totic performance of the policies πn greedy w.r.t. Vn is provided now.

Lemma 4.1. Consider the AVI algorithm defined by (1.1) and write εn = T Vn −
Vn+1 ∈ R

N to denote the approximation error at stage n. Let πn be a greedy policy
w.r.t. Vn. We have

lim sup
n→∞

V ∗ − V πn ≤ lim sup
n→∞

(I − γPπn)−1(4.1)

×
(

n−1∑
k=0

γn−k
[
(Pπ∗

)n−k + PπnPπn−1 . . . Pπk+2Pπk+1
]
|εk|

)
,

where |εk| denotes the vector of absolute values of εk.
In order to prove this lemma, we first need the following preliminary result.
Lemma 4.2. Let A be an invertible matrix such that all the elements of its

inverse are positive. Then the solutions to the inequality Au ≤ b are also solutions to
u ≤ A−1b.

Proof of Lemma 4.2. Let u be a solution to Au ≤ b. This means that there exists
a vector c with positive components such that Au = b − c; thus u = A−1b − A−1c.
Since all components of A−1c are positive, we deduce that u ≤ A−1b.

Proof of Lemma 4.1. From the definitions of T and T π we have componentwise
T Vk ≥ T π∗

Vk and T V ∗ ≥ T πkV ∗, and thus

V ∗ − Vk+1 = T π∗
V ∗ − T π∗

Vk + T π∗
Vk − T Vk + εk ≤ γPπ∗

(V ∗ − Vk) + εk,

V ∗ − Vk+1 = T V ∗ − T πkV ∗ + T πkV ∗ − T Vk + εk ≥ γPπk(V ∗ − Vk) + εk,

where in the second line we used the definition of πk as a greedy policy w.r.t. Vk, i.e.,
T πkVk = T Vk. We deduce by induction

V ∗ − Vn ≤
n−1∑
k=0

γn−k−1(Pπ∗
)n−k−1εk + γn(Pπ∗

)n(V ∗ − V0),(4.2)

V ∗ − Vn ≥
n−1∑
k=0

γn−k−1(Pπn−1Pπn−2 . . . Pπk+1)εk

+ γn(PπnPπn−1 . . . Pπ1)(V ∗ − V0).(4.3)
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Now, using again the definition of πn and the fact that T Vn ≥ T π∗
Vn, we have

V ∗ − V πn = T π∗
V ∗ − T π∗

Vn + T π∗
Vn − T Vn + T Vn − T πnV πn

≤ T π∗
V ∗ − T π∗

Vn + T Vn − T πnV πn

= γPπ∗
(V ∗ − Vn) + γPπn(Vn − V πn)

= γPπ∗
(V ∗ − Vn) + γPπn(Vn − V ∗ + V ∗ − V πn).

Thus (I − γPπn)(V ∗ − V πn) ≤ γ(Pπ∗ − Pπn)(V ∗ − Vn). Now, since (I − γPπn) is
invertible and its inverse

∑
k≥0(γP

πn)k has positive elements, we use Lemma 4.2 to
deduce that

V ∗ − V πn ≤ γ(I − γPπn)−1(Pπ∗ − Pπn)(V ∗ − Vn).

This, combined with (4.2) and (4.3), and after taking the absolute value (note that
the vector V ∗ − V πn is nonnegative), yields

V ∗ − V πn ≤ (I − γPπn)−1

{ n−1∑
k=0

γn−k
[
(Pπ∗

)n−k + (PπnPπn−1 . . . Pπk+1)
]
|εk|

+ γn+1
[
(Pπ∗

)n+1 + (PπnPπnPπn−1 . . . Pπ1)
]
|V ∗ − V0|

}
.

We deduce (4.1) by taking the upper limit.

4.2. Performance bound based on the Bellman residual. In this section,
we derive a componentwise performance bound of a policy π greedy w.r.t. some func-
tion V ∈ R

N in terms of the Bellman residual of V . This result extends the L∞
bound (see a proof in [38]):

(4.4) ||V ∗ − V π||∞ ≤ 2

1 − γ
||T V − V ||∞.

The componentwise counterpart of this bound is stated now.
Lemma 4.3. Let V ∈ R

N and let π be a policy greedy w.r.t. V . Then

(4.5) V ∗ − V π ≤
[
(I − γPπ∗

)−1 + (I − γPπ)−1
]
|T V − V |.

We immediately notice that (4.4) is a direct consequence of this result, since for
any stochastic matrix P , ||(I − γP )−1||∞ = 1/(1 − γ).

Proof of Lemma 4.3. We use the fact that T V ≥ T π∗
V and the definition of π

(i.e., T V = T πV ) to derive

V ∗ − V π = T π∗
V ∗ − T π∗

V + T π∗
V − T V + T V − T πV π

≤ γPπ∗
(V ∗ − V π + V π − V ) + γPπ(V − V π);

hence (I − γPπ∗
)(V ∗ − V π) ≤ γ(Pπ∗ − Pπ)(V π − V ). Again, since (I − γPπ∗

) is
invertible and its inverse has positive elements, from Lemma 4.2, we deduce

V ∗ − V π ≤ γ(I − γPπ∗
)−1(Pπ∗ − Pπ)(V π − V ).



548 RÉMI MUNOS

Moreover,

(I − γPπ)(V π − V ) = V π − V − γPπV π + γPπV

= rπ + γPπV − (rπ + γPπV π) + V π − V

= T πV − T πV π + V π − V = T V − V,

and thus

V ∗ − V π ≤ γ(I − γPπ∗
)−1(Pπ∗ − Pπ)(I − γPπ)−1(T V − V )

= (I − γPπ∗
)−1

[
(I − γPπ) − (I − γPπ∗

)
]
(I − γPπ)−1(T V − V )

=
[
(I − γPπ∗

)−1 − (I − γPπ)−1
]
(T V − V )

≤
[
(I − γPπ∗

)−1 + (I − γPπ)−1
]
|T V − V |.

5. Approximation results in Lp-norms. In this section, we generalize the
previously mentioned L∞ bounds to Lp-norms. The main intuition behind this ex-
tension is simple and relies on the componentwise results described in the previous
section.

Indeed, assume that there exist two vectors u and v with positive components,
such that componentwise u ≤ Qv, where Q is a stochastic matrix. Of course, we may
deduce that ||u||∞ ≤ ||v||∞, but in addition, if ν and μ are probability measures on
X such that componentwise νQ ≤ Cμ, where C ≥ 1 is a constant (and using usual
matrix notation with the probability measures being considered as row vectors), then
we deduce that

||u||p,ν ≤ C1/p||v||p,μ.

Indeed we have

||u||pp,ν =
∑
x∈X

ν(x)|u(x)|p ≤
∑
x∈X

ν(x)

[ ∑
y∈X

Q(x, y)v(y)

]p

≤
∑
x∈X

ν(x)
∑
y∈X

Q(x, y)v(y)p

≤ C
∑
y∈X

μ(y)|v(y)|p = C||v||pp,μ,

using Jensen’s inequality.
For example, if the Markov chain induced by Q has an invariant probability

measure ν, then we have ||u||p,ν ≤ ||v||p,ν (i.e., the constant C = 1). This is the main
tool used in [35] to derive an Lp-norm bound for temporal difference learning with
linear function approximation, where only one policy is considered.

Now, in an MDP, there are several policies, and thus several stochastic matrices
to be considered in order to relate ||u||p,ν to ||v||p,μ. The next subsection defines the
concentration coefficients C1(ν, μ), C2(ν, μ), and C(μ) that generalize the constant C
used here for the case when several policies are considered.
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A simple case for which the above idea may apply is the case of Bellman residual
bounds: Choose u = V ∗ − V π and v = 2

1−γ |T V − V |, and notice that the L∞ bound

(4.4) is a consequence of (4.5). The above idea will yield an Lp-norm performance
bound (this will be done in subsection 5.3).

This same idea also holds for deriving performance bounds for AVI. We notice
that the L∞ bound (2.2) may be deduced from the componentwise bounds (4.1), and
extension to Lp-norms is possible with an adequate constant, to be defined now.

5.1. Definition of the concentration coefficients. We now define the con-
centration coefficients C(μ), C1(ν, μ), and C2(ν, μ), which depend on the MDP, under
which the distributions ν and μ may be related. Let ν and μ be two probability
measures on X.

Definition 5.1. We call C(μ) ∈ R
+ ∪ {+∞} the transition probabilities con-

centration coefficient, defined by

C(μ) = max
x,y∈X, a∈A

p(x, a, y)

μ(y)

(with the convention that 0/0 = 0, and we set C(μ) = ∞ if μ(y) = 0 and p(x, a, y) > 0
for some x, y, a). Now, let π1, π2, . . . denote any sequence of policies. For every integer
m ≥ 1, we define c(m) ∈ R

+ ∪ {+∞} by

(5.1) c(m) = max
π1,...,πm, y∈X

(νPπ1Pπ2 . . . Pπm)(y)

μ(y)

(with the same convention as above) and write c(0) = 1. Note that these constants
depend on ν and μ.

We define C1(ν, μ) and C2(ν, μ) ∈ R
+ ∪ {+∞}, the first and second order dis-

counted future state distribution concentration coefficients, by

C1(ν, μ) := (1 − γ)
∑
m≥0

γmc(m),(5.2)

C2(ν, μ) := (1 − γ)2
∑
m≥1

mγm−1c(m).(5.3)

Note that since these coefficients will appear in our bounds we are interested in
the cases of finite values, for which it is sufficient that the distribution μ be strictly
positive.

The transition probability concentration coefficient C(μ) was introduced in [26]
to derive performance bounds for approximate policy iteration. C(μ) provides infor-
mation about the relative smoothness of the immediate transition probabilities w.r.t.
μ, whereas C1(ν, μ) and C2(ν, μ) give information about the worst discounted average
future state distribution when starting from ν and following any policy. Informally,
the future state transition is a probability measure over the state space induced by the
state visitation frequency of the Markov chain resulting from the MDP when following
a policy.

The coefficients c(m) measure how much the future state distributions νPπ1 . . .
Pπm may possibly differ from the distribution μ. The definition of C1(ν, μ) and
C2(ν, μ) introduces an exponential discounting (first order discounting weight of γm

for C1(ν, μ), and second order discounting weight of (m+1)γm for C2(ν, μ), where m
is the horizon time). The discounting makes these coefficients small for a reasonably
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large class of MDPs. For any sequence of policies π1, . . . , πm, the (first and second
order) discounted future state distributions starting from ν and using this sequence
of policies (i.e., {xi ∼ p(xi−1, πi(xi−1), ·)}1≤i≤m) is bounded by these coefficients
(C1(ν, μ) and C2(ν, μ)) times μ: for all x0, y in X,

(1 − γ)
∑
m≥0

γmPr
(
xm = y

∣∣x0 ∼ ν, π1, . . . , πm

)
≤ C1(ν, μ)μ(y),

(1 − γ)2
∑
m≥1

mγm−1Pr
(
xm = y

∣∣x0 ∼ ν, π1, . . . , πm

)
≤ C2(ν, μ)μ(y).

These coefficients are related to the so-called top-Lyapunov exponent Γ, which
play a fundamental role in the stability analysis of stochastic processes. It turns out
that the stability of a stochastic system, as related to the top-Lyapunov condition
Γ ≤ 0 [8], is equivalent to the finiteness of the concentration coefficients. Hence, a
small value of these coefficients can be interpreted as a stability condition too. Further
discussion about this concept can be found in the report [27].

5.2. Lp-norm performance bounds for AVI. The next result establishes
performance bounds for AVI in terms of the Lp,μ-norm of the approximation errors
εn = Vn+1 − T Vn.

Theorem 5.2. Let μ and ν be two probability measures on X. Consider the
AVI algorithm defined by (1.1), write πn to denote a policy greedy w.r.t. Vn, and let
εn = Vn+1 − T Vn ∈ R

N be the approximation error. Let ε > 0 and assume that A
returns ε-approximations Vn+1 in the Lp,μ-norm (p ≥ 1) of T Vn, i.e., ||εn||p,μ ≤ ε
for n ≥ 0. Then

lim sup
n→∞

||V ∗ − V πn ||∞ ≤ 2γ

(1 − γ)2
[
C(μ)

]1/p
ε,(5.4)

lim sup
n→∞

||V ∗ − V πn ||p,ν ≤ 2γ

(1 − γ)2
[
C2(ν, μ)

]1/p
ε.(5.5)

Notice that the left-hand side (l.h.s.) of the first result (5.4) evaluates the perfor-
mance in terms of a L∞-norm, whereas the l.h.s. of the second result (5.5) makes use
of an Lp-norm (although the right-hand side (r.h.s.) of both results is expressed in the
Lp-norm). The first result does not depend on the distribution ν and may directly be
compared to the L∞ bound (2.2). Actually (5.4) directly implies (2.2) when p → ∞
(for any strictly positive measure μ).

Proof of Theorem 5.2. First, notice that the coefficient C(μ) is always larger
than C2(ν, μ) for any distribution ν. Indeed, for all m ≥ 1, c(m) ≤ C(μ). Thus
C2(ν, μ) ≤ (1 − γ)2

∑
m≥1 mγm−1C(μ) = C(μ). Thus, if the bound (5.5) holds for

any ν, choosing ν to be a Dirac at each state implies that (5.4) also holds. Therefore,
we only need to prove (5.5). We may rewrite (4.4) as

V ∗ − V πn ≤ 2γ(1 − γn+1)

(1 − γ)2

[ n−1∑
k=0

αkAk|εk| + αnAn|V ∗ − V0|
]
,

with the positive coefficients {αk}0≤k≤n,

αk :=
(1 − γ)γn−k−1

1 − γn+1
for 0 ≤ k < n,

αn :=
(1 − γ)γn

1 − γn+1
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(we notice that the sum
∑n

k=0 αk = 1), and the stochastic matrices {Ak}0≤k≤n,

Ak :=
1 − γ

2
(I − γPπn)−1

[
(Pπ∗

)n−k + (PπnPπn−1 . . . Pπk+1)
]

for 0 ≤ k < n,

An :=
1 − γ

2
(I − γPπn)−1

[
(Pπ∗

)n+1 + (PπnPπn . . . Pπ1)
]
.

Since the two sides of this componentwise bound are positive, we may take the
Lp,ν-norm of those two vectors:

||V ∗ − V πn ||pp,ν

≤
[
2γ(1 − γn+1)

(1 − γ)2

]p ∑
x∈X

ν(x)

[ n−1∑
k=0

αkAk|εk| + αnAn|V ∗ − V0|
]p

(x)

≤
[
2γ(1 − γn+1)

(1 − γ)2

]p ∑
x∈X

ν(x)

[ n−1∑
k=0

αkAk|εk|p + αnAn|V ∗ − V0|p
]
(x),(5.6)

using two times Jensen’s inequality (since the coefficients {αk}0≤k≤n sum to 1 and
the matrix Ak are stochastic) (i.e., convexity of x → |x|p). The second term in the
brackets disappears when taking the upper limit. Now, from the definition of the
coefficients c(m), νAk ≤ (1 − γ)

∑
m≥0 γ

mc(m + n− k)μ; thus the first term in (5.6)
satisfies

∑
x

ν(x)

n−1∑
k=0

αkAk|εk|p(x) ≤
n−1∑
k=0

αk(1 − γ)
∑
m≥0

γmc(m + n− k)||εk||pp,μ

≤ (1 − γ)2

1 − γn+1

∑
m≥0

n−1∑
k=0

γm+n−k−1c(m + n− k)εp

≤ 1

1 − γn+1
C2(ν, μ)εp,

where we replaced αk by their values, and used the fact that ||εk||p,μ ≤ ε. By taking
the upper limit in (5.6), we deduce (5.5).

What if AVI converges?. We know that there is no guarantee that AVI con-
verges. However, experimentally, we observe that in some cases convergence occurs.
It is interesting to notice that in such cases, better bounds may be derived (in any
norm) whenever γ > 1/2. Indeed, convergence of AVI would mean that there exists
V ∈ R

N such that limn→∞ Vn = V . Thus, by taking the limit in (1.1), we deduce
that V is a fixed-point of the operator AT , i.e., V = AT V , and the approximation
error (2.1) tends to the residual T V − V of V .

We deduce that the asymptotic performance of AVI is the performance of a policy
π greedy w.r.t. V , and thus may be expressed in terms of the residual T V − V .
Hence, the bounds based on the Bellman residual (the L∞-norm bound (4.4) or the
componentwise bound (4.5)), which yields a coefficient 2/(1−γ) instead of 2γ/(1−γ)2

(for AVI bounds), provides a better bound whenever γ > 1/2. The next subsection
provides an extension of Bellman residual bounds to Lp-norms.
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5.3. Lp-norm bounds based on the Bellman residual. Here, we relate the
performance of a policy π greedy w.r.t. V (where V ∈ R

N ) in terms of the Lp,μ-norm
of its residual T V − V .

Theorem 5.3. Let V be a vector of size N and π a policy greedy w.r.t. V . Let
μ and ν be two probability measures on X. Then

||V ∗ − V π||∞ ≤ 2

(1 − γ)

[
C(μ)

]1/p||T V − V ||p,μ,(5.7)

||V ∗ − V π||p,ν ≤ 2

(1 − γ)

[
C1(ν, μ)

]1/p||T V − V ||p,μ.(5.8)

Here also the first result (5.7) provides an L∞-norm bound on the performance,
which may directly be compared to the L∞ bound (4.4) (letting p → ∞), whereas an
Lp-norm performance bound is stated in the second result (5.8).

Proof of Theorem 5.3. We may rewrite (4.5) as

V ∗ − V π ≤ 2

1 − γ
A|T V − V |,

where A is the stochastic matrix

A =
1 − γ

2

[
(I − γPπ∗

)−1 + (I − γPπ)−1
]
.

Using the idea described in the introduction of this section, we have

||V ∗ − V π||pp,ν ≤
[ 2

1 − γ

]p ∑
x∈X

ν(x)
[
A|T V − V |

]p
(x)

≤
[ 2

1 − γ

]p ∑
x∈X

ν(x)
[
A|T V − V |p

]
(x)(5.9)

from Jensen’s inequality. Now, from the definition of the coefficients c(m), νA ≤
(1 − γ)

∑
m≥0 γ

mc(m)μ = C1(ν, μ)μ, and thus

||V ∗ − V π||pp,ν ≤
[ 2

1 − γ

]p
C1(ν, μ)μ|T V − V |p =

[ 2

1 − γ

]p
C1(ν, μ)||T V − V ||pp,μ,

which proves (5.8). Now, since C(μ) ≥ C1(ν, μ) for any ν, choosing ν to be a Dirac
at each state yields (5.7).

For the purposes of intuition, the components A(x, y) of the matrix A indicate a
bound on the contribution of the (absolute value of the) residual at a state y to the
performance error at the state x. Indeed,

V ∗(x) − V π(x) ≤ 2

1 − γ

∑
y∈X

A(x, y)|T V − V |(y).

It is clear from (5.9) that if we chose μ = νA, then the Lp bound becomes

(5.10) ||V ∗ − V π||p,ν ≤ 2

(1 − γ)
||T V − V ||p,μ.
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This bound may inspire us for solving a direct Bellman residual minimization
problem, in some given function space F ,

min
V ∈F

||T V − V ||pp,μ,

where the distribution μ now depends on V , through the policy π greedy w.r.t. V ,
i.e., μ = νA = 1−γ

2 ν[(I − γPπ∗
)−1 + (I − γPπ)−1]. We write μ = (μπ + μ∗)/2, with

μπ = (1−γ)ν(I−γPπ)−1 being the discounted future state distribution starting from
ν and following policy π, and μ∗ = (1 − γ)ν(I − γPπ∗

)−1, similarly defined from the
optimal policy π∗.

Thus the Lp,μ-norm of the residual to be minimized is composed of two contribu-
tions:

(5.11) ||T V − V ||pp,μ =
1

2

(
||T V − V ||pp,μπ + ||T V − V ||pp,μ∗

)
.

One may consider an iterative optimization method, such as a gradient method,
where at each iteration an empirical residual would be computed and minimized.
Minimization of the first term in (5.11) is easy to implement by designing a sampling
device from μπ (i.e., start from an initial state x ∼ ν and follow transitions using the
current policy π during a horizon time that is a exponential random variable with
coefficient γ). The second term is more difficult to deal with because there is no
sampling device from μ∗ since π∗ is unknown; one may consider a somewhat uniform
density instead or use a discounted future state distribution using a stochastic policy
(where each action has a strict positive probability to be chosen).

5.4. Some intuition about the coefficients C(μ), C1(ν, μ), and C2(ν, μ).
Let us give some more insight about these coefficients in the case of a uniform distri-
bution μ = ( 1

N . . . 1
N ). In this case, from its definition, the coefficient C(μ) is always

smaller than the number of states N . C(μ) equals N if there exists at least a deter-
ministic transition (i.e., for some x, y ∈ X, a ∈ A, we have p(x, a, y) = 1). In that
case, the Lp (say, for p = 1) bound (5.4) would not be better than the L∞ one (2.2)
combined with the simple norm comparison result || · ||∞ ≤ N || · ||1.

Hence, the Lp bound (5.4) (resp., (5.7)) is more informative than the usual L∞
one (2.2) (resp., (4.4)) whenever the concentration coefficient C(μ) is smaller than the
number of states. An interesting case for which this happens is when the state space
is continuous and the transition kernel admits a density w.r.t. μ, for which case C(μ)
is the upper bound of this density. This continuous space case will be considered in
section 7 and illustrated on an optimal replacement problem.

Now, consider the coefficients C1(ν, μ) and C2(ν, μ) when ν and μ are both uni-
form.

• Their largest possible value is obtained in an MDP where for a specific policy
π all states jump to a given state—say state 1—with probability 1. Thus, for
any ν, for all m, ν(Pπ)m = (1 0 . . . 0) ≤ c(m)μ holds with c(m) = N (with
equality in state 1), and therefore C1(ν, μ) = C2(ν, μ) = N . This is the worst
case because the future state distribution accumulates on a single state. In
that case, the Lp bound (5.5) (resp., (5.8)) may actually be derived from the
L∞ one (2.2) (resp., (4.4)) since || · ||p ≤ || · ||∞ and || · ||∞ ≤ N1/p|| · ||p.

• Their lowest possible value is obtained in an MDP with uniform transition
probabilities p(x, a, y) = 1/N for all x, y ∈ X and a ∈ A. When ν and μ are
both uniform then c(m) = 1 and C1(ν, μ) = C2(ν, μ) = 1 (this is the lowest
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Fig. 5.1. The chain walk MDP.

possible value since for a uniform ν and any stochastic matrix P we have
maxy

∑
x ν(x)P (x, y) ≥ 1/N).

Notice, however, that any deterministic MDP would not necessarily lead to a high
value of the coefficients C1(ν, μ) and C2(ν, μ) (contrarily to the case of C(μ)). Indeed,
in an MDP where the policies consist in permutations of the states (for which each
state has a unique successor and unique predecessor), then C(μ) = N (since the
transitions are deterministic, as seen previously), but C1(ν, μ) = C2(ν, μ) = 1 for
uniform distributions ν and μ (since for all m ≥ 0, c(m) = 1). Another example
where the discounted future state distribution concentration coefficients is low (and
independent of the number of states N) is provided in the chain walk MDP described
in the next subsection.

The concentration coefficients C1(ν, μ) and C2(ν, μ) express how the (first and
second order) discounted future state distribution, starting from the initial distribu-
tion ν, may possibly differ from μ. A low value of these coefficients means that the
mass of the discounted future state distribution starting from ν does not accumulate
on few specific states for which the distribution μ is low. For the purpose of obtaining
low values of these coefficients (thus probably good performance for AVI), it is desir-
able that μ be somehow uniformly distributed (this condition was already mentioned
in [22, 21, 26] to secure the policy improvement steps in approximate policy iteration).

5.5. Illustration on the chain walk MDP. We illustrate the fact that the Lp-
norm bound (5.5) given in Theorem 5.2 is tighter than the L∞-norm (2.2) (combined
with the norm comparison || · ||∞ ≤ N1/p|| · ||p) on the chain walk MDP defined in [23]
(see Figure 5.1). This case provides an example for which the coefficient C(μ) is high
(its value is the number of states N) but C1(ν, μ) and C2(ν, μ) are low (independent
of N).

This is a linear chain with N states with two dead-end states: states 1 and N .
On each of the interior states 2 ≤ x ≤ N − 1 there are two possible actions: right or
left, which moves the state in the intended direction with probability 0.9, and fails
with probability 0.1, leaving the state unchanged. The reward simply depends on the
current state and is 1 at boundary states and 0 elsewhere: r = (1 0 . . . 0 1)′.

We consider an approximation of the value function in the two-dimensional func-
tion space F := {fα(x) = α1+α2x}α∈R2 , where x ∈ {1, . . . , N} is the state index. As-
sume that the initial approximation is zero: V0 = (0 . . . 0)′. Then T V0 = (1 0 . . . 0 1)′.
The best fit (in L∞-norm) of T V0 in F is the constant function V1 = ( 1

2 . . .
1
2 )′, which

produces an error ||V1 − T V0||∞ = 1
2 .

Let us choose uniform distributions ν = μ = ( 1
N . . . 1

N ). In L1-norm, the best fit
of T V0 in F is V1 = (0 . . . 0)′ (for N > 4) and the resulting error is ||V1 −T V0||1 = 2

N .
In L2-norm the best fit is also constant V1 = ( 2

N . . . 2
N )′ and the error is ||V1−T V0||2 =

√
2N−4
N .
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In these three cases, we observe by induction that the successive approximations
Vn are constant; thus T Vn = r + γVn and the approximation errors remain the same
as in the first iteration: for all n ≥ 0, ||Vn+1 − T Vn||∞ = 1

2 , ||Vn+1 − T Vn||1 = 2
N ,

and ||Vn+1 − T Vn||2 =
√

2N−4
N .

Since Vn is constant, any policy πn is greedy w.r.t. Vn. Hence for πn = π∗ the
l.h.s. of (2.2) and (5.5) are equal to zero. Now, in order to compare the r.h.s. of
these inequalities, let us calculate the coefficients C(μ) and C1(ν, μ) and C2(ν, μ).
Since state 1 jumps to itself with probability 1, we have no better coefficient than
C(μ) = N .

Now, the maximum in (5.1) is reached when the mass of the future state distri-
bution is mostly concentrated on one specific state—say state 1—which corresponds
to a policy πLeft that chooses everywhere action left. We see that for ν = μ,

ν(PπLeft)m(x) ≤ ν(PπLeft)m(1) ≤ (1 + 0.9m)μ(x)

for all x ≥ 0, and thus c(m) ≤ 1 + 0.9m. We deduce that the coefficients C1(ν, μ) ≤
(1−γ)

∑
m≥0 γ

m(1+0.9m) and C2(ν, μ) ≤ (1−γ)2
∑

m≥1 mγm−1(1+0.9m) are upper
bounded by a value that is independent of the number of states N .

Thus, if we consider the performance of AVI in L1-norm, the bound (5.5) (for
p = 1) provides an approximation of order O(N−1), whereas the L1 bound that
would be obtained from the usual L∞ result (2.2) combined with the norm comparison
|| · ||∞ ≤ N || · ||1 would provide a O(1) approximation only.

Similarly, the L2-norm bound is of order O(N−1/2), whereas the L∞-norm bound
(2.2) combined with || · ||∞ ≤ N1/2|| · ||2 would only be of order O(1).

Thus, if our supervised learning algorithm returns the best regression function by
minimizing an approximation error in Lp-norm (which is usually the case in practice),
the bound (5.5) may be arbitrarily more informative than (2.2) for large values of N .

6. Practical algorithms. Practical implementations of AVI depend on the
amount of knowledge available on the state dynamics as well as the way the ex-
pectation operation (in the Bellman operator) may be processed.

In the case of a complete model (when the state transitions p(x, a, y) are perfectly
known) and if the expectation operation is computationally tractable, then a possi-
ble implementation of AVI has already been described in the introduction: at each
stage n, we select a set of states {xk ∈ X}1≤k≤K drawn according to some distri-
bution μ, compute the backed-up values {vk = T Vn(xk)}1≤k≤K , and make a call to
an SL algorithm with the data {(xk; vk)}1≤k≤K , which returns an ε-approximation
Vn+1 in Lp,μ-norm, i.e., ||Vn+1 − T Vn||p,μ ≤ ε. Of course, we need additional as-
sumptions on the number of samples K and the complexity of the function space
F (in terms of covering number or VC dimension) to guarantee that the empirical
loss

(
1
K

∑K
k=1 |Vn+1(xk) − vk|p

)1/p
is close to the norm of the approximation error

||Vn+1 − T Vn||p,μ, but such considerations are omitted here, and we direct the inter-
ested reader to [36, 15, 30].

However, it is often the case that no explicit representation of the transition
probabilities p(x, a, y) is available, but there exists a sampling device that allows us
to generate states y according to the distribution p(x, a, ·) at any state x and action
a of our choice. We call this a generative model (see [20] for a survey of several
sampling models). One possible way to compute the expectation operation in the
Bellman operator is to replace it by an empirical mean using this sampling device.
This leads to sampling-based fitted value iteration, studied in [34].
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Another alternative, closer in spirit to reinforcement learning (RL) [33], consists
in introducing the state-action value function, or Q-function, defined for each state-
action (x, a) ∈ X ×A by

Q∗(x, a) :=
∑
y∈X

p(x, a, y)
[
r(x, a, y) + γV ∗(y)

]
.

We have the properties that V ∗(x) = maxa∈A Q∗(x, a), and Q∗ is the fixed-point
of the operator R, mapping from the space of functions X ×A → R to itself, defined
for any Q : X ×A → R by

RQ(x, a) :=
∑
y∈X

p(x, a, y)
[
r(x, a, y) + γ max

b∈A
Q(y, b)

]
.

An AVI algorithm using this representation would consist in defining successive
approximations Qn (with any initial Q0) according to the recursion

(6.1) Qn+1 = ARQn,

where A is an SL algorithm on X × A. A model-free RL algorithm would collect a
number of transitions of the form {(xk, ak)

rk→ yk}1≤k≤K , where ak is an action chosen
in state xk, the next state yk being generated according to the generative model (i.e.,
yk ∼ p(xk, ak, ·)), and rk = r(xk, ak, yk) is the received reward. We then compute the
back-up values vk = rk + γ maxb∈A Qn(yk, b) (which provides an unbiased estimate of
RQn(xk, ak)), and make a call to the SL algorithm with the data {(xk, ak); vk}1≤k≤K

(the inputs being the couples {(xk, ak)}, and the desired output {vk}), which returns
the next Q-function Qn+1.

An interesting case is when A is a linear operator in the values {vk} such as in
linear approximation, memory-based learning (k-nearest neighbors, locally weighted
learning [3, 15]) or support vector regression (in the case of a quadratic loss function).
In that case, the approximation A and expectation E operators commute and the
approximation Qn+1 returned by the SL algorithm is therefore an unbiased estimate
of ARQn. Thus when K is large, such an iteration acts like a (model-based) AVI
iteration, and bounds similar to those of Theorem 5.2 may be derived.

Notice that a policy π′
n derived from the approximate Q-function, π′

n(x) ∈
arg maxa∈A Qn(x, a), is different from the policy πn greedy w.r.t. Vn, defined by
Vn(x) = maxa Qn(x, a). Indeed, the latter satisfies πn(x) ∈ arg maxa∈A RQn(x, a).
However, bounds similar to (2.2), (5.4), and (5.5) on the performance of such policies
π′
n may be derived analogously. An example of such a bound in L∞-norm is provided

now. Extension to Lp bounds would follow along the same lines as in sections 4 and 5.

The performance Qπ : X × A → R of a policy π is defined as follows: Qπ(x, a)
is the expected sum of rewards when starting from x, choosing action a and using
policy π thereafter. Qπ is also the fixed-point of the Bellman operator Rπ, mapping
from the space of functions X ×A → R to itself, defined by

RπQ(x, a) :=
∑
y∈X

p(x, a, y)
[
r(x, a, y) + γQ(y, π(y))

]
.

Theorem 6.1. Consider the AVI algorithm defined by the Q-function iteration
(6.1). Let ε be a uniform bound on the L∞ approximation errors of the Q-functions,
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i.e., ||Qn+1 −RQn||∞ ≤ ε. The asymptotic performance of the policy π′
n (defined by

π′
n(x) ∈ arg maxa∈A Qn(x, a)) satisfies

lim sup
n→∞

||Q∗ −Qπ′
n ||∞ ≤ 2γ

(1 − γ)2
ε.

Proof of Theorem 6.1. The proof is similar to that of (2.2); it suffices to replace the
V -value by the Q-values, the T (resp., T π) operator by the R (resp., Qπ) operators,
and notice that Rπ′

nQn = RQn.

7. Numerical experiment in the continuous case. All previous results ex-
tend to the case of continuous measurable state spaces. We first redefine the con-
centration coefficients in this context and illustrate numerically the method on an
optimal replacement problem, for which the coefficient C(μ) is explicitly computed.

Let us write P (x, a,B) the transition probability kernel, where B is any mea-
surable subset of X. For a stationary policy π : X → A, we write Pπ(x,B) =
P (x, π(x), B), which defines a right linear operator (defined on the space of bounded
measurable function V with domain X): PπV (x) :=

∫
X
V (y)Pπ(x, dy), and a left-

linear operator (defined on the space of probability measures μ on X): μPπ(B) :=∫
X
Pπ(x,B)μ(dx). The product of two kernels Pπ1 and Pπ2 is defined by Pπ1Pπ2

(x,B) :=
∫
X
Pπ1(x, dy)Pπ2(y,B).

7.1. Concentration coefficients. With this notation, the concentration coef-
ficients are defined as follows: let ν and μ be two probability distributions on X.

We assume that for all x ∈ X, a ∈ A, P (x, a, ·) is absolutely continuous w.r.t. μ
and the Radon–Nikodým derivative of P (x, a, ·) w.r.t. μ(·) is bounded uniformly in x
and a. Then the transition probabilities concentration coefficient C(μ) is defined by

C(μ) := sup
x∈X,a∈A

dP (x, a, ·)
dμ

.

Notice that if μ is the Lebesgue measure over X, and if P (x, a, ·) admits a uni-
formly bounded density, then the concentration coefficient C(μ) is equal to the upper
bound of this density. This case is illustrated in the numerical experiment below. The
first and second order discounted future state distribution concentration coefficients
C1(ν, μ) and C2(ν, μ) are defined similarly to (5.2) and (5.3).

7.2. An optimal replacement problem. This experiment illustrates the re-
spective tightness of the L∞-, L1-, and L2-norm bounds on a continuous space control
problem excerpted from [31].

A one-dimensional continuous variable xt ∈ [0, xmax] measures the accumulated
utilization (such as the odometer reading on a car) of a product. xt = 0 denotes a
brand-new product. At each discrete time t, there are two possible decisions: either
keep (at = K) or replace (at = R), in which case an additional cost Creplace (of
selling the existing product and replacing it for a new one) occurs. The transition
densities are exponential with parameter β with a truncated queue. Moreover, if
the next state y is larger than the maximal value xmax (e.g., the car breaks down
because it is too damaged), then a new state is immediately redrawn and a penalty
Cdead > Creplace occurs. The transition densities are thus defined as follows: defining
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q(x) := βe−βx/(1 − e−βxmax),

p(x, a = R, y) =

{
q(y) if y ∈ [0, xmax],
0 otherwise.

p(x, a = K, y) =

⎧⎨⎩
q(y − x) if y ∈ [x, xmax],
q(y − x + xmax) if y ∈ [0, x),
0 otherwise.

The current cost (opposite of a reward) c(x) is the sum of a slowly increasing function
(maintenance cost) and a discontinuous punctual cost (e.g., which may represent car
insurance fees).

The current cost function and the optimal value function (computed by a dis-
cretization on a high resolution grid) are shown in Figure 7.1.

We choose the numerical values γ = 0.6, β = 0.6, Creplace = 50, Cdead = 70,
and xmax = 10. We consider a uniform distribution μ on the domain [0, xmax]. We
choose K points (with K = 200 or 2000 points) uniformly located over the domain
{xk := kxmax/K}0≤k<K to perform the L2 minimization fitting problem at each
iteration:

Vn+1 = arg min
f∈F

1

K

K∑
k=1

[f(xk) − T Vn(xk)]
2,

where F is the space spanned by a truncated cosine basis (with M = 20 or M = 40
basis functions):

F :=

{
f(x) =

M∑
m=1

αm cos

(
mπ

x

xmax

)}
α∈RM

.

We start with initial values V0 = 0. In Figure 7.2 we show the first iteration (for
the grid with K = 200 points): the backed-up values T V0 (indicated with crosses), the
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Table 7.1

Comparison of the r.h.s. of the L∞, L1, and L2 bounds.

||εn||∞ C(μ)||εn||1
√

C(μ)||εn||2
K = 200, M = 20 12.4 0.367 1.16

N = 2000, M = 40 12.4 0.0552 0.897

corresponding approximation V1 (best fit of T V0 in the cosine approximation space
F). The approximate value function computed after 20 iterations (when there are no
significant improvement of the approximations) is also plotted.

The concentration coefficient C(μ) is the highest peak of the transition density
w.r.t. the uniform distribution μ; thus C(μ) = q(0)xmax = βxmax/(1 − e−βxmax) 	 6.

Table 7.1 compares the r.h.s. (up to the constant 2γ/(1 − γ)2) of equations (2.2)
and (5.4) for p = 1 and 2, their l.h.s. being the same since they use the same L∞-
norm. We notice that the L1 and L2 bounds (5.4) are much tighter than the L∞ one
(2.2). Moreover we observe that the L1 and L2 approximation errors tend to 0 when
the number K of sampling points and the number M of basis functions go to infinity,
whereas the L∞ bound does not. Indeed, since the cost function is discontinuous, the
L∞ approximation error (using continuous function approximation such as the cosine
basis used here) will never be smaller than half the value of the largest jump, even for
large values of K and M . This example illustrates the fact that the Lp bound (5.4)
may be arbitrarily tighter than the L∞ one (2.2).

8. Conclusion. Theorem 5.2 provides a useful tool to bound the performance
of AVI from the Lp-norm of the approximation errors, and thus in terms of the
approximation power of most SL algorithms. Expressing the performance of AVI in
the same norm as the norm used by the supervised learner to solve the regression
problem guarantees the tightness and practical application of the bounds.

In order for these bounds to be of any use, we need to estimate an upper bound
on the concentration coefficients C(μ), C1(ν, μ), and C2(ν, μ), which may be difficult
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in general. We illustrate the case of low values of C1(ν, μ), and C2(ν, μ) in the chain
walk MDP, and the case of a low value of C(μ) in the optimal replacement problem.
Future work would consider defining classes of problems for which these coefficients
may be evaluated.

Extension to other loss functions l, such as ε-insensitive (used in support vectors)
or Huber loss function (for robust regression) [36], is straightforward (as long as l is
an increasing and convex function over R

+). Another possible extension is AVI for
Markov games.

Acknowledgments. The author wishes to thank Csaba Szepesvári and the
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Abstract. Motivated by analogous concepts in theoretical computer science, the concepts of
simulation and bisimulation relations have recently been introduced in the study of the geomet-
ric theory of nonlinear control systems. Simulation relations generalize such notions as trajectory
propagation and trajectory lifting, while bisimulation relations generalize such notions as system
equivalence and state-space reduction. This paper explores previously obtained necessary and suf-
ficient conditions for the existence of (bi)simulation relations and determines to what extent those
relations can be maintained if inputs and disturbances are restricted to specified “admissible” classes.
We show how the results obtained here for general simulation relations extend prior results obtained
for trajectory propagation and trajectory lifting. Also addressed briefly are some sufficient conditions
for simulation relations to hold semiglobally in time.
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1. Introduction. An effective and recurring approach to the problem of clas-
sifying nonlinear control systems entails defining a relation (or equivalence relation)
between systems that affords the possibility of “complex” systems being related to
“simpler” systems. The usage of the terms “complex” and “simpler” is intentionally
vague here, but one can think of a system as being “complex” if, for example, its state
space has large dimension or if it is highly nonlinear. “Simpler” systems, on the other
hand, may evolve on a state space of reduced dimension or be either linear or mildly
nonlinear. Through the use of an appropriately defined relation between systems one
may hope to infer properties and behaviors of the complex system from those of the
simpler system. Motivated by an analogous concept in theoretical computer science,
Haghverdi, Tabuada, and Pappas [7] initiated the study of bisimulation relations in
continuous-time dynamical and control systems. Roughly speaking, a bisimulation
relation between two control systems is first and foremost a relation (i.e., a subset
of the Cartesian product of their state spaces) but has the additional property that
trajectories of the first system can be paired, by way of the relation, with trajectories
of the second system and, conversely, trajectories of the second system can be paired,
by way of the relation, with trajectories of the first system. (We will present one ver-
sion of a precise definition of a bisimulation relation in section 2, based on that given
in [18], but readers should be aware that there are some variations in the definitions
of this notion in the references cited in this paper.) In connection with the afore-
mentioned work [7], Pappas [11] derived detailed results characterizing bisimulation
relations induced by linear surjections for discrete and continuous-time linear control
systems, while Tabuada and Pappas [14] derived a characterization of bisimulation
relations induced by nonlinear submersions for nonlinear continuous-time systems
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that are affine in the control. Further progress in bisimulation relations as they apply
to continuous-time control systems was made by van der Schaft in [17, 18], where,
among other things, he derives an elegant and constructive algorithm for computing
the maximal bisimulation relation between two systems.

Bisimulation relations are natural objects in control systems theory in that they
nicely generalize such well-studied notions as state-space equivalence (see, e.g., [2])
and state-space reduction (see, e.g., [1]). As pointed out by various authors [5, 11, 18],
these relations also have close ties to the fundamental concept of controlled invariance
in geometric control theory [3, 8, 9]. Bisimulation relations are, by their very nature,
“two-way” relations, but one can create an obvious definition of a analogous “one-
way” counterpart, which is referred to as a simulation relation (see [18, Def. 5.1] or
section 2 for the definition). Simulation relations also occur frequently in control
systems theory in a variety of contexts. For example, if Φ is a mapping between the
state spaces of two systems that propagates trajectories of the “domain system” to
the “range system,” then the graph of Φ is an example of a simulation relation; in
such a case the systems are sometimes called Φ-related and the range system is called
an abstraction of the domain system [12, 13, 15, 4]. Alternatively, the graph of Φ is
also a simulation relation (however, in the opposite direction) if we can lift trajectories
from the range system to the domain system [5, 16].

This paper refines the aforementioned work on bisimulation relations by paying
somewhat closer attention to regularity properties of the controls (or, as we will
see shortly, of the input-disturbance pairs) that generate the system’s trajectories.
Our motivation for this work rests with certain mathematical foundational issues in
nonlinear control theory. When one formulates precise mathematical definitions of
control systems and the related objects of controls and trajectories (see, for example,
the meticulous treatment in the book of Sontag [19]), some care must be exercised to
ensure that when a control and initial condition are specified the resulting trajectories
exist, are unique, and depend continuously on the data. Put differently, we want our
dynamical model to be well posed. To this end, limitations are placed on the class of
controls that are deemed “admissible,” so that the resulting nonautonomous ordinary
differential equations meet the usual theoretical criteria for the existence, uniqueness,
and continuous dependence of solutions (the so-called C1 Carathéodory conditions).
However, at the same time one wants the class of controls to be as large as possible to
facilitate proving positive results about controllability, existence of optimal controls,
etc. In particular, existence proofs for optimal controls usually require that controls
be members of a specified class of (Lebesgue) measurable functions of time (say, an L2

space). When considerations of (bi)simulation relations are juxtaposed with regularity
issues of the underlying controls, one is consequently confronted with the question of
the extent to which such relations will persist if one restricts controls to specified
admissible classes. It turns out that for linear, time-invariant systems, matters take
care of themselves rather nicely (see Remark 3.11). However, one does not have to
delve very deeply into classes of nonlinear systems to see that some care is required
to be assured that (bi)simulation relations are indeed maintained when controls are
restricted to (even rather large) “admissible” classes (see Example 2.7). Previously,
the author considered related control-admissibility issues for trajectory propagation
[4] and trajectory lifting [5], and this work should be regarded as an extension of these
papers. We also acknowledge the substantial influence of the paper of van der Schaft
[18] in motivating the results contained herein.

The remainder of this paper is organized as follows. In section 2 we recall the def-
initions of the basic objects at hand (control systems and controls) and we formulate
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the basic definitions of simulation and bisimulation relations with admissible classes
of controls. Our definitions closely follow those given by van der Schaft [17, 18],
and in particular we adopt his approach of decomposing controls into inputs and dis-
turbances. However, we have phrased our definitions to be inherently local in time
because of the phenomenon of finite escape time of trajectories of nonlinear systems.
Section 3 contains the main results of the paper on necessary and sufficient conditions
for (bi)simulation relations with admissible classes of inputs and disturbances. In
section 4 the results of section 3 are shown to subsume previously obtained results on
trajectory propagation (i.e., Φ-related systems) and trajectory lifting. We also con-
sider two simple cases in which the “local-in-time” nature of (bi)simulation relations
can be guaranteed to be global in time; for example, such behavior would certainly
be expected of linear systems as we will show.

2. Preliminaries. By the term differentiable manifold we will always mean a
connected, finite-dimensional, second-countable, Hausdorff, differentiable manifold of
class Ck with k ≥ 2. Given a differentiable manifold M , we use TM to denote the
tangent bundle of M , πM : TM → M its canonical projection onto M , and we recall
that TM is a differentiable manifold of class Ck−1. If Φ : M → N is a C1 mapping
of manifolds, then dΦ : TM → TN will denote its differential, while for each x ∈ M
we use dΦx : TxM → TΦ(x)N to denote the corresponding linear mapping on the
indicated tangent spaces (that is, fibers of the tangent bundles).

Given Ck differentiable manifolds M and O, and given a separable metric space Λ,
we will say that a mapping Φ : M ×Λ → O is nicely Ck on M relative to Λ if for each
λ ∈ Λ the mapping x �→ Φ(x, λ) is Ck and if the partial derivatives of Φ with respect
to x up to order k are continuous on M × Λ. In particular, a C1 control system with
state space M and control space Λ is a mapping F : M × Λ → TM that is nicely C1

on M relative to Λ and satisfies (πM ◦F )(x, λ) = x for every (x, λ) ∈ M ×Λ (for more
details, see [4, Def. 2.1] or [6, Def. 2.2]). Control systems will sometimes be informally
specified by the notation ẋ = F (x, v(t)). Potential controls for such a system are
members of the family U Λ

meas of all Lebesgue-measurable mappings of R into Λ; that
is, v ∈ U Λ

meas if and only if for every open subset W of Λ the preimage v−1(W ) is a
Lebesgue-measurable subset of R. Useful subclasses of U Λ

meas are the family U Λ
cpt of

all Lebesgue-measurable mappings of R into Λ that are essentially compact valued on
compact intervals (see [6, Ex. 2.10(2)]), the family U Λ

simp of all Lebesgue-measurable
mappings of R into Λ that are simple (that is, have finite range), and the family
U Λ

cont of all continuous mappings of R into Λ. Obviously, we have U Λ
simp ⊆ U Λ

cpt and

U Λ
cont ⊆ U Λ

cpt. In the case where Λ is the finite-dimensional Euclidean space R
p, it

will also be handy to designate by L1
loc(R,Rp) ⊆ U R

p

meas the family of all Lebesgue-
measurable mappings of R into R

p that are integrable on compact subintervals of
R. A potential control v : R → Λ is called admissible for a C1 control system
F : M×Λ → TM if the mapping Fv : M×R → TM defined by Fv(x, t) = F (x, v(t)) is
such that its local representation with respect to every coordinate chart of M satisfies
C1 Carathéodory conditions (see [4, Def. 2.6] or [6, Def. 2.8]). We let U Λ

meas(F ) denote
the subset of U Λ

meas consisting of all admissible controls for the C1 control system F .
In general the family of admissible controls U Λ

meas(F ) is strongly dependent on the
control system F , but one always has

U Λ
simp ⊆ U Λ

meas(F ), U Λ
cpt ⊆ U Λ

meas(F ), U Λ
cont ⊆ U Λ

meas(F )

for an arbitrary C1 control system F (see [6, Ex. 2.10(2)]). Standard results from
the theory of ordinary differential equations guarantee that for every x0 ∈ M and for
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every v ∈ U Λ
meas(F ) there exist an open interval J ⊆ R containing 0 and a unique

mapping ψ : J → M such that ψ(0) = x0, ψ is absolutely continuous on every compact
subinterval of J , and

ψ̇(t) = F (ψ(t), v(t)) for almost every t ∈ J

(by “almost every” we mean except on a set of Lebesgue measure zero; henceforth
we will use the standard abbreviation a.e.). We call t �→ ψ(t) a trajectory of F
corresponding to the initial condition x0 and the control v. Often we will use the
notation

ψ(t)
def
= ψ(t, x0, v)

to make explicit the dependence of the trajectory on the initial condition and control,
in which case we will refer to the function ψ of time, the initial state, and the control
as the trajectory mapping of F .

The formal definitions of simulation and bisimulation relations will be cast in the
somewhat more general framework of control systems with inputs, disturbances, and
outputs. Roughly speaking, we view the control as comprising all external factors that
can affect the system, and then partition the control into an input (or deterministic)
component that we may think of as being within our domain of influence, and a
disturbance (or nondeterministic) component that we may think of as being outside
of our domain of influence. As noted by Pappas and his coauthors (see [7, 11, 14]),
the initial introduction of simulation and bisimulation relations in control systems
theory was motivated by analogous concepts in theoretical computer science which
apply to nondeterministic automata. The presence of the disturbance component in
the control systems formulation of these relations allows the evolutionary behavior
of the control systems under consideration to mirror the nondeterministic aspect of
the transitions allowed in nondeterministic automata. We will comment further on
interpretations of the disturbance component in Remark 2.4.

Definition 2.1.

(i) A C1 input-disturbance (ID) system is a C1 control system F : M × Λ →
TM whose control space Λ is a Cartesian product Λ = Ω × Δ. We refer to Ω as the
input space and Δ as the disturbance space, and we note that each of Ω and Δ inherits
the structure of a separable metric space from Λ.

(ii) A C1 input-disturbance-output (IDO) system is a pair (F, h), where F :
M × Ω × Δ → TM is a C1 ID system and h : M × Ω → O is a continuous mapping
of M ×Ω into a topological space O; we call h the output mapping and O the output
space.

(iii) If U ⊆ U Ω
meas and D ⊆ U Δ

meas are chosen to satisfy U ×D ⊆ U Ω×Δ
meas (F ), then

we refer to the four-tuple (F, h,U ,D) as an IDO system with admissible inputs U and
admissible disturbances D.

A C1 IDO system (F, h,U ,D) can also be designated by the more informal nota-
tion

ẋ = F (x, u(t), d(t)), u ∈ U , d ∈ D,

y = h(x, u(t)),

where u(·) is the input function and d(·) is the disturbance function.
The following definitions of simulation and bisimulation relations between two

IDO systems are patterned after the definition of bisimulation given by van der Schaft
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in [18, Def. 2.1], but we will be a bit more explicit about the assumed regularity
properties of the inputs and disturbances.

Definition 2.2. Let M and N be differentiable manifolds, let O be a topological
space, let Ω, Δ, and E be separable metric spaces, and suppose that we are given a
pair of C1 IDO systems with admissible inputs and admissible disturbances

F : M × Ω × Δ → TM, h : M × Ω → O, u ∈ U , d ∈ D

and

F̃ : N × Ω × E → TN, h̃ : N × Ω → O, u ∈ U , e ∈ E ,

which have the common input space Ω, common output space O, and common family
of admissible inputs U , where

U ⊆ U Ω
meas, D ⊆ U Δ

meas, E ⊆ U E
meas

are such that

U × D ⊆ U Ω×Δ
meas (F ), U × E ⊆ U Ω×E

meas (F̃ ).

A nonempty subset R ⊆ M × N is called a simulation relation of (F, h,U ,D) by

(F̃ , h̃,U , E) if for every (x0, z0) ∈ R, for every u ∈ U , and for every d ∈ D there
exist e ∈ E and a compact interval I containing 0 in its interior such that for every
t ∈ I both ψ(t, x0, u, d) and ψ̃(t, z0, u, e) are defined (here ψ and ψ̃ are the trajectory

mappings of F and F̃ , respectively), and we have

(2.1) t ∈ I ⇒ (ψ(t, x0, u, d), ψ̃(t, z0, u, e)) ∈ R

and

(2.2) t ∈ I ⇒ h(ψ(t, x0, u, d), u(t)) = h̃(ψ̃(t, z0, u, e), u(t)).

Remark 2.3. Relations (2.1) and (2.2) are required to hold only on a compact
interval containing 0 in its interior because of the possibility of finite escape time
for the trajectories of the nonlinear systems under consideration. Naturally, in cases
where the systems are complete one would like to strengthen these relations to hold
for all t ∈ R, a point we will address later (see section 4). We further note that if
one chooses to identify inputs and disturbances that agree almost everywhere, then
relation (2.2) should be required to hold only for a.e. t ∈ I, but we will not make such
identifications in this paper.

Remark 2.4. We offer a few comments on Definition 2.2 as it relates to the
presence of the disturbance component.

(i) The concept of simulation relation as defined here (which again we attribute

to van der Schaft [18]) guarantees only that the simulating system (F̃ , h̃,U , E) has the
capability of mimicking the class of all input-output “behaviors” of the simulated
system (F, h,U ,D) in the manner dictated by the simulation relation R. However,
it does not guarantee that the simulating system can be made to mimic specific
individual behaviors of the simulated system because we have no assurance that the
disturbance affecting the simulating system is the one whose existence is assured by
the definition. Nevertheless, there are useful control problems that can be formulated
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with such a nondeterministic interpretation of the disturbances. For example, if one
can design a state feedback controller for the simulating system that drives the output
to zero (say, as t → ∞) for all disturbances in a specified class, then one can seek
conditions under which such a controller will exist for the simulated system.

(ii) Other interpretations of the disturbance component are also possible and
of potential utility in the control-systems formulation of simulation relations. For
example, it may happen that the disturbance affecting the simulated system is non-
deterministic, but is also measurable (the wind velocity affecting the glide path of an
aircraft may not be predictable in advance of its occurrence, but it can be measured
as it occurs). To force the simulating system to mimic the simulated system, one
could try to synthesize a “disturbance” that generates a desired trajectory of the
simulating system from the states and common input of both systems, as well as the
measured values of the disturbance affecting the simulated system. In this context,
the term “disturbance” as applied to the simulating system has a connotation that
differs somewhat from a purely random effect, and a certain amount of care must be
exercised.

Definition 2.5. Let (F, h,U ,D) and (F̃ , h̃,U , E) be as Definition 2.2. A non-
empty subset R ⊆ M × N is called a bisimulation relation between (F, h,U ,D) and

(F̃ , h̃,U , E) if R is both a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , E) and a

simulation relation of (F̃ , h̃,U , E) by (F, h,U ,D).
Reference [18] contains a statement of the following proposition, which provides

a necessary and sufficient condition for a submanifold of M ×N to be a bisimulation
relation between two IDO systems (see, specifically, [18, Prop. 7.1 and Rem. 7.4]; we
have altered the notation of [18] to be consistent with the notation used here).

Proposition 2.6. Let R be a C2 submanifold of M ×N . Then R is a bisimula-
tion relation between two IDO systems (F, h,U ,D) and (F̃ , h̃,U , E) if and only if for
every (x, z) ∈ M ×N and ω ∈ Ω the following conditions are met:

(i) For every δ ∈ Δ there exists ε ∈ E such that

(2.3)
(
F (x, ω, δ), F̃ (z, ω, ε)

)
∈ T(x,z)R,

and conversely, for every ε ∈ E there exists δ ∈ Δ such that (2.3) holds;
(ii)

(2.4) h(x, ω) = h̃(z, ω).

Regularity issues of inputs and disturbances are deliberately understated in [18]
because most of the presentation therein focuses on linear, time-invariant systems,
where such regularity issues are not of critical significance (see Remark 3.11). How-
ever, the next example shows that regularity of inputs and disturbances can be a
significant factor in nonlinear IDO systems.

Example 2.7. Consider the IDO system with M = Δ = O = R given by

F (x, δ) = 1 + x2δ, h(x) = x,

and consider the IDO system with N = R
2 and E = O = R given by

F̃ (z1, z2, ε) = (1 + z3
1ε, ε), h̃(z1, z2) = z1

(observe that in both cases the input space Ω is absent). Because these systems are
affine in their disturbances, we will use in each case the largest reasonable class of
disturbances

D = E = L1
loc(R,R).
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If we set

R = {(x, z1, z2) ∈ R
3 | x = z1},

then R is a closed vector subspace (and, in particular, a closed submanifold) of M ×
N = R

3, and it is easy to check that conditions (2.3) and (2.4) are satisfied. However,
we claim that R cannot be a bisimulation relation as defined in Definition 2.5. To see
this, select (x0, z10, z20) = (0, 0, 0) ∈ R and d ∈ D, d(t) ≡ 1. It is easily seen that the
corresponding state trajectory of F is

t �→ ψ(t, 0, d) = tan t (|t| < π/2).

Suppose that e ∈ E and I is a compact interval containing 0 such that relation (2.1)
holds. Then the corresponding state trajectory

t �→ ψ̃(t, (0, 0), e) =
(
ψ̃1(t, (0, 0), e), ψ̃2(t, (0, 0), e)

)
of F̃ must satisfy for a.e. t ∈ I

tan t = ψ̃1(t, (0, 0), e)

⇒ d

dt
tan t =

d

dt
ψ̃1(t, (0, 0), e) = 1 + ψ̃1(t, (0, 0), e)3e(t)

⇒ sec2 t = 1 + tan2 t = 1 + (tan3 t)e(t),

so it must be the case that e(t) = 1/ tan t for a.e. t. It follows that e(·) is not integrable
on I. Furthermore, even if we attempted to press ahead with this choice of e, the
second component of the trajectory would have to satisfy

d

dt
ψ̃2(t, (0, 0), e) =

1

tan t
,

which precludes t �→ ψ̃2(t, (0, 0), e) being absolutely continuous on any compact subin-
terval of R containing 0. Roughly speaking, the source of the difficulty is that the
disturbance vector fields

x �→ x2, (z1, z2) �→
[
z3
1

1

]
are “rank deficient” modulo the tangent space to the purported bisimulation relation
R at the origin (see condition (i) of Proposition 3.6 for a precise statement of the
rank condition that is violated here).

3. Main results. Our main result deals with nonlinear IDO systems that are
affine in the disturbance, a concept that we define next.

Definition 3.1. A C1 ID system F : M × Ω × Δ → TM is said to be affine in
the disturbance if the disturbance space Δ is a finite-dimensional Euclidean space R

p

and F has the form

(3.1) F (x, ω, δ) = f(x, ω) +

p∑
i=1

δigi(x)

for (x, ω, δ) ∈ M ×Ω×R
p, where f : M ×Ω → TM is a C1 control system, g1, . . . , gp

are C1 vector fields on M , and δ = (δ1, . . . , δp) ∈ R
p.
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We will often write (3.1) in the abbreviated form

(3.2) F (x, ω, δ) = f(x, ω) + G(x)δ,

where G(x) = [g1(x), . . . , gp(x)].
Remark 3.2. For the disturbance affine ID system F having the form (3.1) or

(3.2), it is easy to check that

U Ω
meas(f) × L1

loc(R,Rp) ⊆ U Ω×R
p

meas (F ).

Notation 3.3. Given finite-dimensional (real) vector spaces V and W, we will let
L(V,W) denote the family of all linear mappings from V into W. Given differentiable
manifolds M , N and points x ∈ M , z ∈ N , we will make the canonical identification

T(x,z)(M ×N) ∼= TxM × TzN,

and often write tangent vectors v ∈ T(x,z)(M ×N) in the stacked form

v =

[
v̄
ṽ

]
, where v̄ ∈ TxM and ṽ ∈ TzN.

Given C1 vector fields g̃1, . . . , g̃q on N and z ∈ N , we set G̃(z) = [g̃1(z), . . . , g̃q(z)]
and use the notation

Im

[
0

G̃(z)

]
to stand for the vector subspace of the tangent space TxM × TzN spanned by the
tangent vectors [

0
g̃1(z)

]
, . . . ,

[
0

g̃q(z)

]
.

An analogous interpretation applies to the notation

Im

[
G(x)

0

]
,

where G(x) = [g1(x), . . . , gp(x)] and g1, . . . , gp are C1 vector fields on M .
The following two lemmas will play a key role in the proof of our main result.
Lemma 3.4. Let V be a finite-dimensional (real) vector space with inner product

〈·, ·〉, let W ⊆ V be a vector subspace having codimension 0 < σ < dimV, and let
η1, . . . , ησ ∈ V be a basis for the orthogonal complement W⊥. If v1, . . . , vλ ∈ V is a
finite collection of vectors, if Z = span{v1, . . . , vλ}, and if


 = dim(Z + W)/W,

then the σ × λ matrix [
〈ηi, vj〉

]
1≤i≤σ,1≤j≤λ

has rank 
.
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Proof. This is a straightforward exercise in linear algebra.
Lemma 3.5. Let r, p, q be positive integers, let X be a Ck differentiable manifold

of dimension r, and let Σ : X → L(Rp,Rq) be a Ck mapping such that ζ �→ rank Σ(ζ)
is constant for ζ ∈ X . Then there exists a Ck mapping Θ : X → L(Rq,Rp) such that

ζ ∈ X ⇒ Σ(ζ)Θ(ζ)Σ(ζ) = Σ(ζ).

Proof. See the proof of Claim 1 in [3, Thm. 3.11] and [3, Rem. 3.14].
In the next proposition we have isolated some of the technical details that are

required in the proof of our main result.
Proposition 3.6. Let

F : M × Ω × Δ → TM, F̃ : N × Ω × R
q → TN

be two C1 ID systems that have common input space Ω, and suppose that F̃ is affine
in its disturbance; that is,

(3.3) (z, ω, ε) ∈ N × Ω × R
q ⇒ F̃ (z, ω, ε) = f̃(z, ω) + G̃(z)ε,

where G̃(z) = [g̃1(z), . . . , g̃q(z)] and g̃1, . . . , g̃q are C1 vector fields on N . Let R ⊆
M ×N be a C2 immersed submanifold of M ×N with the following properties:

(i) For (x, z) ∈ R the vector subspace

(3.4) Ṽ(x,z) = T(x,z)R + Im

[
0

G̃(z)

]
of T(x,z)(M ×N) has a constant dimension as (x, z) varies over R.

(ii) For every (x, z) ∈ R, ω ∈ Ω, and δ ∈ Δ, there exists ε ∈ R
q such that

(3.5)

[
F (x, ω, δ)

f̃(z, ω) + G̃(z)ε

]
∈ T(x,z)R.

Then there exists a mapping Υ : R × Ω × Δ → R
q that is nicely C1 in (x, z) ∈ R

relative to (ω, δ) ∈ Ω × Δ and satisfies

(3.6) ((x, z), ω, δ) ∈ R× Ω × Δ ⇒
[

F (x, ω, δ)

f̃(z, ω) + G̃(z)Υ(x, z, ω, δ)

]
∈ T(x,z)R.

Proof. We will show that the desired mapping Υ exists locally (relative to R) in
a neighborhood of an arbitrary point (x0, z0) in R, after which we will glue the local
versions of Υ together via a partition of unity to obtain the desired globally defined
mapping (again, relative to R). Thus we fix a point (x0, z0) ∈ R and appeal to a
standard result in the theory of differentiable manifolds (see, for example, [20, p. 28])
which guarantees the existence of an open neighborhood S of (x0, z0) relative to R such
that S is a slice of a coordinate neighborhood N of (x0, z0) in M×N (the terminology
is as in [20]). We note that S may not be an open subset of R in the relative topology
that R inherits from M × N due to the fact that we are assuming only that R is
an immersed submanifold; in particular, we are not asserting that S = R ∩ N , but
only that S is a subset of N on which certain of the coordinate functions on N are
constant. Let m = dimM , n = dimN , and let σ be the codimension of R in M ×N .
Since S is a slice of the coordinate neighborhood N , it is easy to obtain a family of
m + n C1 vector fields defined on N ,

ξ1, . . . , ξm+n−σ, η1, . . . , ησ : N → T (M ×N),
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such that

(3.7) (x, z) ∈ S ⇒ T(x,z)S = T(x,z)R = span
R
{ξ1(x, z), . . . , ξm+n−σ(x, z)}

and

(3.8) (x, z) ∈ S ⇒ 〈ηi(x, z), ξj(x, z)〉 = 0 (i = 1, . . . , σ, j = 1, . . . ,m + n− σ),

where 〈·, ·〉 is any conveniently chosen Riemannian metric on M ×N . In particular,
for (x, z) ∈ S and v ∈ T(x,z)(M ×N) we have

(3.9) v ∈ T(x,z)S = T(x,z)R ⇔ 〈ηi(x, z), v〉 = 0 for every i = 1, . . . , σ.

Without loss of generality we may further assume that N = U × V , where U is a
coordinate neighborhood of x0 in M that is diffeomorphic to R

m and V is a coordinate
neighborhood of z0 in N that is diffeomorphic to R

n. We can then identify the ID
system F with its local representation

F : R
m × Ω × Δ → R

m

relative to U . Similarly we can identify the ID system F̃ with its local representation

F̃ : R
n × Ω × R

q → R
n, F̃ (z, ω, ε) = f̃(z, ω) + G̃(z)ε,

relative to V , where f̃ : R
n × Ω → R

n is nicely C1 in z ∈ R
n relative to ω ∈ Ω and

G̃ : R
n → L(Rq,Rn) is C1. Moreover, the C1 vector fields ξ1, . . . , ξm+n−σ, η1, . . . , ησ

can be identified with their local representations

ξ1, . . . , ξm+n−σ, η1, . . . , ησ : R
m × R

n → R
m × R

n.

If we identify the slice S ⊆ N with its image in R
m × R

n under the coordinate
diffeomorphism N ∼= R

m × R
n, then S is an immersed submanifold of R

m × R
n for

which (3.7) continues to hold and for which (3.8) can be replaced with

(x, z) ∈ S ⇒ ηi(x, z)
τξj(x, z) = 0 (i = 1, . . . , σ, j = 1, . . . ,m + n− σ),

where the superscript τ denotes the matrix transpose, elements of R
m×R

n are viewed
as column vectors, and we select the Riemannian metric induced by the standard inner
product on R

m × R
n.

Likewise, (3.9) can be replaced with

v ∈ T(x,z)S ⇔ ηi(x, z)
τv = 0 for every i = 1, . . . , σ.

Next we select columns g̃j1 , . . . , g̃j� from the n × q-matrix G̃ = [g̃1, . . . , g̃q] such
that the family of m + n-dimensional vectors

(3.10) ξ1(x, z), . . . , ξm+n−σ(x, z),

[
0

g̃j1(z)

]
, . . . ,

[
0

g̃j�(z)

]
is a basis of the vector space Ṽ(x0,z0) defined in (3.4) when x = x0 and z = z0. By
continuity the vector fields (3.10) will be linearly independent in some open neighbor-
hood S0 ⊆ S of (x0, z0) (open relative to the submanifold topology of R), and since
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by assumption the dimension of Ṽ(x,z) is constant for (x, z) ∈ R, we infer that the

vectors (3.10) will form a basis for Ṽ(x,z) for every (x, z) ∈ S0. Because

T(x,z)R = span
R
{ξ1(x, z), . . . , ξm+n−σ(x, z)},

we see that

(3.11) (x, z) ∈ S0 ⇒ dimṼ(x,z)/T(x,z)R = 
.

Since the vectors η1(x, z), . . . , ησ(x, z) form a basis for the orthogonal complement of
T(x,z)R, if we let L(x, z) denote the σ × (m + n)-matrix

(3.12) L(x, z) =

⎡⎢⎣η1(x, z)
τ

...
ησ(x, z)τ

⎤⎥⎦ ,

then relation (3.11) and Lemma 3.4 imply that

(3.13) (x, z) ∈ S0 ⇒ rankL(x, z)

[
0

G̃(z)

]
= 
.

It will also be convenient to partition the matrix L(x, z) defined by (3.12) as

(3.14) L(x, z) =
[
Λ(x, z), Λ̃(x, z)

]
,

where Λ(x, z) has dimensions σ × m, Λ̃(x, z) has dimensions σ × n, and both have
entries that are C1 functions of (x, z) ∈ S0. From relation (3.13) and the partitioned
form of L(x, z) given by (3.14), we obtain

(x, z) ∈ S0 ⇒ rank Λ̃(x, z)G̃(z) = 
.

Thus by Lemma 3.5 there exists a C1 mapping Θ : S0 → L(Rσ,Rq) such that

(3.15) (x, z) ∈ S0 ⇒ Λ̃(x, z)G̃(z)Θ(x, z)Λ̃(x, z)G̃(z) = Λ̃(x, z)G̃(z)

(for later reference we point out that up to this point in the proof we have not yet
invoked assumption (ii)).

With the aid of the mapping Θ just obtained, we will now demonstrate the (local)
existence of the desired mapping Υ. For (x, z) ∈ S0 and (ω, δ) ∈ Ω × R

p assumption
(ii) implies the existence of ε ∈ R

q such that (3.5) is satisfied. Clearly ε depends on
the variables (x, z, ω, δ), that is, ε = ε(x, z, ω, δ), but it is not yet apparent that this
dependence has the regularity properties claimed in the statement of the proposition.
Because the rows of the matrix L defined by (3.12) span the orthogonal complement
of T(x,z)S0 = T(x,z)R, we see that

R
σ � 0 = L(x, z)

[
F (x, ω, δ)

f̃(z, ω) + G̃(z)ε(x, z, ω, δ)

]
=

[
Λ(x, z), Λ̃(x, z)

] [ F (x, ω, δ)

f̃(z, ω) + G̃(z)ε(x, z, ω, δ)

]
= Λ(x, z)F (x, ω, δ) + Λ̃(x, z)

[
f̃(z, ω) + G̃(z)ε(x, z, ω, δ)

]
.

(3.16)
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Define a mapping Γ : S0 × Ω × Δ → R
σ by

(3.17) Γ(x, z, ω, δ) = −Λ(x, z)F (x, ω, δ) − Λ̃(x, z)f̃(z, ω).

It is clear that Γ is nicely C1 in the variables (x, z) ∈ S0 relative to (ω, δ) ∈ Ω × Δ
and relation (3.16) yields

(3.18) Γ(x, z, ω, δ) = Λ̃(x, z)G̃(z)ε(x, z, ω, δ),

so from (3.18) and (3.15) we obtain

Λ̃(x, z)G̃(z)Θ(x, z)Γ(x, z, ω, δ)

= Λ̃(x, z)G̃(z)Θ(x, z)Λ̃(x, z)G̃(z)ε(x, z, ω, δ)

= Λ̃(x, z)G̃(z)ε(x, z, ω, δ)

= Γ(x, z, ω, δ).

(3.19)

If we define Υ : S0 × Ω × Δ → R
q by

(3.20) Υ(x, z, ω, δ) = Θ(x, z)Γ(x, z, ω, δ),

then Υ is nicely C1 in the variables (x, z) ∈ R relative to (ω, δ) ∈ Ω × Δ because Γ
has this property and Θ is C1. Moreover, from (3.19) and (3.17) we obtain

Λ̃(x, z)G̃(z)Υ(x, z, ω, δ) = Γ(x, z, ω, δ)

= −Λ(x, z)F (x, ω, δ) − Λ̃(x, z)f̃(z, ω),

which can be rewritten in the form

0 =
[
Λ(x, z), Λ̃(x, z)

] [ F (x, ω, δ)

f̃(z, ω) + G̃(z)Υ(x, z, ω, δ)

]
= L(x, z)

[
F (x, ω, δ)

f̃(z, ω) + G̃(z)Υ(x, z, ω, δ)

]
.

Since the rows of the matrix L(x, z) span the orthogonal complement of T(x,z)R, we
immediately obtain relation (3.6) for every ((x, z), ω, δ) ∈ S0 ×Ω×Δ. Consequently,
the existence of the desired mapping Υ has been established in some neighborhood of
an arbitrary point (x0, z0) ∈ R.

To obtain the globally defined version of Υ, we appeal to the local result just
obtained and a partition-of-unity argument. By the local result and by the second
countability of R in its submanifold topology, there exist a countable open cover
{Si | i ∈ N} of R and mappings

Υi : Si × Ω × Δ → R
q

that are nicely C1 in (x, z) ∈ Si relative to (ω, δ) ∈ Ω × Δ and satisfy (3.6) for
((x, z), ω, δ) ∈ Si × Ω × Δ. If we select a C1 partition of unity {ψi : R → R | i ∈ N}
subordinate to the open cover {Si | i ∈ N}, then the mapping

Υ : R× Ω × Δ → R
q, Υ((x, z), ω, δ) =

∞∑
i=1

ψi(x, z)Υi((x, z), ω, δ)

is easily seen to satisfy (3.6) everywhere on R× Ω × Δ while being nicely C1 in the
variables (x, z) relative to (ω, δ). This completes the proof.
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Remark 3.7.

1. The constant-dimension assumption (i) in Proposition 3.6 is fairly common
in results of this type; see, for example, [10, Prop. 11.2].

2. If F is affine in its disturbance variable (say, with Δ = R
p), then Υ can

also be chosen to be affine in the disturbance variable δ in the sense that there exist
mappings

P : R× Ω → R
q, Q : R× Ω → L(Rp,Rq),

both of which are nicely C1 in (x, z) relative to ω ∈ Ω and for which

Υ((x, z), ω, δ) = P ((x, z), ω) + Q((x, z), ω)δ.

This follows directly from the formulas (3.20) and (3.17), which specify Υ locally, and
the fact that the affine structure is preserved under the pasting process by which the
globally defined version of Υ is obtained.

We are now in a position to prove the main results of this paper.
Theorem 3.8. Let (F, h) and (F̃ , h̃) be two C1 IDO systems that satisfy the as-

sumptions of Proposition 3.6 (in particular, they have common input space Ω, common

output space O, and F̃ is affine in its disturbance of the form (3.3)). Let R ⊆ M ×N
be a C2 immersed submanifold of M × N for which constant-dimension assumption
(i) of Proposition 3.6 holds, and consider the following “simulation condition”:

(SC) For every (x, z) ∈ R and ω ∈ Ω we have h(x, ω) = h̃(z, ω). Furthermore, for
every (x, z) ∈ R, ω ∈ Ω, and δ ∈ Δ, there exists ε ∈ R

q such that

(3.21)

[
F (x, ω, δ)

f̃(z, ω) + G̃(z)ε

]
∈ T(x,z)R.

Suppose that U ⊆ U Ω
meas(f̃), D ⊆ U Δ

meas are such that U × D ⊆ U Ω×Δ
meas (F ), and let

E ⊆ L1
loc(R,Rq). Then the following statements hold:

1. If R is a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , E) and if U and D
contain all of the constant mappings in their respective ranges, then (SC) holds.

2. If (SC) holds, then R is a simulation relation of (F, h,U ,D) by

(F̃ , h̃,U , L1
loc(R,Rq)).

Proof. To prove the first statement we first observe that our assumptions on U
and E yield

U × E ⊆ U Ω
meas(f̃) × L1

loc(R,Rq) ⊆ U Ω×R
q

meas (F̃ )

by Remark 3.2. Assume that R is a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , E),
and let (x0, z0) ∈ R, ω0 ∈ Ω, and δ0 ∈ R

p be given. If we let u : R → Ω and d : R → R
p

be the constant mappings u(t) ≡ ω0 and d(t) ≡ δ0, then by assumption u ∈ U and
d ∈ D, so by Definition 2.2 there exist e ∈ E and a compact interval I containing 0 in
its interior such that (we will use the abbreviated notations ψ(t) = ψ(t, x0, u, d) and
ψ̃(t) = ψ̃(t, z0, u, e) for the trajectories)

(3.22) t ∈ I ⇒ (ψ(t), ψ̃(t)) ∈ R

and

t ∈ I ⇒ h(ψ(t), ω0) = h̃(ψ̃(t), ω0).
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Thus we can set t = 0 to obtain h(x0, ω0) = h̃(z0, ω0). Furthermore, the trajectories
are absolutely continuous as functions of t, so we can differentiate (3.22) to obtain

(3.23)
(
ψ̇(t),

˙̃
ψ(t)

)
∈ T(ψ(t),ψ̃(t))R for a.e. t ∈ I.

If the disturbance t �→ e(t) is at least continuous, then (3.23) will hold for every t ∈ I
and we can then set t = 0 and immediately obtain (3.21) for x = x0, z = z0, ω = ω0,
δ = δ0, and ε = e(0). However, if e is measurable only as a function of t, then there
is no guarantee that t = 0 is a Lebesgue point of the mapping t �→ ψ̃(t) and further
reasoning is required. The argument of Proposition 3.6 yields an open neighborhood
S0 of (x0, z0) in R and C1 mapping L : S0 → L(Rm+n,Rσ) such that for (x, z) ∈ S0

we have

(3.24) v ∈ T(x,z)S0 = T(x,z)R ⇔ L(x, z)v = 0 ∈ R
σ

(as before, σ is the codimension of R in M ×N , and since we are working locally we
have passed to local coordinates M ∼= R

m, N ∼= R
n). If we partition L as in (3.14),

then we also obtain a C1 mapping Θ : S0 → L(Rσ,Rq) satisfying (3.15). Choose ε > 0
such that (−ε, ε) ⊆ I and (ψ(t), ψ̃(t)) ∈ S0 for t ∈ (−ε, ε). Then (3.23) and (3.24)
yield

R
σ � 0 = L(ψ(t), ψ̃(t))

[
F (ψ(t), ω0, δ0)

f̃(ψ̃(t), ω0) + G̃(ψ̃(t))e(t)

]
= Λ(ψ(t), ψ̃(t))F (ψ(t), ω0, δ0)

+ Λ̃(ψ(t), ψ̃(t))
[
f̃(ψ̃(t), ω0) + G̃(ψ̃(t))e(t)

]
for a.e. t ∈ (−ε, ε).

(3.25)

The argument used in the proof of Proposition 3.6 shows that if Υ : S0 ×Ω×Δ → R
q

is the mapping defined in (3.20), then relation (3.25) will continue to hold with e(t)
replaced by Υ(ψ(t), ψ̃(t), ω0, δ0). However, t �→ Υ(ψ(t), ψ̃(t), ω0, δ0) is continuous
because Υ, ψ, and ψ̃ are continuous, so we obtain

(3.26) |t| < ε ⇒ 0 = L(ψ(t), ψ̃(t))

[
F (ψ(t), ω0, δ0)

f̃(ψ̃(t), ω0) + G̃(ψ̃(t))Υ(ψ(t), ψ̃(t), ω0, δ0)

]
.

In particular, we can set t = 0 in (3.26) and use relation (3.24) to infer that (3.21) holds
when the variables x, z, ω, δ, and ε are replaced with x0, z0, ω0, δ0, and Υ(x0, z0, ω0, δ0),
respectively, and the first statement is proved.

To prove the second statement we assume that (SC) holds and fix (x0, z0) ∈ R,
u ∈ U , and d ∈ D. The hypotheses of Proposition 3.6 are satisfied, so we infer
the existence of a mapping Υ : R × Ω × Δ → R

q that is nicely C1 in the variables
(x, z) ∈ R relative to (ω, δ) ∈ Ω × Δ and for which relation (3.6) holds. It follows
that the mapping

F : R× Ω × Δ → T (M ×N)

given by

(3.27) F((x, z), ω, δ) =

[
F (x, ω, δ)

f̃(z, ω) + G̃(z)Υ(x, z, ω, δ)

]
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takes values in the tangent bundle TR of the submanifold R (TR is, of course,
a subbundle of T (M × N)), and as such defines a C1 control system on R with
control space Ω×Δ. A straightforward (though not completely obvious) check of the
construction of Υ in Proposition 3.6 shows that

U × D ⊆ U Ω×R
p

meas (F),

so for the given initial point (x0, z0) ∈ R and the given controls u ∈ U , d ∈ D, the
corresponding state trajectory

t �→ Ψ(t, (x0, z0), u, d)

of the system F is defined on a compact interval I containing 0 in its interior and
takes values in R. If we define e : R → R

q by

(3.28) e(t) =

{
Υ(Ψ(t, (x0, z0), u, d), u(t), d(t)) if t ∈ I,

0 otherwise,

then the form of Υ derived in Proposition 3.6 and the assumptions imposed on u and
d force e(·) to be Lebesgue integrable on R. One can also easily verify that

t ∈ I ⇒ Ψ(t, (x0, z0), u, d) =
(
ψ(t, x0, u, d), ψ̃(t, z0, u, e)

)
,

where ψ and ψ̃ are the trajectory mappings for F and F̃ , respectively, so, in particular,

t ∈ I ⇒
(
ψ(t, x0, u, d), ψ̃(t, z0, u, e)

)
∈ R,

and, moreover,

t ∈ I ⇒ h(ψ(t, x0, u, d), u(t)) = h̃(ψ̃(t, z0, u, e), u(t))

by the assumption on h and h̃ in (SC), so the proof is complete.
Remark 3.9. One can easily prove variations of assertion (2) in Theorem 3.8

to obtain simulation results for other (restricted) classes of inputs and disturbances.
For example, a straightforward modification of the proof of Theorem 3.8.2 shows that
if U ⊆ U Ω

cont and D ⊆ U Δ
cont, then (SC) implies that R is a simulation relation of

(F, h,U ,D) by (F̃ , h̃,U ,U R
q

cont). One simply checks that the requisite disturbance e is
synthesized by way of the mapping Υ given by Proposition 3.6, and Υ is continuous
(the definition of e in (3.28) needs to be adjusted slightly by extending e from I to R

continuously instead of by zero). Similar results can be obtained for piecewise contin-
uous inputs and disturbance, or (piecewise) differentiable inputs and disturbances if
the input and disturbance spaces are assumed to be differentiable manifolds and the
control systems are jointly differentiable in their state and control variables.

Two applications of Theorem 3.8 immediately yield the following bisimulation
result.

Theorem 3.10. Let (F, h) and (F̃ , h̃) be two C1 IDO systems that have common
input space Ω, common output space O, and are affine in their disturbances (so F

has the form (3.2) and F̃ has the form (3.3)). Let R ⊆ M × N be a C2 immersed
submanifold of M ×N for which the following rank condition holds:

(RC) For (x, z) ∈ R the vector subspaces

V(x,z) = T(x,z)R + Im

[
G(x)

0

]
, Ṽ(x,z) = T(x,z)R + Im

[
0

G̃(z)

]
of T(x,z)(M ×N) have constant—but possibly unequal—dimensions as (x, z)
varies over R (in particular, these vector spaces need not coincide).
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Consider the following “bisimulation condition”:
(BC) For every (x, z) ∈ R and ω ∈ Ω we have h(x, ω) = h̃(z, ω). Furthermore, for

every (x, z) ∈ R, ω ∈ Ω, and δ ∈ R
p, there exists ε ∈ R

q such that

(3.29)

[
f(x, ω) + G(x)δ

f̃(z, ω) + G̃(z)ε

]
∈ T(x,z)R,

and conversely for every (x, z) ∈ R, ω ∈ Ω, and ε ∈ R
q, there exists δ ∈ R

p

such that (3.29) holds.
Then the following statements hold:

1. Let U ⊆ U Ω
meas(f) ∩ U Ω

meas(f̃), D ⊆ L1
loc(R,Rp), E ⊆ L1

loc(R,Rq) be specified
classes of inputs and disturbances that contain all of the constant mappings of R

in their respective ranges. If R is a bisimulation relation between (F, h,U ,D) and

(F̃ , h̃,U , E), then (BC) holds.
2. If U ⊆ U Ω

meas(f) ∩ U Ω
meas(f̃) and if (BC) holds, then R is a bisimulation

relation between (F, h,U , L1
loc(R,Rp)) and (F̃ , h̃,U , L1

loc(R,Rq)).
Remark 3.11. Of some interest is the special case of the previous theorem when

the systems F and F̃ are linear. That is, we suppose that the systems’ state, input,
and disturbance spaces are Euclidean (say, M = R

m, N = R
n, Ω = R

r, Δ = R
p,

E = R
q), F and F̃ have the form

F (x, ω, δ) = Ax + Bω + Gδ, (x, ω, δ) ∈ R
m × R

r × R
p,

and

F̃ (z, ω, ε) = Ãz + B̃ω + G̃ε, (z, ω, ε) ∈ R
n × R

r × R
q

for constant matrices A, B, G, Ã, B̃, and G̃ of the appropriate dimensions, and R
is a vector subspace of M × N = R

m × R
n. Then (RC) holds trivially (note that

T(x,z)R = R in this case), so for any U ⊆ L1
loc(R,Rr), we can infer that R is a

bisimulation relation between (F, h,U , L1
loc(R,Rp)) and (F̃ , h̃,U , L1

loc(R,Rq)) if the
following bisimulation condition holds:
(BC′) For every (x, z) ∈ R and ω ∈ R

r we have h(x, ω) = h̃(z, ω). Furthermore, for
every (x, z) ∈ R, ω ∈ R

r, and δ ∈ R
p, there exists ε ∈ R

q such that

(3.30) (Ax + Bω + Gδ, Ãz + B̃ω + G̃ε) ∈ R,

and conversely for every (x, z) ∈ R, ω ∈ R
r, and ε ∈ R

q, there exists δ ∈ R
p

such that (3.30) holds.

4. Discussion and related results. A particularly important example of sim-
ulation relations arises from the notion of systems “related” by smooth mappings
[4, 12, 13]. Specifically, suppose we are given a pair of C1 IDO systems

F : M × Ω × Δ → TM, h : M × Ω → O, u ∈ U , d ∈ D

and

F̃ : N × Ω × E → TN, h̃ : N × Ω → O, u ∈ U , e ∈ E ,

which have the common input space Ω, the common output space O, the common
family of admissible inputs U , and admissible families of disturbances D and E , re-
spectively, and let Φ : M → N be a C2 mapping. We wish to explore conditions
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under which these IDO systems are “related” by the mapping Φ according to either
of the following definitions (as before, ψ and ψ̃ denote the trajectory mappings of F

and F̃ , respectively).
Definition 4.1. We say that Φ maps trajectories of (F, h,U ,D) to trajectories

of (F̃ , h̃,U , E) while preserving outputs if for every x0 ∈ M , u ∈ U , and d ∈ D there
exist e ∈ E and a compact interval I containing 0 in its interior such that both of the
trajectories t �→ ψ(t, x0, u, d) and t �→ ψ̃(t, z0, u, e) (here z0 = Φ(x0)) are defined for
every t ∈ I and satisfy

(4.1) t ∈ I ⇒ Φ
(
ψ(t, x0, u, d)

)
= ψ̃(t, z0, u, e)

and

(4.2) t ∈ I ⇒ h(ψ(t, x0, u, d), u(t)) = h̃(ψ̃(t, z0, u, e), u(t)).

Definition 4.2. We say that Φ lifts trajectories of (F̃ , h̃,U , E) to trajectories
of (F, h,U ,D) while preserving outputs if for every z0 ∈ N , u ∈ U , e ∈ E, and
x0 ∈ Φ−1(z0) there exist d ∈ D and a compact interval I containing 0 in its interior
such that both of the trajectories t �→ ψ(t, x0, u, d) and t �→ ψ̃(t, z0, u, e) are defined
for every t ∈ I and satisfy relations (4.1) and (4.2).

Remark 4.3. We note in passing that one can handle systems without outputs
under this framework by simply specifying that the output mappings h and h̃ are
constant, since in this case the output relation (4.2) is trivially satisfied.

As one might expect, the notions of mapping and lifting trajectories are subsumed
by the notion of simulation of one system by another if we associate to Φ its graph

R = Graph(Φ) = {(x,Φ(x)) | x ∈ M}.

Observe that R is first and foremost a relation in M ×N , but it is also a C2 (in this
case closed and imbedded) submanifold of M × N that is C2 diffeomorphic to M .
The tangent spaces to R are easily described as follows:

(4.3) T(x,Φ(x))R =

{[
v

dΦx(v)

]
| v ∈ TxM

}
(x ∈ M)

(we use the stacked representation of tangent vectors in TR ⊆ T (M ×N) introduced
in Notation 3.3). Since z0 = Φ(x0) and relation (4.1) are equivalent to (x0, z0) ∈ R
and

t ∈ I ⇒
(
ψ(t, x0, u, d), ψ̃(t, z0, u, e)

)
∈ R,

we immediately obtain the following propositions.
Proposition 4.4. The C2 mapping Φ : M → N maps trajectories of (F, h,U ,D)

to trajectories of (F̃ , h̃,U , E) while preserving outputs if and only if the relation R =

Graph(Φ) is a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , E).

Proposition 4.5. The C2 mapping Φ : M → N lifts trajectories of (F̃ , h̃,U , E)
to trajectories of (F, h,U ,D) while preserving outputs if and only if the relation R =

Graph(Φ) is a simulation relation of (F̃ , h̃,U , E) by (F, h,U ,D).
For illustrative purposes, we show how the previous propositions, when combined

with the results of section 3, allow us to recover previously obtained results on tra-
jectory propagation and trajectory lifting.
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Theorem 4.6 (see [4, Thm. 3.11]). Let (F, h) and (F̃ , h̃) be two C1 IDO systems
that satisfy the assumptions of Proposition 3.6 (in particular, they have common input

space Ω, common output space O, and F̃ is affine in its disturbance of the form (3.3)).
Let Φ : M → N be a C2 mapping such that

(i) (x, ω) ∈ M × Ω ⇒ h̃(Φ(x), ω) = h(x, ω);
(ii) for every (x, ω) ∈ M × Ω we have

{dΦxF (x, ω, δ) | δ ∈ Δ} ⊆ {f̃(Φ(x), ω) + G̃(Φ(x))ε | ε ∈ R
q};

(iii) the vector space Im G̃(Φ(x)) has constant dimension as x varies over M .
If U ⊆ U Ω

meas(f̃), D ⊆ U Δ
meas, and U × D ⊆ U Ω×Δ

meas (F ), then Φ maps trajectories of

(F, h,U ,D) to trajectories of (F̃ , h̃,U , L1
loc(R,Rq)) while preserving outputs.

Proof. If (x, z) ∈ Graph(Φ) and ω ∈ Ω, then z = Φ(x) and assumption (i) yields
h(x, ω) = h̃(z, ω). Moreover, for (x, ω) ∈ M × Ω and δ ∈ Δ assumption (ii) yields a
ε ∈ R

q for which

dΦxF (x, ω, δ) = f̃(z, ω) + G̃(z)ε,

and this, along with the description of the tangent spaces of R = Graph(Φ) given by
(4.3), implies [

F (x, ω, δ)

f̃(z, ω) + G̃(z)ε

]
∈ T(x,z)R,

so we obtain the simulation condition (SC) of Theorem 3.8. For (x, z) ∈ R we also
have (here Im denotes the m×m identity matrix)

Ṽ(x,z) = T(x,z)R + Im

[
0

G̃(z)

]
= T(x,Φ(x))R + Im

[
0

G̃(Φ(x))

]
=

{[
v

dΦx(v) + G̃(Φ(x))ε

] ∣∣∣∣ v ∈ TxM, ε ∈ R
q

}
=

{[
Im 0

dΦx G̃(Φ(x))

] [
v
ε

] ∣∣∣∣ v ∈ TxM, ε ∈ R
q

}
.

It follows that

dim Ṽ(x,Φ(x)) = m + rank G̃(Φ(x)),

from which assumption (iii) implies that dim Ṽ(x,z) is constant as (x, z) varies over
R = Graph(Φ). Thus we infer from Theorem 3.8.2 that R is a simulation relation of

(F, h,U ,D) by (F̃ , h̃,U , L1
loc(R,Rq)), and the theorem is now a direct consequence of

Proposition 4.4.
Remark 4.7. In the literature (see, for example, [4, 12, 13]) the systems F and

F̃ are called Φ-related if assumption (ii) of Theorem 4.6 holds. Theorem 4.6 is also
closely related to (and generalizes somewhat) a result of Elkin [1, Thm. 2.1].

Theorem 4.8 (see [5, Thm. 3.2]). Let

F : M × Ω × R
p → TM, h : M × Ω → O

and

F̃ : N × Ω × E → TN, h̃ : N × Ω → O
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be two C1 IDO systems that have common input space Ω, common output space O,
and suppose that F is affine in its disturbance of the form (3.2). Let Φ : M → N be a
C2 mapping, let R = Graph(Φ) ⊆ M ×N , and suppose that the following conditions
are met:

(i) (x, ω) ∈ M × Ω ⇒ h̃(Φ(x), ω) = h(x, ω);
(ii) for every (z, ω) ∈ N × Ω and for every x ∈ Φ−1(z) we have

{dΦx[f(x, ω) + G(x)δ] | δ ∈ Δ} ⊇ {F̃ (z, ω, ε) | ε ∈ R
q};

(iii) the vector space Im dΦx ◦G(x) has constant dimension as x varies over M .

If U ⊆ U Ω
meas(f) and E ⊆ U E

meas are such that U × E ⊆ U Ω×E
meas (F̃ ), then Φ lifts trajec-

tories of (F̃ , h̃,U , E) to trajectories of (F, h,U , L1
loc(R,Rp)) while preserving outputs.

Proof. As in the proof of the previous theorem, we immediately see that (x, z) ∈ R
and ω ∈ Ω ⇒ h(x, ω) = h̃(z, ω). Moreover, for (x, z) ∈ R = Graph(Φ), ω ∈ Ω, and
ε ∈ E we have x ∈ Φ−1(z), and assumption (ii) yields δ ∈ R

p such that

dΦx[f(x, ω) + G(x)δ] = F̃ (z, ω, ε),

and this, along with the description of the tangent spaces of R = Graph(Φ) given by
(4.3), implies [

f(x, ω) + G(x)δ

F̃ (z, ω, ε)

]
∈ T(x,z)R.

Thus we have established the analogue of the simulation condition (SC) in Theorem

3.8 obtained by reversing the roles of F and F̃ . For (x, z) ∈ R we also have

V(x,z) = T(x,z)R + Im

[
G(x)

0

]
= T(x,Φ(x))R + Im

[
G(x)

0

]
=

{[
v + G(x)δ
dΦx(v)

] ∣∣∣∣ v ∈ TxM, δ ∈ R
p

}
=

{[
Im G(x)
dΦx 0

] [
v
δ

] ∣∣∣∣ v ∈ TxM, δ ∈ R
p

}
.

It follows that

dimV(x,z) = rank

[
Im G(x)
dΦx 0

]
= rank

[
Im 0

−dΦx In

] [
Im G(x)
dΦx 0

]
= rank

[
Im G(x)
0 −dΦxG(x)

]
,

where the second equality is due to the fact that we are premultiplying by an invertible
matrix. Consequently,

dimV(x,Φ(x)) = m + rank dΦxG(Φ(x)),

from which assumption (iii) implies that dimV(x,z) is constant as (x, z) varies over
R = Graph(Φ). Thus Theorem 3.8.2 implies that R is a simulation relation of
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(F̃ , h̃,U , E) by (F, h,U , L1
loc(R,Rp)). The theorem is now a direct consequence of

Proposition 4.5.

We conclude by making some remarks concerning finite escape time of trajectories.
As pointed out in Remark 2.3, our definition of bisimulation relation (Definition 2.2)
is local in time (i.e., holds only on a compact interval containing the initial time

0) because the trajectories of the “simulating system” F̃ may not be guaranteed to
exist for all times for which the corresponding trajectories of the “original system”
F are defined. However, it is desirable to identify situations in which the simulating
trajectory is guaranteed to exist over any compact interval on which the corresponding
trajectory of the original system is defined. Such a situation is addressed by the
following definition.

Definition 4.9. Let (F, h,U ,D) and (F̃ , h̃,U , E) be a pair of C1 IDO systems
with admissible inputs and disturbances, and let R ⊆ M ×N be a simulation relation
of (F, h,U ,D) by (F̃ , h̃,U , E) as given by Definition 2.2. We say that R is semiglobal
in time if for every (x0, z0) ∈ R, for every u ∈ U , for every d ∈ D, and for every
compact interval I containing 0 on which the trajectory t �→ ψ(t, x0, u, d) is defined
there exists e ∈ E such that the trajectory t �→ ψ̃(t, z0, u, e) is defined for every t ∈ I
and relations (2.1) and (2.2) hold for every t ∈ I.

We note in passing that usage the term “semiglobal” instead of “global” is in-
tended to emphasize the fact that we do not require the stronger property that our
systems’ trajectories be defined for all t ∈ R. Indeed, the realization of trajectories
that are defined for all t ∈ R (or all t ≥ 0) would necessitate further restrictions on
the class of systems under consideration and the families of admissible inputs and
disturbances (at the very least, local L1 boundedness would have to be replaced with
L1 boundedness), which we will not pursue here.

As a first step in realizing simulation relations that are semiglobal in time, one
could impose the condition of completeness on F̃ . However, it is not obvious that such
a condition would, in and of itself, be sufficient to guarantee the desired behavior
because additional nonlinearities in the state variables may be introduced by the
feedback mapping Υ through which the simulating control e is synthesized. Here
we will identify two fairly simple situations in which the simulating trajectory is
guaranteed to have the same interval of definition as the original trajectory, but we
do not claim that this discussion is a definitive resolution of the matter. Our first
result in this direction deals with compact simulation relations.

Proposition 4.10. Assume that (F, h,U ,D) and (F̃ , h̃,U , E) are IDO systems
with admissible classes of inputs and disturbances that satisfy the assumptions of The-
orem 3.8 relative to the C2 immersed submanifold R of M×N , assume that condition
(SC) holds, and suppose that E = L1

loc(R,Rq). Suppose further that R is a compact

subset of M ×N . Then R is a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , E) that
is semiglobal in time.

Proof. Fix (x0, z0) ∈ R, u ∈ U , d ∈ D, and let I be any compact subinterval
of R containing 0 on which ψ(·, x0, u, d) is defined (as before, ψ is the trajectory
mapping of F ). The proof of Theorem 3.8.2 shows that F : R×Ω×Δ → T (M ×N)
defined by (3.27) is tangent to the submanifold R and thus defines a C1 control
system on R with control space Ω × Δ. Since R is compact, standard continuation
results in the theory of ordinary differential equations guarantee that the trajectory
t �→ Ψ(t, (x0, z0), u, d) of F with initial condition (x0, z0) corresponding to the input
u and disturbance d is defined for all t ∈ I and takes values in R. As pointed out in
the proof of Theorem 3.8, if ψ̃ is the trajectory mapping of F̃ , then ψ(·, x0, u, d) is the
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first component of Ψ(·, (x0, z0), u, d) and ψ̃(·, z0, u, e) is the second component, where
e is defined by (3.28). A routine check of the assumptions in force shows that e is
in fact a member of L1

loc(R,Rq), so the conclusion follows directly from Theorem
3.8.2.

To obtain sufficient conditions for noncompact simulation relations that are global
or semiglobal in time, one must impose rather special conditions on the systems under
consideration. We will be content to present one illustrative result in this direction.

Proposition 4.11. Suppose that the system state spaces and the input space are
Euclidean (i.e., M = R

m, N = R
n, and Ω = R

r), and let

F : R
m × R

r × Δ → R
m, h : R

m × R
r → O

and

F̃ : R
n × R

r × R
q → R

n, h̃ : R
n × R

r → O

be two C1 IDO systems that have common input space R
r, common output space O,

and suppose that F̃ is linear; that is,

(z, ω, ε) ∈ R
n × R

r × R
q ⇒ F̃ (z, ω, ε) = Ãz + B̃ω + G̃ε

for constant matrices Ã, B̃, and G̃ of the appropriate dimensions. Let R be a vector
subspace of M ×N = R

m ×R
n for which the following modified simulation condition

holds:

(SC ′) For every (x, z) ∈ R and ω ∈ R
r we have h(x, ω) = h̃(z, ω). Furthermore,

for every (x, z) ∈ R, ω ∈ R
r, and δ ∈ Δ, there exists ε ∈ R

q such that[
F (x, ω, δ)

Ãz + B̃ω + G̃ε

]
∈ R.

Further suppose that U ⊆ L1
loc(R,Rr), D ⊆ U Δ

meas are such that U × D ⊆ U R
r×Δ

meas (F ).

Then R is a simulation relation of (F, h,U ,D) by (F̃ , h̃,U , L1
loc(R,Rq)) that is semi-

global in time.
Proof. We first observe that assumption (i) of Proposition 3.6 is trivially satisfied

in this case because the vector space

V(x,z) = R + Im

[
0

G̃

]
is now constant as (x, z) varies over R (itself a vector space). Letting σ be the
codimension of the vector subspace R in R

m × R
n and letting N be any σ × (m+ n)

matrix whose rows span the orthogonal complement of R, we see that the matrix
functions Λ, Λ̃, and Θ of Proposition 3.6 can be taken to be constant. Thus the
mapping Υ given by Proposition 3.6 will have the form (see (3.20) and (3.17))

Υ(x, z, ω, δ) = Θ
[
−ΛF (x, ω, δ) − Λ̃(Ãz + B̃ω)

]
.

The proof of Proposition 3.6 shows that the control system

(4.4) F : R× R
r × Δ → R

m × R
n
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given by

(4.5) F((x, z), ω, δ) =

[
F (x, ω, δ)

(In − G̃ΘΛ̃)(Ãz + B̃ω) − G̃ΘΛF (x, ω, δ)

]
is actually tangent to the subspace R (i.e., takes values in R), and R is closed as
a subset of R

m × R
n, so the trajectories of F will stay in R if they are initialized

in R. Fix (x0, z0) ∈ R, u ∈ U , d ∈ D, and let I be any compact subinterval of R

containing 0 on which ψ(·, x0, u, d) is defined (as before, ψ is the trajectory mapping
of F ). Write ψ(t) = ψ(t, x0, u, d) to lighten the notation and consider the linear,
time-varying ordinary differential equation on R

n given by

(4.6) ż = (In − G̃ΘΛ̃)(Ãz + B̃u(t)) − G̃ΘΛF (ψ(t), u(t), d(t)).

Because u is locally integrable on R and, by our definitions, t �→ F (ψ(t), u(t), d(t))
is integrable on I, the linearity of (4.6) guarantees that its unique solution, call it
t �→ η(t), for the initial condition η(0) = z0 is defined for all t ∈ I. Furthermore,
it is clear that the mapping t �→ (ψ(t), η(t)) is a trajectory of the control system F
defined by (4.5) with initial condition (x0, z0) corresponding to the input u and the
disturbance d. Since (x0, z0) ∈ R and F is tangent to R, we infer that

(4.7) t ∈ I ⇒ (ψ(t), η(t)) ∈ R.

If we define e : R → R
q by

e(t) =

{
−ΘΛ̃Ãη(t) − ΘΛ̃B̃u(t) − ΘΛF (ψ(t), u(t), d(t)) if t ∈ I,

0 otherwise,

then e is integrable on R (because it is integrable on I) and we have

η̇(t) = Ãη(t) + B̃u(t) + G̃e(t) for a.e. t ∈ I.

Consequently we see that η(t) = ψ̃(t, z0, u, e) for t ∈ I, where ψ̃ is the trajectory

mapping of F̃ . When combined with (4.7) and the fact that ψ(t) = ψ(t, x0, u, d), this
immediately yields (2.1). Relation (2.2) now follows from this and the assumption
that h(x, ω) = h̃(z, ω) for every (x, z) ∈ R and ω ∈ R

r, so the proof is complete.
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[13] G. J. Pappas and S. Simić, Consistent abstractions of affine control systems, IEEE Trans.

Automat. Control, 47 (2002), pp. 745–756.
[14] P. Tabuada and G. J. Pappas, Bisimilar control affine systems, Systems Control Lett., 52

(2004), pp. 49–58.
[15] P. Tabuada and G. J. Pappas, Quotients of fully nonlinear control systems, SIAM J. Control

Optim., 43 (2005), pp. 1844–1866.
[16] P. Tabuada and G. J. Pappas, Hierarchical trajectory refinement for a class of nonlinear

systems, Automatica J. IFAC, 41 (2005), pp. 701–708.
[17] A. J. van der Schaft, Bisimulation of dynamical systems, in Hybrid Systems: Computation

and Control: 7th International Workshop Proceedings, Lecture Notes in Comput. Sci.
2993, Springer-Verlag, Heidelberg, pp. 555–569.

[18] A. J. van der Schaft, Equivalence of dynamical systems by bisimulation, IEEE Trans.
Automat. Control, 50 (2005), pp. 286–298.

[19] E. D. Sontag, Mathematical Control Theory, 2nd ed., Springer-Verlag, New York, 1998.
[20] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman

and Company, Glenview, IL, 1971.



SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 2, pp. 585–603

RELATIVELY OPTIMAL CONTROL: A STATIC
PIECEWISE-AFFINE SOLUTION∗

FRANCO BLANCHINI† AND FELICE ANDREA PELLEGRINO‡

Abstract. A relatively optimal control is a stabilizing controller that, without initialization nor
feedforwarding and tracking the optimal trajectory, produces the optimal (constrained) behavior for
the nominal initial condition of the plant. In a previous work, for discrete-time linear systems, we
presented a linear dynamic relatively optimal control. Here we provide a static solution, namely a
deadbeat piecewise-affine state-feedback controller based on a suitable partition of the state space
into polyhedral sets. The vertices of the polyhedra are the states of the optimal trajectory; hence
a bound for the complexity of the controller is known in advance. We also show how to obtain a
controller that is not deadbeat by removing the zero terminal constraint while guaranteeing stability.
Finally, we compare the proposed static compensator with the dynamic one.
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1. Introduction. It is known that, unless for very special cases, determining
an optimal control in a feedback form under output or input constraints is a compu-
tationally hard task. The problem can be addressed in a receding horizon fashion,
but in this case an optimization problem must be solved online at each time interval.
Explicit (piecewise-affine) solutions exist [1, 2] but are limited to quadratic or 1-norm
cost and linear constraints. However, for those systems that are explicitly built to
perform specific operation through a specific trajectory with known initial and final
states, the request for optimality from any initial state can be relaxed, requiring opti-
mality only from a specific initial condition. The relatively optimal control (ROC) [5]
is defined as a stabilizing controller that guarantees optimality of the trajectory and
constraint satisfaction from a given (or a set of given) initial condition(s) without the
involvement of any feedforward action. In [5] it has been proved that a controller
enjoying these properties is linear dynamic and its order is equal to the length of the
optimal trajectory minus the order of the plant. In [6] the zero terminal constraint
was removed in order to assign a characteristic polynomial to the closed-loop system,
and the problem of output feedback was addressed. Here, a static ROC is constructed
by partitioning the state space into polyhedral sets whose vertices are the states of
the optimal trajectory and their opposite.

The main contribution of the paper can be summarized in the following points.

• It is shown that for discrete-time linear systems with convex constraints and
cost, it is always possible to construct a static ROC by means of a proper
partition of the state space into polyhedral sets (a procedure to construct it
is provided).
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• If the constraints and/or the cost are not convex, a sufficient condition on the
optimal trajectory that guarantees that the static ROC can be constructed
is provided.

• The proposed controller is a deadbeat piecewise-affine state-feedback con-
troller. The vertices of each of the polyhedral sets are the states of the
optimal trajectory and their opposite. The control at each vertex is the cor-
responding control of the optimal sequence, while the control at a generic
state is given by a convex combination of the controls corresponding to the
vertices of the polyhedron to which the state belongs.

• An upper bound on the number of polyhedral sets as a function of the order
of the system and the length of the optimal trajectory is provided.

• By removing the zero state terminal constraint and requiring the final state
of the optimal trajectory to belong to a controlled invariant set, it is possible
to obtain a nondeadbeat controller.

• The proposed static controller is compared with the dynamic one previously
introduced.

2. Problem statement. We give the discrete-time reachable system

(1)
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k),

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
q and A, B, C, D are matrices of appropriate

dimensions. For this system we consider the locally bounded convex cost functions of
the output

(2) g(y), li(y), i = 1, 2, . . . , s

(we assume they are 0-symmetric, i.e., g(y) = g(−y) and li(y) = li(−y)) with assigned
initial condition

(3) x̄ �= 0

and the constraint

(4) y(k) ∈ Y,

where Y is a convex, closed, and 0-symmetric set. Then we consider the following
problem (consistently with [5] and with no loss of generality, we assume k = 1 is initial
time):

Jopt(x̄) = min

N∑
k=1

g(y(k))(5)

subject to

x(k + 1) = Ax(k) + Bu(k), k = 1, . . . , N,(6)

y(k) = Cx(k) + Du(k), k = 1, . . . , N,(7)
N∑

k=1

li(y(k)) ≤ μi, i = 1, 2, . . . , s,(8)

y(k) ∈ Y, k = 1, . . . , N,(9)

x(1) = x̄,(10)

x(N + 1) = 0,(11)

N ≥ 1 assigned (or free).(12)
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In the extremely general formulation of the problem we have considered the option of
N free, in order to also consider the special case of minimum-time control. The choice
of N depends on the circumstances and has to guarantee the feasibility of the above
open-loop optimal control problem. Note that the cost and the constraint achieved,
assuming g and li only depending on y, are quite general since we can include cost
and pointwise or integral constraints depending on both x and u by suitable choices
of C and D. Finding an open-loop solution for the above problem is well known as a
convex problem [10] which can be solved by means of standard convex programming
algorithms. Here we are interested in a feedback static solution; more precisely the
problem we consider is the following.

Problem 1. Find a static state-feedback compensator of the form u = Φ(x)
which is stabilizing and such that for x(1) = x̄ the control and state trajectories are
the optimal ones.

Any solution of the above problem will be referred to as a static relatively optimal
controller. We stress that in the ROC framework, the constraints (8) and (9) represent
design specification “soft” constraints. Hence their violation implies a performance
loss only and is allowed for nonnominal initial conditions. In the following we will
construct a solution to Problem 1 in two steps: First, a relatively optimal controller
that is only locally stabilizing (being defined in a convex subset of the state space,
containing the origin) will be constructed. We will refer to this controller as the local
relatively optimal controller. Then the local controller will be extended to the whole
state space, obtaining a global relatively optimal controller.

Remark 2.1. Any initial state x̄ for which the problem is feasible (hence the
constraints can be satisfied) is suitable as a nominal initial condition; there are no
further restrictions.

3. Main results. We now assume that the optimal trajectory starting from the
assigned initial condition x̄ does exist and has been computed (offline). We consider
the following assumption.

Assumption 1. The optimal trajectory is such that the residual cost is strictly
decreasing, i.e.,

N∑
k=h

g(y(k)) <

N∑
k=h+1

g(y(k)) ∀h = 1, . . . , N − 1.

Assumption 1 is absolutely reasonable and avoids trivialities (it is obviously true,
for instance, if g is positive definite with respect to y). The way we solve Problem
1 can be explained as follows: Based on points of the optimal trajectory and their
opposite (connected by the solid line in Figure 1), we partition the state space into
disjoint regions. The convex hull of the points of the optimal trajectory and their
opposite (the shaded hexagon in Figure 1) represents a region that can be divided
into simplices, in each of which the control is affine. This region includes the nominal
initial state x̄ (possibly in its interior). The external part is divided into cones,
centered in the origin, and “truncated to keep the outer part,” in each of which the
controller is linear. The control is Lipschitz continuous. To formally state the main
result we need to introduce some notations. The inequality p ≤ 0, if p is a vector,
has to be interpreted componentwise. Let us denote by 1̄ the vector (the dimension
depending on the context) having all components equal to 1:

(13) 1̄ = [ 1 1 . . . 1 ]T
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x
_
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_

u=K(h)x

u=K(h)x+u(h)_

Fig. 1. The state space partition.

(note that the expression 1̄T p is the sum of the components of vector p). Given an
n× (n + 1) full row rank matrix X, a simplex in R

n is a set of the form

(14) S(X) = {x = Xp : p ≥ 0, 1̄T p = 1}.

Given an n× n full rank matrix X, a simplicial cone in R
n is a set of the form

(15) C(X) = {x = Xp : p ≥ 0}.

Note that a simplicial cone is always generated by a simplex having the origin among
its corners. Together with these standard notations we need to consider the comple-
ment (the outer part) of the unit sector in a simplicial cone, which is the closure of
the complement in C,

(16) C̃(X) = {x = Xp : p ≥ 0, 1̄T p ≥ 1}.

If Φ : R
n → R is a function and X is an n × m matrix, we denote by Φ(X) the

following vector:

(17) Φ(X) = [ Φ(x1) Φ(x2) . . . Φ(xm) ]T .

The next theorem states that there exists a control which is optimal for x(1) = x̄
and locally stabilizing.

Theorem 3.1. There exists a convex and compact polyhedron P, including the
origin in its interior, which is partitioned into simplices S(h), each generated by an
n × (n + 1) matrix X(h) whose columns are vectors properly chosen from among the
states of the optimal trajectory and their opposite:

(18) P =
⋃

S(h) =
⋃

S(X(h))
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such that each pair of simplices has an intersection with an empty interior,

(19) int{S(h)
⋂

S(k)} = ∅, h �= k,

and such that x̄ ∈ P. To each simplex S(h) we can associate an m × (n + 1) matrix
U (h) whose columns are vectors properly chosen from among the inputs of the optimal
trajectory and their opposite. The piecewise-affine static controller

(20) u = ΦP(x) = K(h)x + ū(h) = U (h)

[
X(h)

1̄T

]−1 [
x
1

]
for x ∈ S(h)

is Lipschitz continuous and relatively optimal inside P; more precisely it is stabilizing
with a domain of attraction P and for x(1) = x̄ produces the optimal trajectory.
Moreover, for each x(1) ∈ P, the constraints are satisfied and the transient cost is
bounded as

(21) J(x(1)) ≤ max
i=1,...,n+1

Jopt(xki),

where xk1 , xk2 , . . . , xkn+1 are the vertices of the simplex S 	 x(1) and Jopt(xki) is the
optimal cost associated with the initial condition xki .

The next theorem states that the same control can be globally extended over R
n.

Theorem 3.2. The control (20) can be extended onto R
n as follows. The com-

plement of the polytope P can be partitioned into complements of simplices inside a
cone

(22) C̃(h) = C̃(X(h)),

each generated by a square invertible matrix X(h), having intersection with empty
interior

(23) int{C̃(h)
⋂

C̃(k)} = ∅, h �= k,

and intersection with empty interior with P,

(24) int{C̃(h)
⋂

P} = ∅,

such that

(25) P
⋃[⋃

h

C̃(h)

]
= R

n.

To each set C̃(h) can be associated an m × n matrix U (h) whose columns are vectors
properly chosen from among the inputs of the optimal trajectory, obtaining a control

(26) u = Φ(x) = K(h)x = U (h)
[
X(h)

]−1

x .

The extended control obtained in this way is globally Lipschitz continuous and rela-
tively optimal.

Theorems 3.1 and 3.2 will be proved constructively in sections 4 and 5,
respectively.
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4. Construction of a local relatively optimal control. Denote by

x̄(1), . . . , x̄(N)

the optimal state trajectory from the initial condition x̄ = x̄(1), obtained by solving
(5)–(12). We introduce the notation (basically inverting time)

(27) x1 = x̄(N), x2 = x̄(N − 1), . . . , xN = x̄(1),

and

(28) u1 = ū(N), u2 = ū(N − 1), . . . , uN = ū(1),

and we coherently assume x0 = 0; hence we have that xi−1 = Axi+Bui, i = 1, . . . , N .
We also denote by x−i, i = 1, . . . , N , the opposite of xi. Then we introduce the
following assumption, which simplifies considerably the proof of Theorem 3.1 but is
not essential (in fact it can be easily removed as we will show later on).

Assumption 2. The matrix Xn = [x1 x2 . . . xn], formed by the last n states of
the optimal trajectory, is invertible.

Let us consider the polyhedral set

(29) Pn = {x = Xnp : ‖p‖1 ≤ 1}.

Such a set is the convex hull of the last n states of the optimal trajectory and
their opposite. It contains the origin in its interior and is 0-symmetric. An example
for n = 2 is shown in Figure 2: Pn (the darkest area) is the convex hull of the last
two states of the optimal trajectory (connected by the solid line) and their opposite
(connected by the dashed line). Thanks to Assumption 2 the following lemma holds.

Lemma 4.1. The linear control

(30) u(x) = UnX
−1
n x,

where Un = [u1 u2 . . . un], renders positively invariant the set Pn satisfying the
constraints for all initial conditions inside the set. In particular, it is deadbeat and
steers the state to zero in at most n steps.

Proof. The control law u(x) = UnX
−1
n x is a control-at-the-vertices strategy. All

x ∈ Pn can be written in a unique way as a linear combination of the columns of Xn,
namely, the last n states of the optimal trajectory:

(31) x = Xnp.

Since Xn is invertible, it follows that

(32) p(x) = X−1
n x;

hence the control law u(x) = UnX
−1
n x basically computes a control which is a linear

combination of the controls at the vertices of Pn according to the coefficients p(x).
Positive invariance is a consequence of the fact that, by construction, the control
at each vertex keeps the state inside the set [4]. The satisfaction of the constraints
is guaranteed for all initial conditions inside the set because the input and state
constraints are convex and 0-symmetric. To prove that the control is deadbeat, note
that if at time k we have

(33) x(k) = xnpn + · · · + x2p2 + x1p1,
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x2
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x5
x4

x-5

x-4

x-3

x-2

x-1

x1

Fig. 2. Considering x3 and its opposite x−3, we can construct four simplices starting from P2

(the darkest area).

then the computed control will be

(34) u(k) = unpn + · · · + u2p2 + u1p1.

Since xi−1 = Axi + Bui, we obtain, by linearity,

(35) x(k + 1) = xn−1pn + · · · + x1p2 + 0p1,

and at the next step we will have, reasoning in the same way,

(36) x(k + 2) = xn−2pn + · · · + x1p3 + 0p2 + 0p1,

and so on; therefore, we immediately verify that after at most n steps the system will
reach the origin.

Remark 4.1. The control law defined above is such that inside Pn, at each step,
the state is a convex combination of points with decreasing index and 0.

Note that if the system reaches the state xn = x̄(N − n + 1) ∈ Pn, it starts
following the last n steps of the optimal trajectory. Note also that Pn (which will
be the first element of a sequence of sets) is affine to a diamond and thus can be
partitioned into simplices. The next sets of the sequence are computed as follows.

Consider the state xn+1 (corresponding to the state x3 in the example of Figure
2). Since xn+1 and its opposite x−(n+1) are outside Pn (as will be shown later), they
can be connected with a certain number of vertices of Pn without crossing such a
set; thus simplices are formed by some vertices of Pn and the two points xn+1 and
x−(n+1) (in the example of Figure 2, such simplices are the triangles (x3, x2, x−1)
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and (x3, x−1, x−2) and their symmetric). Denoting by Sj
n+1, j = 1, . . . ,mn+1, the

simplices having xn+1 as a vertex and by Sj
n+1, j = −mn+1, . . . ,−1, those having

x−(n+1) as a vertex, we can define the set Pn+1 as follows:

(37) Pn+1 =
⋃

j=±1,...,±mn+1

Sj
n+1 ∪ Pn.

The procedure goes on exactly in the same manner to generate the sequence of sets
Pk, k = n + 1, n + 2, . . . , N , ordered by inclusion and the corresponding simplicial
partition: If we define the set

(38) Pk = conv{x1, x2, . . . , xk, x−1, x−2, . . . , x−k}, k < N,

we can consider the vector xk+1 and form a new simplicial partition for Pk+1 by
adding new simplices. It is fundamental to note that each new simplicial partition
of Pk+1 preserves all the simplices forming the simplicial partition for Pk. To prove
that the construction is well defined we need the following lemma.

Lemma 4.2. The vector xk+1 in the construction is outside Pk.
Proof. Assume by contradiction that xk+1 ∈ Pk. Then xk+1 could be written as

a convex combination of the vertices of Pk. So if we take xk+1 as an initial state,
since we considered convex constraints, then xk+1 could be driven to zero in a time
not exceeding k at a cost not exceeding the maximum cost of all vertices of Pk. This
is in contradiction with Assumption 1.

Therefore the procedure is such that {Pk} is a strictly increasing (in the sense
of inclusion) sequence of sets, each of which preserves the simplicial partition of the
former. This construction terminates once P .

= PN is constructed.
Note that the innermost set Pn can be partitioned into simplices Sj

n, each hav-
ing the origin as a vertex. The remaining n vertices are any independent subset of
x±k, k = 1, . . . , n, namely, the last n steps of the optimal trajectory and their oppo-
site. It is easy to recognize that in this case the control law (30) takes the form (20),
i.e.,

(39) u = Φ(x) = Kj
nx = U j

n

[
Xj

n

]−1
x ,

where j denotes the simplex, while Xj
n and U j

n are matrices whose columns are a subset
of the states of the optimal trajectory (and their opposite) and the corresponding
optimal control values (and their opposite).

The next step is to show how to associate a control with each simplex. With each
of the simplices Sj

k,

1. associate a matrix Xj
k whose columns are the vertices (in arbitrary order).

2. associate a matrix U j
k whose columns are the controls corresponding to the

vertices (in the same order as they appear in Xj
k). If the vertex belongs to

the optimal trajectory, take the corresponding control; if it belongs to the
opposite of the optimal trajectory, take the opposite of the corresponding
control.

Now, the control strategy is as follows: Given x ∈ P, if x ∈ Sj
k, then

(40) ΦP(x) = U j
kp,

where p ≥ 0 is the (unique) vector such that

(41) x = Xj
k p, 1̄T p = 1.
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Note that p is such that

(42)

[
Xj

k

1̄T

]
p =

[
x
1

]
,

so that u is of the form (20).
Remark 4.2. Given a simplex Sj

k, the vector p of (42) is the vector of the barycen-
tric (normalized) coordinates of x with respect to the vertices of the simplex (the
columns of Xj

k). Barycentric coordinates, as well as simplicial partitions, are well
known in the context of finite element analysis [7].

To show the properties of the control we need to introduce the index In(S) of
a sector S as the maximum of the absolute values of the indices of its generating
vectors. Formally, if S is generated by corners xk1

, xk2
, . . . , xkn

, then

(43) In(S) = max{|k1|, |k2|, . . . , |kn|}.

For reasons that will be clear soon, In(S) will be referred to as the distance of S from
0.

Remark 4.3. The notion of “sector” deserves some comment. Indeed, we now
consider possibly degenerate simplices that can have an empty interior formed by
some points xk and with the origin repeatedly considered. For instance, S could be
generated by [0 0 x1 x2], representing a two-dimensional degenerate simplex in the
three-dimensional space. Note also that In(S) ≤ k for all sectors inside Pk.

The next lemma shows that, with the proposed control, if the system state is
inside a sector, then it jumps to another one closer to zero.

Lemma 4.3. The proposed strategy is such that if x ∈ S, a sector of Pk, then
Ax + Bu(x) ∈ S ′ with

(44) In(S ′) < In(S),

as long as In(S) �= 0, and therefore if x(1) ∈ Pk, the control steers the system to zero
in at most k steps.

Proof. As a first step we note that, according to Lemma 4.1 and Remark 4.1,
the jump to sector closer to 0 occurs for all x ∈ Pn . Now we proceed by induction.
Assume that x ∈ Pn+1. If x ∈ Pn, there is nothing to prove; otherwise x is necessarily
in a sector S generated by xn+1 or its opposite x−(n+1) and other vertices of smaller
indices

(45) x =
n+1∑
i=1

xkipi,

n+1∑
i=1

pi = 1, pi ≥ 0,

with |ki| ≤ n, i = 1, 2, . . . , n, and |kn+1| = n + 1. Then we have, by construction,

Ax + BΦP(x) = A

[
n+1∑
i=1

xkipi

]
+ B

[
n+1∑
i=1

ukipi

]
=

n+1∑
i=1

pi [Axki + Buki ]︸ ︷︷ ︸
∈Pn

∈ Pn.(46)

Therefore, necessarily Ax+BΦP(x) is in a sector with index In ≤ n. The rest of the
proof proceeds in the same way. Any point x in Pk+1, if not in Pk, is included in
a sector S with index In(S) = k + 1 and, by means of the same machinery, we can
show that Ax + BΦP(x) ∈ S ′ with In(S ′) ≤ k. The fact that if x(1) ∈ Pk, the state
converges to 0 in at most k steps is an immediate consequence.
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The procedure for partitioning the state space and constructing the region PN ⊃
Pn and the associated local controller can be summarized as follows.

Procedure 4.1. We give the system (1) and the optimal open-loop trajectory,
computed by solving (5)–(12), which satisfies Assumption 2.

1. Let the set Pn = {x : x = Xnp, ‖p‖1 ≤ 1}, where Xn = [x1 x2 . . . xn], be the
convex hull of the last n states of the optimal trajectory and their opposite.

2. Let Un = [u1 u2 . . . un] be the matrix whose columns are the control vectors
corresponding to the last n states of the optimal trajectory.

3. Take i = n + 1.
4. Construct the simplices Sj

i , j = ±1, . . . ,±mi, by connecting xi and x−i to
the vertices of Pi−1 without crossing such a set. This is always possible since
xi, x−i /∈ Pi−1.

5. Let Xj
i be the matrix whose columns are the vertices of Sj

i in an arbitrary

order and U j
i be the controls corresponding to the vertices in the same or-

der. For vertices belonging to the opposite of the optimal trajectory, take the
opposite of the control.

6. Let Pi =
⋃

j S
j
i ∪ Pi−1.

7. Increase i.
8. If i ≤ N , go back to step 4.

Note that, by construction, the sets Pi, i = n, . . . , N , are convex, 0-symmetric,
and such that Pi ⊂ Pi+1. The set Pi+1 \ Pi, the difference between Pi+1 and Pi, is
composed of simplices Sj

i , each of which has all vertices but one (precisely xi+1 or
x−(i+1)) belonging to Pi.

In order to prove Theorem 3.1 we must provide the following lemmas.
Lemma 4.4. The proposed control ΦP(x) is Lipschitz continuous inside P = PN .
Proof. Since the cardinality of the partition is finite, it is sufficient to prove

continuity. Inside each of the simplices, the control action (40) is a linear combination
of the control at each vertex, with the weights being the components of p. Now, the
proof follows immediately from a well-known result of finite element analysis, namely,
the fact that using barycentric coordinates as weights in a triangular (or, in general,
simplicial) mesh guarantees interelement continuity [7].

Lemma 4.5. For any state x(1) = x ∈ S ⊂ PN the proposed control ΦP(x)
satisfies the constraints and it ensures a cost J(x) bounded as

(47) J(x) ≤ max
i=1,...,n+1

Jopt(xki
),

where S is generated by the points xk1 , xk2 , . . . , xkn+1 .
Proof. The constraints are convex and 0-symmetric and, by construction, they

are satisfied by each of the vertices of the convex set PN . Hence they are satisfied
by any state belonging to PN . Since PN is positively invariant under the control
law ΦP(x), any trajectory originating in PN satisfies the constraints. It follows from
Lemmas 4.2 and 4.3 that the cost achieved from a given initial condition x is bounded
by the maximum cost achieved from the vertices of the sector S 	 x. Consider the
cost function ĝ(x) = g(x,ΦP(x)). Since ĝ(x) is convex and 0-symmetric, it is easy to
recognize that

(48) ĝ(x) ≤ ĝ(xIn(S(x))),

where S(x) denotes the sector S 	 x and xIn(S(x)) belongs to the optimal trajectory.
From Lemma 4.2 and from the fact that ĝ(x) is convex and 0-symmetric, it follows
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that

(49) ĝ(xi) ≤ ĝ(xj)

for 0 < i < j ≤ N . Therefore, the maximum in the right-hand side of (47) is obtained
for ki = In(S(x)), i.e., it is the (optimal) cost from the vertex xIn(S(x)). Let us now
compare the cost achieved from x to that achieved from xIn(S(x)). We recall that the
control law ΦP(x) steers the system from x ∈ S(x) ⊂ PN to zero in at most In(S(x))
steps. Denoting

(50) f(x) = Ax + BΦP(x)

and

(51) f i(x) = f(f(. . . f(x) . . . )),

we can rewrite (48) as

(52) ĝ(f i(x)) ≤ ĝ(xIn(S(fi(x)))),

for all i = 0, . . . , In(S(x))−1. On the other hand, Lemma 4.3 states that the sequence
of indices corresponding to a trajectory originating in PN is strictly decreasing. It
follows that

(53) In(S(f i(x))) ≤ In(S(x)) − i

for all i = 0, . . . , In(S(x)) − 1. Therefore, from (49) we can write

(54) ĝ(xIn(S(fi(x)))) ≤ ĝ(xIn(S(x))−i)

and, by (52),

(55) ĝ(f i(x)) ≤ ĝ(xIn(S(x))−i).

Finally, by summing over i = 0, . . . , In(S(x)) − 1, we obtain

(56) J(x) ≤ J(xIn(S(x))).

Now we show how to remove Assumption 2. If Assumption 2 does not hold,
the construction of the regions is basically the same. The only difference is that
now we must start the construction from the beginning (i.e., P1, P2, . . . ) until we
construct the region Pr, where r > n is the smallest value for which [x1 x2 . . . xr]
has full rank (and then Pr is a neighborhood of the origin). In forming the sets
Pk, k < r, we construct a partition of “degenerate polytopes” in subspaces having
the same properties mentioned above. When we add the vertex xr (and its opposite
−xr), we reach full dimension and can construct a (nondegenerate) simplex partition
of Pr in which each simplex has xr as a vertex. Then the construction proceeds
as already mentioned, with the difference that the control is not ultimately linear
since, in general, we cannot associate a linear control with Pr. If such an r does not
exist (i.e., the whole optimal trajectory belongs to a proper subspace of R

n), we can
extend the trajectory backward, i.e., adding points xN+1, xN+2 to reach the full rank.
Clearly, optimality is ensured only from x̄ = xN . Using the same trick of extending
the trajectory backward, we can arbitrarily enlarge the domain of attraction.
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We are now in the position of proving relative optimality with local stability of
the control.

Proof of Theorem 3.1. The constructed simplicial partition and the control are
of the form (20), which is Lipschitz as proved in Lemma 4.4. If we assume x(1) = x̄,
then the trajectory is the optimal constrained one by construction. The fact that the
control is stabilizing follows from Lemma 4.3. The satisfaction of the constraints and
the cost bound (21) follow easily from Lemma 4.5.

Table 1

Upper bound for the number of simplices given the number N of steps of the optimal trajectory
and the order n of the system.

N,n 3 4 8 12 16
4 33 39 - - -
8 133 207 1425 - -
12 297 503 11965 54257 -
16 525 927 47497 592013 2.1 106

20 817 1479 132085 3.2 106 2.8 107

An important question is whether the complexity of the controller (i.e., the num-
ber of simplices obtained by partitioning the state space according to Procedure 4.1)
is known in advance. For n = 2, the number of simplices (triangles) is exactly 4N−k,
where k is the number of the vertices of the convex hull of the optimal trajectory and
its opposite [12]. For n > 2, since such simplices form a triangulation [8] of a point
set, their number Ns is bounded according to the expression [13]

(57) Ns ≤
(

2N + 2 −
⌈
n+1

2

⌉⌊
n+1

2

⌋ )
+

(
2N + 1 −

⌈
n
2

⌉⌊
n
2

⌋ )
− (n + 1),

where �x� denotes the maximum integer less than or equal to x, �x� denotes the
minimum integer greater than or equal to x, and

(
a
b

)
denotes the binomial coefficient.

Table 1 reports such an upper bound for some pairs of N and n. Upper bound (57)
resembles that provided in [2], in the context of the explicit linear 1/∞-norm regu-
lator for constrained systems, with the substantial difference that for the static ROC
the upper bound does not depend on the number of constraints, since the controller
is computed based on the optimal trajectory only. In other words, the number of
constraints does not influence directly the complexity of the controller.

Remark 4.4. As shown above, the convexity of the constraints and the cost
guarantees that

(58) xi /∈ Pi−1 ∀i = n + 1, . . . , N.

However, as long as condition (58) on the optimal trajectory is satisfied, the ROC
can be constructed independently of the convexity of the optimization problem. In
other words, a sufficient condition for constructing the static ROC is that each of the
points of the optimal trajectory does not belong to the convex hull of the subsequent
points and their opposite. Obviously, the satisfaction of the constraints is guaranteed
for all the trajectories originating in P = PN only if the constraints are convex and
0-symmetric.

5. Construction of a global controller. For x ∈ P = PN , the controller
described above is a solution for Problem 1. However, the control law is not defined
for x /∈ P. A possible way to extend the control outside P is to “immerse” P in
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the maximal invariant set Xmax, namely, the set of all states which can be brought
to the origin in finitely many steps without state or input constraint violations (note
that P ⊆ Xmax). Then, for x /∈ P, one can apply the control law derived from Xmax

(many algorithms have been proposed to find Xmax and an associated control law;
see, for example, [9]). By definition, the constraints are satisfied and the convergence
is guaranteed if and only if x(1) ∈ Xmax.

A different strategy can be derived as the natural extension of the controller
computed within P. In this way we have basically two advantages:

• the obtained controller is globally Lipschitz;
• the state behavior outside the set P resembles the internal one and therefore

the system performs “reasonably well” outside P.
The set P is a polytope including the origin in its interior. This means that the

state space can be partitioned in simplicial cones, each having a center in the origin
and generated by n vertices of P. These cones C(h) have a nonempty interior, have
intersections with empty interior, and cover R

n:

int{C(h)} �= ∅,(59)

int{C(h)
⋂

C(k)} = ∅, h �= k,(60) ⋃
h

C(h) = R
n.(61)

For each cone generated by a square matrix X(h), we consider the complement with
respect to P,

(62) C̃(h);

therefore the union of the complements and the simplices forming P cover R
n. For

each cone generated by an invertible X(h) we consider the corresponding input matrix
U (h)1 and the control

(63) Φ̃(x) = U (h)[X(h)]−1x.

Such a control is Lipschitz [3].
In principle, continuity is not an issue in discrete-time systems. In practice, it

avoids chattering. Thus we state the next lemma.
Lemma 5.1. Consider the following extension outside P of the control ΦP(x):

(64) Φ(x)
.
=

{
ΦP(x) for x ∈ P,

Φ̃(x) for x �∈ P.

Such a control is globally Lipschitz.
Proof. Since the control is piecewise affine and the cardinality of the partition

is finite, we need only prove global continuity. Then the Lipschitz constant for each
component of Φ is given by the maximum value of the norm of its gradient. Note
also that ΦP is continuous inside P and Φ̃ is continuous outside P. As a conse-
quence, we need only prove that the extended control is continuous in ∂P. Consider
x̂ ∈ (P ∩ C̃(h)) ⊂ ∂P. By construction, C̃(h) and P have a facet in common, precisely

1The matrix whose columns are the (optimal) control vectors associated with the columns in
X(h), elements of the optimal trajectory.
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the facet whose vertices are the generator vectors of C̃(h). Since x̂ lies in the com-
mon facet, it can be expressed as a linear combination of those vectors in a unique
way. From (40) and (63) it follows that ΦP(x̂) and Φ̃(x̂) are the linear combination
of the controls associated with the same vectors according to the same coefficients;
then Φ̃(x̂) = ΦP(x̂) for all x̂ ∈ P ∩ C̃(h), i.e., the extended control is continuous in
∂P.

Now the problem is to show that the extended control Φ(x) is globally stabilizing.
Then we consider as a candidate Lyapunov function the Minkowski function of P, that
is, the norm whose unit ball is P:

(65) Ψ(x) = min{λ ≥ 0 : x ∈ λP}.

We have the following preliminary lemma.
Lemma 5.2. The function Ψ(x(k)) is nonincreasing as long as x(k) �∈ P.
Proof. Since x(k + 1) = Ax + BΦ(x(k)), we must prove that

(66) Ψ(Ax + BΦ(x)) ≤ Ψ(x) ∀x �∈ P.

As shown above, the extended control Φ(x) is globally continuous. Furthermore, it is
linear inside each of the C̃(h). As a consequence, outside the interior of P, the control
can be expressed as

(67) Φ(x) = Ψ(x)ΦP (x̄) , x /∈ int(P),

where the vector

(68) x̄ =
x

Ψ(x)

belongs to the boundary of P. Consider a generic x /∈ P and its “projection” x̄ onto
∂P. Since ΦP renders invariant the set P, it follows that

(69) Ax̄ + BΦP(x̄) ∈ P

and, multiplying by Ψ(x),

(70) AΨ(x)x̄ + BΨ(x)ΦP(x̄) ∈ Ψ(x)P.

From (67) and (70) and by substituting x = Ψ(x)x̄ we obtain

(71) Ax + BΦ(x) ∈ Ψ(x)P,

which implies, by the definition of the Minkowski function, that

(72) Ψ(Ax + BΦ(x)) ≤ Ψ(x), x �∈ P.

Lemma 5.2 proves the boundedness of the state but not convergence to 0. To
prove convergence, since the function Ψ(x) is only nonincreasing, we must use a trick.
Define

(73) x(k + 1) = f(x) = Ax + BΦ(x)

and consider the N steps forward system defined as the composition of f :

(74) x(k + N) = fN (x(k)) = f(f(. . . f(x) . . . ))
.
= F (x).
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By means of this system we can show the following.
Lemma 5.3. The function Ψ(x(k)), as long as x(k) �∈ int(P), is strictly decreasing

along the trajectory of the system (74), precisely

(75) ΔΨ(x)
.
= Ψ(F (x)) − Ψ(x) < 0 ∀x �∈ int(P).

Proof. Consider a generic x /∈ int(P) and its projection x̄ onto ∂P. As a first step
we observe that there exists 1 ≤ h ≤ N such that

x̄, f(x̄), . . . , fh−1(x̄) ∈ ∂P,(76)

fh(x̄) ∈ int(P).(77)

This is an immediate consequence of the fact that the control steers the system to
zero in at most N steps starting from any x ∈ P and, in particular, from any x̄ ∈ ∂P.
By definition, we can express x /∈ int(P) as the product of its projection x̄ onto ∂P
and the Minkowski function Ψ(x):

(78) x = x̄Ψ(x).

By substituting in f(x) we get

(79)
f(x) = Ax + BΦ(x) = AΨ(x)x̄ + BΨ(x)ΦP(x̄) = Ψ(x)(Ax̄ + BΦP(x̄)) = Ψ(x)f(x̄),

where the last equality holds since ΦP(x̄) = Φ(x̄) ∀x̄ ∈ ∂P. Similarly it can be shown
that f i(x) = Ψ(x)f i(x̄) ∀i = 2, . . . , N . Now, by multiplying (76) and (77) by Ψ(x) it
follows that

x, f(x), . . . , fh−1(x) ∈ ∂(Ψ(x)P),(80)

fh(x) ∈ int(Ψ(x)P);(81)

then we obtain

(82) Ψ(fh(x)) < Ψ(x).

Thanks to Lemma 5.2, during the next N −h steps, the state cannot escape from the
region int(Ψ(x)P); hence

(83) Ψ(F (x)) = Ψ(fN (x)) ≤ Ψ(fh(x)).

Finally, from these and (82) it follows that

(84) Ψ(F (x)) < Ψ(x).

Now we are in the position of proving global stability.
Proof of Theorem 3.2. The considered control is Lipschitz and piecewise affine.

We need to prove global asymptotic stability. To prove this fact we show that for any
initial state x(1) = x∗ �∈ P there exists a finite M such that x(M) ∈ P. Once P is
reached, the state converges to zero as already proved.

This requires standard Lyapunov arguments. Indeed, the composed function F (x)
and the candidate Lyapunov function Ψ(x) are continuous, and thus the function
ΔΨ(x) is continuous. Consider the compact set

(85) H = {x : 1 ≤ Ψ(x) ≤ Ψ(x∗)}.
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In such a set, ΔΨ(x) admits a negative maximum −μ with μ > 0. Then we have

(86) Ψ(x(k + N)) − Ψ(x(k)) = ΔΨ(x(k)) ≤ −μ.

This means that

(87) Ψ(x(hN)) ≤ Ψ(x∗) − hμ.

But this means that, in finite time, the condition Ψ(x(k)) < 1 occurs, and therefore
x(k) reaches P.

Remark 5.1. The constraint (11) may be relaxed as follows:

(88) x(N + 1) ∈ Xfin,

where Xfin is a 0-symmetric controlled-invariant polyhedron (that is, there exists a
local control that renders Xfin positively invariant and such that the constraints are
satisfied for all initial conditions inside the set). Then one can construct the ROC
by positing Pn = Xfin and following steps 3–7 of Procedure 4.1. As a result, a dual
control strategy may be adopted: Apply the control Φ(x) for x(k) /∈ Xfin and switch
to the local control as soon as the condition x(k) ∈ Xfin is satisfied.

6. Example. Consider the double integrator

(89) x(k + 1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k),

under the constraints |x(k)| ≤ 5, |u(k)| ≤ 3. Given the initial state x(1) = [−2 5]T ,

the horizon N = 5, the final state x(N+1) = 0, and the cost function J =
∑N

i=1 u(k)2,
the optimal (open-loop) control and trajectory, found by solving a quadratic-program-
ming problem are, respectively,

(90) Ū=
[
−3 −2.9 −1.3 0.3 1.9

]
and

(91) X̄ =

[
−2 3 5 4.1 1.9
5 2 −0.9 −2.2 −1.9

]
.

The optimal trajectory is reported in Figure 3. By means of Procedure 4.1, the
triangulation reported in Figure 4 is obtained; the number of triangles is 12 (including
the four triangles in which the darkest region, i.e., P2, can be split). The piecewise-
affine control law obtained by applying a control-at-the-vertices strategy inside each
of the triangles, as stated above, is relatively optimal, and hence is optimal for the
nominal initial condition and guarantees convergence and constraint satisfaction for
the other initial conditions. In Figure 4, the trajectories from three nonnominal
initial conditions are reported. Note that the number of steps required to reach the
origin depends on the triangle to which the initial state belongs. Figure 5 shows the
effectiveness of the extended control, reporting some trajectories starting from outside
P; the dash-dotted lines represent the boundaries between the simplicial cones C(h)

in the complement of P.
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Fig. 3. The optimal trajectory.

7. Comparison with the dynamic ROC. Some significant differences be-
tween the dynamic ROC [5, 6] and the static one are highlighted in the following
points:

1. Since the static ROC is nonlinear, the trajectory originating from λx̄ is not
proportional, in general, to the one originating from x̄ as with the dynamic
ROC. However, by construction, opposite initial conditions generate opposite
trajectories.

2. The dynamic ROC allows for the optimization from a set of n linearly inde-
pendent initial conditions, while the static version described in this paper is
thought of for a single initial condition. Extending the results to more than
one initial condition for the static ROC is a matter of further investigation.

3. The dynamic ROC cannot guarantee the satisfaction of the constraints for
initial conditions different from the nominal one. Hence it is suitable only
in those cases when the constraints are actually soft constraints (constraints
whose violation causes a performance loss only). On the contrary, by im-
mersing the set P in the maximal invariant set as outlined in the beginning
of section 5, the piecewise-affine solution can deal effectively with hard con-
straints.

4. The dynamic ROC is a linear system of order N − n, and hence is of low
complexity. By looking at Table 1 it is clear that the complexity of the static
ROC is much higher and depends strongly on the dimension of the state space
(although the table shows only an upper bound for the number of simplices).
As a consequence, the implementation of the static ROC may be difficult for
high-order systems. However, almost all the approaches based on partitions
of the state space are prone to this problem.
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Fig. 4. The triangulation induced by the optimal trajectory and the trajectories from three
nonnominal initial conditions inside P.
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Fig. 5. Some trajectories starting from outside P.
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8. Conclusions. In this paper, a static version of the relatively optimal control
(ROC) [5, 6] is proposed. The proposed controller is a deadbeat piecewise-affine state-
feedback controller, based on a triangulation of the points of the optimal trajectory
(computed offline). An upper bound on the number of polyhedral sets (whose vertices
are the states of the optimal trajectory and their opposite) as a function of the order
of the system and the length of the optimal trajectory is provided. The control at each
vertex is the corresponding control vector of the optimal sequence, while the control
at a generic state is given by a convex combination of the controls corresponding
to the vertices of the set to which the state belongs. By removing the zero state
terminal constraint and requiring the final state of the optimal trajectory to belong
to a controlled invariant set, it is possible to obtain a nondeadbeat controller. The
proposed control can deal effectively with hard constraints (a significant advantage
with respect to the dynamic one previously introduced). We point out that the 0-
symmetry of the constraint set is not necessary for the construction of the ROC,
namely, for solving Problem 1; however, it guarantees the additional property that
the constraints are satisfied for all initial conditions inside PN . Further work includes
extending the results to more than one initial condition and exploiting the particular
structure of the triangulation in order to obtain a tighter bound on the number of
simplices.
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Abstract. In this paper we consider the distributed optimal control of the Navier–Stokes
equations in the presence of pointwise mixed control-state constraints. After deriving a first order
necessary condition, the regularity of the mixed constraint multiplier is investigated. Second order
sufficient optimality conditions are studied as well. In the last part of the paper, a semismooth
Newton method is applied for the numerical solution of the control problem. The convergence of the
method is proved and numerical experiments are carried out.
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1. Introduction. Continuing our efforts in the investigation of optimal control
problems governed by the Navier–Stokes equations in the presence of pointwise control
and state constraints (cf. [7, 8, 9, 10, 25]), we consider the following mixed control-
state constrained problem:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(y, u) = 1
2

∫
Ω
|y − zd|2 dx + α

2

∫
Ω
|u|2 dx

subject to

−νΔy + (y · ∇)y + ∇p = u,

div y = 0,

y|Γ = g,

a ≤ εu + y ≤ b a.e.,

where α > 0 and ε > 0. Due to the mixed nature of the pointwise constraints, ex-
pressed by the last relation of (1.1), the corresponding Lagrange multiplier is expected
to be more regular than in the state constrained case (cf. [8]). In fact, such a con-
straint can be introduced as a way of regularizing the state constrained case, and it
is expected that, as ε tends to zero, the solutions converge to the optimal solution of
the state constrained problem (see [21]).

Optimal control of partial differential equations in the presence of state constraints
is a very challenging research field, mainly due to the difficult structure of the Lagrange
multiplier associated to the state constraints (see [2, 3, 4]). In the case of Navier–
Stokes control, the problem has been investigated in [8], where the measure structure
of the multiplier was studied.

This paper is a contribution to the numerical analysis of optimal control problems
of the Navier–Stokes equations with pointwise state constraints.
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The unconstrained and control constrained optimal control problems of the
Navier–Stokes equations have been studied in many papers (see [1, 5, 7, 14, 15, 16, 18,
19, 25, 26]), where optimality conditions and/or numerical methods were discussed.
Moreover, we refer the reader to the detailed references in [13].

In contrast to this, only a few papers consider associated problems with state
constraints. To our best knowledge, in flow control, only [8, 10, 11, 27] deal with state
constraints. In [8] and [11, 27] necessary optimality conditions are derived for the
stationary and time dependent problems, respectively. In [10] the numerical solution
utilizing a penalized problem together with a semismooth Newton method has been
studied.

The novelty of our paper consists of a Lavrentiev-type regularization of the state
constraints. Here we follow an approach introduced in [21, 22] to approximate the
state constraints by mixed control-state constraints. This approach permits us to
work with regular functions rather than with measures, which are unavoidable for pure
pointwise state constraints. In this way, we are able to show regularity of Lagrange
multipliers and to derive second order sufficient optimality conditions. An additional
novelty is the consideration of semismooth Newton methods in this context. We set
up a semismooth Newton algorithm for the numerical solution of the control problem
and prove local superlinear convergence of the method. All these issues have not yet
been considered in the literature.

The outline of the paper is as follows. In section 2, the optimal control problem is
stated and existence of a global optimal solution is proved. In section 3, the problem
is reformulated as a control constrained optimal control problem and first order neces-
sary optimality conditions are obtained. Sufficient conditions of second order type are
the topic of section 4. In section 5, a semismooth Newton algorithm is stated and the
superlinear convergence of the method is proved. Reports on numerical experiments
are summarized in section 6.

2. Problem statement and existence of solution. Consider a bounded reg-
ular domain Ω ⊂ R

d, d ∈ {2, 3}. Our objective is to characterize and find a solution
(u∗, y∗) ∈ L2(Ω) × H1(Ω) to the following optimal control problem:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(y, u) = 1
2

∫
Ω
|y − zd|2 dx + α

2

∫
Ω
|u|2 dx

subject to

−νΔy + (y · ∇)y + ∇p = u,

div y = 0,

y|Γ = g,

a ≤ εu + y ≤ b a.e.,

where α > 0, ε > 0, zd is the desired state, a ≤ b ∈ L2(Ω), and g ∈ H
1/2
0 (Γ), with

H
1/2
0 (Γ) := {v ∈ H1/2(Γ) :

∫
Γ
v · �n dΓ = 0} are given. The inequalities in the last

line of (2.1) have to be understood componentwise. We denote by (·, ·)X the inner
product in the Hilbert space X and by ‖·‖X the associated norm. The subindex is
suppressed if the L2-inner product or norm is meant. Hereafter, the bold notation
stands for the product of spaces. Additionally, we introduce the solenoidal space
V = {v ∈ H1

0(Ω) : div v = 0}, the closed subspace H := {v ∈ H1(Ω) : div v = 0},
and the trilinear form c : H × H × H → R defined by

c(u,w, v) = ((u · ∇)w, v).(2.2)
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Considering a force term f ∈ V ′, the weak formulation of the Navier–Stokes
equations is then given by

ν(∇y,∇v) + c(y, y, v) = 〈f, v〉V ′,V for all v ∈ V,(2.3)

γ0y = g,(2.4)

where ∇y =

⎛⎜⎜⎝
∂1y1 . . . ∂dy1

.

.

.
. . .

.

.

.
∂1yd . . . ∂dyd

⎞⎟⎟⎠, (∇y,∇v) :=
∑d

i=1

∑d
j=1(∂iyj , ∂ivj)L2(Ω), and γ0 :

H1(Ω) → H1/2(Γ) stands for the trace operator. It is now standard to show existence
of a solution for (2.3)–(2.4). Also an appropriate estimate and uniqueness, for ν suf-
ficiently large or f sufficiently small, are obtained. The main results are summarized
in the following theorem.

Theorem 2.1. Let Ω ∈ R
d, d ∈ {2, 3}, be a bounded regular domain, and

f ∈ H−1(Ω) and g ∈ H
1/2
0 (Γ). Then, there exists at least one solution for the nonho-

mogeneous problem (2.3)–(2.4) that satisfies the estimate

(2.5) ‖y − ŷ‖V ≤ 2

ν
‖F‖V ′ ,

where ŷ ∈ H is a function such that γ0ŷ = g and F = f + νΔŷ − (ŷ · ∇)ŷ. Moreover,
if ‖ŷ‖H is sufficiently small, such that

|c(v, ŷ, v)| ≤ ν

2
‖v‖2

V for all v ∈ V

and ν2 > 4N ‖F‖V ′ , with N = supu,v,w∈V
|c(u,v,φ)|

‖u‖V ‖v‖V ‖w‖V
, then the solution is unique.

Proof. For the proof we refer the reader to [23, pp. 178–180].

Next, we verify the existence of an optimal solution for our control problem. For
that purpose let us define the set of admissible solutions

Tad = {(y, u) ∈ H × L2(Ω) : (y, u) satisfies the restrictions in (2.1)}.

Theorem 2.2. If Tad is nonempty, then there exists an optimal solution for
(2.1).

Proof. Assuming that there is at least one feasible pair for our problem, we take
a minimizing sequence {(yn, un)} in L2(Ω) × H1(Ω) and, considering the quadratic
nature of the cost functional, we get that {un} is uniformly bounded in L2(Ω).

From estimate (2.5) it follows that the sequence {yn} is also uniformly bounded
in H1(Ω). Therefore, we may extract a weakly convergent subsequence, also denoted
by {(yn, un)}, such that un ⇀ u∗ in L2(Ω) and yn ⇀ y∗ in H1(Ω). Due to the
weak sequential continuity of the nonlinear form (cf. [12, p. 286]), it follows that
c(yn, yn, v) → c(y∗, y∗, v). Consequently, due also to the linearity and continuity of
the other terms involved, the limit (y∗, u∗) satisfies the state equations.

Since the set C := {v ∈ L2(Ω) : a ≤ v ≤ b a.e.} is closed and convex, it is weakly
closed. Hence, from the linearity and continuity of the mapping (y, u) → εu + y,
it follows that εu∗ + y∗ ∈ C. Taking into consideration that J(y, u) is weakly lower
semicontinuous, the result follows in a standard way.
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3. First order necessary optimality conditions. Let us consider the set

U = {u ∈ L2(Ω) : ‖u‖ <
(
ν2 − 4N ‖νΔŷ − (ŷ · ∇)ŷ‖V ′

)
/(4N ĉ)},

where ĉ denotes the embedding constant of L2(Ω) into V ′ and ŷ is a suitable ve-
locity profile from Theorem 2.1. According to Theorem 2.1 there exists, for each
u ∈ U on the right-hand side of (2.3), a unique solution of the Navier–Stokes equa-
tions. Introducing the control-to-state operator G : U → H that assigns to each
u ∈ U ⊂ L2(Ω) the corresponding Navier–Stokes solution y(u), and using the com-
posite mapping G = I ◦G, where I : H → L2(Ω) stands for the continuous compact
injection, problem (2.1) can be expressed in a reduced form as

(P)

⎧⎪⎨⎪⎩
minu∈U J(u) = 1

2

∫
Ω
|Gu− zd|2 dx + α

2

∫
Ω
|u|2 dx

subject to

a ≤ εu + Gu ≤ b a.e. in Ω.

Since U is open, we cannot expect in general that (P) admits a global solution. How-
ever, in what follows, we concentrate on certain local solutions rather than consider
exclusively global ones. Therefore, we are justified to assume u∗ ∈ U below.

In what follows we will frequently utilize the condition

(3.1) ν > M(y∗),

with M(y) := supv∈V
|c(v,y,v)|
‖v‖2

V

, which is responsible for the ellipticity of the linearized

equations (see Lemma 3.1 below). Condition (3.1) is immediately satisfied for all
pairs (y(u), u) that fulfill the hypotheses of Theorem 2.1 (see [7, Remark 3.1]). In
particular, it holds for all pairs (y(u), u) with u ∈ U.

Lemma 3.1. Let u ∈ U and y := G(u). The control-to-state operator G is twice
Fréchet differentiable at u and its derivatives w := G′(u)h and z := G′′(u)[h]2 are
given by the unique solutions of the systems

−νΔw + (w · ∇)y + (y · ∇)w + ∇π = h,

div w = 0,

w|Γ = 0

(3.2)

and

−νΔz + (z · ∇)y + (y · ∇)z + ∇
 = −2(w · ∇)w,

div z = 0,

z|Γ = 0,

(3.3)

respectively.
Proof. Let us begin by considering system (3.2). Its variational formulation is

given by

a1(w, φ) := ν(∇w,∇φ) + c(w, y, φ) + c(y, w, φ) = (h, φ)

for all φ ∈ V. Since for all pairs (y, u) with u ∈ U condition (3.1) holds (see [7,
Remark 3.1]), coercivity of a1(·, ·) and, consequently, the existence and uniqueness of
the solution w, follow.
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Let us denote the increment by ȳ := yu+h − yu, where yu := G(u). Considering
that

(3.4) c(yu+h, yu+h, φ) − c(yu, yu, φ) = c(ȳ, ȳ, φ) + c(yu, ȳ, φ) + c(ȳ, yu, φ),

it can be verified that ȳ is a solution of

(3.5) ν(∇ȳ,∇φ) + c(ȳ, ȳ, φ) + c(ȳ, yu, φ) + c(yu, ȳ, φ) = (h, φ) for all w ∈ V.

Taking φ = ȳ as a test function in (3.5) yields

(h, ȳ) = ν ‖ȳ‖2
V + c(ȳ, yu, ȳ) ≥ ν ‖ȳ‖2

V −M(yu) ‖ȳ‖2
V

and therefore

(3.6) ‖ȳ‖V ≤ κσ(y) ‖h‖ ,

where κ denotes the Poincaré inequality constant and σ(y) := 1
ν−M(y) . Considering

now ỹ = yu+h − yu − w, we obtain the following equation:

(3.7) ν(∇ỹ,∇φ) + c(yu+h, yu+h, φ) − c(yu, yu, φ)

− c(w, yu, φ) − c(yu, w, φ) = 0 for all w ∈ V.

Using (3.4) and choosing ỹ as a test function in (3.7) we get that

ν ‖ỹ‖2
V − c(ỹ, ỹ, yu) = −c(ȳ, ȳ, ỹ),

which, together with (3.6) and condition (3.1), yields

(3.8) ‖ỹ‖V ≤ Nκ2σ3(y) ‖h‖2
.

Hence, the Fréchet differentiability follows. Moreover, since condition (3.1) holds,
existence and uniqueness of solutions for (3.2) are verified. Therefore, the inverse
operator exists for all u ∈ U as a linear continuous operator and, from the implicit
function theorem, the operator G is of class C2 from U to H. Taking the derivative
on both sides of (3.2) yields (3.3) (see [6, p. 14]).

The idea now consists in reformulating problem (P) in a new variable v := εu +
G(u) and treating it as a control constrained optimal control problem. In order to
express u as a function of v we consider the operator

F : L2(Ω) × L2(Ω) → L2(Ω),

(v, u) �→ εu + G(u) − v

and the solvability of the equation

F (v, u) = 0.

To justify existence and uniqueness of u for each v ∈ L2(Ω), we will consider an L2

neighborhood of the optimal control u∗ contained in U . From the implicit function
theorem (cf. [28]), since F (v, u) is clearly defined in a neighborhood of u∗ and v∗ =
εu∗ +G(u∗), it suffices to verify existence and continuity of the mapping Fu(v∗, u∗)−1

from L2(Ω) to L2(Ω).
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From the open mapping theorem, existence and continuity of Fu(v∗, u∗)−1 hold
if the operator Fu(v∗, u∗) = ε + G′(u∗) is bijective. Let us therefore consider the
equation

(3.9) (ε + G′(u∗))h = ϕ,

with ϕ ∈ L2(Ω). It is easy to see that G′(u∗) = I ◦ G′(u∗) is compact due to the
embedding I : H1(Ω) → L2(Ω). Since ε > 0 and ν > M(y∗), it can be verified that
ker(ε + G′(u∗)) = {0} and consequently ε is not an eigenvalue of −G′(u∗). Applying
Fredholm’s alternative, we get the existence of a unique solution h ∈ L2(Ω) for (3.9)
and consequently the existence and continuity of Fu(v∗, u∗)−1.

Therefore, there are constants r, r0 > 0 such that for each v ∈ L2(Ω) with
‖v − v∗‖ ≤ r0, there exists a unique u := K(v) with ‖u− u∗‖ ≤ r and

(3.10) εK(v) + G(K(v)) = v.

Moreover, since F is twice continuously Fréchet differentiable, the implicit function
theorem (cf. [28]) also implies that K is twice continuously Fréchet differentiable.
Let us denote by K ′′(v)[ξ, η] the second derivative of K in directions ξ and η and
introduce K ′′(v)[ξ]2 := K ′′(v)[ξ, ξ]. Taking the first and second derivatives on both
sides of (3.10) in direction ξ yields

(ε + G′(K(v)))K ′(v)ξ = ξ,(3.11)

(ε + G′(K(v)))K ′′(v)[ξ]2 = −G′′(K(v))[K ′(v)ξ]2,(3.12)

which implies that

K ′(v) = (ε + G′(K(v)))−1

and

K ′′(v)[ξ]2 = −(ε + G′(K(v)))−1G′′(K(v))[K ′(v)ξ]2,

respectively.
Locally around u∗, our control problem can therefore be equivalently formulated

as

(Pr)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min J (v) =: J(y(K(v)),K(v))

subject to

a ≤ v ≤ b a.e.,

v ∈ Br0(v
∗).

Theorem 3.2. Let u∗ be a local optimal solution of (P). Then there exist
Lagrange multipliers λ ∈ V, q ∈ L2

0(Ω) and μa, μb ∈ L2(Ω) such that

−νΔy∗ + (y∗ · ∇)y∗ + ∇p = u∗,

div y∗ = 0,

y∗|Γ = g,

(3.13)
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−νΔλ− (y∗ · ∇)λ + (∇y∗)Tλ + ∇q = zd − y∗ + μa − μb,

div λ∗ = 0,

λ∗|Γ = 0,

(3.14)

(3.15) λ− αu∗ = ε(μb − μa),

a ≤ εu + y∗ ≤ b,

μa, μb ≥ 0,

(μai , ai − εu∗
i − y∗i ) = (μbi , bi − εu∗

i − y∗i ) = 0 for i = 1, 2

(3.16)

hold in the variational sense.
Proof. Since u∗ is a locally optimal solution of (P), we get for some r > 0

J(y∗, u∗) ≤ J(y(u), u)

for all u ∈ Br(u
∗) with a ≤ εu+ y(u) ≤ b. Equivalently, since u = K(v) holds locally,

J (v∗) ≤ J (v)

for all v ∈ Br0(v
∗) with a ≤ v ≤ b and for an appropriate constant r0 > 0.

Therefore, the following first order necessary condition follows:

(3.17) J ′(v∗)(v − v∗) ≥ 0 for all a ≤ v ≤ b.

Applying the chain rule, the derivative of J (v∗) in any direction ξ ∈ L2(Ω) is given
by

(J ′(v∗), ξ) = (y∗ − zd,G′(u∗)K ′(v∗)ξ) + α(u∗,K ′(v∗)ξ),(3.18)

which, by h := K ′(v∗)ξ, yields

(J ′(v∗), ξ) = (y∗ − zd,G′(u∗)h) + α(u∗, h).

Denoting by μ ∈ L2(Ω) the Riesz representative of −J ′(v∗) and using explicitly the
derivative of K we obtain

(μ, ξ) = (μ, (ε + G′(u∗))h) = ε(μ, h) + (μ,G′(u∗)h).

Therefore, (3.18) is equivalent to

(3.19) (y∗ − zd + μ,G′(u∗)h) + (αu∗ + εμ, h) = 0.

We now introduce the adjoint system of equations

−νΔλ− (y∗ · ∇)λ + (∇y∗)Tλ + ∇q = zd − y∗ − μ,

div λ∗ = 0,

λ∗|Γ = 0.

(3.20)
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Since, by hypothesis ν > M(y∗), the ellipticity of the adjoint operator can be easily
verified and, therefore, for zd − y∗ − μ ∈ L2(Ω), there exists a unique solution λ ∈ V
for the adjoint system.

Consequently, (3.19) can be rewritten as

(3.21) λ− αu∗ = εμ.

Utilizing the decomposition μ = μb − μa, with

μb := μ+ =
1

2
(μ + |μ|),

μa := μ− =
1

2
(−μ + |μ|),

where |μ| = (|μ1|, |μ2|)T , the optimality condition (3.17) can be rewritten as

(J ′(v∗), v∗) = min
a≤v≤b

(μa−μb, v) = min
a≤v≤b

{(μa,1, v1)−(μb,1, v1)+(μa,2, v2)−(μb,2, v2)}.

By fixing the second component of the new control variable v2 = v∗2 and considering
the mutual disjoint sets {x : μa,1(x) > 0} and {x : μb,1(x) > 0}, we obtain that

(J ′(v∗), v∗) = (μa,1, a1) − (μb,1, b1) + (μa,2, v
∗
2) − (μb,2, v

∗
2)

and, consequently,

(μa,1, a1 − εu∗
1 − y∗1) − (μb,1, b1 − εu∗

1 − y∗1) = 0.

Fixing now the first component of v and proceeding in a similar manner we get that

(μa,2, a2 − εu∗
2 − y∗2) − (μb,2, b2 − εu∗

2 − y∗2) = 0.

Taking into account that, by definition, μa, μb ≥ 0 componentwise, the complemen-
tarity system (3.16) follows.

Remark 3.3. Notice that the existence of μa, μb cannot be deduced in a standard
way from Kuhn–Tucker theorems in Banach spaces, since the cone of nonnegative
functions in L2(Ω) has an empty interior and we work just in this constraint space.

4. Second order sufficient condition. Next, we turn to second order sufficient
optimality conditions for problem (P). Following [22], the idea consists again in uti-
lizing the second order sufficient optimality properties of the pure control constrained
problem (Pr) and translate them to the original setting.

We begin by verifying the relation between the Lagrangian

L(y, u, λ) =
1

2
‖y∗ − zd‖2

+
α

2
‖u‖2

+ ν(∇λ,∇y) + c(y, y, λ) − (λ, u)

and the second derivative of the reduced functional J .
Lemma 4.1. The second derivative of the reduced cost functional in direction ξ

satisfies

(4.1) J ′′(v∗)[ξ]2 = L′′(y∗, u∗, λ)(w, h)2,

where h = K ′(v∗)ξ and w is the solution to (3.2) with h on the right-hand side.
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Proof. Considering the reduced cost functional and differentiating it twice in
direction ξ we get

J ′′(v∗)[ξ]2

= J ′′(K(v∗))[K ′(v∗)ξ]2 + J ′(K(v∗)) K ′′(v∗)[ξ]2

= ‖G′(K(v∗))K ′(v∗)ξ‖2
+ (y(K(v∗)) − zd,G′′(K(v∗))[K ′(v∗)ξ]2)

+ (y(K(v∗)) − zd,G′(K(v∗))K ′′(v∗)ξ2) + α ‖K ′(v∗)ξ‖2
+ α(K(v∗),K ′′(v∗)ξ2),

which, by the relations h = K ′(v∗)ξ, u∗ = K(v∗), y∗ = y(K(v∗)), w = G′(u∗)h, and
z = G′′(u∗)[h]2, yields

(4.2) J ′′(v∗)[ξ]2 = ‖w‖2
+ (y∗ − zd, z)

+ (y∗ − zd,G′(u∗)K ′′(v)ξ2) + α ‖h‖2
+ α(u∗,K ′′(v∗)ξ2).

From the optimality condition (3.19) we get

(y∗ − zd,G′(u∗)K ′′(v∗)ξ2) + α(u∗,K ′′(v∗)ξ2) = −(μ, (ε + G′(u∗))K ′′(v∗)ξ2),

which implies that

J ′′(v∗)[ξ]2 = ‖w‖2
+ α ‖h‖2

+ (y∗ − zd, z) − (μ, (ε + G′(u∗))K ′′(v∗)ξ2).

Additionally, by (3.12) we find

−(μ, (ε + G′(u∗))K ′′(v∗)ξ2) = (μ, z).

From (3.14), using integration by parts and (3.3), we get that

(y∗ − zd, z) − (μ, (ε + G′(u∗))K ′′(v∗)[ξ]2) = ν(Δz, λ) − c(y∗, z, λ) − c(z, y∗, λ)

= 2c(w,w, λ).

We thus obtain

J ′′(v∗)[ξ]2 = ‖w‖2
+ α ‖h‖2

+ 2((w · ∇)w, λ).

On the other hand, computing the first and second derivatives of the Lagrangian
yields

L′(y∗, u∗, λ)(w, h) = (y∗ − zd, w) + α(u∗, h) + ν(∇λ,∇w)

+ c(y∗, w, λ) + c(w, y∗, λ) − (λ, h),

L′′(y∗, u∗, λ)(w, h)2 = ‖w‖2
+ α ‖h‖2

+ 2c(w,w, λ),

and consequently

(4.3) J ′′(v∗)[ξ]2 = L′′(y∗, u∗, λ)(w, h)2 = ‖w‖2
+ α ‖h‖2

+ 2c(w,w, λ),

where w is a solution of (3.2) with h on the right-hand side.
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Let us now introduce the set of strongly active constraints

Aτ,i := {x ∈ Ω : |μi(x)| ≥ τ}, i = 1, . . . , d,

and the critical cone

C̃τ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩v ∈ L2(Ω) :

vi(x) = 0 if x ∈ Aτ,i,

vi(x) ≥ 0 if v∗i (x) = ai, x ∈ Aτ,i,

vi(x) ≤ 0 if v∗i (x) = bi, x ∈ Aτ,i

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

For the investigation of optimality for a given stationary pair (y∗, u∗) let us hereafter
assume that the following second order condition holds: there exist τ > 0, δ > 0 such
that

(SSC) L′′(y∗, u∗, λ)(w, h)2 ≥ δ ‖h‖2

for all (w, h) ∈ Cτ , where Cτ consists of all pairs (w, h) ∈ V × L2(Ω) such that
εh + w ∈ C̃τ and

−νΔw + (w · ∇)y∗ + (y∗ · ∇)w + ∇π = h,

div w = 0,

w|Γ = 0.

(4.4)

Theorem 4.2. If u∗ is a stationary point of (P) and (SSC) holds for some δ > 0,
τ > 0, then there exist constants ρ > 0 and σ > 0 such that

(4.5) J(y, u) ≥ J(y∗, u∗) + σ ‖u− u∗‖

for all pairs (y, u) such that y = G(u), a ≤ εu + y ≤ b, and ‖u− u∗‖ ≤ ρ.
Proof. Utilizing (3.11), (4.1), and (SSC) it follows that

J ′′(v∗)[ξ]2 ≥ δ
∥∥(ε + G′(u∗))−1ξ

∥∥2
,

which using the continuity of the mapping (ε + G′(u∗)) yields

J ′′(v∗)[ξ]2 ≥ δ

(
1

‖ε + G′(u∗)‖ ‖ξ‖
)2

= δ ‖ε + G′(u∗)‖−2 ‖ξ‖2
= δ̃ ‖ξ‖2

.

Using the second order sufficient conditions for the reduced problem (cf. [24,
p. 190]), we get the existence of constants ρ̃ > 0, σ̃ > 0 such that

J (v) ≥ J (v∗) + σ̃ ‖v − v∗‖2

for all a ≤ v ≤ b, ‖v − v∗‖ ≤ ρ̃.
By the implicit function theorem there exist constants r, r0 > 0 such that for all

v ∈ L2(Ω) with ‖v − v∗‖ ≤ r0, there is a u = K(v) which satisfies ‖u− u∗‖ ≤ r.
Taking ρ̂ = min(ρ̃, r0) we have that ‖u− u∗‖ ≤ r and

J(u) ≥ J(u∗) + σ̃ ‖v − v∗‖2
(4.6)

= J(u∗) + σ̃ ‖ε(u− u∗) + G(u) − G(u∗)‖2
.(4.7)
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From the quadratic nature of the Navier–Stokes nonlinear term we obtain, using
Taylor expansion, that

G(u) − G(u∗) = G′(u∗)(u− u∗) +
1

2
G′′(u∗)[u− u∗]2,

which, considering (4.7), implies that

J(u) ≥ J(u∗) + σ̃

∥∥∥∥(ε + G′(u∗))(u− u∗) +
1

2
G′′(u∗)(u− u∗)2

∥∥∥∥2

(4.8)

≥ J(u∗) + σ̃

(
‖(ε + G′(u∗))(u− u∗)‖ −

∥∥∥∥1

2
G′′(u∗)(u− u∗)2

∥∥∥∥)2

.(4.9)

Since the operator (ε + G′(u∗))−1 is linear and continuous we get that

‖u− u∗‖ =
∥∥(ε + G′(u∗))−1(ε + G′(u∗))(u− u∗)

∥∥
≤

∥∥(ε + G′(u∗))−1
∥∥ ‖(ε + G′(u∗))(u− u∗)‖ ,

which implies that

‖(ε + G′(u∗))(u− u∗)‖ ≥ 1

‖(ε + G′(u∗))−1‖ ‖u− u∗‖ = C̄ ‖u− u∗‖ .

Additionally, possibly by reducing r,∥∥∥∥1

2
G′′(u∗)[u− u∗]2

∥∥∥∥ ≤ C̄

2
‖u− u∗‖ .

Therefore, we get that

J(u) ≥ J(u∗) + σ̃

(
C̄ ‖u− u∗‖ − C̄

2
‖u− u∗‖

)2

= J(u∗) + σ ‖u− u∗‖2

with σ := σ̃C̄2

4 and, consequently, the local optimality of u∗ and the quadratic rate
follow.

Remark 4.3. For the analysis of second order numerical methods, a stronger
condition is needed (see [19, 24]): there exist constants τ > 0, δ > 0 such that

(SSC) L′′(y∗, u∗, λ)(w, h)2 ≥ δ ‖h‖2

for all pairs (w, h) ∈ V × L2(Ω) that solve (4.4) and satisfy εhi + wi = 0 on Aτ,i for
i = 1, . . . , d.

5. Semismooth Newton method. In this section we propose a semismooth
Newton method for the numerical solution of (P). The infinite dimensional method is
applied to the optimality system (3.13)–(3.16) and superlinear convergence is proved.
Additionally, the close relationship between semismooth Newton and primal-dual ac-
tive set methods (see [17]) allows a practical formulation of the algorithm in terms of
active and inactive sets.

We begin by reformulating the complementarity system (3.16) as the operator
equation

(5.1) μ = max(0, μ + c(v − b)) + min(0, μ + c(v − a))
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for all c > 0. Equation (5.1) suggests an update strategy based on active and inactive
sets information.

Definition 5.1. Let X and Z be Banach spaces and D ⊂ X an open subset.
The mapping F : D → Z is called Newton differentiable in the open subset U ⊂ D if
there exists a mapping Ψ : U → L(X,Z) such that

lim
h→0

1

‖h‖ ‖F (x + h) − F (x) − Ψ(x + h)h‖ = 0

for every x ∈ U.
Since the max(0, ·) and min(0, ·) functions are Newton differentiable (see [7, 17])

from Lp(Ω) → Lq(Ω), with q < p, the application of the semismooth Newton method
is justified with the special choice c := α/ε2 (see Theorem 5.5 below). The complete
algorithm is defined through the following steps.

Algorithm 5.2.

1. Initialize the variables u0 ∈ L2(Ω), y0 ∈ V , μ0 = 0, and set k = 1.
2. Until a stopping criterion is satisfied, set, for i = 1, . . . , d,

An
bi =

{
x : μn−1

i +
α

ε2

(
εun−1

i + yn−1
i − bi

)
> 0

}
,

An
ai

=
{
x : μn−1

i +
α

ε2
(εun−1

i + yn−1
i − ai) < 0

}
,

In
i = Ω\(An

bi ∪ An
ai

),

and find the solution (y, p, λ, q) of

−νΔyi + yn−1
1 ∂1yi + yn−1

2 ∂2yi + y1∂1y
n−1
i + y2∂2y

n−1
i

+ ∂ip = yn−1
1 ∂1y

n−1
i + yn−1

2 ∂2y
n−1
i +

⎧⎪⎨⎪⎩
1
ε (bi − yi) on An

bi
,

λi

α on In
i ,

1
ε (ai − yi) on An

ai
,

div y = 0,

y|Γ = g,

(5.2)

−νΔλi +
1

ε
λi − y1∂1λ

n−1
i − y2∂2λ

n−1
i −yn−1

1 ∂1λi − yn−1
2 ∂2λi + λ1∂iy

n−1
1

+λ2∂iy
n−1
2 + λn−1

1 ∂iy1 + λn−1
2 ∂iy2+∂iq = zd,i − yi − yn−1

1 ∂1λ
n−1
i

− yn−1
2 ∂2λ

n−1
i + λn−1

1 ∂iy
n−1
1 + λn−1

2 ∂iy
n−1
2 +

⎧⎪⎨⎪⎩
α
ε2 (bi − yi) on An

bi
,

λi

ε on In
i ,

α
ε2 (ai − yi) on An

ai
,

div λ = 0,

λ|Γ = 0.

(5.3)
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Set

(yn, pn, λn, qn) = (y, p, λ, q), un
i =

⎧⎪⎨⎪⎩
1
ε (bi − yni ) on An

bi
,

λn
i

α on In
i ,

1
ε (ai − yni ) on An

ai
,

μn =
1

ε
(λn −αun),

and go to step 2.

Note that the system to be solved in step 2 corresponds to the optimality system
of the optimal control problem
(5.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
δx∈V×C̃n

1
2 〈L′′(xn−1, λn−1)δx, δx〉 + 〈L′(xn−1, λn−1), δx〉

+ α
2ε2

d∑
i=1

∫
An

bi

∣∣bi − yn−1
i − δyi

∣∣2 dx + α
2ε2

d∑
i=1

∫
An

ai

∣∣ai − yn−1
i − δyi

∣∣2 dx
+ 1

ε

d∑
i=1

∫
An

bi

λn−1
i · δyi

dx + 1
ε

d∑
i=1

∫
An

ai

λn−1
i · δyi

dx

subject to

−νΔδyi
+ yn−1

1 ∂1δyi
+ yn−1

2 ∂2δyi
+ δy1

∂1y
n−1
i + δy2

∂2y
n−1
i + ∂ip

n

= νΔyn−1
i − yn−1

1 ∂1y
n−1
i − yn−1

2 ∂2y
n−1
i +

⎧⎪⎨⎪⎩
1
ε (bi − yn−1

i − δyi) on An
bi
,

un−1
i + δui

on In
i ,

1
ε (ai − yn−1

i − δyi) on An
ai
,

div δy = 0,

δy|Γ = −yn−1|Γ + g,

where xn = (yn, un), δx = xn − xn−1, and

C̃n :=
{
h ∈ L2(Ω) : hi(x) = 0 for x ∈ An

bi ∪ An
ai
, i = 1, . . . , d

}
.

Problem (5.4) corresponds to a quadratic control problem with affine constraints.
Existence and uniqueness of a solution, as well as existence of Lagrange multipliers,
will be verified next.

Theorem 5.3. Let u∗ ∈ U be a stationary point of (P) that satisfies the sec-
ond order condition (SSC). If In

i ⊂ Iτ,i, with Iτ,i := Ω\Aτ,i, i = 1, . . . , d, and
‖yn−1 − y∗‖V , ‖λn−1 − λ∗‖V are sufficiently small, then there exists a unique solu-
tion for system (5.2)–(5.3).

Proof. Existence of Lagrange multipliers for (5.4) follows from the satisfaction
of the regular point condition (see [20]), which in the present case is fulfilled if there
exists a unique weak solution w ∈ V of

−νΔw + (w · ∇)yn−1 + (yn−1 · ∇)w + ∇π = h,

div w = 0,

w|Γ = 0

(5.5)

with εh + w ∈ C̃n. Multiplying both sides of (5.5) by w, existence and uniqueness
follow from the Lax–Milgram theorem if the coercivity condition ν > M(yn−1) holds.
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From the definition of M(·) we get that

ν −M(yn−1) = ν − sup
w∈V

|c(w, yn−1, w)|
‖w‖2

V

≥ ν − sup
w∈V

|c(w, yn−1 − y∗, w)|
‖w‖2

V

−M(y∗)

≥ ν −M(y∗) −N
∥∥yn−1 − y∗

∥∥
V
.

Choosing ‖yn−1 − y∗‖V ≤ ν−M(y∗)
2N yields

ν −M(yn−1) ≥ ν −M(y∗)

2
> 0,

and, thus, each solution of (5.4) satisfies the optimality system (5.2)–(5.3).
On the other hand, to see that a solution to (5.2)–(5.3) corresponds to the solution

of (5.4) a second order condition has to hold. Denoting by L(δy, δu) the Lagrangian
of (5.4), the second order condition can be stated as follows: there exists a constant
ρ > 0 such that

(5.6) L′′(δy, δu)(w, h)2 ≥ ρ ‖h‖2

for all (w, h) ∈ V × L2(Ω) that solve (5.5) and satisfy εh + w ∈ C̃n. Taking such
a (w, h) arbitrary but fixed, we introduce the decomposition (w, h) = (ξ, h̄) + (ψ, h)
with ξ ∈ V a weak solution of

−νΔξ + (ξ · ∇)y∗ + (y∗ · ∇)ξ + ∇π1 = h̄,

div ξ = 0,

ξ|Γ = 0,

(5.7)

with

h̄i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

εξi on An
bi
,

hi on In
i ,

− 1
εξi on An

ai

for i = 1, . . . , d, and ψ ∈ V a weak solution of

−νΔψ + (ψ · ∇)yn−1 + (yn−1 · ∇)ψ + ∇π2

= −((yn−1 − y∗) · ∇)ξ − (ξ · ∇)(yn−1 − y∗) + h,

div ψ = 0,

ψ|Γ = 0

(5.8)

with

hi =

⎧⎪⎨⎪⎩
− 1

εψi on An
bi
,

0 on In
i ,

− 1
εψi on An

ai
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for i = 1, . . . , d. We therefore get that (ξ, h̄) solves (5.7) and satisfies εh̄ + ξ ∈ C̃n.
From (4.3) and using Cauchy–Schwarz we thus obtain

L′′(δy, δu)(w, h)2 ≥ ‖ξ‖2
+ α

∥∥h̄∥∥2 − 2 ‖ξ‖ ‖ψ‖ − 2α
∥∥h̄∥∥ ‖h‖ + 2c(w,w, λn−1),

which implies, using the properties of the trilinear form, that

L′′(δy, δu)(w, h)2 ≥ L′′(y∗, u∗, λ∗)(ξ, h̄)2 − 2 ‖ξ‖ ‖ψ‖ − 2α
∥∥h̄∥∥ ‖h‖

− 2N ‖ξ‖2
V

∥∥λn−1 − λ∗∥∥
V
− 4N ‖ξ‖V ‖ψ‖V

∥∥λn−1
∥∥
V
− 2N ‖ψ‖2

V

∥∥λn−1
∥∥
V
.

From (5.7) and (5.8) it can be verified that the following estimates hold:

‖ξ‖V ≤ κσ
∥∥h̄∥∥ ,(5.9)

‖ψ‖V ≤ 4Nκσ2
∥∥yn−1 − y∗

∥∥
V

∥∥h̄∥∥ ,(5.10)

with σ := (ν −M(y∗))−1.
Since by hypothesis u∗ satisfies (SSC) and In

i ⊂ Iτ,i, it follows that εh̄ + ξ = 0
on Aτ,i and, using estimates (5.9), (5.10),

L′′(δy, δu)(w, h)2

≥ δ
∥∥h̄∥∥2 − 8Nκ4σ3

∥∥yn−1 − y∗
∥∥
V

∥∥h̄∥∥2 − 8

ε
αNκ2σ2

∥∥yn−1 − y∗
∥∥
V

∥∥h̄∥∥2

− 2Nκ2σ2
∥∥λn−1 − λ∗∥∥

V

∥∥h̄∥∥2 − 16N 2κ2σ3
∥∥λn−1

∥∥
V

∥∥yn−1 − y∗
∥∥
V

∥∥h̄∥∥2

− 32N 3κ2σ4
∥∥λn−1

∥∥
V

∥∥yn−1 − y∗
∥∥2

V

∥∥h̄∥∥2
.

Choosing ‖yn−1 − y∗‖V and ‖λn−1 − λ∗‖V sufficiently small such that

ρ := δ − 2Nκ2σ2
∥∥λn−1 − λ∗∥∥

V
− 8Nκ2σ2

∥∥yn−1 − y∗
∥∥
V

[
κ2σ + α/ε

+ 2Nσ
∥∥λn−1

∥∥
V

+ 4N 2σ2
∥∥λn−1

∥∥
V

∥∥yn−1 − y∗
∥∥
V

]
> 0,

condition (5.6) is satisfied.
Therefore, system (5.2)–(5.3) is uniquely solvable since it corresponds to the so-

lution of a linear quadratic control problem with convex objective.
Remark 5.4. From the definition of the inactive sets, it can be verified that the

condition In
i ⊂ Iτ,i holds for ‖yn−1 − y∗‖V and ‖λn−1 − λ∗‖V sufficiently small.

By considering the state variable y and the newly defined control variable v, the
optimal control problem (P) can locally also be expressed as the following control
constrained optimal control problem:
(5.11)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(y, v) = 1
2

∫
Ω
|y − zd|2 dx + α

2ε2

∫
Ω
|v|2 dx− α

ε2

∫
Ω
v y dx + α

2ε2

∫
Ω
|y|2 dx

subject to

−νΔy + 1
εy + (y · ∇)y + ∇p = 1

εv,

div y = 0,

y|Γ = g,

a ≤ v ≤ b a.e.
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The presence of the mixed term α
ε2

∫
Ω
v y dx in the cost functional is responsible for

a different problem structure which does not allow the application of already known
results about convergence of the semismooth Newton method for control constrained
optimal control problems (see [9, 17]).

In the next theorem sufficient conditions for the local superlinear convergence of
the semismooth Newton method are stated.

Theorem 5.5. Let u∗ ∈ U be a stationary point of (P) that satisfies (SSC). If

‖λ∗‖V < α1/2

4ε (ν −M(y∗))( ε(α+ε2)−α
ε1/2(α+ε2)1/2+α1/2 ) and ‖y0 − y∗‖V , ‖λ0 − λ∗‖V are suffi-

ciently small, then the sequence {(yn, vn, λn, μn)} generated by the algorithm converges
superlinearly in H1(Ω)×L2(Ω)×V ×L2(Ω) to (y∗, u∗, λ∗, μ∗). Moreover, there exists
a constant C > 0 such that

(5.12)
∥∥(vn+1 − v∗, yn+1 − y∗, λn+1 − λ∗)

∥∥
L2×V×V

≤ C
(
‖yn − y∗‖2

V + ‖λn − λ∗‖2
V

)
+ o(‖(yn − y∗, λn − λ∗)‖Lp×Lp).

Proof. By considering system (3.13)–(3.16) and the system in step 2 of Algo-
rithm 5.2, it can be verified that the increments δy = yn+1−y∗, δλ = λn+1−λ∗, δu, δμ,
and δφ satisfy the system

ν(∇δy,∇φ) +
1

ε
(δy, φ) + c(yn, δy, φ) + c(δy, y

n, φ)

=
1

ε
(δv, φ) + (((yn − y∗) · ∇)(yn − y∗), φ) for all φ ∈ V,

(5.13)

ν(∇δλ,∇φ) − c(yn, δλ, φ) − c(δy, λ
n, φ) + c(w, yn, δλ) + c(w, δy, λ

n)

= ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), φ) − (δy + δμ, φ)

for all φ ∈ V.

(5.14)

Introducing the auxiliary variable ϕ := εμ + α
ε v and considering (3.15) and (5.1)

together with the semismooth Newton update for un and μn, we also obtain that

δλ − α

ε
δv +

α

ε
δy = εδμ,(5.15)

δϕ = εδμ +
α

ε
δv,(5.16)

δϕ − α

ε
δv = Gn

max(δϕ) + Gn
min(δϕ) + R,(5.17)

where

Gn
max,i(φ) =

{
φ on An+1

bi
,

0 on Ω\An+1
bi

,
and Gn

min,i(φ) =

{
φ on An+1

ai
,

0 on Ω\An+1
ai

and

R = max
(
0, ϕ∗ + (ϕn − ϕ∗) − α

ε
b
)
− max

(
0, ϕ∗ − α

ε
b
)
−Gn

max(ϕ
n − ϕ∗)

+ min
(
0, ϕ∗ + (ϕn − ϕ∗) − α

ε
a
)
− min

(
0, ϕ∗ − α

ε
a
)
−Gn

min(ϕn − ϕ∗).
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Due to Newton differentiability of the max(0, ·) and min(0, ·) functions (cf. [17]) from
Lp(Ω) → Lq(Ω), with q < p, we therefore obtain that

(5.18) ‖R‖L2 = o(‖ϕn − ϕ∗‖Lp),

with p > 2.
Multiplying (5.17) by δv, we get that

(5.19) −(R, δv) = (Gn
max(δϕ) + Gn

min(δϕ), δv) − (δϕ, δv) +
α

ε
‖δv‖2

.

Additionally, from the definition of Gn
max and Gn

min,

(5.20) (Gn
max(δϕ) + Gn

min(δϕ), δv) − (δϕ, δv) = (δϕ, δv)In ,

where (v, w)In :=
∫
In v · w dx.

On the other hand, substituting (5.15) into (5.14) and multiplying by δy, we get
that

ν(∇δλ,∇δy) +
1

ε
(δλ, δy) − c(yn, δλ, δy) − c(δy, λ

n, δy)(5.21)

+ c(δy, y
n, δλ) + c(δy, δy, λ

n) = ((∇(yn − y∗))T (λn − λ∗)

− ((yn − y∗) · ∇)(λn − λ∗), δy) − ‖δy‖2
+

α

ε2
(δv, δy) −

α

ε2
‖δy‖2

,

which, utilizing (5.13), multiplied by δλ yields

(5.22)
1

ε
(δv, δλ) + (((yn − y∗) · ∇)(yn − y∗), δλ) − c(yn, δy, δλ) − c(δy, y

n, δλ)

= ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy) −
α

ε2
‖δy‖2

+
α

ε2
(δv, δy) − ‖δy‖2

+ c(yn, δλ, δy) + c(δy, λ
n, δy) − c(δy, y

n, δλ) − c(δy, δy, λ
n).

Consequently, utilizing the properties of the trilinear form,

(5.23)(
α + ε2

ε2

)
‖δy‖2

+
1

ε
(δv, δλ)+

α

ε2
(δv, δy)− 2c(δy, λ

n, δy) = ((∇(yn− y∗))T (λn−λ∗)

− ((yn − y∗) · ∇)(λn − λ∗), δy) − (((yn − y∗) · ∇)(yn − y∗), δλ) +
2α

ε2
(δv, δy)

and therefore

(5.24)
1

ε
(δv, δϕ) ≤ 2α

ε2
(δv, δy) + 2N ‖λn‖V ‖δy‖2

V −
(
α + ε2

ε2

)
‖δy‖2

+ ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy)

− (((yn − y∗) · ∇)(yn − y∗), δλ).
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Let us now consider the increment equation (5.13) and multiply it by δy. We get
the estimate

(5.25) ν ‖δy‖2
V +

1

ε
‖δy‖2 −M(yn) ‖δy‖2

V ≤ 1

ε
(δv, δy) + N ‖yn − y∗‖2

V ‖δy‖V ,

which, by considering a y∗ neighborhood such that

(5.26) ν −M(yn) ≥ 1

2
(ν −M(y∗)) > 0

and the Poincaré inequality, implies that

(5.27)
1

2
(ν −M(y∗)) ‖δy‖2

V +
1

ε
‖δy‖2 ≤ 1

ε
(δv, δy) + N ‖yn − y∗‖2

V ‖δy‖V .

Consequently, we obtain the estimate

(5.28) ‖δy‖V ≤ 2σ
(κ
ε
‖δv‖ + N ‖yn − y∗‖2

V

)
,

with σ := (ν −M(y∗))−1.
Using (5.27) in (5.24) and grouping terms yield

(5.29)
1

ε
(δv, δϕ) ≤ 2α + 4σε ‖λn‖V

ε2
(δv, δy) −

(
α + ε2 + 4σε ‖λn‖V

ε2

)
‖δy‖2

+ 4Nσ ‖λn‖V ‖yn − y∗‖2
V ‖δy‖V − (((yn − y∗) · ∇)(yn − y∗), δλ)

+ ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy).

Since

(5.30)

∥∥∥∥∥cδv −
(
α + ε2 + 4σε ‖λn‖V

ε2

)1/2

δy

∥∥∥∥∥
2

= c2 ‖δv‖2

− 2c

ε

(
α + ε2 + 4σε ‖λn‖V

)1/2
(δv, δy) +

(
α + ε2 + 4σε ‖λn‖V

ε2

)
‖δy‖2

,

we obtain, by choosing c =
α+2σε‖λn‖V

ε
√

α+ε2+4σε‖λn‖V

, that

(5.31)
1

ε
(δv, δϕ) ≤ (α + 2σε ‖λn‖V )2

ε2(α + ε2 + 4σε ‖λn‖V )
‖δv‖2

+ 4Nσ ‖λn‖V ‖yn − y∗‖2
V ‖δy‖V

+((∇(yn−y∗))T (λn−λ∗)−((yn−y∗)·∇)(λn−λ∗), δy)−(((yn−y∗)·∇)(yn−y∗), δλ).

Consequently, from (5.19)–(5.20) and (5.31) we therefore obtain

|(R, δv)| ≥
α

ε
‖δv‖2 −

∣∣∣∣ (α + 2σε ‖λn‖V )2

ε2(α + ε2 + 4σε ‖λn‖V )
‖δv‖2

In

+((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy)In

− (((yn − y∗) · ∇)(yn − y∗), δλ)In + 4Nσ ‖λn‖V ‖yn − y∗‖2
V ‖δy‖V

∣∣∣∣,
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which, by considering a (y∗, λ∗) neighborhood such that

(5.32) ‖λn‖V ≤ 2 ‖λ∗‖V ,

implies that

|(R, δv)| ≥
α

ε
‖δv‖2 − (α + 4σε ‖λ∗‖V )2

ε2(α + ε2)
‖δv‖2

−N ‖yn − y∗‖2
V (8σ ‖λ∗‖V ‖δy‖V + ‖δλ‖V )

− 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δy‖V .

Since, by hypothesis, ‖λ∗‖V < α1/2

4ε (ν −M(y∗)) ε(α+ε2)−α
ε1/2(α+ε2)1/2+α1/2 , we get that

(5.33) β :=
αε(α + ε2) − (α + 4σε ‖λ∗‖V )2

ε2(α + ε2)
> 0,

and therefore

(5.34) β ‖δv‖2 ≤ ‖R‖ ‖δv‖ + N ‖yn − y∗‖2
V (8σ ‖λ∗‖V ‖δy‖V + ‖δλ‖V )

+ 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δy‖V .

On the other hand, by multiplying (5.14) by δλ we get that

(5.35) ν ‖δλ‖2
V +

1

ε
‖δλ‖2 −M(yn) ‖δλ‖2

V ≤ 2N ‖δy‖V ‖λn‖V ‖δλ‖V

+ 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δλ‖V +
( α

ε2
+ 1

)
‖δy‖ ‖δλ‖ +

α

ε2
‖δv‖ ‖δλ‖ ,

which, considering (5.32) and (5.26), implies that

(5.36)
1

2
(ν −M(y∗)) ‖δλ‖V ≤

(
κ2α

ε2
+ κ2 + 4N ‖λ∗‖V

)(
α + ε2

ε2

)
‖δy‖V

+
α

ε2
‖δv‖ + 2N ‖λn − λ∗‖V ‖yn − y∗‖V .

Therefore, utilizing estimate (5.28), there exists a constant C̄ such that

(5.37) ‖δλ‖V ≤ C̄(‖δv‖ + ‖λn − λ∗‖2
V + ‖yn − y∗‖2

V ).

From the definition of ϕ and (5.18) we therefore obtain that

‖R‖ = o(‖(yn − y∗, λn − λ∗)‖Lp×Lp),

which, considering estimates (5.28) and (5.37) in (5.34), implies the existence of a
constant C such that

(5.38) ‖(δv, δy, δλ)‖L2×V×V ≤ C
(
‖yn − y∗‖2

V + ‖λn − λ∗‖2
V

)
+ o(‖(yn − y∗, λn − λ∗)‖Lp×Lp).

Consequently, the superlinear convergence is verified.
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0.5 

Fig. 6.1. Forward facing step channel.

Fig. 6.2. Streamlines of the uncontrolled state.

6. Numerical results. For the numerical tests, a “forward facing step channel”
was utilized (see Figure 6.1). The fluid flows from left to right with a parabolic
inflow condition with the maximum value equal to one and “do nothing” outflow
condition. In the remaining boundary parts a homogeneous Dirichlet condition was
imposed. The geometry was discretized using a staggered grid and an upwinding
finite differences scheme was applied. The behavior of the uncontrolled fluid flow
with Reynolds number Re = 1000 is depicted in Figure 6.2. Two main recirculation
zones, which increase their size together with the Reynolds number, can be clearly
identified from the graphics.

The target of our control problem is to properly diminish the recirculations of
interest by considering, together with the tracking-type cost functional, adequate
pointwise control-state constraints.

For the solution of the optimality system, Algorithm 5.2 was utilized. The semi-
smooth Newton algorithm stops when the L2-norm of the state increment is lower
than 10−4. Unless otherwise specified, the mesh step size h = 1/240 was considered.
For the solution of the linear systems, MATLAB’s exact solver was utilized.

6.1. Example 1. In this first experiment, we consider the elimination of bubbles
in the channel by imposing the constraint y1 + εu1 ≥ −10−7. For ε sufficiently small,
this constraint avoids backward flow in the channel and thus possible recirculations.
Additionally, the tracking-type component of the cost functional is responsible for a
more linear behavior of the flow field. The remaining parameter data utilized are
h = 1/240, Re = 1000, ε = 10−4, and α = 0.1. The semismooth Newton method
(SSN) stops after 9 iterations, with the final active set containing 28 grid points.
The cost functional takes the final value J(y∗, u∗) = 0.00445224 and the nonlinear
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Fig. 6.3. Example 1: Control vector field with tracking component.

Fig. 6.4. Example 1: Streamlines of the controlled state with tracking component.

Table 6.1

Example 1: h = 1/240, tol = 10−4.

ε SSN iter. J(y∗, u∗) |Aa ∪ Ab |
10−1 5 0.00399972 33
10−2 6 0.00410360 42
10−3 8 0.00438273 29
10−4 9 0.00445224 28
10−5 9 0.00445989 32

complementarity function residuum the value 2.2737 × 10−9. The optimal control
field is depicted in Figure 6.3, where the concentration of the control action on the
recirculation zones can be observed. The desired recirculation diminishing effect of
the control can be visualized from the plot of the reached controlled state streamlines
in Figure 6.4. In Table 6.1 the number of SSN iterations, the final cost functional
value, and the size of the active set are registered for different ε values. It can be
observed that as ε tends to 0, the problem becomes harder to solve and more SSN
iterations are required.

Subsequently we consider the limit case where the tracking-type part of the cost
functional is dismissed. We aim to find the control of minimum norm that allows
the satisfaction of the state constraint y1 + εu1 ≥ 10−7 over the domain of interest.
As before, the constraint takes care that no important backward flow arises. By
considering the constraint on the whole domain, i.e., ΩS = Ω, both recirculations
before and after the step are diminished (see Figure 6.5). From Figure 6.5 it can also
be observed that the behavior of the fluid flow, mainly before the step, is not close
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Fig. 6.5. Example 1: Streamlines of the controlled state without tracking component.

Fig. 6.6. Example 1: Control vector field without tracking component.

to the Stokes flow, as is the case when the tracking-type component is present. From
the control vector plot (see Figure 6.6) it can be observed that the control action in
this case is even more concentrated on the recirculations zones. The parameter values
for this case are Re = 1000, ε = 10−4, and α = 0.1. The number of SSN iterations
needed is 29 and the cost functional takes the final value 8.99816 × 10−4.

In many practical cases, the recirculation reduction or elimination on the whole
domain is not necessary, if not undesirable. In such cases the state constraint may
be imposed in the sectors where the bubble to be diminished is localized. In the case
of our geometry the essential recirculation to be diminished is the one after the step.
By considering the state constraint on the subdomain ΩS := [0.5, 0.75] × [0.25, 0.5],
this elimination is attached with the cost functional value 8.98898 × 10−4 in 6 SSN
iterations. The final controlled state is shown in Figure 6.7, where it can be clearly
seen that the recirculation after the step is numerically eliminated, although the one
before the step becomes bigger than in the uncontrolled case.

6.2. Example 2. As an alternative strategy for the reduction of the recircula-
tion after the step, we consider in this example a state constraint that guarantees
a homogeneous outflow velocity. The constraint imposed is y1 + εu1 ≤ 1.7 and the
remaining parameter values are Re = 1000, ε = 10−3, and α = 0.01. In this case,
the SSN algorithm stops after 15 iterations and the resulting active set contains 2283
grid points. The cost functional takes the final value J(y∗, u∗) = 0.003470768. The
controlled state is depicted in Figure 6.8, where an important reduction of the recir-
culations can be visualized.

Since the outgoing velocity is the quantity of interest, it is natural to consider
the case where the constraint is imposed only in the last part of the channel. By
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Ω
S
 

Fig. 6.7. Example 1: Streamlines of the controlled state without tracking component; state
constraint subdomain.

Fig. 6.8. Example 2: Streamlines of the controlled state.

Ω
S
 

Fig. 6.9. Example 2: Streamlines of the controlled state; state constraint subdomain.

considering the domain ΩS := [0.5, 0.75] × [0.25, 0.5], the recirculation diminishing
effect does also take place (see Figure 6.9), but with a lower final cost functional value
J(y∗, u∗) = 0.0031112131. The SSN algorithm stops after 10 iterations with a final
active set containing 906 active points. The remaining parameter values are the same
as in the case ΩS = Ω.

Finally, in order to visualize the structure of the control-state constraint multi-
plier, we modify the Reynolds number to 500 and impose the homogeneous outgoing
velocity constraint y1 + εu1 ≤ 1.7. The evolution of the multiplier as ε decreases
can be observed in Figure 6.10. In Table 6.2 the evolution of the SSN is registered.
The algorithm stops after 7 iterations with the final active set containing 2465 grid
points. As expected from the theoretical results, local superlinear convergence can be
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Fig. 6.10. State constraint multiplier; ε = 10−1, ε = 10−2, ε = 10−3, ε = 10−4.
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Table 6.2

Example 2: h = 1
240

, ε = 10−3, Re = 500.

Iteration | An | J(y, u) ‖yn − yn−1‖ ‖yn−yn−1‖
‖yn−1−yn−2‖ NCP

1 0 0.00156432 9.4321 - 29.43065
2 2743 0.00349897 12.40964 - 4.531425
3 2571 0.003355 1.05301 0.0077 1.663621
4 2494 0.0033477 0.2134005 0.201 0.397106
5 2469 0.00334765 0.0151623 0.07079 0.052505
6 2465 0.00334765 5.55 ·10−4 0.03634 2.22 ·10−14

7 2465 0.00334765 2.048 ·10−8 3.86 ·10−5 2.22 ·10−14

observed from the data. Let us point out that, although no monotonic behavior of
the cost functional along the iterations occurs, a monotonic decrease of the nonlinear
complementarity function and of the size of the active set can be observed.
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[25] F. Tröltzsch and D. Wachsmuth, Second order sufficient optimality conditions for the op-
timal control of Navier–Stokes equations, ESAIM Control Optim. Calc. Var., 12 (2006),
pp. 93–119.

[26] M. Ulbrich, Constrained optimal control of Navier–Stokes flow by semismooth Newton meth-
ods, Systems Control Lett., 48 (2003), pp. 297–311.

[27] G. Wang, Optimal controls of 3-dimensional Navier–Stokes equations with state constraints,
SIAM J. Control Optim., 41 (2002), pp. 583–606.

[28] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. 1, Springer-Verlag, New
York, 1986.



SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 2, pp. 630–654

A HARMONIC FRAMEWORK FOR CONTROLLABILITY IN
LINEAR CONTINUOUS-TIME PERIODIC SYSTEMS∗

JUN ZHOU†

Abstract. Controllability of linear continuous-time periodic systems is dealt with via a harmonic
analysis approach for the first time in this paper. This approach reveals that controllability of
continuous-time periodic systems can be connected to necessary and sufficient conditions expressed
explicitly with Fourier coefficients of the system matrices, which can be interpreted in a way similar
to what we have seen in linear time-invariant cases. These controllability conditions shed new light
upon structural characteristics of continuous-time periodic systems that are hard to know by means of
existing time-domain controllability criteria in the literature. Controllability canonical decomposition
of linear continuous-time periodic systems is revisited through state coordinate transforms of strong
analytic features. The results are heuristic and significant for examining structural characteristics
of continuous-time periodic systems and extending controllability-related techniques that are widely
employed in linear time-invariant systems to linear continuous-time periodic systems.
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1. Introduction. Controllability is one of the structural characteristics in dy-
namical systems, and plays an irreplaceable role in analysis techniques and synthesis
algorithms in control theory. For example, in linear time-invariant (LTI) control sys-
tems, zero/pole structural algebra [30], [32], geometric theory [39], frequency-domain
techniques for multivariable control [36], linear matrix inequalities [6], H2/H∞ robust
performance designs [13], [22], [44], and so on cannot proceed without controllability.
This is also the case for engineering applications involving finite-dimensional linear
continuous-time periodic (FDLCP) systems [20], [18], [21], [25], among which typical
problems include stabilization of helicopter rotors and ships in waves, and reduction
of electromechanical oscillations in electricity generators [9], [10], [14], [28], [29]. As
a matter of fact, controllability is a prerequisite to many problems involving FDLCP
modelings, for instance, in periodic Riccati [1] and Lyapunov differential equations [5].
Unfortunately, however, due to the time-varying feature of FDLCP systems, control-
lability and its relevant structural properties in FDLCP systems still need further
scrutiny, compared with the situation in LTI systems, though various controllabil-
ity concepts and corresponding criteria are introduced and lasting efforts have been
made [1], [7], [11], [15], [17], [33], [34] over the last dozens of years.

Now we simply review results about controllability in FDLCP systems to mo-
tivate our study. It is well known that in LTI systems the Gramian, rank, and
Popov–Belevitch–Hautus (PBH) criteria [39], [30], [44] are frequently employed for
controllability, and have brought fruitful results about the structure characteristics of
LTI systems [30], [32]. For instance, the structural decomposition has greatly deep-
ened our understanding about such structural properties as zero/pole cancellation in
feedback control, which in turn pave the way for optimal linear quadratic regulation
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problems [36], H2/H∞ performance designs [13], [44], etc. In contrast, it is relatively
hard to tackle controllability in the FDLCP field. There seem to be few controllabil-
ity criteria for FDLCP systems that possess time-invariant expressions of the system
matrices and can be implemented without the state transition matrix knowledge of
FDLCP systems. Usually one must face some conservative assumptions about system
matrices when utilizing such controllability criteria as that of [33], or one must base
controllability testing on the state transition matrix [1], [2], [3], [4], [25], whose com-
putation is itself another thorny and interesting problem in the FDLCP field [24], [26],
[35]. In view of this, it would be fair to say that controllability and its corresponding
properties in FDLCP systems have not been well addressed for the purpose of car-
rying over LTI techniques into FDLCP systems through controllability/observability
concepts. Thus, it is natural for us to develop controllability criteria which have more
explicit expressions with system matrices. Such controllability criteria are the major
achievements of this paper.

Although more than a dozen kinds of controllability are described in the literature,
three kinds are generally known: K-controllability proposed by Kalman [20], which
leads to the Gramian controllability criterion; Kalman–Weiss–Brunovsky (KWB)-
controllability [17], which is stated via linear independence of the state transition and
input matrices; and H-controllability defined by Hewer [2], [17], which is stated via
characteristic-multiplier/
eigenvector relations of the monodromy and input matrices of the FDLCP system
concerned. The first two are defined for general dynamical systems, while the third
one is introduced specifically for FDLCP systems. It has been claimed in [17] that
K-controllability is equivalent to KWB-controllability. It should be noted that some
arguments about validity of results in [17] are raised through a counter example
in [1]. Equivalence between K-controllability and H-controllability is explicated in [2].
Bearing these in mind, we concentrate our attention in what follows only on K-
controllability, and thus all the prefixes will be removed from terminologies pertaining
to controllability. As an interesting side note related closely to controllability (and
observability), it is worth mentioning that various characterizations of stabilizabil-
ity and detectability of linear continuous-time periodic systems are given and their
equivalences are scrutinized in [4].

The paper is outlined as follows. Section 2 collects preliminaries to FDLCP sys-
tems, such as the Floquet theorem, the harmonic Floquet similarity transformation
formulas, the controllability definition, and the Gramian criterion and its various inter-
pretations. In section 3, harmonic controllability conditions for FDLCP systems and
their implementing algorithms are proved. Controllability of approximate modelings
and controllability canonical decomposition via analytic state coordinate transforms
are dealt with in section 4. There are numeric examples to illustrate the main results
in section 5. Conclusions are summarized in section 6.

2. Preliminaries to FDLCP systems. Section 2.1 collects facts on FDLCP
systems. Section 2.2 moves to discussions about exponential operators defined in
FDLCP systems. Section 2.3 is devoted to the controllability definition, the Gramian
controllability criterion, and its various interpretations. The results of section 2.3 play
a key role in developing a harmonic framework for controllability.

To facilitate the statements we list notation used in the paper. ||·|| is the Euclidean
norm and the norm of a matrix induced by it. l2 is the set of all infinite-dimensional
vectors x such that ||x||2l2 =

∑+∞
k=−∞ ||xk||2 < ∞, where xk is the kth (vector) entry

of x. L∞[0, h] is the set of all measurable functions x defined on [0, h) such that
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||x(·)||∞ = ess supt∈[0,h) ||x(t)|| < ∞. LPCD[0, h] is the set of all piecewise continuous
functions that are differentiable almost everywhere in [0, h). LCAC[0, h] denotes the set
of all continuous functions whose Fourier series are absolutely convergent. Obviously,
LPCD[0, h] ⊂ L∞[0, h] and LCAC[0, h] ⊂ L∞[0, h]. F (t) ∈ L∞[0, h] means that F (·) is
a matrix function, each element of which is h-periodic and belongs to L∞[0, h] when
its domain is restricted to [0, h). C is the set of all complex numbers. Z is the ring of
all integers. ∗(l, k) denotes an l × k matrix, the exact evaluation of whose entries is
not needed, while 0(l, k) is an l × k zero matrix.

Let
∑+∞

μ=−∞ Aμe
jμωht with ωh := 2π/h be the Fourier series of A(t) ∈ L∞[0, h].

The Toeplitz transformation T {A(t)} is a Toeplitz operator [38] (or block Laurent
operator [12]) given by

T {A(t)} =

⎡⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... · ·

·
· · · A0 A−1 A−2 · · ·
· · · A1 A0 A−1 · · ·
· · · A2 A1 A0 · · ·

· ·
· ...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ =: A,

where A(t) is called the defining function of A by the terminology of [12].

2.1. Floquet theorem and its interpretations. Consider the FDLCP system
given by

ẋ = A(t)x + B(t)u,(1)

where A(t) and B(t) are h-periodically time-varying n × n and n × m matrices, re-
spectively. By the Floquet theorem [10], [16], [23], [24], if the entries of A(t) are
piecewise continuous in t, the state transition matrix Φ(t, 0) of (1) can be expressed
in a Floquet factorization Φ(t, 0) = P (t, 0)eQt, where P (t, 0) is absolutely continuous
in t and nonsingular and h-periodic in t, and Q is constant but probably complex.
Conventionally, Φ(h, 0) is called the monodromy of (1), whose eigenvalues are called
characteristic multipliers, while the eigenvalues of Q are called characteristic expo-
nents.

Define the fundamental strip Cf on the complex place C as follows:

Cf := {z ∈ C : −ωh/2 < Im(z) ≤ ωh/2}, ωh = 2π/h.

In a Floquet factorization Φ(t, 0) = P (t, 0)eQt, if all characteristic exponents belong
to Cf , then P (t, 0)eQt is called a Floquet simplex. Lemma 2.1 claims that Floquet
simplices exist in general FDLCP systems. A proof for Lemma 2.1 is given in Ap-
pendix A. Floquet simplices play a key role in establishing the main results of this
paper.

Lemma 2.1. In the FDLCP system (1), let the entries of A(t) be piecewise
continuous in t.

(a) The state transition matrix Φ(t, 0) of (1) can always be expressed in a Floquet
simplex; that is, Φ(t, 0) = P (t, 0)eQt with λ(Q) ⊂ Cf ;

(b) Suppose that Φ(t, 0) possesses a Floquet factorization P̃ (t, 0)eQ̃t satisfying

P̃ (t, 0) =
∑

|k|≤Np

P̃ke
jkωht, λ(Q̃) ⊂

⋃
|k|≤Nq

{Cf + jkωh}(2)
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for some integers Np ≥ 0 and Nq ≥ 0; that is, the Fourier series of P̃ (t, 0) con-

tains finitely many harmonic waves, and the eigenvalues of Q̃ belong to a horizontally
bounded strip in the complex plane formed along Cf . Then, there exists a Floquet
simplex Φ(t, 0) = P (t, 0)eQt such that

P (t, 0) =
∑

|k|≤Np+Nq

Pke
jkωht, λ(Q) ⊂ Cf .(3)

Here P̃k and Pk denote the Fourier coefficients of P̃ (t, 0) and P (t, 0), respectively. In
the above, λ(·) is the set of all the eigenvalues of a matrix (·).

By the first assertion of Lemma 2.1, an interesting point about a Floquet simplex
Φ(t, 0) = P (t, 0)eQt is that for any two eigenvalues of Q, Im(λi(Q))−Im(λk(Q)) �= rωh

for i �= k, where r is a nonzero integer. This is a key result for establishing the
harmonic framework for controllability. The second assertion of Lemma 2.1 plays a
role in deriving a numerically implementable controllability criterion from infinite-
dimensional harmonic controllability criteria.

Now we recall the harmonic Floquet similarity transformation formula [41], [42],
which has an important role in defining exponential operators of the unbounded har-
monic state operators [43] in Proposition 2.3 and establishing controllability criteria
in Theorems 3.2 and 3.3. In what follows, we write B := T {B(t)}, P := T {P (t, 0)},
B̂ := T {P−1(t, 0)B(t)}, Q := T {Q}, and

E(j0) := diag[· · · ,−j2ωhI,−jωhI, 0, jωhI, j2ωhI, · · ·],

where 0-block is at the center of the infinite-dimensional matrix E(j0), which is un-
bounded on l2. As an appropriate domain for E(j0), we define the set lE := {x ∈ l2 :
E(j0)x ∈ l2}. It is shown [41] that lE is a proper subset of l2 and dense in l2.

Lemma 2.2. In the FDLCP system (1), let A(t) ∈ LPCD[0, h] and Φ(t, 0) =
P (t, 0)eQt be a Floquet factorization. Then, P is invertible both on lE and l2, and the
inverse of P on lE is that of P on l2 restricted to lE. Also, lE is P -, P−1-, PH-,
and P−H-invariant. The unbounded operators P (E(j0) −Q)P−1 and E(j0) − A are
densely defined on l2 and coincide on lE with each other:

P (Q− E(j0))P−1 = A− E(j0).

Moreover, if B(t) ∈ LCAC[0, h], then B̂(t) = P−1(t, 0)B(t) ∈ LCAC[0, h] and B̂ =
P−1B.

Furthermore, let Λ(·) denote the collection of all eigenvalues of an operator (·).
Then

Λ(A− E(j0)) = Λ(Q− E(j0)) = {λ(Q) + jμωh : μ ∈ Z} =: Λ,

and for each eigenvalue λ ∈ Λ there exists an associated eigenvector of A−E(j0) (or
Q− E(j0)) that belongs to the space lE.

2.2. Exponential operators defined on A−E(j0) and Q −E(j0). For the
subsequent arguments, we introduce the following two infinite-dimensional exponen-
tial operators about the unbounded operators A− E(j0) and Q− E(j0):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e(A− E(j0), t) :=

∞∑
k=0

1

k!
(A− E(j0))ktk,

e(Q− E(j0), t) :=

∞∑
k=0

1

k!
(Q− E(j0))ktk.

(4)
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Since A−E(j0) and Q−E(j0) are unbounded on the Hilbert space l2 and their infinite
powers are involved in the definition, the domains of A−E(j0) and Q−E(j0) must
be restricted appropriately in lE to guarantee that e(A−E(j0), t) and e(Q−E(j0), t)
are well defined.

To this end, we denote the eigenspace of an eigenvalue λi ∈ Λ of A− E(j0) and
Q − E(j0), respectively, by N (λiI + E(j0) − A) and N (λiI + E(j0) − Q), where

I = T {I}. It is not hard to show that for any nonnegative integer k, (A − E(j0))k

and (Q−E(j0))k can be restricted to N (λiI +E(j0)−A) and N (λiI +E(j0)−Q),
respectively. Simple algebra yields that e(A − E(j0), t) : N (λiI + E(j0) − A) →
N (λiI +E(j0)−A) and e(Q−E(j0), t) : N (λiI +E(j0)−Q) → N (λiI +E(j0)−Q)
are bounded for each fixed λi ∈ Λ and t ∈ [0,∞). Based on Lemma 2.2 one can
readily assert the results in Proposition 2.3.

Proposition 2.3. In the FDLCP system (1), let A(t) ∈ LPCD[0, h] and Φ(t, 0) =
P (t, 0)eQt be a Floquet factorization. Then, N (λiI + E(j0) − A) ⊂ lE and N (λiI +
E(j0)−Q) ⊂ lE satisfying N (λiI+E(j0)−A) = P N (λiI+E(j0)−Q). Furthermore,

for each fixed λi ∈ Λ, it holds on N (λiI +E(j0)−A) that e(A−E(j0), t) = P e(Q−
E(j0), t)P−1.

2.3. Controllability and the Gramian criterion. As argued in the introduc-
tion, there are many ways to define controllability in general dynamic systems. Here
we recall only the controllability definition given by Kalman [20], which has been
refined over the years in the FDLCP setting.

Definition 2.4. Let J be a time interval. We call a state x(t0) of a dynamic
system considered at time t0 ∈ J controllable if there exist some time t1 > t0 and an
integrable input u(·) defined on (t0, t1) which transfers the state x(t0) to x(t1) = 0.

If for a fixed time t0 ∈ J every state x(t0) is controllable in the above sense, we
say that the system is completely controllable at t0 ∈ J .

If for every t0 ∈ J the system is completely controllable, we say that the system
is completely controllable over J . If J = [0,∞), we say simply that the system is
completely controllable.

If the system (1) is completely controllable, we also say that the pair (A(·), B(·))
is completely controllable. Based on the Gramian criterion, it can be proved that
controllability of the FDLCP system (1) over [0,∞) can be reduced to that of the same
system over [0, kh), where k is a positive integer defined in Lemma 2.5. Regarding this
controllability interval reduction a short but extensive survey can be found in [26].
The results [2], [7], [15] directly related to our later discussions are summarized in
Proposition 2.6, which is proved in Appendix B. To claim these results in the current
fashion may facilitate the reader’s understanding about the subsequent arguments.
This is especially true for Lemma 2.5 and Proposition 2.7.

To facilitate our statements in Propositions 2.6 and 2.7, we define

Wc[t0, t1] :=

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ.(5)

Clearly, Wc[t0, t1] is at least positive semidefinite. If Wc[t0, t1] is positive semidefinite,
we simply write Wc[t0, t1] ≥ 0 or, equivalently, Wc[t0, t1] is singular or not of full rank.
If Wc[t0, t1] is strictly positive definite, we simply write Wc[t0, t1] > 0 or, equivalently,
Wc[t0, t1] is nonsingular or of full rank. The Gramian criterion states that the state
x(t0) is completely controllable at t0 if and only if there exists some t1 > t0 such that
Wc[t0, t1] > 0. The following lemma, whose proof is given in Appendix A, plays a key
role in establishing Propositions 2.6 and 2.7.
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Lemma 2.5. In the FDLCP system (1), assume that the entries of A(t) are piece-
wise continuous with respect to t, B(t) belongs to L∞[0, h], and Φ(t, 0) = P (t, 0)eQt is
a Floquet factorization. If Wc[t0, t0 + kh] ≥ 0 with k ≥ 1 being an integer larger
than or equal to the degree of the minimal polynomial of the monodromy matrix
Φ(h, 0) = eQh, there exists a left eigenvector aH of Q such that for any integer v ≥ 1,
aHWc[t0, t0 + vh]a = 0.

Proposition 2.6. In the FDLCP system (1), assume that the entries of A(t)
are piecewise continuous with respect to t and B(t) belongs to L∞[0, h]. Let Wc[0, kh]
be defined as in (5) with the integer k defined in Lemma 2.5. Then the following three
assertions are equivalent to each other.

(a) The system is completely controllable;

(b) The system is completely controllable over [0, kh);

(c) Wc[0, kh] is positive definite; that is, Wc[0, kh] > 0.

Combining Lemma 2.5 and Proposition 2.6, the following result follows readily.
Proposition 2.7 is important in deriving a controllability criterion based on Floquet
factorizations.

Proposition 2.7. In the FDLCP system (1), assume that the entries of A(t)
are piecewise continuous in t, B(t) belongs to L∞[0, h], and Φ(t, 0) = P (t, 0)eQt is a
Floquet factorization. Then the system (1) is not completely controllable if and only
if there exists a left eigenvector aH of Q such that aHWc[0, h]a = 0. Here, Wc[0, h]
is given in (5) as appropriate.

3. Harmonic framework for controllability in FDLCP systems. Now we
establish controllability criteria through harmonic analysis on the system matrices of
FDLCP systems. These results can be viewed as counterparts to the controllability
criteria we frequently employ in LTI continuous-time systems. In view of this similar-
ity, the results can be useful in clarifying structural characteristics of FDLCP systems,
which have not been well examined by means of the conventional time-domain ap-
proaches [27].

3.1. Controllability criteria via Floquet factorizations. Now we state a
controllability criterion by use of Floquet factorizations of FDLCP systems.

Theorem 3.1. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and
B(t) ∈ LCAC[0, h]. Also assume that Φ(t, 0) = P (t, 0)eQt is a Floquet factorization.
Then the system (1) is completely controllable if and only if for any s ∈ C

aH [ sI −Q · · · , B̂−2, B̂−1, B̂0, B̂1, B̂2, · · · ] �= 0 ∀a �= 0 ∈ Cn,(6)

where n is the dimension of the state matrix A(t) and {B̂μ}∞μ=−∞ is the Fourier

coefficient sequence of the matrix B̂(t)(= P−1(t, 0)B(t)).

Proof. The assumptions on A(t) and B(t) guarantee by Lemma 2.2 that B̂(t) ∈
LCAC[0, h]. This in particular means that the Fourier series

∑
μ B̂μe

jμωht of B̂(t)

uniformly converges to B̂(t) so that it is meaningful to replace B̂(t) with its Fourier
series in the following.

(Necessity) Assume that the system (1) is completely controllable but the con-
dition (6) fails. That is, for some s0 ∈ C, there exists a vector a �= 0 ∈ Cn such
that

aH [ s0I −Q · · · , B̂−2, B̂−1, B̂0, B̂1, B̂2, · · · ] = 0.



636 JUN ZHOU

It is easy to see that s0 is an eigenvalue of Q with aH being a corresponding left
eigenvector. Taking into account that aHB̂μ = 0 for all μ, we observe the deductions

aHe−QtB̂(t) = aHe−s0tB̂(t) =

{∑
μ

aHB̂μe
jμωht

}
e−s0t = 0 ∀t ≥ 0,

which lead to aHWc[0, kh]a = 0 by the definition (5) with k given in Lemma 2.5.
Then Proposition 2.6 implies that the system is not completely controllable. This
yields a contradiction.

(Sufficiency) Assume that the condition (6) is true but the system is not com-
pletely controllable. Proposition 2.7 tells us that there exist an eigenvalue s0 of
Q and a left eigenvector aH �= 0 such that aHWc[0, h]a = 0. This implies that

aHe−QtB̂(t) = aHe−s0tB̂(t) = 0 for all t ∈ [0, h), or aHB̂(t) = 0 for all t ∈ [0, h).
Again, replacing B̂(t) in the previous equation with its Fourier series

∑
μ B̂μe

jμωht,

it is trivial to derive that aHB̂μ = 0 for all μ. This, together with the fact that aH is
a left eigenvector of Q, implies that (6) fails at s0.

Unfortunately, however, there is still an obstacle in implementing Theorem 3.1.
That is, one must know the Floquet factorization of the state transition matrix of
the FDLCP system. How to determine Floquet factorizations in closed form for gen-
eral FDLCP systems is still an open problem, although there are numerous numeric
procedures [26] for the derivation of the Floquet factorizations; for instance, directly
via piecewise constant approximation [10] or indirectly but approximately analytic
via Chebyshev polynomial expansion [35]. Therefore, a natural question is: can we
develop any controllability criteria without the state transition matrices of FDLCP
systems? This question is answered in the next section.

3.2. Controllability criteria via Fourier analysis. Based on Theorem 3.1,
let us consider how to express the condition (6) without involving the state transition
matrix of the FDLCP system considered.

Theorem 3.2. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and
B(t) ∈ LCAC[0, h]. Then the system (1) is completely controllable if and only if for
each s ∈ Cf

aH [ sI + E(j0) −A B ] �= 0 ∀a �= 0 ∈ lE ,(7)

where A = T {A(t)} and B = T {B(t)}, respectively. Also, I = T {I}.
Proof. Assume in the proof discussion that a Floquet simplex for the state tran-

sition matrix Φ(t, 0) of the system (1) is meant whenever Floquet factorizations of
Φ(t, 0) are mentioned. This will cause no loss of generality by Lemma 2.1 in the
following arguments.

(Necessity) Assume that the system (1) is completely controllable but the con-
dition (7) fails. Thus, there exist some s0 ∈ Cf and a nonzero vector a ∈ lE such
that aH [ s0I + E(j0) −A B ] = 0. By the harmonic Floquet similarity formulas of
Lemma 2.2, the equation can be rewritten as

aHP [ s0I + E(j0) −Q P−1B ]

[
P−1 0

0 I

]
= 0.

Since the last operator matrix in the above equation is invertible on l2 ⊕ l2, we obtain
simply

aHP [ s0I + E(j0) −Q B̂ ] = 0.(8)
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Now, for our purpose, define 0 �= aHP =: [· · · , aH−1, a
H
0 , aH1 , · · ·] with ak ∈ Cn.

Apparently, there is at least one (vector) entry ak �= 0 since a �= 0 and P is invertible
on lE by Lemma 2.2. Note that s0I + E(j0) −Q is block-diagonal. Then from (8) it
follows that

aHk [(s0 + jkωh)I −Q] = 0 ∀k ∈ Z.(9)

Revoking the Floquet simplex assumption that all eigenvalues of Q are located in
Cf and the comment just after Lemma 2.1, we can conclude that for any integer
k �= 0, the matrix (s0 + jkωh)I − Q must be invertible at any s0 ∈ Cf . This, to-
gether with (9), gives that ak = 0 for any k �= 0. Note again that not all ak are
zeros. Then the above observation means that a0 �= 0 but ak = 0 for any k �= 0.
Using this fact back to (8), we obtain immediately after simple multiplications that
aH0 [ s0I −Q · · · , B̂−1, B̂0, B̂1, · · · ] = 0, a0 �= 0, which says from Theorem 3.1 that
the system (1) is not completely controllable. However, this is contradictory to the
assumption that the system is completely controllable.

(Sufficiency) Assume that the condition (7) holds but the system (1) is not com-
pletely controllable. By Theorem 3.1, there exist a scalar s0 ∈ C and a nonzero vector
α0 ∈ Cn satisfying

αH
0 [ s0I −Q · · · , B̂−2, B̂−1, B̂0, B̂1, B̂2, · · · ] = 0.

However, by the Floquet simplex assumption this cannot be true unless s0 ∈ Cf .
Hence, there is no need to consider any s0 that is located beyond the fundamental
strip Cf .

Now we define the infinite-dimensional vector αH := [· · · , 0H , αH
0 , 0H , · · ·]. Clearly,

α is nonzero and α ∈ lE . Based on the matrix expressions of sI+E(j0)−Q and B̂, it is

straightforward to see that αH [ s0I + E(j0) −Q B̂ ] = 0, which can be written by

the harmonic Floquet similarity formulas of Lemma 2.2 as aH [s0I+E(j0)−A |B] = 0
with a := P−Hα. By Lemma 2.2, lE is P−H -invariant so that a �= 0 belongs to lE .
However, this means that the condition (7) does not hold at s0 ∈ Cf with a thus
defined. This is contradictory to the assumption on (7).

Theorem 3.3. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and
B(t) ∈ LCAC[0, h]. Then the system (1) is completely controllable if and only if for
each λi ∈ Λ and any eigenvector a ∈ N (λiI + E(j0) − A) ⊂ lE, one of the following
two conditions is satisfied.

(a) aHe(A− E(j0), t)B �= 0 for all t ∈ [0,∞);
(b) aH [B, (A− E(j0))B, (A− E(j0))2B, · · · ] �= 0.
Proof. The proof can be given by repeating arguments similar in form to those

in LTI continuous-time systems, based on Theorem 3.2. Here only a sketched proof
for (a) is provided.

(Necessity) Assume that the system is completely controllable but the condition
(a) fails. That is, there exist λi ∈ Λ and an associated eigenvector a ∈ N (λiI +
E(j0) − A) such that aHe(A − E(j0), t)B = 0 for all t ∈ [0,∞). This, in particular,
says that aHB = 0 if we note that e(A − E(j0), 0) = I. These facts yield that
aH [λiI+E(j0)−A |B] = 0, which means that the system is not completely controllable
by Theorem 3.2. This brings us a contradiction.

(Sufficiency) Assume that the condition (a) is satisfied but the system is not
completely controllable. Theorem 3.2 says that λi ∈ Λ and an associated eigenvector
a ∈ N (λiI +E(j0)−A) such that aH [λiI +E(j0)−A |B] = 0, from which it follows
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that aH(A−E(j0))iB = 0 for all i = 0, 1, 2, . . . . By the definition of e(A + E(j0), t),
it follows immediately that aHe(A− E(j0), t)B = 0 for all t ∈ [0,∞). We are led to
a contradiction.

Combining Theorem 3.3 with Proposition 2.3, it is obvious that under the as-
sumptions of Theorem 3.3, the system (1) is completely controllable if and only if
for each λi ∈ Λ and any eigenvector a ∈ N (λiI + E(j0) − Q) ⊂ lE , one of the fol-

lowing two conditions is satisfied: (a) aHe(Q − E(j0), t)B̂ �= 0 for all t ∈ [0,∞); (b)

aH [B̂, (Q− E(j0))B̂, (Q− E(j0))2B̂, · · · ] �= 0.
Remark 1. Theorems 3.2 and 3.3 can be viewed as operator-valued counterparts in

the FDLCP setting to the controllability criteria in the LTI continuous-time systems;
for instance, Theorem 3.2 is the harmonic version of the famous PBH criterion. In
this sense we say that FDLCP systems are essentially LTI whenever controllability is
considered. Moreover, some intuitive observations indicate readily that installing an
h-periodic state feedback in an FDLCP system does not affect controllability between
the open- and closed-loop systems. Though this conclusion is already well known in
the FDLCP field, it is interesting to notice that such a controllability invariance may
follow more easily by the harmonic framework.

The significance of the controllability conditions suggested in Theorem 3.3 is
mainly theoretical. This is especially true for condition (b). It is worth mentioning
that condition (a) of Theorem 3.3 is useful in tackling what we called the harmonic
Lyapunov equation [42]. To avoid distracting the reader’s attention, we do not pursue
this topic in this paper.

3.3. Corollaries of Theorem 3.2. Similar to what we have encountered in test-
ing the controllability conditions of Theorem 3.1, it is hard to numerically implement
the results of Theorem 3.2 if we mention that sI + E(j0) − A is infinite-dimensional
and unbounded, even though no state transition matrix is involved in the criterion. As
we will see from Corollaries 3.4 and 3.5, the controllability conditions in Theorem 3.2
can reduce to some numerically implementable conditions if A(t), B(t), and/or the
Floquet factorizations of the FDLCP system (1) have specific features.

To simplify our statements, we denote the submatrix of [sI + E(j0) − A |B]
consisting of the central (2N + 1) blockwise rows in [sI + E(j0) − A |B] by [sI +
E(j0) −A |B]N .

3.3.1. An equivalent statement of Theorem 3.2.
Corollary 3.4. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and

B(t) ∈ LCAC[0, h]. Then the system (1) is completely controllable if and only if for
each s ∈ Cf and each N = 0, 1, 2, . . .

aH [ sI + E(j0) −A B ]N �= 0 ∀a �= 0 ∈ C(2N+1)n,

where the integer n is the dimension of the state matrix A(t).
In Corollary 3.4, the controllability criteria claimed on infinite-dimensional op-

erators are converted into a group of infinitely many finite-dimensional conditions.
At first glance, the latter may be equally difficult to test. However, in some cases
due to the skew strip matrix expressions of E(j0) − A and B only finitely many
finite-dimensional conditions need to be tested.

3.3.2. A special case of Theorem 3.2. If Floquet factorizations of the FDLCP
system (1) possesses some specific features, the criteria of Theorem 3.2 may be ex-
pressed in finite-dimensional forms.
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Corollary 3.5. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h]

and B(t) ∈ LCAC[0, h]. Assume that Φ(t, 0) = P̃ (t, 0)eQ̃t is a Floquet factorization
satisfying

P̃ (t, 0) =
∑

|k|≤Np

P̃ke
jkωht, λ(Q̃) ⊂

⋃
|k|≤Nq

{Cf + jkωh}

for some integers Np ≥ 0 and Nq ≥ 0. Then, the FDLCP system (1) is completely
controllable if and only if for each s ∈ C

aH [ sI + E(j0) −A B ]Np+Nq
�= 0 ∀a �= 0 ∈ C(2(Np+Nq)+1)n,(10)

where the integer n is the dimension of the state matrix A(t).
Proof. Since A(t) ∈ LCPD[0, h] ⊂ LCAC[0, h] and B(t) ∈ LCAC[0, h], Theorem 3.2

applies and it follows that the system (1) is completely controllable if and only if for
any s ∈ Cf

aH [ sI + E(j0) −A B ] �= 0 ∀a �= 0 ∈ lE .(11)

Again note that (11) holds over s ∈ Cf if and only if it is true over s ∈ C. The
necessity is obvious. In the following, we turn to show the sufficiency.

First, let us verify that under the assumptions about the Floquet factorization

P̃ (t, 0)eQ̃t, any eigenvector associated with an eigenvalue of E(j0) − A has at most
2(Np + Nq) + 1 consecutive nonzero entries while all other entries are zeros.

To this end, we write Φ(t, 0) = P (t, 0)eQt to be the Floquet simplex derived via
the technique suggested in the proof of Lemma 2.1 so that (3) holds. With this Floquet
simplex, it follows that for each eigenvalue λ of Q−E(j0), any associated eigenvector

must be of the form x = [· · · , xT , · · ·]T ∈ lE , with x �= 0 ∈ Cn. By Lemma 2.2, one
can assert that λ is also an eigenvalue of A − E(j0) with an associated eigenvector
P x ∈ lE . Since P (t, 0) contains at most Np + Nq harmonics, it follows that only
entries in the 2(Np +Nq)+1 skew lines along the main diagonal line of P are possibly
nonzero. This, together with the specific structure of x, leads to the desired assertion.

Second, we mention that (11) fails only if a is an eigenvector of A − E(j0). In
other words, we can examine (11) by testing it over all eigenvectors of A− E(j0).

Finally, taking into account the structure features of eigenvectors of A − E(j0)
under the assumptions about the Floquet factorization, we see that for each eigenvec-
tor of A − E(j0), only the 2(Np + Nq) + 1 consecutive blockwise rows in A − E(j0)
corresponding to the 2(Np + Nq) + 1 consecutive nonzero entries in the eigenvector
are significant with regard to linear independence of vectors. Based on the above
arguments, if (10) is satisfied, then we can conclude that for each eigenvector of the
operator A− E(j0), (11) is true.

It can be understood from the proof of Corollary 3.5 that the exact formula for
Floquet factorizations involved in Corollary 3.5 is not necessary, except for the integers
Np and Nq. Indeed, Nq always exists. Therefore, if P̃ (t, 0) contains only finitely many
harmonics, it is always possible to fix an integer N satisfying N ≥ Np + Nq. If for
each s ∈ C, aH [sI +E(j0)−A |B]N �= 0 for all a �= 0 ∈ C(2N+1)n, then (10) holds. In
this sense, we must point out that the Floquet factorization assumption is not a big
obstacle in implementing the controllability criterion of Corollary 3.5.

3.3.3. Noncontrollability criterion derived from Theorem 3.2. Corollar-
ies 3.4 and 3.5 are claimed in the sense of controllability of FDLCP systems. In
contrast, the corollary given below provides sufficient conditions for noncontrollability.
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Corollary 3.6. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and
B(t) ∈ LCAC[0, h]. If for some s ∈ Cf there exists a vector sequence {aμ}∞μ=−∞ with
aμ ∈ Cn and aμ �= 0 for some μ such that

aH
μ [ (s + jμωh)I − A B ] = 0 ∀μ ∈ Z,(12)

then the system (1) is not completely controllable. In the above, I and A are defined
as follows:

I = [· · · , 0, I, 0, · · ·], A = [· · · , A−1, A0, A1, · · ·],

where {Aμ}∞μ=−∞ is the Fourier coefficient sequence of A(t). B is defined similarly
to A but in terms of the Fourier coefficients of B(t).

Proof. By the assumption on {aμ}∞μ=−∞, there exists at least one vector, say aμ,

satisfying aμ �= 0. Let us define an infinite-dimensional vector aH := [· · · ,aH
μ , · · ·]

with aμ being situated at the μth position in a. Obviously, a is nonzero and belongs
to lE . Bearing this in mind, arranging the conditions (12) according to a, it follows
readily that aH [sI − A |B] = 0. This implies by Theorem 3.2 that the system is not
completely controllable.

In less rigorous words, Corollary 3.6 says that some linear dependence among the
Fourier coefficients of A(t) and B(t) of the FDLCP system (1) can be a structural
reason why the system loses controllability, as is already known in LTI cases. Needless
to say, other coefficients’ linear dependence may also result in non-controllability.
The linear dependence among the Fourier coefficients of A(t) and B(t) described in
Corollary 3.6 is just one of the simplest cases. In other words, linear independence
of the n infinite-dimensional row vectors in [sI − A |B] is a necessary condition for
controllability of the FDLCP system (1).

4. Controllability decomposition of FDLCP systems. From the results of
the previous sections, one can see that FDLCP systems are essentially LTI when con-
trollability is concerned. It is well known [11], [21], [39] that an LTI state-space model
can always be decomposed according to controllable/uncontrollable modes through a
state coordinate transform. It is natural to consider whether or not such controlla-
bility decompositions exist in FDLCP systems. Indeed, as a first answer to such a
decomposition question, the canonical structure theorems of [21] ensure that control-
lability canonical decompositions for general dynamic systems are possible and the
state coordinate transform can be determined in a pointwise fashion in time (i.e., for
each fixed instant t of time, the dynamic system concerned is viewed as an LTI one
and thus decomposed accordingly). For FDLCP systems, it is claimed that the state
coordinate transform needed can be continuous in time by Theorem 6 of [21] (without
proof).

However, in many FDLCP systems merely keeping continuity during the state
coordinate transform is not enough to validate harmonic analysis due to conver-
gence issues. There is another decomposition method given in [37] for general linear
continuous-time time-varying systems by means of the so-called Dolez̆al theorem with
a continuous and differentiable state coordinate transform, under the assumption that
the rank of the controllability Gramian is independent of t. This rank assumption is
true in FDLCP systems and brings us with periodic transformed systems by applying
the Dolez̆al theorem to suitable sequences of Gramians as shown by [4]. In general,
the Dolez̆al theorem results in a transformed FDLCP system that has a periodic state
matrix, which may be hard to handle when such a controllability decomposition is
utilized.
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In this section, we show that controllability decompositions for FDLCP systems
are also available via state coordinate transforms that possess fairly strong analytic
properties, which are highly expected in system analysis and synthesis if the harmonic
approach is adopted, while a constant state matrix is attained in the decomposed
FDLCP system. How to exploit these analytic features of the controllability canonical
decompositions for poles/zeros analysis, positive realness of the so-called harmonic
frequency response operators [41] and the harmonic state operators [43], and H2/H∞
performance synthesis in FDLCP systems is left for subsequent papers.

4.1. Decomposition algorithm. First, we write Φ(t, 0) = P (t, 0)eQt to be a
Floquet factorization for the FDLCP system (1), and then we observe that the FDLCP
system given by

Σ : ż = Qz + B̂(t)u(13)

with B̂(t) = P−1(t, 0)B(t) is equivalent to the system (1) in the sense of controllability,
after introducing the Floquet state coordinate transform z = P (t, 0)x to the system
(1).

Second, we form the following approximate FDLCP model for the system (13) by
piecewise constant treatment upon all the entries of B̂(t). That is, we have

Σκ : ζ̇ = Qζ + B̂(κ, t)u(14)

with

B̂(κ, t) := B̂(tk−1) ∀t ∈ [tk−1, tk), k = 1, 2, . . . , κ,

with 0 = t0 < t1 < t2 < · · · < tκ = h. That is, the union of all the subintervals
[t0, t1), [t1, t2), · · · , [tκ−1, tκ) forms [0, h). Obviously, if B̂(t) is continuous in t, the
piecewise constant treatment on B̂(t) is well defined for any subinterval sequences
since the set of piecewise constant functions is dense in the set of piecewise continuous
functions in the norm sense of supt∈[0,h) || · ||. For simplicity, the subintervals sequence
{[t0, t1), [t1, t2), · · · , [tκ−1, tκ)} is called a segmentation of [0, h) and denoted by S(κ).
With a bit of abuse of notation we use κ → ∞ to mean maxk=1,2,...,κ |tk−1 − tk| → 0

in the following. Hence, we obtain by the definition of B̂(κ, t) that limκ→∞ B̂(κ, t) =
B̂(t).

Third, let us define the following matrix:

B̂κ = [ e−Qt0B̂(t0), e
−Qt1B̂(t1), · · · , e−Qtκ−1B̂(tκ−1) ].

Now let γ(κ) := rank[B̂κ, QB̂κ, · · · , Qn−1B̂κ] and choose γ(κ) column vectors that
are linearly independent from [B̂κ, QB̂κ, · · · , Qn−1B̂κ]. Based on these γ(κ) col-

umn vectors, one can always construct γ(κ) orthonormal vectors ε
(1)
κ , ε

(2)
κ , · · · , ε(γ(κ))

κ

by Lemma 1 of [8, p. 25]. Then add other n − γ(κ) more orthonormal vectors

ε
(γ(κ)+1)
κ , · · · , ε(n)

κ such that ε
(1)
κ , ε

(2)
κ , · · · , ε(n)

κ form an orthonormal base for the Eu-
clidean space Cn. For our purpose, let us write

Tκ := [ε(1)κ , · · · , ε(γ(κ))
κ | ε(γ(κ)+1)

κ , · · · , ε(n)
κ ] =: [T1κ|T2κ].(15)

It should be pointed out that TH
κ = T−1

κ by the definition of Tκ.
Finally, noncontrollability of the system (1) is connected to that of its approximate

models defined in (14). This noncontrollability connection is significant in determining
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a controllability canonical decomposition which we will deal with in the next section.
A detailed proof of the results in Proposition 4.1 is given in Appendix B.

Proposition 4.1. In the FDLCP system (1), assume that the entries of A(t)
are piecewise continuous in t, while the entries of B(t) are continuous in t. Then the
approximate FDLCP system (14) is well defined for any segmentation S(κ). Moreover,
the system (1) is not completely controllable if and only if for any S(κ) the approximate
system (14) is not completely controllable.

4.2. Controllability canonical decomposition theorem. Based on the al-
gorithm for constructing Tκ and the Floquet factorization of the state transition ma-
trix, we can claim the following controllability canonical decomposition theorem for
the FDLCP system (1), whose proof is a bit lengthy and thus found in Appendix C.

Theorem 4.2. In the FDLCP system (1), suppose that the entries of A(t) are
piecewise continuous in t, while the entries of B(t) are continuous in t. Assume that
the pair (A(·), B(·)) is not completely controllable. If the segmentation S(κ) on [0, h) is
fine enough in the sense of κ → ∞, then the state coordinate transform x̃ = TκP (t, 0)x
transforms the FDLCP system (1) into a controllability canonical form given by

˙̃x =

[
Qc Q12

0 Qc̄

]
x̃ +

[
Bc(t)

0

]
u,(16)

where Qc, Q12, and Qc̄ are constant matrices of appropriate dimensions, while Bc(t)
is h-periodic and continuous in t and the pair (Qc, Bc(·)) is completely controllable.
Moreover, Tκ defined in (15) can be chosen independently of the segmentation S(κ)
as long as κ is large enough. Hence, Qc, Q12, Qc̄, and Bc(t) are also independent of
the segmentation S(κ).

When the assumptions on A(t) and B(t) are strengthened mildly, some excellent
analytic properties about P (t, 0), P−1(t, 0), and B̂(t) follow from the results in [41].
This, together with the fact that Tκ is a constant matrix, implies the assertions of
Corollary 4.3.

Corollary 4.3. In the FDLCP system (1), suppose that A(t) ∈ LPCD[0, h] and
B(t) ∈ LCAC[0, h], and that the pair (A(·), B(·)) is not completely controllable. If the
segmentation S(κ) on [0, h) is fine enough, i.e., κ → ∞, then the state coordinate
transform x = TκP (t, 0)x̃ transforms the FDLCP system (1) into a controllability
canonical form given by (16). Moreover, it holds that

(a) Bc(t) ∈ LCAC[0, h];

(b) TκP (t, 0) is absolutely continuous with respect to t and invertible uniformly
over t ∈ [0, h);

(c) The first-order derivatives of TκP (t, 0) and P−1(t, 0)T−1
κ are piecewise con-

tinuous in t.

5. Controllability of numeric examples. To illustrate the main results ob-
tained in the paper, we investigate controllability of the following 5-periodic differen-
tial state-space equation [10] as the first example, in which different constant input
matrices B(t) (i.e., b1, b2, b3, and b4 are constants) are considered in two cases:⎡⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 − 13π

30
2π
5 cos2( 2πt

5 ) π
5 sin( 4πt

5 )
13π
30 0 −π

5 sin( 4πt
5 ) 2π

5 cos2( 2πt
5 )

0 0 0 − 13π
30

0 0 13π
30 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ +

⎡⎢⎢⎣
b1
b2
b3
b4

⎤⎥⎥⎦u.
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For the state matrix A(t) we have the following Floquet factorization:

P (t, 0) =

⎡⎢⎢⎢⎣
cos( 2πt

5 ) − sin( 2πt
5 ) sin( 2πt

5 ) 0

sin( 2πt
5 ) cos( 2πt

5 ) 0 sin( 2πt
5 )

0 0 cos( 2πt
5 ) − sin( 2πt

5 )

0 0 sin( 2πt
5 ) cos( 2πt

5 )

⎤⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎣
0 − π

30 0 0
π
30 0 0 0
0 0 0 − 13π

30
0 0 13π

30 0

⎤⎥⎥⎦ .

Case A. Let us investigate controllability when B(t) = [0, 0, 0, 1]T . By means of
the sufficient rank criterion suggested in [33], the so-called controllability matrix is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −π
5 sin( 4πt

5 )

(
− 26π2

75 cos2( 2πt
5 )

− 4π2

25 cos( 4πt
5 )

)
2019π3

4500 sin( 4πt
5 )

0 − 2π
5 cos2( 2πt

5 ) π2

3 sin( 4πt
5 )

(
338π2

1500 cos2( 2πt
5 )

+ 252π3

750 cos( 4πt
5 )

)
0 13π

30 0 − 2197π3

27000

1 0 − 169π2

900 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

whose rank is 4 for t = 1.25, for instance, after tedious computations. Then one can
assert by Theorem 3 of [33] that the given FDLCP system is completely controllable.

Since the Floquet factorization is available, we can also test controllability for
Case A through Theorem 3.1. Note that B̂(t) = P−1(t, 0)B(t) possesses only nonzero
harmonic waves within the third order. Then, dropping all zero harmonic blocks we
obtain

[sI −Q|B̂−3, B̂−2, B̂−1, B̂0, B̂1, B̂2, B̂3]

=

⎡⎢⎢⎢⎣
s π

30 0 0 1
4 0 − 1

4 0 − 1
4 0 1

4

− π
30 s 0 0 − j

4 0 j
4 0 − j

4 0 j
4

0 0 s 13π
30 0 0 j

2 0 − j
2 0 0

0 0 − 13π
30 s 0 0 1

2 0 − 1
2 0 0

⎤⎥⎥⎥⎦ ,

which has rank 4 for all s ∈ C. Hence, Theorem 3.1 says also that the FDLCP system
considered is completely controllable. It should be pointed out that the criterion in [33]
is merely sufficient but the controllability conditions in Theorem 3.1 are necessary and
sufficient.

Case B. Let us investigate controllability when B(t) = [0, 1, 0, 0]T . By means of
the rank criterion of [33], the corresponding controllability matrix is⎡⎢⎢⎣

0 13π
30 0 −( 13π

30 )3

1 0 −( 13π
30 )2 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎦ ,
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whose rank is 2 < 4. Then Theorem 3 of [33] cannot tell us whether the given
FDLCP system is completely controllable. Fortunately, however, we test controllabil-
ity through Theorem 3.1. The corresponding controllability matrix is

[sI −Q|B̂−1, B̂0, B̂1] =

⎡⎢⎢⎢⎣
s π

30 0 0 j
2 0 − j

2

− π
30 s 0 0 1

2 0 1
2

0 0 s 13π
30 0 0 0

0 0 − 13π
30 s 0 0 0

⎤⎥⎥⎥⎦ .

It follows readily that rank[sI − Q|B̂−1, B̂0, B̂1] < 4 for s = ± 13π
30 j. This implies by

Theorem 3.1 that the system is not completely controllable.
We can also draw the noncontrollability conclusion by Corollary 3.6 for Case B,

which does not depend on the Floquet factorization. We notice that the Fourier
coefficients of the state matrix A(t) possess only harmonic waves up to the second
order and the input matrix B(t) is constant. Then, we can construct the matrix
[(s + jμωh)I − A|B] as defined in Corollary 3.6 as follows, where all zero harmonic
blocks are dropped for brevity:⎡⎢⎢⎣

0 0 − π
10

−πj
10

s + jμωh
13π
30

−π
5

0 0 −πj
10

− π
10

− 13π
30

s + jμωh 0
0 0 0 0 0 0 s + jμωh

0 0 0 0 0 0 13π
30

0 0 0 − π
10

πj
10

b1
−π

5
0 0 πj

10
− π

10
b2

13π
30

0 0 0 0 b3
s + jμωh 0 0 0 0 b4

⎤⎥⎥⎦ ,

from which it is straightforward to see that rank [(s + jμωh)I − A|B] < 4 for some
s ∈ C and μ ∈ Z whenever b3 = b4 = 0. Hence, it is possible to construct a number
sequence such that Corollary 3.6 is satisfied. In other words, in this case the system
is not completely controllable.

We stress that regarding the two cases of the first numeric example, one can apply
the necessary and sufficient controllability conditions in Corollary 3.5, in which only
the Fourier coefficient matrices of A(t) and B(t) are involved. However, since the
state matrix A(t), which is 4 × 4 in dimension, possesses harmonic waves up to the
second order and thus the conditions of Corollary 3.5 must be examined by working
on some matrices of big size, it seems inappropriate to give the detailed arguments in
this paper due to the limited space.

To show how to apply the results of Corollary 3.4, we consider controllability of
the π-periodic lossy Mathieu differential equation [29], [38] given by

ÿ(t) + 2ζẏ(t) + (1 − 2β cos(2t))y(t) = u(t),

where ζ is the damping ratio. The lossy Mathieu differential equation can be equiva-
lently expressed by the following FDLCP state-space modeling:

A(t) =

[
0 1

−1 + 2β cos(2t) −2ζ

]
, B(t) =

[
0
1

]
.

We notice that the Fourier coefficients of the state matrix A(t) do not possess any
harmonic waves higher than the first order and that the input matrix B(t) is constant.
Then, we can construct [sI+E(j0)−A]N=0 as follows, where all zero harmonic blocks
are dropped: [

0 0 s −1 0 0 0
−β 0 1 s− 2ζ −β 0 1

]
.
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Forming a 2 × 2 matrix by the 4th and 7th columns in [sI + E(j0) − A]N=0, we can
see that its determinant is −1 no matter how the variables s, β, and ζ are taken. It
follows that rank[sI + E(j0) −A]N=0 = 2 for all s ∈ C.

Similarly, we have [sI + E(j0) −A]N=1 given by⎡⎢⎢⎢⎢⎢⎢⎣

0 0 s + jωh −1 0 0
−β 0 1 s + jωh − 2ζ −β 0
0 0 0 0 s −1
0 0 −β 0 1 s− 2ζ
0 0 0 0 0 0
0 0 0 0 −β 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
−β 0 0 0 0 1 0

s− jωh −1 0 0 0 0 0
1 s− jωh − 2ζ −β 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦.

Forming a 6 × 6 matrix by the 4th, 6th, 8th, 11th, 12th, and 13th columns in [sI +
E(j0)−A]N=1, we obtain a matrix whose determinant is (−1)k (k > 0 is an integer)
no matter what s, β, and ζ are taken. It follows that rank[sI + E(j0) − A]N=1 = 6
for all s ∈ C.

We can repeat the above arguments for all N = 2, 3, . . . . In particular, it is always
possible to fix a corresponding square matrix whose determinant is 1 or −1. Hence,
one can conclude that the conditions of Corollary 3.4 hold for each N = 0, 1, 2, . . . over
s ∈ C, β, and ζ. It follows that the lossy Mathieu equation is completely controllable.

One can also investigate controllability of the lossy Mathieu equation by means
of the rank criterion suggested in [33], which also leads to the lossy Mathieu equa-
tion being completely controllable. In both numeric examples, the system matrices
A(t) and B(t) contain only finitely many harmonic waves so that the system matri-
ces are analytic. Note 9.4 of [31] indicates that under the analytic assumption the
controllability criterion of [33] can also be necessary.

We must add that the numeric examples are relatively simple, for example, com-
pared with those given in [26]. Performance of the theoretical results in practical and
complicated systems still needs to be evaluated but is left as one of our future works.

6. Conclusion. In this paper, controllability of a large class of FDLCP systems
is considered from a harmonic analysis point of view for the first time, to the best
knowledge of the author. Major contributions of this study include an operator-valued
PBH controllability criterion claimed in the FDLCP setting and its derivations; that
is, Theorems 3.1–3.3. Numeric implementable algorithms for these controllability cri-
teria are also worked out in Corollaries 3.4, 3.5, and 3.6, which are directly applicable
via Floquet factorizations of the FDLCP systems and/or Fourier coefficients of the
systems matrices. Compared with controllability criteria existing in the literature, the
methodology adopted here is highly intuitive and heuristic and keeps some mathemati-
cal convenience of their LTI counterparts in the FDLCP setting. Another achievement
of this study is a novel controllability canonical decomposition algorithm summarized
in Theorem 4.2, which provides us with decomposed FDLCP modeling with a con-
stant state matrix through state coordinate transforms of strong analytic properties;
see Corollary 4.3. The results are significant since the paper has succeeded in estab-
lishing a harmonic framework in the FDLCP field to exploit the well-developed LTI
analysis and synthesis tools relevant to controllability/observability characteristics.

Needless to say, one can simply assert similar results about observability of
FDLCP systems through the duality principle [19, pp. 79–103]. However, to avoid
any redundancy in the paper, the author paid no attention to observability directly
or indirectly. We hope this treatment is allowable for the sake of simplicity.
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Appendix A. Proof of lemmas.
Proof of Lemma 2.1. The existence assertion of Floquet simplices can follow from

the main branch formula and relevant properties about matrix logarithm theory [40,
pp. 55–58]. Here we provide an alternative proof for (a) that is constructive and given
by modifying the proof of Theorem 8.1.3 of [23]. This alternative proof also paves a
way for showing assertion (b).

To see assertion (a), let Ξ(·) be a fundamental matrix of A(·). That is, Ξ̇(t) =
A(t)Ξ(t), a.e. t ≥ 0. By the properties of the fundamental matrix, det(Ξ(t)) �= 0
for all t ≥ 0. Now let Θ(t) = Ξ(t + h). Then Θ̇(t) = A(t + h)Ξ(t + h) = A(t)Θ(t),
a.e. for t ≥ 0, which means that Θ(·) is also a fundamental matrix of A(·). Also
note that det(Θ(t)) �= 0 for all t. These facts imply by Theorem 6.7.2 of [23] that
Ξ(t + h) = Ξ(t)M for all t ≥ 0 with some nonsingular matrix M . This implies

by Lemma 8.1.1 of [23] that there exists a complex matrix Q̃ such that M = eQ̃h.
Then the arguments in the later part of the proof of Theorem 8.1.3 of [23] say that

P̃ (t, 0)eQ̃t, with P̃ (t, 0) =: Ξ(t)e−Q̃t being h-periodic, is a Floquet factorization for
Φ(t, 0).

Next, we express Q̃ through its Jordan canonical form Q̃ = SJ̃S−1 with S being
a nonsingular matrix, and J̃ = diag[J̃1, J̃2, · · · , J̃α], where J̃i (i = 1, 2, . . . , α) is an
ni ×ni Jordan block defined in the obvious fashion corresponding to an eigenvalue λ̃i

of Q̃. It is straightforward to see that

eQ̃t = SeJ̃tS−1,(17)

where eJ̃t = diag[eJ̃1t, eJ̃2t, · · · , eJ̃αt] and

eJ̃it = eλ̃it

⎡⎢⎢⎢⎢⎣
1 t t

2 · · · tni−1

(ni−1)!

0 1 t · · · tni−2

(ni−2)!

...
...

...
. . .

...
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎦ .(18)

Write λ̃i = λi + jkiωh, ki ∈ Z, i = 1, 2, . . . , α, with λi ∈ Cf , which are always

possible. In particular, (18) means that eJ̃ih = eJih for each i, where Ji is a Jordan

block in terms of λi. From (17), we have that eQ̃h = SeJhS−1 = eSJS−1h = eQh,
in which Q := SJS−1 and J := diag[J1, J2, · · · , Jα]. Clearly, Q has eigenvalues λ1,
λ2, · · · , λα located in Cf .

Now, let us repeat the arguments in the later part of the proof of Theorem 8.1.3
of [23] but in terms of M = eQh. Then we can draw the conclusion that there exists an
h-periodic matrix P (t, 0) =: Ξ(t)e−Qt such that P (t, 0)eQt is a Floquet factorization
of Φ(t, 0) with λ(Q) ⊂ Cf ; in other words, Φ(t, 0) = P (t, 0)eQt is a Floquet simplex.

To see assertion (b) under the assumption of (2), let us observe that

P (t, 0) = Ξ(t)e−Qt = Ξ(t)e−Q̃teQ̃te−Qt = P̃ (t, 0)eQ̃te−Qt.(19)

On the other hand, (17) yields that

eQ̃t = SeJ̃tS−1 = S diag[eJ̃1t, eJ̃2t, · · · , eJ̃αt]S−1

= S diag[ejk1ωhtIn1
, ejk2ωhtIn2

, · · · , ejkαωhtInα
] diag[eJ1t, eJ2t, · · · , eJαt]S−1

= S diag[ejk1ωhtIn1 , e
jk2ωhtIn2 , · · · , ejkαωhtInα ]S−1S diag[eJ1t, eJ2t, · · · , eJαt]S−1

= S diag[ejk1ωhtIn1 , e
jk2ωhtIn2 , · · · , ejkαωhtInα ]S−1S eJtS−1

= S diag[ejk1ωhtIn1 , e
jk2ωhtIn2 , · · · , ejkαωhtInα ]S−1eQt,
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where Ini
denotes the ni × ni identity matrix.

Using the last equation in the above back to (19), we have

P (t, 0) = P̃ (t, 0)S diag[ejk1ωhtIn1 , e
jk2ωhtIn2 , · · · , ejkαωhtInα ]S−1

= P̃ (t, 0)S

α∑
i=1

diag[0, · · · , 0, ejkiωhtIni , 0, · · · , 0]S−1

= P̃ (t, 0)

α∑
i=1

ejkiωht{S diag[0, · · · , 0, Ini , 0, · · · , 0]S−1}

=: P̃ (t, 0)
α∑

i=1

ejkiωhtSi,

where the definition of Si is obvious. Clearly Si is a constant matrix for each i. The
last equation, together with the assumption on P̃ (t, 0), yields that

P (t, 0) =
∑

|k|≤Np

P̃ke
jkωht

α∑
i=1

ejkiωhtSi,

which implies the desired assertion if we denote Nq = max{k1, k2, · · · , kα}.
Proof of Lemma 2.5. Without loss of generality, we prove only the case of t0 = 0.

The proof is accomplished by modifying the arguments in the proof for Lemma 3
of [2]. First, we observe by Lemma 1 of [2] that

Wc[t0, t0 + ih] = Wc[t0, t0 + (i− 1)h] + e−Q(i−1)hWc[t0, t0 + h]e−QT (i−1)h,

where i = 1, 2, . . . , k. Using this, it is straightforward to see that

Wc[t0, t0 + kh] =

k∑
i=1

e−Q(i−1)hWc[t0, t0 + h]e−QT (i−1)h.(20)

Clearly, Wc[t0, t0+kh] ≥ 0 implies that there exists at least one nonzero vector α ∈ Cn

satisfying αHWc[t0, t0 + kh]α = 0. Interpreting this term by term in the right-hand
side of (20), we obtain

0 = αHWc[t0, t0 + kh]α =

k−1∑
i=0

αHe−QihWc[t0, t0 + h]e−QT ihα.

Note that each term in the summation of the above equation is nonnegative. Then

it follows that αHe−QihWc[t0, t0 + h]e−QT ihα = 0 for any i = 1, 2, . . . , k − 1. Also,

Wc[t0, t0 + h] is symmetric and nonnegative, and its square root W
1/2
c [t0, t0 + h]

exists [12]. We obtain that W
1/2
c [t0, t0 +h]e−QT ihα = 0 for any i = 1, 2, . . . , k−1 and

thus

Wc[t0, t0 + h]e−QT ihα = 0 ∀i = 1, 2, . . . , k − 1.(21)

Let a(z) be a polynomial of minimal degree for e−QTh at α; that is, a(e−QTh)α = 0.
It is easy to see by the Cayley–Hamilton theorem about the characteristic equations
of matrices that a(z) always exists and the degree of a(z) is less than or equal to the
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dimension of e−QTh. Factorizing a(z) in the form of a(z) = (z − λ)b(z) with λ being
a root of a(z) = 0 and the degree of b(z) being strictly less than that of a(z), we can
assert that

0 = (e−QTh − λI)b(e−QTh)α := (e−QTh − λI)a,(22)

where a = b(e−QTh)α. Then b(e−QTh)α �= 0 (otherwise b(z) is also a polynomial of

minimal degree for e−QTh at α but of degree strictly less than that of a(z), which is

impossible). The fact of (22) means that λ is actually an eigenvalue of e−QTh and
a �= 0 is an associated eigenvector; or, equivalently, aT �= 0 is a left eigenvector of Q.

Now we show that Wc[t0, t0 + h]a = 0. Note that k is larger than or equal to the
degree of the minimal polynomial and that the degree of b(z) must be strictly less
than k. Based on these facts, it follows by (21) that Wc[t0, t0 +h]a =

∑
i biWc[t0, t0 +

h]e−QT ihα = 0, where bi are the coefficients of b(z). Recalling that e−QTha = λa,
simple manipulations on the right-hand side of (20), in which k is replaced with v,
lead to the desired assertion.

Appendix B. Proofs for propositions.
Proof of Proposition 2.6. The proof is completed in two steps.
Step 1. It is shown that the system (1) is completely controllable at t0 if and only

if Wc[t0, t0 + kh] > 0. The sufficiency is obvious. To see the necessity, assume that
the system (1) is completely controllable at t0; or, equivalently, there is t1 > t0 such
that Wc[t0, t1] > 0.

Case (i) t1 = t0 + kh. The necessity assertion follows readily.
Case (ii) t1 < t0 + kh. Note by segmenting the integral interval [t0, t0 + kh] that

Wc[t0, t0 + kh] = Wc[t0, t1] +

∫ t0+kh

t1

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ > 0

since Wc[t0, t1] > 0 and the integral in the above equation is at least positive semi-
definite.

Case (iii) t1 > t0 + kh. Note that Wc[t0, t1] > 0 always implies Wc[t0, t2] > 0 as
long as t2 ≥ t1. Hence, in this case we lose no generality by assuming that t1 = t0+vh
for some integer v > k. Now we show that Wc[t0, t0+vh] > 0 entails Wc[t0, t0+kh] > 0.
To see this, suppose that Wc[t0, t0 + kh] ≥ 0 under Wc[t0, t0 + vh] > 0. However,
Lemma 2.5 says that if Wc[t0, t0 +kh] ≥ 0, then there exists a left eigenvector aH �= 0
of Q such that aHWc[t0, t0 + vh]a = 0 for any integer v ≥ 1. This is contradictory to
Wc[t0, t0 + vh] > 0.

Step 2. It is shown that the system (1) is completely controllable if and only if
Wc[0, kh] > 0.

(Necessity) Assume that the system (1) is completely controllable. Then, the
system (1) is completely controllable at each t0 ∈ [0,∞). In particular, the system is
completely controllable at t0 = 0. This, together with the results in Step 1, implies
that Wc[0, kh] > 0.

(Sufficiency) Assume that Wc[0, kh] > 0. It is shown that the system (1) is
completely controllable; that is, Wc[t0, t0 + kh] > 0 for any t0 ∈ [0,∞). To this end,
we observe that

Wc[μh, μh + kh] =

∫ μh+kh

μh

Φ(μh, τ)B(τ)BT (τ)ΦT (μh, τ)dτ



HARMONIC FRAMEWORK FOR CONTROLLABILITY 649

=

∫ kh

0

Φ(μh, τ ′ + μh)B(τ ′ + μh)BT (τ ′ + μh)ΦT (μh, τ ′ + μh)dτ ′

=

∫ kh

0

Φ(μh, 0)Φ−1(τ ′ + μh, 0)B(τ ′ + μh)(23)

·BT (τ ′ + μh)Φ−T (τ ′ + μh, 0)ΦT (μh, 0)dτ ′

=

∫ kh

0

P (μh, 0)e−Qτ ′
P−1(τ ′ + μh, 0)B(τ ′ + μh)

·BT (τ ′ + μh)P−T (τ ′ + μh, 0)e−QT τ ′
PT (μh, 0)dτ ′

=

∫ kh

0

e−Qτ ′
P−1(τ ′, 0)B(τ ′)BT (τ ′)P−T (τ ′, 0)e−QT τ ′

dτ ′ = Wc[0, kh] > 0,

where we used the fact that P (μh, 0) = P (0, 0) = I. The above equation implies that
the system is completely controllable at t0 = μh for each integer μ ≥ 0. Note by
the Gramian criterion that if a system is completely controllable at time t0, then it
is completely controllable at any t ≤ t0. Since μ is arbitrary, the desired assertion
follows.

Proof of Proposition 4.1. By the assumptions on A(t) and B(t) and the Floquet
theorem, it can be shown that B̂(t) = P−1(t, 0)B(t) is continuous in t. Hence, the
approximate FDLCP system (14) is well defined for each segmentation S(κ) in the
sense described in the paragraph below (14).

Now let us observe the following arguments, by means of Proposition 2.7.

The FDLCP system (1) is not completely controllable

⇔ βH

∫ h

0

e−Qτ B̂(τ)B̂T (τ)e−QT τdτβ = 0, ∃β �= 0 ∈ Cn

⇔ βHe−QtB̂(t) = 0 ∀t ∈ [0, h), ∃β �= 0 ∈ Cn

⇒ βHe−QtB̂(tk−1) = 0 ∀t ∈ [tk−1, tk), ∀S(κ), ∃β �= 0 ∈ Cn

⇔ βH
κ∑

k=1

∫ tk

tk−1

e−Qτ B̂(tk−1)B̂
T (tk−1)e

−QT τdτβ = 0 ∀S(κ), ∃β �= 0 ∈ Cn

⇔ βH
κ∑

k=1

∫ tk

tk−1

e−Qτ B̂(κ, τ)B̂T (κ, τ)e−QT τdτβ = 0 ∀S(κ), ∃β �= 0 ∈ Cn

⇔ The system (14) is not completely controllable for any S(κ).(24)

A sufficiency assertion, that is, ⇐, in the third relationship in (24) can also be derived.
This is because noncontrollability of the approximate system (14) tells us that there
exists β �= 0 ∈ Cn so that βHe−QtB̂(t) vanishes almost everywhere in [0, h) as long as
κ → ∞.

Appendix C. Proof of Theorem 4.2. The proof will be completed in 4 steps.
Step 1. It is shown that Tκ of (15) can transform the state matrix Q of the system

(14) into a state matrix in the form of (16) with a specific segmentation S(κ) when
κ → ∞.

Note that the pair (A(·), B(·)) is not completely controllable. Then, Proposi-
tion 4.1 says that the system (14) is not completely controllable, no matter how large
κ is taken. From this noncontrollability and Proposition 2.7, the approximate FDLCP
system (14) defined via S(κ) is not completely controllable if and only if there exists
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β �= 0 ∈ Cn such that

βH

∫ h

0

e−Qτ B̂(κ, τ)B̂H(κ, τ)e−QT τdτβ = 0

⇔ βHe−QtB̂(κ, t) = 0 ∀t ∈ [0, h)

⇔ βHe−QtB̂(tk−1) = 0 ∀t ∈ [tk−1, tk), k = 1, 2, . . . , κ,

⇔ βHe−Q(t+tk−1)B̂(tk−1) = 0 ∀t ∈ [0, tk − tk−1), k = 1, 2, . . . , κ,

⇔ βHe−Qte−Qtk−1B̂(tk−1) = 0 ∀t ∈
[
0, min

k=1,2,...,κ
|tk − tk−1|

)
⇔ βHe−QtB̂κ = 0 ∀t ∈

[
0, min

k=1,2,...,κ
|tk − tk−1|

)
⇔ βHe−QtB̂κ = 0 ∀t ≥ 0,(25)

which implies that the constant pair (Q, B̂κ) is not completely controllable. This tells
us that there exists a left eigenvector βH

κ of Q such that

βH
κ [λI −Q, B̂κ] = 0.(26)

Now we show that such a left eigenvector βH
κ is related to some uncontrollable

modes of Q, which can be “extracted” by applying the linear transformation Tκ on
Q. To see this, we define

Eκ := {η ∈ Cn : ηH [B̂κ, QB̂κ, · · · , Qn−1B̂κ] = 0, η �= 0}.(27)

Clearly, Eκ is nonempty since at least β ∈ Eκ by (25).
Note in (15) that each column vector in T1κ is orthogonal to any column vectors

in T2κ. This implies that column vectors of T2κ form a base for Eκ. Furthermore, we
notice that QHη ∈ Eκ for any η ∈ Eκ, which follows from the definition of Eκ and
the Cayley–Hamilton theorem about characteristic polynomials of square matrices.
These facts say that each vector in QHT2κ must belong to Eκ. Therefore, we have
TH

2κQT1κ = 0 and then it follows that

TH
κ QTκ =

[
Xκ Yκ

0 Zκ

]
(28)

for some matrices Xκ, Yκ, and Zκ of compatible dimensions. Note that Zκ is square.
For an eigenvalue λ(Zκ) and a corresponding left eigenvector η̂Hκ , we construct an
augmented vector

ηκ :=

[
0
η̂κ

]
∈ Cn.

Then, it follows readily that λ(Zκ) is also an eigenvalue of Q with a left eigenvalue
Tκηκ since

ηHκ T−1
κ QTκ = ηHκ

[
Xκ Yκ

0 Zκ

]
=

[
0 η̂Hκ Zκ

]
=

[
0 η̂Hκ λ(Zκ)

]
= λ(Zκ)ηHκ .

Let βκ := Tκηκ and we must show that such a βκ satisfies (26). To this end, we
observe that

βH
κ B̂κ = ηHκ TH

κ B̂κ = ηHκ

[
TH

1κ

TH
2κ

]
B̂κ = ηHκ

[
∗(γ(κ),mκ)

0(n− γ(κ),mκ)

]
= 0,(29)
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where 0(n−γ(κ),mκ) follows from the definition of T2κ and the fact that the column

vectors in B̂κ are a linear combination of ε
(1)
κ , · · · , ε(γ(κ))

κ . Based on (29) and the fact
that βκ is a left eigenvector of Q, we obtain (26). In other words, we can conclude from
(26) and (29) that eigenvalues in λ(Zκ) are uncontrollable modes of the approximate
system (14). Note by (28) that λ(Zκ) ⊂ λ(Q). It follows that eigenvalues in λ(Zκ)
are uncontrollable modes of the system (1).

Step 2. We show that Tκ defined in (15) can be taken independently of S(κ) that
is taken appropriately as long as κ → ∞.

Let us construct consecutive segmentations as follows. First, segment [0, h) into
κ1 subintervals [t0, t1), [t1, t2), · · · , [tκ1−1, tκ1), which form S(κ1). In the ensuing seg-
mentation S(κ2), we partition [0, h) into κ2 subintervals, each of which is constructed
by segmenting one of the subintervals in S(κ1). Thus, each ending point of a subin-
terval in S(κ1), i.e., t0, t1, · · · , tκ1

, also appears as an ending point of some subinterval
contained in S(κ2). In such a way, we can obtain a sequence of consecutive segmen-
tations S(κ1), S(κ2), · · · , satisfying 0 < κ1 < κ2 < · · ·, and define the approximate
systems Σκ1

, Σκ2
, · · · as in (14) and B̂κ1

, B̂κ2
, · · · as introduced in (25).

Clearly, B̂κi−1 is contained in B̂κi as a submatrix for any i. Thus

rank[B̂κi
, QB̂κi

, · · · , Qn−1B̂κi
] ≥ rank[B̂κi−1

, QB̂κi−1
, · · · , Qn−1B̂κi−1

],

which means in turn that

· · · ⊆ Eκi ⊆ · · · ⊆ Eκ2
⊆ Eκ1

,(30)

where Eκi is defined as in (27) but in terms of Q and B̂κi . From (30), it follows that
· · · ≤ dim(Eκi

) ≤ · · · ≤ dim(Eκ2
) ≤ dim(Eκ1

). In view of this, we turn to show that
if the system (1) is not completely controllable, there exists an integer κ1 > 0 that is
large enough such that for all κi ≥ κ1 it holds that

dim(Eκi) = dim(Eκ1) =: γ ≥ 1,(31)

with γ being an integer.
By contradiction, suppose that (31) is not true; i.e., for some large κ1 > 0, one has

that dim(Eκ1
) = 0. It means by definition of Eκ1

that rank[B̂κ1
, QB̂κ1

, · · · , Qn−1B̂κ1
] =

n, which says that the constant pair (Q, B̂κ1) is completely controllable. Thus, for any
nonzero vector b ∈ Cn, bT e−QtB̂κ1 �= 0 ∀t ≥ 0. If we interpret this along subintervals
in S(κ1) (i.e., we argue similarly to those in (25) but in the sense of being control-
lable), it follows that at least on one subinterval, say [tk−1, tk) in S(κ1), it holds that
bT e−QtB̂(κ1, t) �= 0. Hence, we obtain that

bT
∫ h

0

e−Qτ B̂(κ1, τ)B̂T (κ1, τ)e−QT τdτ

=
∑

k=0,1,...,κ1−1

bT
∫ tk

tk−1

e−Qτ B̂(tk−1)B̂
T (tk−1)e

−QT τdτ b > 0.

Again noticing that in the approximate system Σκ1 of (14), Wc[0, vh] = Wc[0, h] +
Wc[h, vh] with v be any positive integer, we can assert that Wc[0, vh] > 0. Hence,
Proposition 2.7 says that the approximate system Σκ1 is completely controllable.

Let us return to (30) and notice that dim(Eκi) ≥ 0 for any κi. Then dim(Eκ1) = 0
tells us that for any κi > κ1, dim(Eκi) = 0. By repeating the arguments in the
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previous paragraph but in terms of B̂κi
, one can assert that the approximate system

Σκi (14) defined on S(κi) is completely controllable for each κi > κ1. Bearing this in
mind, Proposition 4.1 yields that the system Σ of (13) is also completely controllable
or, equivalently, the FDLCP system (1) is completely controllable. However, this is a
contradiction.

In summary, (31) indicates that there exist orthonormal vectors ε1, · · · , εγ , which
are determined during S(κ1), and available orthonormal vectors for S(κi) uniformly
over κi > κ1 as well. That is, ε1, · · · , εγ form a base for each Eκi

, κi > κ1, while
ε1, · · · , εn form a base for Cn by including n−γ more orthonormal vectors εγ+1, · · · , εn.
Based on such a base, we have that Tκ1 defined in (15) can satisfy (28) for any κi ≥ κ1.

Step 3. It is shown that Tκ1 defined in Step 2 transforms B̂(t) of the system (13)
into the input matrix of the system (16); that is,

T−1
κ1

B̂(t) =

[
B∗(t)

0

]
,(32)

where B∗(t) is a γ × m h-periodic matrix. Note that B̂κ1 is contained in B̂κi as a
submatrix for any κi > κ1. Therefore, for any κi > κ1 we have from (29) that

T−1
κ1

B̂κi = TH
κ1
B̂κi

=

[
∗(γ,mκi)

0(n− γ,mκi)

]
=

[
TH
κ1
e−Qτ0B̂(τ0), · · · , TH

κ1
e−Qτκi−1B̂(τκi−1)

]
=

[
TH
κ1
e−Qτ0Tκ1T

H
κ1
B̂(τ0), · · · , TH

κ1
e−Qτκi−1Tκ1T

H
κ1
B̂(τκi−1)

]
=

[
e−TH

κ1
QTκ1

τ0TH
κ1
B̂(τ0), · · · , e−TH

κ1
QTκ1

τκi−1TH
κ1
B̂(τκi−1)

]
=

[
e−Qκ1

τ0TH
κ1
B̂(τ0), · · · , e−Qκ1

τκi−1TH
κ1
B̂(τκi−1)

]
,(33)

where TH
κ1
QTκ1 satisfies (28) in form, and thus we have

Qκ1 :=

[
Xκ1 Yκ1

0 Zκ1

]
.

Furthermore, it is evident by trivial manipulations that

e−Qκ1τk =

[
e−Xκ1τk ∗(·)

0 e−Zκ1
τk

]
, k = 0, 1, . . . , κi − 1.

Using e−Qκ1τk (k = 0, 1, . . . , κi − 1) back to (33) and denoting Tκ1 = [T1κ1 |T2κ1 ] in
the same sense as we express Tκ in (15), we obtain[

∗(γ,mκi)
0(n− γ,mκi)

]
=

[
· · · ,

[
e−Xκ1τk ∗(·)

0 e−Zκ1τk

] [
TH

1κ1

TH
2κ1

]
B̂(τk), · · ·

]
.

Comparing the corresponding entries in the lower halves of the left and right sides of
the above equation, it is easy to see that

e−Zκ1τkTH
2κ1

B̂(τk) = 0(n− γ,m) ∀k = 0, 1, . . . , κi − 1.

Note that e−Zκ1τk is always invertible. Then it follows readily that TH
2κ1

B̂(τk) =
0(n− γ,m) for any k = 0, 1, . . . , κi − 1. Based on this, it follows readily that

TH
κ1
B̂(τk) =

[
∗(γ,m)

0(n− γ,m)

]
∀k = 0, 1, . . . , κi − 1.
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We mention that τk (k = 0, 1, . . . , κi − 1) can be taken in [0, h) arbitrarily as long as
κi ≥ κ1 with κ1 being sufficiently large. This implies nothing but (32).

Step 4. By letting Tκ = Tκ1
and denoting Qc = Xκ1

, Q12 = Yκ1
, Qc̄ = Zκ1

, and
Bc(t) = B∗(t), it follows that the state coordinate transform z = Tκx̃ transforms Σ
to the form of (16). The assertion that the pair (Qc, Bc(·)) is completely controllable
follows from the fact that γ given in (31) is the biggest one when κ1 is sufficiently
large. This completes the proof.
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LOCAL CONTROLLABILITY FOR A “SWIMMING” MODEL∗

A. Y. KHAPALOV†

Abstract. We study the local controllability of a mathematical model of an abstract object
which “swims” in the two-dimensional (2D) nonstationary Stokes fluid. We assume that this object
consists of finitely many subsequently connected small sets (“thick points”), each of which can act
upon any of the adjacent sets in a rotation fashion with the purpose of generating its fish- or snake-
like motion. We regard the magnitudes of the respective rotation forces, entering the system’s
equations as coefficients, as multiplicative (or bilinear) controls. The structural integrity of the
object is maintained by the elastic forces acting between the aforementioned adjacent sets according
to Hooke’s law. Models like this are of a interest in biology and engineering applications dealing with
propulsion systems in fluids.

Key words. swimming model, coupled systems, multiplicative control, local controllability,
nonstationary Stokes equation
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1. Introduction: Model and its wellposedness.

1.1. Model description. The subject of our interest in this paper is the study
of the swimming phenomenon (see, e.g., the classical works [12], [2]) from the con-
trollability theory viewpoint. We would like to approach this issue by investigating
the local controllability properties of an abstract object which applies fish- or snake-
like motion to “swim” in a fluid (as opposed to bodies that are drifting or being
pushed/pulled in a fluid by external forces). This object (we also call it an “appara-
tus” below) can be viewed as a very simplified model of a living organism (see [12],
[15], [2], [3], [4], [16], and the references therein) or a “mechanical device (such as a
robotic fish or eel, e.g., [5], [13], [14], and the references therein).

Modeling philosophy. It appears that the issue of modeling for the swimming
phenomenon should be perceived as a variety of models of different levels of complexity
describing various objects that can propel themselves in a fluid. Such objects can be
modeled as solid bodies or not, can have different geometries, and can employ different
“swimming techniques” (such as “snake-like” or “rowing”). Numerous approaches,
currently available in the literature in this respect, reflect the interests and preferences
of researchers using them, also imposing the respective limitations (“tradeoffs”) on
the resulting form of the equations involved.

For example, a number of models employ only the finite systems of ODEs to de-
scribe the positions of certain points of the swimming object at hand and avoid the use
of fluid equations, replacing them with friction forces acting upon the aforementioned
points (e.g., [14] and the references therein). On the other end of this spectrum, there
are sophisticated infinite dimensional swimming models focusing on detailed study of
the interaction between the solid bodies and the surrounding medium (see, e.g., [12],
[2], and the references therein). However, in the latter case it can be more difficult to
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construct a swimming model as a “solvable” system of coupled differential equations
containing an equation which describes the progress of the position of the body (such
as, e.g., its center of mass) in the fluid. This equation is critical if one wants to study
the issue of controllability for the swimming phenomenon, which is our goal in this
paper.

In this respect, we would like to begin with a “reasonably good starting model”
which should, on the one hand, be simple enough from the mathematical viewpoint,
while, on the other hand, be adequate enough to represent (at least some of the)
principal elements and difficulties arising in the context of swimming processes (so
that the developed controllability methodology could later be carried over to more
complex models in various fluids). This model, in our opinion, should include (a) a
fluid equation (and there are many of these available), (b) an equation describing the
motion of the swimming object, and (c) the coupling between them. In this paper we
employ the following approach (see Figures 1–3).

1. We model a swimming object (an “apparatus”) as a collection of “small” sets
of nonzero measure (“thick” points) in the nonstationary two-dimensional (2D) Stokes
fluid, which are linked to each other by the set of internal forces, satisfying the third
law of Newton. Some of these forces serve to maintain the structural integrity of the
object, while the others excite its swimming motion in the fluid. (Thus, our swimming
object and its motion can also be viewed as a version of the classical problem in
mechanics about the motion of a system of particles, linked by internal forces, when
they are placed in a “resisting” medium.)

2. Since the sum of all internal forces, defining the force acting upon the center of
mass of the object at hand, is zero, no actual motion (of the center of mass) occurs, if
the object is not in the fluid. However, when such an object is placed in the fluid, the
interaction with the latter can result in its swimming motion. The variety of these
motions is the goal of our study.

3. To further simplify the model we identify the “thick” points forming the body of
the object with the parts of the fluid they “occupy,” which seems a reasonable assump-
tion if such “points” are “small” and stay away from each other. This assumption
allows us to avoid dealing with the mathematics of solid bodies in fluids at this point.
(Note that in many theoretical works a solid body is viewed as a limit of a sequence
of fluids of increasing density occupying its volume.)

Our modeling approach can be viewed as one derived from the approach devel-
oped by Peskin, Fauci, and others (see also the references in [15], [3], [4], [16]) in
computational mathematical biology, where an object in a fluid is modeled as an im-
material curve (immersed boundary), identified with the fluid, further discretized for
computational purposes on some grid. In turn, our model (1.1)–(1.3) can be viewed
as such an already discretized immaterial curve supported on the respective cells of
the aforementioned grid; see Figures 1–3.

The equations (1.1)–(1.3) below resemble, in particular, the equations (2.9) in [15,
p. 223], where an object in a fluid is modeled as a collection of countably many points
linked by internal forces instead of our finitely many “thick” points (which allows us
to “replace” the δ-functions in the limit description of the forcing term in [15] with
the integral terms in (1.2) and a finite sum in (1.3) involving “more analysis-friendly”
characteristic functions). In [4, p. 93], e.g., the swimming object is represented as an
immaterial curve (immersed boundary), which requires the use of a more sophisticated
δ-function.

More precisely, we consider the following model, consisting of two coupled systems
of equations—one for the nonstationary 2D Stokes fluid and another for the position
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Fig. 1. The case n = 4.

of the apparatus in it:

∂y

∂t
= νΔy + F (y, z, v) −∇p in QT = Ω × (0, T ),(1.1)

div y = 0 in QT , y = 0 in ΣT = ∂Ω × (0, T ), y |t=0= y0 in Ω,

dzi
dt

=
1

mes {Sr(0)}

∫
Sr(zi(t))

y(x, t)dx, zi(0) = zi0, i = 1, . . . , n, n > 2,(1.2)

where for t ∈ [0, T ]

z(t) = (z1(t), . . . , zn(t)), zi(t) ∈ R2, i = 1, . . . , n, v(t) = (v1(t), . . . , vn−1(t)) ∈ Rn−1,

F (y, z, v) =

n+1∑
i=2

ξi−1(x, t)

[
ki−1

(‖ zi(t) − zi−1(t) ‖R2 −li−1)

‖ zi(t) − zi−1(t) ‖R2

(zi(t) − zi−1(t))

+ ki−2
(‖ zi−2(t) − zi−1(t) ‖R2 −li−2)

‖ zi−2(t) − zi−1(t) ‖R2

(zi−2(t) − zi−1(t))

]
+

n+1∑
i=2

ξi−1(x, t) (vi−1(t)A (zi(t) − zi−1(t)) + vi−2(t)A (zi−2(t) − zi−1(t))) .

(1.3)

In the above, Ω is a bounded domain in R2 with boundary ∂Ω of class C2,
y = (y1(x, t), y2(x, t)) and p(x, t) are, respectively, the velocity and the pressure of
the fluid at point x = (x1, x2) ∈ Ω at time t, and ν is a kinematic viscosity constant.
Also, to simplify the Σ-notation in (1.3) and below, throughout the paper we use two
auxiliary fictitious points z0 and zn+1 as z0(t) = z1(t), zn(t) = zn+1(t), and we set
accordingly v0 = vn = k0 = kn = l0 = ln = 0 (see below for more details).

Let us explain the terms in (1.1)–(1.3).

Apparatus. The swimming object in (1.1)–(1.3) is modeled as a collection of
finitely many points with flexible immaterial internal links (or, say, which have a
“negligible affect” on the swimming process), each of which is surrounded by “very
small immaterial” support (i.e., identified with the fluid it occupies); see Figure 1.

Thus, as a “mechanical device,” our apparatus can be viewed as a sequence of
floating platforms connected by flexible links positioned above the surface of fluid.

At any given moment of time the apparatus is represented by a “broken-line”
structure, formed by an ordered sequence of “thick points” Sr(z1(t)), . . . , Sr(zn(t)),
where zi(t), i = 1, . . . , n, are points in Ω (the apparatus’s “skeleton”). Accordingly,



658 A. Y. KHAPALOV

in (1.3) the ξi’s denote the respective characteristic functions of the Sr(zi(t))’s:

ξi(x, t) =

{
1 if x ∈ Sr(zi(t)),
0 if x ∈ Ω\Sr(zi(t)),

i = 1, . . . , n.(1.4a)

We assume that (a) Sr(0) is the given open set with its center of mass at the origin
(if treated as a plate with uniform mass density) and (b)

Sr(0) = {x | −r < x1 < r, α(x1) < x2 < β(x1)},(1.4b)

where α and β are the given continuously differentiable functions. Alternatively, Sr(0)
may consist of finitely many nonoverlapping sets similar to (1.4b), namely, of the form

{x | −r ≤ r∗ < x1 < r∗ ≤ r, α∗(x1) < x2 < β∗(x1)}

or

{x | −r ≤ r∗∗ < x2 < r∗∗ ≤ r, α∗∗(x2) < x1 < β∗∗(x2)}.

Sr(a) denotes the set Sr(0) shifted to point a.

Forces. The term F (y, z, v) in (1.3) represents the internal forces (their sum is
zero) generated by the apparatus, acting in turn as external forces upon the fluid in the
fluid equation (1.1) (see also Remark 1.2 below). We assume that all the apparatus’s
forces act through the immaterial links attached to the centers of mass of sets Sr(zi(t)),
i.e., to the points zi(t), and then transmitted as such to all points in their respective
supports. The latter points will create a pressure upon the surrounding fluid, thus
acting as external forces upon it.

Each of the points zi(t) can force any of the adjacent points to “rotate” about it.
In turn, by the third Newton law, the affected point will act back upon zi(t) with the
opposite force. For example, z1(t) can act upon z2(t) with the force perpendicular to
the vector z2(t) − z1(t) and z2(t) will act back with the opposite force. These two
forces, being transmitted to their respective supports, provide two terms in the last
line in (1.3), namely,

ξ1(x, t)v1(t)A (z2(t) − z1(t)) + ξ2(x, t)v1(t)A (z1(t) − z2(t)) ,

where

A =

(
0 1
−1 0

)
.

The magnitudes and directions of the applied rotation forces (shown in Figure 2)
are determined by the coefficients vi, i = 1, . . . , n− 1, which we regard as bilinear or
multiplicative controls (see, e.g., [1], [6], [7], [8]).

The structural integrity of the apparatus is preserved by the elastic forces (shown
in Figure 3) which act according to Hooke’s law when the distances between any two
adjacent points zi(t) and zi−1(t), i = 2, . . . , n, deviate from the respective given values

li−1 > 0, i = 2, . . . , n,(1.5)

as described in the first two lines in (1.3), where the given parameters ki > 0, i =
1, . . . , n − 1, characterize the rigidity of the links zi−1(t)zi(t), i = 2, . . . , n. (For the
auxiliary points/links we set k0 = kn = l0 = ln = 0.)
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Fig. 2. Controlling rotation forces, n = 4.
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Fig. 3. Elastic forces, n = 4.

Remark 1.1.

• Note that, when the adjacent points in the apparatus share the same position
in space (at some moments of time or on some time-interval), the forcing
term F in (1.3) and hence the model (1.1)–(1.3) become undefined. While
this situation seems physically plausible, even if, prior to this, the solution
to this system exists on some “small” time-interval, it does not necessarily
have to happen. The former issue, namely, the existence on some “small”
time-interval (0, T ), is addressed below in the next section. The latter issue
can be viewed as the issue of controllability, namely, when one tries to select
multiplicative controls vi with the purpose of ensuring that the apparatus
is “swimming” in the desirable fashion, while avoiding the aforementioned
ill-defined situation.

• Assuming that the set Sr(0) in (1.4a)–(1.4b) is “small,” we model all the
apparatus’s forces in (1.3) as of the same vector-value within their respective
supports.

Apparatus’s motion. The dynamics of the “thick points” zi(t)ξi(x, t), i = 1,
. . . , n, are determined by the average motion of the fluid within their respective sup-
ports Sr(zi(t))’s as described in (1.2).

Remark 1.2. Internal forces and conservation of momentums.
• We want to emphasize that all forces in (1.3) satisfy the third Newton law

and their sum is equal to zero. Thus, they are internal with respect to the
apparatus and cannot move its center of mass without interaction with the
fluid. This is the principal feature of a “swimming-by-itself-device.”

• The third Newton law ensures that the linear momentums generated by the
apparatus’s forces are conserved (see, e.g., [17]). However, the rotation forces
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produce, in general, a nonzero torque. This means that the conservation of
the angular momentums should hold in a more general framework, which
also takes into account some “additional control forces” (from an “engine”
such as, e.g., a “watch-and-hand” mechanism with its mutually counterro-
tating parts), also internal with respect to the apparatus, that generate the
corresponding “negating” torques.

1.2. Existence and uniqueness. Let J̇(Ω) denote the linear space of infinitely
differentiable 2D vector functions φ(x) ∈ R2 which have compact support in Ω and
are solenoidal (or divergence-free), that is, div φ = 0 in Ω. By H(Ω) we denote the
completion of this space in the norm

‖ φ ‖H(Ω)=

(∫
Ω

(‖ φx1
‖2
R2 + ‖ φx2

‖2
R2)dx

)1/2

.

We decompose (e.g., [11], [18]) the vector space (L2(QT ))2 into two orthogonal
subspaces J0(QT ) and G(QT ) assuming that for almost all t ∈ (0, T ) the elements of
the former belong to the completion J0(Ω) of J̇(Ω) in the norm of (L2(Ω))2 and the
elements of the latter to its orthogonal complement G(Ω).

Assumption 1.1. Assume that

‖ zi(0) − zi−1(0) ‖R2= μi−1 > 0, i = 2, . . . , n; S̄r(zi(0)) ⊂ Ω, i = 1, . . . , n,(1.6)

where “−” stands for closure, and the set Sr(0) is such that∫
(Sr(0)

⋃
Sr(h))\(Sr(0)

⋂
Sr(h))

dx =

∫
Ω

| ξ(x) − ξ(x− h) | dx ≤ C0 ‖ h ‖R2

∀h, ‖ h ‖R2∈ (0, h0)

(1.7)

for some positive constants h0 and C0, where ξ(x) is the characteristic function of
Sr(0).

Conditions (1.6) simply mean that our apparatus lies in Ω and that the positions
of any two adjacent points forming it are distinct at time t = 0. Condition (1.7) is
not difficult to satisfy—it holds, e.g., for rectangles and disks.

Throughout the paper we assume that y0 ∈ H(Ω)
⋂

(H2(Ω))2. We have the
following result from [9].

Theorem 1.1. Let y0 ∈ H(Ω)
⋂

(H2(Ω))2; T ∗ > 0; vi ∈ L∞(0, T ∗), ki >
0, i = 1, . . . , n − 1; and zi0 ∈ Ω, i = 1, . . . , n be given, and let Assumption 1.1 hold.
Then there exists a T = T (z10, . . . , zn0, ‖ v1 ‖L∞(0,T∗), . . . , ‖ vn−1 ‖L∞(0,T∗),Ω) ∈
(0, T ∗) such that the system (1.1)–(1.3) admits a unique solution {y, p, z} on (0, T ),
{y,∇p, z} ∈ J0(QT ) × G(QT ) × [C([0, T ];R2)]n. Moreover, y ∈ C([0, T ];H(Ω)),
yt, yxixj ∈ (L2(QT ))2, pxi ∈ L2(QT ), where i, j = 1, 2, and equations in (1.1) and
(1.2) are satisfied almost everywhere, while

zi(t) �= zi+1(t), i = 1, . . . , n− 1; S̄r(zi(t) ⊂ Ω, t ∈ [0, T ], i = 1, . . . , n.(1.8)

Remark 1.3.

• Condition (1.7) is used in the proof of Theorem 1.1 (as a form of the Lipschitz
condition).

• Condition (1.8) means that for the solution of (1.1)–(1.7), whose existence
is established in Theorem 1.1, we can guarantee that on some “small” time-
interval [0, T ] any two adjacent points zi(t) and zi+1(t) in the apparatus do
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not share the same point in space, while our swimming device stays “suffi-
ciently away” from the boundary of Ω. The former allows us to maintain the
wellposedness (both mathematical and “physical”—the validity of Hooke’s
law) of the elastic forces in (1.3), while the latter implies that we do not have
to deal with any “complications” arising when some of the “thick points”
“hit” ∂Ω.

• On the other hand, Theorem 1.1 allows sharing of the same space for some
portions of supports of the aforementioned thick points (recall that they are
assumed to be immaterial and “parts of the fluid”). At no extra cost, we could
equally make the assumption (1.6) more strict to exclude the latter possibility
by assuming that μi’s (and li’s) strictly exceed 2r or even to assume that
(1.6) (and then (1.8)) holds with a margin exceeding 2r for all zi(t)’s (not
only adjacent), while modifying the statement of Theorem 1.1 accordingly.

The duration of the time-interval (0, T ) in Theorem 1.1 is not quite of local
nature. Namely, based on suitable a priori estimates, the value of T is selected small
enough to guarantee that condition (1.8) holds on (0, T ) for the given choice of data
in (1.1)–(1.3). This solution can be extended further in time as long as (1.8) holds.

2. Local controllability: Problem formulation and main results.

2.1. Problem formulation. In this paper we would like to analyze the “local”
swimming capabilities of model (1.1)–(1.7) in the following sense.

For the given initial datum of this model, namely,

{y0, zi(0), i = 1, . . . , n},(2.1a)

denote by

{y∗(x, t), z∗i (t), i = 1, . . . , n}(2.1b)

the solution pair to (1.1)–(1.7) generated by the zero controls vi = 0, i = 1, . . . , n− 1
(as long as (1.8) holds).

We also distinguish the following equilibrium initial state for system (1.1)–(1.7):

{y0 = 0, zi(0), i = 1, . . . , n, such that li−1 =‖ zi(0) − zi−1(0) ‖R2 ,

i = 2, . . . , n},
(2.2a)

in which case the fluid “rests” and the apparatus does not move for any t > 0, that
is,

{y∗(x, t) ≡ 0, z∗i (t) ≡ zi(0), i = 1, . . . , n}, t ≥ 0.(2.2b)

We intend to approach the general issue of local controllability for (1.1)–(1.7) by
asking first a “rather simple” question.

Given the equilibrium initial datum (2.2a) in (1.1)–(1.7), can we move at least one
point, say, zi, in the skeleton of the apparatus anywhere within some neighborhood of
its initial equilibrium position zi(0) at some preassigned moment T > 0?

We will call this problem the local controllability problem with respect to zi near
equilibrium at time T . However, the question of main interest, associated with the
actual motion of any object, is the following.

Given the equilibrium initial datum (2.2a) in (1.1)–(1.7), can we move the “center
of mass” of our apparatus, namely, the point

zc(t) =
1

n

n∑
i=1

zi(t),
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anywhere within some neighborhood of its initial equilibrium position

zc(0) =
1

n

n∑
i=1

zi(0)

at some preassigned moment T > 0?
We will call this problem the local controllability problem with respect to zc(0)

near equilibrium at time T .
In the case of the general (not necessarily equilibrium) initial conditions (2.1a),

the motion of the apparatus, associated with the zero-controls vi’s, is a “drifting”
(uncontrolled) motion (2.1b), generated, on the one hand, by the given initial fluid
condition y0 and, on the other hand, by the elastic forces in the first two lines on
the right in (1.3) trying to return the apparatus to its natural equilibrium position,
that is, when the distances between the adjacent points zi’s are exactly li’s. In this
case, our goal is to investigate the local controllability of system (1.1)–(1.7) near the
“drifting” trajectory z∗i (t), i = 1, . . . , n.

Given the initial datum in (1.1)–(1.7), can we move at least one point, say, zi, of
the apparatus or its center of mass zc anywhere within some neighborhood, respectively,
of z∗i (T ) or of

z∗c (T ) =
1

n

n∑
i=1

z∗i (T ),

along its uncontrolled drifting trajectory (2.1a)–(2.1b) for some T > 0?
We will call these two problems the local controllability problems near the drifting

positions, respectively, of z∗i (T ) and of z∗c (T ).
Our strategy in this paper is centered around the following propositions.
Proposition 2.1. Assume that in (1.1)–(1.7) only two controls are active, say,

vj and vl, where j �= l and j, l ∈ {1, . . . , n − 1}, while vk = 0 for k = 1, . . . , n −
1, k �= j, l. Assume further that vj and vl are independent of time. Then, if for some
i ∈ {1, . . . , n} there exists a T > 0 such that the matrix(

dzi(T )

dvj
|v′

ms=0,
dzi(T )

dvl
|v′

ms=0

)
(2.3)

is nondegenerate, then the system (1.1)–(1.7) is locally controllable near its drifting
position z∗i (T ) in (2.1b). Namely, there is an ε > 0 such that

Bε(z
∗
i (T )) ⊂ {zi(T ) | vj , vl ∈ R, vk = 0 for k = 1, . . . , n− 1, k �= j, l}.(2.4)

In particular, for the initial equilibrium position (2.2a) condition (2.3) implies the
local controllability with respect to zi near equilibrium at time T .

In other words, (2.4) means that the set of all possible positions of zi(T ) when
controls vi run over R will include some ε-neighborhood of z∗i (T ).

In (2.3) and anywhere below the subscript, v′ms = 0 indicates that the corre-
sponding expressions are calculated for vm = 0,m = 1, . . . , n− 1.

Proof of Proposition 2.1. This is an immediate consequence of the inverse function
theorem, which, in view of (2.3), implies that the mapping

R2 � (vj , vl) → zi(T ) ∈ R2,
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defined on some (open) neighborhood of the origin, has the inverse mapping, defined
on some (open) neighborhood of z∗i (T ); that is, (2.4) holds.

Clearly, the same argument implies a similar result for the motion of the center
of mass zc(t).

Proposition 2.2. Assume that in (1.1)–(1.7) only two controls are active, say, vj
and vl, where j �= l and j, l ∈ {1, . . . , n−1}, while vk = 0 for k = 1, . . . , n−1, k �= j, l.
Assume further that vj and vl are independent of time. Then, if there exists a T > 0
such that the matrix (

dzc(T )

dvj
|v′

ms=0,
dzc(T )

dvl
|v′

ms=0

)
(2.5)

is nondegenerate, then the system (1.1)–(1.7) is locally controllable near its drifting
position of the center of mass z∗c (T ). Namely, there is an ε > 0 such that

Bε(z
∗
c (T )) ⊂ {zc(T ) | vj , vl ∈ R, vk = 0 for k = 1, . . . , n− 1, k �= j, l}.

In particular, for the initial equilibrium position (2.2a) we have the local controllability
with respect to zc near equilibrium at time T .

Our main results below deal with the conditions under which the matrices in (2.3)
and (2.5) in Propositions 2.1 and 2.2 are nondegenerate (the general scheme of our
proofs is described in the beginning of section 3). They involve various assumptions
on the initial position of the apparatus. To formulate them, we will need to introduce
some notation first.

Let 2D vector functions ωk ∈ J0(Ω)
⋂
H(Ω) and real numbers −λk, k = 1, . . .

(λk > 0, λk → ∞ as k → ∞), denote, respectively, the orthonormalized in (L2(Ω))2

eigenfunctions and eigenvalues of the spectral problem associated with (1.1):

νΔωk − ∇pk = −λkωk in Ω,

divωk = 0 in Ω, ωk = 0 in ∂Ω.

Then the unique solution to (1.1), described in Theorem 1.1, admits the following
implicit representation:

y(x, t) =
∞∑
k=1

e−λkt

(∫
Ω

yT0 ωkdq

)
ωk(x)

+

∞∑
k=1

∫ t

0

e−λk(t−τ)

(∫
Ω

FT (y, z, v)ωkdqdτ

)
ωk(x).

(2.6)

(Here and below, where appropriate, we use q = (q1, q2) to denote the space variable
in the internal integration.)

The series in (2.6) and the series obtained from it by differentiation once with
respect to t and twice with respect to the spatial variables converge in (L2(Ω))2

uniformly for t ≥ 0 (e.g., [11], [18]).
Denote the projection of the sum of two rotation forces in the last line of (1.3),

generated at the initial moment t = 0 by the unit control input vj = 1, on the
divergence-free space J0(Ω) by

Fj(x) = Fj,1(x) + Fj,2(x), j = 1, . . . , n− 1,(2.7a)
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where

Fj,1(x) =

∞∑
k=1

[∫
Ω

(ξj(q, 0)A(zj+1(0) − zj(0)))
T
ωk(q)dq

]
ωk(x)

=

∞∑
k=1

[
(A(zj+1(0) − zj(0)))

T
∫
Sr(zj(0))

ωk(q)dq

]
ωk(x),(2.7b)

Fj,2(x) =

∞∑
k=1

[∫
Ω

(−ξj+1(q, 0)A(zj+1(0) − zj(0)))
T
ωk(q)dq

]
ωk(x)

= −
∞∑
k=1

[
(A(zj+1(0) − zj(0)))

T
∫
Sr(zj+1(0))

ωk(q)dq

]
ωk(x).(2.7c)

Here we used the fact that {ωk}∞k=1 form an orthonormalized basic in J0(Ω) ⊂
(L2(Ω))2.

Assumption 2.1. Let the [2 × 2]-matrix(∫
Sr(zi(0))

Fj(x)dx,

∫
Sr(zi(0))

Fl(x)dx

)
(2.8)

be nondegenerate for some i ∈ {1, . . . , n} and l, j ∈ {1, . . . , n− 1}.
Theorem 2.3. Let i ∈ {1, . . . , n}, l, j ∈ {1, . . . , n − 1}, and Assumption 2.1

hold. Then there exists a T ∗ > 0 such that the matrix (2.3) is nondegenerate for any
T ∈ (0, T ∗] and Proposition 2.1 holds. Namely, we have the local controllability of
system (1.1)–(1.7) near its drifting position z∗i (T ). In particular, for the equilibrium
position (2.2a)–(2.2b) condition (2.8) implies the local controllability with respect to
zi near equilibrium at time T .

The argument of Theorem 2.3 establishes that

dzi(t)

dvj
|v′

ms=0=
t2

2mes {Sr(0)}

∫
Sr(zi(0))

Fj(x)dx + t2O(t), j = 1, . . . , n− 1,(2.9)

which allows us to apply (2.8) to ensure that (2.3) in Proposition 2.1 is nondegenerate.
Condition (2.8) holds for any point zi, i = 2, . . . , n− 1, in the original position of

the swimming apparatus with controls acting in the adjacent links A(zi+1(0)− zi(0))
and A(zi(0)− zi−1(0)) (i.e., for i = j, l = i− 1 = j − 1), provided (a) that these links
are nonparallel and (b) that the thick points forming it are sufficiently small disks.
This conclusion is based on the following lemma.

Lemma 2.4. Let Sr(0) be a disk of radius r. Then

(2.10a)

1

mes {Sr(0)}

∫
Sr(zj(0))

Fjdx =
1

2
A(zj+1(0) − zj(0)) + g(r), j = 1, . . . , n− 1,

(2.10b)

1

mes {Sr(0)}

∫
Sr(zj+1(0))

Fjdx = −1

2
A(zj+1(0) − zj(0)) + g(r), j = 1, . . . , n− 1,

where ‖ g(r) ‖R2 ≤ Cr as r → 0+ for some positive constant C.
Due to (2.9), at no extra cost, Theorem 2.3 implies the respective statement for

the center of mass zc(t).
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Theorem 2.5. Let l, j ∈ {1, . . . , n− 1}, and the matrix

n∑
i=1

(∫
Sr(zi(0))

Fj(x)dx,

∫
Sr(zi(0))

Fl(x)dx

)

is nondegenerate. Then there exists a T ∗ > 0 such that for any T ∈ (0, T ∗] Proposition
2.2 holds. Namely, we have the local controllability of system (1.1)–(1.7) with respect
to the position of center of mass zc(T ) near its drifting position z∗c (T ). In particular,
for the equilibrium position (2.2a)–(2.2b) we have the local controllability with respect
to zc near equilibrium at time T .

Discussion of Theorems 2.3 and 2.5. Note that the two columns in (2.8)
multiplied by mes−1 {Sr(0)} describe the “average” forces induced respectively by
the forces Fj(x) and Fl(x) over the region Sr(zi(0)). Thus, the sufficient conditions
for the local controllability near the drifting position z∗i (T ) in Theorem 2.3 require
that these average forces are not colinear. Respectively, for the local controllability of
the center of mass zc Theorem 2.5 requires that the sums of such average forces over
all “thick points” in the skeleton of the apparatus generated respectively by the unit
controls vl = 1 and vj = 1 are not colinear as well.

Remark 2.1. Supports of Fj(x)’s . In spite of the fact that the rotation forces in
(1.3) have only local supports this does not have to be so for their projections (as in
(2.7a)–(2.7b)) on the solenoidal part J0(Ω) of (L2(Ω))2, associated with incompressible
fluids (see section 6 for more details).

Recall now that the space (L2(Ω))2 is the direct sum of the spaces J0(Ω) and
G(Ω). In (2.7a)–(2.7c) we denoted the projections of the functions

ξj(x, 0) (A(zj+1(0) − zj(0))) and −ξj+1(x, 0) (A(zj+1(0) − zj(0))) , j = 1, . . . , n−1

on J0(Ω) by Fj,1(x) and Fj,2(x). Denote now the projections of the aforementioned
functions on the space G(Ω), respectively, by F⊥

j,1(x) and F⊥
j,2(x). Since (e.g., [11,

p. 28]; [18, p. 15])

J0(Ω) = {u ∈ (L2(Ω))2, div u = 0, γνu |∂Ω= 0},(2.11)

G(Ω) = {u ∈ (L2(Ω))2, u = ∇p, p ∈ H1(Ω)},(2.12)

where ν is the unit vector normal to the boundary ∂Ω (pointing outward) and γνu |∂Ω

is the restriction of u · ν to ∂Ω, we have

F⊥
j,1(x) = ∇wj,1(x), F⊥

j,2(x) = ∇wj,2(x), j = 1, . . . , n− 1,

for some functions wj,1, wj,2 ∈ H1(Ω), j = 1, . . . , n− 1. Thus,

Fj,1(x) = ξj(x, 0) (A(zj+1(0) − zj(0))) −∇wj,1(x),(2.13)

Fj,2(x) = −ξj+1(x, 0) (A(zj+1(0) − zj(0))) −∇wj,2(x).(2.14)

Furthermore, wj,1 and wj,2 solve the following two generalized Neumann problems:

Δwj,1 = div ξj(x, 0) (A(zj+1(0) − zj(0))) in Ω,
∂wj,1

∂ν
|∂Ω= 0,(2.15)

Δwj,2 = −div ξj+1(x, 0) (A(zj+1(0) − zj(0))) in Ω,
∂wj,2

∂ν
|∂Ω= 0.(2.16)
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Indeed, (2.15), e.g., can be obtained by applying divergence to (2.13) and recall-
ing that Fj,1 ∈ J0(Ω), which in particular implies that divFj,1 = 0. In turn, the
boundary condition in (2.15) follows from (2.13) by recalling that, due to (2.11),
γνFj,1 |∂Ω= 0 and that ξj(x, 0) vanishes outside of Sr(zj(0)), which provides

γν∇wj,1 |∂Ω=
∂wj,1

∂ν |∂Ω= 0.
Our qualitative analysis of solutions to (2.15) and (2.16) in section 6 led us to

Lemma 2.4. In this section we also (see Remark 6.1) derived certain qualitative esti-
mates and formulas which can be used to verify sufficient conditions for controllability
in Theorems 2.3 and 2.5 (i.e., not only for the circular support as in Lemma 2.4).

3. Preliminary results. Our plan to prove Theorem 2.3 is as

1. We intend to use Propositions 2.1 and 2.2 involving derivatives dzi(T )
dvj

, i =

1, . . . , n, j = 1, . . . , n− 1. In order to evaluate them, in section 3 we differen-
tiate the implicit solution formula (2.6) with respect to vj ’s.

2. In section 4 the results of section 3 are presented as a vector Volterra equation

for the aforementioned dzi(T )
dvj

’s and suitable asymptotic analysis is used to

qualitatively evaluate them for “small” T ’s.
3. Making use of all of the above to obtain the qualitative estimates for the

terms in (2.8), we complete the proof of Theorem 2.3 in section 5.
In this section we intend to derive a number of auxiliary formulas. Everywhere

below, for simplicity of calculations we assume that Sr(0) has the form of (1.4b).

3.1. Solution formula. Let us rewrite (2.6) as

y(x, t) =

∞∑
k=1

e−λkt

(∫
Ω

yT0 ωkdx

)
ωk(x)

+
n+1∑
i=2

(Pi(x, t) + vi−1(t)Qi(x, t) + vi−2(t)Ri(x, t)) ,

(3.1)

where here and below we always assume that (besides all other imposed assumptions,
if there are such) T is selected “sufficiently small” as in Theorem 1.1 to ensure the
wellposednesss of system (1.1)–(1.7) at hand on [0, T ], and

(3.2)

Pi(x, t) =

∞∑
k=1

(∫ t

0

e−λk(t−τ)

[
ki−1

(‖ zi(τ) − zi−1(τ) ‖R2 −li−1)

‖ zi(τ) − zi−1(τ) ‖R2

(zi(τ) − zi−1(τ))T

+ ki−2
(‖ zi−2(τ) − zi−1(τ) ‖R2 −li−2)

‖ zi−2(τ) − zi−1(τ) ‖R2

(zi−2(τ) − zi−1(τ))T
]

×
(∫

Ω

ξi−1(q, τ)ωkdq

)
dτ

)
ωk(x),

(3.3)

Qi(x, t) =

∞∑
k=1

(∫ t

0

e−λk(t−τ) (A(zi(τ) − zi−1(τ)))
T

(∫
Ω

ξi−1(q, τ)ωkdq

)
dτ

)
ωk(x),

(3.4)

Ri(x, t) =

∞∑
k=1

(∫ t

0

eλk(t−τ) (A(zi−2(τ) − zi−1(τ)))
T

(∫
Ω

ξi−1(q, τ)ωkdq

)
dτ

)
ωk(x).
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3.2. Differentiation with respect to vj’s. We assume from now on that the
functions vj , j = 1, . . . , n − 1, are constant in time. Below we formally differenti-
ate various expressions with respect to vj , j = 1, . . . , n − 1. The validity of these
calculations will be discussed in the next section (see the subsection 4.2).

3.2.1. Derivatives of zi’s. In view of (1.2) and (1.4a)–(1.4b), for any t ∈ [0, T ],

zi(t) = zi0 +
1

mes {Sr(0)}

∫ t

0

∫
Sr(zi(τ))

y(x, τ)dxdτ

= zi0 +
1

mes {Sr(0)}

∫ t

0

∫ zi,1(τ)+r

zi,1(τ)−r

∫ zi,2(τ)+β(x1−zi,1(τ))

zi,2(τ)+α(x1−zi,1(τ))

y(x, τ)dx2dx1dτ.

(3.5)

Denote zi(t) = (zi,1(t), zi,2(t)). Then differentiating (3.5) with respect to vj , we
obtain

dzi(t)

dvj
=

1

mes {Sr(0)}

∫ t

0

∫ zi,1(τ)+r

zi,1(τ)−r

×
(
y(x1, zi,2(τ) + β(x1 − zi,1(τ)), τ)

(
dzi,2(τ)

dvj
− β′(x1 − zi,1(τ))

dzi,1(τ)
dvj

)

− y(x1, zi,2(τ) + α(x1 − zi,1(τ)), τ)

(
dzi,2(τ)

dvj
− α′(x1 − zi,1(τ))

dzi,1(τ)

dvj

))
dx1dτ

+
1

mes {Sr(0)}

∫ t

0

dzi,1(τ)

dvj

∫ zi,2(τ)+β(r)

zi,2(τ)+α(r)

y(zi,1(τ) + r, x2, τ)dx2dτ

− 1

mes {Sr(0)}

∫ t

0

dzi,1(τ)

dvj

∫ zi,2(τ)+β(−r)

zi,2(τ)+α(−r)

y(zi,1(τ) − r, x2, τ)dx2dτ

+
1

mes {Sr(0)}

∫ t

0

∫
Sr(zi(τ))

dy(x, τ)

dvj
dxdτ.

(3.6)

3.2.2. Derivatives of y. Making use of (3.1), we obtain

dy

dvj
|v′

ms=0=
d

dvj

(
n+1∑
i=2

(Pi + vi−1Qi + vi−2Ri)

)
|v′

ms=0

= Qj+1 |v′
ms=0 +Rj+2 |v′

ms=0 +

n+1∑
i=2

(
d

dvj
Pi + vi−1

d

dvj
Qi + vi−2

d

dvj
Ri

)
|v′

ms=0

= Qj+1 |v′
ms=0 +Rj+2 |v′

ms=0 +

n+1∑
i=2

(
d

dvj
Pi

)
|v′

ms=0 .

(3.7)

3.2.3. Derivatives of Pi’s. Making use of (3.2), while noticing that

∫
Ω

ξi−1(x, τ)ωkdx =

∫ zi−1,1(τ)+r

zi−1,1(τ)−r

∫ zi−1,2(τ)+β(x1−zi−1,1(τ))

zi−1,2(τ)+α(x1−zi−1,1(τ))

ωk(x)dx2dx1,
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we obtain

d

dvj
Pi(x, t) |v′

ms=0

=

∞∑
k=1

[∫ t

0

e−λk(t−τ) {ki−1Θ1,i,j(τ) + ki−2Θ2,i,j(τ)}
(∫

Ω

ξi−1(q, τ)ωkdq

)
dτ

]
ωk(x) |v′

ms=0

+

∞∑
k=1

(∫ t

0

e−λk(t−τ)Θ3,i(τ) Θ4,i,j(τ)dτ

)
ωk(x) |v′

ms=0,

(3.8)
where

Θ1,i,j(τ) =

(
dzi(τ)

dvj
− dzi−1(τ)

dvj

)T (
1 − li−1

‖ zi(τ) − zi−1(τ) ‖R2

)
+ li−1 (zi(τ) − zi−1(τ))

T 1

‖ zi(τ) − zi−1(τ) ‖3
R2

<
dzi(τ)

dvj
− dzi−1(τ)

dvj
, zi(τ) − zi−1(τ) >R2 ,

Θ2,i,j(τ) =

(
dzi−2(τ)

dvj
− dzi−1(τ)

dvj

)T (
1 − li−2

‖ zi−2(τ) − zi−1(τ) ‖R2

)
+ li−2(zi−2(τ) − zi−1(τ))T

1

‖ zi−2(τ) − zi−1(τ) ‖3
R2

<
dzi−2(τ)

dvj
− dzi−1(τ)

dvj
, zi−2(τ) − zi−1(τ) >R2 ,

Θ3,i(τ) = ki−1

(
(‖ zi(τ) − zi−1(τ) ‖R2 −li−1)

‖ zi(τ) − zi−1(τ) ‖R2

(zi(τ) − zi−1(τ))T
)

+ ki−2

(
(‖ zi−2(τ) − zi−1(τ) ‖R2 −li−2)

‖ zi−2(τ) − zi−1(τ) ‖R2

(zi−2(τ) − zi−1(τ))T
)
,

Θ4,i,j(τ) =

∫ zi−1,1(τ)+r

zi−1,1(τ)−r

ωk (x1, zi−1,2(τ) + β(x1 − zi−1,1(τ)))

×
(
dzi−1,2(τ)

dvj
− β′(x1 − zi−1,1(τ))

dzi−1,1(τ)

dvj

)
dx1

−
∫ zi−1,1(τ)+r

zi−1,1(τ)−r

ωk (x1, zi−1,2(τ) + α(x1 − zi−1,1(τ)))

×
(
dzi−1,2(τ)

dvj
− α′(x1 − zi−1,1(τ))

dzi−1,1(τ)

dvj

)
dx1

+
dzi−1,1(τ)

dvj

∫ zi−1,2(τ)+β(r)

zi−1,2(τ)+α(r)

ωk(zi−1,1(τ) + r, x2)dx2

− dzi−1,1(τ)

dvj

∫ zi−1,2(τ)+β(−r)

zi−1,2(τ)+α(−r)

ωk(zi−1,1(τ) − r, x2)dx2.

To better understand the terms in the second sum in (3.8), denote

Vi(τ) = Θ3,i(τ) |v′
ms=0 .
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Then we can rewrite, e.g., the term in the second sum in (3.8) associated with the

factor
dzi−1,2(τ)

dvj
in the first line in the expression for Θ4,i,j(τ) as

∫ t

0

dzi−1,2(τ)

dvj

[ ∞∑
k=1

e−λk(t−τ){(Φ1(τ))(Vi(τ)ωk)}
]
dτωk(x) |v′

ms=0,(3.9)

where we denoted

(Φ1(t))(ψ) =

∫ zi−1,1(t)+r

zi−1,1(t)−r

ψ(x1, zi−1,2(t) + β(x1 − zi−1,1(t)))dx1.

Note that Φ1(t) ∈ H−1(Ω) for any t ∈ [0, T ], where the space H−1(Ω) is dual of
H1

0 (Ω); namely, it is the space of all linear bounded functionals on H1
0 (Ω). (As usual,

we endow the latter space with the norm ‖ψ‖H1
0 (Ω) = {

∫
Ω
(ψ2

x1
+ ψ2

x2
)dx}1/2.)

Indeed, regardless of t, for any ψ ∈ H1
0 (Ω), due to the continuous embedding of

H1
0 (a, b) into C[a, b] for any finite interval [a, b], for any t ∈ [0, T ] we have

| (Φ1(t))(ψ) | ≤
∫ zi−1,1(t)+r

zi−1,1(t)−r

| ψ(x1, zi−1,2(t) + β(x1 − zi−1,1(t))) | dx1

≤ C1

∫ zi−1,1(t)+r

zi−1,1(t)−r

‖ ψ(x1, ·) ‖H1
0 ({ξ|(x1,ξ)∈Ω} dx1 ≤

√
2rC1 ‖ ψ ‖H1

0 (Ω),

where C1 is a positive constant. Thus, for any t ∈ [0, T ],

‖ Φ1(t) ‖H−1(Ω)= sup
‖ψ‖

H1
0
(Ω)

=1,ψ∈H1
0 (Ω)

| (Φ1(t))(ψ) | ≤
√

2rC1.(3.10)

In the next subsection we will need the following observation.
Remark 3.1. Consider any vector κ ∈ R2. Then, similar to the derivation of

(3.10), we can show that for any t ∈ [0, T ] the expression

(Φ1(t)κ)(φ) = (Φ1(t))(κ
Tφ), where φ ∈ (H1

0 (Ω))2,

defines a linear bounded functional on (H1
0 (Ω))2 and

sup
‖φ‖

(H1
0
(Ω))2

=1,φ∈(H1
0 (Ω))2

| (Φ1(t)κ)(φ) | ≤ ‖ κ ‖R2‖ Φ1(t) ‖H−1(Ω)≤
√

2rC1 ‖ κ ‖R2 .

On the other hand, if φ ∈ H(Ω) ⊂ (H1
0 (Ω))2, then it admits the following representa-

tion:

φ =
∞∑
k=1

akωk, ‖ φ ‖H(Ω)=‖ φ ‖(H1
0 (Ω))2=

( ∞∑
k=1

λk

ν
a2
k

)1/2

.

In this case, we can introduce the space H ′(Ω) of linear bounded functionals Φ on
H(Ω) making use of the duality product

Φ(φ) =
∞∑
k=1

akbk, where bk = Φ(ωk), k = 1, . . . ,
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with the norm

‖ Φ ‖H′(Ω)=

( ∞∑
k=1

ν

λk
b2k

)1/2

,

equivalent to the regular one on this space (i.e., analogous to that in (3.10)). Thus,
in particular, for any κ ∈ R2 we have for any t ∈ [0, T ]

∞∑
k=1

ν

λk
{(Φ1(t)κ)(ωk)}2 ≤ C∗

(
sup

‖φ‖H(Ω)=1,φ∈H(Ω)

| (Φ1(t)κ)(φ) |
)2

≤ C∗

⎛⎝ sup
‖φ‖

(H1
0
(Ω))2

=1,φ∈(H1
0 (Ω))2

| (Φ1(t)κ)(φ) |

⎞⎠2

≤ C∗

(√
2rC1 ‖ κ ‖R2

)2

,

(3.11)

where C∗ > 0 is some (generic) constant.

3.3. Kernels. Let us now consider in detail the contribution of (3.9) to the
expression in (3.6), multiplied by mes {Sr(0)}, when v′ms = 0, namely,∫ t

0

∫ τ

0

dzi−1,2(s)

dvj

∫
Sr(zi(τ))

[ ∞∑
k=1

e−λk(τ−s){(Φ1(s)Vi(s))(ωk)}ωk(x)

]
dxdsdτ

=

∫ t

0

dzi−1,2(s)

dvj

{∫ t

s

∫
Sr(zi(τ))

[ ∞∑
k=1

e−λk(τ−s){(Φ1(s)Vi(s))(ωk)}ωk(x)

]
dxdτ

}
ds.

In the above, the factor at
dzi−1,2(s)

dvj
can be regarded as a 2D kernel K(t, s), (t, s) ∈

(0, T ) × (0, T ), vanishing for s > t.
Lemma 3.1. The kernel K is an element of (L∞((0, T ) × (0, T )))2.
Proof of Lemma 3.1. Indeed, for almost all (s, τ) ∈ (0, T ) × (0, T ),

‖ K(t, s) ‖2
R2=‖

∫ t

s

∫
Sr(zi(τ))

[ ∞∑
k=1

e−λk(τ−s){(Φ1(s)Vi(s))(ωk)}ωk(x)

]
dxdτ ‖2

R2

≤ T mes {Sr(0)}
∞∑
k=1

(∫ t

s

e−2λk(τ−s)dτ

)
{(Φ1(s)Vi(s))(ωk)}2

≤ CT

∞∑
k=1

1

λk
{(Φ1(s)Vi(s))(ωk)}2 ≤ ĈT

(√
2rC1 ‖ Vi ‖C([0,T ];R2)

)2

(3.12)

for some (generic) positive constants C and Ĉ, while C1 is from (3.11) in Remark 3.1.
In (3.12) we also used the following type of estimate, employing Bessel’s inequality:∥∥∥∥∥

∫
ω

( ∞∑
k=1

akωk(x)

)
dx ‖2

R2=‖
∫

Ω

( ∞∑
k=1

akωk(x)

)
ξω(x)dx

∥∥∥∥∥
2

R2

≤
∥∥∥∥∥

∞∑
k=1

akωk

∥∥∥∥∥
2

(L2(Ω))2

‖ ξω ‖2
L2(Ω)=

( ∞∑
k=1

a2
k

)
mes{ω},

where ξω(x) is the characteristic function of a set ω ⊂ Ω. This ends the proof of
Lemma 3.1.

The assertion of Lemma 3.1 can be established for all other kernels associated
with dzi(s)

dvj
’s in (3.8) and (3.6).
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4. Volterra equations for dzi(τ)
dvj

’s. Below we will deal only with the terms
dzi(t)
dvj

|v′
ms=0 . Therefore, to simplify further notation, we will omit the subscript |v′

ms=0

from now on.

4.1. Volterra equations. Equation (3.6) can be rewritten as the following vec-
tor Volterra equation:⎛⎜⎜⎝

dz1(t)
dvj
...

dzn(t)
dvj

⎞⎟⎟⎠ +

∫ t

0

Bj(t, s)

⎛⎜⎜⎝
dz1(s)
dvj
...

dzn(s)
dvj

⎞⎟⎟⎠ ds =

⎛⎜⎝Ξ1j(t)
...

Ξnj(t)

⎞⎟⎠ , j = 1, . . . , n−1, t ∈ [0, T ],

(4.1)
where

Ξij(t) =
1

mes {Sr(0)}

∫ t

0

∫
Sr(zi(τ))

(Qj+1 + Rj+2) dxdτ |v′
ms=0

and Bj(t, s), j = 1, . . . , n−1, are, respectively, the vector and matrix functions defined
by (3.6) along (3.7)–(3.12). We will need the following asymptotic result.

Lemma 4.1.

Ξij(t) =
t2

2mes {Sr(0)}

[ ∞∑
k=1

(∫
Sr(zi(0))

ωkdx

)(∫
Sr(zj(0))

ωT
k (x)dx

)]
A(zj+1(0) − zj(0))

+
t2

2mes {Sr(0)}

[ ∞∑
k=1

(∫
Sr(zi(0))

ωkdx

)(∫
Sr(zj+1(0))

ωT
k (x)dx

)]
A(zj(0) − zj+1(0))+ t2O(t)

(4.2)
as t → 0+, where i = 1, . . . , n, j = 1, . . . , n−1, and O(t) stands for a vector function
whose R2-norm tends to zero as t → 0+.

Proof of Lemma 4.1. Step 1. In view of (3.3) and (3.4), we have

mes {Sr(0)}Ξij(t)

=

∫ t

0

∫ τ

0

∫
Ω

[ ∞∑
k=1

e−λk(τ−s)

(∫
Ω

(A(zj+1(s) − zj(s)))
T
ξj(q, s)ωkdq

)
ωk(x)

]
ξi(x, τ)dxdsdτ

+

∫ t

0

∫ τ

0

∫
Ω

[ ∞∑
k=1

eλk(τ−s)

(∫
Ω

(A(zj(s) − zj+1(s)))
T
ξj+1(q, s)ωkdq

)
ωk(x)

]
ξi(x, τ)dxdsdτ.

(4.3)
Step 2. We will further deal with the first term in (4.3). Let us show that the

following representation holds for the expression in the square brackets in this term:

W(s, τ) =

∥∥∥∥∥
∞∑
k=1

e−λk(τ−s)

(∫
Ω

(A(zj+1(s) − zj(s)))
T
ξj(q, s)ωkdq

)
ωk

−
∞∑
k=1

(∫
Ω

(A(zj+1(0) − zj(0)))
T
ξj(q, 0)ωkdq

)
ωk

∥∥∥∥∥
2

(L2(Ω))2

≤ O(t)

(4.4)

as t → 0+ uniformly over 0 ≤ s ≤ τ ≤ t.
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Indeed,

W(s, τ) ≤ 2

∞∑
k=1

e−2λk(τ−s)

×
[∫

Ω

(
(A(zj+1(s) − zj(s)))

T ξj(q, s) − (A(zj+1(0) − zj(0)))T ξj(q, 0)
)
ωkdq

]2

+ 2

N∑
k=1

(e−λk(τ−s) − 1)2
(∫

Ω

(A(zj+1(0) − zj(0)))
T
ξj(q, 0)ωkdq

)2

+ 2

∞∑
k=N+1

(e−2λk(τ−s) − 1)2
(∫

Ω

(A(zj+1(0) − zj(0)))
T
ξj(q, 0)ωkdq

)2

.

(4.5)

Step 3. Due to Bessel’s inequality,∥∥∥∥∥
∞∑
k=1

(∫
Ω

(A(zj+1(0) − zj(0)))
T
ξj(q, 0)ωkdq

)
ωk

∥∥∥∥∥
2

(L2(Ω))2

=

∞∑
k=1

(∫
Ω

(A(zj+1(0) − zj(0)))
T
ξj(q, 0)ωkdq

)2

≤‖ ξj(·, 0) (A(zj+1(0) − zj(0))) ‖2
(L2(Ω))2 .

Therefore for every ε > 0 there is an N = N(ε) such that the last sum on the right
in (4.5) can be made smaller than ε/3 regardless of 0 ≤ s ≤ τ ≤ t.

In turn, for this N(ε), determined by ε, there is a t∗ = t∗(ε) > 0 such that, by
continuity of the exponential function, the second sum on the right in (4.5) can be
made smaller than ε/3 as well for any 0 ≤ s ≤ τ ≤ t ≤ t∗.

Step 4. Now recall that continuity of solutions in time in Theorem 1.1 yields that

‖ A(zj+1(s) − zj(s)) −A(zj+1(0) − zj(0)) ‖R2= O(s)

as s → 0+. In turn, (1.7) implies that for any k = 1, . . . , n

‖ ξk(·, s) − ξk(·, 0) ‖2
L2(Ω)

=

∫
(Sr(zk(s))

⋃
(Sr(zk(0)))\(Sr(zk(s))

⋂
Sr(zk(0)))

dx = O(‖ zk(s) − zk(0) ‖R2) = O(s)

(4.6)
as s → 0+. Therefore, for any selected-above ε there is a t∗∗ = t∗∗(ε) > 0 such that
the first term on the right in (4.5) can be made smaller than ε/3 for any 0 ≤ s ≤ τ ≤
t ≤ t∗∗. Indeed,

∞∑
k=1

e−2λk(τ−s)

[∫
Ω

(
(A(zj+1(s) − zj(s)))

T ξj(q, s) − (A(zj+1(0) − zj(0)))T ξj(q, 0)
)
ωkdq

]2

≤
∞∑
k=1

[∫
Ω

(
(A(zj+1(s) − zj(s)))

T ξj(q, s) − (A(zj+1(0) − zj(0)))T ξj(q, 0)
)
ωkdq

]2

≤ ‖ ξj(·, s)(A(zj+1(s) − zj(s))) − ξj(·, 0)(A(zj+1(0) − zj(0))) ‖(L2(Ω))2= O(s)

as s → 0+ uniformly over 0 ≤ s ≤ τ ≤ t.
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Combining all of the above, we obtain that W(s, τ) in (4.4), (4.5) can be made
smaller than ε > 0 for any t ∈ [0,min{t∗, t∗∗}], which yields (4.4).

Step 5. Applying (4.6) to ξi(x, τ) in the first term in (4.3) and making use of
(4.4) yields the assertion of Lemma 4.1 for the first term in (4.2). The proof for the
second term is similar. This ends the proof of Lemma 4.1.

4.2. Auxiliary estimates. It is well known (e.g., [10]) that (as a special form
of the Fredholm equation) (4.1) admits a unique solution in (L2(0, T ))2n. This will
allow us to prove, making use of the classical methods, that dzi/dvj ’s indeed exist in
(L2(0, T ))2, and all the above calculations leading to (4.1) are valid. (Namely, one
needs, based on (3.5), to write the Volterra equations for the expressions Δzi/Δvj ’s
and then pass to the limit as Δvj tend to zero to obtain (4.1).)

Furthermore, it is easy to see that there exists a (“small”) T1 > 0 such that for
any T ∈ (0, T1]∥∥∥∥(dz1

dvj
, . . . ,

dzn
dvj

)∥∥∥∥
(L2(0,T ))2n

≤ C ‖ (Ξ1j , . . . ,Ξnj) ‖(L2(0,T ))2n ,(4.7)

where C > 0 is a (generic) positive constant independent of T ∈ [0, T1].
Moreover, since in (4.1) the integral terms, with (L2(0, T ))2-derivatives dzi/dvj ’s

in them and the right-hand sides, are actually continuous functions (which can be
shown, in particular, making use of Lemma 3.1), we have(

dz1

dvj
, . . . ,

dzn
dvj

)
∈ C([0, T ];R2n),

and, similar to (4.7), there exists a (“small”) T2 ∈ [0, T1] such that for any T ∈ (0, T2]∥∥∥∥(dz1

dvj
, . . . ,

dzn
dvj

)∥∥∥∥
C([0,T ];R2n)

≤ C ‖ (Ξ1, . . . ,Ξn) ‖C([0,T ];R2n),(4.8)

where, to simplify notation, we again used the generic notation C for the constant.
Applying (4.2) and (4.8) to (4.1), we obtain that∥∥∥∥(dz1

dvj
, . . . ,

dzn
dvj

)∥∥∥∥
C([0,T ];R2n)

≤ Lt2(4.9)

for some constant L > 0 as t → 0+.

5. Proof of Theorem 2.3: The inverse function theorem. From (4.1),
making use of (4.2), (4.9), and (2.7a)–(2.7b), we derive that

dzi(t)

dvj
=

t2

2mes {Sr(0)}

∫
Sr(zi(0))

Fj(x)dx + t2O(t)(5.1)

for j = 1, . . . , n− 1, t ∈ [0, T ].
Thus, the matrix (

dzi(t)

dvj
,
dzi(t)

dvl

)
is not degenerate under Assumption 2.1 of Theorem 2.3 for sufficiently small t. We
can now select any such “small” number t as a T > 0 in Proposition 2.1 and obtain
the statement of Theorem 2.3 from this proposition. This ends the proof of Theorem
2.3.
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6. Proof of Lemma 2.4 and supports of Fj’s. Let us show first (see Remark
2.1) that the projections Fj,1(x) and Fj,2(x) in (2.7a)–(2.7c) of the respective rotation
forces in (1.3) with supports in Sr(zj(0)) and Sr(zj+1(0)) can have support beyond
these two sets in Ω.

For example, let Fj,1(x) be supported only in Sr(zj(0)). Then, as a divergence-
free function on Ω, it is orthogonal to any function of type ∇p in (L2(Ω))2. Since the
latter functions include all constant vectors, this yields that∫

Sr(zj(0))

Fj,1(x)dx = 0.

In turn, since

Fj,1(x) + ∇wj,1 = (A(zj+1(0) − zj(0))) ξj(x, 0),

and ∇wj,1 is orthogonal to Fj,1 in (L2(Ω))2,∫
Ω

‖ Fj,1(x) ‖2
R2 dx = (A(zj+1(0) − zj(0)))

T
∫
Sr(zj(0))

Fj,1(x)dx = 0

or Fj,1(x) ≡ 0, and hence

∇wj,1 = ξj(x, 0) (A(zj+1(0) − zj(0))) ,

which means that wj,1 �∈ H1(Ω), contradicting (2.12).
Proof of Lemma 2.4. We will prove (2.10a) (the proof of (2.10b) is similar).

Without loss of generality, we can assume that some neighborhoods of Sr(zj(0)) and
Sr(zj+1(0)) do not overlap. We use below the traditional notation y = (y1, y2) for
a space variable to complement x = (x1, x2), where it is necessary. (Since the proof
below does not use (1.1)–(1.3), this should not cause confusion.)

Step 1: Green’s formula. Our plan is to evaluate the vector columns in
(2.8)/(2.9) by making use of (2.13)–(2.16) and the generalized version of the classical
Green’s formula representing solutions of the boundary problems (2.15), (2.16).

Consider the spectral problem

Δθ = αθ,
∂θ

∂ν
|∂Ω= 0.

Denote by {αk}∞k=1 its negative eigenvalues and by {θk}∞k=1 denote their respective
orthonormalized in L2(Ω) eigenfunctions. Then any solution to (2.15) admits the
following representation:

wj,1(x) =

∞∑
k=1

1√
−αk

(∫
Ω

ξj(q, 0) (A(zj+1(0) − zj(0)))
T ∇θk√

−αk
dq

)
θk(x) + K,

where K is any number. (Note that { ∇θk√
−αk

}∞k=1 is an orthonormal sequence in

(L2(Ω))2.) Since in (2.13) we deal only with ∇wj,1, without loss of generality we
can further assume that K = 0.

Let gj,n(x), n = 1, . . . , be a sequence of uniformly bounded infinitely many times
differentiable functions vanishing on ∂Ω which converge to ξj(x, 0) in L2(Ω). Con-
sider now the boundary problem (2.15) with div gj,n (A(zj+1(0) − zj(0)))’s in place
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of div ξj(x, 0) (A(zj+1(0) − zj(0))) on the right. Denote by wj,1,n the following par-
ticular sequence of solutions to this new boundary problem:

wj,1,n(x) =

∞∑
k=1

1√
−αk

(∫
Ω

gj,n(q) (A(zj+1(0) − zj(0)))
T ∇θk√

−αk
dq

)
θk(x), n = 1, . . . .

Note that wj,1,n → wj,1 as n → ∞ in H1(Ω) and hence in L2(∂Ω), due to the
continuous embedding of the former space into the latter (see (6.3) below and also
recall that we picked K = 0).

Recall now that the classical Green’s formula yields for wj,1,n’s

2πwj,1,n(x) = −
∫
∂Ω

wj,1,n(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)
dη

−
∫

Ω

Δwj,1,n(y)

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dy

= −
∫
∂Ω

wj,1,n(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)
dη

−
∫

Ω

div gj,n(y) (A(zj+1(0) − zj(0)))

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dy

= −
∫
∂Ω

wj,1,n(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2)

)
dη

+

∫
Ω

gj,n(y) (A(zj+1(0) − zj(0)))
T ∇

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dy,

where in the last step we used integration by parts. Here and below, when we write
∇ within some integral we mean that the corresponding differentiation is conducted
with respect to the integration variables.

Everywhere in this section we understand the improper integral over the given
domain E for a function with a discontinuity at x as the limit of the integrals over
E\Bs(x) as s → 0+, where Bs(x) is a disk of radius s with center at x. In particular,
by switching to the polar coordinates near the “bad point” (x1, x2), one can show the
last integral in the above is well defined, even if gj,n is replaced by any measurable
bounded function.

Making use of the above, we can pass to the limit in the space L2(Ω) as n → ∞
in the last two lines in the above expression for wj,1,n’s , which gives the following
formula:

2πwj,1(x) = −
∫
∂Ω

wj,1(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2)

)
dη

+

∫
Sr(zj(0))

(A(zj+1(0) − zj(0)))
T ∇

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dy.

(6.1a)
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Analogously,

2πwj,2(x) = −
∫
∂Ω

wj,2(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2)

)
dη

−
∫
Sr(zj+1(0))

(A(zj+1(0) − zj(0)))
T ∇

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dy.

(6.1b)

For the first column in (2.8) we have for j = i (see (2.7a), (2.14)):∫
Sr(zj(0))

Fjdx =

∫
Sr(zj(0))

Fj,1(x)dx +

∫
Sr(zj(0))

Fj,2(x)dx

=

∫
Sr(zj(0))

Fj,1(x)dx −
∫
Sr(zj(0))

∇wj,2(x)dx.

(6.2)

To evaluate (6.2), we intend to evaluate the gradients of the terms in (6.1a)–(6.1b)
and their integrals over required Sr(zj(0)) and Sr(zj+1(0)), and then to use (2.13).
Since the integration with respect to x in (2.10a) is taken over Sr(zj(0)), everywhere
below we consider only x ∈ Sr(zj(0)).

Step 2: Evaluation of the integrals of the gradients of the first terms
in (6.1a)–(6.1b) over Sr(zj(0)).

We begin with the gradient of the first term on the right in (6.1a). Recall first
that

‖ wj,1 ‖L2(∂Ω) ≤ L0 ‖ wj,1 ‖H1(Ω),(6.3)

where L0 depends on the ∂Ω.
Recall that in Step 1, we selected

wj,1(x) =

∞∑
k=1

1√
−αk

(∫
Ω

ξj(q, 0) (A(zj+1(0) − zj(0)))
T ∇θk√

−αk
dq

)
θk(x).

Hence, taking into account that { ∇θk√
−αk

}∞k=1 is an orthonormal sequence in (L2(Ω))2,

we derive from Bessel’s inequality that

‖ wj,1 ‖H1(Ω) ≤ C ‖ A(zj+1(0) − zj(0)) ‖R2 mes1/2 {Sr(0)},(6.4)

where C denotes a (generic) positive constant.
Furthermore, for i, j = 1, 2, i �= j, and x �= y,

∂

∂yi

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
=

xi − yi
(x1 − y1)2 + (x2 − y2)2

,(6.5)

∂2

∂yi∂xi

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
=

−(xi − yi)
2 + (xj − yj)

2

((x1 − y1)2 + (x2 − y2)2)2
,(6.6)

∂2

∂yi∂xj

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
=

−2(xi − yi)(xj − yj)

((x1 − y1)2 + (x2 − y2)2)2
.(6.7)

Denote next by d0 the shortest distance between the set Sr(zj(0))
⋃
Sr(zj+1(0))

and ∂Ω:

d0 = inf
x∈Sr(zj(0))

⋃
Sr(zj+1(0)),y∈∂Ω

√
(x1 − y1)2 + (x2 − y2)2.(6.8)
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Note first that, since Sr(zj(0)) is strictly separated from ∂Ω, all the denominators
in (6.5)–(6.7) are well defined for x ∈ Sr(zj(0)) and y ∈ ∂Ω. Therefore, in view of
(6.5)–(6.7), we have the following estimate:∥∥∥∥∥∇x

∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)∥∥∥∥∥
R2

≤ C0

d4
0

, x ∈ Sr(zj(0)), y ∈ ∂Ω,

where C0 is a positive constant and ∇x means that the gradient is taken with respect
to x (while ∂

∂ν is taken with respect to y). Denote

∇x
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)
= (h1(x, y), h2(x, y)).

Therefore, for the gradient of the first term in (6.1a), we have∥∥∥∥∥
∫
Sr(zj(0))

∇
∫
∂Ω

wj,1(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)
dηdx

∥∥∥∥∥
R2

=

⎡⎣(∫
Sr(zj(0))

∫
∂Ω

wj,1(η)h1(x, η)dηdx

)2

+

(∫
Sr(zj(0))

∫
∂Ω

wj,1(η)h2(x, η)dηdx

)2
⎤⎦1/2

≤
((

max
x∈Sr(zj(0)), y∈∂Ω

| h1(x, y) |
)2

+

(
max

x∈Sr(zj(0)), y∈∂Ω
| h2(x, y) |

)2
)1/2 ∫

Sr(zj(0))

∫
∂Ω

| wj,1(η) | dηdx

≤ 2C0

d4
0

∫
Sr(zj(0))

‖ wj,1 ‖L2(∂Ω) mes1/2 {∂Ω}dx

≤ 2L0
C0

d4
0

‖ wj,1 ‖H1(Ω) mes1/2 {∂Ω}
∫
Sr(zj(0))

dx

≤ 2L0CC0

d4
0

‖ A(zj+1(0) − zj(0)) ‖R2 mes3/2 {Sr(0)}mes1/2 {∂Ω},

(6.9)
where we used (6.3) and (6.4) in the last two steps. Analogously,∥∥∥∥∥

∫
Sr(zj(0))

∇
∫
∂Ω

wj,2(η)
∂

∂ν

(
ln

1√
(x1 − η1)2 + (x2 − η2)2

)
dηdx

∥∥∥∥∥
R2

≤ C

d4
0

‖ A(zj+1(0) − zj(0)) ‖R2 mes3/2 {Sr(0)}mes1/2 {∂Ω},
(6.10)

where C is a (generic) positive constant.
Step 3: Evaluation of the integral of the gradient of the second term in

(6.1b) over Sr(zj(0)). Denote next by d1 the distance between the set Sr(zj(0))
and Sr(zj+1(0)):

d1 = inf
x∈Sr(zj(0)),y∈Sr(zj+1(0))

√
(x1 − y1)2 + (x2 − y2)2.
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Then for d1 > 0, similar to (6.9), (6.10) from (6.1b), it follows that∥∥∥∥∥
∫
Sr(zj(0))

∇
∫
Sr(zj+1(0))

(A(zj+1(0) − zj(0)))
T ∇

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
dydx

∥∥∥∥∥
R2

≤ C

d4
1

‖ A(zj+1(0) − zj(0)) ‖R2 mes2 {Sr(0)},

(6.11)
where C is a (generic) positive constant.

Step 4: Evaluation of the integral of the gradient of the second term
in (6.1a) over Sr(zj(0)). Without loss of generality, we can assume that the origin
of our space coordinate system is located at zj(0), i.e., Sr(zj(0)) = Sr(0).

Consider any point x = (x1, x2) ∈ Sr(0) and introduce the following function of
x (or, more precisely, of ‖ x ‖R2):

ρ(x) =
1

2
min{‖ x ‖R2 , r− ‖ x ‖R2}.

Let Bρ(x)(x) be the disk of radius ρ(x) with center at x:

Bρ(x)(x) = {(y1, y2) | (x1 − y1)
2 + (x2 − y2)

2 < ρ2(x)}.

Note that Bρ(x)(x) ⊂ Sr(0) for any x ∈ Sr(0).
To simplify further notation, denote

A(zj+1(0) − zj(0)) = b = (b1, b2).

Then, from (6.1a), ∫
Sr(0)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

=

∫
Sr(0)\Bρ(x)(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

+

∫
Bρ(x)(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy.

Now note that, in view of (6.5),∫
Bρ(x)(x)

(
ln

1√
(x1 − y1)2 + (x2 − y2)2

)
y1

dy

= lim
s→0+

∫
Bρ(x)(x)\Bs(x)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy

= − lim
s→0+

∫ 2π

0

∫ ρ(x)

s

cos ζdρdζ = 0.

(6.12)

These and similar calculations for the integration with respect to y2 within the disk
Bρ(x) yield that∫

Bρ(x)(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dx = 0.
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Thus,

∫
Sr(0)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

=

∫
Sr(0)\Bρ(x)(x)

(
b1

x1 − y1

(x1 − y1)2 + (x2 − y2)2
+ b2

x2 − y2

(x1 − y1)2 + (x2 − y2)2

)
dy.

(6.13)

We intend now to calculate the gradient of the second term in (6.1a) represented
as in (6.13), assuming that Sr(zj(0)) = Sr(0) is as in (1.4b) (recall that we can assume
that zj(0) is the origin).

Fix any x = (x1, x2) ∈ Sr(0).
Due to our selection of h for the given x, for “small” Δx1,

Bρ((x1+Δx1,x2))((x1 + Δx1, x2)) ⊂ Sr(0).

Furthermore, notice that, as in the second equality in (6.12),

∫
Bρ((x1+Δx1,x2))((x1+Δx1,x2))\Bρ(x)((x+Δx1,x2))

(
ln

1√
(x1 + Δx1 − y1)2 + (x2 − y2)2

)
y1

dy = 0.

Taking this into account, we obtain from (6.13)

∂

∂x1

∫
Sr(0)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

= lim
Δx1→0

1

Δx1

(∫
Sr(0)\Bρ((x1+Δx1,x2))((x1+Δx1,x2))

bT∇

×
(

ln
1√

(x1 + Δx1 − y1)2 + (x2 − y2)2

)
dy

−
∫
Sr(0)\Bρ(x)(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

)

= lim
Δx1→0

1

Δx1

(∫
Sr(0)\Bρ(x)((x1+Δx1,x2))

bT∇
(

ln
1√

(x1 + Δx1 − y1)2 + (x2 − y2)2

)
dy

−
∫
Sr(0)\Bρ(x)(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dy

)

= b1
∂

∂x1

(∫
Sr(0)\Bρ(x)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy

)

+ b2
∂

∂x1

(∫
Sr(0)\Bρ(x)

x2 − y2

(x1 − y1)2 + (x2 − y2)2
dy

)
,

where ρ = ρ(x) in the last line is now treated as independent of x when calculating
the derivatives.
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Let us calculate the derivative in the first term in the last expression. To simplify
notation, we will also further write ρ instead of ρ(x).

∂

∂x1

∫
Sr(0)\Bρ(x)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy

=
∂

∂x1

{∫ x1−ρ

−r

∫ β(y1)

α(y1)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy2dy1

+

∫ r

x1+ρ

∫ β(y1)

α(y1)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy2dy1

+

∫ x1+ρ

x1−ρ

[∫ x2−
√

ρ2−(x1−y1)2

α(y1)

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy2

+

∫ β(y1)

x2+
√

ρ2−(x1−y1)2

x1 − y1

(x1 − y1)2 + (x2 − y2)2
dy2

]
dy1

}

=

∫
Sr(0)\Bρ(x)

−(x1 − y1)
2 + (x2 − y2)

2

((x1 − y1)2 + (x2 − y2)2)2
dy + 2

∫ x1+ρ

x1−ρ

(x1 − y1)
2

ρ2
√
h2 − (x1 − y1)2

dy1

=

∫
Sr(0)\Bρ(x)

−(x1 − y1)
2 + (x2 − y2)

2

((x1 − y1)2 + (x2 − y2)2)2
dy + π.

(6.14)

Similar calculations also yield

∂

∂x2

∫
Sr(0)\Bρ(x)

x2 − y2

(x1 − y1)2 + (x2 − y2)2
dy

=

∫
Sr(0)\Bρ(x)

−(x2 − y2)
2 + (x1 − y1)

2

((x1 − y1)2 + (x2 − y2)2)2
dy + π,(6.15)

∂

∂xj

∫
Sr(0)\Bρ(x)

xi − yi
(x1 − y1)2 + (x2 − y2)2

dy

= −
∫
Sr(0)\Bρ(x)

2
(xi − yi)(xj − yj)

((x1 − y1)2 + (x2 − y2)2)2
dy, i �= j, i, j = 1, 2.(6.16)

Then, since we assumed that Sr(0) is a disk, due to the symmetry of quadratic
function,∫

Sr(0)

∫
Sr(0)\Bρ(x)

−(xi − yi)
2 + (xj − yj)

2

((x1 − y1)2 + (x2 − y2)2)2
dydx = 0, i, j = 1, 2, i �= j,(6.17)

while due to the antisymmetry of the linear functions,∫
Sr(0)

∫
Sr(0)\Bρ(x)

(xi − yi)(xj − yj)

((x1 − y1)2 + (x2 − y2)2)2
dydx = 0, i, j = 1, 2, i �= j.(6.18)

Hence, in view of (6.14)–(6.16),∫
Sr(0)

∇
∫
Sr(0)\Bρ(x)

bT∇
(

ln
1√

(x1 − y1)2 + (x2 − y2)2

)
dydx = π mes {Sr(0)}b.

(6.19)
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Step 5: An approximation formula for (2.8). In view of (6.9)–(6.11) and
(6.19), we obtain from (6.1a) that for “small” r’s∥∥∥∥∥

∫
Sr(zj(0))

∇wj,1dx − mes {Sr(0)}
2

A(zj+1(0) − zj(0))

∥∥∥∥∥
R2

≤ C

min{d4
0, d

4
1}

‖ A(zj+1(0) − zj(0)) ‖R2 mes3/2 {Sr(0)},
(6.20)

where, again, C is a (generic) positive constant. Now, also making use of (6.1a)–
(6.1b), (6.9)–(6.11), (6.20), and (2.13)–(2.16), we obtain (2.10a) from (6.2), taking
into account that d0 and d1 do not decrease as r → 0+. This ends the proof of
Lemma 2.4.

Remark 6.1. Note that we essentially used the assumption that Sr(0) is a disk
only to establish (6.17)–(6.18). The qualitative estimates and formulas (6.9)–(6.16)
can be used to analyze the sufficient conditions of controllability in Theorems 2.3 and
2.5 along with formulas like (6.2) in other cases as well.

Acknowledgment. The author wishes to thank the referee for numerous helpful
comments and suggestions that resulted in substantial changes to the original version
of the manuscript.
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NULL CONTROLLABILITY WITH VANISHING ENERGY FOR
DISCRETE-TIME SYSTEMS IN HILBERT SPACE∗

AKIRA ICHIKAWA†

Abstract. In this paper null controllability with vanishing energy is considered for discrete-
time systems in Hilbert space. As in the case of continuous time systems, necessary and sufficient
conditions in terms of an algebraic Riccati equation are given. Then necessary and sufficient condi-
tions involving the spectrum of the system operator are given. Reachability and controllability with
vanishing energy are also considered, and necessary and sufficient conditions for them are given.
Finally applications to sampled-data systems, systems with impulse control, and periodic systems
are discussed.

Key words. discrete-time systems, null controllability, optimal regulator, Riccati equation
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1. Introduction. Consider the linear system

ẋ = Ax + Bu, x(0) = x0 ∈ H,(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup S(t) in a
Hilbert space H, u is a control in some Hilbert space U , and B ∈ L(U,H) is the
space of bounded linear operators from U into H. For each locally square integrable
function u : [0,∞) → U , define the solution in the mild sense

x(t;x0, u) = S(t)x0 +

∫ t

0

S(t− r)Bu(r)dr, t ≥ 0.

We denote by | · | the norm of vectors and by σ(A) the spectrum of the operator A.
The following definitions are introduced in [8].

Definition 1.1. (a) The system (1.1) is said to be null controllable with vanishing
energy (NCVE for short) if for each initial x(0) = x0 there exists a sequence of pairs
(TN , uN ), 0 < TN ↑ ∞, uN ∈ L2(0, TN ;U) such that x(TN ;x0, uN ) = 0 and

lim
N→∞

∫ TN

0

|uN (t)|2dt = 0.(1.2)

(b) The system (1.1) is said to be exactly controllable with vanishing energy
(ECV E) if for any pair (x0, x1) of initial and final states there exists a sequence
of pairs (TN , uN ), 0 < TN ↑ ∞, uN ∈ L2(0, TN ;U) such that x(TN ;x0, uN ) = x1 and
(1.2) holds.

(A,B) is said to be NCVE (ECVE) if the system (1.1) is NCVE (ECVE). The
following theorem gives necessary and sufficient conditions.

∗Received by the editors April 19, 2006; accepted for publication (in revised form) January 23,
2007, published electronically May 7, 2007.
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Theorem 1.2. (A,B) is NCVE if and only if
(a) it is null controllable on some interval [0, τ ], and
(b) X = 0 is the unique solution of the algebraic Riccati equation (ARE)

A∗X + XA−XBB∗X = 0

in the class of nonnegative operators.
Priola and Zabczyk [8] showed that condition (b) is necessary and sufficient for

NCVE when (A,B) is null controllable on some interval [0, τ ]. The necessity of (a)
was then shown by van Neerven [7].

Under the following two assumptions Priola and Zabczyk [8] obtained more ex-
plicit necessary and sufficient conditions.

Hypothesis 1. There exists a sequence {λn} ⊂ σ(A) such that λn is isolated in
σ(A) and

lim
n→∞

Re(λn) = s(A) = sup{Re(λ) : λ ∈ σ(A)}.

Hypothesis 2. There exist S(t)-invariant subspaces Hs and Hu such that
(a) H = Hs ⊕Hu,
(b) A on Hs is exponentially stable, and
(c) the set of all generalized eigenvectors of A contained in Hu is linearly dense

in Hu.
Theorem 1.3. Suppose that Hypotheses 1 and 2 hold. Then (A,B) is NCVE if

and only if
(a) (A,B) is null controllable on some interval [0, τ ], and
(b) Re(λ) ≤ 0 for any λ ∈ σ(A).
Theorem 1.4. Suppose that Hypotheses 1 and 2 hold. Suppose further that S(t)

is a strongly continuous group on H. Then (A,B) is ECVE if and only if
(a) (A,B) is exactly controllable on some interval [0, τ ], and
(b) Re(λ) = 0 for any λ ∈ σ(A).
The proof of Theorem 1.2 is based on the theory of optimal quadratic control.

For the proof of necessity of Theorem 1.3 the relation between the Riccati equation
and the controllability Gramian of the pair (−A,B) is used, while for sufficiency the
Riccati equation is directly used. Theorem 1.4 is a consequence of Theorem 1.3 and
the fact that (−A,−B) is also NCVE.

If we fix x0 = 0 in (b) of Definition 1.1, (A,B) is said to be reachable with
vanishing energy (RVE). It is easy to see that (A,B) is ECVE if and only if it is
NCVE and RVE. Suppose that S(t) is a strongly continuous group, and let PT be the
controllability operator defined by

PTx =

∫ T

0

S(t)BB∗S∗(t)xdt.

It is coercive (positive and boundedly invertible) for T ≥ τ , if (A,B) is exactly
controllable on [0, τ ]. The control with minimum norm in L2(0, T ;U) such that
x(T ; 0, u) = x1 is given by

ûT = B∗S∗(T − t)P−1
T x1

[8] and its norm by

‖ ûT ‖2= 〈x1, P
−1
T x1〉

1
2 .(1.3)
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Lemma 1.5. (A,B) is RVE if and only if
(a) (A,B) is exactly controllable on some interval [0, τ ], and
(b) P−1

T → 0 strongly as T → ∞.
Proof. The proof of necessity of (a) is based on the Baire category theorem and

is similar to that of Theorem 1.2(a) given in [7]. The rest follows from (1.3).
In this paper we shall establish the discrete-time versions of the theorems above. It

is important in its own right but also useful when we consider sampled-data systems
with zero-order hold, systems with impulse control, and periodic systems. In the
discrete-time case the proof of necessity of Theorem 1.3 is more involved, since the
Riccati equation is more complicated for discrete-time systems. Lemma 2.5 in section
2 fills this gap and enables us to extend Theorem 1.3. The extension of Theorem 1.4
requires the invertibility of A. It is also useful to introduce RVE. In section 2 we give
preliminaries concerning necessary notions of discrete-time systems. In section 3 we
consider necessary and sufficient conditions for NCVE and extend Theorems 1.2 and
1.3. In section 4 we introduce RVE and extend Theorem 1.4. Finally in section 5
we apply NCVE and ECVE results to sampled-data systems, systems with impulse
control, and periodic systems.

2. Preliminaries. Consider the discrete-time system

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,(2.1)

where A ∈ L(H), B ∈ L(U,H), x ∈ H, and u ∈ U . We collect basic definitions and
some useful results for (2.1) as in the finite dimensional case [1].

Definition 2.1. (a) (A,B) is null controllable on [0,K] if for any x0 there is a
sequence of control inputs u = {u(0), u(1), . . . , u(K − 1)} such that x(K;x0, u) = 0.

(b) (A,B) is reachable on [0,K] if for every state x1 there is a sequence of control
inputs u = {u(0), u(1), . . . , u(K − 1)} such that x(K; 0, u) = x1.

(c) (A,B) is exactly controllable on [0,K] if for every pair (x0, x1) there is a
sequence of control inputs u = {u(0), u(1), . . . , u(K− 1)} such that x(K;x0, u) = x1.

Lemma 2.2. (a) (A,B) is reachable on [0,K] if and only if it is exactly control-
lable on [0,K]. In this case it is null controllable on [0,K].

(b) If A is invertible and (A,B) is null controllable on [0,K], then (A,B) is
exactly controllable on [0,K].

Lemma 2.3. The following statements are equivalent:
(a) (A,B) is null controllable on [0,K].
(b) R(AK) ⊂ R(MK), where MK = [B,AB, . . . , AK−1B] is the reachability op-

erator.
(c) |M∗

Kx| ≥ a|(A∗)Kx| for some a > 0.

If these conditions hold, the operator
[

B∗

λI − A∗

]
is 1 to 1 for any nonzero λ.

Proof. Consider the response of the system (2.1) with initial condition x0 and
control u = {u(0), u(1), . . . , u(K − 1)}. Then

x(K;x0, u) = AKx0 +

k−1∑
j=0

Ak−j−1Bu(j),

and the second term on the right-hand side lies in R(MK), the range of MK . Hence
(a) is equivalent to (b). The equivalence of (b) and (c) follows from Corollary 3.5 of
[3]. If there exists a nonzero q such that B∗q = 0 and λq = A∗q, it contradicts to (c)
with x = q.
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Lemma 2.4. Suppose A is exponentially stable [5], i.e., |Ak| ≤ Mρk, 0 < ρ < 1,
and that (A,B) is exactly controllable on [0,K]. Then there exists a coercive operator
Y such that

Y = AY A∗ + BB∗.

Y is called the controllability Gramian of (A,B).
Proof. By Lemma 2.2 (A,B) is reachable on [0,K]. Hence MK = [B,AB, . . . , AK−1B]

is onto and MKM∗
K ≥ aI for some a > 0. Define

Y = lim
k→∞

MkM
∗
k = lim

k→∞

k−1∑
j=0

AjBB∗(A∗)j .

The right-hand side converges in the uniform operator topology, and Y ≥ MKM∗
K ≥

aI. Hence Y is coercive. Moreover

Y = BB∗ + A

∞∑
j=0

AjBB∗(A∗)jA∗ = BB∗ + AY A∗.

Lemma 2.5. Suppose A is invertible and (A,B) is exactly controllable on [0,K].
Then (A−1, A−1B) is exactly controllable on [0,K]. If A−1 is exponentially stable,
then the inverse of its controllability Gramian Y exists and satisfies the following
ARE:

X = A∗XA−A∗XB(I + B∗XB)−1B∗XA.(2.2)

Proof. Since (A,B) is exactly controllable on [0,K], so is (A−1, A−1B). In fact

[A−1B,A−1(A−1B), . . . , (A−1)K−1(A−1B)]

= (A−1)K [AK−1B, . . . , AB,B].

Now by definition

Y = A−1Y (A−1)∗ + A−1BB∗(A−1)∗,

which implies

AY A∗ = Y + BB∗.

By Lemma 2.4, Y is coercive and hence invertible. As in Lemma 3.18 in [4], we obtain

(A−1)∗Y −1A−1 = (Y + BB∗)−1

= Y −1(I + BB∗Y −1)−1

= Y −1[I − (I + BB∗Y −1)−1BB∗Y −1]

= Y −1[I −B(I + B∗Y −1B)−1B∗Y −1]

= Y −1 − Y −1B(I + B∗Y −1B)−1B∗Y −1,

where for the second equality we have used the equality Y +BB∗ = (I +BB∗Y −1)Y ,
and for the fourth equality the familiar identity M(I + NM)−1 = (I + MN)−1M is
used. Hence we obtain

Y −1 = A∗Y −1A−A∗Y −1B(I + B∗Y −1B)−1B∗Y −1A,

and Y −1 is a coercive solution of the ARE (2.2).
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3. Null controllability with vanishing energy. Consider the system (2.1)

x(k + 1) = Ax(k) + Bu(k), x(0) = x0.

We shall define NCVE for this system.
Definition 3.1. (A,B) is NCVE if for each x0 there exists a sequence of pairs

(kN , uN ), kN a positive integer ↑ ∞, uN ∈ l2(0, kN−1;U), such that x(kN ;x0, uN ) = 0
and

lim
N→∞

‖ uN ‖2= 0,

where l2(0, kN − 1;U) is the set of vectors u = {u(0), u(1), . . . , u(kN − 1)}, u(k) ∈ U ,
with norm

‖ u ‖2=

(
kN−1∑
k=0

|u(k)|2
) 1

2

.

Lemma 3.2. If (A,B) is NCVE, then (A,B) is null controllable on some interval
[0,K].

Proof. The proof is based on the Baire category theorem and similar to the proof
of Theorem 3.1 in [7].

First we shall prove the following.
Theorem 3.3. (A,B) is NCVE if and only if
(a) (A,B) is null controllable on some interval [0,K], and
(b) X = 0 is the unique solution of the ARE (2.2)

X = A∗XA−A∗XB(I + B∗XB)−1B∗XA

in the class of nonnegative operators.
We modify Hypotheses 1 and 2 as follows.
Hypothesis 3. There exists a sequence {λn} ⊂ σ(A) such that λn is isolated in

σ(A) and

lim
n→∞

|λn| = s(A) = sup{|λ| : λ ∈ σ(A)}.

Hypothesis 4. There exist A-invariant subspaces Hs and Hu such that
(a) H = Hs ⊕Hu,
(b) (b) A on Hs is exponentially stable, and
(c) the set of all generalized eigenvectors of A contained in Hu is linearly dense

in Hu.
Under Hypotheses 3 and 4 we shall prove the following.
Theorem 3.4. (A,B) is NCVE if and only if
(a) (A,B) is null controllable on some interval [0,K], and
(b) |λ| ≤ 1 for any λ ∈ σ(A).
Proof of Theorem 3.3. We shall follow the proof of Theorem 1.2 in [8]. We first

show necessity. Consider the quadratic cost associated with (2.1) on [0, kN − 1]:

J(u;x0, kN , Q) =

kN−1∑
k=0

|u(k)|2 + 〈x(kN ), Qx(kN )〉,
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where Q ≥ 0. It is known [6], [9], [10] that the optimal control minimizing the cost
function is given by the feedback law

ū(k) = −[I + B∗X(k + 1)B]−1B∗X(k + 1)Ax(k),

where X(k) = X(k; kN , Q) is the sequence of nonnegative operators defined by the
Riccati equation

X(k) = A∗X(k + 1)A−A∗X(k + 1)B[I + B∗X(k + 1)B]−1B∗X(k + 1)A,(3.1)

X(kN ) = Q.

Moreover,

J(ū;x0, kN , Q) = 〈x0, X(0; kN , Q)x0〉.

Now we consider the case Q = qI, q > 0, and let q → ∞. Since (A,B) is
null controllable on [0,K], for each x0 and kN ≥ K there exists a control u ∈
l2(0, kN − 1;U) such that x(kN ;x0, u) = 0. Let uN be the control with mini-
mum norm among them. Then it is given by uN = −M̄∗

N (M̄NM̄∗
N )−1AkNx0, where

M̄N = [AkN−1B, . . . , AB,B]. Since (A,B) is NCVE, limN→∞ ‖ uN ‖2
2= 0 for each

x0, and hence there exists a constant a > 0 such that ‖ uN ‖2
2≤ a|x0|2. Notice that

J(ū;x0, kN , qI) = 〈x0, X(0; kN , qI)x0〉 ≤ J(uN ;x0, kN , qI) =‖ uN ‖2
2≤ a|x0|2,

which yields X(0; kN , qI) ≤ aI. Since X(0; kN , qI) is monotone increasing in q, there
exists a limit as q → ∞, denoted by X(0; kN ), i.e., X(0; kN ) = limq→∞ X(0; kN , qI).
Let ūq be the optimal control for J(u;x0, kN , qI). Then it is uniformly bounded in
q. Hence there exists a subsequence qj such that ūqj converges weakly to some limit
ū∞. Then x(kN ;x0, ū∞) = 0 and ‖ ū∞ ‖2

2≤ 〈x0, X(0; kN )x0〉 ≤‖ uN ‖2
2. But uN is

the control with minimum norm, and hence ‖ ū∞ ‖2
2= 〈x0, X(0; kN )x0〉 =‖ uN ‖2

2.
Now suppose that (A,B) is null controllable on [0,K], K ≤ kN . Since X(k; kN , qI) =
X(0; kN − k, qI), the following limit exists:

lim
q→∞

X(k; kN , qI) = lim
q→∞

X(0; kN − k, qI) ≡ X(k; kN ) for k ≤ kN −K.

Moreover, from (3.1), X(k; kN ), k ≤ kN −K, satisfies the Riccati equation

X(k) = A∗X(k + 1)A−A∗X(k + 1)B[I + B∗X(k + 1)B]−1B∗X(k + 1)A,

X(kN −K) = X(kN −K; kN ).

Since 〈x0, X(0; kN )x0〉 =‖ uN ‖2
2, X(0; kN ) is decreasing in N and has a nonneg-

ative limit

X∞ = lim
N→∞

X(0; kN ).

For k ≤ N−K we know X(k; kN ) = X(0; kN−k), and hence limN→∞ X(k; kN ) = X∞.
Letting N → ∞ in the Riccati equation above we see that X∞ satisfies the ARE (2.2).
Recall that (A,B) is NCVE, and hence

〈x0, X∞x0〉 ≤ 〈x0, X(0; kN )x0〉 =‖ uN ‖2
2→ 0
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and X∞ = 0. Now let X be any nonnegative solution of the ARE (2.2). We shall show
that X ≤ X∞ to conclude X = 0. For this purpose consider the Riccati difference
equation (3.1) with Q = X. Then X(k) = X is a solution. Thus

J(ūX ;x0, kN , X) = 〈x0, Xx0〉 ≤ J(ūq;x0, kN , qI) = 〈x0, X(0; kN , qI)x0〉

for q ≥‖ X ‖, where ūX and ūq denote the optimal controls for the corresponding
cost functions. Now passing to the limit q → ∞ and to the limit N → ∞ we obtain
〈x0, Xx0〉 ≤ 〈x0, X(0; kN )x0〉 and 〈x0, Xx0〉 ≤ 〈x0, X∞x0〉, respectively. Thus we
have shown X = 0, which completes the proof of necessity.

To show sufficiency we recall that ‖ uN ‖2
2= 〈x0, X(0; kN )x0〉 → 〈x0, X∞x0〉. But

by condition (b) X∞ = 0, and hence ‖ uN ‖2→ 0 and (A,B) is NCVE.
Proof of Theorem 3.4. We shall follow the proof of Theorem 1.3 in [8]. To

show necessity we suppose that |λ| > 1 for some λ ∈ σ(A). Then by Hypothesis 3
there exists an isolated element μ ∈ σ(A), with |μ| > 1. Consider the spectral Riesz
projection P1 associated with μ

P1x =
1

2πi

∫
γ

(λI −A)−1xdλ, x ∈ H,

where γ is a circle containing μ in its interior and σ(A)/{μ} in its exterior. Using
projections P1 and P2 = I −P1, we can split (2.1) into two subsystems in E1 and E2,
respectively:

x1(k + 1) = A1x1(k) + B1u(k),

x2(k + 1) = A2x2(k) + B2u(k),

where Ei = PiH, Ai is the restriction of A to Ei, and Bi = PiB. The subspaces Ei are
A-invariant and H = E1 ⊕ E2. Since (2.1) is null controllable, (A1, B1) and (A2, B2)
are null controllable. Since σ(A1) = {μ}, it is invertible, and (A1, B1) is exactly
controllable by Lemma 2.2. Hence (A−1

1 , A−1
1 B1) is exactly controllable. Since A−1

1 is
exponentialy stable, by Lemma 2.4 it possesses a coercive controllability Gramian Y

Y = A−1
1 Y (A−1

1 )∗ + A−1
1 B1B

∗
1(A−1

1 )∗.

By Lemma 2.5, X1 = Y −1 is a coercive solution of the ARE

X = A∗
1XA1 −A∗

1XB1(I + B∗
1XB1)

−1B∗
1XA1.

Then X = IHX1P1 is a nontrivial nonnegative solution of the ARE for (2.2),
where IH is the injection of E1 into H. This contradicts Theorem 3.3 and hence
|λ| ≤ 1 for any λ ∈ σ(A).

To show sufficiency let X be any nonnegative solution of the ARE (2.2). Since
H = Hs ⊕Hu, it is suficient to show X = 0 on both Hs and Hu. As in the proof of
Theorem 3.3 consider (3.1) with Q = X, and recall the inequality

〈x0, Xx0〉 = J(ūX ;x0, kN , X) ≤ J(0;x0, kN , X) = 〈AkNx0, XAkNx0〉 → 0, x0 ∈ Hs.

Hence Xx0 = 0 for any x0 ∈ Hs. To show Xx0 = 0 for any x0 ∈ Hu, let λ ∈ σ(A)
with |λ| ≤ 1, which corresponds to an eigenvector p, i.e., Ap = λp. Then

〈p,Xp〉 = 〈p,A∗XAp〉 − 〈p,A∗XB(I + B∗XB)−1B∗XAp〉
= |λ|2[〈p,Xp〉 − 〈p,XB(I + B∗XB)−1B∗Xp〉].(3.2)
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If |λ| < 1, then (3.2) yields Xp = 0. If |λ| = 1, then it yields B∗Xp = 0. In this case
we obtain Xp = λA∗Xp from the ARE (2.2). Hence[

B∗
1
λI −A∗

]
Xp = 0.

By Lemma 2.3 the operator above is one to one and hence Xp = 0. Thus for any
eigenvector of A we have shown Xp = 0. We shall show that Xq = 0 for any
generalized eigenvector of A, which would then conclude X = 0. Now let q ∈ N((λI−
A)2), i.e., (λI − A)2q = 0. Then q1 = (λI − A)q satisfies (λI − A)q1 = 0. Repeating
the arguments above we conclude Xq1 = 0. Hence XAq = λXq, and from the ARE
(2.2) we obtain

〈q,Xq〉 = 〈q,A∗XAq〉 − 〈q,A∗XB(I + B∗XB)−1B∗XAq〉
= |λ|2[〈q,Xq〉 − 〈q,XB(I + B∗XB)−1B∗Xq〉].

This is the same with (3.2) and hence Xq = 0. Repeating this process we conclude
Xq = 0 for any generalized eigenvector of A satisfying (λI −A)kq = 0. Hence X = 0
on Hu. Thus X = 0 on H, and by Theorem 3.3 (A,B) is NCVE.

In [7] the reproducing kernel Hilbert space associated with the controllability
operator was introduced, and Theorem 1.2 was extended to the case where H is a
Banach space. The extension of Theorem 3.3 to a Banach space is also possible using
the Riccati equation directly.

4. Exact controllability with vanishing energy. First we introduce RVE,
which is useful to consider ECVE.

Definition 4.1. (A,B) is RVE if for each x1 there exists a sequence of pairs
(kN , uN ), kN ↑ ∞, uN ∈ l2(0, kN − 1;U), such that x(kN ; 0, uN ) = x1 and

lim
N→∞

‖ uN ‖2= 0.

Lemma 4.2. Suppose (A,B) is RVE. Then 0 /∈ σp(A
∗). If A is invertible, then

(A,B) is RVE if and only if (A−1, A−1B) is NCVE.
Proof. Suppose 0 ∈ σp(A

∗) and A∗h = 0, with |h| = 1. If (A,B) is reachable on
[0,K], then for some sequence u = (uj)

K−1∑
j=0

AK−j−1Buj = h.

Then

1 = 〈h, h〉 =

〈
h,

K−1∑
j=0

AK−j−1Buj

〉

=
K−1∑
j=0

〈B∗(A∗)K−j−1h, uj〉

= 〈B∗h, uK−1〉 ≤ |B∗h||uK−1|.

Hence |uK−1| ≥ 1
|B∗h| , and (A,B) cannot be RVE. Now assume that A is invertible.

Then the system (2.1) can be written as

x(k) = A−1x(k + 1) −A−1Bu(k).
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Thus if (A,B) is RVE, then by redefining u and x we can easily see that

x̃(k + 1) = A−1x̃(k) + A−1Bũ(k)

is NCVE. The converse is also true, since we can reverse the arguments.
From Lemma 4.2 we immediately obtain the following.
Theorem 4.3. Suppose A is invertible and A−1 satisfies Hypotheses 3 and 4.

Then (A,B) is RVE if and only if
(a) (A,B) is exactly controllable on some interval [0,K], and
(b) |λ| ≥ 1 for any λ ∈ σ(A).
Now we are ready to extend Theorem 1.4.
Theorem 4.4. Suppose A and A−1 satisfy Hypotheses 3 and 4. Then (A,B) is

ECVE if and only if
(a) (A,B) is exactly controllable on some interval [0,K], and
(b) |λ| = 1 for any λ ∈ σ(A).
Proof. Note that (A,B) is ECVE if and only if it is NCVE and RVE. Hence the

proof follows from Theorems 3.4 and 4.3.

5. Applications. In this section we apply our theorems to sampled-data sys-
tems, systems with impulse control, and periodic systems. First we consider a sampled-
data system with zero-order hold [2]

ẋ = Ax + Bu,

where A is the infinitesimal generator of a strongly continuous semigroup S(t) ∈ L(H),
B ∈ L(U,H), and u is a control given by

u(t) = u(kτ), kτ ≤ t < (k + 1)τ.

Then at times kτ we have the following:

x((k + 1)τ) = S(τ)x(kτ) +

∫ τ

0

S(r)Bdru(kτ)

≡ Adx(kτ) + Bdu(kτ).

The sampled-data system is said to be NCVE (ECVE) if it is NCVE (ECVE) in the
sense of Definition 1.1 with TN = Nτ . Note that the sampled-data system is NCVE
(ECVE) if and only if (Ad, Bd) is NCVE (ECVE). Hence, if Ad satisfies Hypotheses
3 and 4, then by Theorem 3.4 the sampled-data system is NCVE if and only if

(a) (Ad, Bd) is null controllable on some interval [0,K], and
(b) |λ| ≤ 1 for any λ ∈ σ(Ad).

If S(t) is a group and S(τ)−1 satisfies Hypotheses 3 and 4, then the sampled-data
system is ECVE if and only if

(a) (Ad, Bd) is exactly controllable on some interval [0,K], and
(b) |λ| = 1 for any λ ∈ σ(Ad).
Next we consider the system (1.1) with impulse control u(k− 1)δ(t− kτ) at time

kτ , k ≥ 1. Then the state x(kτ) after the impulse u(k − 1)δ(t− kτ) satisfies

x((k + 1)τ) = S(τ)x(kτ) + Bu(k).

Lemma 5.1. The system (1.2) with impulse control is NCVE if and only if
(S(τ), B) is NCVE.



692 AKIRA ICHIKAWA

Lemma 5.2. Suppose S(t) is a group and S(τ)−1 satisfies Hypotheses 3 and 4.
Then the system (1.2) with impulse control is ECVE if and only if (S(τ), B) is ECVE.

Proof. Note that the system (1.2) with impulse control is ECVE if and only if it
is NCVE and RVE. Let Kτ ≤ T < (K+1)τ , and consider the controllability operator

P imp
T = S(T −Kτ)

⎛⎝ K∑
j=1

S(τ)K−jBB∗(S(τ)∗)K−j

⎞⎠S∗(T −Kτ)

= S(T −Kτ)P imp
Kτ S∗(T −Kτ).

Hence (P imp
T )−1 → 0 strongly if and only if (P imp

Kτ )−1 → 0 strongly, and as in Lemma
1.5 the assertion follows.

Now we have the following.
Theorem 5.3. (1) The system (1.2) with impulse control is NCVE if and only if
(a) (S(τ), B) is null controllable on some interval [0,K], and
(b) |λ| ≤ 1 for any λ ∈ σ(S(τ)).
(2) Suppose S(t) is a group and S(τ)−1 satisfies Hypotheses 3 and 4. Then the

system (1.2) with impulse control is ECVE if and only if
(a) (S(τ), B) is exactly controllable on some interval [0,K], and
(b) |λ| = 1 for any λ ∈ σ(S(τ)).
Finally consider the T -periodic system

ẋ = A(t)x + B(t)u, x(t0) = x0, 0 ≤ t0 < T,(5.1)

where A(t) is T -periodic and generates an evolution operator S(t, s), and B(t) is
T -periodic and strongly continuous. Then

x((k + 1)T + t0) = S(T + t0, t0)x(kT + t0) +

∫ T+t0

t0

S(T + t0, r)B(r)u(k, r)dr

≡ S(T + t0, t0)x(kT + t0) + Bdu(k),(5.2)

where we have used the property S((k+1)T + t0, kT +r) = S(T + t0, r), and u(k, r) =
u(kT + r), for t0 ≤ r < t0 +T , u(k) = u(k, ·) ∈ L2(t0, t0 +T ;U), and Bd is a bounded
linear operator in L(L2(t0, t0 + T ;U), H). Notice that the periodic system is NCVE
if and only if (S(T + t0, t0), Bd) is NCVE. Then by Theorem 3.4 the periodic system
is NCVE if and only if

(a) it is null controllable on some interval [t0, τ ], and
(b) |λ| ≤ 1 for any λ ∈ σ(S(T + t0, t0)).
Suppose S(t, s) is a two-parameter group so that S(T + t0, t0) is boundedly

invertible.
Lemma 5.4. The periodic system (5.1) is ECVE if and only if the discrete-time

system (5.2) is ECVE.
Proof. Consider the controllability operator

PLx =

∫ L

t0

S(L, r)B(r)B(r)∗S∗(L, r)xdr.

Let KT + t0 ≤ L < (K+1)T + t0. Then αP(K+1)T ≥ PL ≥ βPKT for some α > 0 and

β > 0. Hence P−1
L → 0 strongly if and only if (PKT )−1 → 0 strongly. By a periodic

version of Lemma 1.5 the assertion follows.
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Lemma 5.5.

S(T + t0, t0) = S(t0, 0)S(T, 0)S(t0, 0)−1

and σ(S(T + t0, t0)) = σ(S(T, 0)).
Suppose further S(T +t0, t0)

−1 satisfies Hypotheses 3 and 4. Then from Theorem
4.4 we obtain the following.

Theorem 5.6. The periodic system (5.1) is ECVE if and only if
(a) it is exactly controllable on some interval [t0, τ ], and
(b) |λ| = 1 for any λ ∈ σ(S(T, 0)).

Acknowledgment. The author thanks the anonymous referees for careful read-
ing of the mauscript and many helpful comments on the paper.
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IDENTIFIABILITY OF PIECEWISE CONSTANT CONDUCTIVITY
IN A HEAT CONDUCTION PROCESS∗

SEMION GUTMAN† AND JUNHONG HA‡

Abstract. We study the identification and identifiability problems for heat conduction in a
nonhomogeneous rod. The identifiability results are established for two different sets of observations.
Given a sequence of distributed type observations, the identifiability is proved for conductivities in
a piecewise smooth class of functions. In the case of observations taken at finitely many points
the identifiability is established for piecewise constant conductivities. Such conductivities can be
uniquely identified using the proposed marching algorithm.
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1. Introduction. Consider the heat conduction in a nonhomogeneous insulated
rod of a unit length, with the ends kept at zero temperature at all times. Our main
interest is in the identification and identifiability of the discontinuous conductivity
(thermal diffusivity) coefficient a(x), 0 ≤ x ≤ 1. The identification problem consists
of finding a conductivity a(x) in an admissible set K for which the temperature u(x, t)
fits given observations in a prescribed sense. Under a wide range of conditions one
can establish the continuity of the objective function J(a) representing the best fit
to the observations. Then the existence of the best fit to data conductivity follows
if the admissible set K is compact in the appropriate topology. However, such an
approach usually does not guarantee the uniqueness of the found conductivity a(x).
Establishing such a uniqueness is referred to as the identifiability problem. If the
conductivity is identifiable and one can design an algorithm for its reconstruction,
then we say that a is constructively identifiable.

From physical considerations the conductivity coefficients a(x) are assumed to
be in

Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤ μ}.(1.1)

The temperature u(a) = u(x, t; a) inside the rod satisfies

ut − (a(x)ux)x = 0, Q = (0, 1) × (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(x, 0) = g(x), x ∈ (0, 1),

(1.2)

where g ∈ L2(0, 1). In general, the solution of (1.2) is understood in the weak
sense. According to [11] for any a ∈ Aad there exists a unique weak solution u(a) ∈
L2(0, 1;H1

0 (0, 1)) ∩C([0, 1];L2(0, 1)), and so the map a → u(a) is well defined. More-
over, this map is continuous from Aad equipped with the L2(0, 1) topology into
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C([0, T ];L2(0, 1)). In fact, in [11] these results are established for multidimensional
parabolic problems.

The identification (parameter estimation) problem for (1.2) is as follows: Find a
conductivity a ∈ Aad such that the solution u(a) of (1.2) fits a given observation z of
the heat conduction process. For example, given z ∈ L2(0, 1) one defines

J(a) = ‖u(x, T ; a) − z(x)‖L2(0,1).(1.3)

Then the parameter estimation problem for (1.2) is reduced to the minimization of the
objective function J over the admissible set Aad or its subset Kad: Find a ∈ Kad ⊂ Aad

such that

J(ā) = inf{J(a) : a ∈ Kad}.(1.4)

The above-mentioned properties of the solutions u(a) imply that the objective
function J(a) is continuous on Aad ∩ L2(0, 1). Therefore the identification problem
(1.4) has a solution if Aad is compact in L2(0, 1). One such choice is Kad = {a ∈
Aad ∩H1(0, 1) : ‖a‖H1 ≤ constant}; see [8]. However, a ∈ H1(0, 1) implies that the
conductivity is continuous. Therefore this choice of Kad is not suitable for the study
of the identification problems with discontinuous coefficients.

To overcome this difficulty we have shown in [5] (in a multidimensional case) that
one can take for Kad the set of functions in Aad which have a uniformly bounded
variation. Such a set Kad is compact in L2(0, 1), and the existence of solutions to
the identification problem (1.4) follows. See [5] for additional details and numerical
experiments for 2D parameter identification problems. A variety of identification
problems is studied in [1] under very general assumptions on the problem’s parameters.

The identifiability questions for partial differential equations are much more dif-
ficult, and there are just a few available results. Suppose that one is given an obser-
vation z(t) = u(p, t; a) of the heat conduction process (1.2) for t1 < t < t2 at some
observation point 0 < p < 1. From the series solution for (1.2) and the uniqueness
of the Dirichlet series expansion (see section 2), one can, in principle, recover all of
the eigenvalues of the associated Sturm–Liouville problem. If one also knows the
eigenvalues for the heat conduction process with the same coefficient a and different
boundary conditions, then the classical results of Gelfand and Levitan [4] show that
smooth coefficients a(x) can be uniquely identified from the knowledge of the two
spectral sequences. Also, if the entire spectral function is known (i.e., the eigenvalues
and the values of the derivatives of the normalized eigenfunctions at x = 0), then the
conductivity is identifiable as well. However, such results have little practical value,
since the observation data z(t) always contain some noise, and therefore one cannot
hope to adequately identify more than just the few first eigenvalues of the problem.

A different approach is taken in [6, 12, 13, 14]. These works show that one can
identify a constant conductivity a in (1.2) from the measurement z(t) taken at one
point p ∈ (0, 1). These works also discuss problems more general than (1.2), including
problems with a broad range of boundary conditions, nonzero forcing functions, as
well as elliptic and hyperbolic problems. In [7, 3] and references therein identifiability
results are obtained for elliptic and parabolic equations with discontinuous parameters
in a multidimensional setting. A typical assumption there is that one knows the
normal derivative of the solution at the boundary of the region for every Dirichlet
boundary input.

The main result of this paper is contained in Theorem 4.6. This theorem describes
and justifies the marching algorithm for the unique identification of piecewise constant
conductivities from observations of (1.2) given at finitely many points pk ∈ (0, 1). We



696 SEMION GUTMAN AND JUNHONG HA

start by recalling some basic properties of (1.2) in section 2. Identifiability results
for countably many distributed observations are given in section 3. Identifiability of
piecewise constant conductivities a is discussed in section 4. Numerical results for the
identifiability algorithms described in this paper require an extensive exposition, and
they will be presented elsewhere.

2. Auxiliary results. In this section we collect some well-known results for the
solutions u(x, t; a) of (1.2), as well as for its associated Sturm–Liouville problem. Since
such results are scattered in the literature, some brief proof outlines are included as
well. See [2, 9, 10, 11] for a detailed discussion.

Definition 2.1. Function a(x) is said to belong to the class PSN if
(i) a ∈ Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤ μ} for some positive constants ν

and μ;
(ii) function a is piecewise smooth; that is, there exists a finite sequence of points

0 = x0 < x1 < · · · < xN−1 < xN = 1 such that both a(x) and a′(x) are continuous
on every open subinterval (xi, xi+1), i = 0, . . . , N − 1, and both can be continuously
extended to the closed intervals [xi, xi+1], i = 0, . . . , N − 1. For definiteness, we
assume that a and a′ are continuous from the right, i.e., a(x) = a(x+) and a′(x) =
a′(x+) for all x ∈ [0, 1). Also let a(1) = a(1−).

Definition 2.2. PS = ∪∞
N=1PSN .

Everywhere in the following the conductivities a are assumed to be in PS. If
a ∈ PSN , then the regularity conditions on a and the uniqueness of the weak solutions
imply that for any t > 0 the weak solution u(x, t; a) of (1.2) satisfies the equation in
the classical sense on any subinterval (xi, xi+1), i = 0, . . . , N − 1. Also u satisfies the
matching conditions for the continuity of the solution and its conormal derivative at
xi ∈ (0, 1), i = 1, 2, . . . , N − 1:

ut − (a(x)ux)x = 0, x 	= xi, t ∈ (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(xi+, t) = u(xi−, t),
a(xi+)ux(xi+, t) = a(xi−)ux(xi−, t),
u(x, 0) = g(x), x ∈ (0, 1),

(2.1)

where g ∈ L2(0, 1); see [11, 16].
Denote by ‖·‖, 〈·, ·〉 the norm and the inner product, respectively, in H = L2(0, 1).
Theorem 2.3. Let a ∈ PS. Then

(i) the associated Sturm–Liouville problem

(a(x)v(x)′)′ = −λv(x), x 	= xi,
v(0) = v(1) = 0,
v(xi+) = v(xi−),
a(xi+)vx(xi+) = a(xi−)vx(xi−)

(2.2)

has infinitely many eigenvalues

0 < λ1 < λ2 < · · · → ∞.

The eigenvalues {λk}∞k=1 and the corresponding orthonormal set of eigenfunctions
{vk}∞k=1 satisfy

(2.3)

λk = inf

{∫ 1

0
a(x)[v′(x)]2dx∫ 1

0
[v(x)]2dx

: v ∈ H1
0 (0, 1), 〈< v, vj〉 = 0, j = 1, 2, . . . , k − 1

}
,
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λk =

∫ 1

0

a(x)[v′k(x)]2dx.(2.4)

The normalized eigenfunctions {vk}∞k=1 form a basis in L2[0, 1].
(ii) Each eigenvalue is simple. For each eigenvalue λk there exists a unique

continuous, piecewise smooth normalized eigenfunction vk(x) such that v′k(0+) > 0,
and the function a(x)v′k(x) is continuous on [0, 1].

(iii) Eigenvalues {λk}∞k=1 satisfy the inequality

νπ2k2 ≤ λk ≤ μπ2k2.

(iv) The first eigenfunction v1 satisfies v1(x) > 0 for any x ∈ (0, 1).
(v) The first eigenfunction v1 has a unique point of maximum q ∈ (0, 1) :

v1(x) < v1(q) for any x 	= q.
(vi) For any fixed t > 0 the solution u of (2.1) is given by

u(x, t; a) =

∞∑
k=1

〈g, vk〉e−λktvk(x),

and the series converges uniformly and absolutely on [0, 1].
(vii) For any p ∈ (0, 1) the function

z(t) = u(p, t; a), t > 0,

is real analytic on (0,∞).
Proof. (i) The proof is standard; see, e.g., [10].
(ii) On any subinterval (xi, xi+1) the coefficient a(x) has a bounded continuous

derivative. Therefore, on any such interval the initial value problem (a(x)v′(x))′+λv =
0, v(xi) = A, v′(xi) = B has a unique solution. Suppose that two eigenfunctions
w1(x) and w2(x) correspond to the same eigenvalue λk. Then they both satisfy
the condition w1(0) = w2(0) = 0. Therefore their Wronskian is equal to zero at
x = 0. Consequently, the Wronskian is zero throughout the interval (x0, x1), and the
solutions are linearly dependent there. Thus w2(x) = Cw1(x) on (x0, x1), w2(x1−) =
Cw1(x1−), and w′

2(x1−) = Cw′
1(x1−). The linear matching conditions imply that

w2(x1+) = Cw1(x1+) and w′
2(x1+) = Cw′

1(x1+). The uniqueness of solutions implies
that w2(x) = Cw1(x) on (x1, x2), etc. Thus w2(x) = Cw1(x) on (0, 1), and each
eigenvalue λk is simple. In particular λ1 is a simple eigenvalue. The uniqueness and
the matching conditions also imply that any solution of (a(x)v′(x))′ +λv = 0, v(0) =
0, v′(0) = 0 must be identically equal to zero on the entire interval (0, 1). Thus
no eigenfunction vk(x) satisfies v′k(0) = 0. Assuming that the eigenfunction vk is
normalized in L2(0, 1), it leaves us with the choice of its sign for v′k(0). Letting
v′k(0) > 0 makes the eigenfunction unique.

(iii) The eigenvalues of (2.3) satisfy the min-max principle

λk = min
Vk

max

{∫ 1

0
a(x)[v′(x)]2dx∫ 1

0
[v(x)]2dx

: v ∈ Vk

}
,

where Vk varies over all subspaces of H1
0 (0, 1) of finite dimension k; see [10]. Therefore

a(x) ≤ b(x), x ∈ [0, 1] implies λ
(a)
k ≤ λ

(b)
k . Since the eigenvalues of (2.3) with a(x) = 1

are π2k2, the required inequality follows.
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(iv) Recall that v1(x) is a continuous function on [0, 1]. Suppose that there exists
p ∈ (0, 1) such that v1(p) = 0. Let wl(x) = v1(x) for 0 ≤ x < p and wl(x) = 0 for
p ≤ x ≤ 1. Let wr(x) = v1(x) − wl(x), x ∈ [0, 1]. Then wl, wr are continuous, and,
moreover, wl, wr ∈ H1

0 (0, 1). Also∫ 1

0

wl(x)wr(x)dx = 0 and

∫ 1

0

a(x)w′
l(x)w′

r(x)dx = 0.

Suppose that wl is not an eigenfunction for λ1. Then∫ 1

0

a(x)[w′
l(x)]2dx > λ1

∫ 1

0

[wl(x)]2dx.

Since ∫ 1

0

a(x)[w′
r(x)]2dx ≥ λ1

∫ 1

0

[wr(x)]2dx,

we have

λ1 =

∫ 1

0
a(x)[v′1(x)]2dx∫ 1

0
[v1(x)]2dx

=

∫ 1

0
a(x)([w′

l(x)]2 + [w′
r(x)]2)dx∫ 1

0
([wl(x)]2 + [wr(x)]2)dx

>

∫ 1

0
(λ1[wl(x)]2 + λ1[wr(x)]2)dx∫ 1

0
([wl(x)]2 + [wr(x)]2)dx

= λ1.

This contradiction implies that wl (and wr) must be an eigenfunction for λ1. However,
wl(x) = 0 for p ≤ x ≤ 1, and as in (ii) it implies that wl(x) = 0 for all x ∈ [0, 1],
which is impossible. Since v′1(0) > 0 the conclusion is that v1(x) > 0 for x ∈ (0, 1).

(v) From part (i), any eigenfunction vk is continuous and satisfies

(a(x)v′k(x))′ = −λkvk(x)

for x 	= xi. Also the function a(x)v′k(x) is continuous on [0, 1] because of the matching
conditions at the points of discontinuity xi, i = 1, 2, . . . , N − 1 of a. The integration
gives

a(x)v′k(x) = a(p)v′k(p) − λk

∫ x

p

vk(s)ds

for any x, p ∈ (0, 1).
Let p ∈ (0, 1) be a point of maximum of vk. If p 	= xi, then v′k(p) = 0. If

p = xi, then v′k(xi−) ≥ 0 and v′k(xi+) ≤ 0. Therefore limx→p a(x)v′k(x) = 0 and
v′k(p+) = v′k(p−) = 0 since a(x) ≥ ν > 0. In any case for such a point p we have

a(x)v′k(x) = −λk

∫ x

p

vk(s)ds, x ∈ (0, 1).(2.5)

Since v1(x) > 0, a(x) > 0 on (0, 1), (2.5) implies that v′1(x) > 0 for any 0 ≤ x < p
and v′1(x) < 0 for any p < x ≤ 1. Since the derivative of v1 is zero at any point of
maximum, we have to conclude that such a maximum p is unique.
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(vi) We prove only the convergence part. Note that

ν‖v′k‖2 ≤
∫ 1

0

a(x)[v′k(x)]2dx = λk‖vk‖2 = λk.

Thus

‖v′k‖ ≤
√
λk√
ν

and

|vk(x)| ≤
∫ x

0

|v′k(s)|ds ≤ ‖v′k‖ ≤
√
λk√
ν
.

Bessel’s inequality implies that the sequence of Fourier coefficients 〈g, vk〉 is bounded.
Therefore, denoting by C various constants and using the fact that the function
s →

√
se−σs is bounded on [0,∞) for any σ > 0, one gets

|〈g, vk〉e−λktvk(x)| ≤ C

√
λk√
ν
e−

λkt

2 e−
λkt

2 ≤ Ce−
λkt

2 .

From (iii) of this theorem λk ≥ νπ2k2. Thus

∞∑
k=1

|〈g, vk〉e−λktvk(x)| ≤ C

∞∑
k=1

e−
νπ2k2t

2 ≤ C

∞∑
k=1

(
e−

νπ2t
2

)k

< ∞.

(vii) Let t0 > 0 and p ∈ (0, 1). From (vi), the series
∑∞

k=1〈g, vk〉e−λkt0vk(p)
converges absolutely. Therefore

∑∞
k=1〈g, vk〉e−λksvk(p) is analytic in the part of the

complex plane {s ∈ C : Re s > t0}, and the result follows.
Series of the form

∑∞
k=1 Ck

e−λkt are known as the Dirichlet series. The following
lemma shows that the Dirichlet series representation of a function is unique.

Lemma 2.4. Let μk > 0, k = 1, 2, . . . , be a strictly increasing sequence. Suppose
that T1 ≥ 0 and

∑∞
k=1 |Ck

| < ∞. If

∞∑
k=1

C
k
e−μkt = 0 for all t ∈ (T1, T2),

then C
k

= 0 for k = 1, 2, . . . .
The result follows at once from the observation that the series

∑∞
k=1 Ck

e−μkz

converges uniformly in the Re z > 0 region of the complex plane, implying that it is
an analytic function there. See Chapter 9 of [15] for additional results on Dirichlet
series.

Remark. According to Theorem 2.3(vi) for each fixed p ∈ (0, 1) the solution
z(t) = u(p, t; a) of (2.1) is given by a Dirichlet series. However, Lemma 2.4 is not
directly applicable since the coefficients Ck = 〈g, vk〉vk(p) are only square summable.
Nevertheless, the conclusion of Lemma 2.4 remains valid, since the exponents μk in
the Dirichlet series are the eigenvalues λk which satisfy the growth condition stated
in Theorem 2.3(iii). This allows one to conclude (Theorem 2.3(vii)) that the solution
z(t) is a real analytic function on (0,∞), and the uniqueness of such a representation
follows. Thus it would be a mistake to simply refer to the standard results such
as Lemma 2.4 for the uniqueness of the Dirichlet series representation to justify the
paper’s conclusions.
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3. Identifiability by distributed measurements. Suppose that one is given
some observations of the heat conduction process (2.1) with an unknown conductivity
a(x) and that they coincide with the observations of the model process

um
t − (am(x)um

x )x = 0, x 	= xm
i , t ∈ (0, T ),

um(0, t) = um(1, t) = 0, t ∈ (0, T ),
um(xm

i +, t) = um(xm
i −, t),

am(xm
i +)um

x (xm
i +, t) = am(xm

i −)um
x (xm

i −, t),
um(x, 0) = g(x), x ∈ (0, 1),

(3.1)

where g is the same as in (2.1). The conductivity a is said to be identifiable in some
class of functions M if the coincidence of the measurements of the observed and the
model processes implies that a = am, provided a, am ∈ M.

Theorem 3.1. Let {ψn}∞n=1 be a complete orthonormal set in H = L2(0, 1).
Suppose that nonzero initial data g ∈ H and the observations zn(t) = 〈u(x, t; a), ψn〉
for n = 1, 2, . . . and 0 ≤ T1 < t < T2 of the heat conduction process (2.1) are given.
Then the conductivity a(x) ∈ Aad is constructively identifiable in the class of piecewise
smooth functions PS.

Proof. To show the identifiability of a we give an algorithm for its reconstruction
from the data zn(t), n = 1, 2, . . . , guaranteeing the uniqueness in each step. Using
Theorem 2.3(vi) we have

zn(t) =

∞∑
k=1

〈g, vk〉e−λkt〈vk, ψn〉(3.2)

for each n = 1, 2, . . . and 0 ≤ T1 < t < T2.
Fix an n > 0. Since ψn ∈ H and {vk}∞k=1 form a basis in H, the Bessel inequality

implies that the sequence of the Fourier coefficients {〈vk, ψn〉}∞k=1 is bounded. From
Theorem 2.3(vi) one concludes that the above series converges absolutely. Note that
some products 〈g, vk〉〈vk, ψn〉 may be equal to zero. The zero value products present
a difficulty, since we would not know how to associate the sequence of exponents
recovered from (3.2) with the (unknown) eigenvalues λk: Some eigenvalues may be
missing from the sequence. Define (possibly empty) subsets Qn ⊂ N by

Qn = {k ∈ N : 〈g, vk〉〈vk, ψn〉 	= 0}, n = 1, 2, . . . .

For Qn 	= ∅ reindex (3.2) so that there would be no vanishing coefficients:

zn(t) =

∞∑
l=1

Cl,ne
−μl,nt, t ∈ (T1, T2).(3.3)

By Theorem 2.3(vii) the solutions zn(t) are real analytic. Therefore, since all
of the coefficients Cl,n 	= 0, one can uniquely determine them and the sequences
μl,n, l = 1, 2, . . . . Recall that {μl,n}∞l=1 ⊂ {λk}∞k=1 for any n with a nonempty Qn so
each μl,n ≥ λ1 > 0. For each n such that Qn 	= ∅ let

γn = min{μl,n : l ∈ N}.

Define

γ = min{γn : Qn 	= ∅}
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and

An =

⎧⎨⎩
C1,n if γn = γ, Qn 	= ∅,
0 if γn > γ, Qn 	= ∅,
0 if Qn = ∅.

(3.4)

Let

w(x) =

∞∑
n=1

Anψn(x).(3.5)

We claim that w is a nonzero multiple of some eigenfunction vJ of (2.1). Indeed, let
J be the smallest index for which 〈g, vJ〉 	= 0. Such an index exists since g 	= 0, and
the eigenfunctions form a basis in H. Now, since vJ 	= 0 and {ψn}∞n=1 also form a
basis in H, there exists n ∈ N such that 〈vJ , ψn〉 	= 0. Thus 〈g, vJ〉〈vJ , ψn〉 	= 0 and
γ ≤ λJ . The choice of J implies that γ = λJ . By the definition An = 〈g, vJ〉〈vJ , ψn〉
for nonzero products. Therefore

w(x) =

∞∑
n=1

〈g, vJ〉〈vJ , ψn〉ψn(x)

= 〈g, vJ〉
∞∑

n=1

〈vJ , ψn〉ψn(x) = 〈g, vJ〉vJ(x)

as claimed.
Now we show that the set of points y ∈ (0, 1) where w′(y) = 0 is finite. Assuming

the opposite, and since w is a nonzero multiple of vJ , there exists a sequence yj ∈ (0, 1)
such that v′J(yj) = 0 and limj→∞ yj = c ∈ [0, 1]. The continuity of a(x)v′J(x) implies
that v′J(c) = 0. From (a(x)v′J(x))′ = −γvJ(x) one gets

0 = a(yj+1)v
′
J(yj+1) − a(yj)v

′
J(yj) = −γ

∫ yj+1

yj

vJ(s)ds(3.6)

and concludes that vJ cannot be strictly positive or strictly negative on (yj , yj+1). Let
ζj ∈ (yj , yj+1) be such that vJ(ζj) = 0. Then limj→∞ ζj = c ∈ [0, 1] and vJ(c) = 0.
Now we have both vJ(c) = 0 and v′J(c) = 0. But then the uniqueness of the Cauchy
problem for the second order linear equations, and the matching conditions (see the
proof of Theorem 2.3(ii)) imply that vJ(x) = 0 for all x ∈ [0, 1], which is impossible.

Let q be a point of maximum of w. Note that w may have several maxima, unless
it is a multiple of v1. In any case, (2.5) implies

a(x)w′(x) = −γ

∫ x

q

w(s)ds, x ∈ (0, 1).(3.7)

Then, outside of the finite sets {xi} and {yj}, the conductivity a(x) is uniquely
determined from (3.7) by

a(x) = −γ

∫ x

q
w(s)ds

w′(x)
.

Because a is assumed to be in PS, it can be uniquely extended to the entire interval
[0, 1].
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Remark 1. In an application one can choose ψn =
√

2 sinπnx and the initial
condition g(x) > 0 on (0, 1). Then 〈g, v1〉〈v1, ψ1〉 	= 0, since v1(x) > 0 on (0, 1) by
Theorem 2.3(iv). Thus J = 1 in this case, and w(x) = 〈g, v1〉v1(x) in the above
algorithm. Also, one can see from (3.6) that there is only one point y1 = q ∈ (0, 1)
where v′1(q) = 0, and it is the point of maximum of v1(x) on (0, 1). Indeed, if there
were two such points, then by (3.6) v1(x) would have to become negative between
them, which would contradict v1(x) > 0 on (0, 1).

Remark 2. Since the system {ψn}∞n=1 is complete, the conditions of Theorem
3.1 imply that for any t > 0 one knows u(x, t; a) almost everywhere on [0, 1]. Since
u(x, t; a) is continuous in x and analytic in t, Theorem 3.1, in fact, assumes that the
solution is known in [0, 1]× (0, T ) or (equivalently) in [0, 1]× (0,∞). Thus, Theorem
3.1 can be stated under any of these conditions. However, a practical reconstruction of
the conductivity a directly from the equation ut = (aux)x is extremely unstable. The
algorithm presented in the above theorem does not reconstruct the entire solution u
but just the first eigenfunction of the associated Sturm–Liouville problem. Its stability
properties will be studied elsewhere.

4. Identifiability of piecewise constant conductivities from finitely many
observations. The identifiability is sought within the following set.

Definition 4.1. Let PC ⊂ PS be the class of piecewise constant conductivities,
and let PCN = PC ∩ PSN .

Functions a ∈ PCN have the form a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, . . . , N . In
this case the governing system (2.1) is

ut − aiuxx = 0, x ∈ (xi−1, xi), t ∈ (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(xi+, t) = u(xi−, t),
ai+1ux(xi+, t) = aiux(xi−, t),
u(x, 0) = g(x), x ∈ (0, 1),

(4.1)

where g ∈ L2(0, 1) and i = 1, 2, . . . , N−1. The associated Sturm–Liouville problem is

aiv
′′(x) = −λv(x), x ∈ (xi−1, xi),

v(0) = v(1) = 0,
v(xi+) = v(xi−),
ai+1v

′(xi+) = aiv
′(xi−)

(4.2)

for i = 1, 2, . . . , N − 1.
We are interested only in the first eigenfunction v1 of (4.2). Let λ1 be the first

eigenvalue. Suppose that p∗ ∈ (xi−1, xi). Then v1 can be expressed on (xi−1, xi) as

v1(x) = A cos

(√
λ1

ai
(x− p∗) + γ

)
, A > 0, −π

2
< γ <

π

2
.

The range for γ in the above representation follows from the fact that v1(p
∗) =

A cos γ > 0 by Theorem 2.3(iv).
The identifiability of piecewise constant conductivities is based on the following

three lemmas.
Lemma 4.2. Suppose that δ > 0. Assume Q1, Q3 ≥ 0, Q2 > 0, and 0 <

Q1 + Q3 < 2Q2. Let

Γ =
{

(A,ω, γ) : A > 0, 0 < ω <
π

2δ
, −π

2
< γ <

π

2

}
.
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Then the system of equations

A cos(ωδ − γ) = Q1, A cos γ = Q2, A cos(ωδ + γ) = Q3

has a unique solution (A,ω, γ) ∈ Γ given by

ω =
1

δ
arccos

Q1 + Q3

2Q2
, γ = arctan

(
Q1 −Q3

2Q2 sinωδ

)
, A =

Q2

cos γ
.

Proof. For (A,ω, γ) ∈ Γ one has A > 0 and cos γ > 0. Therefore

cos(ωδ − γ)

cos γ
= cos(ωδ) + sin(ωδ)

sin γ

cos γ
=

Q1

Q2
,(4.3)

cos(ωδ + γ)

cos γ
= cos(ωδ) − sin(ωδ)

sin γ

cos γ
=

Q3

Q2
.(4.4)

Adding (4.3) and (4.4) yields

cosωδ =
Q1 + Q3

2Q2
.

Since 0 < ωδ < π
2 and 0 < (Q1+Q3)/2Q2 < 1 the above equation is uniquely solvable.

Now subtracting (4.4) from (4.3) yields

tan γ =
Q1 −Q3

2Q2 sinωδ
,

which is also uniquely solvable, since −π/2 < γ < π/2. Finally, we have A =
Q2/ cos γ.

Lemma 4.3. Suppose that δ > 0, 0 < p ≤ x1 < p + δ < 1, 0 < ω1, ω2 < π/2δ.
Let w(x), v(x), x ∈ [p, p + δ] be such that

w(x) = A1 cosω1x + B1 sinω1x,

v(x) = A2 cosω2x + B2 sinω2x.

Suppose that

v(x1) = w(x1), ω2
1v

′(x1) = ω2
2w

′(x1),

v′(x1) > 0, v(x1) > 0.

Then
(i) conditions v(p + δ) = w(p + δ), v′(p + δ) ≥ 0, and ω1 ≤ ω2 imply ω1 = ω2;
(ii) conditions v(p + δ) = w(p + δ), w′(p + δ) ≥ 0, and ω1 ≥ ω2 imply ω1 = ω2.

Proof. Since v(x1) > 0, v′(x1) > 0 we have

v(x) = A sin[ω2(x− x1) + γ], 0 < γ <
π

2
,

where A > 0. The matching conditions for w(x) at x1 imply

w(x) = A sin γ cosω1(x− x1) + A
ω1

ω2
cos γ sinω1(x− x1)

= A sin[ω1(x− x1) + γ] + A

[
ω1

ω2
− 1

]
cos γ sinω1(x− x1).
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Thus

v(p + δ) − w(p + δ) = A

[
1 − ω1

ω2

]
cos γ sinω1(p + δ − x1)

+A sin[ω2(p + δ − x1) + γ] −A sin[ω1(p + δ − x1) + γ]

= A
ω2 − ω1

ω2
cos γ sinω1(p + δ − x1)

+ 2A sin
ω2 − ω1

2
(p + δ − x1) cos

[
ω2 + ω1

2
(p + δ − x1) + γ

]
.

Observe that 0 < p + δ − x1 ≤ δ. Thus sinω1(p + δ − x1) > 0.
For ω2 > ω1 and v′(p + δ) ≥ 0 one has

cos[ω2(p + δ − x1) + γ] =
1

ω 2
v′(p + δ) ≥ 0.

Therefore

ω2 + ω1

2
(p + δ − x1) + γ < ω2(p + δ − x1) + γ ≤ π

2

and

cos

[
ω2 + ω1

2
(p + δ − x1) + γ

]
> cos[ω2(p + δ − x1) + γ] ≥ 0.

Thus v(p + δ) − w(p + δ) > 0, and the conclusion (i) of the lemma follows.
The case ω2 < ω1 and w′(p + δ) ≥ 0 is reduced to the already established one by

interchanging ω1 with ω2 and w with v.
Lemma 4.4. Let δ > 0, 0 < η ≤ 2δ, ω1 	= ω2, with 0 < ω1δ, ω2δ < π/2. Also let

A,B > 0, 0 ≤ p < p + η ≤ 1, and

w(x) = A cos[ω1(x− p) + γ1],

v(x) = B cos[ω2(x− p− η) + γ2],

with |γ1|, |γ2| < π/2.
Then the system

w(q) = v(q),(4.5)

ω2
2w

′(q) = ω2
1v

′(q),(4.6)

w(q) > 0, v(q) > 0(4.7)

admits at most one solution q on [p, p + η]. This unique solution q can be computed
as follows:

If γ1 ≥ 0, then

q = p +
1

ω 1

[
arctan

(
ω1

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣
)

− γ1

]
.(4.8)

If γ2 ≤ 0, then

q = p + η +
1

ω 2

[
− arctan

(
ω2

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣
)

− γ2

]
.(4.9)
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Otherwise, compute q1 and q2 according to (4.8) and (4.9) and discard the one that
does not satisfy the conditions of the lemma.

Proof. Let α > 0 and

c(t;α) =

(
cos t
α sin t

)
, t ∈ R.

Vector function c(t, α) traverses the ellipse E(1, α) centered in the origin with the x
semiaxis equal to 1 and the y semiaxis equal to α. This function can be rewritten as

c(t;α) = P(α)M(t)e1,

where

M(t) =

(
cos t − sin t
sin t cos t

)
, P(α) =

(
1 0
0 α

)
, e1 =

(
1
0

)
.

Note that M(t) is the counterclockwise rotation in R2 by the angle t, P(α) is the
α-contraction (expansion) in R2 along the y axis, and e1 is the standard basis vector
along the x axis. Furthermore

c(t1 + t2;α) = P(α)M(t1)M(t2)e1.(4.10)

With this notation system (4.5)–(4.6) is

Ac(ω1(q − p) + γ1; 1/ω1) = Bc(ω2(q − p− η) + γ2; 1/ω2)

or

P(ω−1
1 )M[ω1(q − p) + γ1]Ae1 = P(ω−1

2 )M[ω2(q − p− η) + γ2]Be1.(4.11)

If q is a solution of (4.5)–(4.6), then the vectors in the right and the left sides of
(4.11) are identical. Thus they belong to the intersection of the ellipses E(A,A/ω1)
and E(B,B/ω2), and this intersection is not empty. In general the ellipses intersect
in four points: one in each quadrant.

Suppose that q∗ 	= q is another solution of (4.5)–(4.6) on [p, p+η]. We can assume
that q∗ = q + τ for some τ > 0, 0 < ω1τ, ω2τ < π. System (4.5)–(4.6) at x = q∗ is

(4.12)

P(ω−1
1 )M[ω1(q + τ − p) + γ1]Ae1 = P(ω−1

2 )M[ω2(q + τ − p− η) + γ2]Be1.

Using (4.10) and P(α)P(α−1) = I the right side of (4.12) can be written as

P(ω−1
2 )M[ω2(q + τ − p− η) + γ2]Be1 = P(ω−1

2 )M[ω2τ ]M[ω2(q − p− η) + γ2]Be1

= P(ω−1
2 )M[ω2τ ]P(ω2)P(ω−1

2 )M[ω2(q − p− η) + γ2]Be1

= P(ω−1
2 )M[ω2τ ]P(ω2)P(ω−1

1 )M[ω1(q − p) + γ1]Ae1.

Similarly the left side of (4.12) can be written as

P(ω−1
1 )M[ω1(q + τ − p) + γ1]Ae1 = P(ω−1

1 )M[ω1τ ]M[ω1(q − p) + γ1]Ae1

= P(ω−1
1 )M[ω1τ ]P(ω1)P(ω−1

1 )M[ω1(q − p) + γ1]Ae1.
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Let v = P(ω−1
1 )M[ω1(q − p) + γ1]Ae1 and

D = P(ω−1
2 )M[ω2τ ]P(ω2) − P(ω−1

1 )M[ω1τ ]P(ω1).

Then (4.12) is Dv = 0. Since v 	= 0 we must have det(D) = 0. Note that

det(D) =
1

ω1ω2

[
2ω1ω2 − (ω2

1 + ω2
2) sinω1τ sinω2τ − 2ω1ω2 cosω1τ cosω2τ

]
=

1

ω1ω2

[
2ω1ω2 −

1

2
(ω1 + ω2)

2 cos(ω1 − ω2)τ +
1

2
(ω1 − ω2)

2 cos(ω1 + ω2)τ

]
.

Let us define f(τ) on [0, π/ω1) ∩ [0, π/ω2) as

f(τ) = 2ω1ω2 +
1

2
(ω1 − ω2)

2 cos(ω1 + ω2)τ − 1

2
(ω1 + ω2)

2 cos(ω1 − ω2)τ.

Function f is smooth on (0, π/ω1)∩ (0, π/ω2), and its first and second derivatives are

f ′(τ) = −1

2
(ω1 − ω2)

2(ω1 + ω2) sin(ω1 + ω2)τ +
1

2
(ω1 + ω2)

2(ω1 − ω2) sin(ω1 − ω2)τ,

f ′′(τ) = (ω1 − ω2)
2(ω1 + ω2)

2 sinω1τ sinω2τ.

Since f(0) = f ′(0) = 0, f ′′(τ) > 0, and f ′(τ) > 0 on (0, π/ω1)∩(0, π/ω2), we conclude
that f(τ) > 0 for all τ ∈ (0, π/ω1) ∩ (0, π/ω2). Thus det(D) = 0 if and only if τ = 0.
This contradicts the assumption τ > 0. Therefore the solution q of (4.5)–(4.7) is
unique on [p, p + η].

To obtain formulas (4.8) and (4.9) notice that the ellipses E(A,A/ω1) and
E(B,B/ω2) are given by

x2 + ω2
1y

2 = A2 and x2 + ω2
2y

2 = B2.

At the intersection points we have

y2 =
B2 −A2

ω2
2 − ω2

1

and x2 =
A2ω2

2 −B2ω2
1

ω2
2 − ω2

1

.

The polar angle of the intersection point in the first quadrant is

ζ = arctan

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣.
Since w(q) = v(q) > 0 the intersection points corresponding to the solution q are in
either the first or the fourth quadrants, and 0 ≤ ζ < π/2.

If w′(p) ≤ 0, then γ1 ≥ 0. Therefore 0 ≤ γ1 ≤ ω1(q − p) + γ1. In this case the
intersection point is in the first quadrant. Accordingly tan[ω1(q− p) + γ1] = ω1 tan ζ.
Thus

q = p +
1

ω 1

[
arctan

(
ω1

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣
)

− γ1

]
.

If v′(p+η) ≥ 0, then γ2 ≤ 0 and ω2(q−p−η)+γ2 ≤ γ2 ≤ 0. In this case the intersection
point is in the fourth quadrant. Accordingly tan[ω2(q − p− η) + γ2] = −ω2 tan ζ and
one gets (4.9).
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Now we would like to define a class of piecewise constant conductivities with
sufficiently separated points of discontinuity.

Definition 4.5. By the definition of a ∈ PC there exists N ∈ N and a finite
sequence 0 = x0 < x1 < · · · < xN−1 < xN = 1 such that a is a constant on each
subinterval (xn−1, xn), n = 1, . . . , N . Let σ > 0. Define

PC(σ) = {a ∈ PC : xn − xn−1 ≥ σ, n = 1, 2, . . . , N}.

Note that a ∈ PC(σ) attains at most N = [[1/σ]] distinct values ai, 0 < ν ≤ ai ≤ μ.
The following theorem is our main result. It describes and justifies the marching

algorithm for the unique identification of piecewise constant conductivities in the class
PC(σ).

Theorem 4.6. Given σ > 0 let an integer M be such that

M ≥ 3

σ
and M > 2

√
μ

ν
.

Suppose that the initial data g(x) > 0, 0 < x < 1, and the observations zm(t) =
u(pm, t; a), pm = m/M for m = 1, 2, . . . ,M − 1 and 0 ≤ T1 < t < T2 of the heat
conduction process (4.1) are given. Then the conductivity a ∈ Aad is constructively
identifiable in the class of piecewise constant functions PC(σ).

First, we present the marching algorithm for the unique identification of the
conductivity a and then justify it. The algorithm marches from the left end x = 0
to a certain observation point pl−1 ∈ (0, 1) and identifies the values an and the
discontinuity points xn of the conductivity a on [0, pl−1]. Then the algorithm marches
from the right end point x = 1 to the left until it reaches the observation point pl+1 ∈
(0, 1) identifying the values and the discontinuity points of a on [pl+1, 1]. Finally, the
values of a and its discontinuity are identified on the interval [pl−1, pl+1]. The overall
goal of the algorithm is to determine the number N − 1 of the discontinuities of a
on [0, 1], the discontinuity points xn, n = 1, 2, . . . , N − 1, and the values an of a on
[xn−1, xn], n = 1, 2, . . . , N (x0 = 0, xN = 1). As a part of the process the algorithm
determines certain functions Hn(x) defined on intervals [xn−1, xn], n = 1, 2, . . . , N .
The resulting function H(x) defined on [0, 1] is a multiple of the first eigenfunction v1.

Marching Algorithm.
(i) Represent the data zm(t) as

zm(t) =

∞∑
k=1

ck,me−λkt, m = 1, 2, . . . ,M − 1, 0 ≤ T1 < t < T2,(4.13)

and use it to uniquely identify the first eigenvalue λ1 and the coefficients Gm =
c1,m, m = 1, 2, . . . ,M − 1. Let G0 = GM = 0.

(ii) Find l, 0 < l < M , such that Gl = max{Gm : m = 1, 2, . . . ,M − 1} and
Gm < Gl for any 0 ≤ m < l.

(iii) Let i = 1, m = 0.
(iv) Use Lemma 4.2 to find Ai, ωi, and γi from the system⎧⎨⎩

Ai cos(ωiδ − γi) = Gm,
Ai cos γi = Gm+1,
Ai cos(ωiδ + γi) = Gm+2.

(4.14)

Let

Hi(x) = Ai cos(ωi(x− pm+1) + γi).
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(v) If m + 3 ≥ l, then go to step (viii). If Hi(pm+3) 	= Gm+3, or Hi(pm+3) =
Gm+3 and H ′

i(pm+3) ≤ 0, then a has a discontinuity xi on interval [pm+2, pm+3).
Proceed to the next step (vi). If Hi(pm+3) = Gm+3 and H ′

i(pm+3) > 0, then let
m := m + 1 and repeat this step (v).

(vi) Use Lemma 4.2 to find Ai+1, ωi+1, and γi+1 from the system⎧⎨⎩
Ai+1 cos(ωi+1δ − γi+1) = Gm+3,
Ai+1 cos γi+1 = Gm+4,
Ai+1 cos(ωi+1δ + γi+1) = Gm+5.

(4.15)

Let

Hi+1(x) = Ai+1 cos(ωi+1(x− pm+4) + γi+1).

(vii) Use the formulas in Lemma 4.4 to find the unique discontinuity point xi ∈
[pm+2, pm+3). The parameters and functions used in Lemma 4.4 are defined as fol-
lows. Let p = pm+2, η = δ. To avoid confusion we are going to use the notation
Ω1, Ω2, Γ1, Γ2 for the corresponding parameters ω1, ω2, γ1, γ2 required in Lemma
4.4. Let Ω1 = ωi, Ω2 = ωi+1. For w(x) use function Hi(x) recentered at p = pm+2;
i.e., rewrite Hi(x) in the form

w(x) = Hi(x) = A cos(Ω1(x− pm+2) + Γ1), |Γ1| < π/2.

For v(x) use function Hi+1 recentered at p + η = pm+3; i.e.,

v(x) = Hi+1(x) = B cos(Ω2(x− pm+3) + Γ2), |Γ2| < π/2.

Let i := i+ 1, m := m+ 3. If m < l, then return to step (v). If m ≥ l, then go to the
next step (viii).

(viii) Do steps (iii)–(vii) in the reverse direction of x, advancing from x = 1 to
x = pl+1. Identify the values and the discontinuity points of a on [pl+1, 1], and
determine the corresponding functions Hi(x).

(ix) Using the notation introduced in (vii) let Hj(x) be the previously determined
function H on interval [pl−2, pl−1]. Recenter it at p = pl−1; i.e., w(x) = Hj(x) =
A cos(Ω1(x − pl−1) + Γ1). Let Hj+1(x) be the previously determined function H on
interval [pl+1, pl+2]. Recenter it at pl+1: v(x) = Hj+1(x) = B cos(Ω2(x−pl+1)+Γ2). If
Ω1 = Ω2, then stop; otherwise, use Lemma 4.4 with η = 2δ and the above parameters
to find the discontinuity xj ∈ [pl−1, pl+1]. Stop.

Proof. To prove Theorem 4.6 we need to justify the marching algorithm and to
show the uniqueness of the identification in each step.

(i) Using Theorem 2.3(vi) we get

zm(t) =

∞∑
k=1

gke
−λktvk(pm), m = 1, 2, . . . ,M − 1, 0 ≤ T1 < t < T2,(4.16)

where gk = 〈g, vk〉 for k = 1, 2, . . . . By Theorem 2.3(iv) v1(x) > 0 on interval (0, 1).
Since g is positive on (0, 1) we conclude that g1v1(pm) > 0. According to Theorem
2.3(vii) each observation zm(t) is a real analytic function. Thus one can uniquely
determine the nonzero coefficients in (4.16) and the corresponding exponents. In
particular, one determines the first eigenvalue λ1 and the values of

Gm = g1v1(pm) > 0, pm = m/M, m = 1, 2, . . . ,M − 1.(4.17)
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Because of the zero boundary conditions we can let G0 = GM = 0. The crucial point
is that the numbers {Gm}M−1

m=1 are not arbitrary but are the values (up to a nonzero
multiplicative constant g1) of the still-undetermined eigenfunction v1.

(ii) Let index l be defined as in (ii) of the marching algorithm. By Theorem 2.3(v)
there exists a unique point q∗ of maximum of v1 on (0, 1). Note that q∗ ∈ (pl−1, pl+1).
Thus Gl+1 ≤ Gl and Gm < Gl for m > l+1. Also v′1(pm−) > 0 for m = 1, 2, . . . , l−1
and v′1(pm−) < 0 for m = l + 1, l + 2, . . . ,M − 1.

(iii) Start at the left end point p0 = 0 and work on interval [0, x1], where x1 is
the first discontinuity point of a.

(iv) Let δ = 1/M . Since σ ≥ 3δ and a ∈ PC(σ) we conclude that [0, p2) ⊂ [0, x1)
and a = a1 on [0, x1). To apply Lemma 4.2 we just need to check the conditions for
Q1, Q2, Q3 required there.

We have Q1 = G0 = 0, Q2 = G1 = g1v1(p1) > 0 , Q3 = G2 = g1v1(p2) > 0. Let

ω1 =

√
λ1

a1
.

By Theorem 2.3(iii) 0 < λ1 ≤ μπ2. Since 0 < ν ≤ a1 we have

0 < ω1δ <

√
μπ2

ν

1

2

√
ν

μ
=

π

2
.

This inequality and v1(x) > 0 on (0, 1) imply that the first eigenfunction v1 of (4.2)
can be represented on (0, x1) as

v1(x) = C1 cos(ω1(x− p1) + γ1)

for some (C1, ω1, γ1) ∈ Γ, where Γ was defined in Lemma 4.2.
Also Q1 + Q3 = g1C1(cos(ω1δ + γ1) + cos(ω1δ − γ1)) = 2g1C1 cos(ω1δ) cos γ1 <

2G1 = 2Q2 since 0 < ω1δ < π/2; hence 0 < cos(ω1δ) < 1. Now Lemma 4.2 guarantees
a unique solution of the system⎧⎨⎩

g1C1 cos(ω1δ − γ1) = G0,
g1C1 cos γ1 = G1,
g1C1 cos(ω1δ + γ1) = G2.

(4.18)

It also gives formulas for the computation of A1 = g1C1, γ1, ω1 from the known
values of G0, G1, and G2. Thus one can determine a1 = λ1/ω

2
1 and obtain

H1(x) = g1C1 cos(ω1(x− p1) + γ1) = g1v1(x)(4.19)

for x ∈ [0, x1).
(v) Let ai be the value of a on the part of the interval [pm+1, pm+2) adjacent to

[pm+2, pm+3). By construction this value and the associated function Hi(x) = g1v1(x)
are already determined by the algorithm. If there is no discontinuity of a on interval
[pm+2, pm+3), then a has the same value ai on interval [pm+2, pm+3) as well. Therefore
Hi(x) = g1v1(x) on this interval, and we must have Gm+3 = Hi(pm+3) by (4.17). If
one has Gm+3 	= Hi(pm+3), then the implication is that there is a discontinuity of a
on [pm+2, pm+3), and one proceeds to step (vi).

On the other hand, if Gm+3 = Hi(pm+3), then one cannot, in general, conclude
that there is no discontinuity of a on [pm+2, pm+3). However, since we have m+3 < l
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then (ii) of the proof implies that v′1(pm+3−) > 0. Then the assumption a = ai
on [pm+2, pm+3) implies H ′

i(pm+3) = g1v
′
1(pm+3−). Therefore the equality Gm+3 =

Hi(pm+3) together with H ′
i(pm+3) ≤ 0 lead to a contradiction. The conclusion is that

Gm+3 = Hi(pm+3) and H ′
i(pm+3) ≤ 0 imply a discontinuity of a on [pm+2, pm+3),

and one proceeds to step (vi).
Finally, one uses Lemma 4.3 to conclude that m + 3 < l, Gm+3 = Hi(pm+3),

and H ′
i(pm+3) > 0 imply that there is no discontinuity of a on [pm+2, pm+3). Indeed,

suppose that there is a discontinuity point xi of a on interval [pm+2, pm+3). Then
a = ai on [pm+1, xi) and a = ai+1 on [xi, pm+3]. We are going to use the notation
xi, Ω1, Ω2 for the corresponding variables x1, ω1, and ω2 used in Lemma 4.3. Let
p = pm+2, p + δ = pm+3, Ω1 =

√
λ1/ai, Ω2 =

√
λ1/ai+1, and

w(x) = Hi(x) = g1v1(x) = A1 cos Ω1x + B1 sin Ω1x, x ∈ [p, xi),

v(x) = g1v1(x) = A2 cos Ω2x + B2 sin Ω2x, x ∈ [xi, p + δ].

Note that the condition Ω2
1v

′(xi) = Ω2
2w

′(xi) is just the matching condition (4.2) at
x = xi. Since m + 3 < l, the maximum q∗ of v1 satisfies q∗ > pm+3. Because w is a
positive multiple of v1, it implies w(xi) > 0 and w′(xi) > 0. Therefore v(xi) > 0 and
v′(xi) > 0. Because v is a positive multiple of v1, we have v′(p+δ) > 0. The condition
v(p + δ) = w(p + δ) means v(pm+3) = g1v1(pm+3) = Gm = Hi(pm+3) = w(pm+3).

Suppose that Ω1 < Ω2. We have v(p+δ) = w(p+δ) and v′(p+δ) > 0. According
to Lemma 4.3(i), this is impossible.

Suppose that Ω1 > Ω2. We have v(p+δ) = w(p+δ) and w′(p+δ) = H ′
i(pm+3) > 0.

According to Lemma 4.3(ii), this is also impossible.
Thus the conclusion is that there is no point of discontinuity of a on [pm+2, pm+3)

in this case. By assigning m := m + 1 one advances to the next observation interval
[pm+3, pm+4) and repeats the analysis of (v).

(vi) Since it is already determined that there is a discontinuity point on interval
[pm+2, pm+3), the assumption a ∈ PC(σ) implies that a is constant on [pm+3, pm+5].
This value ai+1 of a can be uniquely determined from the system in (vi) similarly to
the argument presented in (iv). Note that Hi+1(x) = g1v1(x) on [pm+3, pm+5].

(vii) One knows that the discontinuity xi ∈ [pm+2, pm+3) as well as the values ai
and ai+1 of a on the adjacent intervals [pm+1, pm+2] and [pm+3, pm+4] together with
the corresponding functions Hi(x) and Hi+1(x). According to Lemma 4.4 one can
determine the unique location of the discontinuity xi by the formulas given there.

(viii) The advance of the algorithm from x = 1 to x = pl+1 is justified by reducing
it to (iii)–(vii) using the change of variables z = 1 − x.

(ix) Lemma 4.4 is applicable with η = 2δ. Note that there can be only one discon-
tinuity of a on [pl−1, pl+1], since 2δ < σ. The values of a as well as the corresponding
functions Hj and Hj+1 are already known on the adjacent intervals. The discontinuity
of a exists on [pl−1, pl+1) if ωj 	= ωj+1.

The marching algorithm of Theorem 4.6 requires measurements of the system at
a possibly large number of observation points. Our next theorem shows that if a
piecewise constant conductivity a is known to have just one point of discontinuity x1,
and its values a1 and a2 are known beforehand, then the discontinuity point x1 can
be determined from just one measurement of the heat conduction process.

Theorem 4.7. Let p ∈ (0, 1) be an observation point, g(x) > 0 on (0, 1), and the
observation zp(t) = u(xp, t; a), t ∈ (T1, T2), of the heat conduction process (4.1) be
given. Suppose that the conductivity a ∈ Aad is piecewise constant and has only one
(unknown) point of discontinuity x1 ∈ (0, 1). Given positive values a1 	= a2 such that
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a(x) = a1 for 0 ≤ x < x1 and a(x) = a2 for x1 ≤ x < 1, the point of discontinuity x1

is constructively identifiable.
Proof. Arguing as in the previous theorem,

zp(t) =

∞∑
k=1

gke
−λktvk(p), 0 ≤ T1 < t < T2,

where gk = 〈g, vk〉 for k = 1, 2, . . . . Since g1v1(p) > 0, the uniqueness of the Dirichlet
series representation implies that one can uniquely determine the first eigenvalue λ1

and the value of Gp = g1v1(p).
Without loss of generality one can assume that a1 > a2. In this case we show

that the first eigenvalue λ1 is strictly increasing as a function of x1 ∈ [0, 1]. Indeed,
suppose that

0 ≤ xa
1 < xb

1 ≤ 1;

that is,

a(x) =

{
a

1 , 0 < x < xa
1

a2 , x
a
1 < x < 1

and b(x) =

{
a1 , 0 < x < xb

1

a2 , x
b
1 < x < 1.

By Theorem 2.3(i)

λb
1 =

∫ 1

0
b(x)[v′1,b(x)]2dx∫ 1

0
[v1,b(x)]2dx

>

∫ 1

0
a(x)[v′1,b(x)]2dx∫ 1

0
[v1,b(x)]2dx

≥ inf
v∈H1

0 (0,1)

∫ 1

0
a(x)[v′(x)]2dx∫ 1

0
[v(x)]2dx

= λa
1

provided that the derivative v′1,b(x) of the first eigenfunction v1,b(x) is not identically

zero on (xa
1 , x

b
1). But, from (b(x)v′1,b(x))′ = −λb

1v1,b(x), the assumption v′1,b(x) = 0

on (xa
1 , x

b
1) implies v1,b(x) = 0 on (xa

1 , x
b
1), and this is impossible, since v1,b(x) > 0 on

(0, 1). Thus there exists a unique conductivity of the type sought in the theorem for
which its first eigenvalue is equal to λ1; i.e., a is identifiable.

Now the unique discontinuity point x1 of a can be determined as follows. Let

ω1 =

√
λ1

a1
, ω2 =

√
λ1

a2
.

Then the first eigenfunction v1 is given by

v1(x) =

{
A sinω1x, 0 < x < x1,
B sinω2(1 − x), x1 < x < 1,

(4.20)

for some A,B > 0. The matching conditions at x1 give

A sinω1x1 = B sinω2(1 − x1) and
A

ω1
cosω1x1 =

B

ω2
cosω2(1 − x1).

Since v1(x1) > 0 we have 0 < ω1x1 < π and 0 < ω2(1−x1) < π. Therefore x1 satisfies

1

ω1
cotω1x =

1

ω2
cotω2(1 − x).

The existence and the uniqueness of the solution x1 of the above nonlinear equation
follows from the monotonicity and the continuity of the cotangent functions. Practi-
cally, the value of x1 can be found by a numerical method.
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5. Conclusions. The prevalent approach to parameter identification (estima-
tion) problems is to find such parameters from the best fit to data minimization.
However, such an approach usually does not guarantee the uniqueness of the identi-
fied parameters. The identifiability problem consists of finding sufficient conditions
assuring such a uniqueness, and there have been just a few results for the identifiability
in distributed parameter systems.

In this paper we have shown that in some cases a variable conductivity in a 1D
heat conduction process can be uniquely identified from observations of this process.
The identifiability has been established for two sets of observations. In one case it is
assumed that the conductivity is piecewise smooth, and we are given a sequence of
distributed observations of the form zn(t) = 〈u(x, t; a), ψn〉 for n = 1, 2, . . . on a finite
time interval, where functions {ψN}∞n=1 form a basis in H = L2(0, 1). An algorithm
for the conductivity identification is proposed. Its numerical study will be reported
elsewhere.

In the second case it is assumed that the conductivity is piecewise constant with
sufficiently separated points of discontinuity. The observations of the process are
taken at equidistant points pm ∈ (0, 1). The total number of points needed for the
unique conductivity identification can be computed from a priori known parameters
of the process. A marching algorithm for the conductivity identification is presented
and justified.

In both cases the plant does not require a special external input for its identifia-
bility; i.e., it is modeled by ut = (aux)x rather than by ut = (aux)x+f(x, t). It will be
of interest to extend the developed methods to vibration and steady-state processes.

Our current research shows that the methods described in this paper can be
extended to identifiability problems for heat conduction processes admitting various
boundary (e.g., periodic) inputs and to other cases. A numerical implementation
shows that the marching algorithm achieves a perfect identification for observations
with low noise levels. These results will be presented elsewhere.
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Abstract. We consider an ergodic stochastic control problem for a class of one-dimensional
Itô processes where the available control is an added bounded variation process. The corresponding
infinite horizon discounted control problem was solved in [A. Weerasinghe, SIAM J. Control Optim.,
44 (2005), pp. 389–417]. Here, we show that as the discount factor approaches zero, the optimal
strategies derived in [A. Weerasinghe, SIAM J. Control Optim., 44 (2005), pp. 389–417] “converge”
to an optimal strategy for the ergodic control problem. Under different assumptions, two types
of optimal strategies were derived. Also, the Abelian limit relationships among the ergodic control
problem, the infinite horizon discounted control problem, and the finite time horizon control problem
are established here. A solution to a constrained optimization problem is obtained as an application.

Key words. ergodic control, local-time processes, diffusions with reflecting boundaries

AMS subject classifications. 93E20, 60H30

DOI. 10.1137/050646998

1. Introduction. Consider a weak solution to the one-dimensional stochastic
differential equation

(1.1) Xx(t) = x +

∫ t

0

μ(Xx(s−))ds +

∫ t

0

σ(Xx(s−))dW (s) + A(t),

where x is a real number, and {W (t) : t ≥ 0} is a standard Brownian motion adapted
to a right continuous filtration {Ft : t ≥ 0} on a probability space (Ω,F, P ). The σ-
algebra F0 contains all the null sets in F and the Brownian increments W (t+s)−W (t)
are independent of Ft for all t ≥ 0 and s ≥ 0. The control process A(·) is {Ft}-adapted,
right continuous with left limits, and of bounded variation on finite time intervals.
Also, A(0) = 0.

We further assume that there is a δ0 > 0 so that for each Xx(·) and 0 < α < δ0,
there exists a sequence of stopping times (τn) satisfying limn→∞ τn = ∞ and

(1.2)
(i) Ex

∫ T∧τn

0

[|μ(Xx(s−)| + σ2(Xx(s−))]ds < ∞ for each T > 0, and

(ii) lim
n→∞

Ex[|Xx(τn)|e−ατnI[τn<∞]] = 0.

The first condition helps us to make sense of (1.1) and the second condition will be
used in verifying the Abelian limits described below. Throughout this article, we
closely rely on several results obtained in [28], and the above two conditions imply
the assumption (1.2) in [28].

The quintuple ((Ω,F, P ), (Ft),W,A,Xx) is called an admissible control system
if the corresponding state process Xx satisfies (1.1) and (1.2). Let U denote the
collection of all such admissible systems and let C : R → R be a running cost
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function. We shall study the ergodic stochastic control problem with optimal value
λ0 defined by

(1.3) λ0 � inf
U

lim sup
T→∞

1

T
Ex

∫ T

0

[C(Xx(s))ds + d|A|(s)].

Notice that λ0 is a constant which is independent of the initial value x, since an
initial jump does not alter the above lim sup value for a given state process Xx.

Our goal here is to characterize an optimal control with a Markovian state process
X that achieves the value λ0 and to relate it to the value functions of the family of
discounted control problems defined by

(1.4) Vα(x) ≡ inf
U

Ex

∫ ∞

0

e−αs[C(Xx(s))ds + d|A|(s)],

as well as to the value functions of the family of finite horizon control problems

(1.5) V0(x, T ) ≡ inf
U

Ex

∫ T

0

[C(Xx(s))ds + d|A|(s)].

It turns out that under the assumptions (1.6)–(1.8) below, V0(x, T ) remains the same
even when the infimum is taken over all processes Xx(·) which satisfy (1.1) together
with the condition E|Xx(t)| < ∞ for each t in [0, T ]. This is because we can extend
such a process Xx(·) to [0,∞) as an admissible process by taking A(t) ≡ 0 for all
t > T , and then using the results outlined in section 3 below.

Throughout this article, we make the basic assumptions (1.6), (1.7), and (1.8)
below. Here μ′, σ′, and C ′ denote the derivatives of μ, σ, and C, respectively.

(1.6) (i) The functions μ and σ are continuously differentiable on R, μ′(x) ≤ 0
for all x, infR σ(x) > 0, and xμ(x) < 0 for all x �= 0.

(1.7) (ii)

∫ 0

−∞

μ(x) − x

σ2(x)
dx =

∫ ∞

0

x− μ(x)

σ2(x)
dx = ∞.

(iii) The cost function C is continuously differentiable on R, decreasing
on (−∞, 0), increasing on (0,∞), C(0) = 0, and satisfies one of the
following conditions:

(1.8) either (a) lim inf
|x|→∞

C(x)

|x| > 0 or (b) lim sup
|x|→∞

C(x)

|x| < ∞.

The condition C(0) = 0 is made for convenience. If C(0) is any other value, then it
only shifts the value functions of (1.3)–(1.5) by an appropriate constant. The diffusion
coefficient σ(·) is allowed to be an unbounded function subject to the above conditions
(1.6) and (1.7).

Under assumption (1.6), the ordinary differential equation ẋ = μ(x) has a unique
global, asymptotically stable equilibrium point at the origin. The cost function C(·)
also has its unique minimum at the origin, and it increases as x moves away from the
origin. Therefore, our study concerns the long term stability of a randomly perturbed
stable dynamical system with a minimal control effort.
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The qualitative nature of the optimal policies depends on the growth rates of
|μ′(x)| and |C ′(x)|. Therefore, we introduce a function H defined by

(1.9) H(x) = μ′(x) + |C ′(x)| for all x in R.

The basic relationships among λ0, Vα(x), and V0(x, T ) are known as the“Abelian
limit relations” (see [13]). These relations (which hold uniformly over the compact
sets) are described by

(a) lim
α→0

sup
|x|≤K

|αVα(x) − λ0| = 0 and (b) lim
T→∞

sup
|x|≤K

∣∣∣∣V0(x, T )

T
− λ0

∣∣∣∣ = 0

for each K > 0.

(1.10)

We will establish these limits in this article. In an interesting article, Karatzas [13]
derived optimal strategies for (1.3), (1.4), (1.5) and established the Abelian relations
(1.10) when the drift coefficient μ is identically zero and the diffusion coefficient σ
is a constant. In the symmetric case, where μ is an odd function and σ and C are
even functions, an optimal strategy for (1.3) was obtained in [27]. In both of these
articles, first a smooth solution to the corresponding Hamilton–Jacobi–Bellman (HJB)
equation was obtained and then a verification lemma was used to prove the optimality
of the chosen candidate for optimal control.

Here we develop a different approach. Using the properties of the value function
Vα(x) of (1.4) derived in [28], we first establish that limα→0 αVα(x) exists and is
equal to a constant Λ0, and we also show that Λ0 ≤ λ0, where λ0 is the value of (1.3).
Finally, to describe the derivation of an optimal strategy, let the initial point be at
the origin. In this case, the optimal state process for Vα(0) derived in [28] induces
a probability measure να on C[0,∞). Under our assumptions, να converges weakly
(through a subsequence) to a probability measure ν0 on C[0,∞) as α tends to zero.
Thereafter, we derive an admissible strategy ((Ω,F, P ), (Ft),W,A∗, X∗

0 ) in U so that
the corresponding state process X∗

0 induces the measure ν0 on C[0,∞). It turned
out that the corresponding value for the ergodic cost criteria is indeed Λ0. Hence, Λ0

is equal to the optimal value λ0, and the above strategy ((Ω,F, P ), (Ft),W,A∗, X∗
0 )

is optimal for (1.3). A complete solution to a constrained optimization problem is
derived in section 6 by applying the results in section 4.

In [3], Arisawa and Lions considered an ergodic stochastic control problem in a
compact state space. Hence, their cost function is bounded. In their model, there
is no added bounded variation process, but the drift and diffusion coefficients are
controlled. Their aim was to analyze the solution to the HJB equation and to establish
the uniform convergence of the Abelian limits described in (1.10). But they did not
derive any optimal strategies. This work complements their results and shows that
uniform convergence on the compact sets for the Abelian limits in (1.10) is the best
possible when the state space is noncompact.

In [16], the authors used a controlled martingale formulation for the cost struc-
tures in (1.3), (1.4), and (1.5) when there is no added bounded variation process. They
related these problems with linear programming problems over a space of measures
and proved the existence of optimal Markovian controls. Problem (1.4) is considered
in [17] when the drift term is linear and the cost function is convex. There, the op-
timal control is a local-time process which is similar to our results in section 4. In
a series of articles [1], [2], Alvarez considered singular control problems for diffusions
with an absorbing barrier at the origin and with an added increasing control process.
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He used the connection between stochastic control and optimal stopping to derive
optimal strategies. In [8], the existence theorems for optimal policies for the ergodic
control problem of multidimensional diffusions were developed. A higher-dimensional
singular control problem for the standard Brownian motion was treated in [24]. For
a discussion on singular control problems and related references, we refer to [11].

This article is organized as follows: Section 2 gathers the preliminary results
regarding the value functions defined in (1.4) and (1.5). Our main theorem of section 3
is Theorem 3.1. It shows that under certain assumptions, zero control policy is optimal
for the ergodic control problem (1.3). It also establishes the Abelian relation (1.10a).
In section 4, under a different set of assumptions, we derive an optimal control policy
which can be described in terms of local-time processes. The corresponding optimal
state process is a reflecting diffusion on a finite interval. We also establish the limit
(1.10a) for this case. Section 5 is devoted to the proof of the Abelian limit (1.10b).
We apply the results obtained in section 4 to find an optimal policy for a constrained
minimization problem in section 6. The main results in this article are Theorems 3.1,
4.1, 5.1, and 6.3. Next, we describe a motivating example from finance.

Example 1 (foreign exchange rates). Consider the currency exchange rate that
governs the transactions between two countries (which we label as “domestic” and
“foreign”). We assume that the economies of both countries are stable. Hence, in the
absence of interventions, the currency exchange rate resembles a dynamical system
which fluctuates around a stable equilibrium point. In the presence of uncertainty,
it is common practice to model currency exchange rates using stochastic differential
equations (see Chapter 7 of [21] and also [10], [12], [15], [19], [20], [25], [26]). Here we
consider the problem of a central bank which would like to keep the exchange rate as
close as possible to a target value through minimal intervention.

In a pioneering work [15], Krugman introduced a model where the exchange rate
takes values in an exogenously given target interval, which is commonly called the
“target zone” or the “target band.” In recent years, exchange rate target zones have
been an area of intense research activity in finance [10], [12], [19], [20], [25], [26].
When the exchange rate is high, the central bank may intervene by reducing the
money supply by selling the foreign currency reserves or by adjusting the domestic
interest rates. The central bank may also intervene appropriately when the exchange
rate is low. To keep the exchange rate within the target band, the central bank may
intervene while the exchange rate is still within the target band and there is empirical
evidence to support this claim [7]. Such an optimal intervention policy with jumps
within the target band is derived for a target zone exchange rate model using impulse
controls in [12].

For a detailed discussion of Krugman’s model, its underlying assumptions, its
implications and drawbacks, and for modifications to accompany empirical data, we
refer to [26]. One important prediction of Krugman’s original model is that the long
term distribution of the logarithm of the exchange rate within the target band must be
U-shaped. This implies that in the long run, the logarithm of the exchange rate must
spend most of its time near the end points of the target band. However, empirical
data rejected this fact, and, as described in [26], there is a “hump”-shaped distribution
within the band. In a detailed discussion about an extension of Krugman’s model
to agree with data, Svensson [26] pointed out that the logarithm of the exchange
rate within the target band displays a “mean reversion behavior,” and this is an
important property of target zone exchange rates. This property also supports the
“hump”-shaped long run distribution of the logarithm of the exchange rate.
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In [20], a discrete impulse control intervention coupled with a continuous domes-
tic interest rate control policy is used to derive an optimal target band. In [10], a
similar problem for a geometric Brownian motion with a cost function C(x) = x2 is
considered. The authors also allow a fixed cost and a cost proportional to the size of
the intervention. They derive an optimal intervention policy and the explicit form of
the value function.

In this model, we consider a target value or a benchmark for the exchange rate
which we simply assume to be at 1. The controlled state process Xx(·) represents
the logarithm of the exchange rate. The central bank would like to keep the Xx(·)
process near the origin. Here, there is no a priori assigned target band. We assume
that Xx(·) satisfies (1.1) and the drift and diffusion coefficients μ and σ satisfy (1.6)
and (1.7). Hence, Xx(·) clearly shows the mean reversion behavior around the ori-
gin as observed in [26]. The bounded variation control process A(·) represents the
changes in the exchange rate due to central bank interventions. The corresponding
total variation process |A|(·) represents the cumulative cost incurred by the central
bank interventions. There is also a running cost associated with the deviation of
the exchange rate from its benchmark, and this running cost function satisfies the
assumption (1.8).

With our model, the central bank would like to know the answers to the following
two important questions:

1. What optimal intervention policy will minimize the long term average cost
criteria? Furthermore, to what extent will such an optimal intervention policy verify
the validity of a target band for the exchange rate?

2. Suppose that the central bank insists on the intervention policy not to ex-
ceed the long term average intervention cost above a given target value m > 0 (i.e.,
lim supT→∞

E|A|(T )
T ≤ m). What would be an optimal intervention policy which min-

imizes the long term average running cost lim supT→∞
1
T E

∫ T

0
C(Xx(s))ds? Under

what conditions on μ, σ, and C(·) does this constrained problem lead to a target zone
model?

Sections 3 and 4 provide answers to question 1. Question 2 will be analyzed in
section 6. In section 3, we derive a set of sufficient conditions for the optimality of zero
intervention policy. Hence, there is no optimal target band under these conditions.
With a different set of assumptions on μ, σ, and C, we prove the existence of an
optimal target band in section 4. We also derive an optimal intervention policy. In
section 6, under the given constraint on the long term average intervention rate, we
provide an optimal target band and also an optimal intervention policy.

2. Preliminaries. Here we develop some results related to the value functions of
the control problems in (1.3), (1.4), and (1.5). They will be important in establishing
Abelian limits in (1.10). Throughout this section, we assume the conditions (1.6),
(1.7), and (1.8).

Proposition 2.1. Let λ0, Vα(x), and V0(x, T ) be as in (1.3), (1.4), and (1.5).
Then the following hold:

(i) For each T > 0 and 0 < α < δ0, the quantities λ0, Vα(x), and V0(x, T ) are
finite. Also, for each K > 0, there is a constant MK so that

sup
0<α<δ0

sup
|x|≤K

αVα(x) ≤ MK .

(ii) For each T > 0, 0 < α < δ0, and x, y in R, |Vα(x, T ) − Vα(y, T )| ≤ |x − y|
and |Vα(x) − Vα(y)| ≤ |x− y|.
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(iii) lim supα→0 αVα(x) ≤ λ0 and lim supT→∞
1
T V0(x, T ) ≤ λ0, where λ0 is the

value of the ergodic control problem (1.3).
Proof. Given K > 0 and |x| < K, we pick an interval [a, b] so that a < −K <

K < b. Consider the reflected diffusion process on [a, b], which is given by

(2.1) Xx(t) = x +

∫ t

0

μ(Xx(s))ds +

∫ t

0

σ(Xx(s))dW (s) + La(t) − Lb(t).

Here La and Lb are local-time processes of Xx at a and b, respectively. In comparison
with (1.1), A(t) = La(t)−Lb(t) and |A|(t) = La(t) +Lb(t) for all t ≥ 0. Consider the
solution to the differential equation

(2.2)

σ2(x)

2
Q′′(x) + μ(x)Q′(x) = γ for all x in (a, b),

Q′(a) = −1 and Q′(b) = 1,

where γ > 0 is a constant which will be chosen appropriately. Notice that (2.2) is
a first order equation in Q′(·), and it can be solved using the boundary condition
Q′(a) = −1. Then, for each x in [a, b], we obtain

Q′(x)e2
∫ x
0

ρ(u)du + e−2
∫ 0
a
ρ(u)du = γ

∫ x

a

2

σ2(y)
e2

∫ y
0

ρ(u)dudy.

In the above equation, ρ(x) = μ(x)
σ2(x) for all x in [a, b]. Now we choose the positive

constant γ so that it satisfies

(2.3) γ

∫ b

a

2

σ2(y)
e2

∫ y
0

ρ(u)dudy = e2
∫ b
0
ρ(u)du + e−2

∫ 0
a
ρ(u)du;

then it enforces Q′(·) to satisfy the other boundary condition Q′(b) = 1 in (2.2). The
solution to (2.2) is unique up to a constant and we consider the solution

Q(x) =

∫ x

a

u(y)dy,

where

u(x) = e−2
∫ x
0

ρ(u)du

[
γ

∫ x

a

2

σ2(y)
e2

∫ y
0

ρ(u)dudy − e−2
∫ 0
a
ρ(u)du

]
.

Here the constant γ satisfies (2.3). Next, we apply Itô’s lemma to Q(Xx(t)) and
obtain

(2.4) E|A|(T ) = E[La(T ) + Lb(T )] = γT + Q(x) − E[Q(Xx(T ))].

At this point, using (2.3) together with (2.4), we can derive the following limit (inde-
pendent of the initial point x):

(2.5) lim
T→∞

E|A|(T )

T
= γ =

e2
∫ b
0
ρ(u)du + e−2

∫ 0
a
ρ(u)du∫ b

a
2

σ2(y)e
2
∫ y
0

ρ(u)dudy
,

which will be used in section 6.



720 ANANDA WEERASINGHE

Let M1 > 0 be a constant so that

(2.6) sup
[a.b]

[|C(x)| + |Q(x)|] < M1.

This combined with (2.4) yields E|A|(T ) < γT + 2M1. Therefore, we can conclude

V0(x, T ) ≤ (M1 + γ)T + 2M1 and λ0 ≤ lim supT→∞
1
T E

∫ T

0
[C(Xx(s))ds + d|A|(s)] ≤

(M1 + γ). Consequently, V0(x, T ) and λ0 are finite. Next, by (1.4), we have the
inequality

Vα(x) ≤ E

∫ ∞

0

e−αt[C(Xx(s))ds + d|A|(s)] ≤ M1

α
+ E

∫ ∞

0

e−αtd|A|(t).

Hence, using integration by parts and the estimate for E|A|(T ), we obtain

Vα(x) ≤ M1

α
+ α

∫ ∞

0

e−αt(γt + 2M1)dt ≤
M1

α
+

γ

α
+ 2M1.

Consequently, Vα(x) is also finite and the following uniform estimate holds:

sup
0<α<δ0

sup
[a,b]

αVα(x) ≤ M0 ≡ (M1 + γ + 2M1δ0).

Hence, part (i) follows.
For any admissible process Xx, introduce the cost functional

J(x,Xx, T ) = E

∫ T

0

[C(Xx(t))dt + d|A|(t)].

For a given ε > 0 and any T > 0, we pick a process Xx so that V0(x, T ) + ε >
J(x,Xx, T ). Then for any y, consider the process X̃y(0−) = y and with an initial

jump to the point x so that X̃y(0) = x. Thereafter it satisfies X̃y(t) ≡ Xx(t) for all

t > 0. Hence we observe that J(y, X̃y, T ) = |x − y| + J(x,Xx, T ) and consequently
V0(y, T ) < |x− y| + J(x,Xx, T ) < |x− y| + V0(x, T ) + ε.

Since ε is arbitrary and x and y are arbitrary points, we obtain

(2.7) |V0(x, T ) − V0(y, T )| ≤ |x− y|.

By Theorems 4.3 and 5.5 of [28], Vα satisfies |V ′
α(x)| ≤ 1 for all x and hence |Vα(x)−

Vα(y)| ≤ |x− y|. Thus, part (ii) follows.
To prove part (iii), we can alter an argument from classical analysis (see [23,

p. 107]). We pick any constant K1 so that K1 > λ0. Then there is an admissible
process Xx(.) so that

(2.8) lim sup
T→∞

J(x,Xx, T )

T
< K1.

Introduce a Borel measure ν on [0,∞), induced by the distribution function F, where
F is defined by F (T ) = J(x,Xx, T ) for all T > 0. Hence, ν([0, T ]) = F (T ) for all

T > 0. Also, introduce the function G on [0,∞) by G(T ) = F (T )
T+1 for T > 0. Therefore,

(2.9)

α

∫ ∞

0

e−αtdν(t) = α2

∫ ∞

0

e−αtF (t)dt (by integration by parts)

= α2

∫ ∞

0

e−αt(t + 1)G(t)dt =

∫ ∞

0

e−y(y + α)G
( y

α

)
dy.
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By (2.8), G(t) < K1 for all t > T0 > 1 and ||G||∞ = sup[0,∞) |G(t)| < ∞. Hence, by
(2.9),

αVα(x) = α

∫ ∞

0

e−αtdν(t)

=

∫ αT0

0

e−y(y + α)G
( y

α

)
dy +

∫ ∞

αT0

e−y(y + α)G
( y

α

)
dy

< α2(T 2
0 + T0)||G||∞ + K1

∫ ∞

0

e−y(y + α)dy

< α2(T 2
0 + T0)||G||∞ + K1(1 + α).

Consequently, lim supα→0 αVα(x) ≤ K1. Since K1 > λ0 is arbitrary this implies that
lim supα→0 αVα(x) ≤ λ0. Next V0(x, T ) ≤ F (T ) for all T > 0 and by (2.8), we obtain

lim supT→∞
V0(x,T )

T ≤ lim supT→∞
F (T )
T < K1. But K1 > λ0 is arbitrary. Hence

lim supT→∞
V0(x,T )

T ≤ λ0 and the proof of part (iii) is complete.

3. Optimality of the zero control. First we introduce the state process Zx(·)
which corresponds to zero control policy, namely, A(t) ≡ 0 for all t in (1.1). Let Zx(·)
be a weak solution (see [14]) to

(3.1) Zx(t) = x +

∫ t

0

μ(Zx(s))ds +

∫ t

0

σ(Zx(s))dW (s),

where W (t) is a one-dimensional Brownian motion. The existence of Zx(t) for all
t ≥ 0 and the finiteness of the first moment E|Zx(t)| for each t ≥ 0 are obtained in
section 4 of [28] (see also Chapter 5, Theorem 5.15 in [14]). The main theorem in this
section is the following.

Theorem 3.1. Assume (1.6), (1.7), (1.8) and that H(x) ≤ 0 for all x, where H
is given in (1.9). Then the following hold:

(i) limα→0 αVα(x) = Λ0 exists, where Λ0 is a constant. Moreover, this limit
converges uniformly over compact sets.

(ii) The process Zx(.) of (3.1) is an optimal process which corresponds to the zero
control policy for the ergodic control problem in (1.3). Its value λ0 = Λ0,
where Λ0 is the limit in part (i).

This theorem implies that under the above set of assumptions, there is no optimal
target band for the exchange rates related to question 1 of our example on foreign
exchange rates in section 1. Furthermore, an optimal policy for the central bank is
not to intervene at all.

To prove this theorem, first we describe some results related to the value function
Vα(x), which were developed in sections 3 and 4 of [28]. Let Y (·) be the weak solution
to

(3.2) Y (T ) = x +

∫ T

0

[σ(Y (t))σ′(Y (t)) + μ(Y (t))]dt +

∫ T

0

σ(Y (t))dB(t),

where {B(t) : t ≥ 0} is a Brownian motion. The existence and uniqueness of a weak
solution to (3.2) follows from Theorem 5.15 of Chapter 5 in [14]. This process was
also introduced in (3.1) of [28]. Next we consider the function W∞ introduced in
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Lemma 4.2 of [28] and relabel it as Wα to specify its dependence on α. Then, by
Lemma 4.2 of [28], Wα(x) has the stochastic representation

(3.3) Wα(x) = Ex

∫ τ∞

0

e−
∫ t
0

(α−μ′(Y (s)))dsC ′(Y (t))dt,

where τ∞ is the explosion time of the Y (·) process. Next, the assumption H(x) ≤ 0
for all x implies that |C ′(x)| < (α− μ′(x)) for all x. Using this estimate in (3.3), we
obtain |Wα(x)| < 1 for all x. Furthermore, as in Lemma 4.2 of [28], Wα satisfies

(3.4)
σ2(x)

2
W ′′

α (x) + (σ(x)σ′(x) + μ(x))W ′
α(x) − (α− μ′(x))Wα(x) + C ′(x) = 0

for all x and |Wα(x)| < 1 for all x. Theorem 4.3 of [28] also implies the following
representation for the value function Vα:

(3.5) Vα(x) =
σ2(0)

2α
W ′

α(0) +

∫ x

0

Wα(u)du.

Next, we prove a technical lemma.
Lemma 3.2. Let Wα be as in (3.3) above. Then the following results hold.
(i) limα→0 Wα(x) exists for all x. Let W0(x) � limα→0 Wα(x); then W0(x) has

the stochastic representation

(3.6) W0(x) = Ex

∫ τ∞

0

e
∫ t
0
μ′(Y (s))dsC ′(Y (t))dt.

(ii) W0(·) also satisfies

(3.7)

σ2(x)

2
W ′′

0 (x) + (σ(x)σ′(x) + μ(x))W ′
0(x) + μ′(x)W0(x) + C ′(x) = 0

and |W0(x)| ≤ 1 for all x.

(iii)

(3.8) lim
α→0

W ′
α(0) = W ′

0(0).

Proof. Consider the representation (3.3) for Wα. Since H(x) ≤ 0 for all x, we
obtain

|C ′(Y (t))|e−
∫ t
0

(α−μ′(Y (s)))ds ≤ −μ′(Y (t)) · e−
∫ t
0

(α−μ′(Y (s)))ds.

Notice that −
∫ τ∞
0

e
∫ t
0
μ′(Y (s))ds · μ′(Y (t))dt = 1− e

∫ τ∞
0

μ′(Y (s))ds ≤ 1. Now using (3.3)
and the dominated convergence theorem, it follows that limα→0 Wα(x) ≡ W0(x) exists
and W0 has the representation (3.6). Hence, part (i) follows.

Next, we integrate (3.4) twice and obtain

σ2(0)

2
·W ′

α(0) ·
∫ x

0

2

σ2(r)
dr = Wα(x) −Wα(0) + 2

∫ x

0

μ(r)

σ2(r)
·Wα(r)dr

+ 2

∫ x

0

C(r)

σ2(r)
dr − 2α

∫ x

0

∫ r

0

Wα(u)

σ2(u)
dudr.
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Since limα→0 Wα(x) ≡ W0(x) exists and |Wα(x)| < 1 for all x, we obtain that the
right-hand side of the above equation converges as α tends to zero and |W0(x)| ≤ 1
for all x. Therefore, limα→0 W

′
α(0) exists and we label it β. Hence,

σ2(0)

2
· β ·

∫ x

0

2

σ2(r)
dr = W0(x) −W0(0) +

∫ x

0

2μ(r)

σ2(r)
·W0(r)dr +

∫ x

0

2C(r)

σ2(r)
dr.

By differentiating this equation, we obtain W ′
0(0) = β and W0 satisfies the differential

equation (3.7). Hence, the proofs of parts (ii) and (iii) are complete.
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. By (3.5), we can write

(3.9) αVα(x) = Λα + α

∫ x

0

Wα(u)du

for all x, where

(3.10) Λα =
σ2(0)

2
W ′

α(0).

Next, we let

(3.11) Λ0 =
σ2(0)

2
W ′

0(0).

Using part (iii) of Lemma 3.2, we have limα→0 Λα = Λ0. Since |Wα(x)| < 1 for all
x, using (3.9) we obtain |αVα(x) − Λ0| ≤ |Λα − Λ0| + α|x|. Then limα→0 αVα(x) =
Λ0 and the convergence is uniform on compact sets. Thus, the proof of part (i) is
complete.

To prove part (ii), we consider the process Zx(·) in (3.1) and first show that

lim supT→∞
1
T E

∫ T

0
C(Zx(t))dt = Λ0. Under the assumptions of this section, the

Zx(·) process is also optimal for the discounted control problem (1.4) as shown in
[28]. Hence,

Vα(x) = E

∫ ∞

0

e−αtC(Zx(t))dt =

∫ ∞

0

e−αtE[C(Zx(t))]dt.

Now we can apply the classical Abelian limit theorem [23, p. 117] to obtain

lim
α→0

αVα(x) = lim
T→∞

1

T
E

∫ T

0

C(Zx(t))dt.

This theorem also guarantees the existence of the ergodic limit on the right-hand side

of the above equation. Consequently, limT→∞
1
T E

∫ T

0
C(Zx(t))dt = Λ0. By part (iii)

of Proposition 2.1, we know that Λ0 ≤ λ0, where λ0 is the value of (1.3). Therefore,
we can conclude Zx(·) is an optimal process for (1.3) and limα→0 αVα(x) = Λ0 = λ0.
This completes the proof.

Remarks.
1. It should be noted that if the process Zx(·) has a stationary distribution π,

then the limit Λ0 is equal to
∫∞
−∞ C(y)π(dy).

2. Under the assumptions of Theorem 3.1, one can show that the process Zx(·) is
also optimal for the finite-horizon problem with the value function V0(x, T ) in (1.5).
Here we sketch the proof.
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Let Q(x, T ) = E
∫ T

0
C(Zx(t))dt be the payoff from Zx(·) in (3.1), which corre-

sponds to zero control. Then Q satisfies σ2(x)
2 Qxx +μ(x)Qx +C(x) = Qt for all x and

t > 0. Also, Q(x, 0) = 0. Now let U(x, T ) = Qx(x, T ); then U satisfies

σ2(x)

2
Uxx + (σ(x)σ′(x) + μ(x))Ux + μ′(x)U + C ′(x) = Ut

for all x and t > 0, and U(x, 0) = 0. By Itô’s lemma (with the same notation as in
(3.6)), U has the stochastic representation

U(x, T ) = E

∫ τ∞∧T

0

e
∫ t
0
μ′(Y (s))dsC ′(Y (t))dt.

Thus, as in the proof of Theorem 3.1, |U(x, T )| ≤ 1 since H(x) ≤ 0. Now, for any
given process Xx(·), by applying Itô’s lemma to Q(Xx(t), T − t), we obtain

Q(x, T ) ≤ E

∫ T

0

[C(Xx(s))ds + d|A|(s)].

Hence, Q(x, T ) = V0(X,T ) and Zx(·) is optimal for the finite time horizon problem
(1.5).

4. Optimality of a reflected diffusion. In this section, we assume the follow-
ing conditions (4.1) and (4.2) in addition to the basic assumptions (1.6)–(1.8). Let
the function H be as in (1.9). We assume the existence of a constant α0 > 0 which
satisfies the following:

(i) For each 0 ≤ α < α0, there exist two points θα < 0 < βα so that
H(x) > α outside [θα, βα]. Furthermore, if α > 0, then H(x) < α in
(θα, βα). Finally, if α = 0, then {x : H(x) ≤ 0} = [θ0, β0].

(4.1)

(ii) For each 0 < α < α0, there are two constants εα > 0 and Mα > 0 so
that H(x) + εαμ

′(x) > (1 + εα)α for all |x| > Mα.
(4.2)

Remarks.
1. Without loss of generality, we assume that α0 < δ0, where δ0 is given in (1.2).
2. By (4.1), H(0) ≤ 0 and θα ≤ θ0 < 0 < β0 ≤ βα for each 0 ≤ α < α0.
3. By (4.2), it follows that limx→∞ C(x) + μ(x) = +∞ and limx→−∞ C(x) − μ(x)

= +∞.
4. For each α in (0, α0), the above assumptions imply those of section 5 in [28],

and hence we can use the results related to Vα(x) in there.
Our main theorem in this section is the following.
Theorem 4.1. Assume (4.1) and (4.2), in addition to the basic assumptions

(1.6)–(1.8). Then the following hold:
(i) limα→0 sup|x|≤K |αVα(x) − λ0| = 0 for each K > 0.
(ii) There exist two points a∗ and b∗ so that the corresponding reflected diffusion

process on the state space [a∗, b∗] (if the initial point is outside this interval,
then there will be an initial jump to the nearest point of the interval) is an
optimal state process for the ergodic control problem (1.3). Hence the optimal
control policy here is given by the difference of two local-time processes at a∗

and b∗.
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This theorem verifies the existence of an optimal target band for our example
on exchange rates in section 1 under the above set of assumptions. In this case, the
optimal intervention policy of the central bank involves local-time processes of the
exchange rate as described in the above theorem.

First we gather the necessary technical results in Lemma 4.2.

Lemma 4.2. Assume the same assumptions as in Theorem 4.1. Let l0 be any
limit point of the set {αVα(0)} as α tends to zero. Then there exist two points a∗, b∗

and a continuously differentiable function W0 defined on R satisfying the following
conditions:

(i) −∞ < a∗ ≤ θ0 < β0 ≤ b∗ < +∞, where θ0 and β0 are given in (4.1).

(ii) W0 satisfies σ2(x)
2 W ′

0(x) + μ(x)W0(x) + C(x) = l0 for a∗ < x < b∗.
(iii) W0(x) = −1 for all x ≤ a∗, W0(x) = +1 for all x ≥ b∗, and |W0(x)| ≤ 1 for

all x.
(iv) The value of l0 can be identified by the formula

l0 =
e2

∫ b∗
0

ρ(u)du + e−2
∫ 0
a∗ ρ(u)du

2D
+

∫ b∗

a∗
C(u)φ(u)du,

where D =
∫ b∗

a∗
1

σ2(x)e
2
∫ x
0

ρ(u)dudx, ρ(x) = μ(x)
σ2(x) on [a∗, b∗], and the density

function φ is given by φ(x) = 1
D

1
σ2(x)e

2
∫ x
0

ρ(u)du on [a∗, b∗].

Proof. Using [28, Proposition 5.4, (5.28), and Theorem 5.5], we obtain the fol-
lowing representation for the value function Vα: Vα(x) = Vα(0) +

∫ x

0
Wα(u)du. Here,

we write Wα for the function W in [28, Proposition 5.4] to represent the dependence
on α. We also observe that

(4.3) Vα(x) =
σ2(0)

2α
W ′

α(0) +

∫ x

0

Wα(u)du.

Furthermore, by [28, Proposition 5.4 and Theorem 5.5], for each α, there exist two
points a∗α, b

∗
α and a C1 function Wα so that a∗α < θ0 < β0 < b∗α and Wα satisfies

(4.4)
σ2(x)

2
W ′′

α (x) + (σ(x)σ′(x) + μ(x))W ′
α(x) − (α− μ′(x))Wα(x) + C ′(x) = 0

for a∗α < x < b∗α. Also,

(4.5) Wα(a∗α) = −1, Wα(b∗α) = 1, |Wα(x)| < 1 on (a∗α, b
∗
α),

and

(4.6)
W ′

α(a∗α) = W ′
α(b∗α) = 0, Wα(x) = −1 for x ≤ a∗α,

Wα(x) = 1 for x ≥ b∗α.

This solution Wα was obtained in [28] by deriving a solution to an optimal stopping
problem. For details, we refer to [28]. Now consider the limit point l0 of the set
{αVα(0)} as α tends to zero. Then there is a decreasing sequence {αn} so that
limn→∞ αn = 0 and limn→∞ αnVαn(0) = l0. By part (iii) of Proposition 2.1, it follows
that l0 ≤ λ0. Hence, there is a constant C0 > 0 so that 0 < αnVαn

(0) < C0 for all
n. Notice that [θ0, β0] ⊆ [a∗αn

, b∗αn
]. We intend to show that there is a finite K > 0
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so that [a∗αn
, b∗αn

] ⊆ [−K,K] for all αn. Next, by integrating (4.4) over [0, b∗αn
], we

obtain

C(b∗αn
) + μ(b∗αn

) − σ2(0)

2
W ′

αn
(0) = αn

∫ b∗αn

0

Wαn(x)dx < αnb
∗
αn

.

Hence,

(4.7)

∫ b∗αn

0

[H(x) − αn]dx = C(b∗αn
) + μ(b∗αn

) − αnb
∗
αn

<
σ2(0)

2
W ′

αn
(0) = αnVαn

(0) < C0,

where C0 is a constant independent of n. But, from (4.2),
∫∞
0

[H(x) − αn]dx = ∞
for each n. Hence, by picking n = 1, we have a constant K1 > 0 so that

∫ x

0
[H(x) −

α1]dx > C0 for all x > K1. However, using (4.7) we obtain
∫ b∗αn
0

[H(x) − α1]dx <∫ b∗αn
0

[H(x) − αn]dx < C0. Consequently,

(4.8) β0 ≤ b∗αn
< K1 for all n.

Similarly, by integrating (4.4) over [a∗αn
, 0], we obtain

(4.9)

∫ 0

a∗
αn

[H(x) − αn]dx = C(a∗αn
) − μ(a∗αn

) − αn|a∗αn
| < αnVαn(0) < C0

for all n. Then, using (4.2) and following an argument similar to that above, we
obtain a constant K2 > 0 so that

(4.10) −K2 < a∗αn
≤ θ0 for all n.

Now we let K = max{K1,K2}. Then by (4.8) and (4.10), we obtain

(4.11) [a∗αn
, b∗αn

] ⊆ [−K,K] for all n.

In the rest of the proof we show that {Wαn} and {W ′
αn

} are equicontinuous families
and conclude that {Wαn} converges (possibly through a subsequence) to the desired
function W0 which satisfies parts (ii) and (iii) of the lemma. For this, we consider the
sequence of functions (Wαn) defined on [−K,K]. By integrating (4.4), we have

σ2(x)

2
W ′

αn
(x) = αnVαn(0) + αn

∫ x

0

Wαn(u)du− C(x) − μ(x) ·Wαn(x).

Using the facts that inf [−K,K] σ
2(x) > 0, |Wαn(x)| ≤ 1 for all x, the functions μ, σ,

and C are bounded on [−K,K], and 0 < αnVαn(0) < C0 for all n, we obtain

(4.12) sup
n

sup
[−K,K]

|W ′
αn

(x)| < C1, where C1 is a constant.

Now, using (4.4) and (4.12) together with the same reasoning as above, we conclude

(4.13) sup
n

sup
[a∗

αn
,b∗αn

]

|W ′′
αn

(x)| < C2,
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where C2 > 0 is a constant. Here, at the end points a∗αn
and b∗αn

, we considered the
one-sided limits W ′′

αn
(a∗αn

+) and W ′′
αn

(b∗αn
−). Next, using (4.12), (4.13), and the fact

that W ′′
αn

(x) = 0 outside [a∗αn
, b∗αn

], we conclude that {Wαn} and {W ′
αn

} are equicon-
tinuous families on [−K,K]. By (4.11), we can pick a subsequence of (αn), so that
(a∗αn

) and (b∗αn
) converge to limit points a∗ and b∗, respectively. Furthermore, these

limit points are inside [−K,K]. Since {Wαn
} and {W ′

αn
} are equicontinuous families

on [−K,K] (through a further subsequence, if necessary), using the Arzelà–Ascoli
theorem, we can conclude that there exists a continuously differentiable function W0

on the interval [−K,K] which satisfies the following:

lim
αn→0

Wαn(x) = W0(x) and lim
αn→0

W ′
αn

(x) = W ′
0(x).

Furthermore, −K ≤ a∗ ≤ θ0 < β0 ≤ b∗ ≤ K. Now by integrating (4.4) and letting
αn tend to zero in the resulting integral equation, we obtain that W0 satisfies the
differential equation in part (ii) of the lemma. To derive part (iii), we only need to
extend W0 to all R, so that W0(x) = −1 for x ≤ −K and W0(x) = 1 for x ≥ K.
Now, the equicontinuity of {Wαn} and {W ′

αn
} implies part (iii).

Next, similar to the argument in (2.2) and (2.3), we can solve the first order
differential equation in part (ii) with the boundary condition W0(a

∗) = −1 and then
use the other boundary condition W0(b

∗) = 1 to obtain the formula for l0. Hence, the
proof of part (iv) is complete.

Remarks. In the following proof of the theorem, we show that l0 = λ0. Hence,
we obtain the uniqueness of l0 as well as the existence of the limit limα→0 αVα(0).

Proof of Theorem 4.1. Introduce the function Q by

Q(x) =

∫ x

0

W0(u)du,

where W0 is as in the previous lemma. Let a∗ and b∗ be also as in the previous
lemma. Next, consider the reflected diffusion process X∗

x on the interval [a∗, b∗],
given by (4.14). This process is positive recurrent on the interval [a∗, b∗] and its
ergodic limit for the cost functional can be derived explicitly as given below (see also
[9, Chapter II, sec. 6]). In the following discussion, we simply assume x is in [a∗, b∗],
since an initial jump to the set {a∗, b∗} does not alter the cost functional in (1.3). Let

(4.14) X∗
x(t) = x +

∫ t

0

μ(X∗
x(s))ds +

∫ t

0

σ(X∗
x(s))ds + A∗(t),

where

(4.15) A∗(t) = La∗(t) − Lb∗(t) and |A∗|(t) = La∗(t) + Lb∗(t).

The processes La∗ and Lb∗ are local-time processes of X∗
x at the points a∗ and b∗,

respectively. Clearly, X∗
x is an admissible process for (1.3). We apply Itô’s lemma to

Q(X∗
x(T )) and use Lemma 4.2 to obtain

Q(X∗
x(T )) = Q(x) + l0T − E

∫ T

0

[C(X∗
x(t))dt + d|A∗|(t)].

Consequently, limT→∞
1
T E

∫ T

0
[C(X∗

x(t))dt+d|A∗|(t)] = l0. Therefore, l0 ≥ λ0 and the
value of l0 is given in part (iv) of Lemma 4.2. However, l0 ≤ λ0 from Proposition 2.1.
Therefore, l0 = λ0 and the above X∗

x process is an optimal state process. Furthermore,
every limit point of {αVα(0)} is equal to λ0. Consequently, limα→0 αVα(0) = λ0.
Using part (ii) of Proposition 2.1, we obtain limα→0 sup|x|≤K |αVα(x)−λ0| = 0 for each
K > 0. Hence, the proofs of both parts (i) and (ii) of Theorem 4.1 are complete.
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5. Asymptotics for V0(x, T ). In this section, we intend to prove the following
theorem, which describes the long term behavior of V0(x, T ) defined in (1.5).

Theorem 5.1. Under the assumptions of Theorem 3.1 or 4.1, the following
Abelian limit holds:

(5.1) lim
T→∞

sup
|x|≤K

∣∣∣∣V0(x, T )

T
− λ0

∣∣∣∣ = 0 for each K > 0.

Proof. It suffices to show lim infT→∞
V0(0,T )

T ≥ λ0, because this together with
parts (ii) and (iii) of Proposition 2.1 implies (5.1). First, we observe that a given pro-

cess Xx(·) which satisfies (1.1) on [0, T ] with the condition E
∫ T

0
[C(Xx(t))dt + d|A|(t)]

< ∞ can be extended to [0,∞) as an admissible process for (1.3), simply by using
the zero control policy on [T,∞). Hence

Xx(T + s) = Xx(T ) +

∫ T+s

T

μ(Xx(u))du +

∫ T+s

T

σ(Xx(u))dW (u),

where {W (t) : t ≥ 0} is a Brownian motion. Since we have observed that the process
corresponding to zero control policy is an admissible process in section 3, it easily
follows that Xx(·) is also an admissible process. Second, we have observed that

lim supT→∞
V0(0,T )

T ≤ λ0 in the Proposition 2.1. Thus, if we take a constant M1 > λ0,
then there is a T0 > 0 so that

(5.2) V0(0, T ) < M1T

for all T > T0. Because of this fact, it suffices to consider the collection of admissible
processes X0(·) which satisfy (1.1) together with

(5.3) E

∫ T

0

[C(X0(t))dt + d|A|(t)] < M1T.

Next, we establish that the quantity E|X0(T )|
T is bounded for such an admissible process

X0(·) as T → ∞. For this consider the even C2 function φ defined by

φ(x) =
1

8
(3 + 6x2 − x4)I[|x|<1] + |x|I[|x|≥1].

Here, IA denotes the indicator function of the set A. Then 0 ≤ φ′(x) ≤ 1 for x ≥ 0
and 1 + φ(x) ≥ |x| for all x. Also, φ is nonnegative and φ′(x)μ(x) ≤ 0 for all x. Now,
we use the generalized Itô lemma [18, p. 285] together with the above facts to obtain

Eφ(X0(T )) ≤ E

∫ T

0

σ2(X0(s))

2
φ′′(X0(s))I[−1,1](X0(s))ds + E|A|(T ).

Since we can find a constant C2 > 0 so that sup[−1,1]

[
σ2(x)|φ′′(x)|

]
≤ C2 and by

(5.3), for each T > max{T0, 1}, we obtain

(5.4) E|X0(T )| ≤ 1 + Eφ(X0(T )) ≤ C2T + E|A|(T ) + 1 < (M1 + C2 + 1)T.

Notice that the constants M1 and C2 are independent of the process X0(·). Hence, the

quantity E|X0(T )|
T remains bounded as T → ∞. Next, by the dynamic programming
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principle (or applying the generalized Itô lemma), we derive

αVα(0) ≤ αE

∫ T∧τn

0

e−αs[C(X0(s))ds + d|A|(s)]
(5.5)

+ E[e−α(T∧τn)αVα(X0(T ∧ τn))].

Here (τn) is a sequence of stopping times which satisfy the assumption (1.2). From
the proofs of Theorems 3.1 and 4.1 (see (3.9), (3.10), and (4.3)), Vα(x) has the repre-
sentation

(5.6) αVα(x) = Λα + α

∫ x

0

Wα(u)du,

where limα→0 Λα = λ0 and |Wα(x)| ≤ 1 for all x. Hence, αVα(x) ≤ Λα + α|x| for all
x. Combining this with (5.5), we obtain

(5.7)
Λα[1 − E(e−α(T∧τn))] ≤ αE

∫ T

0

[C(X0(s))ds + d|A|(s)]

+ αE|X0(T ∧ τn)|e−α(T∧τn).

Notice that E[|X0(T ∧ τn)|e−α(T∧τn)] ≤ E[|X0(τn)|e−ατnI[τn<T ]] + E[|X0(T )|e−αT ].
Now keeping α > 0 fixed and letting (τn) tend to infinity and using (1.2), we derive
limn→∞ E[|X0(τn)|e−ατnI[τn<T ]] = 0. Therefore,

Λα[1 − e−αT ] ≤ αE

∫ T

0

[C(X0(s))ds + d|A|(s)] + αE|X0(T )|e−αT

≤ αE

∫ T

0

[C(X0(s))ds + d|A|(s)] + αKe−αT .

We have used (5.4) in the last inequality and here K = (M1 + C2 + 1), where the
constants M1 and C2 are as in (5.4). Thus, K is independent of α as well as the
process X0(·). Therefore, Λα[1 − e−αT ] ≤ αV0(0, T ) + αKe−αT . Consequently,

Λα
1 − e−αT

αT
≤ V0(0, T )

T
+

K

T
e−αT .

We choose α = δ
T , where 0 < δ < 1 as in the argument in section (vi) of [3] for large

T > 0. Thus,

Λα
1 − e−δ

δ
≤ V0(0, T )

T
+

K

T
e−δ.

Since limα→0 Λα = λ0, first we let δ tend to zero and then let T tend to infinity to

obtain λ0 ≤ lim infT→∞
V0(0,T )

T as desired. This completes the proof.

6. A constrained optimization problem. In this section, we address a con-
strained optimization problem which can be solved by using our results in section 4.
For the purposes of this section, we need to strengthen the assumption (1.7) by the
following assumption:

(6.1)

∫ 0

−∞

1 + μ(x)

σ2(x)
dx =

∫ ∞

0

1 − μ(x)

σ2(x)
dx = ∞.
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At the end of this section, in Theorem 6.4, we will describe the results we can
obtain when we replace (6.1) by the assumption (1.7). We will introduce further
assumptions on μ, σ, and C after we describe the constrained optimization problem.

Consider the collection U of all admissible control systems used in the ergodic
control problem (1.3). Let U0 be the subcollection of U obtained by enforcing μ and
σ to also satisfy (1.6) and (6.1). Let m > 0 be any fixed positive real number. Here,
we address the following constrained minimization problem:

(6.2) Minimize lim sup
T→∞

1

T
E

∫ T

0

C(Xx(s))ds

subject to

(6.3) lim sup
T→∞

E|A|(T )

T
≤ m

over all admissible systems in U0. Notice that an initial jump does not affect our cost
criteria or the constraint. Therefore, throughout this section, we simply consider the
initial point x to be the origin and omit the dependence on x in our notation. To be
more precise, for each m > 0, we define

(6.4) Um =

{
((Ω,F, P ), (Ft),W,A,X) ∈ U0 : lim sup

T→∞

E|A|(T )

T
≤ m

}
.

The collection Um is nonempty, since the zero control policy developed in section 3
is there. The constrained minimization problem is to find the value function and
characterize an optimal policy for

(6.5) inf
Um

lim sup
T→∞

1

T
E

∫ T

0

C(X(s))ds.

We intend to characterize an optimal strategy that achieves the infimum in (6.5).
We develop a “Lagrange multiplier”-type method by introducing an unconstrained
optimization problem whose cost criteria includes a “penalty rate” p > 0. This
penalty rate can be considered as the Lagrange multiplier variable. For each p > 0,
we can obtain an optimal strategy for the unconstrained problem from the results in
section 4. Furthermore, we also obtain an explicit formula for the derivative of the
value with respect to p. Then we show that there exists a unique value for p, say p∗,
where the corresponding optimal control A∗ of the unconstrained problem satisfies

limT→∞
E|A∗|(T )

T = m. This enables us to conclude that the same control policy
is also optimal for the constrained minimization problem (6.5). At the end of this
section, we also point out that if we assume (1.7) instead of (6.1), we can solve the
constrained minimization problem with the same optimal policy only when m > γ0,
where γ0 is a constant explicitly given in Theorem 6.4.

In a continuous-time setting, the idea of using both Lagrange multipliers and
Kuhn–Tucker characterization of optimal policies for constrained stochastic control
problems is considered in [6]. A problem of finite-fuel singular control with dynamic
constraints for the control process is addressed in [5]. The Lagrange multiplier method
was applied to a stochastic control problem with terminal conditions in [22, p. 241].
When the state space is a finite interval, a similar constrained optimization problem
and an application to dynamic power control in wireless communication are addressed
in [4] and we are motivated by their work.
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Let p > 0 be a positive constant which represents the penalty rate. For each
p > 0, we let

(6.6) Γ(p) = inf
U0

lim sup
T→∞

1

T
E

[∫ T

0

C(X(s))ds + p · |A|(T )

]
.

Introduce the function Cp : R → [0,∞) by

(6.7) Cp(x) =
C(x)

p
for all x.

Notice that

(6.8)
Γ(p)

p
= inf

U0

lim sup
T→∞

1

T
E

[∫ T

0

C(X(s))

p
ds + |A|(T )

]

and the function Cp satisfies the assumption (1.8). Similar to the definition of H in
(1.9), for each p > 0, we define the function Hp : R → R by

(6.9) Hp(x) = μ′(x) +
|C ′(x)|

p
.

We make the following additional assumptions throughout this section. They will
enable us to use the results in section 4. For each p > 0, we assume there exists a
constant α0(p) > 0 which satisfies the conditions below.

(i) For each 0 ≤ α < α0(p), there exist two points θα(p) < 0 < βα(p)
so that Hp(x) > α outside the interval [θα(p), βα(p)]. Furthermore,
if α > 0, then Hp(x) < α in (θα(p), βα(p)). Finally, if α = 0, then
{x : Hp(x) ≤ 0} = [θ0(p), β0(p)].

(6.10)

(ii) For each p > 0, lim|x|→∞
α0(p)−μ′(x)

|C′(x)| = 0.(6.11)

(iii) C(x) > 0 for all x �= 0.(6.12)

Remarks. Assumption (6.10) is similar to (4.1) in section 4, and (6.11) clearly
implies (4.2). Condition (6.12) enables us to simplify the proofs.

Examples. The following examples of μ, σ, and C satisfy all the assumptions in
this section:

(i) Let μ(x) = −θx3 for some θ > 0, σ(x) = 1 + x2 and C(x) = x2n for any
n ≥ 2.

(ii) Let μ(x) = −θx for some θ > 0, σ(x) = σ0, where σ0 > 0 is a constant.
Let C(·) be any C2 convex function which has a unique minimum at zero,
C(0) = 0 and lim|x|→∞ |C ′(x)| = ∞.

When μ, σ, and C satisfy all the assumptions in this section, then for each p > 0,
μ, σ, and Cp clearly satisfy all the assumptions of Theorem 4.1. Therefore, for each

p > 0, Γ(p)
p is finite and there is a finite interval [a∗(p), b∗(p)] so that the corresponding

reflecting diffusion process X∗
p (·) which satisfies (2.1) on this interval is an optimal

process. The corresponding optimal bounded variation control process A∗
p(·) satisfies

(6.13) A∗
p(t) = La∗(p)(t) − Lb∗(p)(t) for all t > 0,
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where La∗(p)(·) and Lb∗(p)(·) are local time processes of X∗
p (·) at the end points a∗(p)

and b∗(p), respectively. By Lemma 4.2, we know that a∗(p) and b∗(p) satisfy

(6.14) −∞ < a∗(p) ≤ θ0(p) < 0 < β0(p) ≤ b∗(p) < ∞.

It is known (see [9]) that the reflected diffusion X∗
p (·) on the finite interval

[a∗(p), b∗(p)] has a unique stationary probability distribution with the probability
density φ given below in (6.16). Therefore,

(6.15) lim
T→∞

1

T
E

∫ T

0

C(X∗
p (s))ds =

∫ b∗(p)

a∗(p)

C(u)φ(u)du.

The density function φ is given by

(6.16) φ(x) =
1

D

1

σ2(x)
e2

∫ x
0

ρ(u)du,

where ρ(x) = μ(x)
σ2(x) on the interval [a∗(p), b∗(p)] and the normalization constant D > 0

is given by

(6.17) D =

∫ b∗(p)

a∗(p)

1

σ2(x)
e2

∫ x
0

ρ(u)dudx.

Also, we can use the limit in (2.5) for (6.13) to obtain

(6.18) lim
T→∞

E|A∗
p|(T )

T
=

e2
∫ b∗(p)
0

ρ(u)du + e−2
∫ 0
a∗(p)

ρ(u)du

2D
,

where the constant D > 0 is given in (6.17).
Consequently, Γ(p) has the representation

(6.19) Γ(p) = lim
T→∞

1

T
E

∫ T

0

C(X∗
p (s))ds + p · lim

T→∞

E|A∗
p|(T )

T
.

Our next lemma shows the differentiability of Γ(p) and computes the derivative ex-
plicitly.

Lemma 6.1. For each p > 0, consider the value function Γ(p) defined in (6.6).
Then the following statements are true:

(i) Γ(·) is a differentiable, strictly increasing function and its derivative is given
by

(6.20) Γ′(p) = lim
T→∞

E|A∗
p|(T )

T
,

where A∗
p(·) is the optimal control process described in (6.13).

(ii) Γ(·) satisfies 0 < p · Γ′(p) < Γ(p) for each p > 0 and limp→0 Γ(p) = 0.

(iii) The function Γ(p)
p is strictly decreasing on (0,∞).

Proof. We introduce the function F (a, b) on the set {(a, b) ∈ R2 : a < 0 < b} by

(6.21) F (a, b) =
e2

∫ b
0
ρ(u)du + e−2

∫ 0
a
ρ(u)du∫ b

a
2

σ2(x)e
2
∫ x
0

ρ(u)dudx
,
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where ρ is as in (6.16). Notice that ρ > 0 on (−∞, 0) and ρ < 0 on (0,∞). Using this
fact, a direct computation yields

(6.22)
∂F

∂a
(a, b) > 0 and

∂F

∂b
(a, b) < 0 when a < 0 < b.

By (6.18), for each p > 0, we observe that

(6.23) F (a∗(p), b∗(p)) = lim
T→∞

E|A∗
p|(T )

T
.

Next, consider 0 < p < q. By (6.6), it is clear that Γ(p) ≤ Γ(q). Since the optimal
strategy (X∗

p , A
∗
p) for Γ(p) is also an admissible strategy for Γ(q), using the definitions

of Γ(p), Γ(q) and (6.23), we obtain

0 ≤ Γ(q) − Γ(p) ≤ (q − p) · F (a∗(p), b∗(p)).

Similarly, (X∗
q , A

∗
q) is optimal for Γ(q) and is an admissible strategy for Γ(p) and

hence

0 < (q − p) · F (a∗(q), b∗(q)) ≤ Γ(q) − Γ(p).

Combining these two inequalities, we obtain

(6.24) 0 < F (a∗(q), b∗(q)) ≤ Γ(q) − Γ(p)

q − p
≤ F (a∗(p), b∗(p)) when 0 < p < q.

Notice that (6.24) also implies that F (a∗(p), b∗(p)) is a decreasing function in the
variable p. Now let p0 > 0 be fixed. Let δ1 > 0 be such that 0 < δ1 < p0. Then by
(6.24), for all 0 < |h| < δ1, we have

(6.25) F (a∗(p0 + δ1), b
∗(p0 + δ1)) ≤

Γ(p0 + h) − Γ(p0)

h
≤ F (a∗(p0 − δ1), b

∗(p0 − δ1)).

Clearly, (6.25) implies the continuity of Γ(·) at p0, and it also shows that if limp→p0

F (a∗(p), b∗(p)) = F (a∗(p0), b
∗(p0)), then Γ(·) is differentiable at p0 and Γ′(p0) =

F (a∗(p0), b
∗(p0)). Notice that if a∗(·) and b∗(·) are continuous at p = p0, then by

(6.21), limp→p0 F (a∗(p), b∗(p)) = F (a∗(p0), b
∗(p0)) holds. Therefore, to prove part (i)

of the lemma, it suffices to show the continuity of the functions a∗(·) and b∗(·). Here,
we prove the continuity of b∗(·). The proof of the continuity of a∗(·) is very similar,
and therefore we omit it.

By parts (ii) and (iii) of Lemma 4.2 (notice that l0 = λ0 there, as shown in the
proof of Theorem 4.1), we have

(6.26)
C(b∗(p))

p
+ μ(b∗(p)) =

C(a∗(p))

p
− μ(a∗(p)) =

Γ(p)

p
.

First we show that b∗(·) is bounded on the interval [p0 − δ1, p0 + δ0] and notice that
b∗(p) > 0 by (6.14). By the monotonicity of Γ(·), (6.9), and by (6.26), we have

Γ(p0 + δ1)

p0 − δ1
≥ Γ(p)

p
=

∫ b∗(p)

0

Hp(u)du ≥
∫ b∗(p)

0

Hp0+δ1(u)du.

But (6.11) implies that
∫∞
0

Hp0+δ1(u)du = ∞. Therefore, we can conclude that b∗(·) is
a bounded function on [p0−δ1, p0+δ1]. Now consider a sequence (qn) in (p0−δ1, p0+δ1)



734 ANANDA WEERASINGHE

such that limn→∞ qn = p0. Now let m0 be any limit point of the bounded sequence
(b∗(qn)). Then m0 ≥ 0 by using (6.14). By (6.26) and by the continuity of Γ(·), we

obtain C(m0)
p0

+μ(m0) = Γ(p0)
p0

> 0 and consequently m0 > 0. But b∗(p0) > 0 and also

satisfies C(b∗(p0))
p0

+μ(b∗(p0)) = Γ(p0)
p0

> 0. By (6.10), we have Hp0
(x) ≤ 0 on [0, β0(p0)]

and Hp0
(x) > 0 on (β0(p0),∞). Therefore, {x ≥ 0 : C(x)

p0
+ μ(x) > 0} ⊆ (β0(p0),∞)

and C(x)
p0

+ μ(x) is strictly increasing on (β0(p0),∞) and hence m0 = b∗(p0). This

implies that b∗(·) is continuous at p = p0. A similar proof yields the continuity of
a∗(·) at p = p0. Consequently, we have limp→p0 F (a∗(p), b∗(p)) = F (a∗(p0), b

∗(p0)).
This together with (6.25) implies that Γ(·) is differentiable at p0, and its derivative is
given by Γ′(p0) = F (a∗(p0), b

∗(p0)) > 0. Hence, the proof of part (i) is complete.
To prove part (ii), using (6.15)–(6.19), (6.23), and the above result we can write

Γ(p) =

∫ b∗(p)

a∗(p)

C(u)φ(u)du + p · Γ′(p),

where φ is given in (6.16). By (6.12) and (6.16), it is clear that the above integral is
strictly positive. Therefore, Γ(p) > p · Γ′(p) > 0 holds. To show limp→0 Γ(p) = 0, we
consider the reflecting diffusion process described in (2.1) with a = −√

p and b =
√
p

on the interval [−√
p,
√
p] and obtain the following upper bound for Γ(p):

0 < Γ(p) ≤ max{C(
√
p), C(−√

p)} + p · F (−√
p,
√
p).

Clearly, limp→0+ max{C(
√
p), C(−√

p)} = 0. A direct computation shows that

limp→0+
√
p · F (−√

p,
√
p) = σ2(0)

2 . Therefore, limp→0+ p · F (−√
p,
√
p) = 0 and,

consequently, limp→0 Γ(p) = 0. This completes the proof of part (ii).
For the proof of part (iii), consider 0 < p < q. Then the optimal strategy (X∗

p , A
∗
p)

for Γ(p) is also an admissible strategy for Γ(q), and therefore, by using (6.15)–(6.19),
we obtain

Γ(p)

p
>

∫ b∗(p)

a∗(p)

C(u)

q
φ(u)du + F (a∗(p), b∗(p))

= lim
T→∞

1

T
E

[∫ T

0

Cq(X
∗
p (t))dt + |A∗

p|(T )

]

≥ Γ(q)

q
.

This completes the proof of the lemma.
In our next lemma, we derive the second order properties of the function Γ(·).

We show that Γ(·) is a strictly concave function and its derivative Γ′(·) takes all the
values in the interval (0,∞).

Lemma 6.2. The functions a∗(·), b∗(·), and Γ(·) satisfy the following conditions:
(i) The functions a∗(·) and b∗(·) are differentiable and their derivatives satisfy

da∗

dp < 0 and db∗

dp > 0.

(ii) limp→0+ a∗(p) = limp→0+ b∗(p) = 0, limp→∞ a∗(p) = −∞, and limp→∞ b∗(p)
= ∞.

(iii) Γ(·) is a twice differentiable function which is strictly concave on (0,∞).
Furthermore, limp→0+ Γ′(p) = ∞ and limp→∞ Γ′(p) = 0.
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Proof. Introduce the function

U(p, x) =
C(x)

p
+ μ(x)

for p > 0 and x > 0. Then U(p, b∗(p)) = Γ(p)
p by (6.26) and ∂U

∂x (p, x) = Hp(x) by

(6.9). We notice that b∗(p) > β0(p) > 0 by (6.14) and by the argument below (6.26).
Hence, ∂U

∂x (p, b∗(p)) = Hp(b
∗(p)) > 0. Therefore, we can use the implicit function

theorem to conclude that b∗(·) is differentiable at p. Now, by differentiating Γ(p) with
respect to p using (6.26), we obtain

(6.27) p ·Hp(b
∗(p)) · db

∗

dp
(p) + μ(b∗(p)) = Γ′(p).

By the previous lemma, Γ′(p) > 0 and μ(b∗(p)) < 0 by (1.6). Also, Hp(b
∗(p)) > 0

as we noted above. Hence, we conclude that db∗

dp (p) > 0. A similar proof yields
da∗

dp (p) < 0. This completes the proof of part (i).

Consequently, b∗(·) is a strictly increasing function on (0,∞) and thus the limit
limp→0+ b∗(p) exists. Let limp→0+ b∗(p) = b0. By (6.26), we obtain Γ(p) = C(b∗(p))+
p · μ(b∗(p)). Using Lemma 6.1 and letting p tend to zero, we can conclude that
b0 ≥ 0 and C(b0) = 0. By (6.12), it follows that b0 = 0. A similar proof shows
limp→0+ a∗(p) = 0.

Next, we intend to show limp→∞ b∗(p) = ∞. Since b∗(·) is strictly increasing, we
let b∞ = limp→∞ b∗(p). If b∞ is finite, using (1.6) and (1.8) we obtain

0 < Γ(p) = C(b∗(p)) + p · μ(b∗(p)) < C(b∞) + p · μ(b∗(1))

for all p > 1. If b∞ is finite, then the right-hand side of the above expression tends
to −∞ as p tends to infinity, which is a contradiction. Hence b∞ = ∞. The proof of
limp→−∞ a∗(p) = −∞ is similar, and this completes the proof of part (ii).

To prove part (iii), using (6.23) and Lemma 6.1, we obtain the representation

(6.28) Γ′(p) = F (a∗(p), b∗(p)) for p > 0.

Since F (·, ·) is differentiable, using the proof of part (i) of this lemma, we have that
Γ(·) is twice differentiable and its second derivative is given by

Γ′′(p) =
∂F

∂a
(a∗(p), b∗(p)) · da

∗

dp
(p) +

∂F

∂b
(a∗(p), b∗(p)) · db

∗

dp
(p).

Now using (6.22) and the above part (i) of the lemma, it is evident that Γ′′(p) < 0.
Next, using (6.21), (6.28), and part (ii) of this lemma, we obtain limp→0+ Γ′(p) = ∞.
To compute limp→∞ Γ′(p), again we use (6.21), (6.28), the fact that F (a∗(p), b∗(p))
is a decreasing function in the variable p, and the concavity of Γ(·). Then we can
conclude that

(6.29) lim
p→∞

Γ′(p) = F (−∞,∞) =
e2

∫∞
0

ρ(u)du + e−2
∫ 0
−∞ ρ(u)du∫∞

−∞
2

σ2(x)e
2
∫ x
0

ρ(u)dudx
.

By (1.6), we obtain 0 <
∫ 0

−∞ ρ(u)du ≤ ∞ and −∞ ≤
∫∞
0

ρ(u)du < 0. If
∫ 0

−∞ ρ(u)du =

∞ and
∫∞
0

ρ(u)du = −∞, then by (6.29) clearly limp→∞ Γ′(p) = 0. Next consider
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the case
∫∞
0

ρ(u)du to be convergent. Let
∫∞
0

ρ(u)du = −L, where L is a posi-

tive constant. Then, by (6.1),
∫∞
0

1
σ2(r)dr = ∞. Therefore, the numerator of the

right-hand side of (6.29) is less than 2, while the denominator is greater than or
equal to 2e−2L

∫∞
0

1
σ2(r)dr. Hence, the denominator is infinite and, consequently,

limp→∞ Γ′(p) = 0. If the integral
∫ 0

−∞ ρ(u)du is convergent, a similar proof shows
limp→∞ Γ′(p) = 0. This completes the proof.

Remarks. The assumption (6.1) is used only in the proof of limp→∞ Γ′(p) = 0.
If we assume (1.7) instead of (6.1), our conclusion for the limit limp→∞ Γ′(p) will be
given by the right-hand side of (6.29).

Next, we present the main theorem of this section.
Theorem 6.3. Assume (1.6), (1.8), (6.1), and (6.10)–(6.12). Then for any posi-

tive constant m > 0, the constrained optimization problem (6.5) has an optimal strat-
egy of the type described in part (ii) of Theorem 4.1: Namely, there exist two points
a∗0 < 0 and b∗0 > 0 so that the reflecting diffusion process described in (4.14) and (4.15)
on the state space [a∗0, b

∗
0] is an optimal state process.

Proof. Let m > 0 be a constant. Then by Lemma 6.2, there is a unique constant
p∗ > 0 so that Γ′(p∗) = m. Consider the optimal strategy (X∗

p , A
∗
p) for (6.6) with

p = p∗. Then, using Lemma 6.1, we can write

(6.30) Γ(p∗) = lim
T→∞

1

T
E

[∫ T

0

C(X∗
p∗(u))du

]
+ p∗ ·m.

Now consider any admissible control system in Um with the corresponding state pro-
cess X(·) and the control process A(·), where Um is given in (6.4). Then (X,A), which
satisfies (1.1), is also an admissible strategy for Γ(p∗) and the following inequalities
hold:
(6.31)

lim sup
T→∞

1

T
E

∫ T

0

C(X(u))du + p∗ ·m ≥ lim sup
T→∞

1

T
E

[∫ T

0

C(X(u))du

]

+ p∗ · lim sup
T→∞

E|A|(T )

T

≥ lim sup
T→∞

1

T
E

[∫ T

0

C(X(u))du + p∗ · |A|(T )

]
≥ Γ(p∗).

Therefore, by (6.30) and (6.31), we conclude that

lim sup
T→∞

1

T
E

∫ T

0

C(X(u))du ≥ lim sup
T→∞

1

T
E

∫ T

0

C(X∗
p∗(u))du.

Hence, (Xp∗ , Ap∗) is an optimal policy for the constrained optimization problem (6.5).
This completes the proof.

When we replace assumption (6.1) by (1.7), we can obtain a partial solution to the
constrained optimization problem. To describe it, first we introduce the nonnegative
constant γ0 by γ0 ≡ F (−∞,∞). Here, F (−∞,∞) is defined as in the right-hand side
of (6.29). Then we have the following result.

Theorem 6.4. Assume (1.6)–(1.8) and (6.10)–(6.12). Let γ0 be the constant
defined above. Then for each m > γ0, the conclusion of Theorem 6.3 holds.



ERGODIC CONTROL 737

Proof. By Lemma 6.2, Γ′(·) is a strictly increasing function whose range is (γ0,∞).
Then for a given m > γ0, there exists a unique p∗ > 0 so that Γ′(p∗) = m. Now, the
rest of the proof is identical to that of Theorem 6.3.
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Abstract. In this paper we establish a comparison result for solutions to the problem

minimize

∫

Ω
f(∇u(x)) dx on {u : u− u0 ∈ W 1,1

0 (Ω)}.
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1. Introduction. This paper deals with properties of solutions to minimization
problems of the kind

(1) minimize

∫
Ω

f(∇u(x)) dx on {u : u− u0 ∈ W 1,1
0 (Ω)}.

More precisely, we are interested in establishing a comparison result among solutions
and an estimate on the gradient of a solution, derived from the boundary datum.

A comparison result is a statement of the kind, “for w and v solutions, w ≤ v
on ∂Ω implies w ≤ v on Ω.” In this generality, the only possible condition for the
validity of this statement is the assumption of strict convexity on the Lagrangian f .
However, rarely a comparison result is needed in this full generality: in general, one of
the two solutions, w or v, belongs to a special class of solutions, as the affine functions
(sometimes one is the function identically zero), and one aims at results for this more
restricted class of problems. As an example, the first step in the proof of the existence
of solutions for the minimal surface problem in parametric form depends on obtaining
a priori bounds on the solution based on comparing the unknown solution with a
constant solution [5].

The following example shows, however, that even when one of the solutions is an
affine function (in particular, a constant), without the assumption of strict convexity,
the comparison result is false.

Example 1. Let Ω be the interval [−1, 1]; let

f(ξ) =

{
0, |ξ| ≤ 1,

(|ξ| − 1)2, |ξ| > 1,

and consider the problem

minimize

∫
[−1,1]

f(u′(x)) dx; u ∈ W 1,1
0 ([−1, 1]).
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Both functions v(x) ≡ 0 and w(x) = −|x| + 1 are solutions, and w ≤ v at ∂Ω, but it
is not true that w ≤ v on Ω.

Still, non–strictly convex Lagrangians do appear in the literature, frequently aris-
ing from the convexification of nonconvex Lagrangians: well-known examples, origi-
nating from problems of optimal design, are the Lagrangians in [1], [6], [7], [8].

This paper aims at dropping the requirement of strict convexity of f : its purpose
is to introduce a class of solutions (to be used instead of the affine functions) such
that the corresponding comparison theorem holds true without any requirement of
strict convexity. The main property of this class of solutions is that it automatically
reduces to the affine functions when f is strictly convex.

As a further motivation for the present study, notice that a comparison theorem
involving affine functions is the main tool for the estimates on the gradient of a
solution w to problem (1) provided by the bounded slope condition. In the situation
described by this condition, affine functions of a given slope K bound the boundary
datum u0, and one is able to show that the same K bounds ‖∇w(x)‖. Example 1
shows, again, that this result cannot possibly be true without the assumption of strict
convexity of f . In fact, here the affine function identically zero bounds the boundary
datum, with K = 0, but it is not true that, for the solution w(x) = −|x|+ 1, one has
‖∇w(x)‖ = 0. In section 3 we prove a new result of the bounded slope condition type.
When the Lagrangian f is strictly convex, the new condition we introduce reduces to
the classical bounded slope condition, and the estimate on the gradient it provides is
the classical estimate.

For a discussion of affine functions as solutions to variational problems, see [3].
In [9], Mariconda and Treu present a comparison theorem for variational problems of
general form; their results, in particular, generalize those of [2] and will be used in the
present paper. The book [5] contains several references to classical results connected
with the bounded slope condition.

2. A comparison theorem. For K a subset of R
N , Kc is its complement; m

is the N -dimensional Lebesgue measure, while m(N−1) is the (N − 1)-dimensional
Lebesgue measure; the Hausdorff N -dimensional measure is HN . The unit ball of R

N

is B. A direction is a vector of unit norm; for a vector v ∈ R
N , we will frequently use

the notation v = (v1, v̂), where v̂ is the N − 1 vector consisting of the components
from 2 to N of v. We denote by IK the indicator function of the set K. The notation
f∗ denotes the polar or the Legendre–Fenchel conjugate of f . For f a convex function,
Dom(f) is the effective domain of f and ∂f(x) is the subdifferential computed at x.
For the notions of convex analysis we refer to [11]. When u and v are in W 1,1(Ω), by
saying that at ∂Ω we have v ≥ u we mean, as usual, that (u− v)+ ∈ W 1,1

0 (Ω).
For θ ∈ Dom(∂f∗), we will consider the functions(

I∂f∗(θ)

)∗
(x) = sup

k∈∂f∗(θ)

{〈k, x〉}

and

−
(
I∂f∗(θ)

)∗
(−x) = − sup

z∈RN

{〈−x, z〉 − I∂f∗(θ)(z)} = inf
k∈∂f∗(θ)

{〈k, x〉}.

As an example, for the Lagrangian (see [8])

(2) f(ξ) =

{ √
2‖ξ‖, ‖ξ‖ ≤

√
2,

1 + 1
2‖ξ‖2, ‖ξ‖ ≥

√
2,
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we obtain that
(
I∂f∗(θ)

)∗
(x) is the family of maps

(
I∂f∗(θ)

)∗
(x) =

⎧⎨⎩
0, ‖θ‖ ≤

√
2,√

2〈 θ
‖θ‖ , x〉χ{x:〈θ,x〉≥0}, ‖θ‖ =

√
2,

〈θ, x〉, ‖θ‖ >
√

2.

Next Theorem 1 shows that the functions defined above are solutions to the minimum
problem (1), among those functions satisfying the same boundary conditions. In it, we
assume the following growth assumption: Dom(f∗) is open. The following proposition
discusses how general this assumption is.

Proposition 1. Let f be an extended valued, convex, lower semicontinuous
function with superlinear growth; then Dom(f∗) = R

N .
However, the Lagrangian f(t) = |t| −

√
|t|, whose polar is f∗(p) = 1

4
1

1−|p| for p ∈
(−1, 1), satisfies the condition Dom(f∗) open, without being of superlinear growth.

It is convenient to use the following notation.
Definition 1. For θ ∈ Dom(f∗), x0 ∈ R

N , and r ∈ R, set

h+
θ,x0,r(x) =

(
If∗(θ)

)∗
(x− x0) + r and h−

θ,x0,r(x) = −
(
If∗(θ)

)∗
(−x− x0) + r.

Theorem 1. Let Dom(f∗) be open. For θ ∈ Dom(f∗), x0 ∈ R
N , and r ∈ R,

the maps h+
θ,x0,r(x) and h−

θ,x0,r(x) are solutions to the minimum problem (1), among
those u in

S+
θ,x0,r =

{
u ∈ W 1,1 (Ω) : u− h+

θ,x0,r ∈ W 1,1
0 (Ω)

}
and

S−
θ,x0,r =

{
u ∈ W 1,1 (Ω) : u− h−

θ,x0,r ∈ W 1,1
0 (Ω)

}
,

respectively.
Proof. The proof is presented for h+

θ,x0,r. For brevity, we set hθ = h+
θ,x0,r.

The function hθ, a supremum of convex functions, is convex; since Dom(f∗) is
open, ∂f∗(θ) is bounded; this implies that hθ is finite on R

N , and hence locally
Lipschitzian and differentiable a.e. Let x be a point where it is differentiable, and let
δ(x) be its gradient at x. The set K(x) = {k ∈ ∂f∗(θ) : 〈k, x−x0〉 = supv∈∂f∗(θ)〈v, x−
x0〉} is nonempty, compact, and convex.

(a) We claim that δ(x) ∈ K(x).
In fact, fix any h; let kt ∈ K(x+ th) be such that hθ(x+ th) = 〈kt, x+ th−x0〉+r

and choose a sequence ti → 0 such that (kti) converge to some k∗h. Since the map
K(·) has closed graph, we have k∗h ∈ K(x).

From the definition we have

〈kti − k∗h, x− x0〉 ≤ 0 and 〈kti − k∗h, x− x0 + tih〉 ≥ 0

so that, recalling that kti − k∗h → 0, we obtain〈
kti − k∗h

ti
, x− x0

〉
→ 0.

Hence,

〈δ(x), tih〉 + ti‖h‖o(ti‖h‖) = hθ(x + tih) − hθ(x)

= ti

〈
kti − k∗h

ti
, x− x0

〉
+ ti〈kti , h〉 = ti〈k∗h, h〉 + tio(ti),
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so that

(3) 〈δ(x), h〉 = 〈k∗h, h〉.

In particular, choosing h = x− x0, we obtain 〈δ(x) − k0, x− x0〉 = 0.
Then, in the case δ(x) /∈ K(x), there exist x⊥ �= 0 and ε > 0 such that 〈x⊥, x−x0〉

= 0 and supk∈K(x)〈k, x⊥〉 = 〈δ(x), x⊥〉 − ε. Take h = x⊥ in (3), and notice that
k∗x⊥ ∈ K(x): we have

sup
k∈K(x)

〈k, x⊥〉 < 〈δ(x), x⊥〉 = 〈k∗h, x⊥〉 ≤ sup
k∈K(x)

〈k, x⊥〉.

Hence, δ(x) ∈ K(x).
(b) Since δ(x) ∈ K(x) ⊂ ∂f∗(θ), it follows that θ ∈ ∂f(δ(x)). Hence

f(∇u(x)) ≥ 〈θ,∇u(x) − δ(x)〉 + f(δ(x)),

and hence∫
Ω

f(∇u(x)) dx−
∫

Ω

f(∇hθ(x)) dx ≥
∫

Ω

〈θ,∇u(x) −∇hθ(x)〉 dx.

Since u ∈ Sθ, the right-hand side equals zero, ending the proof.
Remarks. In the case in which f is strictly convex, ∂f∗(θ) is single-valued and

the maps h+
θ and h−

θ are affine maps.
In general, we have proved that, a.e. in Ω,

(4) 〈∇hθ, x− x0〉 = sup
v∈∂f∗(θ)

〈v, x− x0〉.

For the comparison theorem we shall need the following lemma: it is a modifica-
tion of the classical statement saying that Sobolev functions are absolutely continuous
on a.e. parallel to a given line. A general discussion of these results is presented in
[10] and the lemma follows from these results.

Lemma 1. Let Ω be open and convex and let η be in W 1,1(Ω); let B(x∗, ρ) ⊂ Ω
and, for x ∈ B(x∗, ρ), set x̃(t) = x0 + (x − x0)et, t ≤ 0; then, for a.e. x ∈ B(x∗, ρ),
as long as x̃(t) ∈ Ω and ‖x̃(t) − x0‖ ≥ δ > 0,

(i) the map t → η(x̃(t)) is absolutely continuous, and
(ii) for a.e. t, we have d

dtη(x̃(t)) = 〈∇η(x̃(t)), x̃(t) − x0〉.
The following is the comparison result.
Theorem 2. Let Ω be convex, let f be a (possibly extended valued) lower semi-

continuous, convex function such that Dom(f∗) is open. Let w be a solution to the
problem of minimizing the functional

J (u) =

∫
Ω

f (∇u(x)) dx

on {u : u− u0 ∈ W 1,1
0 (Ω)}.

Assume that for θ ∈ Dom(f∗), x0 ∈ (Ω)c, and r ∈ R, we have h+
θ,x0,r ≥ w on ∂Ω.

Then h+
θ,x0,r ≥ w on Ω.

Remarks. Notice that any affine function 
(x) = 〈a, x〉 + b can be written as

(x) = 〈a, x− x0〉 + r with x0 /∈ Ω and r = b + 〈a, x0〉.
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Notice also that Example 1 shows that the analogous theorem, where we had an
affine function 
 (in particular, 
(x) ≡ 0) instead of the convex function h+

θ,x0,r, would
be false.

Finally notice that the functions u(x) ≡ 0 and h+
0,0,−1(x) = −1+ |x| are solutions

to the problem of Example 1; still, h+
0,0,−1 ≥ u on ∂Ω, but it is not true that h+

0,0,−1 ≥ u

on Ω. Here, the point x0 = 0 ∈ Ω, opposite to our assumptions.
Example 2. Consider the problem

minimize

∫
[−1,1]

f(u′(x)) dx; u0 = ε(x− 1); u− u0 ∈ W 1,1
0 ([−1, 1]),

where f is defined in (2) and ε > 0 is small. The best upper bound for a solution w is

w(x) ≤ sup
{(

I∂f∗(0)

)∗
(x + 1) + 2ε,

(
I∂f∗(

√
2)

)∗
(x− 1)

}
= sup

{
2ε,

√
2(x− 1)

}
.

The proof of Theorem 2 is partially based on the following general lemma.
Lemma 2. Let Ω be open, bounded, and convex, let η be in W 1,1(Ω), and assume

that there exists a point x∗ ∈ Ω and a set of directions Z+ having HN−1(Z+) > 0,
such that, on the intersection of the half lines {x∗ + λz : z ∈ Z+ and λ ≥ 0} with Ω,
we have η ≥ δ > 0. Then η /∈ W 1,1

0 (Ω).
Proof. (a) Let D be the diameter of Ω. There exists ρ such that B(x∗, 3ρ) ⊂

Ω. For ξi ∈ ∂B , set ti(z) = z−〈z,ξi〉ξi
〈z,ξi〉 ; set R = 3ρ2

D2+ρD (so that, in particular,

3ρ−RD ≥ 0); set Zi = {z ∈ ∂B : ‖ti(z)‖ ≤ R}. Choose finitely many ξi so that the
corresponding sets Zi cover ∂B: since HN−1(Z+) > 0, for at least one of them (say,

i = î), one has HN−1(Z+ ∩ Z î) > 0. We will call Z∗ the set Z+ ∩ Z î: we have

(5) HN−1(Z∗) > 0.

The half line {x∗ + λξ î : λ ≥ 0} meets ∂Ω at one point, where we set the origin,

so that ξ î = − x∗

‖x∗‖ ; moreover, we set the x1 axis to be the half line from the origin

through x∗: in this notation we obtain that x∗ = (x∗
1, 0̂) and that z ∈ Z∗ implies

‖ẑ‖
|z1|

≤ R and |z1| ≥
1√

1 + R2
.

It is convenient to call Ω∗ the intersection of the half lines {x∗+λz : λ ≥ 0; z ∈ Z∗}
with Ω, and ∂Ω∗ the intersection of the same half lines with ∂Ω.

(b) The map Z(x) = x−x∗

‖x−x∗‖ is Lipschitzian on Ω \B(x∗, ρ), since∣∣∣∣ x1 − x∗

‖x1 − x∗‖ − x2 − x∗

‖x2 − x∗‖

∣∣∣∣ ≤ ‖x1 − x2‖
(

1

ρ
+

D

ρ2

)
.

Hence, from the equality Z∗ = Z(∂Ω∗), we obtain that

HN−1(Z∗) ≤
(

1

ρ
+

D

ρ2

)
HN−1(∂Ω∗)

and, from (5), we conclude that

(6) HN−1(∂Ω∗) > 0.
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On Ω∗ \B(x∗, ρ) we have |x1 − x∗
1| ≥ ρ|z1| ≥ ρ√

1+R2
so that∥∥∥∥ x̂1 − x̂∗

x1
1 − x∗

1

− x̂2 − x̂∗

x2
1 − x∗

1

∥∥∥∥ ≤ 1

|x1
1 − x∗

1|
‖x̂1 − x̂2‖ +

‖x̂2 − x̂∗‖
|x1

1 − x∗
1||x2

1 − x∗
1|
|x1

1 − x2
1|

≤
√

1 + R2

ρ
‖x̂1 − x̂2‖ + D

1 + R2

ρ2
|x1

1 − x2
1| ≤ L‖x1 − x2‖.

The above shows that the map T̂ (x) = x̂−x̂∗

x1−x∗
1

is Lipschitzian on Ω \B(x∗, ρ).

(c) The half line {x = x∗ + λz : λ ≥ 0} can as well be described by {x : x̂−x̂∗

x1−x∗
1

=

t̂ = ẑ
z1
}: there exists a unique point b(t̂) on its intersection with ∂Ω. We will prove the

Lipschitzianity of this map. Consider two points b1 = b1( x̂
1−x̂∗

x1
1−x∗

1
) and b2 = b2( x̂

2−x̂∗

x2
1−x∗

1
)

in ∂Ω, such that b11 < b21 < x∗
1. The half line b1 +λ(b2−b1) meets the plane {x1 = x∗

1}
at the point (x∗

1, b̂
1+

x∗
1−b11

b21−b11
(b̂2− b̂1)): it cannot be that this point is in B(x∗, 3ρ), since,

otherwise, a half line issued from a point in the interior of a convex set would meet its

boundary in two distinct points. Hence we must have that ‖b̂1 +
x∗
1−b11

b21−b11
b̂2 − b̂1‖ ≥ 3ρ,

i.e., since ‖b̂1‖ ≤ RD, that ‖b̂2−b̂1‖
b21−b11

≥ 3ρ−RD
D . We have obtained that

(7) |b21 − b11| = b21 − b11 ≤ D

3ρ−RD
‖b̂2 − b̂1‖ = M‖b̂2 − b̂1‖.

In particular, since b1(0̂) = 0, we have also obtained that |b1| ≤ M‖b̂‖ ≤ MRD =
RD2

3ρ−RD = ρ, so that |b1(t̂) − x∗
1| ≥ 2ρ.

The equalities

ẑ1

z1
1

=
b̂1

b11 − x∗
1

and
ẑ2

z2
1

=
b̂2

b21 − x∗
1

yield

b̂1 − b̂2 =

(
ẑ1

z1
1

− ẑ2

z2
1

)
(b11 − x∗

1) +
ẑ2

z2
1

(b11 − b21)

so that (7) gives

(1 −MR) ‖b̂1 − b̂2‖ ≤
∥∥∥∥ ẑ1

z1
1

− ẑ2

z2
1

∥∥∥∥ |b11 − x∗
1| ≤

∥∥∥∥ ẑ1

z1
1

− ẑ2

z2
1

∥∥∥∥D;

hence we have both

‖b̂1 − b̂2‖ ≤ D

1 −MR

∥∥∥∥ ẑ1

z1
1

− ẑ2

z2
1

∥∥∥∥
and

|b11 − b21| ≤
MD

1 −MR

∥∥∥∥ ẑ1

z1
1

− ẑ2

z2
1

∥∥∥∥ ,
which show that the map t̂ → b(t̂) is Lipschitzian (call β its Lipschitz constant).

(d) On Ω∗ \B(x∗, ρ), define the map

Λ(x) =
x1 − x∗

1

b1(
x̂−x̂∗

x1−x∗
1
) − x∗

1

.
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We have that Λ(x) = 1 when x = b( x̂−x̂∗

x1−x∗
1
), so that the level set Λ(x) = 1 is ∂Ω∗.

We already know that |b1( x̂−x̂∗

x1−x∗
1
) − x∗

1| > 2ρ and that b1(t̂) is Lipschitzian. From (b)

above, x → t̂(x) is Lipschitzian. Hence, Λ(x) is Lipschitzian and its Jacobian, JΛ, is
bounded.

Consider the sets Λ−1(λ), which we shall call (∂Ω)λ, and (Ω)λ∗ = ∪λ∗≤λ<1(∂Ω)λ.
For x in it, from the equality x1 − x∗

1 = λ(b1 − x∗
1), we obtain ‖x− x∗‖ ≥ λ2ρ; hence,

whenever 1
2 ≤ λ∗ ≤ λ ≤ 1, we have that ‖x− x∗‖ ≥ ρ, so that (Ω)λ∗ ⊂ Ω∗ \B(x∗, ρ).

For any set V ⊂ Ωλ∗ , the coarea theorem yields∫
Ω∗

λ∗

χV (x)JΛ(x) dx =

∫ 1

λ∗

(∫
(∂Ω)λ∩V

dHN−1

)
dλ.

Hence, whenever
∫
Ωλ∗ χV (x)JΛ(x) dx < ε (ε and V to be fixed later), we must have

m({λ : HN−1((∂Ω)λ∩V ) ≤
√
ε}) ≥ 1−λ∗−

√
ε, so that, for some λε: λε−λ∗ ≤ 2

√
ε,

we must have

(8) HN−1((∂Ω)λε
∩ V ) <

√
ε.

(e) Let ψn ∈ C∞
c (Ω), ψn → η in W 1,1(Ω). Fix any λ̃ with λ∗ ≤ λ̃ < 1. For

x ∈ Ω∗
λ∗ , consider the Lipschitzian map T̂ (x) = x̂−x̂∗

x1−x∗
1

and call T̂ ∗ = T̂ (Z∗). We have∫
Ωλ∗

‖∇ψn(x)‖JT̂ (x) dx ≥
∫

Ωλ̃

〈
∇ψn(x),

x− x∗

‖x− x∗‖

〉
JT̂ (x) dx

=

∫
T̂∗

(∫
T̂−1(t̂)∩Ωλ̃

〈
∇ψn(x),

x− x∗

‖x− x∗‖

〉
dH1

)
dt̂.

The set T̂−1(t̂) ∩ Ωλ̃ is described by {x = x∗ + λ(b(t̂) − x∗) : λ̃ < λ < 1} and can be
parametrized setting λ = eτ , so that x̃(τ) = x∗ + (b(t̂) − x∗)eτ , x̃′(τ) = x̃(τ) − x∗,
and dH1 = ‖x̃(τ) − x∗‖dτ . Hence∫

Ωλ∗

‖∇ψn(x)‖JT̂ (x) dx ≥
∫
T̂∗

(∫ ln λ̃

0

〈∇ψn(x̃(τ)), x̃(τ) − x∗〉 dτ
)

dt̂(9)

=

∫
T̂∗

(∫ ln λ̃

0

d

dτ
ψn(x̃(τ)) dτ

)
dt̂ =

∫
T̂∗

ψn(x∗ + λ̃(b(t̂) − x∗)) dt̂.

We wish to estimate the last integral by suitably choosing λ̃. Set Vn = {x ∈ Ωλ∗ :
|ψn(x) − η(x)| ≥ δ

2}: we know that, in particular, ψn converges to η in measure and,
since JΛ is bounded, we obtain that∫

Ωλ∗

χVnJΛ(x) dx = εn → 0,

and hence, by (8), that there exist λn, such that at once we have λn − λ∗ ≤ 2
√
εn

and HN−1((∂Ω)λn ∩ Vn) <
√
εn. Since HN−1(∂Ω)λn = λN−1

n HN−1(∂Ω∗), we obtain

(10) HN−1((∂Ω)λn \ Vn) ≥ λN−1
n HN−1(∂Ω∗) −√

εn.

There exists n∗ such that for every n ≥ n∗ we have

(11) HN−1((∂Ω)λn \ Vn) ≥ 1

2
(λ∗)N−1HN−1(∂Ω∗) = C > 0.
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(f) Recall that, for x ∈ (∂Ω)λn
\Vn, we have both |ψn(x)−η(x)| ≤ δ

2 and η(x) ≥ δ,

inferring that ψn(x) ≥ δ
2 there. Call T̂n = {T̂ (x) : x ∈ (∂Ω)λn

\ Vn}: we also obtain

that (∂Ω)λn \Vn = {bn(t̂) : t̂ ∈ T̂n}, where bn(t̂) = x∗ +λn(b(t̂)−x∗). Hence, we have∫
T̂n

ψn(x∗ + λn(b(t̂) − x∗)) dt̂ ≥ δ

2
m(N−1)(T̂n).

On the other hand, the map bn is Lipschitzian, since, from the conclusion of (c) above,
so is b, and its Lipschitz constant is bounded by β, the Lipschitz constant of b, so that
HN−1 ((∂Ω)λn

\ Vn) = HN−1(bn(T̂n)) ≤ βm(N−1)(T̂n). Hence, for n ≥ n∗, we have

m(N−1)(T̂n) ≥ 1

β
HN−1(∂Ω)λn \ Vn ≥ 1

β
C

and, from (9), we conclude∫
Ωλn

‖∇η(x)‖JT̂ (x) dx ≥
∫

Ωλn

‖∇ψn(x)‖JT̂ (x) dx−
∫

Ωλn

‖∇η(x) −∇ψn(x)‖JT̂ (x) dx

≥
∫
T̂n

ψn(x∗ + λ∗(b(t̂) − x∗)) dt̂−
∫

Ω

‖∇η(x) −∇ψn(x)‖JT̂ (x) dx

≥ δ

2

1

β
C −

∫
Ω

‖∇η(x) −∇ψn(x)‖JT̂ (x) dx,

so that ∫
Ωλ∗

‖∇η(x)‖JT̂ (x) dx = lim
n→∞

∫
Ωλn

‖∇η(x)‖JT̂ (x) dx ≥ δ

2

1

β
C.

However, as λ∗ → 1, we have m(Ωλ∗) → 0, so the previous estimate contradicts
the integrability of ∇η.

Proof of Theorem 2. For brevity, set hθ = h+
θ,x0,r. Let η = (w − hθ)

+, so that

η ∈ W 1,1
0 (Ω). Set E+ = {x : η(x) > 0}: we wish to prove that m(E+) = 0.

(a) Consider v = w − η: we have

∇v(x) =

{
∇u(x), x ∈ (E+)c,
∇hθ(x), x ∈ E+.

Since w − v ∈ W 1,1
0 (Ω), from the above we obtain

0 =

∫
Ω

〈θ,∇w(x) −∇v(x)〉dx =

∫
E+

〈θ,∇w(x) −∇hθ(x)〉dx.

Moreover, ∇hθ(x) ∈ ∂f∗(θ), so that θ ∈ ∂f(∇hθ(x)), and the convexity of f
implies ∫

Ω

(f (∇w(x)) − f (∇v(x)))dx

=

∫
E+

(f (∇w(x)) − f (∇hθ(x)) dx ≥
∫
E+

〈θ,∇w(x) −∇hθ(x)〉dx = 0.

On the other hand, w is a minimum, so that

0 ≥
∫

Ω

(f (∇w(x)) − f (∇v(x)))dx =

∫
E+

(f (∇w(x)) − f (∇hθ(x)))dx,
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so that we conclude that∫
E+

(f (∇w(x)) − f (∇hθ(x)))dx = 0.

Adding the equalities, we have∫
E+

(f(∇w(x)) − f(∇hθ(x)) + 〈θ,∇w(x) −∇v(x)〉) dx = 0.

Since the integrand is nonnegative, we obtain that, for a.e. x ∈ E+,

f(∇w(x)) − f(∇hθ(x)) + 〈θ,∇w(x) −∇v(x)〉 = 0.

(b) The previous equality can be rewritten as

〈θ,∇w〉 − f(∇w) = 〈θ,∇v〉 − f(∇hθ).

Since θ ∈ ∂f(∇hθ(x)), as is well known we have 〈θ,∇v〉 − f(∇hθ) = f∗(θ), so that
also 〈θ,∇w〉 − f(∇w) = f∗(θ); then we obtain that θ ∈ ∂f(∇w) and finally that, a.e.
on E+,

∇w(x) ∈ ∂f∗(θ),

and hence that, recalling (4), a.e. on E+, we have

〈∇w(x), x− x0〉 ≤ sup
k∈∂f∗(θ)

{〈k, x− x0〉} = 〈∇hθ(x), x− x0〉.

We have obtained that, a.e. on Ω,

(12) 〈∇η(x), x− x0〉 ≤ 0.

In addition, from the assumption on f∗, we obtain that there exists K such that, a.e.
on E+, ‖∇w(x)‖ ≤ K. This inequality will be used in (f).

(c) To show that m(E+) = 0, we shall prove that the assumption that there
exist δ > 0 and E+

δ ⊂ E+ such that m(E+
δ ) > 0 and η(x) ≥ δ on E+

δ leads to a
contradiction.

Let x∗ be a point of density of E+
δ and let ρ∗ be such that B(x∗, ρ∗) ⊂ Ω. Then,

on a.e. line connecting x ∈ B(x∗, ρ∗) and x0, the map η is absolutely continuous. The
estimate (12) implies that on any such segment (x, x0), we have that η ≥ δ, and one
would like to conclude that η /∈ W 1,1

0 (Ω), the contradiction we seek. The reasoning
to show this contradiction is based on some version of the Fubini–Tonelli theorem,
and has been used in [2] and [9]. In the present situation, however, x0 can belong to
∂Ω and, in this case, knowing that η ≥ δ on segments of the form (x, x0), does not
by itself prevent η from being in W 1,1

0 (Ω). It is this case we are going to examine in
some detail.

Consider x0 ∈ ∂Ω; let H = {x : 〈h, x − x0〉 = 0} be a supporting plane to Ω
through x0, and set H− = {x : 〈h, x− x0〉 < 0} with Ω ⊂ H+. Let x̃2 be in H−; for
λ ∈ (0, 1), set x∗

λ = x0+λ(x∗−x0) and x̃2
λ = x0+λ(x̃2−x0). Let x1

λ = αx∗
λ+(1−α)x̃2

λ

be the intersection of the segment (x∗
λ, x̃

2
λ) with H, described by

α =
〈h, x0 − x̃2

λ〉
〈h, x∗

λ − x̃2
λ〉

=
〈h, x1

λ − x̃2
λ〉

〈h, x∗
λ − x̃2

λ〉
.
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Since

〈h, x1
λ − x̃2

λ〉
〈h, x∗

λ − x̃2
λ〉

=
〈h, x0 − x̃2〉
〈h, x∗ − x̃2〉 ,

α is independent on λ. Consider the expression

‖x∗
λ − x̃2

λ‖
‖x∗

λ − x1
λ‖

(
1 − e

− δ

2K‖x̃2
λ
−x0‖

)
.

As λ decreases to zero, the ratio

‖x∗
λ − x̃2

λ‖
‖x∗

λ − x1
λ‖

=
1

1 − α
> 1

does not change, while (1 − e
− δ

2K‖x̃2
λ
−x0‖ ) ↑ 1. Hence, we can assume to have chosen

λ > 0 such that

‖x∗
λ − x̃2

λ‖
‖x∗

λ − x1
λ‖

(
1 − e

− δ

2K‖x̃2
λ
−x0‖

)
= 
 > 1.

Having fixed λ, in what follows we will call x∗ the point x∗
λ and x̃2 the point x̃2

λ. For
x2 in a small neighborhood of x̃2, the unique intersection of the segment (x2, x∗) with
H will be denoted by x1

x2 . We notice that, since the original point x∗ was of density
for E+

δ and a.e. segment (x0, x) with x in E+
δ belongs to E+

δ , we obtain that the point
x∗ just fixed is again of density for E+

δ .
Set xx2(t) = x2 +et(x∗−x2) and t(x2) = − δ

2K‖x2−x0‖ . In particular, for x2 = x̃2,
we have

‖xx̃2(t(x̃2)) − x∗‖ = ‖x∗ − x1
x̃2‖

‖x∗ − x̃2‖
‖x∗ − x1

x̃2‖

(
1 − e

− δ
2K‖x̃2−x0‖

)
= 
‖x∗ − x1

x̃2‖.

By continuity, there exists r > 0 so that x2 ∈ B(x̃2, r) implies

‖x∗ − x2‖
‖x∗ − x1

x2‖

(
1 − e

− δ
2K‖x2−x0‖

)
≥ 1

2
+




2
> 1.

In other words, for every x2 ∈ B(x̃2, r), ‖xx2(t(x2)) − x∗‖ > ‖x∗ − x1(x2)‖, i.e., the
segment (x∗, xx2(t(x2))) intersects H. Equivalently, the map xx2(t) takes values in Ω
on some interval (αx2 , 0) with αx2 ≥ t(x2).

(d) Since x∗ is a point of density of E+
δ , we have that m(x∗ + rB ∩ E+

δ ) =
(1 − ε(r))m(x∗ + rB), and by the coarea theorem we obtain∫ r

0

H(N−1)(x∗ + s∂B ∩ E+
δ ) ds = m(x∗ + rB ∩ E+

δ ) = (1 − ε(r))m(x∗ + rB)

=

∫ r

0

(1 − ε(r))H(N−1)(x∗ + s∂B) ds =

∫ r

0

(1 − ε(r))sN−1NωN ds,

so that there exist rν ↓ 0 such that H(N−1)(x∗ + rν∂B ∩E+
δ ) ≥ (1− ε(rν))r

N−1
ν NωN .

For brevity, when x �= x∗, we will use the notation z(x) = x−x∗

‖x−x∗‖ . Consider

Z = z(B(x̃2, r)). We have that

H(N−1)(Z)

NωN
= L > 0.
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Since H(N−1)(x∗ + rνZ) = r
(N−1)
ν NωNL, whenever ε(rν) < L, we have that

H(N−1)(x∗ + rνZ ∩ E+
δ ) = Mν > 0.

Fix one such ν; set Z+ to be the subset of Z defined by x∗ + rνZ
+ = x∗ + rνZ ∩E+

δ ,
so that H(N−1)(x∗ + rνZ

+) = Mν , i.e.,

(13) H(N−1)(Z+) =
Mν

rN−1
ν

> 0.

(e) Define βx2 by the equation x∗ − (x2 + eβx2 (x∗ − x2)) = rν . For almost every
z ∈ Z+, the map η(xx2(t)) is absolutely continuous on (αx2 , βx2) and we can write

η(xx2(βx2) = η(xx2(t)) +

∫ βx2

t

d

ds
η(xx2(s)) ds

= η(xx2(t)) +

∫ βx2

t

〈∇η(xx2(s)), x′
x2(s)〉 ds

= η(xx2(t)) +

∫ βx2

t

〈∇η(xx2(s)), [(xx2(s) − x0) + (x0 − x2)]〉 ds.

Recalling that η(xx2(βx2) ≥ δ; that, for x ∈ E+, we have 〈∇η(x), x − x0〉 ≤ 0; that
‖∇η(x)‖ ≤ K; and that −t ≤ −t(x2) = δ

2K‖x2−x0‖ , we obtain

δ ≤ η(xx2(βx2)) ≤ η(xx2(t)) + (−t)K‖x0 − x2‖ ≤ η(xx2(t)) +
δ

2
,

so that η(xx2(t)) ≥ δ
2 .

Hence, we have obtained that η ≥ δ
2 on the intersection of Ω with the set of half

lines x∗+λZ+ issuing from x∗, where H(N−1)(Z+) > 0. Applying Lemma 2 we obtain
that η /∈ W 1,1

0 (Ω), a contradiction.

3. The bounded slope condition. The bounded slope condition is imposed
on the boundary datum u0: classically, under the assumption of strict convexity on
f , it demands the existence, for every x0 ∈ ∂Ω, of two vectors k+ and k− (depending
on x0) such that, for every x ∈ ∂Ω, one has

u0(x
0) + 〈k−, x− x0〉 ≤ u0(x) ≤ u0(x

0) + 〈k+, x− x0〉

and, in addition, the existence of K such that

K ≥ sup
x0∈∂Ω

max{‖k−‖, ‖k+‖}.

Its purpose is to infer that, for a solution w to problem (1), one has ‖∇w(x)‖ ≤ K
for almost every x ∈ Ω.

Example 1 shows that this result, the proof of which depends on a comparison
theorem, cannot possibly be true without the assumption of strict convexity of the
Lagrangian f . Our present aim is to be able to provide estimates for the gradient of a
solution in those cases, as the examples mentioned in this paper, where the Lagrangian
f is non–strictly convex on a bounded set and becomes strictly convex for large values
of ξ. In it, the notation ‖A‖ = supa∈A{‖a‖} will be used.
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Theorem 3. Let Ω be an open, bounded, and convex set; let f be an extended
valued, lower semicontinuous convex function, such that Dom(f∗) is open; assume
that for every x0 ∈ ∂Ω there exist θ+(x0) and θ−(x0) such that, for every x ∈ ∂Ω,

u0(x
0) + (I∂f∗(θ))

∗(x− x0) ≤ u0(x) ≤ u0(x
0) + (I∂f∗(θ+))

∗(x− x0).

In addition, assume that there is K such that

K ≥ sup
x0∈∂Ω

max{‖∂f∗(θ+(x0))‖, ‖∂f∗(θ−(x0))‖}.

Furthermore, assume that when ‖ξ‖ > K, f is strictly convex at ξ. If w ∈ C(Ω) ∩
W 1,1(Ω) is a solution to problem (1), then w is Lipschitzian and, for a.e. x ∈ Ω, we
have

‖∇w(x)‖ ≤ K.

For the problem in Example 2, we obtain, for a solution w, the bound |w′(x)| ≤√
2, independent of ε.

Proof. The proof is a minor modification of the proof of Theorem 4.1 of [2].
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LINEAR QUADRATIC DIFFERENTIAL GAMES:
SADDLE POINT AND RICCATI DIFFERENTIAL EQUATION∗

MICHEL C. DELFOUR†

Abstract. Zhang [SIAM J. Control Optim., 43 (2005), pp. 2157–2165] recently established the
equivalence between the finiteness of the open loop value of a two-player zero-sum linear quadratic
(LQ) game and the finiteness of its open loop lower and upper values. In this paper we complete
and sharpen the results of Zhang for the finiteness of the lower value of the game by providing a set
of necessary and sufficient conditions that emphasizes the feasibility condition: (0, 0) is a solution
of the open loop lower value of the game for the zero initial state. Then we show that, under the
assumption of an open loop saddle point in the time horizon [0, T ] for all initial states, there is an
open loop saddle point in the time horizon [s, T ] for all initial times s, 0 ≤ s < T , and all initial states
at time s. From this we get an optimality principle and adapt the invariant embedding approach to
construct the decoupling symmetrical matrix function P (s) and show that it is an H1(0, T ) solution
of the matrix Riccati differential equation. Thence an open loop saddle point in [0, T ] yields closed
loop optimal strategies for both players. Furthermore, a necessary and sufficient set of conditions
for the existence of an open loop saddle point in [0, T ] for all initial states is the convexity-concavity
of the utility function and the existence of an H1(0, T ) symmetrical solution to the matrix Riccati
differential equation. As an illustration of the cases where the open loop lower/upper value of the
game is −∞/+∞, we work out two informative examples of solutions to the Riccati differential
equation with and without blow-up time.

Key words. linear quadratic differential game, saddle point, value of a game, Riccati differential
equation, open loop and closed loop strategies, conjugate point, blow-up time

AMS subject classifications. 91A05, 91A23, 49N70, 91A25

DOI. 10.1137/050639089

1. Introduction. We consider the two-player zero-sum game with linear dy-
namics and a quadratic utility function over a finite time horizon. The min sup
problem was studied in 1969 by [5]. The fundamental theory of closed loop linear
quadratic (LQ) games was given in 1979 by Bernhard [4] followed by the seminal
book of Başar and Bernhard [1] in 1991 and 1995. A very nice paper by Zhang [10]
in 2005 established the equivalence between the finiteness of the open loop value of
a two-player zero-sum LQ game and the finiteness of its open loop lower and upper
values.

In this paper we complete and sharpen the results of [10] for the finiteness of
the lower value of the game by providing a set of necessary and sufficient conditions
(Theorem 2.2) that emphasizes the feasibility condition: (0, 0) is a solution of the open
loop lower value of the game for the zero initial state. A similar feasibility condition
holds for the finiteness of the open loop upper value and value of the game. It also
recasts the results in the more intuitive state-adjoint state framework.

Then we show that, under the assumption of an open loop saddle point in the
time horizon [0, T ] for all initial states, there is a unique open loop saddle point in
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Ministère de l’Éducation du Québec.

http://www.siam.org/journals/sicon/46-2/63908.html
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the time horizon [s, T ] for all initial times s, 0 ≤ s < T , and all initial states at
time s (Theorem 5.2(iii)). From this we get an optimality principle and adapt the
invariant embedding approach of Bellman in the style of Lions [9] to construct the
decoupling symmetrical matrix function P (s) (Theorem 2.9) and show that it is an
H1(0, T ) solution of the matrix Riccati differential equation. Thence an open loop
saddle point in [0, T ] yields closed loop optimal strategies for both players who achieve
a closed loop-closed loop saddle point in the sense of Bernhard [4]. Furthermore, a
necessary and sufficient set of conditions for the existence of an open loop saddle point
in [0, T ] for all initial states is the convexity-concavity of the utility function and the
existence of a symmetrical H1(0, T ) solution to the matrix Riccati differential equation
(Theorem 2.10). As an illustration of the cases where the open loop lower/upper value
of the game is −∞/+∞, we work out two informative examples of solutions to the
Riccati differential equation with and without blow-up time.

2. Definitions, notation, and main results.

2.1. System, utility function, values of the game. Given a finite dimen-
sional Euclidean space Rd of dimension d ≥ 1, the norm and inner product will be
denoted by |x| and x · y, respectively, irrespective of the dimension d of the space.
Given T > 0, the norm and inner product in L2(0, T ;Rn) will be denoted ‖f‖ and
(f, g). The norm in the Sobolev space H1(0, T ;Rn) will be written ‖f‖H1 .

Consider the following two-player zero-sum game over the finite time interval
[0, T ] characterized by the quadratic utility function

Cx0
(u, v)

def
= Fx(T ) · x(T ) +

∫ T

0

Q(t)x(t) · x(t) + |u(t)|2 − |v(t)|2 dt,(2.1)

where x is the solution of the linear differential system

dx

dt
(t) = A(t)x(t) + B1(t)u(t) + B2(t)v(t) a.e. in [0, T ], x(0) = x0,(2.2)

x0 is the initial state at time t = 0, u ∈ L2(0, T ;Rm), m ≥ 1, is the strategy of the
first player, and v ∈ L2(0, T ;Rk), k ≥ 1, is the strategy of the second player. We
assume that F is an n × n matrix and that A, B1, B2, and Q are matrix functions
of appropriate order that are measurable and bounded a.e. in [0, T ]. Moreover, Q(t)
and F are symmetrical. It will be convenient to use the following compact notation
and drop the “a.e. in [0, T ]” wherever no confusion arises:

Cx0
(u, v) = Fx(T ) · x(T ) +

∫ T

0

Qx · x + |u|2 − |v|2 dt,(2.3)

x′ = Ax + B1u + B2v in [0, T ], x(0) = x0.(2.4)

The above assumptions on F , A, B1, B2, and Q will be used throughout this paper.
Remark 2.1. The more general quadratic structure involving cross terms and

different quadratic weights N1u·u and N2v·v on u and v (cf., for instance, Bernhard [4,
section 2, p. 53]),

∫ T

0

(x, u, v) ·

⎡⎣Q S T
S∗ N1 0
T ∗ 0 −N2

⎤⎦⎡⎣xu
v

⎤⎦ dt,
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can be brought back to the simpler form (2.1)–(2.2) by the following change of vari-
ables: ⎡⎣xu

v

⎤⎦ =

⎡⎢⎣ I 0 0

−N−1
1 S∗ N

−1/2
1 0

N−1
2 T ∗ 0 N

−1/2
2

⎤⎥⎦
⎡⎣xū
v̄

⎤⎦ ,

where N1(t) and N2(t) are symmetrical positive definite matrices such that

(2.5)
∃ν1 > 0 such that ∀u ∈ Rm and almost all t, N1(t)u · u ≥ ν1 |u|2,
∃ν2 > 0 such that ∀v ∈ Rk and almost all t, N2(t)v · v ≥ ν2 |v|2.

This yields the simpler initial structure with the system and the utility function

x′ = Ax + B1ū + B2v̄,

∫ T

0

Qx · x + |ū|2 − |v̄|2 dt

by introducing the new matrices

A = A−B1N
−1
1 S∗ + B2N

−1
2 T ∗, B1 = B1N

−1/2
1 , B2 = B2N

−1/2
2 ,

Q = Q− SN−1
1 S∗ + TN−1

2 T ∗.

The matrix functions N1, N2, S, and T are all assumed to be measurable and
bounded.

Definition 2.1. Let x0 be an initial state in Rn at time t = 0.
(i) The game is said to achieve its open loop lower value (resp., upper value) if

v−(x0)
def
= sup

v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0
(u, v)(2.6)

(resp., v+(x0)
def
= inf

u∈L2(0,T ;Rm)
sup

v∈L2(0,T ;Rk)

Cx0
(u, v))(2.7)

is finite. By definition v−(x0) ≤ v+(x0).
(ii) The game is said to achieve its open loop value if its open loop lower value

v−(x0) and upper value v+(x0) are achieved and v−(x0) = v+(x0). The open
loop value of the game will be denoted by v(x0).

(iii) A pair (ū, v̄) in L2(0, T ;Rm) × L2(0, T ;Rk) is an open loop saddle point of
Cx0(u, v) in L2(0, T ;Rm) × L2(0, T ;Rk) if for all u in L2(0, T ;Rm) and all
v in L2(0, T ;Rk)

Cx0(ū, v) ≤ Cx0(ū, v̄) ≤ Cx0(u, v̄).(2.8)

In general, (ii) does not necessarily imply (iii), but we shall see that it does for LQ
games.

Definition 2.2. Associate with x0 ∈ Rn the sets and the functions

V (x0)
def
=

{
v ∈ L2(0, T ;Rk) : inf

u∈L2(0,T ;Rm)
Cx0(u, v) > −∞

}
,(2.9)

U(x0)
def
=

{
u ∈ L2(0, T ;Rm) : sup

v∈L2(0,T ;Rk)

Cx0(u, v) < +∞
}
,(2.10)

J−
x0

(v)
def
= inf

u∈L2(0,T ;Rm)
Cx0

(u, v), J+
x0

(u)
def
= sup

v∈L2(0,T ;Rk)

Cx0
(u, v).(2.11)

By definition, V (x0) 	= ∅ if and only if v−(x0) > −∞, and U(x0) 	= ∅ if and only
if v+(x0) < +∞.
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2.2. Saddle points of the game and solution of the Riccati differen-
tial equation. In the literature, an important issue is the connection between the
existence of a symmetrical solution to the matrix Riccati differential equation

P ′ + PA + A∗P − PRP + Q = 0 a.e. in [0, T ], P (T ) = F,(2.12)

where R = B1B
∗
1 − B2B

∗
2 , and the existence of either an open or closed loop1 lower

value, upper value, or saddle point of the game. For instance, in the closed loop case,
quoting Bernhard [4] in his introduction,

“It has long been known that, for the two-person, zero-sum differen-
tial game with linear dynamics, quadratic payoff, fixed end-time, and
free end-state (standard LQ game), the existence of a solution to a
Riccati equation is a sufficient condition for the existence of a saddle
point within the class of instantaneous state feedback strategies (cf.
[8], [7]), and therefore within any wider class (cf. [3]).”

Similarly, we quote Zhang [10] in his introduction,
“(a) if the Riccati differential equation admits a solution, then, the
game admits a closed loop-closed loop saddle point,”

where he refers to [4].
In the open loop case, the above statements are incomplete (cf. Example 2.2),

even under the assumptions

F ≥ 0 and Q(t) ≥ 0 a.e. in [0, T ]

used in [4] that necessarily imply the convexity of Cx0(u, v) with respect to u and
V (x0) = L2(0, T ;Rk) for all x0 ∈ Rn. Even when the solution of the Riccati differ-
ential equation (2.12) is H1(0, T ) or bounded (Remark 2.5), it is also necessary that
the utility function be convex in u and concave in v (Theorem 2.10) to get an open
loop-open loop saddle point.

This leaves the cases where either the open loop lower or upper value of the game
explodes. In such cases the solution of the Riccati differential equation might have a
blow-up time as illustrated in Example 2.1 (cf. Bernhard [4, Example 5.1, p. 67]:

“The following game has a saddle point that survives a conjugate point,”
where he means a closed loop-closed loop saddle point). The conjugate point corre-
sponds to a blow-up time of the solution of the Riccati equation (2.12), where the
solution is not of the H1(0, T ) type. Finally, an open loop saddle point yields closed
loop optimal strategies that achieve a closed loop-closed loop saddle point (Theo-
rem 2.9), but the converse is not necessarily true. It is informative to first detail the
example of Bernhard.

Example 2.1. Consider the dynamics and utility function in the time interval
[0, 2]:

x′(t) = (2 − t)u(t) + t v(t) a.e. in [0, 2], x(0) = x0,(2.13)

Cx0
(u, v) =

1

2
|x(2)|2 +

∫ 2

0

|u(t)|2 − |v(t)|2 dt.(2.14)

Here A = 0, B1(t) = 2 − t, B2(t) = t, F = 1/2, Q = 0, and R = B1B
∗
1 − B2B

∗
2 =

4(1 − t). It is shown in [4] that the Riccati equation reduces to

P ′ − 4(1 − t)P 2 = 0, P (2) = 1/2 ⇒ P (t) =
1

2(t− 1)2
.

1The reader is referred to Bernhard [4] for the closed loop definitions.
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Its solution is positive and blows up at t = 1. It is not an element of H1(0, 2). We
now show that there is no open loop saddle point in the time interval [0, 2]. For the
open loop lower value of the game, the minimization with respect to u has a unique
solution for all (x0, v) since the utility function u �→ Cx0(u, v) is convex and bounded
below by −‖v‖2

L2 . The minimizer is completely characterized by the coupled system⎧⎨⎩
x′(t) = (2 − t) û(t) + t v(t) a.e. in [0, 2], x(0) = x0,

p′(t) = 0 a.e. in [0, 2], p(2) =
1

2
x(2),

û(t) = −(2 − t) p(t).

From this

x(2) =
3

7

[
x0 +

∫ 2

0

s v(s) ds

]
and p(t) =

1

2
x(2)

and

J−
x0

(v)
def
= inf

u∈L2(0,2;R)
Cx0(u, v)

= Cx0(û, v) =
1

2
x(2)2 +

1

4
x(2)2

∫ 2

0

(2 − t)2 dt−
∫ 2

0

|v(t)|2 dt

=
7

6
x(2)2 −

∫ 2

0

|v(t)|2 dt =
3

14

[
x0 +

∫ 2

0

s v(s) ds

]2

−
∫ 2

0

|v(t)|2 dt.

It is readily seen that J−
x0

is concave in v and that the supremum with respect to v of
J−
x0

(v) exists. Indeed, from the first order condition,2

∀v, 1

2
dJ−

x0
(v̂; v) =

3

14

[
x0 +

∫ 2

0

s v̂(s) ds

] ∫ 2

0

s v(s) ds−
∫ 2

0

v̂(t) v(t) dt = 0,

there is a unique stationary point v̂(t) = t x0/2, the expression of the Hessian

1

2
d2J−

x0
(v̂; v; v) =

3

14

[∫ 2

0

s v(s) ds

]2

−
∫ 2

0

|v(t)|2 dt

≤ 3

14

[∫ 2

0

s2 ds

] [∫ 2

0

|v(s)|2 ds
]
−
∫ 2

0

|v(t)|2 dt

≤
[

3

14

23

3
− 1

] ∫ 2

0

|v(t)|2 dt = −3

7

∫ 2

0

|v(t)|2 dt ≤ 0

is negative, and the open loop lower value of the game is v−(x0) = J−
x0

(v̂) = (x0)
2/2.

However, the open loop upper value of the game is v+(x0) = +∞ for all x0 ∈ R.
Indeed pick the sequence of controls {vn}, n ≥ 1, vn(t) = 0 in [0, 1], and vn(t) = n in

2Given a real function f defined on a Banach space B, the first directional semiderivative at x

in the direction v (when it exists) is defined as df(x; v)
def
= limt↘0

f(x+tv)−f(x)
t

. When the map v �→
df(x; v) : B → R is linear and continuous, it defines the gradient ∇f(x) as an element of the dual B∗

of B. The second order bidirectional derivative at x in the directions (v, w) (when it exists) is defined

as d2f(x; v, w)
def
= limt↘0

df(x+tw;v)−df(x;v)
t

. When the map (v, w) �→ d2f(x; v, w) : B × B → R is
bilinear and continuous, it defines the Hessian operator Hf(x) as a continuous linear operator from
B to B∗.
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[1, 2]. The corresponding sequence of states at time t = 2 is

xn(2) = x0 +

∫ 2

0

(2 − t)u(t) dt + n

∫ 2

1

t dt =

[
x0 +

∫ 2

0

(2 − t)u(t) dt

]
+

3

2
n.

Denote by X the square bracket that does not depend on n. Then

Cx0
(u, vn) =

1

2

∣∣∣∣X +
3

2
n

∣∣∣∣2 +

∫ 2

0

|u(t)|2 dt−
∫ 2

1

n2 dt

=
1

8
n2 +

3

2
nX +

X2

2
+

∫ 2

0

|u(t)|2 dt → +∞ as n → +∞.

Thus for all x0 ∈ R and u ∈ L2(0, T ;R)

sup
v∈L2(0,T ;R)

Cx0(u, v) = +∞ ⇒ v+(x0) = +∞ and U(x0) = ∅.

Therefore, whatever the initial state x0 is, Cx0(u, v) has no open loop saddle point.
We now consider the example of Zhang [10] of a game without open loop saddle

point. We show that the solution of the Riccati differential equation (2.12) is unique,
strictly positive, and infinitely differentiable.

Example 2.2. Consider the utility function and linear dynamics

Cx0(u, v) =

∫ 1

0

2x2 + u2 − v2 dt, x′ = x + u + v, x(0) = x0(2.15)

given by Zhang [10]. Here A = B1 = B2 = 1, F = 0, and Q = 2. Now R =
B1B

∗
1 −B2B

∗
2 = 0, and the associated Riccati differential equation (2.12) reduces to

P ′ + 2P + 2 = 0 in [0, 1], P (1) = 0.

It has a unique infinitely differentiable solution P (t) = e2(1−t) − 1 that is strictly
positive in [0, 1).

We now extend the result of Zhang [10] on the nonexistence of an open loop saddle
point from the initial state x0 = 0 to any initial state. For all x0 ∈ R the open loop
lower value v−(x0) of the game is finite, but the open loop upper value v+(x0) is +∞.
Indeed for each v ∈ L2(0, T ;R)

inf
u∈L2(0,T ;R)

Cx0(u, v) ≤ Cx0(−v, v) =

∫ 1

0

2
(
x0 e

t
)2

dt =
(
e2 − 1

)
(x0)

2

⇒ v−(x0) = sup
v∈L2(0,T ;R)

inf
u∈L2(0,T ;R)

Cx0
(u, v) ≤

(
e2 − 1

)
(x0)

2
.

By definition of the sup,

v−(x0) = sup
v∈L2(0,T ;R)

inf
u∈L2(0,T ;R)

Cx0(u, v)

≥ inf
u∈L2(0,T ;R)

Cx0(u, 0) = inf
u∈L2(0,T ;R)

∫ 1

0

2x2 + u2 dt ≥ 0

⇒ ∀x0 ∈ R, 0 ≤ v−(x0) ≤
(
e2 − 1

)
(x0)

2
.
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For the open loop upper value, associate with each u ∈ L2(0, T ;R) the sequence of
functions vn(t) = −u(t) + n, n ≥ 1. The corresponding sequence of states is

xn(t) = etx0 + n

∫ t

0

et−s ds = etx0 + n(et − 1),

Cx0(u, vn) = n2

∫ 1

0

2(et − 1)2 − 1 dt + 2n

∫ 1

0

u(t) dt

+

∫ 1

0

(etx0)
2 dt + 2nx0

∫ 1

0

et (et − 1) dt

= n2

∫ 1

0

1 + 2e2t − 4et dt + 2n

∫ 1

0

u(t) dt

+

∫ 1

0

(etx0)
2 dt + 2nx0 (e− 1)2

≥ (e− 2)2n2 + 2n

[
x0 (e− 1)2 +

∫ 1

0

u(t) dt

]
+

∫ 1

0

(etx0)
2 dt

⇒ sup
v∈L2(0,T ;R)

Cx0
(u, v) ≥ Cx0

(u, vn) → +∞

as n goes to infinity. Therefore for all x0 ∈ Rn and all u ∈ L2(0, T ;R),

sup
v∈L2(0,T ;R)

Cx0(u, v) = +∞ ⇒ v+(x0) = +∞ and U(x0) = ∅,

and there is no open loop saddle point.

2.3. Properties of the utility function, convexity, concavity, and saddle
points. We use a state-adjoint state equation approach to characterize the existence
of the open loop upper and lower values as well as the open loop saddle point of the
quadratic utility function.

The utility function Cx0(u, v) is infinitely differentiable and, since it is quadratic,
its Hessian of second order derivatives is independent of the point (u, v). Indeed,

1

2
dCx0

(u, v; ū, v̄) = Fx(T ) · ȳ(T ) + (Qx, ȳ) + (u, ū) − (v, v̄),(2.16)

where x is the solution of (2.4) and ȳ is the solution of

ȳ′ = Aȳ + B1ū + B2v̄, ȳ(0) = 0.(2.17)

It is customary to introduce the adjoint system

p′ + A∗p + Qx = 0, p(T ) = Fx(T )(2.18)

and rewrite expression (2.16) for the gradient in the following form:

1

2
dCx0(u, v; ū, v̄) = (B∗

1p + u, ū) + (B∗
2p− v, v̄).(2.19)

As predicted, the Hessian is independent of (u, v):

1

2
d2Cx0(u, v; ū, v̄; ũ, ṽ) = F ỹ(T ) · ȳ(T ) + (Qỹ, ȳ) + (ũ, ū) − (ṽ, v̄),(2.20)
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where ȳ is the solution of (2.17) and ỹ is the solution of

ỹ′ = Aỹ + B1ũ + B2ṽ, ỹ(0) = 0.(2.21)

In particular, for all x0, u, v, ū, and v̄

d2Cx0
(u, v; ū, v̄; ū, v̄) = 2C0(ū, v̄),(2.22)

and this yields the following characterizations of the u-convexity, v-concavity, and
(u, v)-convexity-concavity under the assumptions of section 2.1 on the matrix F and
the matrix functions A, B1, B2, and Q. Note that the matrices F and Q(t) are
symmetrical, but they are not necessarily positive semidefinite.

Lemma 2.1. Let F be an n × n matrix and A, B1, B2, and Q be bounded
measurable matrix functions of appropriate dimensions, and assume that F and Q(t)
are symmetrical for almost all t. Then the following statements are equivalent.

(i) The map u �→ C0(u, 0) : L2(0, T ;Rm) → R is convex.
(ii) For all u ∈ L2(0, T ;Rm), C0(u, 0) ≥ 0.
(iii) infu∈L2(0,T ;Rm) C0(u, 0) = C0(0, 0).
(iv) For all v and x0 the map u �→ Cx0(u, v) : L2(0, T ;Rm) → R is convex.
Corollary 2.1. The following statements are equivalent.
(i) The map v �→ C0(0, v) : L2(0, T ;Rk) → R is concave.
(ii) For all v ∈ L2(0, T ;Rk), C0(0, v) ≤ 0.
(iii) supv∈L2(0,T ;Rk) C0(0, v) = C0(0, 0).

(iv) For all u and x0, the map v �→ Cx0(u, v) : L2(0, T ;Rk) → R is concave.
Corollary 2.2. The following statements are equivalent.
(i) The map, (u, v) �→ C0(u, v) : L2(0, T ;Rm) × L2(0, T ;Rk) → R is (u, v)-

convex-concave; that is,

∀v ∈ L2(0, T ;Rk), u �→ C0(u, v) is convex, and

∀u ∈ L2(0, T ;Rm), v �→ C0(u, v) is concave.
(2.23)

(ii) The pair (0, 0) is a saddle point of C0(u, v):

sup
v∈L2(0,T ;Rk)

C0(0, v) = C0(0, 0) = inf
u∈L2(0,T ;Rm)

C0(u, 0).(2.24)

(iii) supv∈L2(0,T ;Rk) C0(0, v) = C0(0, 0) = infu∈L2(0,T ;Rm) C0(u, 0).

(iv) For all x0 the map (u, v) �→ Cx0(u, v) : L2(0, T ;Rm) × L2(0, T ;Rk) → R is
(u, v)-convex-concave; that is,

∀v ∈ L2(0, T ;Rk), u �→ Cx0(u, v) is convex, and

∀u ∈ L2(0, T ;Rm), v �→ Cx0
(u, v) is concave.

(2.25)

2.4. Saddle point and coupled state-adjoint state system. We first obtain
necessary and sufficient conditions for the existence of a saddle point of the game and
introduce the coupled (state-adjoint state) system (cf. Notation 2.1 on page 758) that
will also arise in the characterization of the open loop lower and upper values of the
game in section 2.5. Theorem 2.4 in section 2.5 will later complete this theorem with
the equivalent condition that the value v(x0) of the game is finite.

Theorem 2.1. The following conditions are equivalent.
(i) There exists an open loop saddle point of Cx0

(u, v).
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(ii) There exists a solution (û, v̂) in L2(0, T ;Rm) × L2(0, T ;Rk) of the system

∀u ∈ L2(0, T ;Rm), ∀v ∈ L2(0, T ;Rk), dCx0(û, v̂;u, v) = 0,(2.26)

and Cx0
is convex-concave in the sense of (2.25).

(iii) There exists a solution (x, p) ∈ H1(0, T ;Rn)2 of the coupled system{
x′ = Ax−B1B

∗
1p + B2B

∗
2p, x(0) = x0,

p′ + A∗p + Qx = 0, p(T ) = Fx(T ),
(2.27)

û = −B∗
1p, v̂ = B∗

2p,(2.28)

and

sup
v∈L2(0,T ;Rk)

C0(0, v) = C0(0, 0) = inf
u∈L2(0,T ;Rm)

C0(u, 0).(2.29)

Under any one of the above conditions, the value of the game is given by

v(x0) = Cx0
(û, v̂) = p(0) · x0.(2.30)

Proof. (i) ⇒ (ii). Let (ū, v̄) in L2(0, T ;Rm)×L2(0, T ;Rk) be an open loop saddle
point of Cx0

(u, v) in L2(0, T ;Rm) × L2(0, T ;Rk). Then by Definition 2.1

(2.31) sup
L2(0,T ;Rk)

Cx0(ū, v) = Cx0(ū, v̄) = inf
L2(0,T ;Rm)

Cx0
(u, v̄).

Since Cx0(u, v) is infinitely differentiable, the minimizing point ū of Cx0
(u, v̄) with

respect to u is characterized by the first order condition dCx0(ū, v̄;u, 0) = 0 for
all u and the second order condition d2Cx0(ū, v̄;u, 0;u, 0) ≥ 0 for all u. Since
d2Cx0

(ū, v̄;u, 0;u, 0) is independent of (ū, v̄) and x0, Cx0
(u, v) is convex in u for all

x0 and all v. A similar argument for the maximum yields dCx0(ū, v̄; , w) = 0 and
d2Cx0

(ū, v̄; 0, w; 0, w) ≤ 0 for all w and the concavity of Cx0(u, v) in v.
(ii) ⇒ (i). By assumption Cx0(û, v̂) is convex-concave and infinitely differentiable

and there is a solution to the two first order conditions. By [6, Proposition 1.6], there
exists a saddle point.

(ii) ⇔ (iii). This follows from the previous computations of the gradient and
Corollary 2.2.

Finally, we compute the value

Cx0(û, v̂) = Fx(T ) · x(T ) + (Qx, x) + ‖B∗
1p‖2 − ‖B∗

2p‖2

= p(T ) · x(T ) − (p′ + A∗p, x) + ([B1B
∗
1 −B2B

∗
2 ]p, p)

= p(0) · x(0) + (p, x′ −Ax + ([B1B
∗
1 −B2B

∗
2 ]p) = p(0) · x0.

Notation 2.1. It will be useful to introduce the set Nx,p of all solutions (y, q) of
the homogeneous coupled system{

y′ = Ay −B1B
∗
1q + B2B

∗
2q, y(0) = 0,

q′ + A∗q + Qy = 0, q(T ) = Fy(T ).
(2.32)

Thus the coupled system has a solution up to an additive pair of Nx,p.
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2.5. Necessary and sufficient conditions for games with finite values.
The quadratic character of the problem yields surprising equivalences that reduce the
complexity of its solution. We start with the open loop lower value of the game.

Theorem 2.2. The following conditions are equivalent.
(i) There exist û in L2(0, T ;Rm) and v̂ in L2(0, T ;Rk) such that

Cx0(û, v̂) = inf
u∈L2(0,T ;Rm)

Cx0
(u, v̂) = sup

v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0(u, v).
(2.33)

(ii) The open loop lower value v−(x0) of the game is finite.
(iii) There exists a solution (x, p) ∈ H1(0, T ;Rn) × H1(0, T ;Rn) of the coupled

system (2.27) such that B∗
2p ∈ V (x0), the solution pairs (û, v̂) and the open

loop lower value are given by the expressions

û = −B∗
1p, v̂ = B∗

2p, and v−(x0) = Cx0(û, v̂) = p(0) · x0,(2.34)

and

sup
v∈V (0)

inf
u∈L2(0,T ;Rm)

C0(u, v) = inf
u∈L2(0,T ;Rm)

C0(u, 0) = C0(0, 0).(2.35)

Proof. The proof of this main theorem will be given in sections 3 and 3.3.
Remark 2.2. The above necessary and sufficient conditions for the finiteness of the

open loop value of the game complete the results of Zhang [10] by introducing the new
feasibility condition (2.35) that is equivalent to saying that the open loop lower value of
the game is zero and that (0, 0) is a solution for the zero initial state. It also recasts
the results in the more intuitive state-adjoint state framework. Condition (2.35)
is equivalent to the convexity of Cx0

(u, v) with respect to u and the concavity of
J−
x0

(v) = infu∈L2(0,T ;Rm) Cx0(u, v) with respect to v ∈ V (x0).
Theorem 2.2 has a counterpart for the upper value v+(x0) of the game.
Theorem 2.3. The following conditions are equivalent.
(i) There exist û in L2(0, T ;Rm) and v̂ in L2(0, T ;Rk) such that

Cx0
(û, v̂) = sup

v∈L2(0,T ;Rk)

Cx0(û, v) = inf
u∈L2(0,T ;Rm)

sup
v∈L2(0,T ;Rk)

Cx0(u, v).
(2.36)

(ii) The open loop upper value v+(x0) of the game is finite.
(iii) There exists a solution (x, p) ∈ H1(0, T ;Rn) × H1(0, T ;Rn) of the coupled

system (2.27) such that −B∗
1p ∈ U(x0), the solution pairs (û, v̂) and the open

loop upper value are given by the expressions

û = −B∗
1p, v̂ = B∗

2p, and v+(x0) = Cx0
(û, v̂) = p(0) · x0,(2.37)

and

inf
u∈U(0)

sup
v∈L2(0,T ;Rk)

C0(u, v) = sup
v∈L2(0,T ;Rk)

C0(0, v) = C0(0, 0).(2.38)

Condition (2.38) says that Cx0
(u, v) is concave with respect to v and that J+

x0
(u) =

supv∈L2(0,T ;Rk) Cx0
(u, v) is convex with respect to u ∈ U(x0).

Finally, the necessary and sufficient condition for the finiteness of the value v(x0)
of the game can now be obtained from the above two theorems and Theorem 2.1(iii).

Theorem 2.4. The following conditions are equivalent.
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(i) There exists an open loop saddle point of Cx0
(u, v).

(ii) The open loop value v(x0) of the game is finite.
(iii) There exists a solution (x, p) ∈ H1(0, T ;Rn) × H1(0, T ;Rn) of the coupled

system (2.27), the solution pair (û, v̂) is given by the expressions (2.28), and
the convexity-concavity (2.29) is verified.

Under any one of the above conditions, the open loop value is given by expression (2.30).
Proof. (i) ⇒ (ii). Since the utility function has a saddle point, the value of the

game is finite. (ii) ⇒ (iii). From Theorems 2.2 and 2.3 there exists a solution to the
coupled system (2.27), and the convexity-concavity condition (2.29) readily follows
from (2.38) and (2.35). (iii) ⇒ (i). This follows from Theorem 2.1.

Remark 2.3. The common necessary condition for the finiteness of the lower
value v−(x0), value v(x0), and upper value v+(x0) of the game is the existence of a
solution of the coupled system (2.27). The difference is in the respective feasibility
conditions (2.35), (2.29), and (2.38): v−(0) = 0, v(0) = 0, and v+(0) = 0.

We conclude with the enlightening result proved by Zhang [10, Thm. 4.1] that
has shed new light on the characterization of a game with finite value. One of the
consequences is that only three cases can occur: (i) v+(x0) finite and v−(x0) = −∞,
(ii) v+(x0) = +∞ and v−(x0) finite, or (iii) v(x0) finite.

Theorem 2.5. Given x0 ∈ Rn, the following statements are equivalent.
(i) There exists an open loop saddle point of Cx0

(u, v).
(ii) The open loop value of the game of Cx0(u, v) is finite.
(iii) Both the open loop lower and upper values of Cx0(u, v) are finite.
Proof. (i) ⇒ (ii) ⇒ (iii) are obvious. It remains to prove that (iii) ⇒ (i). From

condition (2.35) of Theorem 2.2 and condition (2.38) of Theorem 2.3 we get condi-
tion (2.29) of Theorem 2.4. Finally, both Theorems 2.2 and 2.3 give the existence
of a pair (x, p) ∈ H1(0, T ;Rn) ×H1(0, T ;Rn) solution of the coupled system (2.27).
Therefore by Theorem 2.4 the utility function has a saddle point.

2.6. Games with finite values for each initial state. In this section we
sharpen the results of the previous section when the open loop lower value, value, or
upper value of the game is finite for all initial states x0 ∈ Rn. In each case this global
assumption yields the uniqueness of solution.

Theorem 2.6. The following conditions are equivalent.
(i) For each x0 ∈ Rn, there exist û in L2(0, T ;Rm) and v̂ in L2(0, T ;Rk) such

that

Cx0(û, v̂) = inf
u∈L2(0,T ;Rm)

Cx0(u, v̂) = sup
v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0(u, v).
(2.39)

(ii) For each x0 ∈ Rn, the open loop lower value v−(x0) of the game is finite.
(iii) For each x0 ∈ Rn, there exists a unique pair (x, p) ∈ H1(0, T ;Rn)2 solution

of the coupled system (2.27) such that B∗
2p ∈ V (x0), there exists a unique

pair (û, v̂) that verifies (2.28), and

sup
v∈V (0)

inf
u∈L2(0,T ;Rm)

C0(u, v) = inf
u∈L2(0,T ;Rm)

C0(u, 0) = C0(0, 0).(2.40)

Remark 2.4. The uniqueness under condition (i) was originally given by Zhang
et al. in [11] by a different argument. Our short and transparent proof seems to be
new. The same proof can readily be used in the context of optimal control [9].
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Proof. (i) ⇒ (ii) is obvious. (ii) ⇒ (iii). This follows from Theorem 2.2 where
condition (2.40) is condition (2.35). We need only show the uniqueness of the solution
to the coupled system (2.27). By linearity, this amounts to proving that the solution
(y, q) of the homogeneous system (2.32) such that B∗

2q ∈ V (0) is (0, 0). Given an
arbitrary x0, consider the expression

q(0) · x0 = q(T ) · x(T ) −
∫ T

0

q′ · x + q · x′ dt

= Fx(T ) · y(T ) +

∫ T

0

Qx · y + B∗
1p ·B∗

1q −B∗
2p ·B∗

2q dt

=
1

2
dCx0

(û, v̂;−B∗
1q,B

∗
2q) = 0

from (2.16), (2.27), (2.34), and the fact that B∗
2q ∈ V (0). Since this identity is true

for all x0 ∈ Rn, q(0) = 0. But now we can look at the coupled system (2.32) as a
linear differential system in (x, p) with zero initial condition (y(0), q(0)) = (0, 0) whose
unique solution is (y, q) = (0, 0). This proves uniqueness. (iii) ⇒ (i). This follows,
again from Theorem 2.2, since the conditions are verified for each x0 ∈ Rn.

We readily have the dual result.
Theorem 2.7. The following conditions are equivalent.
(i) For each x0 ∈ Rn, there exist û in L2(0, T ;Rm) and v̂ in L2(0, T ;Rk) such

that

Cx0
(û, v̂) = sup

v∈L2(0,T ;Rk)

Cx0
(û, v) = inf

u∈L2(0,T ;Rm)
sup

v∈L2(0,T ;Rk)

Cx0
(u, v).

(2.41)

(ii) For each x0 ∈ Rn, the open loop upper value v+(x0) of the game is finite.
(iii) For each x0 ∈ Rn, there exists a unique pair (x, p) ∈ H1(0, T ;Rn)2 solution

of the coupled system (2.27) such that −B∗
1p ∈ U(x0), there exists a unique

pair (û, v̂) that verifies (2.28), and

inf
u∈U(0)

sup
v∈L2(0,T ;Rk)

C0(u, v) = sup
v∈L2(0,T ;Rk)

C0(0, v) = C0(0, 0).(2.42)

Finally, by combining the last two theorems, we get the saddle point case.
Theorem 2.8. The following conditions are equivalent.
(i) For each x0 ∈ Rn, there exists an open loop saddle point of Cx0(u, v).
(ii) For each x0 ∈ Rn, the open loop value v(x0) of the game is finite.
(iii) For each x0 ∈ Rn, there exists a unique pair (x, p) ∈ H1(0, T ;Rn)2 solution of

the coupled system (2.27), there exists a unique pair (û, v̂) that verifies (2.28),
and the convexity-concavity condition (2.29) is verified.

2.7. Open loop saddle point and Riccati differential equation. Under
the assumption of the finiteness of the open loop value of the game in [0, T ] for each
initial state, we can unexpectedly use invariant embedding and introduce a decoupling
symmetrical matrix solution of the matrix Riccati differential equation (2.12).

Theorem 2.9. Assume that the open loop value v(x0) is finite for all x0 ∈ Rn.
(i) There exists a unique symmetrical solution with elements in H1(0, T ) of the

matrix Riccati differential equation

P ′ + PA + A∗P − PRP + Q = 0, P (T ) = F,(2.43)
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where R = B1B
∗
1 −B2B

∗
2 . Moreover,

p̂(t) = P (t) x̂(t), 0 ≤ t ≤ T, and Cx0(û, v̂) = P (0)x0 · x0,(2.44)

where (x̂, p̂) ∈ H1(0, T ;Rn)2 is the unique solution of the coupled system (2.27).
(ii) The optimal strategies of the two players are closed loop

û = −B∗
1Px̂ and v̂ = B∗

2Px̂,(2.45)

and they achieve a closed loop-closed loop saddle point in the sense of [4].
(iii) For all x0 ∈ Rn the function Cx0(u, v) is convex-concave.

Proof. For the proof, see section 5.3.

The existence of a symmetrical solution to the matrix Riccati differential equa-
tion (2.43) implies that, for all x0 ∈ Rn, there exists a solution (x̂, p̂) ∈ H1(0, T ;Rn)×
H1(0, T ;Rn) of the coupled system (2.27). However, as we have seen in Example 2.2,
this is not sufficient to get an open loop saddle point of the utility function Cx0

(u, v).

Theorem 2.10. A set of necessary and sufficient conditions for the existence of
an open loop saddle point of the utility function Cx0(u, v) for all x0 ∈ Rn is

(a) the utility function Cx0
(u, v) is convex in u and concave in v for some x0,

and
(b) there exists a (unique) symmetrical solution in H1(0, T ) to the matrix Riccati

differential equation (2.43).

Proof. For the proof, see section 5.4.

Remark 2.5. The method of completion of the squares (cf., for instance, Başar
and Bernhard [1, Chap. 9, Thm. 9.4]) can also be used here to obtain

sup
v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0
(u, v) ≤ P (0)x0 · x0 ≤ inf

u∈L2(0,T ;Rm)
sup

v∈L2(0,T ;Rk)

Cx0
(u, v).

So it would be tempting to conclude that there is a saddle point without condition
(a). But, as illustrated in Example 2.2 where we show that U(x0) = ∅ for all x0,
condition (a) is really necessary. In order to get a saddle point, both v−(x0) and
v+(x0) must be finite. Therefore the open loop lower value of the game will be finite
if (b) is verified and V (x0) 	= ∅; the open loop upper value of the game will be finite
if (b) is verified and U(x0) 	= ∅.

3. Open loop lower value of the game. We review the three steps: existence
and characterization of a minimizer for v ∈ V (x0), formulation of the resulting maxi-
mization problem with respect to v, and, finally, existence and characterization of the
pair that achieves the finite open loop lower value of the game.

3.1. Existence and characterization of the minimizers.

Theorem 3.1. Given x0 ∈ Rn and v ∈ L2(0, T ;Rk), the following statements
are equivalent.

(i) There exists û ∈ L2(0, T ;Rm) such that

Cx0(û, v) = J−
x0

(v) = inf
u∈L2(0,T ;Rm)

Cx0(u, v).(3.1)

(ii) infu∈L2(0,T ;Rm) Cx0(u, v) > −∞ (that is, v ∈ V (x0)).
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(iii) There exists a pair (x, p) ∈ H1(0, T ;Rn)×H1(0, T ;Rn) solution of the system{
x′ = Ax−B1B

∗
1p + B2v, x(0) = x0,

p′ + A∗p + Qx = 0, p(T ) = Fx(T ),
(3.2)

û(t) = −B∗
1(t)p(t), J−

x0
(v) = p(0) · x0 +

∫ T

0

B∗
2p · v − |v|2 dt,(3.3)

and

inf
u∈L2(0,T ;Rm)

C0(u, 0) ≥ 0.(3.4)

(iv) The convexity inequality (3.4) is verified and

∀q ∈ Np, x0 · q(0) +

∫ T

0

v ·B∗
2q dt = 0,(3.5)

where

Np
def
=

{
q ∈ H1(0, T ;Rn) : ∀(y, q) ∈ Nx,p

}
(3.6)

and Nx,p denotes the set of all solutions (y, q) of the homogeneous system{
y′ = Ay −B1 B

∗
1q, y(0) = 0,

q′ + A∗q + Qy = 0, q(T ) = Fy(T ).
(3.7)

Proof. The proof follows from the following lemma, the computation of first and
second order derivatives (2.19) and (2.22) in section 2.3, and the equivalent condition
of Lemma 2.1(ii) for the u-convexity of C0(u, v).

Lemma 3.1. Let U be a Hilbert space, M : U → U a continuous linear self-adjoint
compact operator, f ∈ U , c a constant, and j(u) = c + 2(f, u) + ([I + M ]u, u).

(i) Then the following conditions are equivalent.
(a)

(3.8) ∃û ∈ U, j(û) = inf
u∈U

j(u),

(b)

(3.9) inf
u∈U

j(u) > −∞,

(c)

∃û ∈ U such that [I + M ]û + f = 0, and(3.10)

∀u ∈ U, ([I + M ]u, u) ≥ 0.(3.11)

(ii) Condition (3.10) is equivalent to

∀w ∈ ker[I + M ], (f, w) = 0.(3.12)

(iii) Condition (3.11) is equivalent to the convexity of j.
We omit the proof of the lemma.
Notation 3.1. Given x0 ∈ Rn such that V (x0) 	= ∅ and v ∈ V (x0), denote by

P(v, x0) the set of all solutions (x, p) of system (3.2). It is readily checked that for all
p ∈ P(v, x0), P(v, x0) = p + Np.
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3.2. Some intermediary results.
Theorem 3.2.

(i) The sets Nx,p, Np, and B∗
2Np are finite dimensional linear subspaces of

H1(0, T ;Rn)2, H1(0, T ;Rn), and L2(0, T ;Rk), respectively. P(v, x0) is a
finite dimensional affine subspace of H1(0, T ;Rn).

(ii) If V (x0) 	= ∅ for some x0 ∈ Rn, then V (x0) is a closed affine subspace of
L2(0, T ;Rk), V (0) is a nonempty closed linear subspace of L2(0, T ;Rk),

V (0) = (B∗
2Np)

⊥,(3.13)

∀v ∈ V (x0), V (x0) = v + V (0).(3.14)

(iii) Given v ∈ V (x0) and p ∈ P(v, x0), define

v∗
def
= v + PV (0)(B

∗
2p− v),(3.15)

where PV (0) is the orthogonal projection onto V (0) in L2(0, T ;Rk). Then v∗

is independent of the choice of p, v∗ is unique in V (x0)∩B∗
2P(v, x0), and there

exists p∗ ∈ P(v, x0) such that v∗ = B∗
2p

∗. If, in addition, B∗
2p − v ∈ V (0)⊥,

then v = v∗ = B∗
2p

∗.
Analogues of Theorems 3.1 and 3.2 hold for the open loop upper value.
Remark 3.1. This theorem due to Zhang [10] is a key result in the proof of the

existence of a maximizer of the inf problem. We have added part (i) to show that the
subspace B∗

2Np is finite dimensional and hence closed. This is critical in the proof of
part (ii). The proof essentially uses the arguments of [10].

Proof of Theorem 3.2. (i) From system (3.7), Nx,p is a closed linear subspace of
H1(0, T ;Rn)2 as the kernel of the continuous linear map

(x, p) �→ A(x, p)
def
= (−x′ + Ax−B1 B

∗
1p,−x(0), p′ + A∗p + Qx,Fx(T ) − p(T ))

: H1(0, T ;Rn)2 →
(
L2(0, T ;Rn) × Rn

)2
.

We now use the fact that a topological vector space is finite dimensional if and only
if every closed bounded set is compact. Indeed, let K be a closed bounded subset
of points (y, q) in Nx,p for the L2(0, T ;Rn)2-topology. Since all the matrices in sys-
tem (3.7) are bounded, the right-hand sides are bounded and the derivatives (y′, q′) are
also bounded in L2(0, T ;Rn)2 and, a fortiori, in H1(0, T ;Rn)2. Since the injection of
H1(0, T ;Rn)2 into L2(0, T ;Rn)2 is compact, then the closure of K in L2(0, T ;Rn)2

is compact. But, by assumption, we already know that K is closed. Thence K is
compact in L2(0, T ;Rn)2 and Nx,p is finite dimensional.

(ii) Since V (x0) 	= ∅, then, by definition, for all v1, v2 in V (x0), condition (ii)
of Theorem 3.1 is verified and condition (iii) is also verified for some pairs (x1, p1)
and (x2, p2) verifying the system (3.2). Therefore, for any α ∈ R, the pair (xα, pα) =
(αx1 + (1 − α)x2, αp1 + (1 − α)p2) is also a solution of system (3.2) for x0 and
vα = αv1 + (1 − α)v2 ∈ V (x0). Identity (3.14) follows from the fact that V (x0) is an
affine subspace. Moreover, from (3.14), V (x0) 	= ∅ necessarily implies that V (0) 	= ∅.
Finally, from condition (3.5) with x0 = 0

v ∈ V (0) ⇔ ∀q ∈ Np,

∫ T

0

v ·B∗
2q dt = 0 ⇔ v ∈ (B∗

2Np)
⊥,

and V (0) = (B∗
2Np)

⊥, a nonempty closed linear subspace.
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(iii) Given p1, p2 in P(v, x0), p2 − p1 ∈ Np and

v + PV (0)(B
∗
2p2 − v) − (v + PV (0)(B

∗
2p1 − v)) = PV (0)(B

∗
2(p2 − p1)) = 0,

since B∗
2Np = V (0)⊥. So v∗ is independent of the choice of p ∈ P(v, x0). Since V (x0)

is affine, then for all v ∈ V (x0),

v∗ = v + PV (0)(B
∗
2p− v) ∈ v + V (0) = V (x0),(3.16)

v∗ −B∗
2p = v −B∗

2p− PV (0)(v −B∗
2p) ∈ V (0)⊥ = B∗

2Np

⇒ ∃q ∈ Np such that v∗ −B∗
2p = B∗

2q ⇒ v∗ = B∗
2(p + q) ∈ B∗

2P(v, x0),

and v∗ ∈ V (x0) ∩ B∗
2P(v, x0). This element is unique since for v∗1 and v∗2 in V (x0) ∩

B∗
2P(v, x0), v

∗
2−v∗1 ∈ V (0)∩B∗

2Np = V (0)∩V (0)⊥ = {0}. Finally, if B∗
2p−v ∈ V (0)⊥,

then from (3.16) we get v = v∗.

3.3. Existence and characterization of maximizers. Assume that v−(x0)
is finite. By definition of V (x0), it is not empty and

v−(x0) = sup
v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0(u, v) = sup
v∈V (x0)

J−
x0

(v),(3.17)

where V (x0) is a closed affine subspace of L2(0, T ;Rk) and by (3.3) and condition (3.5)

J−
x0

(v) = inf
u∈L2(0,T ;Rm)

Cx0(u, v) = p(0) · x0 +

∫ T

0

B∗
2p · v − |v|2 dt,(3.18)

or, equivalently,

J−
x0

(v) = Fx(T ) · x(T ) +

∫ T

0

Q(t)x(t) · x(t) + |B∗
1(t)p(t)|2 − |v(t)|2 dt(3.19)

for all solutions (x, p) of system (3.2). Define the equivalence class [(x, p)] = (x, p) +
Nx,p. Then for each pair v ∈ V (x0), [(x, p)] is the unique solution in H1(0, T ;Rn) ×
H1(0, T ;Rn)/Nx,p of system (3.2). Thus the map

v �→ [(x, p)] : V (x0) →
H1(0, T ;Rn) ×H1(0, T ;Rn)

Nx,p
(3.20)

is affine and continuous, and the map

(x, p) �→ (x(T ), x, p)

: H1(0, T ;Rn) ×H1(0, T ;Rn) → Rn ×L2(0, T ;Rn) × L2(0, T ;Rn)
(3.21)

is continuous and compact.
So we are back to a continuous linear quadratic function J−

x0
(v) that is to be

maximized over the closed affine subspace V (x0). The state is now the pair (x, p)
solution of (3.2), but the structure is the same. Lemma 3.1 readily extends to the
case of a sup over a closed affine subspace and the following conditions are equivalent:

(a)

(3.22) ∃v̂ ∈ V (x0), J−
x0

(v̂) = sup
v∈V (x0)

J−
x0

(v),
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(b)

(3.23) sup
v∈V (x0)

J−
x0

(v) < +∞,

(c)

∃v̂ ∈ V (x0) such that [I + M ]v̂ + f ∈ V (0)⊥, and(3.24)

∀w ∈ V (0), ([I + M ]w,w) ≤ 0(3.25)

for the new compact operator M corresponding to the new state (x, p).
It remains to compute the directional derivative of J−

x0
(v) at v ∈ V (x0) in the

direction w ∈ V (0). By direct computation from formula (2.19)

1

2
dCx0

(−B∗
1p, v; 0, w) =

∫ T

0

(B∗
2p− v) · w dt,(3.26)

which is independent of p ∈ P(v, x0) for all w ∈ V (0) by Theorem 3.1(iv). Hence

dJ−
x0

(v;w) = dCx0
(−B∗

1p, v; 0, w) = 2

∫ T

0

(B∗
2p− v) · w dt, ∀p ∈ P(v, x0).(3.27)

As for the second order derivative,

1

2
d2Cx0

(−B∗
1p, v; 0, w; 0, w′)

= Fyw′(T ) · yw(T ) +

∫ T

0

Qyw′ · yw + B∗
1qw′ ·B∗

1qw − w′ · w dt

(3.28)

⇒ 1

2
d2J−

x0
(v;w;w) =

1

2
d2Cx0(−B∗

1p, v; 0, w; 0, w)

=
1

2
J−

0 (w) =
1

2
inf

u∈L2(0.T ;Rm)
C0(u,w),

(3.29)

where the last term must be negative or zero for all w ∈ V (0). But, from Theo-
rem 3.1(iii), C0(u, 0) is convex in u. By using the equivalent condition of Lemma 2.1(ii)
for the u-convexity of C0(u, 0), we finally get the two-part condition

sup
v∈V (0)

inf
u∈L2(0,T ;Rm)

C0(u, v) ≤ 0 ≤ inf
u∈L2(0,T ;Rm)

C0(u, 0).

This condition is equivalent to condition (2.35) since C0(0, 0) = 0.
Proof of Theorem 2.2. (i) ⇒ (ii) is obvious. (ii) ⇒ (iii). From the previous

discussion, the finiteness of v−(x0) is equivalent to

∃v̂ ∈ V (x0) such that dJ−
x0

(v̂;w) = 2

∫ T

0

(B∗
2 p̂− v̂) · w dt = 0, ∀w ∈ V (0),

d2J−
x0

(v̂;w;w) = 2 inf
u∈L2(0.T ;Rm)

C0(u,w) ≤ 0, ∀w ∈ V (0).

The second order condition combined with the fact that V (x0) 	= ∅ (Theorem 3.1(iii))
yields condition (2.35). The first order condition says that B∗

2 p̂ − v̂ ∈ V (0)⊥. By
Theorem 3.2(iii) there exists p̂∗ ∈ P(v̂, x0) such that v̂ = B∗

2 p̂
∗, where (x̂∗, p̂∗) is

a solution of (3.2). Since v̂ = B∗
2 p̂

∗, system (2.27) has a solution unique up to an
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element of Nx,p. After substitution of v̂ = B∗
2 p̂

∗ in (3.2), (x̂∗, p̂∗) becomes a solution
of the coupled system (2.27). This also yields the identities (2.34). (iii) ⇒ (i). By
assumption v̂ = B∗

2p ∈ V (x0). The existence of a solution (x, p) to system (2.27)
yields the existence of a solution to system (3.2) of Theorem 3.1(iii) with û = −B∗

1p
as a minimizer. For all v ∈ V (x0),

J−
x0

(v) = J−
x0

(B∗
2p) + dJ−

x0
(B∗

2p; v −B∗
2p) +

1

2
d2J−

x0
(B∗

2p; v −B∗
2p; v −B∗

2p).

The second order term is negative by condition (2.35) since, by assumption, B∗
2p ∈

V (x0) and hence v −B∗
2p ∈ V (0) for all v ∈ V (x0). As for the first order term, recall

that, in view of (2.34), for all w ∈ V (0)

dJ−
x0

(B∗
2p;w) =

∫ T

0

(B∗
2p− v) · w dt = 0.

Thus dJ−
x0

(B∗
2p; v−B∗

2p) = 0 since v−B∗
2p ∈ V (0): B∗

2p is a maximizer of J−
x0

.

4. Invariant embedding and convexity-concavity. Consider the LQ game
on the time interval [s, T ], 0 ≤ s < T , with initial state h ∈ Rn at time s:

Cs
h(u, v)

def
= Fx(T ) · x(T ) +

∫ T

s

Qx · x + |u|2 − |v|2 dt,(4.1)

x′ = Ax + B1u + B2v a.e. in [s, T ], x(s) = h.(4.2)

Definition 4.1. Let h ∈ Rn be an initial state at time s, 0 ≤ s < T .
(i) The game is said to achieve its open loop lower value (resp., upper value) if

v−s (h)
def
= sup

v∈L2(s.T ;Rk)

inf
u∈L2(s.T ;Rm)

Cs
h(u, v)(4.3)

(resp., v+
s (h)

def
= inf

u∈L2(s.T ;Rm)
sup

v∈L2(s,T ;Rk)

Cs
h(u, v))(4.4)

is finite.
(ii) The game is said to achieve its open loop value if its open loop lower value

v−s (h) and upper value v+
s (h) are achieved and v−s (h) = v+

s (h). The open loop
value of the game will be denoted by vs(h).

(iii) A pair (ū, v̄) in L2(s, T ;Rm) × L2(s, T ;Rk) is an open loop saddle point of
Cs

h(u, v) if for all u in L2(s, T ;Rm) and all v in L2(s, T ;Rk)

Cs
h(ū, v) ≤ Cs

h(ū, v̄) ≤ Cs
h(u, v̄).(4.5)

The first result is that, if the Cx0(u, v) is convex, concave, or convex-concave for
some x0, so is Cs

h(u, v) for all h ∈ Rn and all s, 0 ≤ s < T .
Theorem 4.1.

(i) If, for all (x0, v) ∈ Rn ×L2(0, T ;Rk), the map u �→ Cx0(u, v) is convex, then
for all s, 0 ≤ s < T , and all (h, v) ∈ Rn ×L2(s, T ;Rk) the map u �→ Cs

h(u, v)
is convex.

(ii) If, for all (x0, u) ∈ Rn ×L2(0, T ;Rm), the map v �→ Cx0(u, v) is concave, then
for all s, 0 ≤ s < T , and all (h, u) ∈ Rn ×L2(s, T ;Rm) the map v �→ Cs

h(u, v)
is concave.
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Proof. We prove only (i). From (2.20)–(2.22) for all (u, v) ∈ L2(0, T ;Rm) ×
L2(0, T ;Rk),

∀ū ∈ L2(0, T ;Rm), d2Cx0(u, v; ū, 0; ū, 0)

= F ȳ(T ) · ȳ(T ) + (Qȳ, ȳ) + (ū, ū) ≥ 0,
(4.6)

where ȳ is the solution of

ȳ′ = Aȳ + B1ū, ȳ(0) = 0.(4.7)

To prove the same result on [s, T ], associate with each ū ∈ L2(s, T ;Rm) its extension
by zero ˜̄u from [s, T ] to [0, T ]. Therefore

∀ū ∈ L2(s, T ;Rm), F ȳ(T ) · ȳ(T ) +

∫ T

0

Qȳ · ȳ + ˜̄u · ˜̄u dt ≥ 0,(4.8)

where ȳ is the solution of

ȳ′ = Aȳ + B1 ˜̄u, ȳ(0) = 0.(4.9)

Notice that, since ˜̄u is zero in [0, s], ȳ = 0 in [0, s] and ȳ is also the solution of

ȳ′ = Aȳ + B1ū, ȳ(s) = 0(4.10)

⇒ ∀ū ∈ L2(s, T ;Rm), F ȳ(T ) · ȳ(T ) +

∫ T

s

Qȳ · ȳ + ū · ū dt ≥ 0.(4.11)

Hence for all h ∈ Rn, all (u, v) ∈ L2(s, T ;Rm)×L2(s, T ;Rk), and all ū ∈ L2(s, T ;Rm),

d2Cs
h(u, v; ū, 0; ū, 0) = F ȳ(T ) · ȳ(T ) +

∫ T

s

Qȳ · ȳ + ū · ū dt

= d2Cx0(0, 0; ˜̄u, 0; ˜̄u, 0) ≥ 0.

Thus for all s and all (h, v), the map u �→ Cs
h(u, v) is convex.

5. Decoupling and Riccati differential equation in the saddle point case.

5.1. Open loop saddle point optimality principle. At this juncture, it is
important to notice that the necessary conditions (2.35) and (2.38) associated with
the respective finiteness of the lower and upper values of the game on [0, T ] do not
generally survive on [s, T ]. However the convexity-concavity condition (2.29) does.

Theorem 5.1. Assume that v(x0) is finite for some x0 ∈ Rn, let x(·;x0), p(·;x0)
be a solution of the coupled system (2.27) in [0, T ], and let s, 0 ≤ s < T .

(i) The value vs(x(s;x0)) of the game is finite.
(ii) The restriction of (x, p) to [s, T ] is a solution of the coupled system{

x′
s = Axs −B1B

∗
1ps + B2B

∗
2ps a.e. in [s, T ], xs(s) = x(s;x0),

p′s + A∗ps + Qxs = 0, ps(T ) = Fxs(T ),
(5.1)

the restrictions (us, vs) = (u|[s,T ], v[s,T ]) of the controls (u, v) on [0, T ] to
[s, T ] verify

us = −B∗
1ps and vs = B∗

2ps, vs(x(s;x0)) = ps(s) · x(s;x0),(5.2)

v(x0) = vs(x(s;x0)) +

∫ s

0

Qx · x + |u|2 − |v|2 dt,(5.3)
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and

sup
v∈L2(s,T ;Rk)

Cs
0(0, v) = Cs

0(0, 0) = inf
u∈L2(s,T ;Rm)

Cs
0(u, 0).(5.4)

Proof. From Theorem 2.4 on [s, T ], part (i) is equivalent to part (ii), and thus it is
sufficient to prove part (ii). From Theorem 4.1, the convexity-concavity conditions on
[0, T ] survive on [s, T ], and we get (5.4). Moreover, if (x(·;x0), p(·;x0)) is a solution of
the coupled system (2.27) in [0, T ] with initial state x0 at time 0 and the controls (u, v)
verify identities (2.28), then the restrictions (xs, ps) = (x|[s,T ], p|[s,T ]) are a solution to
the coupled system (5.1), and the restrictions (us, vs) = (u|[s,T ], v[s,T ]) of the controls
on [0, T ] verify (5.2). Thus, by the analogue of Theorem 2.4, we get the finiteness of
the value of the game on [s, T ].

Theorem 5.2. Assume that v(x0) is finite for all x0 ∈ Rn.
(i) The solution (xs, ps) of the coupled system (5.1) and the controls (us, vs) on

[s, T ] in (5.2) are unique.
(ii) The map

x0 �→ X(s)x0
def
= x(s;x0) : Rn → Rn(5.5)

is a linear bijection, where x(·;x0), p(·;x0) is the unique solution of the coupled
system (2.27) in [0, T ].

(iii) For all h ∈ Rn, the utility function Cs
h(u, v) has a unique open loop saddle

point (ûs, v̂s) ∈ L2(s, T ;Rm)×L2(s, T ;Rk), and there exists a unique solution
(x̂s, p̂s) of the coupled system{

x̂′
s = Ax̂s −B1B

∗
1 p̂s + B2B

∗
2 p̂s a.e. in [s, T ], x̂s(s) = h,

p̂′s + A∗p̂s + Qx̂s = 0 a.e. in [s, T ], p̂s(T ) = Fx̂s(T ),
(5.6)

such that ûs = −B∗
1 p̂s and v̂s = B∗

2 p̂s.(5.7)

Proof. (i) Assume that the pair (ûs, v̂s) is a saddle point of Cs
x̂(s) on the time inter-

val [s, T ]. Denote by (x̂s, p̂s) the corresponding solution to the coupled system (5.1).
Consider the new pair on the interval [0, T ],

ũ
def
=

{
û in [0, s],

ûs in [s, T ],
ṽ

def
=

{
v̂ in [0, s],

v̂s in [s, T ],
(5.8)

and the corresponding solution (x̃, p̃) to the state-adjoint state system (2.4)–(2.18).
If it can be shown that the pair (ũ, ṽ) is a saddle point of Cx0(u, v) on [0, T ], then
by uniqueness of the saddle point on [0, T ] we can conclude that (ũ, ṽ) = (û, v̂) and
hence (ûs, v̂s) = (û|[s,T ], v̂|[s,T ]). From this we get the uniqueness of the saddle point
of Cs

x̂(s) on [s, T ] and the uniqueness of solution to the coupled system (5.1). The first

remark is that x̃(s) = x̂(s) and from (5.3)

Cx0
(û, v̂) = v(x0) =

∫ s

0

Qx̂ · x̂ + |û|2 − |v̂|2 dt + vs(x̂(s))

=

∫ s

0

Qx̂ · x̂ + |û|2 − |v̂|2 dt + Fx̂s(T ) · x̂s(T ) +

∫ T

s

Qx̂s · x̂s + |ûs|2 − |v̂s|2 dt

⇒ Cx0
(û, v̂) = Cx0

(ũ, ṽ).
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Yet, this is not sufficient to conclude that (ũ, ṽ) is a saddle point of Cx0
(u, v). We

must show that

sup
v∈L2(0,T ;Rk)

Cx0
(ũ, v) = Cx0

(ũ, ṽ) = inf
u∈L2(0,T ;Rm)

Cx0
(u, ṽ).(5.9)

The second remark is that, since (ũ− û, ṽ− v̂) is equal to (0, 0) on [0, s], (ûs− û, v̂s− v̂)
is a saddle point of Cs

0(us, vs). Combining this with the fact that, by (5.4), (0, 0) is
also a saddle point of Cs

0(us, vs), the pairs (ûs − û, 0) and (0, v̂s − v̂) are also saddle
points of Cs

0(us, vs) and Cs
0(ûs − û, 0) = Cs

0(0, v̂s − v̂) = 0. The third remark is that

Cx0(û, ṽ) = Cx0(û, v̂) + dCx0(û, v̂; 0, ṽ − v̂) + C0(0, ṽ − v̂) = Cx0(û, v̂) + C0(0, ṽ − v̂).

But, since ṽ − v̂ is equal to 0 on [0, s],

C0(0, ṽ − v̂) = Cs
0(0, v̂s − v̂) = 0 ⇒ Cx0(û, ṽ) = Cx0(û, v̂) = Cx0(ũ, ṽ).

We now prove the second part of identity (5.9):

Cx0(u, ṽ) = Cx0(û, ṽ) + dCx0(û, ṽ;u− û, 0) + C0(u− û, 0).(5.10)

Since (0, 0) is a saddle point of C0(u, v),

inf
u∈L2(0,T ;Rm)

C0(u− û, 0) = inf
u∈L2(0,T ;Rm)

C0(u, 0) = 0.

It remains to prove that for all u ∈ L2(0, T ;Rm), dCx0(û, ṽ;u − û, 0) = 0. First
observe that

dCx0(û, ṽ;u− û, 0) = dCx0
(û, v̂;u− û, 0) + dC0(0, ṽ − v̂;u− û, 0)

= dC0(0, ṽ − v̂;u− û, 0).

Since (0, v̂s − v̂) is a saddle point of Cs
0 on [s, T ], there exists a pair (ξ, π) solution of

the coupled system{
ξ′ = Aξ −B1B

∗
1π + B2B

∗
2π a.e. in [s, T ], ξ(s) = 0,

π′ + A∗π + Qξ = 0, π(T ) = Fξ(T ),
(5.11)

0 = −B∗
1π, v̂s − v̂ = B∗

2π.(5.12)

The first equation can also be written

ξ′ = Aξ + B2(v̂s − v̂) a.e. in [s, T ], ξ(s) = 0.

Denote by ξ̃ the solution of the state equation (2.4) on [0, T ] corresponding to the
initial state 0 and the control pair (0, ṽ − v̂):

ξ̃′ = Aξ̃ + B2(ṽ − v̂) a.e. in [0, T ], ξ̃(0) = 0.

Then observe that, since the restriction of ṽ− v̂ to [0, s] is 0, ξ̃ = 0 on [0, s] and ξ̃ = ξ
on [s, T ]. Denoting by y the solution of

y′ = Ay + B1(u− û) a.e. in [0, T ], y(0) = 0,
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we get the expression (cf. (2.16) and (2.19) for the directional derivative)

dC0(0, ṽ − v̂;u− û, 0) = F ξ̃(T ) · y(T ) +

∫ T

0

Qξ̃ · y + 0 · (u− û) + (ṽ − v̂) · 0 dt

= F ξ̃(T ) · y(T ) +

∫ T

0

Qξ̃ · y dt = F ξ̃(T ) · y(T ) +

∫ T

s

Qξ̃ · y dt

= Fξ(T ) · y(T ) +

∫ T

s

Qξ · y dt =

∫ T

s

B∗
1π · (u− û) dt = 0,

since B∗
1π = 0 on [s, T ] from (5.12). This establishes the second part of expres-

sion (5.9). The proof of the first part is dual to the proof of the second part. This
yields the uniqueness and completes the proof of part (i).

(ii) The map (5.5) is clearly linear (and continuous). Assume that it is not
bijective; then there exists some x0 ∈ Rn, x0 	= 0, such that x̂(s) = 0. The restriction
of (x̂, p̂) to the interval [s, T ] is a solution of the system{

ξ′ = Aξ −B1B
∗
1π + B2B

∗
2π a.e. in [s, T ], ξ(s) = 0 = x̂(s),

π′ + A∗π + Qξ = 0 a.e. in [s, T ], π(T ) = Fξ(T ).
(5.13)

But from part (i) the unique solution of system (5.13) is (0, 0). Hence

(x̂, p̂) = (0, 0) in [s, T ] ⇒ (x̂(s), p̂(s)) = (0, 0)

⇒
{
x̂′ = Ax̂−B1B

∗
1 p̂ + B2B

∗
2 p̂ a.e. in [0, s], x̂(s) = 0,

p̂′ + A∗p̂ + Qx̂ = 0 a.e. in [0, s], p̂(s) = 0,

⇒ (x̂, p̂) = (0, 0) in [0, s] ⇒ x0 = x̂(0) = 0.

This contradicts our initial conjecture that x0 	= 0, and we conclude that the linear
map (5.5) is injective and, a fortiori, bijective.

(iii) From part (i) for each h ∈ Rn and each s, 0 ≤ s < T , there exists a unique
h0 ∈ Rn such that h = X(s)h0. But Ch0

(u, v) has a unique open loop saddle point in
[0, T ]. From part (i), Cs

X(s)h0
(u, v) has a unique open loop saddle point in [s, T ]. The

result now follows from the fact that h = X(s)h0. The equations and the identities
follow from Theorem 5.1(ii).

Remark 5.1. The proof of part (i) is not trivial. It is one of the key elements
needed to get the result of part (iii) that says that Cs

h(u, v) has a saddle point for all
initial state h and all initial times s.

5.2. Decoupling of the coupled system. We need the following lemma.

Lemma 5.1. Assume that the open loop saddle point value v(x0) is finite for
all x0 ∈ Rn. Let s, 0 ≤ s < T , and (x̂s, p̂s) be the unique solution of the coupled
system (5.6) with initial state h at time s. Then the map P (s)

h �→ P (s)h
def
= p̂s(s) : Rn → Rn(5.14)

is linear, continuous, and symmetrical.

Proof. By definition, P (s) is linear and continuous. For the symmetry, let (x, p)
and (x̄, p̄) be the solutions of the coupled system (5.6) for the respective initial states
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h and h̄ at time s. By symmetry of F , Q(t), and B1(t)B
∗
1(t) −B2(t)B

∗
2(t),

P (s)h · h̄ = p(s) · x̄(s) = p(T ) · x̄(T ) −
∫ T

s

p′ · x̄ + p · x̄′ dt

= Fx(T ) · x̄(T ) −
∫ T

s

−(A∗p + Qx) · x̄ + p · (Ax̄−B1B
∗
1 p̄ + B2B

∗
2 p̄) dt

= Fx(T ) · x̄(T ) +

∫ T

s

Qx · x̄ + p · (B1B
∗
1 −B2B

∗
2)p̄ dt = P (s)h̄ · h,

and P (s)∗ = P (s).
Remark 5.2. At this juncture the matrix Riccati differential equation can be

readily obtained from Lemma 3.1 in [4] since, from Theorem 5.2(ii), the matrix func-
tion X(s) is invertible for all s. However, in view of Lemma 5.1, we use invariant
embedding to get more a priori information on the decoupling matrix function P (s).

Theorem 5.3. Assume that v(x0) is finite for all x0 ∈ Rn.
(i) Given the solution of the coupled system (2.27) in [0, T ] for x0 ∈ Rn,

p̂(s) = P (s)x̂(s), 0 ≤ s ≤ T.(5.15)

(ii) The elements of the matrix function P are H1(0, T )-functions, the elements
of the matrix functions

AP
def
= A−RP, R

def
= B1B

∗
1 −B2B

∗
2(5.16)

belong to L∞(0, T ), and the closed loop system

x̂′ = [A− (B1B
∗
1 −B2B

∗
2)P ] x̂ a.e. in [0, T ], x̂(0) = x0,(5.17)

has a unique solution in H1(0, T ;Rn). For all (t, s), 0 ≤ s ≤ t ≤ T , the
fundamental matrix solution ΦP (t, s) associated with the closed loop system
(5.17) and its inverse ΦP (t, s)−1 are continuous in {(t, s) : 0 ≤ s ≤ t ≤ T}.
For all pairs 0 ≤ s ≤ t ≤ T

∂

∂s
ΦP (t, s) + ΦP (t, s)AP (s) = 0 a.e. in [0, t], ΦP (t, t) = I.(5.18)

(iii) For all h and h in Rn

h · P (s)h = ΦP (T, s)h · FΦP (T, s)h̄

+

∫ T

s

ΦP (t, s)h · [Q(t) + P (t)R(t)P (t)] ΦP (t, s)h̄ dt.
(5.19)

Proof. (i) From Theorems 5.1 and 5.2(i)

x̂s = x̂|[s,T ], p̂s = p̂|[s,T ] ⇒ p̂(s) = p̂s(s) = P (s)x̂s(s) = P (s)x̂(s),

and we get (5.15). The closed loop system is obtained by direct substitution of the
identity (5.15) for p̂ into the first equation of the coupled system (2.27) in [0, T ].

(ii) Associate with the solution of the coupled system (2.27) in [0, T ] the matrix
function

Λ(s)x0
def
= p̂(s;x0), ∀x0 ∈ Rn, 0 ≤ s ≤ T.(5.20)
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From (5.15) in part (i) and the invertibility of X(s)

Λ(s)x0
def
= P (s)X(s)x0, ∀x0 ∈ Rn, 0 ≤ s ≤ T

⇒ Λ(s) = P (s)X(s), ⇒ P (s) = Λ(s)X(s)−1, 0 ≤ s ≤ T.

Since X(s) is invertible and the elements of the matrices X and Λ are H1(0, T )-
functions,

P ′(s) = Λ(s)′X(s)−1 − Λ(s)X(s)−1X(s)′X(s)−1.(5.21)

In particular the elements of the matrix function P are H1(0, T )-functions. Then the
matrix function AP (t) in (5.16) belongs to L∞(0, T ), and the closed loop system (5.17)
has a unique solution in H1(0, T ;Rn). From this ΦP has the usual properties of a fun-
damental matrix solution ΦP in {(t, s) : 0 ≤ s ≤ t ≤ T}, ΦP (t, 0) = ΦP (t, s)ΦP (s, 0),
and

∂ΦP

∂s
(t, s) + ΦP (t, s)AP (s) a.e. in [0, T ], ΦP (t, t) = I.(5.22)

(iii) Let (ψ,ϕ) (resp., (ψ,ϕ)) be the solution of the coupled system (5.1) for the
initial state h (resp., h). Then by direct computation

h · ψ(s) = ϕ(T ) · Fϕ(T ) +

∫ T

s

ϕ(t) ·Q(t)ϕ(t) + ψ(t) ·R(t)ψ(t) dt,

h · P (s)h = ΦP (T, s)h · FΦP (T, s)h̄

+

∫ T

s

ΦP (t, s)h · [Q(t) + P (t)R(t)P (t)] ΦP (t, s)h̄ dt.

(5.23)

5.3. Proof of Theorem 2.9. (i) From identity (5.21) in the proof of part (ii)
of Theorem 5.3 a straightforward computation yields that the matrix function P is
a solution of the matrix Riccati differential equation (2.43). This solution is unique.
Indeed if P̄ is another solution of the Riccati equation, the closed loop system with
P̄ has a unique solution x̄ and it is easy to check that p̄ = P̄ x̄ is a solution of the
associated adjoint equation. But there is a unique solution to the coupled system. By
definition of P via invariant embedding we get that P̄ = P . (ii) and (iii) The proof
follows from identities (2.34) and (2.35) in Theorem 2.2.

5.4. Proof of Theorem 2.10. From Theorem 2.9 we get (a) and (b). Con-
versely, from (a) if P is a solution of the Riccati differential equation, the closed loop
system has a unique solution xP and pP = PxP is the solution of the adjoint system.
It is then easy to check that the pair (xP , pP ) is indeed a solution of the coupled
system (2.27) in [0, T ]. Finally from the convexity-concavity property (b) we get the
existence of the open loop saddle point.

REFERENCES
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OPTIMAL CONTROL OF A
NUTRIENT-PHYTOPLANKTON-ZOOPLANKTON-FISH SYSTEM∗
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Abstract. We consider the mathematical formulation, analysis, and numerical solution of an
optimal control problem for a nonlinear “nutrient-phytoplankton-zooplankton-fish” reaction-diffusion
system. We study the existence of optimal solutions, derive an optimality system, and determine
optimal solutions. In the original spatially homogeneous formulation [M. Scheffer, Oikos, 62 (1991),
pp. 271–282] the dynamics of plankton were investigated as a function of parameters for nutrient
levels and fish predation rate on zooplankton. In our paper the model is spatially extended and the
parameter for fish predation treated as a multiplicative control variable. The model has implications
for the biomanipulation of food-webs in eutrophic lakes to help improve water quality. In order to
illustrate the control of irregular spatiotemporal dynamics of plankton in the model we implement
a semi-implicit (in time) finite element method with “mass lumping” and present the results of
numerical experiments in two space dimensions.

Key words. chaos, optimal control, biomanipulation, predator-prey interaction, finite element
method
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1. Introduction.

1.1. Model equations. In this paper we study the following nutrient-phyto-
plankton-zooplankton-fish reaction-diffusion system:

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂A

∂τ
= DAΔA + r̂

n

n + hn
A− cA2 − pZ

A

A + ha
,

∂Z

∂τ
= DZΔZ + peZ

A

A + ha
− m̂Z − F

Z2

Z2 + h2
Z

,

where A is phytoplankton biomass, Z is zooplankton biomass, Da and Dz are the
diffusion coefficients of phytoplankton and zooplankton, respectively, and n is the
nutrient level of the system. F is the rate of zooplankton biomass consumed by fish
per unit volume of water per day (average predation rate times the density of fish).
It is important to note that in our formulation F ≡ F (x, t), i.e., F is defined at
every point in the lake and at every point in time. For definitions of the positive
parameters c, e, m̂, r̂, p, ha, hz, and hn, see [39]. The symbol τ denotes time in days,

and Δ =
∑d

i=1 ∂
2/∂X2

i is the usual Laplacian operator in d = 2 or 3 space dimensions.
The grazing rate of zooplankton on phytoplankton is of a type II functional response,
while the predation rate of fish on zooplankton is of type III [17]. In the absence of
zooplankton the phytoplankton are assumed to grow logistically.
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nutrients

fish

phytoplankton

zooplankton

Fig. 1.1. Interactions incorporated into a nutrient-plankton-fish model. Arrows indicate positive
effects, circles indicate negative effects (redrawn from [39]).

The nutrient-phytoplankton-zooplankton-fish model was originally formulated as
a system of ordinary differential equations (ODEs) by Scheffer [39] and has since been
spatially extended (see, for example, [32, 29, 30, 33, 34, 45]).

The reaction-diffusion system models a simple food-web in lakes where planktiv-
orous fish feed on zooplankton, and the zooplankton feed on phytoplankton (algae).
The basic interactions in the model are illustrated in Figure 1.1. The model is “min-
imal” in the sense that only a few important interactions are taken into account. For
example, the positive effect that fish have on the nutrients of the system is omitted
in this model (indicated by the dotted arrow in Figure 1.1). Nevertheless, such mini-
mal predator-prey systems display a wide range of ecologically relevant behavior, for
example, spiral waves [34], target waves [41], diffusion-induced instability [30], and
chaos [36, 34]. See [31] for a historical overview of modeling plankton dynamics and
pattern formation mechanisms.

It is simpler to work with equations that have been scaled to nondimensional form;
thus after letting N := n/(n + hn) in (1.1) we define dimensionless phytoplankton
densities, zooplankton densities, spatial coordinates, and time via

u =
cA

r̂N
, v =

cZ

r̂eN
, xi =

kXi

L
, t = R0τ

(cf. [33] and [34]), where R0 is the characteristic (or typical) growth rate of phyto-
plankton, k is a factor related to the scale of expected patchy patterns, and L is the
maximum diameter of the lake in the coordinate direction x2, or x3. Note that in the
case of a square domain, L is the side length. We also rescale the parameters via

r =
R

R0
, a =

C1K

C2R0
, b =

K

C2
, m =

M

R0
,

f =
F

C3R0
, g =

K

C3A
, d1 =

k2DA

L2R0
, d2 =

k2DZ

L2R0
,
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(a) (b)

Fig. 1.2. Numerical solution v of (1.2) at time t = 1000 with d1 = d2 = 0.05, f = 0,
g = 10, solved on a space-time grid of 101× 101× 12000. A semi-implicit (in time) Galerkin finite
element method with piecewise linear continuous basis functions was employed with homogeneous
Neumann boundary conditions. In both cases initial data of the form u0 = A(x/100) + B, v0 =
C(100 − y)/100 + D was employed with the following parameter values: (a) A = 0.02, B = 0.19,
C = 0.02, D = 0.31, r = 1, a = b = 5, m = 0.5; (b) A = 0.2, B = 0.1, C = 0.2, D = 0.1, r = 1,
a = b = 20, m = 0.8.

which leads to the dimensionless system

(1.2)

⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= d1Δu + ru(1 − u) − auv

1 + bu
,

∂v

∂t
= d2Δv +

auv

1 + bu
−mv − f

gv2

1 + g2v2 .

Any 2-component reaction-diffusion system with reaction kinetics close to a super
critical Hopf bifurcation, with equal diffusion coefficients, can be transformed into a
generic reaction-diffusion system of “λ-ω” form [40]. Thus as spiral wave solutions of
λ-ω reaction-diffusion systems have been proved to exist [9], for appropriate parameter
values and initial data we also expect spiral wave solutions to exist for system (1.1).
In Figure 1.2 we present snapshots at t = 1000 for the uncontrolled system (1.2)
representing spiral wave solutions that persist indefinitely (Figure 1.2(a)) or, after
initialization, rapidly break up into irregular patterns (Figure 1.2(b)). In both cases
we checked that this behavior persists up to t = 10,000. This behavior is important
to our study as we apply controls that drive the system from the unstable regime to
form regular patterns.

In this paper we consider the above model in the context of eutrophication of
lakes. Eutrophication is the process where excessive input of nutrients in lakes leads
to high levels of phytoplankton (algae) and hence degraded water quality (see [6, 18]
and the references therein). The most common approach to improving water quality in
this situation is to either reduce the external nutrient loading or enhance zooplankton
by reducing planktivorous fish, thereby reducing algal biomass. We focus on the latter
approach (“top-down” control), where the nutrient level in the system is determined
by a parameter. In practice, planktivorous fish can be reduced by fish removal, or by
piscivore1 stocking. This manipulation of the food-web is called biomanipulation and

1Species that feed on fish.
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is an important approach for improving water quality in eutrophic lakes (e.g., [23, 25,
28, 38, 44, 50]). Evidence from the limnological literature supports the hypothesis that
the most effective biomanipulation strategy for improving water quality is the partial
removal of fish, and that there may be an optimum harvesting rate of planktivorous
fish [11, 21, 48, 49]. This observation helped motivate the work in this paper, where we
consider the optimal control of phytoplankton u and zooplankton v densities, where
f is the distributed control. We aim to minimize the quadratic cost functional

(1.3) J(u, v, f) =
1

2

∫
Q

(
|u− ū|2 + |v − v̄|2

)
dxdt +

α

2

∫
Q

∣∣∣∣∂f∂t
∣∣∣∣2 dxdt,

where (ū, v̄) are the desired phytoplankton-zooplankton densities, and Q = Ω× (0, T )
is the space-time domain of interest. The first two terms in (1.3) measure, with respect
to the L2-norm in space and time, the difference between the given target densities
(ū, v̄) and the state densities (u, v). The last term in (1.3) reflects the fact that we
want to avoid changing the control (adding or removing fish) too often. The constant
α can be chosen to adjust the relative importance of this cost. We assume the state
equations (1.2) are augmented with appropriate initial and boundary conditions. Note
that as there is no forcing in the first equation of (1.2), the control of phytoplankton
must result indirectly through the coupling with the second equation. Furthermore,
the forcing in (1.2) enters not merely as an additive inhomogeneous source term, but
rather in a multiplicative manner. Additionally, as the control f is a rate, it is strictly
nonnegative.

We emphasize that although this work has implications for the control of eutroph-
ication in lakes, the main focus of this work is on the rigorous mathematical analysis
of the optimal control problem. We do not provide practical implementational details
for the improvement of water quality in lakes, but we do provide a theoretical basis
on which such a task would be based. We also remark that the mathematical problem
and results from numerical simulations may provide insights into the field situation.

It is important to distinguish between the mathematical (optimal control) problem
and the practical problem in the field. Mathematically, we assume that f can be
manipulated at every point in space and time. However, from a practical point of
view, we only have direct control of the net density of fish in the lake at any instant.
For example, fish released into a lake may distribute themselves uniformly throughout
the lake, or move in schools. Nevertheless, there is significant overlap between the
mathematical problem and the field situation, for example, in the case where we wish
to reduce the (net) algal growth. In addition to improving water quality we are also
interested in the more fundamental aim of maintaining a stable equilibrium between
the plankton, thus avoiding the extinction of one or more species.

The aim of this paper is to undertake the mathematical analysis of the optimal
control problem introduced above, namely, to minimize (1.3) subject to (1.2). We also
provide some numerical results that illustrate the theoretical results. We remark that
there are few optimal control studies in the literature for interacting species involving
space and time (e.g., [1, 2, 3, 8, 13, 24, 26]) or for reaction-diffusion equations applied
in other contexts (e.g., [5, 7, 12, 19, 43]).

2. Mathematical preliminaries.

2.1. Local analysis. We present some details of the local dynamics of the
reaction-diffusion system for the state equations (1.2). This is important for deriving
necessary conditions on the system parameters for the kinetics to possess biologically
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Fig. 2.1. Nullclines for the local kinetics of (1.2) with r = 1, a = b = 20, m = 0.8, g = 10, for
fish predation rates f0 = 0 (limit cycle, no fish), f1 = 0.1 (limit cycle), f2 = 0.25 (limit cycle), and
f3 = 0.4 (phytoplankton dominance).

meaningful equilibria. Furthermore, this acts as a guide in the appropriate choice of
parameters for the numerical simulation of optimal solutions.

The local dynamics can be analyzed by considering the nullclines (“zero-isoclines”)
of this system, which are the solution curves for

v = ψ(u) :=
r

a
(1 − u)(1 + bu),

u = φ(v) :=
g2mv2 + fgv + m

(a− bm)g2v2 − bfgv + a− bm
,(2.1)

corresponding to the first and second equations of (1.2). It is easy to show that
there are saddle points at (0, 0) and (0, 1), and a stationary point (us, vs) (stable or
unstable) corresponding to the coexistence of phytoplankton and zooplankton. Note
that for positive us and vs we must have

(2.2) m <
a

1 + b
,

which follows from the restriction 0 < us < 1. The nullclines are illustrated in
Figure 2.1 for a specific parameter set and increasing predation rate. With no fish
present, or a low fish predation rate, there is a limit cycle in the reaction kinetics
surrounding the unstable stationary point, while at higher predation rates the system
is dominated by a phytoplankton-only state [33, 39]. In general there are no closed
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form expressions for us and vs and consequently the analysis must be done numeri-
cally in each case. However, in the special case with no fish present, the analysis is
straightforward and is briefly outlined below.

With f = 0 the intersection of the nullclines v = ψ(u) and u = φ(v) in (2.1)
intersect at (us, vs), where

(2.3) us =
m

a− bm
, vs =

r

a
(1 − us)(1 + bus).

To find conditions that guarantee limit cycle kinetics in the positive quadrant of phase
space we first prove the existence of a positively invariant region in the sense of [47,
Definition 1.1.4] that contains (us, vs), and then apply standard theory of dynamical
systems. We claim that the trapezoidal region Σ ∈ [0,∞)2 defined by

(2.4) Σ :=

{
(u, v) : u ≤ l, v − l

m
(r + m) + u ≤ 0, u ≥ 0, v ≥ 0

}
, l > 1,

is positively invariant. To see this, first observe that the reaction kinetics do not point
out of Σ along u = 0, v = 0, and u = l. To show that this is also true along the line
v = l

m (r + m) − u, set G(u, v) := v − l
m (r + m) + u and denote the outward normal

to Σ along this line by ∇G := (∂G/∂u, ∂G/∂v)T = (1, 1)T . Then denoting the vector

of reaction kinetics by f̂ = (f̂ , ĝ)T , observe that

∇G · f̂ |v= l
m (r+m)−u ≤ (r + m)(u− l) ≤ 0,

which proves the assertion. We derive a simple condition that ensures the critical
point given by (2.3) is either an unstable node or an unstable focus, and thus by the
Poincaré–Bendixson theorem [47, Theorem 1.1.19] there exists a limit cycle solution
surrounding this point. Define

A :=

(
f̂u f̂v
ĝu ĝv

) ∣∣∣
(us,vs)

;

direct calculation then leads to

trA := mr

[
(b + 1)

a
− 2

(a− bm)

]
, |A| =

mr

a
[a− (b + 1)m] .

Now from (2.2) we have |A| > 0, and with the condition

(2.5) m <
a(b− 1)

b(b + 1)
,

it also follows that trA > 0. Thus if (2.5) is satisfied, then the critical point (us, vs)
is an unstable node or focus (e.g., [46, p. 107]), as required. Thus, to summarize, in
the special case with f = 0, if the system parameters satisfy (2.5), then there exists a
limit cycle solution in the positive quadrant of phase space surrounding the unstable
stationary state given by (2.3) (note that condition (2.5) implies condition (2.2)). It
is easy to check that (2.5) is satisfied for the parameter sets in Figure 1.2, and also
for the numerical results of the uncontrolled problem in section 4.
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2.2. Well-posedness of the state equations. We use results from semigroup
theory and the abstract theoretical setup of Morgan [35], which is based on the kinetics
satisfying a Lyapunov-type condition, to infer the global existence and uniqueness of
classical solutions of the state equations (1.2).

Before proving well-posedness of the equations we need to establish the formal
setting and restate the fish-plankton system with appropriate initial and boundary
data. Let Ω be a bounded and open subset of R

d, d ≤ 3, with a boundary ∂Ω of class
C2+s, s > 0, i.e., ∂Ω is a (d − 1)-dimensional C2+ν manifold on which Ω lies locally
on one side. The model problem is formulated as follows:

Find the phytoplankton u(x, t) and zooplankton v(x, t) densities such that

∂u

∂t
= d1Δu + ru(1 − u) − auv

1 + bu
in Q := Ω × (0, T ),(2.6a)

∂v

∂t
= d2Δv +

auv

1 + bu
−mv − f

gv2

1 + g2v2
in Q,(2.6b)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω(2.6c)

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω × (0, T ),(2.6d)

where the parameters a, b, m, and g are real and strictly positive, and ν denotes
the outward normal to ∂Ω. We assume that the control f ≡ f(x, t) is a Lipschitz
continuous function on Q, which we denote by f ∈ Lip(Q), and that the initial data
is bounded, i.e., u0(x), v0(x) ∈ L∞(Ω). It will be convenient to denote the vector of

reaction kinetics by f̂ (u) := (f̂(u), ĝ(u))T , where u := (u, v)T .
Theorem 2.1. Let f ∈ Lip(Q) and u0(x), v0(x) ∈ L∞(Ω). Then there exists

a unique nonnegative classical solution of the fish-plankton system (2.6a)–(2.6d) for
all (x, t) ∈ Ω × [0,∞). Furthermore, if d1 = d2 and the initial data is chosen in
the positively invariant region Σ ∈ [0,∞)2 given by (2.4), then (u, v) ∈ Σ for all
(x, t) ∈ Ω × [0,∞).

Proof. Local existence of solutions is based on well-known semigroup theory
(see, for example, Pazy [37] or Henry [20]). From Proposition 1 in [22] it follows
immediately that (2.6a)–(2.6d) has a unique noncontinuable classical solution (u, v)
for (x, t) ∈ Ω × [0, Tmax). Moreover, if Tmax < ∞, then

(2.7) lim
t↑Tmax

sup
x∈Ω

{|u(x, t)| + |v(x, t)|} = ∞.

To prove the nonnegativity of solutions observe that the reaction kinetics satisfy

f̂(0, v), ĝ(u, 0) ≥ 0 ∀u, v ≥ 0,

and the initial data (u0(x), v0(x)) is in [0,∞)2 for all (or almost every) x ∈ Ω. Thus
by a maximum principle (see, e.g., [42, Lemma 14.20]) the solution (u(x, t), v(x, t))
lies in [0,∞)2 for all x ∈ Ω and for all t > 0 for which the solution of (2.6a)–(2.6d)
exists. In other words [0,∞)2 is positively invariant for the system. Proving global
existence of solutions from local existence in the equal diffusion case is straightforward.
The invariant region yields an L∞ a priori bound [42] which contradicts nonglobal
existence as solutions either exist for all time or blow up in the sup-norm in finite time
(see (2.7)) [4]. The proof of global existence results in the distinct diffusion coefficient
case requires additional theory as the only admissible invariant regions are products
of intervals [42]. We apply the theoretical framework of Morgan [35] to prove global
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existence and uniqueness, which involves verifying “intermediate sum” conditions and
polynomial growth conditions on the kinetics.

We first define a so-called Lyapunov-type function given by

H(u) := h1(u) + h2(v), where h1(u) = u, h2(v) = v.

Then with a11 = a22 = a21 = μ = q = 1, K2 = K4 = K6 = 0, K1 = K5 = r,
K3 = max{r, a/b} the following conditions are easily verified for all u ∈ [0,∞)2,
corresponding to conditions (H1), (H3), (H4)(i), (H5), and (H6) in [35], respectively:

a11h
′

1(u)f̂(u) ≤ K1(H(u))μ + K2,

a21h
′

1(u)f̂(u) + a22h
′

2(v)ĝ(u) ≤ K1(H(u))μ + K2,

h
′

1(u)f̂(u), h
′

2(v)ĝ(u) ≤ K3(H(u))q + K4,

∇H(u) · f̂ (u) ≤ K5H(u) + K6.

Thus Theorems 3.2 and 2.2 in [35] hold, which implies Tmax = ∞, i.e., we have global
existence of nonnegative, classical solutions.

3. The optimal control problem. Let Ω be a bounded, open subset of R
2 with

smooth boundary ∂Ω and let the set of all possible target densities L2
loc(0, T ;L2(Ω))

be denoted by Tad. There are no particular requirements on the target densities
(ū, v̄) other than the fact that the cost functional (1.3) must be bounded. The target
densities need not to be solutions of (2.6a)–(2.6d).

Let Uad be the set of admissible controls

Uad = {f ∈ Lip(Q); 0 ≤ f(x, t) ∀(x, t) ∈ Q}.

Given T > 0, u0, v0 ∈ H1(Ω) ∩ L∞(Ω), and (ū, v̄) ∈ Tad, then (u, v, f) is said to be
an admissible element if u, v ∈ L2(0, T ;H1(Ω)), f ∈ Uad, the functional J(u, v, f) is
bounded, and (u, v, f) satisfies (2.6a)–(2.6d). Let Aad be the set of admissible states
and controls. With this notation, the formulation of the optimal control problem is
given by the following:

(P)
Given T > 0, u0, v0 ∈ H1(Ω) ∩ L∞(Ω), and (ū, v̄) ∈ Tad,
find (u∗, v∗, f∗) ∈ Aad such that J(u∗, v∗, f∗) ≤ J(u, v, f)
∀(u, v, f) ∈ Aad.

Theorem 3.1. Given u0, v0 ∈ H1(Ω) ∩ L∞(Ω) and (ū, v̄) ∈ Tad, there exists a
solution (u∗, v∗, f∗) of the optimal control problem (P).

Proof. The admissible set is bounded and nonempty, e.g., the system (2.6a)–(2.6d)
has a solution for f = 0 (see [14]). Let {(un, vn, fn)}n be a minimizing sequence
in Aad. The sequence {∂fn

∂t } is bounded in L2(0, T ;L2(Ω)), and therefore with a
subsequence, again indexed by n, we have

fn → f∗ weakly in H1([0, T ];L2(Ω)).

On the other hand, from (2.6a)–(2.6b) we have

‖un(t)‖2
L2(Ω) + ‖vn(t)‖2

L2(Ω) +

∫ t

0

(
d1‖∇un(t)‖2

L2(Ω) + d2‖∇vn(t)‖2
L2(Ω)

)
dt ≤ C
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for all t ∈ [0, T ]. Here and in what follows we denote by C a positive constant inde-
pendent of u, v, f , and n. Next we multiply system (2.6a)–(2.6b) by (−Δun,−Δvn)
and integrate over (0, t) to get, after some calculation involving Gronwall’s lemma,

‖∇un(t)‖2
L2(Ω) + ‖∇vn(t)‖2

L2(Ω) +

∫ t

0

(
d1‖Δun(s)‖2

L2(Ω) + d2‖Δvn(s)‖2
L2(Ω)

)
dt ≤ C,∥∥∥∥ d

dt
un(t)

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ d

dt
vn(t)

∥∥∥∥2

L2(Ω)

≤ C ∀t ∈ [0, T ].

Using the classical Lions–Aubin compactness lemma [27] and Ascoli’s theorem [10],
and noting that the injection of H1(Ω) into L2(Ω) is compact, we infer that {un}, {vn}
are compact in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)). Thus selecting further subse-
quences, if necessary, we have

un → u∗, vn → v∗ strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),

un → u∗, vn → v∗ weakly in L2(0, T ;H2(Ω)),

d

dt
un → d

dt
u∗,

d

dt
vn → d

dt
v∗ weakly in L2(0, T ;L2(Ω)).

Moreover we have that

un(1 − un) → u∗(1 − u∗) strongly in L2(0, T ;L2(Ω)),

unvn
1 + bun

→ u∗v∗

1 + bu∗ strongly in L2(0, T ;L2(Ω)),

fn
v2
n

1 + g2v2
n

→ f∗ v∗2

1 + g2v∗2 weakly in L2(0, T ;L2(Ω)).

Letting n go to ∞ we see that (u∗, v∗, f∗) satisfies the system (2.6a)–(2.6d) and
J(u∗, v∗, f∗) = infAad

J .

3.1. First-order necessary conditions. We show that the optimal solution
must satisfy the first-order necessary condition associated with the optimal control
problem (P).

We introduce the tangential (contingent) cone to Aad at (u, v, f) ∈ Aad:

TanAad(u, v, f) =

{
(y, z, h) | y, z ∈ L2(Q), h ∈ TanUad(f) and

∂y

∂t
= d1Δy + ry(1 − 2u) − av

(1 + bu)2
y − au

1 + bu
z in Q,

∂z

∂t
= d2Δz +

av

(1 + bu)2
y +

(
au

1 + bu
−m− 2gvf

(1 + g2v2)2

)
z − gv2h

1 + g2v2
in Q,

∂y

∂ν
=

∂z

∂ν
= 0 on ∂Ω × (0, T ),

y(x, 0) = z(x, 0) = 0 in Ω

}
.

(3.1)

Recall that if

J(u∗, v∗, f∗) = inf
(u,v,f)∈Aad

J(u, v, f)
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and the functional J(u, v, f) is Gâteaux differentiable, then necessarily

(3.2) ∂J(u∗, v∗, f∗)(y, z, h) ≥ 0 ∀(y, z, h) ∈ TanAad(u
∗, v∗, f∗),

where ∂J(u∗, v∗, f∗) denotes the Gâteaux derivative of J at (u∗, v∗, f∗) ∈ Aad. Ap-
plying the optimum principle given by (3.2), it follows that
(3.3)∫

Q

[
(u∗ − ū)y + (v∗ − v̄)z + α

∂f∗

∂t

∂h

∂t

]
dxdt ≥ 0 ∀(y, z, h) ∈ TanAad(u

∗, v∗, f∗).

Theorem 3.2. Let u0, v0 ∈ H1(Ω) ∩ L∞(Ω). The mapping (u, v) = (u(f), v(f))
from Uad to L2(0, T ;H1(Ω)), defined as the solution of the system (2.6a)–(2.6d), has a
Gâteaux derivative (D(u, v)/Df) · h in every direction h ∈ TanUad(f). Furthermore,
(y(h), z(h)) = (D(u, v)/Df) · h is the classical solution of problem (3.1).

Proof. Let h ∈ Lip(Q) be such that f + λh ∈ Uad for all λ ∈ R sufficiently small
and let (uf , vf ) and (uf+λh, vf+λh) denote the solutions of (2.6a)–(2.6d) with fish
predation rates f and f + λh, respectively. To simplify the notation in this proof we
use ‖ · ‖ to denote ‖ · ‖L2(Ω).

We need to prove that

lim
λ→0

1

λ

{
‖uf+λh − uf − λy(h)‖L2(0,T ;H1(Ω)) + ‖vf+λh − vf − λz(h)‖L2(0,T ;H1(Ω))

}
= 0.

We set ũ = uf+λh − uf − λy(h), ṽ = vf+λh − vf − λz(h) so that (ũ, ṽ) satisfies the
system

∂ũ

∂t
= d1Δũ + rũ− rΛ1 − aΛ2 in Q,(3.4a)

∂ṽ

∂t
= d2Δṽ + aΛ2 −mṽ − gΛ3 in Q,(3.4b)

∂ũ

∂ν
=

∂ṽ

∂ν
= 0 on ∂Ω × (0, T ),(3.4c)

ũ(x, 0) = ṽ(x, 0) = 0 in Ω,(3.4d)

where

Λ1 = u2
f+λh − u2

f − 2λyuf , Λ2 =
uf+λhvf+λh

1 + buf+λh
− ufvf

1 + buf
− λ

vfy

(1 + buf )2
− λ

ufz

1 + buf
,

Λ3 = (f + λh)
v2
f+λh

1 + g2v2
f+λh

− f
v2
f

1 + g2v2
f

− λ
2vff

(1 + g2v2
f )2

z − λ
v2
fh

1 + g2v2
f

.

Now we multiply (3.4a)–(3.4b) by ũ and ṽ, respectively, and get

d

dt

(
‖ũ‖2 + ‖ṽ‖2

)
+
(
‖∇ũ‖2 + ‖∇ṽ‖2

)
≤ C

(
‖ũ‖2 + ‖ṽ‖2 + ‖Λ1‖2 + ‖Λ2‖2 + ‖Λ3‖2

)
.

We denote û = uf+λh−uf , v̂ = vf+λh−vf and use the fact that (uf , vf ) is a classical
solution to (2.6a)–(2.6d), yielding∫

Ω

Λ2
1 dx =

∫
Ω

(
û2 + 2uf ũ

)2
dx ≤ 2‖û‖4

L4(Ω) + C‖ũ‖2,∫
Ω

Λ2
2 dx ≤ C

∫
Ω

(
û4 + v̂4 + ũ2 + ṽ2

)
dx,∫

Ω

Λ2
3 dx ≤ C

∫
Ω

(
v̂4 + v̂6 + ṽ2 + λ2h2v̂2

)
dx ≤ C

∫
Ω

(
v̂4 + ṽ2 + λ4

)
dx.
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Hence from the above estimates and the Gronwall inequality, this leads to

‖ũ(t)‖2 + ‖ṽ(t)‖2 +

∫ T

0

(
‖∇ũ(s)‖2 + ‖∇ṽ(s)‖2

)
ds

≤ C

(
λ4 +

∫ T

0

(‖û‖2‖û‖2
H1(Ω) + ‖v̂‖2‖v̂‖2

H1(Ω)) dt

)
∀t ∈ [0, T ].

To estimate the norm of û, v̂ in L2(0, T ;H1(Ω)) we note that

∂û

∂t
= d1Δû + rû− rû(û + 2uf ) − a

(
v̂(û + uf )

1 + b(û + uf )
− ûvf

(1 + buf )[1 + b(û + uf )]

)
,

∂v̂

∂t
= d2Δv̂ + a

(
v̂(û + uf )

1 + b(û + uf )
− ûvf

(1 + buf )[1 + b(û + uf )]

)
−mv̂

+ g

(
f

v̂(v̂ + 2vf )

(1 + g2v2
f )(1 + g2(v̂ + vf )2)

+ λh
(v̂ + vf )2

1 + g2(v̂ + vf )2

)
,

∂û

∂ν
=

∂v̂

∂ν
= 0 on ∂Ω × (0, T ),

û(x, 0) = v̂(x, 0) = 0 in Ω.

We then easily obtain

‖û(t)‖2 + ‖v̂(t)‖2 +

∫ t

0

(
‖∇û(s)‖2 + ‖∇v̂(s)‖2

)
ds ≤ Cλ2

∫ t

0

‖h(s)‖2ds ∀t ∈ [0, T ].

From the last two results we obtain the estimate∫ T

0

(
‖ũ‖2

H1(Ω) + ‖ṽ‖2
H1(Ω)

)
dt ≤ Cλ4,

from which our claim follows. The proof of the regularity of y and z is similar to the
proof of Theorem 2.1.

The Gâteaux derivative gives useful information about the sensitivity of the sys-
tem (2.6a)–(2.6d) at a particular point (u, v) in a particular direction h, but complete
information requires the solution of (3.1) for every direction h. Fortunately, in order
to minimize the functional we need only an integral over all these directions, which
can be obtained by solving a single adjoint equation.

Theorem 3.3. Let u0, v0 ∈ H1(Ω) ∩ L∞(Ω) and (ū, v̄) ∈ Tad be given. If
(u∗, v∗, f∗) is an optimal solution for (P), then we have

(3.5)

∫
Q

(
gv∗2k

1 + g2v∗2 (f − f∗) + α
∂f∗

∂t

(
∂f

∂t
− ∂f∗

∂t

))
dxdt ≥ 0 ∀f ∈ Uad,

where (p, k) is the unique classical solution of the adjoint equation

∂p

∂t
+ d1Δp + rp(1 − 2u∗) − a

v∗

(1 + bu∗)2
p + a

v∗

(1 + bu∗)2
k = u∗ − ū in Q,

(3.6a)

∂k

∂t
+ d2Δk + a

u∗

1 + bu∗ k −mk − 2
gf∗v∗

(1 + g2v∗2)2
k − a

u∗

1 + bu∗ p = v∗ − v̄ in Q,

∂p

∂ν
=

∂k

∂ν
= 0 on ∂Ω × (0, T ),
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p(x, T ) = k(x, T ) = 0 in Ω.
(3.6b)

Proof. Let (u∗, v∗, f∗) be an optimal solution. From the optimality condition
(3.3) and (3.1) and from (3.6a)–(3.6b), we have after integration by parts

0 ≤
∫
Q

[
(u∗ − ū)y + (v∗ − v̄)z + α

∂f∗

∂t

∂h

∂t

]
dxdt

=

∫
Q

{
y

[
∂p

∂t
+ d1Δp + rp(1 − 2u∗) − a

v∗

(1 + bu∗)2
p + a

v∗

(1 + bu∗)2
k

]
+z

(
∂k

∂t
+ d2Δk + a

u∗

1 + bu∗ k −mk − 2gf∗v∗

(1 + g2v∗2)2
k − a

pu∗

1 + bu∗

)
+ α

∂f∗

∂t

∂h

∂t

}
dxdt

=

∫
Q

p

[
−∂y

∂t
+ d1Δy + ry(1 − 2u∗) − a

v∗

(1 + bu∗)2
y − a

u∗

1 + bu∗ z

]
dxdt +

∫
Ω

yp
∣∣∣T
0
dx

+

∫
Q

k

[
−∂z

∂t
+ d2Δz − 2gf∗v∗

(1 + g2v∗2)2
z + a

u∗

1 + bu∗ z −mz + a
v∗

(1 + bu∗)2
y

]
dxdt

+

∫
Ω

zk
∣∣∣T
0
dx + α

∫
Ω

∂f∗

∂t

∂h

∂t
dxdt

=

∫
Q

k
gv∗2

1 + g2v∗2h dxdt + α

∫
Ω

∂f∗

∂t

∂h

∂t
dxdt,

and therefore (3.5).

4. Numerical results. To illustrate the theoretical results of the optimal con-
trol problem in the previous section we present results of numerical experiments in
two space dimensions. The state equations and adjoint equations were solved using
a “lumped mass,” semi-implicit (in time) Galerkin finite element method with piece-
wise linear continuous basis functions. We showed previously that this approach was
highly effective in solving the forward-in-time equations of a similar predator-prey
system [15].

The control was updated using a variable-step gradient algorithm based on the
fully discrete optimality condition (see (4.4) below). At each iteration of the gradient
algorithm the method requires the sequential solution of the discrete state and adjoint
equations (see (4.1) and (4.3) below). In practice one cannot solve these systems
simultaneously. The discrete state equations are solved by marching forward in time
starting from an initial condition, while the discrete adjoint equations are solved by
marching backward in time (from T ) starting from a terminal condition. For further
details, see [16].

We employed a (uniform) right-angled triangulation Ωh of the square Ω = [0, L]×
[0, L], with space steps h, and numerically solved the optimal control problem up to
time T with uniform time steps Δt. We introduce Sh, the standard finite element
space

Sh := {v ∈ C(Ω) : v|τ is linear ∀τ ∈ Ωh} ⊂ H1(Ω).

Let {xi}Ji=0 be the set of nodes of the triangulation. We introduce πh : C(Ω) → Sh,
the Lagrange interpolation operator, such that πhv(xj) = v(xj) for all j = 0, . . . , J .
In order to formulate our finite element approximation of the reaction-diffusion system
we define a discrete L2 inner product on C(Ω) given by (u, v)h :=

∫
Ω
πh(u(x)v(x)) dx,
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which approximates the usual L2 inner product (u, v). Given fh ∈ Lip(Ω) and u0, v0 ∈
H1(Ω) ∩ L∞(Ω), (uh,vh) is a solution of the fully discrete, semi-implicit (in time)

fish-plankton system if u
(n)
h , v

(n)
h ∈ Sh satisfies the system

1

Δt

(
u

(n)
h − u

(n−1)
h , χh

)h

+ d1

(
∇u

(n)
h ,∇χh

)
=

(
ru

(n)
h (1−|u(n−1)

h |) − au
(n−1)
h v

(n)
h

1 + b|u(n−1)
h |

, χh

)h

,

(4.1)
1

Δt

(
v
(n)
h − v

(n−1)
h , χh

)h

+ d2

(
∇v

(n)
h ,∇χh

)
=

(
au

(n−1)
h v

(n)
h

1 + b|u(n−1)
h |

−mv
(n)
h − gf

(n)
h v

(n−1)
h

2

1 + g2v
(n−1)
h

2
, χh

)h

for all χh ∈ Sh, n = 1, 2, . . . , N , with initial densities u
(0)
h = πhu0(x), v

(0)
h = πhv0(x).

The discrete cost functional used in the optimal control problem is given by
(4.2)

JN
h (uh,vh, fh)=

Δt

2

N∑
n=1

(
‖u(n)

h − ū(n)‖2+ ‖v(n)
h − v̄(n)‖2

)
+

α

2Δt

N∑
n=1

‖f (n)
h − f

(n−1)
h ‖2.

Thus we can now formulate the fully discrete optimal control problem as follows:

(Ph,Δt)

Given Δt = T/N , h = L/J , u0, v0 ∈ H1(Ω) ∩ L∞(Ω)
and (ū, v̄) ∈ Tad, find (uh,vh, fh) ∈ Sh × Sh × Sh such
that (4.1) is satisfied for n = 1, 2, . . . , N and the cost
functional (4.2) is minimized.

To complete the fully discrete optimality system we also need the following fully

discrete adjoint system: The adjoint functions p
(n)
h , k

(n)
h ∈ Sh satisfy

− 1

Δt

(
p
(n)
h − p

(n−1)
h , χh

)h

+ d1

(
∇p

(n−1)
h ,∇χh

)(4.3)

=

(
r(1 − 2|u(n)

h |)p(n−1)
h − a

v
(n)
h

(1+b|u(n)
h |2)2

p
(n−1)
h + a

v
(n)
h

1+b|u(n)
h |2

k
(n−1)
h − u

(n)
h − ū(n), χh

)h

− 1

Δt

(
k

(n)
h − k

(n−1)
h , χh

)h

+ d2

(
∇k

(n−1)
h ,∇χh

)
=

(
a

u
(n)
h

1+b|u(n)
h |2

p
(n−1)
h + a

u
(n)
h

1+b|u(n)
h |2

k
(n−1)
h −mk

(n−1)
h − gf

(n)
h

2v
(n)
h

1+g2v
(n)
h

2
− v

(n)
h − v̄(n), χh

)h

for all χh ∈ Sh, n = 1, 2, . . . , N , with the terminal conditions p
(N)
h = k

(N)
h = 0. The

fully discrete optimality condition is

0 ≤ Δt

N−1∑
n=1

(
f̃

(n)
h , g

v
(n)
h

2

1 + g2v
(n)
h

2
k

(n−1)
h − α

f
(n+1)
h − 2f

(n)
h + f

(n−1)
h

Δt

)(4.4)

− α

Δt

(
f̃

(0)
h , f

(1)
h − f

(0)
h

)
+

(
f̃

(n)
h ,Δtg

v
(N)
h

2

1 + g2v
(N)
h

2
k

(n−1)
h + α

f
(N)
h − f

(N−1)
h

Δt

)
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(a) (b)

(c) (d)

Fig. 4.1. Uncontrolled (a), optimally controlled (b), target (c), and the control f (d) for
phytoplankton densities u at time T = 100 for (1.2). Parameter values: d1 = d2 = 0.05, r = 1,
a = b = 20, m = 0.8, g = 10, α = 10−5. For details of initial data, see text.

for all f̃h ∈ TanUad(fh).
In the numerical experiments we chose the domain Ω = [0, 100] × [0, 100] and

initial conditions of the optimal control problem to be the freely evolving (f = 0)
system (1.2) at time t = 1000, with parameter values and initial data corresponding
to Figure 1.2(b) (see caption). The target functions are one-armed Archimedean
spirals with period of rotation equal to 20 and are given by

ū(R, θ, t) = 0.495 cos(θ + R/12 + πt/10) + 0.495,

v̄(R, θ, t) = 0.21 sin(θ + R/12 + πt/10) + 0.22,

where R :=
√

(x− 50)2 + (y − 50)2 and θ := arctan[(y−50)/(x−50)]. The numerical
results for the optimal control of phytoplankton densities u are shown in Figure 4.1
at time T = 100. A plot of the reduction in cost functional with increasing iteration
count suggests the near optimality of the system (see [16]). The results show that at
time T = 100 the controlled system is close to the desired state, and that we were
successful in driving the system from a disordered state to an ordered one.

5. Conclusions. The mathematical formulation, analysis, and numerical solu-
tion of an optimal control problem for a nonlinear plankton-fish reaction-diffusion
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system was presented. The model was discussed in the context of biomanipulation
of eutrophic lakes. After considering the local dynamics of the system and proving
the global existence and uniqueness of the classical solutions of the state equations,
we presented the mathematical analysis of the plankton-fish optimal control prob-
lem. Numerical solutions were obtained with the aid of a semi-implicit Galerkin
finite element method with piecewise linear continuous basis functions. The numer-
ical results illustrate the ability of a variable step-size gradient algorithm to drive
the plankton dynamics from a chaotic regime to an (arbitrary) ordered state. The
time taken to achieve the ordered distribution of phytoplankton in nondimensional
units was t = 100, which with an assumed maximum growth rate for phytoplankton
in eutrophic conditions of R0 = 0.5 per day [39] gives the time taken to achieve this
state to be τ = 200 days. The theoretical results in this paper provide the basis for
a numerical analysis of the optimal control problem [16]. Furthermore, our results
can be generalized in numerous ways to include, for example, convection driven flows,
forcing via nutrient inputs, and stochastic influences. We leave these tasks for future
work.
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Abstract. A new approach to the numerical solution of optimal control problems including
control and state constraints is presented. Like hybrid methods, the approach aims at combining
the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is
directly based on interior point concepts in function space—realized via an adaptive multilevel scheme
applied to the complementarity formulation and numerical continuation along the central path. An
adaptive stepsize control with respect to the duality gap parameter is worked out in the framework
of affine invariant inexact Newton methods. Finally, the performance of our new type of algorithm
is documented by a simple example within the range of our present theory, and by the successful
treatment of the well-known intricate windshear problem outside this range.
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1. Introduction. In the last decade, the numerical solution of optimal control
problems has reached a high level of sophistication. Present methods are able to treat
important classes of large-scale real-life problems in science and engineering. Two
types of method are in common use:

• direct methods, mostly based on some robust collocation including an ad hoc
parametrization of the controls (see Bock and Plitt [8] or, for more recent
publications, the nice survey paper by Hager [23] or his more specialized
work on a Runge–Kutta approach [22]);

• indirect methods, typically based on either multiple shooting techniques (see
Bulirsch [9], Stoer and Bulirsch [34], Deuflhard [16, 17], and Bock [7]) or
adaptive collocation methods (see Ascher, Christiansen, and Russell [2], As-
cher and Bader [4], and Ascher, Mattheij, and Russell [3]).

Whenever the necessary Euler–Lagrange conditions give a sufficient description of the
problem, then indirect methods lead to a provably optimal solution [9]. However, they
require rather detailed a priori knowledge about the sequence of optimal subtrajecto-
ries and a significant amount of problem-specific analytical preparation. In contrast to
that, direct methods may dispense of this severe constraint, but they have a tendency
to lead to nonoptimal solutions now and then. For this reason, hybrid methods seem
to be the state of the art (see von Stryk and Bulirsch [39] and Bulirsch et al. [12]):
in a first step, some direct method, wherein the control variables are parameterized
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ad hoc, supplies a rough idea about the optimal subarc sequence; then, in the second
step, an indirect method is employed to finally solve the problem to high accuracy.

The present paper advocates a unified function space approach realizing ideas of
both direct and indirect methods in infinite dimension rather than in finite dimen-
sion—as opposed to the above hybrid methods. There are several possibilities of
such an extension. In a recent monograph Pytlak [32] proposed an approach that he
claims is a function space approach. However, in our wording above, that approach
is of the “robust collocation” type, leaving a considerable gap between the presented
theory and the rather heuristic algorithmic realization. A genuine function space
SQP method has been analyzed by Alt and Malanowski [1]. The solution of the
infinite-dimensional QP subproblems, however, is not addressed.

The present paper advocates a function space interior point (IP) approach realized
as a nested reduction of mesh size and duality gap parameter. The simultaneous
progress in mesh refinement and duality gap reduction eliminates the need for warm
start capabilities, which IP methods are lacking. The extension of IP-type methods
from finite to infinite dimension is not at all straightforward: after all, the concept
of logarithmic barrier functions is no longer useful in the infinite-dimensional setting
(cf. Jarre [26]). A first attempt in this direction has been made by Ito, Kelley, and
Sachs [25] in 1995. An approach closer to our present suggestion, and, in fact, in the
same spirit, was recently published by M. Ulbrich and S. Ulbrich in [36] as well as
with coauthor Heinkenschloss in [37].

The present paper is based on the complementarity version of IP methods, in-
cluding the central path concept, which carries over naturally to infinite dimension. In
the opinion of the authors, forged in a PDE environment, a function space–oriented
approach is a convenient means to exploit similarity of the solution on different dis-
cretization levels. In particular, it allows for a natural use of adaptive multilevel
methods—a technique well established in PDE applications. Compared with the in-
direct methods, the benefit of such an approach is the avoidance of human preparatory
work, as opposed to the PDE aspect, where typically a fast solution is the focus. Com-
pared with the direct methods, adaptive multilevel techniques establish appropriate
grids using a posteriori error estimates. Of course, mixtures of tools are possible
and have been worked out, e.g., by Schulz [33]. It seems worth mentioning that the
method we suggest herein differs clearly from his finite-dimensional multigrid tech-
niques, where the adaptive refinement of the control variables is done in the outer loop,
as opposed to our infinite-dimensional technique, where the refinement is performed
in the innermost loop. Recent suggestions by Ulbrich [35] concerning a semismooth
Newton method represent a true alternative to our method as suggested below. In
certain situations, this method is equivalent to a primal-dual active set strategy. A
comparison of these methods with IP methods in a finite-dimensional setting has been
published by Bergounioux et al. [5].

The paper is organized as follows. In section 2, we motivate the central path in
function space as the mathematical concept. In section 3, details of an algorithm based
on this concept are worked out. The basic scheme is an adaptive Newton-continuation
method along the central path, realized as an inexact continuation method (predic-
tor) with an inexact Newton method (corrector). Affine invariant norms are used
to control the iteration process towards the numerical solution (see Volkwein and
Weiser [38], Potra [31], or the research monograph by Deuflhard [18]). Our computa-
tional approach actually exploits function space via an adaptive multilevel refinement
of all variables, including the controls. Its present realization is done within the set-
ting of collocation methods. An adaptive stepsize control along the central path is
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worked out as the infinite-dimensional extension of finite-dimensional suggestions due
to Deuflhard [17]. An intriguing feature of our suggested algorithm is that it requires
only the solution of linear operator equations in each step. In section 4, we give
two numerical examples, a first one, which is covered by our theoretical frame, and
a second one, which exceeds this frame. The second one is a well-known intricate
optimal control problem, the abort landing in the presence of windshear (cf. Miele
et al. [30] and Bulirsch, Montrone, and Pesch [10, 11]). Even though our approach
does not need any cumbersome analytic preparation, our numerical results are in full
agreement with those obtained by multiple shooting [11].

2. Central path continuation in function space. On the time interval Ω =
[0, 1] we consider the optimal control problem

(2.1) minJ(x) subject to c(x) = 0 a.e.,

r(x) = 0,

g(x) ≥ 0 a.e.

with a partitioning of the variable x = (u, y) ∈ X = Lnu
∞ (Ω)×(W 1

∞)ny (Ω) into controls
and states, a Lagrange-type cost functional

J(x) =

∫ 1

0

f̃(x(t)) dt ,

ODEs with boundary conditions

c(x) =

[
c̄(x)

y(0) − y0

]
, c̄(x)(t) = c̃(x(t)) − ẏ(t) ,

r(x) = r̃(y(1))

as equality constraints, and pointwise state and control constraints

g(x)(t) =

[
g̃u(u(t))
g̃y(y(t))

]
.

For the whole paper we will restrict the discussion to the fixed time interval Ω and
hence simplify the notation by omitting it from the function spaces. We assume all the
functions f̃ : R

nu × R
ny → R, c̃ : R

nu × R
ny → R

ny , r̃ : R
ny → R

nr , g̃u : R
nu → R

nu
η ,

and g̃y : R
ny → R

ny
η to be twice Lipschitz continuously differentiable on arbitrary

bounded sets. This implies that also J : X → R, c : X → L
ny
∞ × R

ny , r : X → R
nr ,

and g : X → L
nu
η

∞ × (W 1
∞)n

y
η are twice Lipschitz continuously differentiable (see [40]).

The inequality constraints can also be written as g(x) ∈ K, where K = {z ∈
L
nu
η

∞ × (W 1
∞)n

y
η : z(t) ≥ 0 a.e.} is the closed convex cone of nonnegative functions. Its

dual cone is given by K+ = {ζ ∈ (L
nu
η

∞ × (W 1
∞)n

y
η )∗ : 〈ζ, z〉 ≥ 0 for all z ∈ K}.

Note that state constrained problems (i.e., ny
η > 0) in general are notoriously dif-

ficult to solve, and that both analysis and numerics are usually much more demanding
than for control constrained problems (ny

η = 0). This extends to this article, where
most of the theoretical results are valid only for control problems. State constrained
problems are nevertheless included in the setting as far as possible because numerical
experience suggests that the algorithm presented here performs reasonably well for
such problems.
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Fig. 2.1. Zero level sets of the smoothed complementarity function (2.8) for μ ∈ {1, 1/4, 1/16}.

The aim of the IP method presented here is to approximate Kuhn–Tucker points
x∗. These are feasible points characterized by the existence of Lagrange multipliers
λc ∈ (Lny

∞ )∗ × R
ny , λr ∈ R

nr , and η ∈ K+, such that the following conditions are
satisfied:

J ′(x∗) − c′(x∗)
∗λc − r′(x∗)

∗λr − g′(x∗)
∗η = 0 ∈ X∗,(2.2)

c(x∗) = 0 , r(x∗) = 0,

g(x∗) ≥ 0 , η ≥ 0 , 〈η, g(x∗)〉 = 0.(2.3)

Under certain assumptions (see, e.g., [28, 29]) these conditions are necessary for x∗ to
be a local solution of (2.1), such that Kuhn–Tucker points are promising candidates
for solutions of (2.1).

If g(x∗) and η are sufficiently smooth, condition (2.3) is equivalent to pointwise
complementarity in the sense that

(2.4) η(t)g(x)(t) = 0, η(t) ≥ 0, g(x)(t) ≥ 0 for almost all t ∈ Ω.

Informally, the idea of interior point methods is to replace the unwieldy complemen-
tarity condition (2.4) with a relaxed substitute condition of the type

(2.5) η(t)g(x)(t) = μ for μ > 0 ,

where μ is the duality gap parameter. μ may also be interpreted as a regularization
parameter (see Figure 2.1) or a barrier parameter in the primal IP formulation. The
connection between (2.4) and (2.5) is via a homotopy with respect to μ, the central
path. Since (2.5) allows solutions with g and η both positive as well as g and η both
negative, the additional feasibility condition

(2.6) η(t) ≥ 0, g(x)(t) ≥ 0

has to be satisfied, such that the central path is well-defined. For μ → 0 we arrive at
the condition (2.4)—see Figure 2.1.

Replacing condition (2.4) with a condition of the type

(2.7) Ψ(g(x), η;μ) = 0 for μ > 0,
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where the feasibility of the central path is guaranteed by the construction of Ψ, leads
to so-called complementarity methods. Thus, infeasible intermediate iterates can be
accepted—a feature which increases the overall robustness of the method. Throughout
the paper we specify Ψ to be defined by pointwise application Ψ(g(x), η;μ)(t) =
ψ(g(x)(t), η(t);μ) of the Fischer–Burmeister function [21]

(2.8) ψ(a, b;μ) = a + b−
√
a2 + b2 + 2μ ,

the zero level set of which is characterized by the IP conditions (2.5) and (2.6).
Different complementarity functions are studied, e.g., in [13, 14, 15, 27].

For ease of writing, we introduce the extended variables v = (x, λc, λr, η). Defin-
ing the Lagrangian as

L(v) = J(x) − 〈λc, c(x)〉 − λT
r r(x) − 〈η, g(x)〉,

the adjoint equation (2.2) can be written as ∂xL(x, λc, λr, η) = 0. Relaxing the
necessary conditions (2.2)–(2.3) by (2.7), we arrive at the formulation

(2.9) F (v;μ) =

⎡⎢⎢⎣
∂xL(x, λc, λr, η)

−c(x)
−r(x)

Ψ(g(x), η;μ)

⎤⎥⎥⎦ = 0

defining the central path v(μ). This formulation will actually be treated numerically
by a continuation method. In order to justify this approach, we have to establish
the existence of the central path in appropriate function spaces and to study under
which conditions convergence to a KKT point can be shown. This is the topic of the
following two subsections.

Notation. Some variables and operators are constructed such that they have
a natural block partitioning corresponding to the components u and y of x. The
individual blocks are denoted by the corresponding component as a superscript, e.g.,

g(x) =

[
gu(u)
gy(y)

]
and Ψ(g(x), η) =

[
Ψu(gu(u), ηu)
Ψy(gy(y), ηy)

]
.

2.1. Existence of the central path. Existence of the central path can be
shown by using the implicit function theorem. For this to be applicable to (2.9),
however, F has to be continuously Fréchet-differentiable. For both the IP condition
(2.5) and the complementarity condition (2.7) to be well-defined and continuously
differentiable, the multiplier η has to be sufficiently regular, i.e., η ∈ L∞. This is
not covered by the necessary conditions (2.3) stating only η ∈ K+, and, in general,
does not hold for the solution η∗. In the presence of state constraints, their Lagrange
multipliers usually contain Dirac distributions at touch points and boundary points
of state constrained subarcs.

During the homotopy, however, i.e., for μ > 0, the multipliers are indeed con-
tained in L∞. In [42], existence of the central path and boundedness of the Lagrange
multipliers η(μ) ∈ L∞ × L∞ ⊂ (L∞ × W 1

∞)∗ associated with central path solutions
x(μ) is shown for μ > 0; see Theorem 2.1.

As it turns out, the appropriate setting to show existence of the central path is
to consider F mapping

V × R+ = (Lnu
∞ × (W 1

∞)ny ) × (Rny × Lny
∞ ) × R

nr × (L
nu
η

∞ × L
ny
η

∞ ) × R+
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into

Z = (Lnu
1 × (W 1

1 )ny )∗ × (Rny × Lny
∞ ) × R

nr × (L
nu
η

∞ × L
ny
η

∞ ) .

The following theorem has been compiled from Theorems 3.3 and 3.4 given in [42]. It
proves that the homotopy can be performed for μ > 0 in this setting.

Theorem 2.1. Suppose there are an open bounded set D ⊂ V and v0 ∈ D and
μ0 > 0 with F (v0;μ0) = 0. Assume there are constants β > 0 and α > 0, such that
the following conditions hold uniformly for all v = (x, λc, λr, η) ∈ D and 0 < μ ≤ μ0.

1. The state equation satisfies the following inf-sup condition:

inf
ξ∈Rnr

sup
δu∈Lnu

1

ξT∂yr(x)∂yc(x)−1∂uc(x)δu

|ξ| ‖δu‖Lnu
1

≥ β.

2. A strengthened Legendre–Clebsch-type condition holds:

ξTMu(t)ξ ≥ α|ξ|2

for all ξ ∈ R
nu and almost all t ∈ Ω. Here,

Mu(t) := ∂2
uf̃(x(t)) − ∂2

uc̃(x(t))Tλc(t) − (g̃u)′′(u(t))T ηu(t)

+ (g̃u)′(u(t))T∂ηψ(g̃u(u(t)), ηu(t);μ)−1∂gψ(g̃u(u(t)), ηu(t);μ)(g̃u)′(u(t)) .

3. The augmented second derivative of the Lagrangian is positive definite on the
nullspace of the state equation:

〈ξ, (∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x))ξ〉 ≥ α‖ξ‖2

Lnu
2 ×(W 1

2 )ny

for all ξ ∈ ker c′(x).
Then there exist a maximal open interval I ⊂ R+ around μ0 and a continuously
differentiable central path v : Iμ → D with the following properties:

1. v(μ0) = v0.
2. F (v(μ);μ) = 0 for all μ ∈ Iμ.
3. dist(v(Iμ), ∂D) = 0 or inf Iμ = 0 holds.

In the presence of state constraints, the associated multipliers ηy may rapidly
increase in order to approximate Dirac distributions occurring in the solution ηy∗.
Therefore, convergence of v(μ) to a KKT point cannot be expected in the setting of
Theorem 2.1. This is reflected by massive grid refinements in the vicinity of criti-
cal points and numerical difficulties for very small μ when η(μ) approximates Dirac
measures. Nevertheless, numerical experience suggests that convergence may actually
occur in a weaker norm.

In contrast, proving convergence to a KKT point requires stronger assumptions
and in particular the more restricted setting of control constrained problems. This is
addressed in section 2.2 below.

2.2. Convergence for control constrained problems. In order to prove con-
vergence of v(μ) to a KKT point, we need at least to bound ηy(μ) in L∞ and therefore
restrict our attention to the control constrained case ny

η = 0. Moreover, proving con-
vergence needs a more subtle setup than Theorem 2.1. We therefore introduce the
notion of nearly active sets.
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Definition 2.2. For some ρ > 0 and functions u ∈ Lnu
∞ and η ∈ L

nu
η

∞ (Ω),
define the characteristic function χA = χA(t;u, η, μ) of the nearly active set vector
ΩA componentwise as

χA
i (t) =

{
1, g̃ui (ui(t)) ≤ ρηui (t),

0, otherwise.

The corresponding characteristic function χI of the nearly inactive set vector ΩI is

defined as 1 − χA, where 1 ∈ L
nu
η

∞ is the constant function with value 1.
Compared to Theorem 2.1 above, the strengthened Legendre–Clebsch-type con-

dition is only required to hold on a smaller subspace, but the inf-sup condition needs
to hold on a larger one. The difference is just the nearly active set. The following
theorem is compiled from [42, Thms. 3.6, 3.8, 3.10].

Theorem 2.3. Suppose ny
η = 0, i.e., there are no state constraints. Assume that

the following conditions are satisfied.
1. The feasible region Du := {u ∈ Lnu

∞ : g(u) ≥ 0} is bounded.
2. The state contribution function in the state equation is linearly bounded:

|c̃(u, y)| ≤ const(1 + |u|p + |y|) for all (u, y) ∈ R
nu × R

ny .

Then there is a bounded set Dy ⊂ (W 1
∞)ny such that for all μ > 0 every solution v of

F (v;μ) = 0 satisfies u ∈ Du and y ∈ Dy.
If, in addition, there is a constant β > 0 and some μ0 > 0 such that the equality

constraints and nearly active control constraints satisfy the inf-sup condition

(2.10) inf
h∈Rnr ,ξ∈L

nu
η

p

sup
δu∈Lnu

q

hT∂yr(x)∂yc(x)−1∂uc(x)δu + 〈χAξ, g′(u)δu〉
(|h| + ‖χAξ‖

L
nu
η

p

) ‖δu‖Lnu
q

≥ β

with (p, q) = (∞, 1) and (p, q) = (2, 2) uniformly for central path solutions v with
x ∈ Du × Dy and μ ≤ μ0, then there is a bounded set D0 ⊂ V such that v ∈ D0.
Define D =

⋃
v∈D0

S(v, ε) for some ε > 0, where S(v, ε) is the open ball around v with
radius ε.

Suppose there is a constant α > 0, such that the following conditions hold uni-
formly for all central path solutions v = v(μ) ∈ D with F (v(μ);μ) = 0 and 0 < μ ≤ μ0.

3. The augmented second derivative of the Lagrangian,

M = ∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x) ,

satisfies the following positivity conditions:

〈ξ,Mξ〉 ≥ α‖ξ‖2
Lnu

2 ×(W 1
2 )ny for ξ ∈ ker c′(x) ∩ kerχAg′(u),

〈ξ,Mξ〉 ≥ 0 for ξ ∈ ker c′(x).

Then the central path v(μ) converges to a Kuhn–Tucker point v(0) ∈ D:

‖v(μ) − v(0)‖V ≤ const
√
μ.

The numerical scheme, however, carries further than the currently available the-
ory. Even our key example in section 4.2 falls out of the present analytic setting,
since it involves state constraints as well. However, in this case, the adaptive multi-
level algorithm to be worked out in section 3 produces successively sharper local peaks
on successively finer meshes—thus realizing a multilevel approximation of the Dirac
distribution. For an illustration of this effect see Figure 4.7 below.
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3. Numerical algorithm. For the numerical computation of the solution point
v(0) we employ a Newton-type continuation method following the central path v(μ)
defined by (2.9). When applied to F (v) = 0 and AF (Bv) = 0, where A and B are
invertible linear transformations, Newton’s method generates equivalent sequences of
iterates. This invariance property should be inherited by numerical algorithms and
accompanying convergence theory. Unfortunately, full invariance is impossible due
to the necessity of measuring convergence in some appropriate norm. Fixing B = I
one obtains affine covariant (error-oriented) methods [19], whereas setting A = I
yields affine contravariant (residual-oriented) methods [24]. Coupling A = B∗ results
in affine conjugate (energy-oriented) methods for convex unconstrained optimization
problems [20]. For an in-depth treatment of affine invariance we refer to the research
monograph [18].

3.1. Affine invariant norms. Neither of the above-mentioned invariance class-
es reflects the structure of the optimization problem (2.1). A new class of affine invari-
ance and a corresponding invariant norm for equality constrained problems (nη = 0)
that has been worked out by Volkwein and Weiser [38] needs to be adapted to the
L∞ setting and to include inequality constraints as well. Due to the pointwise nature
of the constraints we have to restrict ourselves to pointwise transformations when
studying affine invariance.

Definition 3.1. For (za, zc, zr, zη) ∈ Z and (v, μ) ∈ V × R+ we define
(3.1)
‖(za, zc, zr, zη)‖2

(v,μ) := ||φ||∞ + ||ξλc
||2L∞ + |ξλr

|2 + ||ξη||2L∞ + ||zc||2L∞ + |zr|2 + ||zη||2L∞

with ξ and φ given by

(3.2) F ′(v;μ)(ξx, ξλc , ξλr , ξη)
T = (za, 0, 0, 0)T

and

(3.3) φ(t) = ξx(t)T∂2
xL(v;μ)(t)ξx(t).

Equation (3.2) defines the subspace N (v;μ) ⊂ V .
For the easily computable expression (3.1) to be a norm we have to modify the

assumptions on the problem slightly compared to Theorem 2.3. Instead of augmenting
the Hessian of the Lagrangian with the almost inactive part of the IP regularization
when requesting pointwise positivity, we directly assume positivity of the Hessian
itself. This will in general be only a slight modification because the augmentation
is rather small and bounded for μ → 0. The positivity is not required to hold on
the nullspace N (v;μ) of the almost active constraints, but rather on the nullspace
of state equation and regularized complementarity condition. Again, these subspaces
are rather close to each other, in particular for μ → 0.

In this section we will need the following properties of ∂vF shown in [42, Thms. 3.2
and 3.8].

Lemma 3.2. Assume that Theorem 2.3 holds. Then there is a constant C such
that the following estimates hold uniformly for all v ∈ D and μ > 0:

‖∂vF (v;μ)−1‖ ≤ C, ‖∂vF (v1;μ) − ∂vF (v2;μ)‖ ≤ C
√
μ
‖v1 − v2‖.

Theorem 3.3. Assume Theorem 2.3 holds and there is some α > 0 such that

(3.4) 〈ξx, ∂2
xL(v;μ)ξx〉 ≥ α‖ξx‖2

L2×W 1
2



800 MARTIN WEISER AND PETER DEUFLHARD

for all ξ ∈ N (v;μ). Then (3.1) defines a norm on Z that is invariant under pointwise
invertible transformations of X. Moreover, this norm is equivalent to the usual norm
on Z.

Proof. For brevity we will omit any function arguments. First we will show that
∂2
uL  α for almost all t ∈ Ω. From this we will conclude that there is a constant c > 0,

such that ‖φ‖L∞ ≥ c‖ξx‖2
L∞

for all ξ ∈ N (v;μ). Due to the bounded invertibility of
F ′(v;μ) as asserted by Lemma 3.2, it is then obvious that (3.1) defines a norm that
is indeed equivalent to the usual norm of Z.

Let us approximate the effect of an impulse control at t ∈ Ω by a constant control
with shrinking support, i.e., χ[t−ε,t+ε]. Since the homogeneous terminal condition
∂yr(x)y = 0 has to be satisfied by the associated state, we need to complement
the approximate impulse control with some compensation εũt,ε. Note that due to
(2.10), ũt,ε can be chosen to be uniformly bounded in L∞ for all t and ε. We define

ûε = χ[t−ε,t+ε] + εũt,ε with associated state ŷε and multipliers such that ξ̂ε ∈ N (v;μ).
From standard ODE theory it follows that ‖ŷε‖L∞ ≤ c‖ûε‖L1 = cε. From (3.4) we
know that

〈ûε, ∂
2
uLûε〉 = 〈ξ̂xε, ∂2

xLξ̂xε〉 − 〈ŷε, ∂2
yLŷε〉 − 2〈ûε, ∂yuLŷε〉

≥ α‖ξ̂xε‖2
L2×W 1

2
− c‖ŷε‖2

L∞ − c‖ŷε‖L∞‖ûε‖L1

≥ 2αε− cε2

for some generic constant c independent of ε, and hence ∂2
uL  α for almost all t ∈ Ω.

Now assume that for any ε > 0 there is some ξε ∈ N (v;μ) with control and state
component uε and yε, respectively, such that

(3.5) ‖φε‖L∞ ≤ ε‖ξε‖2
L∞

and ‖uε‖L∞ = 1. From (3.4) we know that

‖yε‖2
L∞ ≤ c‖uε‖2

L1
≤ c‖ξε‖2

L2
≤ c

α
‖φε‖L2

≤ c

α
‖φε‖L∞ ≤ ε

c

α
‖ξε‖2

L∞ ≤ ε
c

α
‖yε‖2

L∞ + ε
c

α
‖uε‖2

L∞

for some generic constant c independent of ε. For sufficiently small ε we have εc/α < 1
and may conclude that (1 − εc/α)‖yε‖2

L∞
≤ cε/α‖uε‖2

L∞
and hence ‖yε‖2

L∞
≤ cε.

Using the boundedness of ∂2
xL, we obtain

φε = uT
ε ∂

2
uLuε + yTε ∂

2
yLyε + 2uT

ε ∂yuLyε ≥ α|uε|2 − cε− c
√
ε|uε|

for almost all t ∈ Ω. For all sufficiently small ε this implies ‖φε‖L∞ ≥ c‖ξx‖2
L∞

for
some constant c independent of ε, which contradicts (3.5).

Now we turn to affine invariance. Let us consider a transformation x̂ = B−1x of
X. With the pointwise transformation D = diag(B, I, I, I) the transformed problem is
D∗F̂ (v̂;μ) = F (Bx̂, λc, λr, η) with derivative ∂v̂F̂ (v̂;μ) = D∗∂vF (v;μ)D. Computing
the norm of (ẑa, ẑc, ẑr, ẑη) = (B∗za, zc, zr, zη), we obtain

(ξ̂x, ξ̂λc , ξ̂λr , ξ̂η) = ∂v̂F̂ (v̂;μ)−1(B∗za, zc, zr, zη)

= D−1∂vF (v;μ)−1(za, zc, zr, zη)

= (B−1ξx, ξλc
, ξλr

, ξη)
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and

φ̂(t) = ξ̂a(t)
T∂2

x̂L̂(v̂;μ)(t)ξ̂a(t)

= ξa(t)
TB(t)−TB(t)T∂2

xL(v;μ)(t)B(t)B(t)−1ξa(t)

= φ(t).

Since all terms in the sum (3.1) coincide, the norm is invariant. If B was not a

pointwise transformation, φ̂ could not be defined in a pointwise manner. This is the
reason why the invariance class has to be restricted to pointwise transformations.

Formulating convergence results in terms of local norms, the norms need to be
Lipschitz continuous with respect to the evaluation point to which they are attached.

Theorem 3.4. There are constants γv(μ) and γμ(μ) independent of v such that

(3.6)
∣∣||z||(v1,μ) − ||z||(v2,μ)

∣∣ ≤ γv(μ)||∂vF (v1;μ)(v1 − v2)||(v1,μ)||z||(v1,μ)

and

(3.7)
∣∣||z||(v,μ1) − ||z||(v,μ2)

∣∣ ≤ γμ(μ)|μ1 − μ2|||z||(v,μ1)

for all z ∈ Z.
Proof. With z = (za, zc, zr, zη) and ẑ = (za, 0, 0, 0) we define ξi = ∂vF (vi;μ)−1ẑ ∈

N (vi;μ) for i = 1, 2. Using the Lipschitz continuity and bounded invertibility of ∂vF
as given by Lemma 3.2, we first obtain

‖ξ1 − ξ2‖ = ‖(∂vF (v1;μ)−1 − ∂vF (v2;μ)−1)ẑ‖
≤ ‖F (v2;μ)−1(∂vF (v1;μ) − ∂vF (v2;μ))∂vF (v1;μ)−1ẑ‖
≤ c‖∂vF (v1;μ) − ∂vF (v2;μ)‖‖ẑ‖

≤ c
√
μ
‖v1 − v2‖‖ẑ‖(v1,μ)(3.8)

for some generic constant c independent of μ and vi. Second we have

|ξTx1∂
2
xL(v2;μ)ξx1| = |ξTx1∂

2
xL(v1;μ)ξx1| + |ξTx1(∂

2
xL(v2;μ) − ∂2

xL(v1;μ))ξx1|
≤ |ξTx1∂

2
xL(v1;μ)ξx1| + |ξx1|2|∂2

xL(v2;μ) − ∂2
xL(v1;μ)|

for almost all t ∈ Ω and hence

(3.9) ‖ξTx1∂
2
xL(v2;μ)ξx1‖L∞ ≤

(
1 +

c
√
μ
‖v2 − v1‖

)
‖φ1‖L∞ .

Writing the norm induced by (3.1) on N (v;μ) as ‖ · ‖v (note that the expression does
not depend on μ), we utilize (3.9) and (3.8) in order to obtain

‖ẑ‖(v2,μ) = ‖ξ2‖v2

≤ ‖ξ1‖v2 + c‖ξ2 − ξ1‖

≤
(
‖ξTx1∂

2
xL(v2;μ)ξx1‖L∞ + ‖(ξλc1, ξλr1, ξη1)‖2

L∞

)1/2
+ c‖ξ2 − ξ1‖

≤
(√

1 +
c

√
μ
‖v2 − v1‖ ‖φ1‖L∞ + ‖(ξλc1, ξλr1, ξη1)‖2

L∞

)1/2

+ c‖ξ2 − ξ1‖

≤
(

1 +
c

√
μ
‖v2 − v1‖

)1/4

‖ξ1‖v1 +
c

√
μ
‖v1 − v2‖‖ẑ‖(v1,μ)

≤
(

1 +
c

√
μ
‖v1 − v2‖

)
‖ẑ‖(v1,μ)
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for some generic constant c independent of μ. This and the bounded invertibility of
∂vF (v;μ) imply

∣∣‖z‖(v2,μ) − ‖z‖(v1,μ)

∣∣ ≤ ∣∣‖ẑ‖(v2,μ) − ‖ẑ‖(v1,μ)

∣∣
≤ c

√
μ
‖∂vF (v1;μ)(v1 − v2)‖(v1,μ)‖ẑ‖(v1,μ)

and verify the claim (3.6) for γv = cμ−1/2. The corresponding estimate (3.7) can be
shown analogously.

Remark. We would like to point out that for local norms with structures simpler
than the one considered here, useful analytical bounds for γv can be found in terms of
a corresponding affine invariant Lipschitz constant. In the affine contravariant setting
‖·‖v = ‖·‖, γv = 0 is trivially obtained, γv ≤ ω holds in the affine covariant case ‖·‖v =
‖F ′(v)−1 ·‖, and γv ≤ ω

2 in the affine conjugate case ‖·‖v = ‖F ′(v)−1/2 ·‖. Based on an
assumption similar to (3.12), a rather crude estimate of γv ≤ 3

2ω was derived in [38] for
equality constrained problems. Numerical experience with computational estimates
suggests that even if available, the analytical bounds are often too large to describe
the actual norm variation correctly. Therefore, using computational estimates may
be advantageous. For the norm (3.1), however, no analytical quantitative estimate is
known up to now, such that we have to resort to computational estimates (see (3.29)
below).

Remark. Recently, Potra [31] employed an affine invariant norm for proving
O(

√
nL)-iteration complexity of an IP algorithm applied to finite-dimensional hor-

izontal linear complementarity problems, which include linear and linear-quadratic
optimization problems. In the notation of the current paper, that author uses a di-
agonal scaling like D :=

√
∂wψ−1∂ηψ. A similar norm has been used to analyze

the convergence rate of an IP method applied to infinite-dimensional optimal control
problems in a restricted setting with bang-bang control [41].

3.2. Adaptive central path following. Once the central path homotopy is
theoretically established, a numerical continuation scheme for following the path to-
wards the solution v(0) must be developed. For numerical pathfollowing, an adaptive
tangential predictor/Newton-type corrector algorithm is worked out. The method
is applied directly to the infinite-dimensional function space formulation, involving
discretization only in the innermost loop when solving linear subproblems. Since a
reduction of the discretization error is expensive, we substitute both the tangential
predictor and the Newton corrector by their inexact counterparts and aim for linear
convergence only—in the spirit of complexity estimates of [20].

As illustrated in Figure 3.1, the local convergence domain of the Newton corrector
can be expected to collapse for μ → 0 as a consequence of an ever increasing Lipschitz
constant ω(μ). Nevertheless, Theorem 2.3 provides a qualitative upper bound on the
error incurred by a premature termination at μfinal > 0 of the numerical continuation

along the central path in the order of O(μ
1/2
final). Experience shows that feasible and

acceptably suboptimal solutions can indeed be obtained by following the central path
up to some μfinal > 0—see section 4.

Inexact Newton corrector. The corrector operates with constant duality gap pa-
rameter; thus we drop μ in order to simplify notation and write F ′(v) instead of
∂vF (v;μ). Due to the prohibitive cost of reducing the discretization error, we cannot
strive for highly accurate Newton corrections. Instead, we will employ an inexact
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Fig. 3.1. Inexact tangential continuation along the central path including local convergence
domain of Newton’s method.

Newton method, where an inner residual remains:

F ′(vk)δvk = −F (vk) + rk,(3.10)

vk+1 = vk + δvk .

The relative accuracy δk of the inexact Newton correction δvk, given by

(3.11) δk :=
||rk||vk

||F (vk)||vk

,

will play a crucial role. In actual computation, the inexact simplified Newton correc-

tion δv
k+1

approximating the exact simplified Newton correction

F ′(vk)Δv
k+1

= −F (vk+1)

will also be used. Again, an inner residual rk+1 remains:

F ′(vk)δv
k+1

= −F (vk+1) + rk+1.

In view of convergence of Newton’s method, we need to have a Lipschitz constant for
∂vF formulated in the affine invariant norm. This affine invariant Lipschitz condi-
tion comprises two usual assumptions for Newton convergence theorems: that F ′ is
Lipschitz continuous, and that F ′(vk) has a bounded inverse (cf. [18]).

Lemma 3.5. If (3.4) holds for μ > 0, then there exists an affine invariant
Lipschitz constant ω(μ) ≤ c(1 + μ−1/2), such that

(3.12) ||F ′(v1) − F ′(v2)||ζ ≤ ω(μ)||F ′(v1)(v1 − v2)||v1

for all v1, v2 such that ζ ∈ co{v1, v2} ⊂ D.
Proof. The bound on ω is a direct consequence of the corresponding Lipschitz es-

timate for the complementarity function ψ (see [42, Theorem 3.2]) and the equivalence
of the norms || · ||v1 and || · || on Z.

Theorem 3.6. Let V be a Banach space and D ⊂ V an open set. Let Z be a
Banach space equipped with a family of equivalent local norms ‖ · ‖v parameterized
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over D. Assume F : D → Z is a continuously differentiable function. Let γv and ω
be constants such that the local norms || · ||v on Z satisfy

(3.13) |‖r‖v1
− ‖r‖v2

| ≤ γ||F ′(v1)(v1 − v2)||v1
‖r‖v1

for all r ∈ Z,

and the affine invariant Lipschitz condition

(3.14) ||(F ′(ξ) − F ′(v))(ξ − v)||ζ ≤ ω||F ′(v)(ξ − v)||2v
holds for all collinear v, ξ, ζ ∈ V such that the convex hull co{v, ξ, ζ} is contained in
D. Let Θ < 1 and

L(v) :=
{
ξ ∈ D : ||F (ξ)||ξ ≤

(
1 +

γvΘ

2ω

)
||F (v)||v

}
.

Assume that v0 ∈ D and that the level set L(v0) is closed. If ω||F (v0)||v0 < 2Θ and
the relative error δk in computing the Newton correction is controlled such that

(3.15)
1 + δk

2
ω||F ′(vk)δvk||vk + (1 + γv||F ′(vk)δvk||vk)δk ≤ Θ

(which is possible for all k), then the iterates are well-defined for all k ∈ N and stay
in L(v0), and the residuals converge to zero at a rate of

(3.16) ||F (vk+1)||vk+1 ≤ Θ||F (vk)||vk .

Furthermore, if the inexact simplified Newton correction is computed with relative
accuracy δk+1,

(3.17) ||F ′(vk)δvk+1||vk ≤ (1 + δk+1)
( δk

1 − δk
+

ω

2
||F ′(vk)δvk||vk

)
||F ′(vk)δvk||vk

holds.
Proof. By induction, let L(vk) be closed and ω||F (vk)||vk < 2. Then

F (vk + sδvk) = F (vk) +

∫ s

0

F ′(vk + tδvk)δvk dt(3.18)

= (1 − s)F (vk) + srk +

∫ s

0

(F ′(vk + tδvk) − F ′(vk))δvk dt(3.19)

for all s ∈ [0, 1] with co{vk, vk + sδvk} ⊂ D.
Using the Lipschitz continuity (3.14) of F ′ and the norm continuity (3.13), for

σ ∈ [0, s] we have

(3.20) ||F (vk + sδvk)||vk+σδvk

≤ (1 − s)||F (vk)||vk+σδvk + s||rk||vk+σδvk

+

∫ s

0

||(F ′(vk + tδvk) − F ′(vk))δvk||vk+σδvk dt

≤ (1 − s)(1 + σγv||F ′(vk)δvk||vk)||F (vk)||vk

+ s(1 + σγv||F ′(vk)δvk||vk)||rk||vk +

∫ s

0

tω||F ′(vk)δvk||2vk dt

= (1 + σγv||F ′(vk)δvk||vk)((1 − s)||F (vk)||vk + sδk||F (vk)||vk)

+
s2

2
ω||F ′(vk)δvk||2vk .
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From (3.11) we have

(3.21) (1 − δk)||F (vk)||vk ≤ ||F ′(vk)δvk||vk = ||F (vk) − rk||vk ≤ (1 + δk)||F (vk)||vk .

Thus we arrive at

||F (vk + sδvk)||vk+sδvk

||F (vk)||vk

≤ (1 + sγv||F ′(vk)δvk||vk)(1 − s + sδk) +
1 + δk

2
s2ω||F ′(vk)δvk||vk .

The ultimate goal is to establish a contraction property for the undamped Newton
method (s = 1). Thus we have to require

(1 + γv||F ′(vk)δvk||vk)δk +
1 + δk

2
ω||F ′(vk)δvk||vk ≤ Θ < 1 ,

which is the accuracy condition (3.15). Defining χ := γv||F ′(vk)δvk||vk and using
s ≤ 1 and (3.15), we have

||F (vk + sδvk)||vk+sδvk

||F (vk)||vk

≤ (1 + sχ)(1 − s + sδk) +
1 + δk

2
s2ω||F ′(vk)δvk||vk

= (1 + sχ)(1 − s) + (1 + sχ)sδk +
1 + δk

2
s2ω||F ′(vk)δvk||vk

≤ (1 + sχ)(1 − s) + sΘ(3.22)

= 1 − s + sΘ + s(1 − s)χ

≤ 1 +
χ

4
.

From (3.15) we infer ||F ′(vk)δvk||vk ≤ 2Θ/ω, and hence

||F (vk + sδvk)||vk+sδvk ≤
(

1 +
γvΘ

2ω

)
||F (vk)||vk

holds. Since D is open and L(vk) ⊂ D is closed, co{vk, vk + δvk} �⊂ D implies the
existence of some s∗ ∈ [0, 1) with co{vk, vk +s∗δvk} ⊂ D but vk +s∗δvk �∈ L(vk), i.e.,

||F (vk + s∗δvk)||vk+s∗δvk >

(
1 +

γvΘ

2ω

)
||F (vk)||vk ,

which is a contradiction. Thus, vk+1 ∈ D. Furthermore, setting s = 1 in (3.22) yields

(3.23) ||F (vk+1)||vk+1 ≤ Θ||F (vk)||vk

and therefore L(vk+1) ⊂ L(vk). Since L(vk) is closed, every Cauchy sequence in
L(vk+1) converges to a limit point in L(vk), which is, by continuity of the norm,
also contained in L(vk+1). Hence, L(vk+1) is closed. Moreover, ω‖F (vk+1)‖vk+1 ≤
ωΘk+1‖F (v0)‖v0 < 2Θk+2 < 2Θ, such that (3.15) can be satisfied in the next iteration
by choosing a sufficiently small δk+1.

Inserting σ = 0, s = 1 into (3.20) yields

||F ′(vk)δvk+1||vk ≤ (1 + δk+1)||F (vk+1)||vk

≤ (1 + δk+1)
(
δk||F (vk)||vk +

ω

2
||F ′(vk)δvk||2vk

)
≤ (1 + δk+1)

(
δk

1 − δk
+

ω

2
||F ′(vk)δvk||vk

)
||F ′(vk)δvk||vk ,
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which completes the proof.
The boundedness of F ′(vk) as provided by Theorem 2.3 now provides linear con-

vergence of the iterates towards the solution v(μ).
Corollary 3.7. Suppose that Theorems 2.3 and 3.3 hold and (3.4) is satisfied. If

the Newton iteration is controlled according to (3.15), the iterates vk converge linearly
to v(μ).

Proof. Under the given conditions, Theorem 3.3 and Lemma 3.5 provide the
assumptions of Theorem 3.6 with D given by Theorem 2.3, such that the inex-
act Newton iteration is well-defined and the residuals converge to 0 according to
(3.16). Due to (3.10), (3.11), and the equivalence of ‖ · ‖v and ‖ · ‖ we have ‖δvk‖ ≤
‖F ′(vk)−1‖‖F (vk) − rk‖ ≤ c(1 + δk)‖F (vk)‖vk with a constant c independent of μ.
From (3.15) we infer δk < 2 and with (3.16) holding obtain ‖δvk‖ ≤ 2cΘk‖F (v0)‖v0 .
Finally,

‖vk − v(μ)‖ ≤ 2c‖F (v0)‖v0

Θk

1 − Θ

proves r-linear convergence.
Inexact prediction step. From numerical experience, we expect more or less con-

stant reduction factors for μ, translating into constantly decreasing continuation step-
sizes. In order to avoid this biased stepsize behavior, the predictor is formulated in
terms of τ = − logμ. The inexact tangential predictor v̂(τ) is defined by

(3.24) F ′(v0; τ0)φ = −∂τF (v0; τ0) + r , v̂(τ) = v0 + (τ − τ0)φ ,

where again a residual r remains.
Lemma 3.8. Assumptions of Theorem 3.6. Let γτ and β be nonnegative constants

such that the local norm || · ||(v,τ) satisfies

(3.25)
∣∣||ρ||(v1,τ1) − ||ρ||(v0,τ0)

∣∣ ≤ γτ (τ1 − τ0)||ρ||(v0,τ0)

and

(3.26) ||F (v1; τ1)||(v0,τ0) ≤ ||F (v0; τ0)||(v0,τ0) + ||r||(v0,τ)(τ1 − τ0) + β(τ1 − τ0)
2

for all ρ ∈ Z∞, v0, v1 such that F ′(v0; τ0)(v1 − v0) = −(τ1 − τ0)(∂μF (v0; τ0) + r), and
co{v0, v1} ⊂ D. Then the inexact Newton corrector with starting point v1 converges
to the central path v(τ) for all stepsizes Δτ = τ1 − τ0 satisfying

(3.27) (1 + γτΔτ)(||F (v0; τ0)||(v0,τ0) + ||r||(v0,τ0)Δτ + βΔτ2) <
2

ω
.

Proof. Combining the convergence condition ω||F (v; τ)||(v,τ) < 2 from Theo-
rem 3.6 with assumptions (3.25) and (3.26) yields the result.

Note that since (3.27) represents a monotone convex function of Δτ , the maximum
permitted stepsize can be easily computed by an ordinary Newton method starting
from

√
2/(ωβ).

Remark. Again, the constant γτ is needed because of the inexactness of the
tangential predictor. In exact Newton continuation algorithms (see Deuflhard [17]),
the change of local norms can be subsumed under the second order term β.

Computable Lipschitz estimates. For actual computation we need easily com-
putable estimates of the theoretical quantities ω, γv, γτ , and β to be inserted into



INEXACT CENTRAL PATH FOLLOWING ALGORITHMS 807

conditions (3.15) and (3.27). From (3.17) and (3.6), (3.21), respectively, we derive
the computable estimates

(3.28) [ω]k =
2

||F ′(vk)δvk||vk

(
||F ′(vk)δvk+1||vk

(1 + δk+1)||F ′(vk)δvk||vk

− δk
1 − δk

)
≤ ω

and

(3.29) [γv]k =
d
(
Φ
(
δk+1, ||F ′(vk+1)δvk+1||vk+1

)
,Φ

(
δk+1, ||F ′(vk)δvk+1||vk

))
(1 + δk+1)||F ′(vk+1)δvk+1||vk+1 ||F ′(vk)δvk||vk

≤ γv,

where Φ(a, b) = [ b
1+a ,

b
1−a ] denotes the inaccuracy interval and

d(A,B) = inf
a∈A,b∈B

|a− b|

is the usual set distance. Furthermore, computable estimates for γτ and β can be
derived from (3.25) and (3.26) as

(3.30) [γτ ] =
d
(
Φ
(
δ2, ||F ′(v2; τ2)δv2||(v2;τ2)

)
,Φ

(
δ2, ||F ′(v1; τ1)δv2||(v1;τ1)

))
(1 + δ2)||F ′(v2; τ2)δv2||(v2;τ2)(τ2 − τ1)

≤ γτ

and

(3.31) [β] = max{0, β̃} ≤ β,

where

β̃ =
d
(
Φ
(
δ2, ||F ′(v1; τ1)δv2||(v1,τ1)

)
,Φ

(
δ1, ||F ′(v1; τ1)δv1||(v1,τ1)

))
(τ2 − τ1)2

−
||r||(v1,τ1)

τ2 − τ1
,

respectively. Of course, reliable estimates are obtained only if δk is sufficiently small,
which imposes additional accuracy requirements on the computation of the predictor
and corrector.

Since the computable estimates are based on local sampling only, they are nec-
essarily too small. Therefore, the computed continuation stepsize Δτ is larger than
intended and may even be too large for the corrector to converge. In this case, a
stepsize reduction has to be performed on the basis of updated estimates. In view of
computational efficiency, an early detection of violation of the theoretical assumptions
is preferable. Putting it all together, we arrive at the following inexact continuation
algorithm.

Algorithm 3.9.

initialize v, τ, [ω], [β], [γτ ], [γv]
choose δcor, ρ < 1, Θ < 1

1: while τ < τfinal:
compute predictor ∂vF (v; τ)v̂ = −∂τF (v; τ) + r without mesh refinement
choose δTOL < 2/[ω]
compute a stepsize Δτ > 0 such that

(1 + [γτ ]Δτ‖∂vF (v; τ)v̂‖(v,τ))(‖F (v; τ)‖(v,τ) + Δτ‖r‖(v,τ) + [β]Δτ2) ≤ ρ3δTOL

update [β] according to (3.31)
if ‖F (v + Δτ v̂; τ + Δτ)‖(v,τ) > ρ2δTOL go to 1:
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update [γτ ] according to (3.30)
if ‖F (v + Δτ v̂, τ + Δτ)‖(v+Δτv̂,τ+Δτ)

> ρ−1(1 + [γτ ]Δτ‖∂vF (v; τ)v̂‖(v,τ))(‖F (v; τ)‖(v,τ) + Δτ‖r‖(v,τ)) go to 1:
initialize corrector v0 ← v + Δτ v̂
while ‖F (vk; τ + Δτ)‖(vk,τ+Δτ) > δcorδTOL

if not in first Newton iteration

compute ∂vF (vk−1; τ + Δτ)δv = −F (vk; τ + Δτ) + r̄ without refinement
update [ω] according to (3.28)
if (3.17) is violated go to 1:

compute corrector ∂vF (vk; τ + Δτ)δv = −F (vk; τ + Δτ) + r satisfying (3.15)
update [γv] according to (3.29)
vk+1 = vk + δv

advance v ← vk, τ ← τ + Δτ
Termination of this stepsize reduction scheme has been studied in [40]. In actual

computation, the estimated values [γv] and [γμ] are very small, which suggests that
using analytical bounds as mentioned in section 3.1 would be inefficient. Instead, the
continuation algorithm mainly depends on [ω] and [β].

Solution of linear subproblems. Applying Newton continuation methods in func-
tion space requires solving a sequence of linear perturbed saddle point problems of the
same structure as the nonlinear complementarity problem (2.9). In principle, any
standard linear BVP solver technique can be employed. If there is a stable direction
for the initial value problem, a multiple shooting discretization of the state equation
is certainly appropriate for the linear problem. For the numerical example in sec-
tion 4 and further ones in [40], a Gauss collocation method has been employed. A
fixed but arbitrary polynomial order p has been used for the states and p− 1 for the
controls, with p in the range 4, 5, 6. The successive grid adaptation is based on a not
very sophisticated ad hoc error estimator comparing approximations of different or-
der. Standard band and sparse solvers have been used to solve the finite-dimensional
linear systems. These and related algorithmic issues will be worked out to a higher
level of sophistication in the near future.

4. Numerical examples. This section is devoted to numerical examples for
the function space–oriented IP method developed above. In all the examples shown
below, the continuation process has been run until either the memory requirement
induced by successive refinement or insufficient accuracy of the linear system solver
induced by increasing condition numbers limited the progress on the central path.

4.1. A simple class of optimal control problems. First we turn to a class
of simple problems which are covered by Theorems 2.1 and 2.3:

min

∫ 1

0

(
f̃y(y(t)) +

α

2
|u(t)|2

)
dt

subject to ẏ(t) = Ay(t) + Bu(t),

y(0) = y0,

a ≤ u(t) ≤ b.

Since the case of vector-valued controls is notationally more complex but provides
no additional insight, we restrict the presentation to scalar controls.

Theorem 4.1. Suppose that on arbitrary bounded sets in R
ny , f̃y is convex and

twice Lipschitz continuously differentiable, α > 0, a < b, A ∈ R
ny×ny , and B ∈ R

ny .
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Assume there are v0 and μ0 > 0 such that F (v0;μ0) = 0. Then the central path v(μ)
converges to a Kuhn–Tucker point v(0) ∈ D at a rate of

‖v(μ) − v(0)‖ ≤ const
√
μ.

Proof. We start with Theorem 2.3, choosing

(4.1) ρ <
1

μ0

(
b− a

2

)2

for separating nearly active and nearly inactive constraints. Obviously, conditions
1 and 2 are satisfied. Since no terminal boundary conditions are given, the inf-sup
condition (2.10) simplifies to

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ β.

Assume that for a central path solution (v, μ) with μ ≤ μ0, the lower constraint u ≥ a
is nearly active at t, i.e., ρηa(t) ≥ u(t)− a. For simplicity, we will omit the argument
t in the following. Together with (4.1) and the IP condition ηa(u−a) = μ = ηb(b−u)
holding for all central path solutions, this implies

b− u = b− a− (u− a) ≥ b− a−
√
ρηa(u− a) = b− a−√

ρμ

≥ b− a− b− a

2
=

b− a

2
>

√
ρμ =

√
ρηb(b− u).

Squaring and dividing by b−u finally yields b−u > ρηb, which implies that the upper
constraint u ≤ b is nearly inactive whenever the lower constraint is nearly active.
Analogously, the converse can be shown, such that at most one of the two constraints
is active. Always choosing the nearly active constraint whenever possible, we see that

inf
ξ∈L2

p

sup
δu∈L1

q

〈χAξ, g′(u)δu〉
‖χAξ‖L2

p
‖δu‖L1

q

≥ inf
ξ∈L1

p

sup
δu∈L1

q

〈ξ, δu〉
‖ξ‖L1

p
‖δu‖L1

q

≥ 1

for both (p, q) = (∞, 1) and (p, q) = (2, 2), which confirms the inf-sup condition.
Now we verify the assumptions of Theorem 2.1 on the whole space D = V . As-

sumption 1 is trivially inapplicable due to nr = 0. The Legendre–Clebsch condition 2
is obviously satisfied due to α > 0 and the linearity of the constraints, as is the positive
definiteness of ∂2

xL(v).
Finally, the remaining assumptions of Theorem 2.3, conditions 3 and 4, are satis-

fied uniformly for v ∈ D as their counterparts from Theorem 2.1. Thus, Theorem 2.3
can be applied and yields the claim.

For a brief discussion on how to extend the argumentation to more complex
nonlinear problems we refer to [42].

As an illustrative example of the problem class studied in Theorem 4.1 we choose

min

∫ 1

0

(
t2y(t)2 +

α

2
u(t)2

)
dt(4.2)

subject to ÿ(t) = u(t),

y(0) = 1, ẏ(0) = 0,

−1 ≤ u(t) ≤ 1
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-1

0

1

1

t

10-8

10-2

1

0.001

1e-06
10.0011e-061e-091e-12

μ

10-8

10-6

10-4

10-2

Fig. 4.1. The control u of problem (4.2) for different values of α. Left: numerical solutions.
Right: the approximate error ‖u(μ) − u(μfinal)‖L∞ .

with control regularization values α = 10−2, 10−4, 10−6, 10−8. Rewriting (4.2) as
a system of two first order ODEs, the example is covered by Theorem 4.1. Clearly
visible in Figure 4.1 is the convergence of order O(

√
μ) in the control, which is the most

critical variable. The quantitative value of μ where this asymptotics sets in depends,
of course, on the control regularization parameter α. For α → 0 we approach the
bang-bang case, for which no convergence in L∞ can be expected at all.

4.2. Abort landing in the presence of windshear. Here we will consider
a well-known intricate optimal control problem, the abort landing in the presence of
windshear. Our numerical results are based on the precise model given in [6]. The
problem is of Chebyshev type, maximizing the minimal altitude. The optimal so-
lution consists of control and state constrained subarcs as well as touch points and
singular subarcs, which makes the problem difficult to tackle by means of the maxi-
mum principle. It contains a third order state constraint and a nondifferentiable wind
model based on spline representation—and is therefore not covered by the theoretical
presentation in [42]. Nevertheless, as will be reported now, already the first version
of our algorithm developed herein worked satisfactorily.

Originally, the problem has been modeled by Miele et al. [30]; as for the numerical
solution, these authors seem to have applied a robust collocation method based on
a finite-dimensional parametrization of the control and combined with a gradient
restoration technique to find the corresponding optimal finite-dimensional solution.
Their paper does not present any numerical results for the control, which is the most
sensitive and numerically critical variable.

As preparation for the application of multiple shooting, Bulirsch, Montrone, and
Pesch [10] required 11 pages to present a brief outline of the analytic derivation of
the necessary conditions. In contrast to that, the method we propose here does
not require any analytical preprocessing—thus saving considerable human effort. In a
second paper [11], the application of the multiple shooting method has been described
along with the homotopy necessary to obtain the correct switching structure. In 1995,
Berkmann and Pesch [6] solved the same problem even more accurately and claimed
that “a competing direct method is unlikely to be able to produce solutions with such
high resolution.” In fact, our direct function space method did require a substantial
computational effort to reach a comparably high accuracy. A comparison of computing
times, however, would be too early, since our first focus was on developing a working
algorithm within the rather new conceptual frame. There is enough space left for
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Fig. 4.2. Altitude h for windshear problem. Left: multiple shooting result from [6]. Right:
central path result at μ = 2.1 · 10−4 (this paper).

Fig. 4.3. Lagrange multipliers λi corresponding to equality constraints (scaled).

perfecting our algorithm, which will be filled in the near future.

Figure 4.2 shows a comparison of our altitude results with those obtained in [6].
The agreement is perfect within the interval up to the last touch point t∗ = 25.997s.
Beyond that point, there exists a continuum of optimal solutions. This can be under-
stood from the fact that for t > t∗ all relevant Lagrange multipliers vanish (Figure 4.3)
and none of the inequality constraints is active. Only the multiplier corresponding to
the Chebyshev reformulation of the minimization problem does not vanish.

As already mentioned above, the most critical variable is the control u, the angle
of attack rate. That is why we present its rather complex behavior in Figure 4.4. As
can be seen, our results once again are in perfect agreement with the multiple shoot-
ing results from [6] at least in the relevant interval [0, t∗]. Only one slight deviation
occurs before t = t∗, the reason for which is not yet clear. The second deviation, the
downward spike starting at t∗, can be attributed to the nonuniqueness of the solu-
tion. In the interval [t∗, 1], both methods happen to choose different, but equivalent,
solutions. The pronounced peak of u at t∗ reflects the tendency of the IP method
to drive a previously actively constrained state variable towards the interior of the
feasible set. Of course, this peak could have been suppressed by adding some penalty
term εu2 to the cost functional on the interval [t∗, 1], without changing the uniquely
determined part of the solution in the interval [0, t∗].

In passing we note that Pytlak [32] has also attacked this problem using his
method and documented his results, but he obtained a control behavior quite different
from the one given in Figure 4.4.
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Fig. 4.4. Control u for windshear problem. Left: multiple shooting result from [6]. Right:
central path result at μ = 2.1 · 10−4 (this paper).

Fig. 4.5. Initial trajectory for windshear problem. Left: altitude h. Right: control u.

As for the obtained functional value (minimum altitude hmin), Bulirsch, Mon-
trone, and Pesch [11] report an improvement of 10ft over Miele et al. [30]. On top
of that, Berkmann and Pesch [6] achieved a further improvement of 2.7 · 10−6 ft to a
value of hmin = 502.1562810 ft. Our method led to an even better minimal altitude of
hmin = 502.210661 ft. In order to assess this value, we solved the initial value prob-
lem in both forward and backward directions using the computed control from our
algorithm. As a numerical integrator we selected the MATLAB implementation of
Dormand–Prince RK45. In the forward direction we obtained hmin = 502.210433 ft, in
the backward direction hmin = 502.210438 ft. This seems to confirm that our results
are an improvement even over [6]—within the discretization error level, of course.

In order to shed some light on the performance of our new algorithm, we next give
some details about the continuation process with respect to the duality gap parameter
μ and the adaptive multilevel scheme.

The computations were started on a uniform initial grid with mesh size h0 = 1/25.
On this grid, the nonlinear KKT equations F (v; 1) = 0 with dimension 2748 have been
solved using a Newton method with damping. The corresponding initial trajectory is
depicted in Figure 4.5.

An illustration of the adaptive continuation process along the central path is given
in Figure 4.6. Assuming a convergence of the form

(4.3) J(v(μ)) − J(v(0)) ∼ μα ,
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J(v(μ)) − J(v(0))estim

|||F (v(μ); 0)|||(v(μ),μ)

Fig. 4.6. Central path continuation for windshear problem.

Fig. 4.7. Adaptive mesh refinement in windshear problem.

a simple parameter fitting yields J(v(0))estim ≈ 5.022118 and α ≈ 1.44. The log-log
scale indicates that (4.3) is indeed quite reasonable.

Finally, the adaptive mesh refinement structure for this problem is presented in
Figure 4.7. Successive refinement led to mesh sizes

hj = 2−jh0 .

Obviously, the highly dynamic structure of the solution is captured reasonably well
by the adaptive refinement procedure.

Conclusion. In this paper we present a direct function space method for optimal
control problems based on the complementarity formulation of IP methods. The new
method essentially dispenses with any analytical preprocessing—thus saving consid-
erable human effort. In its algorithmic realization, function space is exploited via an
adaptive multilevel method in combination with an adaptive central path following
algorithm. A theoretical justification of the algorithm has been achieved only for
control constrained problems. However, numerical results for a well-known intricate
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optimal control problem with both control and state constraints seem to indicate that
a much wider class of problems should be tractable by our algorithm. Even though a
lot remains to be done both in theoretical justification and in algorithmic realization,
we are confident to have opened a promising alternative path towards the numerical
solution of complex optimal control problems from science and engineering.

Acknowledgments. The authors gratefully acknowledge invaluable helpful dis-
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like to thank H. Maurer and C. Helmberg for helpful comments.

REFERENCES

[1] W. Alt and K. Malanowski, The Lagrange-Newton method for state constrained optimal
control problems, Comput. Optim. Appl., 4 (1995), pp. 217–239.

[2] U. Ascher, J. Christiansen, and R. Russell, Collocation software for boundary-value ODEs,
ACM Trans. Math. Softw., 7 (1981), pp. 209–222.

[3] U. Ascher, R. Mattheij, and R. Russell, Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, Prentice–Hall, Englewood Cliffs, NJ, 1988.

[4] G. Bader and U. Ascher, A new basis implementation for a mixed order boundary value
ODE solver, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 483–500.

[5] M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch, A comparison of a
Moreau–Yosida-based active set strategy and interior point methods for constrained optimal
control problems, SIAM J. Optim., 11 (2000), pp. 495–521.

[6] P. Berkmann and H. Pesch, Abort landing in windshear: An optimal control problem with
third-order state constraint and varied switching structure, J. Optim. Theory Appl., 85
(1995), pp. 21–57.

[7] H. Bock, Numerische Behandlung von zustandsbeschränkten und Chebychef-Steuerungs-
Problemen, tech. rep., Carl-Cranz-Gesellschaft, Oberpfaffenhofen, Germany, 1981.

[8] H. Bock and K.-J. Plitt, A multiple shooting algorithm for direct solution of optimal control
problems, in Proceedings of the 9th IFAC World Congress, Budapest, Pergamon Press,
Oxford, 1984, pp. 242–247.

[9] R. Bulirsch, Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertprob-
lemen und Aufgaben der optimalen Steuerung, tech. rep., Carl-Cranz-Gesellschaft, Ober-
pfaffenhofen, Germany, 1971.

[10] R. Bulirsch, F. Montrone, and H. Pesch, Abort landing in the presence of windshear as
a minimax optimal control problem. I: Necessary conditions, J. Optim. Theory Appl., 70
(1991), pp. 1–23.

[11] R. Bulirsch, F. Montrone, and H. Pesch, Abort landing in the presence of windshear as a
minimax optimal control problem. II: Multiple shooting and homotopy, J. Optim. Theory
Appl., 70 (1991), pp. 223–254.

[12] R. Bulirsch, E. Nerz, H. Pesch, and O. von Stryk, Combining direct and indirect methods
in optimal control: Range maximization of a hang glider, in Optimal Control, Internat.
Ser. Numer. Math. 111, R. Bulirsch, A. Miele, J. Stoer, and K. H. Well, eds., Birkhäuser,
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Abstract. We investigate a two-player zero-sum differential game in which the players have
asymmetric information on the random terminal payoff. We prove that the game has a value and
characterize this value in terms of dual solutions of some Hamilton–Jacobi equation. We also explain
how to adapt the results to differential games where the initial position is random.
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1. Introduction. In this paper we investigate a two-player zero-sum differential
game in which the players have asymmetric information on the random terminal
payoff. The dynamics of the game is given by{

x′(t) = f(x(t), u(t), v(t)) , u(t) ∈ U, v(t) ∈ V,
x(t0) = x0,

(1)

where U and V are compact subsets of some finite dimensional spaces, and f : R
N ×

U × V → R
N is Lipschitz continuous. We consider a finite horizon problem with a

terminal time denoted by T . The game starts at time t0 ∈ [0, T ] from the initial
position x0.

The description of the game involves I × J terminal payoffs (where I, J ≥ 1):
gij : R

N → R for i = 1, . . . , I and j = 1, . . . , J , a probability p = (pi)i=1,...,I belonging
to the set Δ(I) of probabilities on {1, . . . , I} and a probability q = (qj)j=1,...,J of the
set Δ(J) of probabilities on {1, . . . , J}.

The game is played in two steps: At time t0, a pair (i, j) is chosen at random
among {1, . . . , I} × {1, . . . , J} according to the probability p ⊗ q; the choice of i is
communicated to player 1 only, while the choice of j is communicated to player 2
only.

Then the players control system (1) in order for player 1 to minimize the terminal
payoff gij(x(T )) and for player 2 to maximize it. We assume that both players observe
their opponent’s control. Note, however, that the players do not know which gij they
are actually optimizing, because they have only a part of the information on the
91A05 pair (i, j). They can nevertheless try to guess their missing information by
observing what their opponent is doing. Indeed, in order to use his information a
player necessarily reveals at least a part of it, and any piece of information he reveals
can be later exploited by his opponent.

As usual we introduce two value functions associated to this game. We have to
take special care of the way we define the strategies of the players, since this definition
has to represent the lack of symmetry in the knowledge of the players.
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Gorgeu, BP 809, 29285 Brest, France (pierre.cardaliaguet@univ.brest.fr).

816



DIFFERENTIAL GAMES WITH ASYMMETRIC INFORMATION 817

The upper value is given by

V +(t0, x0, p, q) = inf
(αi)∈(Ar(t0))I

sup
(βj)∈(Br(t0))J

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
,

where the αi ∈ Ar(t0) (for i = 1, . . . , I) are I random strategies for player 1, the βj ∈
Br(t0) (for j = 1, . . . , J) are J random strategies for player 2, and Eαiβj (gij(X

t0,x0,αi,βj

T ))
is the payoff associated with the pair of strategies (αi, βj) for the terminal payoff gij :
These notions are explained in the next section. The key point in the definition is
that player 1 chooses his strategy αi (i = 1, . . . , I) according to the value of the index
i only, while player 2 has a strategy (βj) which depends only upon the index j. This
reflects the asymmetry of information of the players. The sum

∑
i

∑
j piqj . . . is the

expectation of the payoff when the pair (i, j) is chosen according to the probability
p⊗ q, where p = (p1, . . . , pI) and q = (q1, . . . , qJ).

The lower value is defined by the symmetric formula:

V −(t0, x0, p, q) = sup
(βj)∈(Br(t0))J

inf
(αi)∈(Ar(t0))I

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
.

Obviously we have

V −(t0, x0, p, q) ≤ V +(t0, x0, p, q)

for any (t0, x0) ∈ [0, T ] × R
N , any probability p ∈ Δ(I) on {1, . . . , I}, and any

probability q ∈ Δ(J) on {1, . . . , J}. Our aim is to show that the equality holds, i.e.,
that the game has a value, and to provide a PDE characterization of the value.

The game studied in this paper is strongly inspired by repeated games with a
lack of information introduced by Aumann and Maschler; see [2, 22] for a general
presentation. Repeated games with a lack of information on one side (i.e., I = 1
or J = 1) or on both sides (i.e., I, J ≥ 2) have a value [2, 18], in the sense that
the averaged n-stage games converge to a limit as n → +∞. This value can be
characterized in terms of the value of the “nonrevealing game.” In this paper, we
prove the existence of a value for differential games with a lack of information on
both sides. However, we show in the companion paper [10] that the characterization
in terms of a game without information does not hold. In that respect, our game is
close to stochastic games with incomplete information, as studied in [21], for instance.
Although it is known that stochastic games with a lack of information on one side
have a value when the game is controlled by the informed player only [21], the general
case is still open.

There are several proofs of Aumann and Maschler’s result. In order to show that
our game has a value, we use a strategy of proof initiated by De Meyer in [12] and
later developed in [13, 14, 17]. We first note that the maps V + = V +(t, x, p, q) and
V − = V −(t, x, p, q) are convex in p and concave in q (Lemma 3.2). This leads us to
introduce, for a generic map w : [0, T ]× R

N ×Δ(I)×Δ(J) �→ R, the convex Fenchel
conjugate w∗ of w with respect to the variable p and its concave conjugate w� with
respect to q: for all (t, x, p̂, q) ∈ [0, T ] × R

N × R
I × Δ(J)

w∗(t, x, p̂, q) = sup
p∈Δ(I)

p.p̂− w(t, x, p, q)

and for all (t, x, p, q̂) ∈ [0, T ] × R
N × Δ(I) × R

J

w�(t, x, p, q̂) = inf
q∈Δ(J)

q.q̂ − w(t, x, p, q) .



818 P. CARDALIAGUET

Then the proof of the equality V + = V − runs as follows: We first check (Lemma 4.2)
that V −∗ satisfies a subdynamic programming principle and thus (Corollary 4.3) that
(t, x) �→ V −∗(t, x, p̂, q) is a viscosity subsolution of the (dual) Hamilton–Jacobi (HJ)
equation

wt + H∗ (x,Dw) = 0 in [0, T ] × R
N(2)

for any (p̂, q) ∈ R
I ×Δ(J). The map H∗ is defined through the standard Hamiltonian

H of the game

H(x, ξ) = inf
u∈U

sup
v∈V

f(x, u, v).ξ = sup
v∈V

inf
u∈U

f(x, u, v).ξ

via the relation by H∗(x, ξ) = −H(x,−ξ). Note that we assume that Isaacs’ condition
holds. We recall that the notion of viscosity solutions was introduced by Crandall and
Lions in [11] and first used in the framework of differential games in [15] (see also [3, 4]
for a general presentation). We also establish a symmetric result for V +� (Corollary
4.4): For any (p, q̂) ∈ Δ(I) × R

J , the map (t, x) �→ V +�(t, x, p, q̂) is a viscosity
supersolution of the same equation (2). A new comparison principle (Theorem 5.1)
then implies that V + ≤ V −. Since inequality V + ≥ V − is obvious, the game has a
value: V + = V −. We also have the following characterization of this value: V :=
V + = V − is the unique Lipschitz continuous function which is convex in p, concave
in q, such that (t, x) �→ V∗(t, x, p̂, q) is a subsolution of the HJ equation (2), while
(t, x) �→ V�(t, x, p, q̂) is a supersolution of (2). We call such a function the dual
solution to the Hamilton–Jacobi equation{

wt + H(x,Dw) = 0 in [0, T ) × R
N ,

w(T, x) =
∑

ij piqjgij(x) in R
N .

We discuss this terminology below.
We explain in section 6 how to adapt our approach to differential games with a

lack of information on the initial positions. As previously, the game is played in two
steps. At time t0, the initial position of the game is chosen at random among I × J
possible initial positions x0

ij according to a probability p ⊗ q, where p ∈ Δ(I) and
q ∈ Δ(J); the index i is communicated to player 1, while the index j is communicated
to player 2. Then the players control system (1) in order, for player 1, to minimize a
terminal payoff g(x(T )) and, for player 2, to maximize it. The key assumption is that
the players observe their opponent’s behavior but not the state of the system x(·).
We prove that this game has a value, which can be characterized as the unique dual
solution of some HJ equation in [0, T ] × R

NIJ .
Although there have been several attempts to formalize differential games with

lack of information [5, 6, 7, 8], there are only very few papers in which a game is
proved to have a value; see in particular [19], [20], which discuss interesting examples.
In [9] we consider a game with a lack of information on the current position, but
with symmetric information. To the best of our knowledge, our result is the first
one showing the existence of a value for differential games with asymmetry in the
information in a general setting.

The kind of characterization proposed in this paper for the value function (as a
dual solution of some Hamilton–Jacobi equations) is also new. It relies upon a new
comparison principle (Theorem 5.1) stating the following: Assume that w1 and w2

defined on [0, T ] × R
N × Δ(I) × Δ(J) are convex in p, concave in q, that (t, x) �→

w�
1(t, x, p, q̂) is a supersolution of the dual HJ equation (2) for any (p, q̂), and that
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(t, x) �→ w∗
2(t, x, p̂, q) is a subsolution of this HJ equation for any (p̂, q). If futhermore

w1(T, x, p, q) ≤ w2(T, x, p, q) for any (x, p, q), then w1 ≤ w2.
Note that the function w2, for instance, is a kind of supersolution for our problem.

For this reason we call it a dual supersolution of the orginal HJ equation

wt + H (x,Dw) = 0 in [0, T ] × R
N ,(3)

and we see the HJ equation (2) as a dual one. Let us recall that, although the Fenchel
conjugate of a supersolution of (3) is a subsolution of the dual equation (2) (see [1]),
the converse does not hold in general. In fact we show through several examples in [10]
that the value function V := V + = V − of our game is not a solution of the original
HJ equation (3), nor are its Fenchel conjugates V∗ and V� solutions of the dual one
(2). The particular structure of our problem leads us to replace the classical notion of
sub- and supersolutions by a weaker one, involving families of sub- and supersolutions
in some dual spaces (see also Lemma 5.4, where an equivalent definition for a dual
subsolution is discussed).

We complete this introduction by describing the organization of the paper. In
section 2, we introduce the main notations: In particular we explain the notions of
random strategies and define the value functions of our game. Section 3 is mainly
devoted to the proof of the convexity properties of the value functions. In section 4
we show that V −∗ satisfies a subdynamic programming principle and is a subsolution
of the dual HJ equation and give the corresponding results for V +�. Section 5 is
devoted to the comparison principle and to the existence of a value. In the last
section, we extend our results to differential games with a lack of information on the
initial position.

2. Definition of the value functions.
Notations. Throughout the paper, x.y denotes the scalar product in the space

R
N , R

I , or R
J (depending on the context) and | · | the Euclidean norm. The ball of

center x and radius r will be denoted by Br(x). If E is a set, then 1E is the indicatrix
function of E (equal to 1 if E and to 0 outside of E). The set Δ(I) is the set of
probability measures on {1, . . . , I}, always identified with the simplex of R

I :

p = (p1, . . . , pI) ∈ Δ(I) ⇔
I∑

i=1

pi = 1 and pi ≥ 0 for i = 1, . . . , I .

The set Δ(J) of probability measures on {1, . . . , J} is defined symmetrically.
The dynamics of the game is given by{

x′(t) = f(x(t), u(t), v(t)) , u(t) ∈ U, v(t) ∈ V,
x(t0) = x0.

(4)

Throughtout the paper we assume that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) U and V are compact subsets of some finite dimensional spaces;
(ii) f : R

N × U × V → R
N is bounded, continuous, and uniformly

Lipschitz continuous with respect to the x variable;
(iii) for i = 1, . . . , I and j = 1, . . . , J , gij : R

N → R is Lipschitz
continuous and bounded.

(5)

We also assume that Isaacs’ condition holds:

H(x, ξ) := inf
u∈U

sup
v∈V

f(x, u, v).ξ = sup
v∈V

inf
u∈U

f(x, u, v).ξ(6)
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for any (x, ξ) ∈ R
N × R

N . We note that the Hamilton–Jacobi equation naturally
associated with the dynamics is the so-called primal Hamilton–Jacobi equation

wt + H(x,Dw) = 0 in [0, T ) × R
N .(7)

For any t0 < t1 ≤ T , the set of open-loop controls for player 1 on [t0, t1] is defined
by

U(t0, t1) = {u : [t0, t1] �→ U Lebesgue measurable} .

If t1 = T , we simply set U(t0) := U(t0, T ). Open-loop controls on the interval
[t0, t1] for player 2 are defined symmetrically and denoted by V(t0, t1) (and by V(t0)
if t1 = T ).

If u ∈ U(t0) and t0 ≤ t1 < t2 ≤ T , we denote by u|[t1,t2]
the restriction of u to the

interval [t1, t2]. We note that u|[t1,T ]
belongs to U(t1).

For any (u, v) ∈ U(t0) × V(t0) and any initial position x0 ∈ R
N , we denote by

t �→ Xt0,x0,u,v
t the solution to (4).

Next we introduce the notions of pure and mixed strategies. The definition of
mixed strategies involves a set S of (nontrivial) probability spaces, which has to be
stable by a finite product. To fix the ideas we choose from now on

S = {([0, 1]n, B([0, 1]n),Ln) for some n ∈ N
∗} ,

where B([0, 1]n) is the class of Borel sets and Ln is the Lebesgue measure on R
n. As

the reader can easily check, the results presented in this paper do not depend on this
particular choice of S.

Definition 2.1 (pure and random strategies). A pure strategy for player 1 at
time t0 is a map α : V(t0) �→ U(t0) which satisfies the following conditions:

(i) α is a measurable map from V(t0) to U(t0), where U(t0) and V(t0) are endowed
with the Borel σ-field associated with the L1 distance;

(ii) α is nonanticipative with delay; i.e., there is some τ > 0 such that, for
any v1, v2 ∈ V(t0), if v1 ≡ v2 a.e. on [t0, t] for some t ∈ (t0, T − τ), then
α(v1) ≡ α(v2) a.e. on [t0, t + τ ].

A random strategy for player 1 is a pair ((Ωα,Fα,Pα), α), where (Ωα,Fα,Pα)
belongs to the set of probability spaces S and α : Ωα × V(t0) �→ U(t0) satisfies the
following conditions:

(i) α is a measurable map from Ωα × V(t0) to U(t0), with Ωα endowed with the
σ-field Fα and U(t0) and V(t0) with the Borel σ-field associated with the L1

distance;
(ii) there is some delay τ > 0 such that, for any v1, v2 ∈ V(t0), any t ∈ (t0, T−τ),

and any ω ∈ Ωα,

v1 ≡ v2 on [t0, t) ⇒ α(ω, v1) ≡ α(ω, v2) on [t0, t + τ) .

We denote by A(t0) the set of pure strategies and by Ar(t0) the set of random
strategies for player 1. By abuse of notations, an element of Ar(t0) is simply noted α—
instead of ((Ωα,Fα,Pα), α)—the underlying probability space being always denoted
by (Ωα,Fα,Pα). Let us point out the inclusion A(t0) ⊂ Ar(t0).

In order to take into account the fact that player 1 knows the index i of the
terminal payoff, a strategy for player 1 is actually an I-uplet α̂ = (α1, . . . , αI) ∈
(Ar(t0))

I .
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Pure and random strategies for player 2 are defined symmetrically: At time t0, a
pure strategy β is a measurable map which is nonanticipative with delay from U(t0) to
V(t0), while a random strategy is a map β : Ωβ × U(t0) �→ V(t0), where (Ωβ ,Fβ ,Pβ)
belongs to S, which satisfies the conditions:

(i) β is measurable from Ωβ × U(t0) to V(t0);
(ii) there is some delay τ > 0 such that, for any u1, u2 ∈ U(t0), any t ∈ (t0, T−τ),

and any ω ∈ Ωβ ,

u1 ≡ u2 on [t0, t) ⇒ β(ω, u1) ≡ β(ω, u2) on [t0, t + τ) .

The set of pure and random strategies for player 2 are denoted by B(t0) and Br(t0),
respectively. Elements of Br(t0) are denoted simply by β and the underlying proba-
bility space by (Ωβ ,Fβ ,Pβ). Since player 2 knows the index j of the terminal payoff,

a strategy for player 2 is a J-uplet β̂ = (β1, . . . , βJ) ∈ (Br(t0))
J .

Let us now comment upon these definitions of strategies. In the recent literature
on differential games, one generally uses “nonanticipative strategies” or “Varayia–
Roxin–Elliott–Kalton” strategies, i.e., pure strategies without delay (see [3, 15], for
instance). In this setting, no measurability condition is required upon the strategy.
We have chosen here to work with “nonanticipative strategies with delay” because
using these strategies allows us to put the game under normal form: See Lemma 2.2
below; standard nonanticipative strategies do not enjoy this crucial property. The
introduction of random strategies is new in the context of differential games, in which
one usually has the existence of a value in pure strategies provided Isaacs’ condition
(6) holds. In the game considered in this paper, the players have to hide their private
information. To do this they have to use some randomness in their strategies. From
a technical point of view, this randomness is the key argument for the convexity
properties of the value functions to hold; see the proof of Lemmas 3.2 and 4.1 in
particular. The measurability requirement of a random strategy with respect to ω is
necessary to be able to define an expectation. The joint measurability in (i) of the
definition is a technical requirement needed in the proof of the dynamic programming.
One also has to face such a difficulty for stochastic differential games; see [16], for
instance.

Lemma 2.2. For any pair (α, β) ∈ Ar(t0) × Br(t0) and any ω := (ω1, ω2) ∈
Ωα × Ωβ, there is a unique pair (uω, vω) ∈ U(t0) × V(t0) such that

α(ω1, vω) = uω and β(ω2, uω) = vω .(8)

Furthermore the map ω → (uω, vω) is measurable from Ωα×Ωβ endowed with Fα⊗Fβ

into U(t0) × V(t0) endowed with the Borel σ-field associated with the L1 distance.

Notations. Given any pair (α, β) ∈ Ar(t0)×Br(t0), we denote by (Xt0,x0,α,β
t ) the

map (t, ω) �→ Xt0,x0,uω,vω

t defined on [t0, T ]×Ωα×Ωβ , where (uω, vω) satisfies (8). We
also define the expectation Eαβ as the integral over Ωα × Ωβ against the probability
measure Pα⊗Pβ . In particular, if φ : R

N → R is some bounded continuous map and
t ∈ (t0, T ], we have

Eαβ

(
φ
(
Xt0,x0,α,β

t

))
:=

∫
Ωα×Ωβ

φ
(
Xt0,x0,uω,vω

t

)
dPα ⊗ Pβ(ω) ,(9)

where (uω, vω) is defined by (8). Note that (9) makes sense because, the map (u, v) �→
Xt0,x0,u,v

t being continuous in L1, the map ω �→ φ
(
Xt0,x0,uω,vω

t

)
is measurable in

Ωα × Ωβ and bounded. If either α or β is a pure strategy, then we simply drop α or
β in the expectation Eαβ , which then becomes Eβ or Eα.
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Proof of Lemma 2.2. The existence of (uω, vω) is simply due to the delay and
proved in detail in [9]. We show here only the measurability of ω → (uω, vω). For this
we argue by induction by proving that the map ω → (uω, vω)|[t0,t0+nτ]

from Ωα × Ωβ

into L1([t0, t0 +nτ ]) is measurable, where τ denotes the minimum of the delays for α
and β (see condition (ii) in Definition 2.1).

Let us start with n = 1. It is enough to show that, for any Borel subsets B1 and
B2 of U(t0, t0 + τ) and V(t0, t0 + τ), the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+τ)
∈ B1 ×B2}

is measurable. Let us fix û and v̂ in U(t0) and V(t0). Since α(ω1, ·) and β(ω2, ·) are
nonanticipative with delay τ , the restrictions of α(ω1, v̂) and β(ω2, û) to [t0, t0 + τ ]
do not depend on û and v̂. Hence (uω, vω) ≡ (α(ω, v̂), β(ω, û)) a.e. in [t0, t0 + τ).
Therefore

Ω = {ω1 ∈ Ωα | α(ω1, v̂)|[t0,t0+τ)
∈ B1} × {ω2 ∈ Ωβ | β(ω2, û)|[t0,t0+τ)

∈ B2} ,

which is measurable since α and β are measurable. So the result holds true for n = 1.
Let us now assume that ω → (uω, vω)|[t0,t0+nτ]

from Ωα×Ωβ into L1([t0, t0 +nτ ])
is measurable, and let us show that this still holds true for n+1. It is again enough to
show that, for any Borel subsets B1 and B2 of U(t0, t0+(n+1)τ) and V(t0, t0+(n+1)τ),
the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+(n+1)τ)
∈ B1 ×B2}

is measurable. Let us fix again û and v̂ in U(t0) and V(t0). For any (u, v) ∈ U(t0, t0 +
nτ)×V(t0, t0+nτ), we denote by ũ and ṽ the maps equal to u and v on [t0, t0+nτ ] and
to û and v̂ on [t0+nτ, T ]. Note that (u, v) �→ (ũ, ṽ) is continuous from L1 to L1. Since
α and β are nonanticipative with delay τ , uω ≡ α(ω1, ṽω) on [t0, t0 + (n + 1)τ) and
vω ≡ β(ω1, ũω) on [t0, t0 + (n + 1)τ). Therefore Ω is the preimage of the set B1 ×B2

by the map ω → (α(ω1, ṽω), β(ω2, ũω)), which is measurable as the composition of the
measurable maps ω �→ (uω, vω)|[t0,t0+nτ]

, the map (u, v) �→ (ũ, ṽ), and the maps α and
β. Hence Ω is measurable, and the result is proved.

We now define the payoff associated with a strategy α̂ of player 1 and a strategy
β̂ of player 2.

Definition of the payoff: Let (p, q) ∈ Δ(I) × Δ(J), (t0, x0) ∈ [0, T ) × R
N ,

α̂ = (αi)i=1,...,I ∈ (Ar(t0))
I
, and β̂ = (βj) ∈ (Br(t0))

J . We set

J (t0, x0, α̂, β̂, p, q) =

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
,(10)

where Eαiβj is defined by (9). Note that α̂ does not depend on j, while β̂ does not
depend on i, which formalizes the asymmetry of information.

Definition of the value functions: The upper value function is given by

V +(t0, x0, p, q) = inf
α̂∈(Ar(t0))I

sup
β̂∈(Br(t0))J

J (t0, x0, α̂, β̂, p, q),

while the lower value function is defined by

V −(t0, x0, p, q) = sup
β̂∈(Br(t0))J

inf
α̂∈(Ar(t0))I

J (t0, x0, α̂, β̂, p, q) .
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Let us emphasize that, because of the special form of the payoff, the value functions
defined above cannot be recasted in terms of usual value functions of a zero-sum
differential game with perfect information. For instance, they do not satisfy the
standard dynamic programming principle, as we show in the companion paper [10].

3. Convexity properties of the value functions. The main result of this
section is Lemma 3.2, which states that the value functions V + and V − are convex
in p and concave in q. We also investigate some regularity properties of the value
functions.

Lemma 3.1 (regularity of V + and V −
). Under assumption (5), V + and V − are

Lipschitz continuous.
Proof. We first note that the Lipschitz continuity of V − and V + with respect to

p and q just comes from the boundness of the gij . Using standard arguments, one
easily shows that, for any t0 ∈ [0, T ], (u, v) ∈ U(t0) × V(t0), the map

x → gij
(
Xt0,x,u,v

T

)
is Lipschitz continuous with a Lipschitz constant independant of t0 ∈ [0, T ]. Hence

for any pair of strategies (α̂, β̂) ∈ (Ar(t0))
I × (Br(t0))

J the map

x → J (t, x, α̂, β̂, p, q) =

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij(X

t0,x,αi,βj

T )
)

is C-Lipschitz continuous for some constant C independent of t ∈ [0, T ], of p ∈ Δ(I),
and of q ∈ Δ(J). From this one easily deduces that V + and V − are C-Lipschitz
continuous with respect to x (see, for instance, [15]).

We now consider the time regularity of V − and V +. We do only the proof for
V −, since the case of V + can be treated similarly. Let x0 ∈ R

N , (p, q) ∈ Δ(I)×Δ(J),

and t0 < t1 < T be fixed. Let β̂ = (βj) ∈ (Br(t0))
J be ε-optimal for V −(t0, x0, p, q)

and α ∈ Ar(t1). Let us define, for any j = 1, . . . , J , β̃j ∈ Br(t1) and α′ ∈ Ar(t0) by
setting (for some ū ∈ U fixed)

β̃j(ω, u) = βj(ω, ũ), where ũ(t) =

{
ū if t ∈ [t0, t1),
u otherwise

for any ω ∈ Ωβ̃j
:= Ωβj and u ∈ U(t1), and

α′(ω, v) =

{
ū if t ∈ [t0, t1),
α(ω, v|[t1,T ]

) otherwise
∀ω ∈ Ωα′ := Ωα, ∀v ∈ V(t0) .

We note that, for any α ∈ Ar(t1) and j = 1, . . . , J , we have∣∣∣Xt0,x0,α
′,βj

t −X
t1,x0,α,β̃j

t

∣∣∣ ≤ M |t0 − t1|eL(t−t1) ∀t ≥ t1

(where M = ‖f‖∞ and f is L-Lipschitz continuous), because the pair (uω, vω)
satisfying

α′(ω1, vω) = uω and βj(ω2, uω) = vω

is given by uω = ū and vω = βj(ω2, ū) on [t0, t1] and coincides on [t1, T ] with the pair
(u′

ω, v
′
ω) satisfying

α(ω1, v
′
ω) = u′

ω and β̃j(ω2, u
′
ω) = v′ω on [t1, T ] .
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Therefore, for any α̂ = (αi) ∈ (Ar(t1))
I , we have

J (t1, x0, α̂, (β̃j), p, q)

≥ J (t0, x0, α̂
′, β̂, p, q) − LM |t0 − t1|eL(T−t1)

≥ infα̂”∈(Ar(t0))I J (t0, x0, α̂”, β̂, p, q) − LM |t0 − t1|eL(T−t1)

≥ V −(t0, x0, p, q) − ε− LM |t0 − t1|eL(T−t1)

(where L is also a Lipchitz constant for the gi), because β̂ is ε-optimal for V −(t0, x0, p, q).
Since this holds for any α̂ = (αi) ∈ (Ar(t1))

I and any ε > 0, we get

V −(t1, x0, p, q) ≥ V −(t0, x0, p, q) − LM |t0 − t1|eL(T−t1) .

The reverse inequality can be proved in a similar way: We choose some ε-optimal
strategy β̂ = (βj) ∈ (Br(t1))

J for V −(t1, x0, p, q), and we extend it to a strategy

(β̃j) ∈ (Br(t0))
J by setting (for some v̄ ∈ V fixed)

β̃j(ω, u) =

{
v̄ if t ∈ [t0, t1),
βj(ω, u|[t1,T ]

) otherwise
∀ω ∈ Ωβ̃j

:= Ωβj , ∀u ∈ U(t0) .

Then similar estimates as above show that for any α̂ ∈ (Ar(t0))
I we have

J (t0, x0, α̂, (β̃j), p, q) ≥ V −(t1, x0, p, q) − ε− LM |t0 − t1|eL(T−t1)

from the ε-optimality of β̂ for V −(t1, x0, p, q). Then we get

V −(t0, x0, p, q) ≥ V −(t1, x0, p, q) − LM |t0 − t1|eL(T−t1) .

Lemma 3.2 (convexity properties of V − and V +
). For any (t, x) ∈ [0, T ) × R

N ,
the maps V + = V +(t, x, p, q) and V − = V −(t, x, p, q) are convex in p and concave in
q on Δ(I) and Δ(J), respectively.

Remark. This result is well known for repeated games with a lack of information.
The procedure we use in the proof is usually called “splitting”; see [22], for instance.

Proof of Lemma 3.2. We do only the proof for V +; the proof for V − can be
achieved by reversing the roles of the players. One first easily checks that

V +(t0, x0, p, q) = inf
(αi)∈(Ar(t0))I

J∑
j=1

qj sup
β∈Br(t0)

[
I∑

i=1

piEαiβ

(
g
(
Xt0,x0,αi,β

T

))]
.

Hence q → V +(t, x, p, q) is concave for any (t, x, p).
We now prove the convexity of V + with respect to p. Let (t, x, q) ∈ [0, T ) ×

R
N × Δ(J), p0, p1 ∈ Δ(I), λ ∈ (0, 1), and let α̂0 = (α0

i ) ∈ (Ar(t))
I and α̂1 = (α1

i ) ∈
(Ar(t))

I be ε-optimal for V +(t, x, p0, q) and V +(t, x, p1, q), respectively (ε > 0). Let
us set pλ = (1 − λ)p0 + λp1. We can assume without loss of generality that pλi �= 0
for any i (because if pλi = 0, then p0

i = p1
i = 0, so that this index i plays no role in

our computation). We now define the strategy α̂λ = (αλ
i ) ∈ (Ar(t))

I by setting

Ωαλ
i

= [0, 1] × Ωα0
i
× Ωα1

i
, Fαλ

i
= B([0, 1]) ⊗Fα0

i
⊗Fα1

i
, Pαλ

i
= L1 ⊗ Pα0

i
⊗ Pα1

i

(where B([0, 1]) is the Borel σ-field and L1 the Lebesgue measure on [0, 1]) and

αλ
i (ω1, ω2, ω3, v) =

⎧⎨⎩ α0
i (ω2, v) if ω1 ∈ [0,

(1−λ)p0
i

pλ
i

),

α1
i (ω3, v) if ω1 ∈ [

(1−λ)p0
i

pλ
i

, 1]
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for any (ω1, ω2, ω3) ∈ Ωαλ
i

and v ∈ V(t). We note that (Ωαλ
i
,Fαλ

i
,Pαλ

i
) belongs to

the set of probability spaces S and that αλ
i belongs to Ar(t0) for any i = 1, . . . , I.

The interpretation of the strategy α̂λ is the following: If the index i is chosen

according to the probability pλ, then player 1 chooses α0
i with probability

(1−λ)p0
i

pλ
i

and α1
i with probability 1− (1−λ)p0

i

pλ
i

=
λp1

i

pλ
i

. Hence the probability for the strategy α0
i

to be chosen is pλi
(1−λ)p0

i

pλ
i

= (1− λ)p0
i , while the strategy α1

i appears with probability

pλi
λp1

i

pλ
i

= λp1
i . Therefore

sup
β̂

J (t, x, α̂λ, β̂, pλ, q) =
∑
j

qj sup
β

∑
i

pλi Eαλ
i ,β

(
gij(X

t,x,αλ
i ,β

T )
)

=
∑
j

qj sup
β

∑
i

pλi

[
(1 − λ)p0

i

pλi
Eα0

i ,β

(
gij(X

t,x,α0
i ,β

T )
)

+
λp1

i

pλi
Eα1

i ,β

(
gij(X

t,x,α1
i ,β

T )
)]

≤ (1 − λ)
∑
j

qj sup
β

∑
i

p0
iEα0

i ,β

(
gij(X

t,x,α0
i ,β

T )
)

+λ
∑
j

qj sup
β

∑
i

p1
iEα1

i ,β

(
gij(X

t,x,α1
i ,β

T )
)

≤ (1 − λ)V +(t, x, p0, q) + λV +(t, x, p1, q) + ε,

because α̂0 and α̂1 are ε-optimal for V +(t, x, p0, q) and V +(t, x, p1, q), respectively.
Therefore

V +(t, x, pλ, q) ≤ supβ̂ J (t, x, α̂λ, β̂, pλ, q)

≤ (1 − λ)V +(t, x, p0) + λV +(t, x, p1) + ε ,

which proves the desired claim because ε is arbitrary.
The convexity properties of the value functions lead one naturally to consider

their Fenchel conjugates. Let w : [0, T ] × R
N × Δ(I) × Δ(J) �→ R be some function.

We denote by w∗ its convex conjugate with respect to variable p:

w∗(t, x, p̂, q) = sup
p∈Δ(I)

p̂.p− w(t, x, p, q) ∀(t, x, p̂, q) ∈ [0, T ] × R
N × R

I × Δ(J) .

In particular V −∗ and V +∗ denote the convex conjugate with respect to the p-variable
of the functions V − and V +.

For a function w = w(t, x, p̂, q) defined on the dual space [0, T ]×R
N ×R

I ×Δ(J),
we also denote by w∗ its convex conjugate with respect to p̂ defined on [0, T ]×R

N ×
Δ(I) × Δ(J):

w∗(t, x, p, q) = sup
p̂∈RI

p.p̂− w(t, x, p, q) ∀(t, x, p, q) ∈ [0, T ] × R
N × Δ(I) × Δ(J) .

In a symmetric way, we denote by w� = w�(t, x, p, q̂) the concave conjugate with
respect to q of w:

w�(t, x, p, q̂) = inf
q∈Δ(J)

q̂.q − w(t, x, p, q) ∀(t, x, p, q̂) ∈ [0, T ] × R
N × Δ(I) × R

J .

4. The subdynamic programming. The main result of this section is that
V +� and V −∗ are subsolutions of the dual HJ equation. To fix the ideas, we study
here the case of V −∗ and deduce at the very end of the section the symmetric results
for V +�.
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Lemma 4.1 (reformulation of V −∗
). We have

V −∗(t, x, p̂, q) =

inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i∈{1,...,I}

⎧⎨⎩p̂i −
J∑

j=1

qjEαβj

(
gij(X

t,x,α,βj

T )
)⎫⎬⎭ .

(11)

Proof of Lemma 4.1. Let us note for later use that

V −(t, x, p, q) := sup
βj

inf
αi

∑
i,j

piqjEαiβj

(
gij(X

t,x,αi,βj

T )
)

= sup
βj

∑
i

pi inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)
,

(12)

because player 1 can choose—and indeed chooses—his strategy α̂ = (αi) such that αi

minimizes
∑

j qjEαβj

(
gij(X

t,x,αi,βj

T )
)
.

Let us denote by z = z(t, x, p̂, q) the right-hand side of equality (11). We first
claim that

z is convex with respect to p̂.(13)

Proof of (13). The proof mimics the proof of the convexity of V +. Let (t, x, q) ∈
[0, T )×R

N×Δ(J), p̂0, p̂1 ∈ R
I , λ ∈ (0, 1), and let (β0

j ) ∈ (Br(t))
J and (β1

j ) ∈ (Br(t))
J

be ε-optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q), respectively (ε > 0). Let us set p̂λ =
(1 − λ)p̂0 + λp̂1. We define the strategies βλ

j ∈ Br(t) by setting

Ωβλ
j

= [0, 1] × Ωβ0
j
× Ωβ1

j
, Fβλ

j
= B([0, 1]) ⊗Fβ0

j
⊗Fβ1

j
, Pβλ

j
= L1 ⊗ Pβ0

j
⊗ Pβ1

j
,

and

βλ
j (ω1, ω2, ω3, u) =

{
β0
j (ω2, u) if ω1 ∈ [0, (1 − λ)),

β1
j (ω3, u) if ω1 ∈ [(1 − λ), 1]

for any (ω1, ω2, ω3) ∈ Ωβλ
j

and u ∈ U(t). Then (Ωβλ
j
,Fβλ

j
,Pβλ

j
) belongs to S and

(βλ
j ) ∈ (Br(t0))

J . For any α ∈ Ar(t), we have by using the convexity of the map
(si) �→ maxi{si}:

max
i

⎧⎨⎩p̂λi −
∑
j

qjEα,βλ
j

(
gij(X

t,x,α,βλ
j

T )

)⎫⎬⎭
= max

i

⎧⎨⎩(1 − λ)

⎛⎝p̂0
i −

∑
j

qjEαβ0
j

(
gij(X

t,x,α,β0
j

T )

)⎞⎠
+ λ

⎛⎝p̂1
i −

∑
j

qjEαβ1
j

(
gij(X

t,x,α,β1
j

T )

)⎞⎠⎫⎬⎭
≤ (1 − λ) sup

α
max

i

⎧⎨⎩p̂0
i −

∑
j

qjEαβ0
j

(
gij(X

t,x,α,β0
j

T )

)⎫⎬⎭
+λ sup

α
max

i

⎧⎨⎩p̂1
i −

∑
j

qjEαβ1
j

(
gij(X

t,x,α,β1
j

T )

)⎫⎬⎭
≤ (1 − λ)z(t, x, p̂0, q) + λz(t, x, p̂1, q) + ε,



DIFFERENTIAL GAMES WITH ASYMMETRIC INFORMATION 827

because β0 and β1 are ε-optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q), respectively. Hence

z(t, x, p̂λ, q) ≤ sup
α

max
i

⎧⎨⎩p̂λi −
∑
j

qjEα,βλ
j

(
gij(X

t,x,α,βλ
j

T )

)⎫⎬⎭
≤ (1 − λ)z(t, x, q0) + λz(t, x, q1) + ε ,

which proves the desired claim because ε is arbitrary.
Next we show that V −∗ = z. Indeed we have by definition of z:

z∗(t, x, p, q) = sup
p̂

p.p̂− inf
(βj)

max
i

⎧⎨⎩p̂i − inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)⎫⎬⎭

= sup
(βj)

sup
p̂

min
i

⎧⎨⎩p.p̂− p̂i + inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)⎫⎬⎭ .

In this last expression, the supp̂ is attained by

p̂i = inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T

)
,

for which all of the arguments of the mini are equal. Hence

z∗(t, x, p, q) = sup
βj

∑
i

pi inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)

= V −(t, x, p, q)

because of (12). Since we have proved that z is convex with respect to p̂, we get by
duality V −∗ = z∗∗ = z.

Lemma 4.2 (subdynamic principle for V −∗
). We have for any (t0, x0, p̂, q) ∈

[0, T ) × R
N × R

I × Δ(J) and any t1 ∈ (t0, T ]

V −∗(t0, x0, p̂, q) ≤ inf
β∈B(t0)

sup
α∈A(t0)

V −∗(t1, X
t0,x0,α,β
t1 , p̂, q) .

Proof. Let us denote by V −∗
1 (t0, t1, x0, p̂, q) the right-hand side of the above

inequality. Arguing as in Lemma 3.1 one can prove that V −∗
1 is Lipschitz continuous

with respect to x. We also note that player 1 can play in pure strategies in V −∗,
namely,

V −∗(t, x, p̂, q) = inf
(βj)∈(Br(t))J

sup
α∈A(t)

max
i∈{1,...,I}

⎧⎨⎩p̂i −
∑
j

qjEβj

[
gij(X

t,x,α,βj

T )
]⎫⎬⎭(14)

for any (t, x, p̂, q) ∈ [0, T ) × R
N × R

I × Δ(J). Indeed, we have from Lemma 4.1 that

V −∗(t, x, p̂, q) =

inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i∈{1,...,I}

⎧⎨⎩p̂i −
J∑

j=1

qjEαβj

(
gij(X

t,x,α,βj

T )
)⎫⎬⎭ .
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Hence the inequality “≥” in (14) is obvious because A(t) ⊂ Ar(t). To prove the reverse
inequality we first note that, for any α ∈ Br(t0) and for any ω1 ∈ Ωα, α(ω1, ·) belongs
to A(t0). Let us fix (βj) ∈ (B(t))J . We have, from the convexity of (si) �→ maxi{si},

sup
α∈Ar(t)

max
i

⎧⎨⎩p̂i −
∑
j

qjEαβj (gij(X
t,x,α,βj

T ))

⎫⎬⎭
≤ sup

α∈Ar(t)

∫
Ωα

max
i

⎧⎨⎩p̂i −
∑
j

qjEβj
(gij(X

t,x,α(ω1,·),βj

T ))

⎫⎬⎭ dPα(ω1)

≤ sup
α∈Ar(t)

sup
ω1∈Ωα

max
i

⎧⎨⎩p̂i −
∑
j

qjEβj
(gij(X

t,x,α(ω1,·),βj

T ))

⎫⎬⎭
≤ sup

α∈A(t)

max
i

⎧⎨⎩p̂i −
∑
j

qjEβj (gij(X
t,x,α,βj

T ))

⎫⎬⎭ .

Taking the infimum over (βj) ∈ (B(t))J gives (14).
Let ε > 0 and β0 ∈ B(t0) be some pure ε-optimal strategy for V −∗

1 (t0, t1, x0, p̂, q).

For any x ∈ R
N , we can find some ε-optimal strategy β̂x = (βx

j ) ∈ Br(t1) for player 2
in the game V −∗(t1, x, p̂, q). From the Lipschitz continuity of the map

y → sup
α∈A(t)

max
i∈{1,...,I}

⎧⎨⎩p̂i −
∑
j

qjEβx
j

[
gij(X

t,y,α,βx
j

T )
]⎫⎬⎭ ,

and of y → V −∗(t1, y, p̂, q), βx is also (2ε)-optimal for V −∗(t1, y, p̂, q) if y ∈ Br(x)
for some radius r > 0. Using the fact that f is bounded, one can show that the
reachable states from (t0, x0) by using the differential equation (1) is bounded and
contained in some ball BR(0). Let us set M = ‖f‖∞, and let us fix σ > 0 small

such that Mσ ≤ r/2. Then we choose (xl)l=1,...,l0 such that
⋃l0

l=1 Br/2(xl) contains
the ball BR(0). Let (El)l=1,...,l0 be a Borel partition of BR(0) such that, for any l,
El ⊂ Br/2(xl). We set

βl
j = βxl

j , Ωl
j = Ωβl

j
, F l

j = Fβl
j
, and Pl

j = Pβl
j

for j = 1, . . . , J and l = 1, . . . , l0. We choose some delay τ ∈ (0, σ] common to all of
the strategies βl

j .
We note for later use that, if for some controls (u, v) ∈ U(t0)×V(t0) and for some

l, we have Xt0,x0,u,v
t1−τ ∈ El, then

|Xt0,x0,u,v
t1−τ −Xt0,x0,u,v

t1 | ≤ ‖f‖∞τ ≤ Mσ ≤ r/2 ,

so that Xt0,x0,u,v
t1 belongs to Br(xl). In particular (βl

j)j is (2ε)-optimal for V + at

(t1, X
t0,x0,u,v
t1 , p̂, q). To summarize

Xt0,x0,u,v
t1−τ ∈ El ⇒ (βl

j)j is (2ε)-optimal for V −∗ at (t1, X
t0,x0,u,v
t1 , p̂, q).(15)

Let us now define a new strategy β̂ = (βj) ∈ (Br(t0))
J in the following way: Set

Ωβj
= Πl0

l=1Ω
l
j , Fβj

= F1
j ⊗ . . .⊗F l0

j , and Pβj
= P1

j ⊗ . . .⊗ Pj0
j ,
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and, for any ω = (ω1, . . . , ωl0) ∈ Ωβj
and u ∈ U(t0), set

βj(ω, u)(t) =

{
β0(u)(t) if t ∈ [t0, t1),

βl
j(ω

l, u|[t1,T ]
)(t) if t ∈ [t1, T ] and X

t0,x0,u,β
0(u)

t1−τ ∈ El.

Then (Ωβj ,Fβj ,Pβj ) belongs to S and β̂ = (βj) ∈ (Br(t0))
J .

For any pure strategy α ∈ A(t0), we have

gij(X
t0,x0,α,βj

T ) =

l0∑
l=1

gij

(
X

t1,X
t0,x0,α,β0

t1
,α̃,βl

j

T

)
1
{Xt0,x0,α,β0

t1−τ ∈El}
,

where α̃ ∈ A(t1) is a restriction of α to the time interval [t1, T ] defined by

α̃(v) = α(v′) ∀v ∈ V(t1), where v′(t) =

{
v̄(t) if t ∈ [t0, t1],
v(t) otherwise,

the controls (ū, v̄) being the pair associated with (α, β0) as in (8). Hence

max
i∈{1,...,I}

⎧⎨⎩p̂i −
∑
j

qjEβj

(
gij(X

t0,x0,α,βj

T )
)⎫⎬⎭ =

max
i∈{1,...,I}

⎧⎨⎩p̂i −
∑
j

qj

l0∑
l=1

(∫
Ωl

j

gij

(
X

t1,X
t0,x0,α,β0

t1
,α̃,βl

j

T

)
dPl

j(ω
l)

)
1Ol

⎫⎬⎭
(where we have set Ol = {Xt0,x0,α,β

0

t1−τ ∈ El})

≤
l0∑
l=1

sup
α′∈B(t1)

max
i∈{1,...,I}

⎧⎨⎩p̂i −
∑
j

qj

(∫
Ωl

j

gij

(
X

t1,X
t0,x0,α,β0

t1
,α′,βl

j

T

)
dPl

j(ω
l)

)⎫⎬⎭1Ol

(because of the convexity of the map s = (si) �→ max{si})

≤
l0∑
l=1

(
V −∗

(
t1, X

t0,x0,α,β
0

t1 , p̂, q
)

+ 2ε
)
1Ol

(because of (15))

= V −∗
(
t1, X

t0,x0,α,β
0

t1 , p̂, q
)

+ 2ε

≤ V −∗
1 (t0, t1, x0, p̂, q) + 3ε ,

because β0 is ε-optimal for V −∗
1 (t0, t1, x0, p̂, q).

From this we conclude easily that

V −∗(t0, x0, p̂, q) ≤ V −∗
1 (t0, t1, x0, p̂, q) .

Corollary 4.3 (V −∗ is a subsolution of HJ). For any (p̂, q) ∈ R
I × Δ(J), the

map (t, x) �→ V −∗(t, x, p̂, q) is a viscosity subsolution of the dual Hamilton–Jacobi
equation:

wt + H∗(x,Dw) = 0 in [0, T ] × R
N ,(16)

where H is defined by (6) and H∗(x, ξ) = −H(x,−ξ).
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Remark. From the definition of H, we have

H∗(x, ξ) := sup
u∈U

inf
v∈V

f(x, u, v).ξ = inf
v∈V

sup
u∈U

f(x, u, v).ξ.(17)

Proof of Corollary 4.3. It is well known that a function satisfying a subdynamic
programming principle is a subsolution of the associated HJ equation when the game is
played with classical nonanticipative strategies (see [15]). We give a short proof of this
fact in the framework of nonanticipative strategies with delay. Let (p̂, q) ∈ R

I ×Δ(J)
be fixed, and let φ be a smooth test function such that

φ(t, x) ≥ V −∗(t, x, p̂, q) ∀(t, x) ∈ [0, T ] × R
N ,(18)

with an equality at (t0, x0), where t0 ∈ [0, T ). For any v ∈ V , let us define the pure
strategy β ∈ B(t0) by setting

β(u)(t) = v ∀u ∈ U(t0), t ∈ [t0, T ] .

Let us fix ε > 0 and h > 0 small.
Since V −∗ satisfies the subdynamic programming principle of Lemma 4.2, there

is some strategy αh ∈ A(t0) such that

V −∗(t0, x0, p̂, q) ≤ V −∗(t0 + h,Xt0,x0,αh,β
t0+h , p̂, q) + εh .(19)

Let us set uh(s) = αh(v)(s) and xh(s) = Xt0,x0,αh,β
s = Xt0,x0,uh,v

s . Then

xh(t0 + h) = x0 +

∫ t0+h

t0

f(xh(s), uh(s), v)ds = x0 +

∫ t0+h

t0

f(x0, uh(s), v)ds + hε(h),

where ε(h) �→ 0 as h → 0+. From (18) and (19) we have

0 ≤ V −∗(t0 + h,Xt0,x0,αh,β
t0+h , p̂, q) − V −∗(t0, x0, p̂, q) + εh

≤ φ

(
t0 + h, x0 +

∫ t0+h

t0

f(x0, uh(s), v)ds + hε(h)

)
ds− φ(t0, x0) + εh

≤ hφt(t0, x0) +

∫ t0+h

t0

Dφ(t0, x0).f(x0, uh(s), v)ds + hε1(h) + εh

≤ hφt(t0, x0) + h sup
u∈U

Dφ(t0, x0).f(x0, u, v) + hε1(h) + εh

where ε1(h) �→ 0 as h → 0+. Dividing the last inequality by h > 0 and letting h → 0+

gives

φt(t0, x0) + sup
u∈U

Dφ(t0, x0).f(x0, u, v) ≥ −ε .

Then we let ε → 0+, take the minimum over v ∈ V , and use (17) to get the desired
inequality:

φt(t0, x0, p) + H∗(x0, Dφ(t0, x0)) ≥ 0 .

To state the symmetric results for V +�, we need only to note that

−V +(t, x, p, q) = sup
α̂∈(Ar(t0))I

inf
β̂∈(Br(t0))J

I∑
i=1

I∑
j=1

piqjEαiβj

(
(−gij)

(
X

t0,x0,αi,βj

T

))
,
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which is of the same form as V − when one changes the roles of the players. In
particular the convex Fenchel conjugate of (−V +) with respect to q, i.e., −V +�(−q̂),
satisfies a subdynamic programming principle and is therefore a subsolution of some
associated Hamilton–Jacobi equation. From this we easily deduce the following.

Corollary 4.4 (V +� is a supersolution of HJ). For any (t0, t1, x0, p, q̂) ∈ [0, T ]×
[0, T ] × R

N × Δ(I) × R
J , we have

V +�(t0, x0, p, q̂) ≥ sup
α∈A(t0)

inf
β∈B(t0)

V +�(t1, X
t0,x0,α,β
t1 , p, q̂) .

Hence V +� is a supersolution of the dual Hamilton–Jacobi equation (16).
Remark. We use here Isaacs’ assumption (6). Indeed, if V −∗ is a subsolution of the

HJ equation (16) with H∗(x, ξ) = infu supv f(x, u, v).ξ, V +� is actually a supersolution
of (16) with a Hamiltonian H∗ defined by H∗(x, ξ) = supv infu f(x, u, v).ξ.

5. Existence of the value and solutions of the primal/dual HJ equa-
tions. In this section we prove that our game has a value: V + = V −. This value can
be characterized in terms of dual solutions of some HJ equations.

The key argument for this is the following comparison principle, which we state
for later use for a general Hamiltonian H. We assume that H : R

N × R
N → R is

continuous, and we suppose that there is a constant C such that, for any x1, x2 ∈ R
N

and θ ≥ 0,

|H(x1, θ(x1 − x2)) −H(x2, θ(x1 − x2))| ≤ C|x1 − x2|(1 + θ|x1 − x2|) .(20)

Let us point out that the map H defined by (6) satisfies the above assumptions under
conditions (5) on the dynamics.

Recall that, for any map w = w(t, x, p, q) defined on [0, T ] × R
N × Δ(I) × Δ(J),

w∗ denotes the convex Fenchel conjugate of w with respect to p, while w� denotes its
concave Fenchel conjugate with respect to q.

We now consider a Hamilton–Jacobi equation of the form:

zt + H(x,Dz) = 0 .(21)

We say that a function w : [0, T ] × R
N × Δ(I) × Δ(J) �→ R is a dual subsolution of

(21) if w is Lipschitz continuous, convex with respect to p, and concave with respect
to q and if, for any (p, q̂) ∈ Δ(I) × R

J , (t, x) �→ w�(t, x, p, q̂) is a supersolution of the
dual HJ equation

zt + H∗(x,Dz) = 0 ,(22)

where H∗(x, ξ) = −H(x,−ξ). In a symmetric way, w is a dual supersolution of the
HJ equation (21) if w is Lipschitz continuous, convex with respect to p, and concave
with respect to q and if, for any for any (p̂, q) ∈ R

I ×Δ(J), (t, x) �→ w∗(t, x, p̂, q) is a
subsolution of the dual HJ equation (22). We say that w is a dual solution of (21) if
w is at the same time a dual subsolution and a dual supersolution of (21).

Theorem 5.1 (comparison principle). Let w1, w2 : [0, T ]×R
N×Δ(I)×Δ(J) �→ R

be, respectively, a dual subsolution and a dual supersolution of the HJ equation (21).
We assume that for any (x, p, q) ∈ R

N × Δ(I) × Δ(J), w1(T, x, p, q) ≤ w2(T, x, p, q).
Then w1 ≤ w2 in [0, T ] × R

N × Δ(I) × Δ(J).
Remarks.
1. We cannot compare w�

1 and w∗
2 at time t = T . So this result is not an

application of the classical comparison principle.
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2. It is known that, if w2 is a supersolution of the HJ equation (21), then w∗
2 is a

subsolution of the dual HJ equation (22) (see, for instance, [1]). The converse
does not hold true in general, and so we cannot rephrase the assumptions in
term of sub- and supersolutions of (21) for w1 and w2. However, it turns out
that w2, for instance, is a supersolution at “some suitable points,” related
with its convexity property with respect to p. We explain this more precisely
in Lemma 5.4 below.

3. The result can be extended to bounded uniformly continuous subsolutions by
standard techniques (see [3], for instance).

The comparison principle is proved at the end of the section. Let us now state
the main result of this paper.

Theorem 5.2 (existence of the value). Assume that conditions (5) on f and on
the gi hold and that Isaacs’ assumption (6) is satisfied. Then we have

V +(t, x, p, q) = V −(t, x, p, q) ∀(t, x, p) ∈ [0, T ] × R
N × Δ(I) × Δ(J) .

Proof of Theorem 5.2. From Lemma 3.1, V − and V + are Lipschitz continuous.
From Lemma 3.2, we know that V + and V − are convex with respect to p and concave
with respect to q. Corollary 4.3 states that, for any (p̂, q) ∈ R

I × Δ(J), V −∗(·, ·, p̂, q)
is a subsolution of the dual HJ equation (16). Hence V − is a dual supersolution of (7).
Corollary 4.4 states that V +�(·, ·, p, q̂) is a supersolution of the HJ equation (16) for
any (p, q̂) ∈ Δ(I) × R

J and therefore a dual subsolution of (7). Since V +(T, ·, p, q) =
V −(T, ·, p, q) =

∑
i,j piqjgij , the comparison principle states that V + ≤ V −. But the

reverse inequality always holds. Hence V − = V + and the game has a value.
The above proof also shows the following.
Corollary 5.3 (characterization of the value). Under the assumptions of The-

orem 5.2, the value function V := V + = V − is the unique dual solution of the HJ
equations (7), such that V (T, x, p, q) =

∑
ij piqjgij(x).

We complete this section by an equivalent formulation of the notion of dual su-
persolution. Although the result is not needed in the rest of the text, we think that
it can help to enlighten the notion.

Lemma 5.4. Let w : [0, T ] × R
N × Δ(I) × Δ(J) �→ R be Lipschitz continuous,

convex with respect to p, and concave with respect to q. Then the following statements
are equivalent:

(i) w is a dual supersolution of (21);
(ii) for any q ∈ Δ(J), for any test function φ = φ(t, x, p) which is C1 and convex

in p and such that

(t, x, p) �→ w(t, x, p, q) − φ(t, x, p)

has a strict global minimum at some point (t0, x0, p0) ∈ [0, T ) × R
N × Δ(I),

we have

φt(t0, x0, p0) + H(x0, Dφ(t0, x0, p0)) ≤ 0 .(23)

Remarks.
1. This result means that a dual supersolution of (21)—originally defined in

terms of subsolution of the dual HJ equation—is indeed a supersolution of
the primal HJ equation (21) in weak sense. However, it is not a classical
supersolution. For instance, if I = 1, f = f(u, v), and gj(x) = aj .x for some
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aj ∈ R
N (j = 1, . . . , J), then we prove in [10] that

V +(t, x, p) = V −(t, x, p) = (T − t)Cav(h)(p) +
∑
j

pjx.aj ,

where h(p) = H(
∑

j pjaj) and Cav(h) is the concave hull of h with respect
to p ∈ Δ(I). Then

V −
t + H(DV −) = −Cav(h)(p) + h(p) ≥ 0 ,

with a strict inequality in general. In particular, V − is not a classical super-
solution of the primal HJ equation.

2. Note carefully that we require the minimum w(t, x, p, q)−φ(t, x, p) at (t0, x0, p0)
to be strict. This point is absolutely crucial for the equivalence. It is re-
lated with similar definition in repeated games, where some function has to
be tested only at extreme points (see [17]). Let us point out that a gen-
eral minimum of w − φ cannot be made artificially strict by substracting
ε|(t, x, p) − (t0, x0, p0)|2 to φ (as is usually done in viscosity solutions) be-
cause one then loses the convexity of φ with respect to p.

3. A symmetric result holds for subsolutions: w is a dual subsolution of (21) if
and only if, for any p ∈ Δ(I), for any test function φ = φ(t, x, q) which is C1

and concave in q and such that w − φ has a strict global maximum at some
point (t0, x0, q0) ∈ [0, T ) × R

N × Δ(J), we have

φt(t0, x0, q0) + H(x0, Dφ(t0, x0, q0)) ≥ 0 .

Proof of Lemma 5.4. Let us first assume that w is a dual supersolution of (21).
Let q ∈ Δ(J), φ = φ(t, x, p) be a test function which is C1 and convex in p and such
that w−φ has a strict global minimum at some point (t0, x0, p0) ∈ [0, T )×R

N ×Δ(I).
This means that

w(t, x, p, q) ≤ φ(t, x, p) + w(t0, x0, p0, q) − φ(t0, x0, p0)(24)

for any (t, x, p) ∈ [0, T ] × R
N × Δ(I), with an equality only at (t0, x0, p0). By using

the fact that the minimum of w−φ is strict and the standard perturbation argument
(consisting in replacing φ by φ + ε|p|2 if necessary), we can assume that φ is strictly
convex in p. Then, for any p̂ ∈ R

I , p being the unique element of the subdifferential
of φ∗(t0, x0, ·) at p̂, φ∗(·, ·, p̂) is differentiable at (t0, x0), and one easily checks that

φ∗
t (t0, x0, p̂) = −φt(t0, x0, p) and Dφ∗(t0, x0, p̂) = −Dφ(t0, x0, p) .(25)

Let p̂0 belong to the subdifferential with respect to p of w at (t0, x0, p0). Then
inequality (24) shows that p̂0 belongs to the subdifferential of φ with respect to p at
(t0, x0, p0). Since w and φ are convex in p, we have

w∗(t0, x0, p̂0, q) = p0.p̂0 − w(t0, x0, p0, q) and φ∗(t0, x0, p̂0) = p0.p̂0 − φ(t0, x0, p0) .

Thus

w(t0, x0, p0, q) − φ(t0, x0, p0) = w∗(t0, x0, p̂0, q) − φ∗(t0, x0, p̂0) .(26)

We note that (24) can be rewritten as

p.p̂0 − w(t, x, p, q) ≥ p.p̂0 − φ(t, x, p) − w(t0, x0, p0, q) + φ(t0, x0, p0)
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for all (t, x, p) ∈ [0, T ] × R
N × Δ(I). Taking the sup over p ∈ Δ(I) and taking into

account (26) gives

w∗(t, x, p̂0, q) ≥ φ∗(t, x, p̂0) + w∗(t0, x0, p̂0, q) − φ∗(t0, x0, p̂0) .

Therefore (t, x) �→ w∗(t, x, p̂0, q)− φ∗(t, x, p̂0) has a maximum at (t0, x0). Since w∗ is
a subsolution of the dual HJ equation, we have

φ∗
t (t0, x0, p̂0) + H∗(x0, Dφ∗(t0, x0, p̂0)) ≥ 0 ,

which implies the desired inequality (23) thanks to (25).
Conversely, let us assume that (ii) holds. Let φ be a C1 test function such that

(t, x) �→ w∗(t, x, p̂0, q) − φ(t, x) has a local minimum at (t0, x0) for some (p̂0, q) ∈
R

I × Δ(I). Without loss of generality, we can assume that this minimum is a global
one and that φ(t0, x0) = w∗(t0, x0, p̂0, q) (see [3]). Let φ̃(t, x, p̂) = φ(t, x) if p̂ = p̂0

and φ̃(t, x, p̂) = +∞ otherwise. Then φ̃ ≥ w∗(·, ·, ·, q) on [0, T ] × R
N × R

I , with an
equality at (t0, x0, p̂0). Thus, by duality,

p.p̂0 − φ(t, x) = φ̃∗(t, x, p) ≤ w∗∗(t, x, p, q) = w(t, x, p, q)

for any (t, x, p) ∈ [0, T ] × R
N × Δ(I), with an equality at (t0, x0, p0) for any p0 ∈

∂w∗(t0, x0, p̂0, q) (where ∂w∗(t0, x0, , p̂0, q) denotes the superdifferential of the convex
function p̂ �→ w∗(t0, x0, p̂, q) at p̂0). Hence (t, x, p) �→ w(t, x, p, q) − (p.p̂0 − φ(t, x))
has a minimum at (t0, x0, p0) for any p0 ∈ ∂w∗(t0, x0, p̂0, q). In order to get a strict
minimum, we have to introduce some perturbation term. Let γ > 0, ε > 0, and
(tε, xε, pε) be a point of minimum of w − ψε,γ , where

ψε,γ(t, x, p) = p.p̂0 + ε|p|2 − φ(t, x) − γ|(t, x) − (t0, x0)|2 .

Then (tε, xε, pε) converges (up to some subsequence) to (t0, x0, p0) for some p0 ∈
∂w∗(t0, x0, p̂0, q) as ε → 0+ (we use here the penalization term in γ). Moreover, we
have

ψ̃(t, x, p) := ψε,γ(t, x, p) − ε|p− pε|2 − ε|(t, x) − (tε, xε)|2
< ψε,γ(t, x, p)

≤ w(t, x, p) − w(tε, xε, pε) + ψ̃(tε, xε, pε)

for any (t, x, p) �= (tε, xε, pε), with an equality at (tε, xε, pε). This means that w − ψ̃
has a strict minimum at (tε, xε, pε). Since ψ̃ is still convex in p we get from assumption
(ii) that

ψ̃t(tε, xε, pε) + H(xε, Dψ̃(tε, xε, pε)) ≤ 0 .

Using the definition of ψ̃ and letting ε → 0+, we then obtain

φt(t0, x0) + H∗(x0, Dφ(t0, x0)) ≥ 0 ,

which proves that w is a dual supersolution of (21).
Proof of Theorem 5.1. We follow the proof of Theorem 3.7, p. 152, in [3]. Let

us argue by contradiction, by assuming that there is some (t1, x1, p1, q1) such that
w1(t1, x1, p1, q1) > w2(t1, x1, p1, q1). This means that, for some σ > 0, we have

sup
t,x,p,q

w1(t, x, p, q) − w2(t, x, p, q) − σ(T − t) > 0 .(27)
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We now use the standard method of separation of variables. In order to avoid
burdensome details, we do the proof under the additional assumption that there is
some R > 0 such that w1(t, x, p, q) ≤ w2(t, x, p, q) for any (t, x, p, q) with |x| ≥ R.
This assumption can be omitted by using penalization arguments at infinity (see [3]
for the details). Let ε > 0 be fixed. From our assumption, the map

(t, x, s, y, p, q) �→ w1(t, x, p, q) − w2(s, y, p, q) −
1

ε
|(t, x) − (s, y)|2 − σ(T − t)(28)

has a maximum over [0, T ]×R
N ×Δ(I)×Δ(J), and we denote by (tε, xε, sε, yε, pε, qε)

such a point of maximum. From the usual arguments in [3], we have tε < T and
sε < T for small ε, because w1(T, x, p, q) ≤ w2(T, x, p, q) and w1 and w2 are Lipschitz
continuous. Moreover

lim
ε→0+

1

ε
|(tε, xε) − (sε, yε)|2 = 0 .(29)

Since, for (s, y) = (sε, yε), (tε, xε, qε) is a maximum in (28), we have

w1(t, x, pε, q) ≤ w1(tε, xε, pε, qε) + w2(sε, yε, pε, q) − w2(sε, yε, pε, qε)

+
1

ε

(
|(t, x) − (sε, yε)|2 − |(tε, xε) − (sε, yε)|2

)
+ σ(tε − t)

(30)

for any (t, x, q), with an equality at (tε, xε, qε). Let q̂ε belong to the superdifferential
∂+
q w2(sε, yε, pε, qε) of w2 with respect to q at (sε, yε, pε, qε). Then the above inequality

shows that q̂ε ∈ ∂qw1(tε, xε, pε, qε). From the concavity of w1 and w2 with respect to
q, we have

w�
1(tε, xε, pε, q̂ε) = qε.q̂ε − w1(tε, xε, pε, qε)

and

w�
2(sε, yε, pε, q̂ε) = qε.q̂ε − w2(sε, yε, pε, qε)

so that

w1(tε, xε, pε, qε) − w2(sε, yε, pε, qε) = w�
2(sε, yε, pε, q̂ε) − w�

1(tε, xε, pε, q̂ε) .(31)

Combining (30) with (31) then gives

q.q̂ε − w1(t, x, pε, q) ≥
w�

1(tε, xε, pε, q̂ε) + q.q̂ε − w2(sε, yε, pε, q) − w�
2(sε, yε, pε, q̂ε)

− 1

ε

(
|(t, x) − (sε, yε)|2 − |(tε, xε) − (sε, yε)|2

)
− σ(tε − t) .

Taking the infimum over q in the above expression then gives

w�
1(t, x, pε, q̂ε) ≥

w�
1(tε, xε, pε, q̂ε) −

1

ε

(
|(t, x) − (sε, yε)|2 − |(tε, xε) − (sε, yε)|2

)
− σ(tε − t) .

So (t, x) �→ w�
1(t, x, pε, q̂ε) −

(
− |(t,x)−(sε,yε)|2

ε + σt
)

has a minimum at (tε, xε). Since

w�
1(·, ·, pε, q̂ε) is a supersolution of the HJ equation (21), we get

σ +
2

ε
(sε − tε) + H∗

(
xε,

2

ε
(yε − xε)

)
≤ 0 .(32)
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We now argue in a symmetric way for w2. Since (sε, yε, pε) is a maximum in (28),
we have

w2(s, y, p, qε) ≥ w2(sε, yε, pε, qε) + w1(tε, xε, p, qε) − w1(tε, xε, pε, qε)

− 1

ε

(
|(tε, xε) − (s, y)|2 − |(tε, xε) − (sε, yε)|2

)(33)

for any (s, y, p) ∈ [0, T ]×R
N×Δ(I). Let p̂ε belong to the subdifferential ∂−

p w1(tε, xε, pε, qε)
of w1 with respect to p at (sε, yε, pε, qε). Then the above inequality shows that
p̂ε ∈ ∂−

p w2(sε, yε, pε, qε). Therefore we have as above

w2(sε, yε, pε, qε) − w1(tε, xε, pε, qε) = w∗
1(tε, xε, p̂ε, qε) − w∗

2(sε, yε, p̂ε, qε) .

Then we get from (33):

w∗
2(s, y, p̂ε, qε) ≤ w∗

2(sε, yε, p̂ε, qε) +
1

ε

(
|(tε, xε) − (s, y)|2 − |(tε, xε) − (sε, yε)|2

)
for any (s, y) ∈ [0, T ] × R

N , with an equality at (sε, yε). Since w∗
2(·, ·, p̂ε, qε) is a

subsolution of the HJ equation (21), this gives

2

ε
(sε − tε) + H∗

(
yε,

2

ε
(yε − xε)

)
≥ 0 .(34)

Computing the difference between (32) and (34) and using the assumption (20)
on H (recall that H∗(x, ξ) = −H(x,−ξ)) gives

−σ + C|xε − yε|
(

1 +
2|xε − yε|

ε

)
≥ 0 ,

which is in contradiction with (29) as ε → 0+.

6. The case of a lack of information on the initial position. In this section
we investigate a two-player zero-sum differential game in which the players have some
private information on the random initial position. The dynamics of the game is still
given by

x′(t) = f(x, u(t), v(t)) , u(t) ∈ U, v(t) ∈ V,(35)

where U , V , and f satisfy (5). The terminal time of the game is denoted by T , and
the payoff is a terminal payoff g(x(T )), where g : R

N → R is Lipschitz continuous
and bounded. The game starts at time t0 ∈ [0, T ].

The description of the game involves I × J initial positions x0
ij , i = 1, . . . , I,

j = 1, . . . , J , a probability p ∈ Δ(I), and a probability q ∈ Δ(J). As before, the game
is played in two steps: At time t0, the pair (i, j) is chosen according to the probability
p⊗ q; the index i is communicated to player 1 only and the index j to player 2 only.

Then the players control system (35) with initial position x0
ij in order for player 1

to minimize the terminal payoff g(x(T )) and for player 2 to maximize it. The players
observe their opponent’s behavior and try to deduce from this behavior their missing
information. They cannot compute the actual position of the system in general.

As before we define the upper and lower value functions associated to this game.
For this we introduce the new state of the system: x = (xij), which denotes the I×J-
uplet of possible positions. The upper value is given for t0 ∈ [0, T ), x0 = (x0

ij) ∈ R
NIJ ,
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p ∈ Δ(I), and q ∈ Δ(J) by

V +(t0,x
0, p, q) = inf

(αi)∈(Ar(t0))I
sup

(βj)∈(Br(t0))J

I∑
i=1

J∑
j=1

piqjEαiβj

(
g

(
X

t0,x
0
ij ,αi,βj

T

))
,

where t → X
t0,x

0
ij ,αi,βj

t is the random solution to (35) with initial position x0
ij at time

t0 when the players play the random strategies αi and βj (see section 2). The lower
value is defined by the symmetric formula:

V −(t0,x
0, p, q) = sup

(βj)∈(Br(t0))J
inf

(αi)∈(Ar(t0))I

I∑
i=1

J∑
j=1

piqjEαiβj

(
g

(
X

t0,x
0
ij ,αi,βj

T

))
.

Obviously we have

V −(t0,x
0, p, q) ≤ V +(t0,x

0, p, q) ∀(t0,x
0, p, q) ∈ [0, T ] × R

NIJ × Δ(I) × Δ(J) .

Our main result is that the equality holds.
Theorem 6.1. Assume that f , U , and V satisfy (5), that the payoff g : R

N → R

is Lipschitz continuous and bounded, and that the following generalized Isaacs condi-
tion holds:

H(x, ξ) = inf
u∈U

sup
v∈V

I∑
i=1

J∑
j=1

f(xij , u, v).ξij = sup
v∈V

inf
u∈U

I∑
i=1

J∑
j=1

f(xij , u, v).ξij(36)

for any x = (xij) ∈ R
NIJ and ξ = (ξij) ∈ R

NIJ .
Then the game has a value:

V −(t0,x
0, p, q) = V +(t0,x

0, p, q) ∀(t0,x
0, p, q) ∈ [0, T ] × R

NIJ × Δ(I) × Δ(J) .

Furthermore this value is the dual solution of the HJ equation{
zt + H(x, Dz) = 0 in [0, T ) × R

NIJ ,

z(T,x, p, q) =
∑I

i=1

∑J
j=1 piqjg(xij) for x = (xij) ∈ R

NIJ .
(37)

Proof of Theorem 6.1. The proof is mainly the same as the proof of Theorem
5.2 and Corollary 5.3, and we give only an outline of it. We first note that V + and
V − are Lipschitz continuous in their arguments, convex in p, and concave in q as in
Lemmas 3.1 and 3.2. Then, following Lemma 4.1, one proves that

V −∗(t,x0, p̂, q) = inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i=1,...,I

⎧⎨⎩p̂i −
∑
j

qjEαβj

[
g

(
X

t,x0
ij ,α,βj

T

)]⎫⎬⎭
for any t ∈ [0, T ], x0 = (x0

ij) ∈ R
NIJ , p̂ ∈ R

I , and q ∈ Δ(J). Using this, one obtains
as in Lemma 4.2 that V −∗ satisfies the subdynamic programming principle

V −∗(t0,x
0, p̂, q) ≤ inf

β∈B(t0)
sup

α∈A(t0)

V −∗(t1,X
t0,x

0,α,β
t1 , p̂, q)

for any 0 ≤ t0 < t1 ≤ T , x0 ∈ R
NIJ , p̂ ∈ R

I , and q ∈ Δ(J), where

Xt0,x
0,α,β

t1 =

(
X

t0,x
0
ij ,α,β

t1

)
i=1,...,I
j=1,...,J

.
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Hence V −∗(·, ·, p̂, q) is a subsolution of the dual HJ equation

zt + H∗(x,Dz) = 0 in [0, T ] × R
NIJ

for any (p̂, q), which means that V − is a dual supersolution of (37). One proves in the
same way that V + is a dual subsolution of (37). The comparison Theorem 5.1 then
implies that V + ≤ V −. Since the inequality V − ≤ V + is obvious, we get the equality
and the characterization of the value function.
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A MODEL FOR REVERSIBLE INVESTMENT CAPACITY
EXPANSION∗
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Abstract. We consider the problem of determining the optimal investment level that a firm
should maintain in the presence of random price and/or demand fluctuations. We model market
uncertainty by means of a geometric Brownian motion, and we consider general running payoff func-
tions. Our model allows for capacity expansion as well as for capacity reduction, with each of these
actions being associated with proportional costs. The resulting optimization problem takes the form
of a singular stochastic control problem that we solve explicitly. We illustrate our results by means
of the so-called Cobb–Douglas production function. The problem that we study presents a model in
which the associated Hamilton–Jacobi–Bellman equation admits a classical solution that conforms
with the underlying economic intuition but does not necessarily identify with the corresponding value
function, which may be identically equal to ∞. Thus, our model provides a situation that highlights
the need for rigorous mathematical analysis when addressing stochastic optimization applications in
finance and economics, as well as in other fields.

Key words. singular stochastic control, investment capacity expansion, variational inequalities

AMS subject classifications. 93E20, 49J40, 91B32, 91B70

DOI. 10.1137/050640758

1. Introduction. We consider the problem of determining the optimal capacity
level of a given investment project operating within a random economic environment
in a dynamical way. In particular, we consider an investment project that yields
payoff at a rate that is dependent on its installed capacity level and on an underlying
economic indicator such as the price of or the demand for the project’s unique output
commodity, which we model by a geometric Brownian motion. The project’s capacity
level can be increased or decreased at any time and at given proportional costs. The
objective is to determine the project’s capacity level that maximizes the associated
expected, discounted payoff flow.

Irreversible capacity expansion models have attracted considerable interest in the
literature; e.g., see Davis et al. [6] (see also Davis [5]), Kobila [10], Øksendal [11],
Wang [12], Chiarolla and Haussmann [4], Bank [2], and the references therein. Re-
cently, Bentolila and Bertola [3] and Abel and Eberly [1] considered models involving
both expansion and reduction of a project’s capacity level. These authors assume
that the rate at which the project yields payoff is modelled by a constant elasticity
Cobb–Douglas production function. Our model considers many more general running
payoff functions that include the whole family of the Cobb–Douglas production func-
tions as special cases and allow for the situation where a running cost proportional
to the project’s installed capacity (reflecting, e.g., labor costs) is also included (see
Examples 1 and 2). Also, Guo and Pham [7] consider a related partially reversible
investment model with entry decisions and a general running payoff function. The
model that these authors consider is fundamentally different from the ones considered
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by Bentolila and Bertola [3] and Abel and Eberly [1], or the one that we study here,
because, e.g., it is one-dimensional instead of two-dimensional.

Our analysis, which leads to results of an explicit analytic nature, involves the
derivation of tight conditions for the project’s value function to be finite. The fact
that simple choices for the project’s running payoff function lead to unique solutions to
the associated free-boundary problem that conform with standard economic intuition
but are associated with value functions that are identically equal to infinity presents a
most interesting feature of our analysis (see Remark 3; also, note that this pathological
situation does not arise in the context of the special cases studied by Bentolila and
Bertola [3] and Abel and Eberly [1]). Indeed, this possibility stresses the fact that
treating optimization models related to investment decision making in a “formal” way,
which is often the case in the economics literature, can lead to erroneous conclusions
and can suggest the adoption of potentially disastrous policies.

The paper is organized as follows. Section 2 is concerned with a rigorous formu-
lation of the investment decision model that we study. In section 3, we derive tight
sufficient conditions, which conform with economic intuition, for the associated opti-
mization problem to possess a finite value function. Assumptions 1 and 2 summarize
all of the assumptions that we make about the problem data in the paper. We also
establish a number of estimates that we use in our subsequent analysis. Section 4 is
concerned with the proof of a verification theorem that provides sufficient conditions
for the value function of our control problem to be identified with a solution to the as-
sociated dynamic programming or Hamilton–Jacobi–Bellman equation. In section 5,
we solve the optimization problem considered. Finally, we illustrate our results by a
number of examples in section 6.

2. Problem formulation. We fix a probability space (Ω,F , P ) equipped with
a filtration (Ft) satisfying the usual conditions of right continuity and augmentation
by P -negligible sets and carrying a standard, one-dimensional (Ft)-Brownian motion
W . We denote by A the family of all càglàd, (Ft)-adapted, increasing processes ξ
such that ξ0 = 0.

We consider an investment project that produces a given commodity, and we
assume that the project’s capacity, namely its rate of output, can be controlled at
any given time. We denote by Yt the project’s capacity at time t, and we model
cumulative capacity increases (resp., decreases) by a process ξ+ ∈ A (resp., ξ− ∈ A).
In particular, given any times 0 ≤ s ≤ t, ξ+

t+ − ξ+
s and ξ−t+ − ξ−s are the total capacity

increase and decrease, respectively, incurred by the project management’s decisions
during the time interval [s, t]. The project’s capacity process Y is therefore given by

Yt = y + ξ+
t − ξ−t , Y0 = y ≥ 0,(1)

where y ≥ 0 is the project’s initial capacity. Note that the project’s capacity process
Y is a finite variation process because it is the difference of two increasing processes.
Also, the assumptions that the processes ξ± are càglàd and ξ±0 = 0 imply that Y0 = y.
We make the assumption that the project’s management controls only the project’s
capacity level. Accordingly, we denote by Πy the set of all admissible decision strate-
gies, which is defined by

Πy =
{
(ξ+, ξ−) : ξ+, ξ− ∈ A, and Yt ≥ 0, for all t ≥ 0

}
.
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We assume that all randomness associated with the project’s operation can be
captured by a state process X that satisfies the SDE

dXt = bXt dt +
√

2σXt dWt, X0 = x > 0,(2)

for some constants b and σ. In practice, Xt can be the price of one unit of the output
commodity or an economic indicator reflecting, e.g., the output commodity’s demand,
at time t.

To simplify the notation, we define

S =
{
(x, y) ∈ R

2 : x > 0, y ≥ 0
}
,

so that S is the set of all possible initial conditions.
With each decision policy (ξ+, ξ−) ∈ Πy we associate the performance criterion

Jx,y(ξ
+, ξ−) = E

[ ∫ ∞

0

e−rth(Xt, Yt) dt

−K+

∫
[0,∞[

e−rt dξ+
t −K−

∫
[0,∞[

e−rt dξ−t

]
,(3)

where h : S → R is a given function, and r > 0 and K+, K− are constants. Here, h
models the running payoff resulting from the project’s operation, and K+ (resp., K−)
models the costs associated with increasing (resp., decreasing) the project’s capacity
level.

As it stands in (3), the performance index Jx,y is not necessarily well-defined
because the random variable inside the expectation may not be integrable or even
well-defined. To address this issue, we define

UT =

∫ T

0

e−rth(Xt, Yt) dt−K+

∫
[0,T ]

e−rt dξ+
t −K−

∫
[0,T ]

e−rt dξ−t for T ≥ 0.

(4)

In the next section (see Lemma 4, in particular), we are going to impose assumptions
on h such that UT is well-defined, for all T > 0, and either

U∞ = lim
T→∞

UT exists in R, P -a.s., and U∞ ∈ L1(Ω,F , P ),(5)

in which case we naturally define

Jx,y(ξ
+, ξ−) = E [U∞] ,(6)

as in (3), or there exists an (Ft)-adapted process Z such that

UT ≤ ZT , for all T ≥ 0, and lim sup
T→∞

E [ZT ] = −∞,(7)

in which case we define

Jx,y(ξ
+, ξ−) = −∞.(8)

The objective is to maximize the performance index Jx,y thus defined over all
admissible decision strategies (ξ+, ξ−) ∈ Πy. The value function of the resulting
optimization problem is defined by

v(x, y) = sup
(ξ+,ξ−)∈Πy

Jx,y(ξ
+, ξ−).(9)
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3. Assumptions and preliminary estimates. The purpose of this section is
to establish conditions on the problem data under which our control problem is well-
posed and its value function is finite and to prove certain estimates that we will need.
Before we address these issues, we first discuss an ODE that will play an instrumental
role in the solution of our control problem.

Every solution of the homogeneous ODE

σ2x2u′′(x) + bxu′(x) − rw(x) = 0

is given by

u(x) = Axn + Bxm

for some A,B ∈ R. Here, the constants m < 0 < n are the solutions of the quadratic
equation

σ2λ2 + (b− σ2)λ− r = 0,(10)

given by

m,n =
−(b− σ2) ±

√
(b− σ2)2 + 4σ2r

2σ2
.(11)

Now, let k : ]0,∞[→ R be any measurable function such that

E

[∫ ∞

0

e−rt |k(Xt)| dt
]
< ∞ for all x > 0.(12)

This integrability condition is equivalent to∫ x

0

s−m−1|k(s)| ds +

∫ ∞

x

s−n−1|k(s)| ds < ∞, for all x > 0,

and the function R[k] : ]0,∞[→ R defined by

R[k](x) =
1

σ2(n−m)

[
xm

∫ x

0

s−m−1k(s) ds + xn

∫ ∞

x

s−n−1k(s) ds

]
(13)

is a special solution to the nonhomogeneous ODE

σ2x2u′′(x) + bxu′(x) − rw(x) + k(x) = 0(14)

and satisfies

R[k](x) = E

[∫ ∞

0

e−rtk(Xt) dt

]
.(15)

Furthermore,

if k is increasing, then R[k] is increasing,(16)

and

if k is increasing, then lim
x↓0

k(x)

r
≥ 0 ⇔ lim

x↓0
R[k](x) ≥ 0.(17)
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All of these results are proved in Knudsen, Meister, and Zervos [9]. For future refer-
ence, we also note that, given any λ ∈ R,

E

[∫ ∞

0

e−rtXλ
t dt

]
= xλ

∫ ∞

0

e[σ
2λ2+(b−σ2)λ−r]tE

[
e−σ2λ2t+

√
2σλWt

]
dt

=

{
∞, if λ ≤ m or λ ≥ n,

−xλ/
[
σ2λ2 + (b− σ2)λ− r

]
if λ ∈ ]m,n[.

(18)

We are going to need the following estimate that is related to the definitions
above.

Lemma 1. Given any λ ∈ ]0, n[, there exist constants ε1, ε2 > 0 such that

E
[
e−rtX̄λ

t

]
≤ σ2λ2 + ε2

ε2
xλe−ε1t and E

[
sup
t≥0

e−rtX̄λ
t

]
≤ σ2λ2 + ε2

ε2
xλ,

where X̄t = sups≤t Xs.
Proof. Since n is the positive solution of the quadratic equation (10), it follows

that there exist ε1, ε2 > 0 such that

r − ε1 > 0 and σ2λ2 + (b− σ2)λ− (r − ε1) = −ε2.

Given such parameters, we define

V = sup
t≥0

[
−σ2λ2 + ε2√

2|σ|λ
t + Wt

]
,

we calculate

e−rtX̄λ
t = xλe−ε1te−(r−ε1)t sup

s≤t
exp
(
(r − ε1)s− (σ2λ2 + ε2)s +

√
2σλWs

)
= xλe−ε1t sup

s≤t

[
exp
(
−(r − ε1)(t− s)

)
exp
(
−(σ2λ2 + ε2)s +

√
2σλWs

)]
≤ xλe−ε1te

√
2|σ|λV ,

and we observe that

sup
t≥0

e−rtX̄λ
t ≤ xλe

√
2|σ|λV .

Since V is exponentially distributed with parameter 2(σ2λ2 + ε2)/(
√

2|σ|λ)
(see Karatzas and Shreve [8, Exercise 3.5.9]), the two bounds follow by a simple
integration.

The following assumptions on the data of the control problem formulated in sec-
tion 2 will ensure that the associated free-boundary problem has a unique solution
that conforms with economical intuition.

Assumption 1. r > 0, and the function h is C3 and satisfies∫ x

0

s−m−1|h(s, y)| ds +

∫ ∞

x

s−n−1|h(s, y)| ds < ∞

for all (x, y) ∈ S. If we define

H(x, y) = hy(x, y), for x, y > 0,(19)
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then, given any y > 0,

Hx(x, y) > 0, for all x > 0, and lim
x→∞

H(x, y) = ∞,(20)

and, given any x > 0,

Hy(x, y) < 0 for all y > 0.(21)

Also, K+ + K− > 0, and∫ x

0

s−m−1 [|H(s, y)| + |Hy(s, y)|] ds +

∫ ∞

x

s−n−1 [|H(s, y)| + |Hy(s, y)|] ds < ∞

for all x, y > 0.
It is worth observing that (20) and (21) in this assumption have a natural eco-

nomic interpretation. Indeed, we can think of H(x, y)Δy as the additional running
payoff that we are faced with if we increase the project’s capacity level from y to
y + Δy, for small Δy, and the underlying state process X assumes the value x. In
view of this observation, (20) reflects the idea that, given y, a small amount of extra
capacity should be associated with increasing values of additional running payoff as
the value of x, which, e.g., models the price of or the demand for the project’s output
commodity, is increasing. Similarly, (21) reflects the fact that, for a given value x of
the underlying state process, the extra running payoff resulting from a small amount
of additional capacity is decreasing as the level of the already installed capacity y
increases. Also, the assumption that K+ +K− > 0, which is an indispensable one, is
a most realistic one. Indeed, the inequality K+ +K− < 0 gives rise to the unrealistic
scenario where the project’s management can realize arbitrarily high profits by just
sequentially increasing and then decreasing the project’s capacity by the same amount
sufficiently fast.

At this point, we should also observe that (20) and (21) in Assumption 1 exclude
the special case that arises when the running payoff function h does not depend on
the capacity level y, i.e., when h(x, y) = h̃(x), for some function h̃. In this case, it is
plainly optimal to never change the project’s capacity level. However, the qualitative
nature of this strategy is fundamentally different from any of the forms that our
analysis allows the optimal strategy to have, which is reflected in our assumptions.

The following additional assumptions will ensure that the value function of the
control problem considered is finite and identifies with the solution of the associ-
ated Hamilton–Jacobi–Bellman equation. Apart from (26), which can be justified
by straightforward economic considerations such as the ones discussed above, the
conditions in the assumption are of a technical nature.

Assumption 2. K+ > 0, and there exist constants

α > 0, β ∈ ]0, 1[, ϑ ∈ ]0,K+ ∧ (K+ + K−) ∧ n[, and C > 0,(22)

where n > 0 is as in (11), such that

α

1 − β
< n,(23)

−C(1 + y) ≤ h(x, y) ≤ C(1 + xn−ϑ + xαyβ) + r(K+ − ϑ)y, for all (x, y) ∈ S,
(24)

−C ≤ H(x, y) ≡ hy(x, y) ≤ βCxαy−(1−β) + r(K+ − ϑ) for all x, y > 0.(25)
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Also,

hx(x, y) ≥ 0 for all (x, y) ∈ S.(26)

Remark 1. Note that we could have replaced the upper bound in (25) by

H(x, y) ≤
{
C
(
1 + xαy−(1−β)

)
, for all x > 0 and y < y1,

βCxαy−(1−β) + r(K+ − ϑ), for all x > 0 and y ≥ y1,

for some constant y1 > 0. Depending on the problem data, such a significant re-
laxation could result in an optimal policy such as the one depicted by Figure 5 that
would qualitatively enrich the class of optimal capacity control strategies (see also
Example 3 in section 6). However, we decided against such a relaxation because this
would complicate both the presentation and the analysis of our results.

Example 1. A choice for the running payoff function h that has been widely
considered in the literature is the so-called Cobb–Douglas production function given
by

h(x, y) = xαyβ for some constants α > 0 and β ∈ ]0, 1[.(27)

It is straightforward to verify that this function satisfies all of our assumptions if and
only if the parameters α and β satisfy the inequality (23).

Example 2. A choice for the running payoff function h that is a variation of the
Cobb–Douglas function and incorporates a running cost proportional to the project’s
installed capacity is given by

h(x, y) = (x + η)α(y + ζ)β −Ky for some constants α, β, η, ζ,K > 0.(28)

This choice satisfies our assumptions if and only if

α, β ∈ ]0, 1[,
α

1 − β
< n, and βηαζ−(1−β) < K + rK+.(29)

To see this claim, fix any ϑ > 0 such that

α < n− ϑ and βηαζ−(1−β) < K + r(K+ − ϑ),

and observe that there exist constants Γ1,Γ2,Γ3 > 1 such that

(x + η)α ≤ Γ1(1 + xα), (y + ζ)β ≤ Γ2(1 + yβ), and Γ1Γ2y
β < Γ3 + r(K+ − ϑ)y,

because α, β ∈ ]0, 1[. In view of these inequalities, we can see that

h(x, y) ≤ Γ1Γ2

(
1 + xα + xαyβ

)
+ Γ1Γ2y

β

≤ Γ1Γ2Γ3

(
1 + xα + xαyβ

)
+ r(K+ − ϑ)y,

and we check that Assumption 1 and (23), (24), and (26) in Assumption 2 all hold
true. To verify (25) in Assumption 2, we note that, given a constant C > 1,

∂

∂x

[
H(x, y) − βCxαy−(1−β)

]
< 0

is equivalent to (
x

x + η

)1−α

< C

(
y + ζ

y

)1−β

,
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which is true for all x, y > 0. It follows that (25) is satisfied if it is true for x = 0, i.e.,
if

βηα(y + ζ)−(1−β) ≤ K + r(K+ − ϑ), for all y ≥ 0,

which is true when the associated parameters satisfy (29).
To see that if the last inequality in (29) is not true, then the upper bound in (25)

does not hold, we argue by contradiction. Indeed, if there are constants C, ϑ > 0 such
that (25) is satisfied, then we can pass to the limit as x ↓ 0 to obtain

βηα(y + ζ)−(1−β) ≤ K + r(K+ − ϑ) for all y > 0.

However, this inequality cannot be true for all y > 0 if the last inequality in (29)
above does not hold.

It is a straightforward exercise to show that the bounds in (24)–(25) imply the
following estimates.

Lemma 2. With reference to the notation in (13), the bounds provided by (24)
and (25) in Assumption 2 imply that there exists a constant C1 > 0 such that

−C1(1 + y) ≤ R[h(·,y)](x) ≤ C1

(
1 + y + xn−ϑ + xαyβ

)
, for all (x, y) ∈ S,

−C1 ≤ R[H(·,y)](x) ≤ C1

(
1 + xαy−(1−β)

)
for all (x, y) ∈ S.

As we have remarked above, bounds such as the ones appearing in Assumption 2
are essential for the value function to be finite. Indeed, we can prove the following
result.

Lemma 3. Consider the control problem formulated in section 2 that arises if
the running payoff function h is defined by (27) in Example 1, and suppose that
α

1−β > n > α. Then, under any well-posed definition of the performance index Jx,y
that is consistent with (3), v(x, y) = ∞ for every initial condition (x, y) ∈ S.

Proof. Consider the strategy defined by

ξ̃+
t = X̄

(n−α)/β
t and ξ̃−t = 0, for all t ≥ 0,(30)

where X̄t = sups≤t Xs. With regard to (18), we can see that this strategy is associated
with

E

[∫ ∞

0

e−rtXα
t Ỹ

β
t dt

]
≥ E

[∫ ∞

0

e−rtXn
t dt

]
= ∞.(31)

Now, let us assume that α
1−β > n > α. If we define λ = n−α

β > 0, then such an
assumption implies that λ < n. In view of this observation, we can use the first
estimate in Lemma 1, the monotone convergence theorem, and the integration by
parts formula to see that the strategy given by (30) satisfies

E

[∫
[0,∞[

e−rt dξ̃+
t

]
= lim

T→∞
E

[
r

∫ T

0

e−rtξ̃+
t dt + e−rT ξ̃+

T+

]

= lim
T→∞

(
r

∫ T

0

E
[
e−rtX̄λ

t

]
dt + E

[
e−rT X̄λ

T

])

≤ r
σ2λ2 + ε2

ε1ε2
xλ

< ∞.
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However, this calculation, (30), and (31) imply that

E

[∫ ∞

0

e−rtXα
t Ỹ

β
t dt−

∫
[0,∞[

e−rt dξ̃+
t −

∫
[0,∞[

e−rt dξ̃−t

]

is well-defined and equal to ∞, which proves the result.
We can now prove that our assumptions are sufficient for the optimization problem

considered to be well-posed and for its value function to be finite.
Lemma 4. Suppose that the running payoff function h satisfies (24) in Assump-

tion 2 and that K+,K+ + K− > 0. Given any initial condition (x, y) ∈ S, (5)–(8)
provide a well-posed definition of the performance criterion Jx,y, and the following
statements hold true:

(a) Given any admissible strategy (ξ+, ξ−) ∈ Πy, Jx,y(ξ
+, ξ−) ∈ R if and only if

E

[∫ ∞

0

e−rtYt dt + K+

∫
[0,∞[

e−rt dξ+
t + |K−|

∫
[0,∞[

e−rt dξ−t

]
< ∞.(32)

(b) Condition (32) implies that

lim inf
T→∞

e−rTE [YT+] = 0.(33)

(c) v(x, y) ∈ R.
Proof. Fix any initial condition (x, y) ∈ S and any admissible strategy (ξ+, ξ−) ∈

Πy. Since ξ+, ξ− are increasing càglàd processes with ξ+
0 = ξ−0 = 0, we can use the

integration by parts formula to calculate

−K+

∫
[0,T ]

e−rt dξ+
t −K−

∫
[0,T ]

e−rt dξ−t

= −r

∫ T

0

e−rt
[
K+ξ+

t + K−ξ−t
]
dt− e−rT

[
K+ξ+

T+ + K−ξ−T+

]
.(34)

With regard to (1) and the inequality K+ + K− > 0, we can see that

−K+ξ+
t −K−ξ−t ≤ −K+

(
ξ+
t − ξ−t

)
= −K+Yt + K+y,(35)

which, combined with (34), implies that

−K+

∫
[0,T ]

e−rt dξ+
t −K−

∫
[0,T ]

e−rt dξ−t

≤ −rK+

∫ T

0

e−rtYt dt− e−rTK+YT+ + K+y.(36)

However, this inequality and (24) in Assumption 2 imply that the random variables
UT defined by (4) satisfy

UT ≤ K+y +

∫ T

0

e−rt
[
h(Xt, Yt) − rK+Yt

]
dt

≤ K+y + C

∫ T

0

e−rt
(
1 + Xn−ϑ

t

)
− ẐT ,(37)
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where

ẐT =

∫ T

0

e−rt
[
rϑYt − CXα

t Y
β
t

]
dt for T ≥ 0.

With reference to (18), we note that

I1(x) := E

[
C

∫ ∞

0

e−rt
(
1 + Xn−ϑ

t

)
dt

]
=

C

r
− Cxn−ϑ

σ2(n− ϑ)2 + (b− σ2)(n− ϑ) − r
∈ ]0,∞[.(38)

Now, suppose that the strategy (ξ+, ξ−) ∈ Πy is associated with

E

[∫ ∞

0

e−rtYt dt

]
= ∞.(39)

With regard to (23) in Assumption 2 and (18), we observe that

I2(x) := E

[∫ ∞

0

e−rtX
α/(1−β)
t dt

]
< ∞.(40)

Therefore, given any constant μ > 0,

E

[∫ ∞

0

e−rtYt1{Yt<μX
α/(1−β)
t

} dt
]
≤ μI2(x) < ∞.(41)

It follows that (39) is true if and only if

E

[∫ ∞

0

e−rtYt1{Yt≥μX
α/(1−β)
t

} dt
]

= ∞.(42)

Now, let any μ > 0 such that rϑ − Cμ−(1−β) > 0, where the constants ϑ,C > 0 and
β ∈ ]0, 1[ are as in Assumption 2, and note that

E
[
ẐT

]
≥ − CμβE

[∫ T

0

e−rtX
α/(1−β)
t 1{

Yt<μX
α/(1−β)
t

} dt
]

+
(
rϑ− Cμ−(1−β)

)
E

[∫ T

0

e−rtYt1{Yt≥μX
α/(1−β)
t

} dt
]
.

In view of (41)–(42) and the monotone convergence theorem, the right-hand side
of this inequality tends to ∞ as T → ∞, which implies that limT→∞ E[ẐT ] = ∞.
However, this conclusion, (37), and (38) imply that there exists a process Z such that
(7) is satisfied and, therefore, Jx,y(ξ

+, ξ−) = −∞.
To proceed further, let us assume that

E

[∫ ∞

0

e−rtYt dt

]
< ∞,(43)

which is necessary for condition (32) to be satisfied. Since Y is a finite variation
process, its sample paths can have at most countable discontinuities. Using Fubini’s
theorem, we can see that this observation and (43) imply that∫ ∞

0

e−rtE [Yt+] dt = E

[∫ ∞

0

e−rtYt+ dt

]
= E

[∫ ∞

0

e−rtYt dt

]
< ∞,

which proves that (32) implies (33) and establishes part (b) of the lemma.
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Now, using Hölder’s inequality, we calculate

E

[∫ ∞

0

e−rtXα
t Y

β
t dt

]
≤ I1−β

2 (x)

(
E

[∫ ∞

0

e−rtYt dt

])β

< ∞,(44)

where I2(x) is given by (40). This inequality, (38), (43), and the bounds in (24) in
Assumption 2 imply that

E

[∫ ∞

0

e−rt |h(Xt, Yt)| dt
]

≤ E

[∫ ∞

0

e−rt
[
C
(
1 + Xn−ϑ

t + Xα
t Y

β
t

)
+
{
r(K+ − ϑ) ∨ C

}
Yt

]
dt

]
< ∞,

which, combined with the dominated convergence theorem, implies that

lim
T→∞

E

[∫ T

0

e−rth(Xt, Yt) dt

]
= E

[∫ ∞

0

e−rth(Xt, Yt) dt

]
∈ R.(45)

This observation gives rise to two possibilities. The first one is associated with the
inequality

E

[∫
[0,∞[

e−rt dξ+
t +

∫
[0,∞[

e−rt dξ−t

]
< ∞.

In this case, limT→∞ UT exists, P -a.s., and belongs to L1(Ω,F , P ), and so Jx,y(ξ
+, ξ−)

is finite and is given by (6). The second possibility is associated with

E

[∫
[0,∞[

e−rt dξ+
t +

∫
[0,∞[

e−rt dξ−t

]
= ∞,

which, combined with (43) and (33), implies that

E

[∫
[0,∞[

e−rt dξ+
t

]
= E

[∫
[0,∞[

e−rt dξ−t

]
= ∞.(46)

If K− < 0, then we can use (1) and the integration by parts formula to calculate

K−
∫

[0,T ]

e−rt dξ−t = K−
∫

[0,T ]

e−rt dξ+
t + |K−|

∫
[0,T ]

e−rt dYt

= K−
∫

[0,T ]

e−rt dξ+
t + r|K−|

∫ T

0

e−rtYt dt

+ |K−|e−rTYT+ − |K−|y

≥ K−
∫

[0,T ]

e−rt dξ+
t − |K−|y,

which implies that

E

[
K+

∫
[0,T ]

e−rt dξ+
t + K−

∫
[0,T ]

e−rt dξ−t

]

≥ (K+ + K−)E

[∫
[0,T ]

e−rt dξ+
t

]
− |K−|y.
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This inequality, the assumption that K+ + K− > 0, (46), and the monotone conver-
gence theorem imply that

lim
T→∞

E

[
K+

∫
[0,T ]

e−rt dξ+
t + K−

∫
[0,T ]

e−rt dξ−t

]
= ∞.(47)

On the other hand, if K− ≥ 0, then (46) plainly implies (47). However, (45) and (47)
imply that limT→∞ E[UT ] = −∞, and so (7) is satisfied for Z = U and Jx,y(ξ

+, ξ−) =
−∞.

The analysis above establishes the well-posedness of the definition of Jx,y given
by (5)–(8) as well as parts (a) and (b) of the lemma. To prove part (c) of the lemma,
we first note that the first bound in Lemma 2 and (18) imply that

R[h(·,y)](x) = E

[∫ ∞

0

e−rth(Xt, y) dt

]
∈ R.

However, this shows that our performance criterion is finite for the strategy that
involves no capacity changes at any time, which proves that v(x, y) > −∞. To show
that v(x, y) < ∞, consider any admissible decision strategy (ξ+, ξ−) ∈ Πy such that
Jx,y(ξ

+, ξ−) > −∞. With reference to (43) and (44),

E

[∫ ∞

0

e−rt
[
rϑYt − CXα

t Y
β
t

]
dt

]
≥ rϑE

[∫ ∞

0

e−rtYt dt

]
− CI1−β

2 (x)

(
E

[∫ ∞

0

e−rtYt dt

])β

≥ − (1 − β)rϑ

β

(
βC

rϑ

)1/(1−β)

I2(x), for all T > 0,(48)

the second inequality following because, given any constants κ, λ > 0 and β ∈ ]0, 1[,

κQ− λQβ ≥ − (1 − β)κ

β

(
βλ

κ

)1/(1−β)

, for all Q ≥ 0,

in particular, for Q = E
[∫∞

0
e−rtYt dt

]
. However, (37), (38), and (48) imply that

Jx,y(ξ
+, ξ−) ≤ I1(x) + K+y +

(1 − β)rϑ

β

(
βC

rϑ

)1/(1−β)

I2(x),

which proves that v(x, y) < ∞ because the right-hand side of this inequality is finite
and independent of ξ+ and ξ−.

4. The Hamilton–Jacobi–Bellman (HJB) equation. The problem described
in the previous section has the structure of a singular stochastic control problem. With
regard to standard theory of singular control, we expect that its value function can
be identified with a solution w : S → R to the HJB quasi-variational inequalities

max
{
σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y),

wy(x, y) −K+, −wy(x, y) −K−} = 0, x, y > 0,(49)

max
{
σ2x2wxx(x, 0) + bxwx(x, 0) − rw(x, 0) + h(x, 0), wy(x, 0) −K+

}
= 0, x > 0,

(50)

where wy(x, 0) := limy↓0 wy(x, y).
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To obtain some qualitative understanding of the origins of this equation, we ob-
serve that, at time 0, the project’s management has to choose between three options.
The first one is to wait for a short time Δt and then continue optimally. With respect
to Bellman’s principle of optimality, this option is associated with the inequality

v(x, y) ≥ E

[∫ Δt

0

e−rth(Xt, y) dt + e−rΔtv(XΔt, y)

]
.

Applying Itô’s formula to the second term in the expectation and dividing by Δt
before letting Δt ↓ 0, we obtain

σ2x2vxx(x, y) + bxvx(x, y) − rv(x, y) + h(x, y) ≤ 0.(51)

The second option is to increase capacity immediately by ε > 0 and then continue
optimally. This action is associated with the inequality

v(x, y) ≥ v(x, y + ε) −K+ε.

Rearranging terms and letting ε ↓ 0, we obtain

vy(x, y) −K+ ≤ 0.(52)

Assuming that y > 0, the final option is to decrease capacity immediately by
ε > 0 and then continue optimally. This option yields the inequality

v(x, y) ≥ v(x, y − ε) −K−ε,

which, in the limit as ε ↓ 0, implies that

−vy(x, y) −K− ≤ 0.(53)

Since these three are the only options available, we expect that one of them should
be optimal, so that one of the inequalities (51)–(53) should hold with equality if y > 0,
while one of the inequalities (51)–(52) should hold with equality if y = 0. However,
this observation combined with (51)–(53) implies that the value function v should
identify with a solution w to (49)–(50).

The following result is concerned with sufficient conditions under which the value
function v of the control problem considered identifies with a solution to (49)–(50).
We impose some of these conditions, (58)–(59) in particular, which are not standard
in similar “verification” theorems, with a hindsight relative to our analysis in the next
section.

Theorem 5. Suppose that the running payoff function h satisfies (24) in Assump-
tion 2 and that K+,K+ + K− > 0. Also, assume that the HJB equation (49)–(50)
has a C2 solution w : S → R such that

−C2

(
1 + y + xα/(1−β)

)
≤ w(x, y), for all (x, y) ∈ S,(54)

for some constant C2 > 0. The following statements hold true:
(a) v(x, y) ≤ w(x, y) for all initial conditions (x, y) ∈ S.
(b) Given any initial condition (x, y) ∈ S, suppose that there exists a decision

strategy (ξo+, ξo−) ∈ Πy such that, if Y o is the associated capacity process, then

(55) (Xt, Y
o
t ) ∈

{
(x, y) ∈ S : σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) = 0

}
,
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Lebesgue-a.e., P -a.s.,∫
[0,T ]

e−rs
[
wy(Xt, Yt) −K+

]
dξo+

s = 0, for all T ≥ 0, P -a.s.,(56) ∫
[0,T ]

e−rs
[
wy(Xt, Yt) + K−] dξo−

s = 0, for all T ≥ 0, P -a.s.,(57)

and

Y o
t + Xα

t (Y o
t )β + ξo+

t ≤ C3(y)
(
1 + X̄n−ε3

t

)
, for all t ≥ 0, P -a.s.,(58)

w(Xt, Y
o
t ) ≤ C3(y)

(
1 + X̄n−ε3

t

)
, for all t ≥ 0, P -a.s.,(59)

where X̄t = sups≤t Xs, ε3 ∈ ]0, ϑ[ is a constant, and C3(y) > 0 is a constant depending
on the initial condition y only. Then v(x, y) = w(x, y) and (ξo+, ξo−) is the optimal
strategy.

Proof. (a) Fix any initial condition (x, y) and any admissible strategy (ξ+, ξ−) ∈
Πy such that Jx,y(ξ

+, ξ−) > −∞, so that Jx,y(ξ
+, ξ−) = E[U∞] (see (5)–(6)). Using

Itô’s formula and the fact that X has continuous sample paths, we obtain

e−rTw(XT , YT+)

= w(x, y) +

∫ T

0

e−rt
[
σ2X2

t wxx(Xt, Yt) + bXtwx(Xt, Yt) − rw(Xt, Yt)
]
dt

+

∫
[0,T ]

e−rt
[
wy(Xt, Yt) dξ

+
t − wy(Xt, Yt) dξ

−
t

]
+ MT

+
∑

0≤t≤T

e−rt [w(Xt, Yt+) − w(Xt, Yt) − wy(Xt, Yt)ΔYt] ,

where

MT =
√

2σ

∫ T

0

e−rtXtwx(Xt, Yt) dWt, T ≥ 0.(60)

Recalling the definition of UT in (4), this implies that

UT + e−rTw(XT , YT+) − w(x, y)

=

∫ T

0

e−rt
[
σ2X2

t wxx(Xt, Yt) + bXtwx(Xt, Yt) − rw(Xt, Yt) + h(Xt, Yt)
]
dt

+

∫
[0,T ]

e−rt
[
wy(Xt, Yt) −K+

]
d
(
ξ+
)c
t

+

∫
[0,T ]

e−rt
[
−wy(Xt, Yt) −K−] d (ξ−)c

t

+ MT +
∑

0≤t≤T

e−rt
[
w(Xt, Yt+) − w(Xt, Yt) −K+ΔYt

]
1{ΔYt>0}

+
∑

0≤t≤T

e−rt
[
w(Xt, Yt+) − w(Xt, Yt) + K−ΔYt

]
1{ΔYt<0}.

Observing that[
w(Xt, Yt+) − w(Xt, Yt) −K+ΔYt

]
1{ΔYt>0}

= 1{ΔYt>0}

∫ ΔYt

0

[
wy(Xt, Yt + u) −K+

]
du
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and [
w(Xt, Yt+) − w(Xt, Yt) + K−ΔYt

]
1{ΔYt<0}

= 1{ΔYt<0}

∫ |ΔYt|

0

[
−wy (Xt, Yt − |ΔYt| + u) −K−] du,

we can see that, since w satisfies the HJB equation (49)–(50),

UT + e−rTw(XT , YT+) ≤ w(x, y) + MT .(61)

Now, in view of (36) and the assumption K+ > 0,

−e−rTYT+ ≥ −
∫

[0,T ]

e−rt dξ+
t − |K−|

K+

∫
[0,T ]

e−rt dξ−t − y,

which, combined with assumption (54), implies that

e−rTw(XT , YT+) ≥ −C21

(
1 +

∫
[0,T ]

e−rt dξ+
t +

∫
[0,T ]

e−rt dξ−t + e−rTX
α/(1−β)
T

)

for some constant C21 = C21(y) > 0. Combining this inequality with∫ T

0

e−rth(Xt, Yt) dt ≥ −C

∫ T

0

e−rtYt dt−
C

r

(
1 − e−rT

)
,

which follows from (24) in Assumption 2, we can see that (61) implies

inf
T≥0

MT ≥ −C22

(
1 +

∫ ∞

0

e−rtYt dt +

∫
[0,∞[

e−rt dξ+
t

+

∫
[0,∞[

e−rt dξ−t + sup
T≥0

e−rT X̄
α/(1−β)
T

)
,

where C22 = C22(x, y) > 0 is a constant and X̄t = sups≤t Xs. Recalling the assump-
tion that α

1−β ∈ ]0, n[, we can see that the second bound in Lemma 1 and (32) in
Lemma 4 imply that the random variable on the right-hand side of this inequality
has finite expectation. It follows that the stochastic integral M defined by (60) is a
supermartingale, and therefore E [MT ] ≤ 0, for all T > 0. Taking expectations in
(61), we therefore obtain

E [UT ] ≤ w(x, y) + e−rTE [−w(XT , YT+)] .(62)

Furthermore, since

UT ≥ −C22

(
1 +

∫ ∞

0

e−rtYt dt +

∫
[0,∞[

e−rt dξ+
t +

∫
[0,∞[

e−rt dξ−t

)
, for all T ≥ 0,

and the random variable on the right-hand side of this inequality has finite expecta-
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tion, Fatou’s lemma implies that

Jx,y(ξ
+, ξ−) ≤ lim inf

T→∞
E [UT ] ,(63)

while (54) implies that

lim inf
T→∞

e−rTE [−w(XT , YT+)] ≤ lim
T→∞

e−rTC2 + C2 lim inf
T→∞

e−rTE [YT+]

+ C2 lim
T→∞

e−rTE
[
X̄

α/(1−β)
T

]
= 0,(64)

the equality being true thanks to the first bound in Lemma 1 and (33). However, (62)–
(64) imply that Jx,y(ξ

+, ξ−) ≤ w(x, y), which establishes part (a) of the theorem.
(b) If (ξo+, ξo−) is as in the statement of the theorem, then we can see that the

monotone convergence theorem, the integration by parts formula, (58), and the first
estimate in Lemma 1 imply that

E

[∫ ∞

0

e−rtY o
t dt +

∫
[0,∞[

e−rt dξo+
t

]

= lim
T→∞

E

[∫ T

0

e−rtY o
t dt + r

∫ T

0

e−rtξo+
t dt + e−rT ξo+

T+

]

≤ (1 + r)C3(y)

(
1

r
+

∫ ∞

0

e−rtE
[
X̄n−ε3

t

]
dt

)
+ lim

T→∞
e−rTE

[
X̄n−ε3

T

]
< ∞,

which, combined with (1), implies that (32) in Lemma 4 is satisfied, and, therefore,

Jx,y(ξ
o+, ξo−) = E

[
lim

T→∞
Uo
T

]
∈ R,(65)

where Uo is defined as in (4). Furthermore, we can verify that (61) holds with equality,
i.e.,

Uo
T + e−rTw(XT , Y

o
T+) = w(x, y) + Mo

T ,(66)

where the stochastic integral Mo is defined as in (60). In view of (24) in Assumption 2
and (58), there exist constants C31 > 0 and C32 = C32(y) > 0 such that

sup
T≥0

∫ T

0

e−rth(Xt, Y
o
t ) dt ≤ C31

(
1 +

∫ ∞

0

e−rt
[
Xn−ϑ

t + Xα
t (Y o

t )β + Y o
t

]
dt

)
≤ C32

(
1 +

∫ ∞

0

e−rtX̄n−ε3
t dt

)
.(67)

With reference to (1), the assumption K++K− > 0, the integration by parts formula,
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and (58), we can see that there exists a constant C33 = C33(y) > 0 such that

sup
T≥0

(
−K+

∫
[0,T ]

e−rt dξo+
t −K−

∫
[0,T ]

e−rt dξo−
t

)

≤ sup
T≥0

K−

(∫
[0,T ]

e−rt dξo+
t −

∫
[0,T ]

e−rt dξo−
t

)

≤ |K−| sup
T≥0

∫
[0,T ]

e−rt dY o
t

≤ |K−| sup
T≥0

e−rTY o
T+ + r|K−|

∫ ∞

0

e−rtY o
t dt

≤ |K−| sup
T≥0

e−rTY o
T+ + C33

(
1 +

∫ ∞

0

e−rtX̄n−ε3
t dt

)
.(68)

Moreover, (58)–(59) imply that

sup
T≥0

e−rTY o
T+ + sup

T≥0
e−rTw(XT , Y

o
T+) ≤ 2C3(y)

(
1 + sup

T≥0
e−rT X̄n−ε3

T

)
.(69)

Now, (18) implies that

E

[∫ ∞

0

e−rtX̄n−ε3
t dt

]
< ∞,(70)

while the second estimate in Lemma 1 implies that

E

[
sup
T≥0

e−rT X̄n−ε3
T

]
< ∞.(71)

However, (66) and the estimates (67)–(71) imply that E
[
supT≥0 M

o
T

]
< ∞, which

proves that the stochastic integral Mo is a submartingale. Taking expectations in
(66), we therefore obtain

E [Uo
T ] ≥ w(x, y) + e−rTE [−w(XT , Y

o
T )] .(72)

Furthermore, the estimates (67)–(71) imply that the random variables Uo
T , indexed

by T ≥ 0, are all bounded from above by a random variable with finite expectation.
This observation, (65), and Fatou’s lemma imply that

Jx,y(ξ
o+, ξo−) ≥ lim sup

T→∞
E [Uo

T ] .(73)

Finally, (59) and the first estimate in Lemma 1 imply that

lim sup
T→∞

e−rTE [−w(XT , Y
o
T )] ≥ − lim

T→∞
C3(y)

(
e−rT + E

[
e−rT X̄n−ε3

T

])
= 0,

which, combined with (72) and (73), implies that Jx,y(ξ
o+, ξo−) ≥ w(x, y). However,

this inequality and part (a) of this theorem complete the proof.
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Fig. 1. A possible optimal capacity control strategy. In this case, it is never optimal to decrease
the project’s capacity.

Fig. 2. A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting, and decreasing the project’s capacity are all parts of the optimal strategy. Also,
the point y∗ defined by (74) is strictly positive.

5. The solution of the control problem. We can now derive an explicit
solution to the control problem formulated in section 2 by constructing an appropriate
solution w to the HJB equation (49)–(50). With respect to the heuristic arguments in
section 4 that led to the derivation of this equation, we start by conjecturing that the
optimal strategy is characterized by three disjoint open subsets of ]0,∞[×R+: the
“wait” region W where (51) holds with equality, the “investment” region I where (52)
holds with equality, and the “disinvestment” region D where (53) holds with equality.
Also, we conjecture that each of the regions W, I, D is connected. In particular,
we expect that, depending on the problem data, the optimal strategy can take any
of the forms depicted by Figures 1–4. Note that one can envisage other possibilities
such as the one depicted by Figure 5. However, our assumptions do not allow for the
optimality of other such cases under any admissible choice of the problem data (see
also Remark 1 in section 3 and Example 3 in section 6).

With regard to Figures 1–4, we denote by F and G the boundaries separating the
regions D, W and W, I, respectively, so that

F = D ∩W and G = W ∩ I,
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Fig. 3. A possible optimal capacity control strategy. In this case, increasing the project’s
capacity, waiting, and decreasing the project’s capacity all belong to the set of optimal tactics. Also,
y∗ = 0, where y∗ is defined by (74), F (0) > 0, and {(x, 0) : x ≤ F (0)} is a subset of the “wait”
region W.

Fig. 4. A possible optimal capacity control strategy. This case arises when the running payoff
function h identifies with the Cobb–Douglas production function and K− < 0.

Fig. 5. A possible optimal capacity control strategy. This case cannot arise under our assump-
tions.
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where W, I, and D are the closures of W, I, and D in R
2
+, respectively. Furthermore,

we define

y∗ = inf {y ≥ 0 : there exists x > 0 such that (x, y) ∈ F} ,(74)

with the usual convention that inf ∅ = ∞. We will prove that

there exists an increasing function G : [0,∞[→ [0,∞[ such that
(75)

G = {(G(y), y) : y ≥ 0} ,

and, if y∗ < ∞, then

there exists an increasing function F : [y∗,∞[→ [0,∞[ such that
(76)

F ∩ (R+ \ {0})2 = {(F (y), y) : y > y∗} .

Given such a characterization of F and G,

W =
{
(x, y) ∈ R

2
+ : y ≤ y∗ and x ∈ [0, G(y)]

}
∪
{
(x, y) ∈ R

2
+ : y > y∗ and x ∈ [F (y), G(y)]

}
,

I =
{
(x, y) ∈ R

2
+ : G(y) ≤ x

}
,

while if y∗ < ∞, then

D =
{
(x, y) ∈ R

2
+ : y ≥ y∗ and x ∈ [0, F (y)]

}
.

In view of this structure, it is worth noting that if y∗ = 0 and 0 < F (0) < G(0) (see
Figure 3), then {(x, 0) : x < G(0)} ⊂ W, so that the segment ]0, F (0)] is part of the
“wait” region W.

Inside the region W, w satisfies the differential equation

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) = 0.(77)

In view of the discussion regarding the solvability of (14) in section 3, every solution
to this equation is given by

w(x, y) = A(y)xn + B(y)xm + R(x, y)(78)

for some functions A and B. Here, the constants m < 0 < n are given by (11), while
the function R ≡ R[h(·,y)] is given by

R(x, y) =
1

σ2(n−m)

[
xm

∫ x

0

s−m−1h(s, y) ds + xn

∫ ∞

x

s−n−1h(s, y) ds

]
.(79)

For y ∈ [0, y∗] ∩ R, we must have B(y) = 0. This choice is supported by the
heuristic observation that, for fixed capacity level y ≥ 0, the problem’s value function
should remain bounded as the value x of the underlying state process tends to 0.
Also, it eventually turns out that (58)–(59) in the verification theorem, Theorem 5,
cannot be satisfied if B(y) �= 0. To determine A(y) and G(y) when y ∈ [0, y∗] ∩ R,
we postulate that w(·, y) is C2 at the free-boundary point G(y). In particular, we
postulate that

lim
x↑G(y)

wy(x, y) = lim
x↓G(y)

wy(x, y) and lim
x↑G(y)

wyx(x, y) = lim
x↓G(y)

wyx(x, y).(80)
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Since w satisfies

wy(x, y) = K+, for (x, y) ∈ I,(81)

which implies that

wxy(x, y) = 0, for (x, y) ∈ I,(82)

this requirement yields the system of equations

A′(y)Gn(y) = K+ −Ry(G(y), y),(83)

A′(y)Gn(y) = − 1

n
G(y)Rxy(G(y), y).(84)

Equating the right-hand sides of these equations and using the definition of R in (79),
we obtain

Gm(y)

∫ G(y)

0

s−m−1H(s, y) ds− σ2nK+ = 0,(85)

where H is the function defined by (19). Using the identity σ2mn = −r, which follows
from the definition of the constants m, n in (11), we can see that G(y) should satisfy

q(G(y), y) = 0,(86)

where

q(x, y) =

∫ x

0

s−m−1
[
H(s, y) − rK+

]
ds, (x, y) ∈ S.(87)

Furthermore, adding (83) and (84) side by side and using (79) and (85), we obtain

A′(y) =
1

2
G−n(y)

[
K+ −Ry(G(y), y) − 1

n
G(y)Rxy(G(y), y)

]
= − 1

σ2(n−m)

∫ ∞

G(y)

s−n−1
[
H(s, y) − rK+

]
ds.(88)

The following result, whose proof is developed in the appendix, is concerned with
the solvability of (86).

Lemma 6. Suppose that Assumption 1 is true. Given any y ≥ 0, the equation
q(x, y) = 0 has a unique solution x = x(y) > 0 if and only if infx>0 H(x, y) < rK+.
If we define

ỹ∗ = inf

{
y ≥ 0 : inf

x>0
H(x, y) < rK+

}
,(89)

then (86) uniquely defines a function G̃ : ]ỹ∗,∞[→ ]0,∞[ that is C1, is strictly in-
creasing, and satisfies

H(G̃(y), y) − rK+ > 0 for all y > ỹ∗.(90)

Furthermore, if (25) in Assumption 2 is also true, then ỹ∗ = 0 and

C
− 1−β

α
4 y

1−β
α ≤ G̃(y), for all y ≥ 0

⇔ G̃[−1](x) ≤ C4x
α

1−β , for all x ≥ G̃(0),(91)
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where G̃(0) := limy↓0 G̃(y), G̃[−1] : [G̃(0),∞[→ R+ is the inverse function of G̃, and
C4 > 0 is a constant.

Now, let us consider the case where D �= ∅ and the point y∗ defined by (74) is
finite (see Figures 2–4). For y > y∗, w is given by (77) for x such that (x, y) ∈ W, by
(81) for x such that (x, y) ∈ I, and by

wy(x, y) = −K−(92)

for x such that (x, y) ∈ D. Plainly, C2 continuity of w inside D implies that

wxy(x, y) = 0 for (x, y) ∈ D.(93)

To determine A(y), B(y), F (y), and G(y), we postulate that w(·, y) is C2 at both of
the free-boundary points F (y) and G(y). With regard to (78), (81)–(82), (92)–(93),
the definition (79) of R(x, y), and the identity σ2mn = −r, this requirement yields

A′(y) = − 1

σ2(n−m)

∫ ∞

F (y)

s−n−1
[
H(s, y) + rK−] ds,(94)

A′(y) = − 1

σ2(n−m)

∫ ∞

G(y)

s−n−1
[
H(s, y) − rK+

]
ds,(95)

B′(y) = − 1

σ2(n−m)

∫ F (y)

0

s−m−1
[
H(s, y) + rK−] ds,(96)

B′(y) = − 1

σ2(n−m)

∫ G(y)

0

s−m−1
[
H(s, y) − rK+

]
ds,(97)

where H is defined by (19). These calculations imply that the points F (y) and G(y)
should satisfy the system of equations

f(F (y), G(y), y) = 0,(98)

g(F (y), G(y), y) = 0,(99)

where

f(x1, x2, y) =

∫ x1

0

s−m−1
[
H(s, y) + rK−] ds− ∫ x2

0

s−m−1
[
H(s, y) − rK+

]
ds,

(100)

g(x1, x2, y) =

∫ ∞

x1

s−n−1
[
H(s, y) + rK−] ds− ∫ ∞

x2

s−n−1
[
H(s, y) − rK+

]
ds.

(101)

In the appendix, we prove the following result that is concerned with the solv-
ability of the system of equations (98) and (99).

Lemma 7. Suppose that Assumption 1 holds. Given y ≥ 0, the system of
equations (98) and (99) has a unique solution (x1, x2) = (x1(y), x2(y)) such that
0 < x1 < x2 if and only if infx>0 H(x, y) < −rK−. Moreover, if we define

ȳ∗ = inf

{
y ≥ 0 : inf

x>0
H(x, y) < −rK−

}
,(102)

with the usual convention that inf ∅ = ∞, then, if ȳ∗ < ∞, the system of equations
(98) and (99) uniquely defines two functions F̄ , Ḡ : ]ȳ∗,∞[→ ]0,∞[ that are C1, are
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strictly increasing, and satisfy F̄ (y) < Ḡ(y), for all y > ȳ∗,

F̄ (ȳ∗) := lim
y↓ȳ∗

F̄ (y) = 0, if ȳ∗ > 0,(103)

F̄ (0) := lim
y↓0

F̄ (y) ≤ lim
y↓0

Ḡ(y) =: Ḡ(0), if ȳ∗ = 0,(104)

H(F̄ (y), y) + rK− < 0 and H(Ḡ(y), y) − rK+ > 0 for all y > ȳ∗.(105)

Furthermore, if (25) in Assumption 2 also holds, then

C
− 1−β

α
4 y

1−β
α ≤ Ḡ(y), for all y ≥ ȳ∗

⇔ Ḡ[−1](x) ≤ C4x
α

1−β , for all x ≥ Ḡ(ȳ∗),(106)

where Ḡ[−1] : [Ḡ(0),∞[→ R+ is the inverse function of Ḡ and the constant C4 > 0 is
the same constant as in Lemma 6.

In light of the results above and in the presence of (25) in Assumption 2, ỹ∗ = ∞,
where ỹ∗ is defined by (89), and the point ȳ∗ defined by (102) identifies with the point
y∗ in (74). Also, the functions F : [y∗,∞[→ [0,∞[ and G : [0,∞[→ [0,∞[ separating
the three possible regions, as conjectured in (75)–(76), are given by

F = F̄ , if y∗ < ∞,(107)

G = G̃, if y∗ = ∞, and G(y) =

{
G̃(y), for y ∈ [0, y∗],

Ḡ(y), for y > y∗,
if y∗ < ∞,(108)

where G̃ is as in Lemma 6, F̄ , Ḡ are as in Lemma 7, and y∗ ≡ ȳ∗, where ȳ∗ is given
by (102).

The results above completely determine the boundaries of the three possible re-
gions. To specify w inside the “wait” region W, we still have to solve (88) and
(94)–(97). To this end, it is straightforward to see that if the associated integrals are
finite, then the function

A(y) =
1

σ2(n−m)

∫ ∞

y

∫ ∞

G(u)

s−n−1
[
H(s, u) − rK+

]
ds du > 0, y ≥ 0,(109)

satisfies (88) as well as (94) and (95). In this expression, the inequality follows thanks
to (90) or the second inequality in (105), depending on the case, and the assumption
that H(·, y) is increasing. It is worth noting that adding a constant on the right-hand
side of (109) would yield a further solution to (88). However, it turns out that (109)
gives the only solution of (88) that renders w compatible with the requirements of
the verification theorem that we proved in section 4.

If y∗ < ∞, then

B(y) = − 1

σ2(n−m)

∫ y

y∗

∫ F (u)

0

s−m−1
[
H(s, u) + rK−] ds du > 0, y > y∗,(110)

satisfies (96) or (97). Here, the positivity of B follows from the first inequality in
(105) and the assumption that H(·, y) is increasing. As above, we have set a possible
additive constant to zero because the resulting function w can be identified with the
value function of the control problem for no other choice.

With reference to (81), w must satisfy

w(x, y) = w(x,G[−1](x)) −K+
(
G[−1](x) − y

)
, for (x, y) ∈ I,
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where G[−1] : [G(0),∞[→ R+ is the inverse function of G. Also, if D �= ∅, then (92)
implies that w should satisfy

w(x, y) = w(x,Φ(x)) −K−(y − Φ(x)), for (x, y) ∈ D,

where the function Φ : ]0,∞[→ R+ is defined by

Φ(x) =

{
F [−1](x), if x ≥ F (y∗),

0, if y∗ = 0 and F (0) > x,
(111)

in which expression F [−1] : [F (y∗),∞[→ R+ is the inverse function of F . Summariz-
ing, we have two possibilities. If the point y∗ ≡ ȳ∗ as in (74) or (102) is equal to ∞,
then

w(x, y) =

⎧⎪⎨⎪⎩
A(y)xn + R(x, y), for (x, y) such that

0 < x ≤ G(y),

w(x,G[−1](x)) −K+(G[−1](x) − y) for (x, y) such that G(y) < x.

(112)

On the other hand, if y∗ < ∞, then

w(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(x,Φ(x)) −K−(y − Φ(x)), for (x, y) such that

y > y∗ and x < F (y),

A(y)xn + R(x, y), for (x, y) such that

y ∈ [0, y∗] ∩ R and x ≤ G(y),

A(y)xn + B(y)xm + R(x, y), for (x, y) such that

y > y∗ and F (y) ≤ x ≤ G(y),

w(x,G[−1](x)) −K+(G[−1](x) − y) for (x, y) such that G(y) < x.

(113)

It is worth noting that if y∗ = 0 and F (0) > 0, then (78) and (110) imply that

w(x, 0) = A(0)xn + R(x, 0), for 0 < x ≤ G(0),

which is consistent with the associated expression resulting from (113).
The next result, which we prove in the appendix, is concerned with proving that

the construction above indeed provides a solution to the HJB equation (49)–(50), as
well as with certain estimates that we will need.

Lemma 8. Suppose that Assumptions 1 and 2 hold. The function w given by
(112)–(113), where F , G and A, B are as in (107), (108) and (109), (110), respectively,
is C2 and satisfies the HJB equation (49)–(50). Also, w satisfies

w(x, y) ≤ C5

(
1 + y + Gn−ε4(y) + Gα(y)yβ + xn−ε4

)
, for all (x, y) ∈ S,(114)

for some constants C5 > 0 and ε4 ∈ ]0, n[, as well as (54) in the verification theorem,
Theorem 5.

Remark 2. A careful inspection of the proof of this result reveals that, had we
perturbed the expressions on the right-hand sides of (109) and (110) by additive con-
stants, we still would have obtained a further solution to the HJB equation (49)–(50).
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However, such a solution would not satisfy an estimate such as the one provided by
(114) that plays a fundamental role in the proof of the verification theorem, Theo-
rem 5.

We can now prove the main result of the paper.
Theorem 9. Consider the capacity control problem formulated in section 2, and

suppose that Assumptions 1 and 2 hold. The value function v identifies with the
function w given by (112)–(113), where F , G and A, B are as in (107), (108) and
(109), (110), respectively. The optimal capacity process Y o reflects the joint process
(X,Y o) along the boundaries G and F in the positive and in the negative y-direction,
respectively, and can be constructed as follows.

(a) If y∗ = ∞, then Y o is given by

Y o
t = y1{t≤τ0} + G[−1]

(
sup
s≤t

Xs

)
1{τ0<t},

where τ0 = inf {t ≥ 0 : Xt ≥ G(y)} and G[−1] : [G(0),∞[→ R+ is the inverse func-
tion of G.

(b) If y∗ < ∞, we first define

ŷ =

{
Φ(x), if y > Φ(x),

y otherwise,
τ0 = inf {t ≥ 0 : Xt ≥ G(ŷ)}

and

Y
(1)
t = y1{t=0} + ŷ1{0<t≤τ0} + G[−1]

(
sup
s≤t

Xs

)
1{τ0<t},

where Φ is defined by (111). We then recursively define the (Ft)-stopping times τn
and the processes Y (n) by

τ2k+1 = inf
{
t > 0 : Xt < F̂

(
Y

(2k+1)
t

)}
,

Y
(2k+2)
t = Y

(2k+1)
t 1{t≤τ2k+1} + Φ

(
inf

τ2k+1<s≤t
Xs

)
1{τ2k+1<t}

for k = 0, 1, . . . , where

F̂ (y) =

{
0, if y < y∗,

F (y), if y ≥ y∗,

and by

τ2k = inf
{
t > 0 : Xt > G

(
Y

(2k)
t

)}
,

Y
(2k+1)
t = Y

(2k)
t 1{t≤τ2k} + G[−1]

(
sup

τ2k<s≤t
Xs

)
1{τ2k<t}

for k = 1, 2, . . . . The optimal capacity process Y o is given by Y o
t = Y

(n)
t for t < τn

and n ≥ 1.
Proof. In view of Lemma 8, we have to show only that the process Y o satisfies

(55)–(59) in the verification theorem, Theorem 5. To this end, we first make the
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following comments on the construction of Y o. If y∗ = ∞, then the boundary F does
not exist, and Y o = Y (1) is all we need because it reflects the joint process (X,Y (1))
along the boundary G in the positive y-direction. On the other hand, if y∗ < ∞,
then the boundary F becomes part of the picture and we need to define Y o in a
recursive way. If the initial condition (x, y) is in the interior of the “disinvestment”
region D, then the process Y (1) has a jump of size −(y − Φ(x)) at time 0, which
instantaneously repositions the joint process (X,Y (1)) in the closure of the “wait”
region W. Similarly, if the initial condition (x, y) is in the interior of the “investment”
region I, then the process Y (1) has a jump of size G[−1](x) − y at time 0, which
instantaneously repositions (X,Y (1)) in the closure of the “wait” region. After time
0, the process Y (1) reflects the joint process (X,Y (1)) along the boundary G in the
positive y-direction, and (X,Y (1)) enters the interior of the “disinvestment” region
D after time τ1 with positive probability. The process Y (2) is the same as Y (1) up

to time τ1, Y
(2)
τ1 ≡ Y

(1)
τ1 > y∗, and Xτ1 = F (Y

(2)
τ1 ). Beyond time τ1, Y (2) reflects

the joint process (X,Y (2)) along the boundary F in the negative y-direction. As a
result, the process (X,Y (2)) is kept outside the interior of I ∪ D at all times up to
τ2, after which time it enters the interior of the “investment” region I with positive
probability. The process Y (3) is the same as Y (2) up to time τ2 and Xτ2 = G(Yτ2).
After τ2, Y

(3) reflects (X,Y (3)) along the boundary G in the positive y-direction. It
follows that the process (X,Y (3)) does not enter the interior of I ∪ D up to time τ3.

Iterating this construction, which ensures that Y
(n)
t = Y

(n+1)
t , for all t ∈ [0, τn+1] and

n ≥ 1, and observing that limn→∞ τn = ∞, we can see that Y o
t is defined for all t ≥ 0

and that (55) is satisfied. Also, if ξo+ and ξo− are the increasing processes providing
the minimal decomposition of Y o into Y o = y + ξo+ − ξo−, then both (56) and (57)
hold.

To proceed further, we note that the construction of Y o implies that

Y o
t ≤ y1{X̄t≤G(y)} + G[−1](X̄t)1{X̄t>G(y)},(115)

where X̄t = sups≤t Xs. Combining this inequality with the definition (108) of G and
the estimates in (91) and (106), we can see that

Y o
t ≤ y1{X̄t≤G(y)} + C4X̄

α/(1−β)
t 1{X̄t>G(y)}(116)

and

ξo+
t ≤ C4X̄

α/(1−β)
t .(117)

Now, we can use (116), the observation that

G(Y o
t ) ≤ G(y)1{X̄t≤G(y)} + X̄t1{X̄t>G(y)},

which follows immediately from (115), to see that, e.g.,

Gα (Y o
t ) (Y o

t )
β ≤ Gα(y)yβ1{X̄t≤G(y)} + Cβ

4 X̄
α/(1−β)
t 1{X̄t>G(y)}

≤ Gα(y)yβ + Cβ
4 X̄

α/(1−β)
t .

In view of this and similar calculations involving the other terms, as well as the
estimate (114) and the fact that α < α

1−β < n (see Assumption 2), we can con-

clude that (116)–(117) imply that the estimates (58)–(59) hold true, and the proof is
complete.
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6. Examples. We can illustrate our main results by means of the special cases
that we now consider.

Corollary 10. Suppose that h is given by (27) in Example 1, and K+,K+ +
K− > 0. If α

1−β < n, then v < ∞, while if α
1−β > n > α, then v ≡ ∞, where n is the

positive solution of (10). In the former case, the following hold true:
(a) If K− ≥ 0, then y∗ = ∞,

G(y) =

[
−rK+(α−m)

mβ

]1/α
y(1−β)/α,(118)

and the optimal strategy can be depicted by Figure 1.
(b) If K− < 0, then y∗ = 0 and

lim
y↓0

F (y) = lim
y↓0

G(y) = 0,(119)

and the optimal strategy can be depicted by Figure 4.
Proof. As we have observed in Example 1, Assumptions 1 and 2 are satisfied and

v < ∞ if and only if α
1−β < n. Also, if α

1−β > n > α, then we have proved in Lemma 3
that v ≡ ∞.

The condition distinguishing the two cases follows from a simple inspection of
(102), while showing (118) involves elementary calculations. To see (119), we observe
that the system of equations (100)–(101), which specifies F and G, is equivalent to

β

α−m
y−(1−β)

[
Gα−m(y) − Fα−m(y)

]
= − r

m

[
K+G−m(y) + K−F−m(y)

]
,(120)

β

n− α
y−(1−β)

[
Gα−n(y) − Fα−n(y)

]
=

r

n

[
K+G−n(y) + K−F−n(y)

]
.(121)

Since m < 0 < α, 1− β and F , G are increasing, the right-hand side of (120) remains
bounded as y ↓ 0, and limy↓0 y

−(1−β) = ∞. It follows that (120) cannot be true unless
(119) is satisfied, and the proof is complete.

Remark 3. In the context of the special case considered in Corollary 10, it is worth
noting that the solution w to the HJB equation (49)–(50) that we have constructed
following intuition based on economical considerations is finite for all α ∈ ]0, n[ and
β ∈ ]0, 1[. Had we adopted a formal approach, this observation would have suggested
the adoption of the capacity expansion strategy that keeps the process (X,Y ) inside
the “wait” region W that is determined by the functions F and G provided by the
unique solution to the associated free-boundary problem. However, such a formal
approach would have led us to wrong conclusions because

w(x, y) < ∞ = v(x, y), for all (x, y) ∈ S,

if α
1−β > n.

Remark 4. In the special case of Corollary 10 arising when α = 1−β and K− < 0,
we can verify that (120) and (121) are satisfied by the functions

F (y) = κy and G(y) = νy, for y ≥ 0,

where κ and ν are constants satisfying the system of algebraic equations

1 − α

α−m

[
να−m − κα−m

]
= − r

m

[
K+ν−m + K−κ−m

]
,(122)

1 − α

n− α

[
ν−(n−α) − κ−(n−α)

]
=

r

n

[
K+ν−n + K−κ−n

]
.(123)



866 AMAL MERHI AND MIHAIL ZERVOS

Abel and Eberly [1] considered this special case with r > b, which satisfies our as-
sumptions thanks to the equivalence r > b ⇔ n > 1, and have proved that the system
of equations (122)–(123) has a unique solution such that 0 < κ < ν.

The following special case follows from our general results and (29).
Corollary 11. Suppose that K+,−K−,K+ + K− > 0, consider the running

payoff function h given by (28) in Example 2, and assume that the associated param-
eters satisfy (29). The following cases hold true:

(a) If −rK− ∈
](
βηαζ−(1−β) −K

)
∨ 0, rK+

[
, then y∗ = 0, 0 < limy↓0 F (y) <

limy↓0 G(y), and the optimal strategy can be depicted by Figure 3.
(b) If βηαζ−(1−β) > K and −rK− ∈

]
0, βηαζ−(1−β) −K

[
, then

y∗ =

(
βηα

K − rK−

) 1
1−β

− ζ > 0,

limy↓y∗ F (y) = 0, limy↓0 G(y) > 0, and the optimal strategy can be depicted by Fig-
ure 2.

We conclude with the following example that does not satisfy the requirements
imposed on the problem data by Assumptions 1 and 2.

Example 3. Suppose that the running payoff function h is given by h(x, y) =
(x + η)αyβ , for some constants η > 0 and α, β ∈ ]0, 1[, such that α

1−β < n. Using the

same arguments as the ones in Example 2, we can check that Assumption 1 and (23),
(24), and (26) in Assumption 2 all hold true. However, this payoff function does not
satisfy the upper bound required by (25) in Assumption 2. Furthermore, if we assume
that K+,−K−,K+ + K− > 0, then we can check that the points y∗ and y∗ defined
as in Lemmas 6 and 7 are given by

0 < y∗ =

(
βηα

rK+

) 1
1−β

<

(
βηα

−rK−

) 1
1−β

= y∗.

It follows that, at least formally, this example provides a case in which a strategy such
as the one depicted by Figure 5 is optimal.

Appendix. Proof of selected results.
Proof of Lemma 6. Suppose that (20) in Assumption 1 is satisfied. Fix any y ≥ 0,

and suppose that infx>0 H(x, y) − rK+ ≥ 0. In this case, H(x, y) − rK+ > 0, for all
x > 0, because H(·, y) is a strictly increasing function. This implies that q(x, y) > 0,
for all x > 0, and, therefore, the equation q(x, y) = 0 has no solution x > 0.

Now, fix any y ≥ 0, and assume that infx>0 H(x, y) < rK+. Recalling the
assumption that H(·, y) is strictly increasing, we define

x† = x†(y) := inf
{
x > 0 : H(x, y) − rK+ > 0

}
> 0,

and we observe that

∂

∂x
q(x, y) = x−m−1

[
H(x, y) − rK+

]{< 0, for all x ∈ ]0, x†[,

> 0 for all x > x†.
(124)

Combining the fact that q(·, y) is strictly decreasing in ]0, x†[ and strictly increasing
in ]x†,∞[, with q(0, y) = 0, we can see that q(x, y) < 0 for all x ≤ x†. In particular,
q(x†, y) < 0. Therefore, if q(x, y) = 0 has a solution x > 0, then this must satisfy
x > x†. Also, given that it exists, this solution is unique because q(·, y) is strictly
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increasing in ]x†,∞[. To prove that the required solution indeed exists, it suffices to
show that limx→∞ q(x, y) = ∞. The assumption that limx→∞ H(x, y) = ∞ implies
that, given any constant M > 0, there exists γ > x† such that H(x, y) − rK+ ≥ M
for all x ≥ γ. However, given any such choice of these constants, we calculate

lim
x→∞

q(x, y) = lim
x→∞

[
q(γ, y) +

∫ x

γ

s−m−1
[
H(s, y) − rK+

]
ds

]
≥ lim

x→∞

[
q(γ, y) +

M

m
γ−m − M

m
x−m

]
= ∞.

If (21) in Assumption 1 also holds and the point ỹ∗ defined as in (89) is finite,
then infx>0 H(x, y) < rK+ for all y > ỹ∗. It follows that (86) uniquely defines a
continuous function G̃ : ]ỹ∗,∞[→ ]0,∞[. Moreover, the arguments above regarding
the solvability of q(x, y) = 0 imply (90).

To see that G̃ is C1 and strictly increasing, we differentiate q(G̃(y), y) = 0 with
respect to y to obtain

G̃′(y) = −G̃m+1(y)
[
H(G̃(y), y) − rK+

]−1
∫ G̃(y)

0

s−m−1Hy(s, y) ds > 0(125)

for all y > ỹ∗. The inequality here follows thanks to (90) and (21) in Assumption 1.
Now, suppose that (25) in Assumption 2 also holds, and observe that this implies

that

inf
x>0

H(x, y) < rK+ for all y > 0.

However, this inequality implies that ỹ∗ = 0. Finally, with regard to (25) in Assump-
tion 2 and (124) above, we calculate

∂

∂x
q(x, y) ≤ x−m−1

[
βCxαy−(1−β) − rϑ

]
.

Combining this inequality with q(0, y) = 0, we can see that, given any y > 0, G̃(y) is
greater than or equal to the strictly positive solution of the equation∫ z

0

s−m−1
[
βCsαy−(1−β) − rϑ

]
ds = 0,

which yields

G̃(y) ≥
(
−rϑ(α−m)

βCm

) 1
α

y
1−β
α for all y > 0.

However, this implies (91).
Proof of Lemma 7. Suppose that Assumption 1 holds. We develop the proof in a

number of steps.
Step 1. To study the solvability of the system of equations (98) and (99), we first

prove that (98) uniquely defines a mapping L : (R+ \ {0})2 → ]0,∞[ such that

f(x1, L(x1, y), y) = 0 and L(x1, y) > x1.(126)

To this end, fix any x1 > 0, y > 0, and observe that

f(x1, x1, y) = − 1

m
r
(
K+ + K−)x−m

1 > 0.(127)
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Given M > 0, observe that the assumption that limx→∞ H(x, y) = ∞, for all y > 0,
implies that there exists a constant γ > x1 such that H(x, y) − rK+ ≥ M for all
x ≥ γ. For such a choice of parameters, since m < 0, we calculate

lim
x2→∞

f(x1, x2, y) = lim
x2→∞

[
−
∫ γ

x1

s−m−1
[
H(s, y) − rK+

]
ds

−
∫ x2

γ

s−m−1
[
H(s, y) − rK+

]
ds− r

m

(
K+ + K−)x−m

1

]
≤ lim

x2→∞

[
f(x1, γ, y) −M

∫ x2

γ

s−m−1 ds

]
= lim

x2→∞

[
f(x1, γ, y) −

M

m
γ−m +

M

m
x−m

2

]
= −∞.(128)

Also, it is straightforward to calculate

∂f

∂x2
(x1, x2, y) = −x−m−1

2

[
H(x2, y) − rK+

]{> 0, for all x2 ∈ ]0, x†[,

< 0, for all x2 > x†,
(129)

where

x† = x†(y) := inf
{
x > 0 : H(x, y) − rK+ > 0

}
.

Combining the fact that f(x1, ·, y) is strictly increasing in the interval [x1, x
†[, if

x1 < x†, and strictly decreasing in the interval ]x† ∨ x1,∞[, with (128) and (127), we
can conclude that the equation f(x1, x2, y) = 0 has a unique solution x2 = L(x1, y)
which satisfies (126) as well as

H(L(x1, y), y) − rK+ > 0.(130)

For future reference, we also note that differentiation of f(x1, L(x1, y), y) = 0 with
respect to x1 yields

∂

∂x1
L(x1, y) =

x−m−1
1 [H(x1, y) + rK−]

L−m−1(x1, y) [H(L(x1, y), y) − rK+]
,(131)

while differentiation of f(x1, L(x1, y), y) = 0 with respect to y gives

∂

∂y
L(x1, y) = −Lm+1(x1, y)

[
H(L(x1, y), y) − rK+

]−1
∫ L(x1,y)

x1

s−m−1Hy(s, y) ds.

(132)

Step 2. To prove that the system of equations (98) and (99) has a unique solution
(x1, x2) such that 0 < x1 < x2 we have to show that there exists a unique x1 > 0
such that g(x1, L(x1, y), y) = 0. To this end, we first observe that the calculation

g(x1, L(x1, y), y) =

∫ L(x1,y)

x1

s−n−1
[
H(s, y) − rK+

]
+

1

n
r
(
K+ + K−)x−n

1

and the assumptions limx→∞ H(x, y) = ∞, K+ + K− > 0 imply that

(133) there exists a constant N > 0 such that g(x1, L(x1, y), y) > 0 for all x1 ≥ N.
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Now, with regard to (131), we calculate

∂

∂x1
g(x1, L(x1, y), y) = x−m−1

1

[
Lm−n(x1, y) − xm−n

1

] [
H(x1, y) + rK−] .(134)

Since L(x1, y) > x1 and m < n, Lm−n(x1, y) − xm−n
1 < 0. It follows that if

infx>0 H(x, y) ≥ −rK−, then g(·, L(·, y), y) is decreasing, which, combined with (133),
implies that the equation g(x1, L(x1, y), y) = 0 cannot have a solution x1 > 0. There-
fore, we must have infx>0 H(x, y) < −rK−. Assuming that this condition holds, we
recall that H(·, y) is strictly increasing, we define

x‡ = x‡(y) := inf
{
x > 0 : H(x, y) + rK− > 0

}
,

and we observe that

g(·, L(·, y), y) is strictly increasing in ]0, x‡[ and strictly decreasing in ]x‡,∞[.

(135)

Furthermore, under this condition, there exist ε > 0 and δ < x‡ such that H(x1, y) +
rK− ≤ −ε for all x1 ≤ δ. For such a choice of parameters, we calculate

lim
x1↓0

∫ ∞

x1

s−n−1
[
H(s, y) + rK−] ds
≤ lim

x1↓0

[
ε

n
δ−n − ε

n
x−n

1 +

∫ ∞

δ

s−n−1
[
H(s, y) + rK−] ds]

= −∞.(136)

In view of this, (130), and the assumption that H(·, y) is increasing,

lim
x1↓0

g(x1, L(x1, y), y)

= lim
x1↓0

[∫ ∞

x1

s−n−1
[
H(s, y) + rK−] ds− ∫ ∞

L(x1,y)

s−n−1
[
H(s, y) − rK+

]
ds

]

≤ lim
x1↓0

∫ ∞

x1

s−n−1
[
H(s, y) + rK−] ds

= −∞.(137)

However, combining (133) with (135) and (137), we can see that the equation
g(x1, L(x1, y), y) = 0 has a unique solution x1 > 0, which also satisfies

H(x1, y) + rK− < 0.(138)

Step 3. Summarizing the analysis above, under the assumption that the point ȳ∗

defined as in (102) is finite, the system of equations (98) and (99) uniquely defines
two continuous functions F̄ , Ḡ : ]ȳ∗,∞[→ ]0,∞[ that satisfy F̄ (y) < Ḡ(y), for all
y > ȳ∗, as well as (105). Also, (103)–(104) follow from a simple continuity argument
combining the definition of ȳ∗ and (138).

Step 4. Now, assuming that ȳ∗ < ∞, we consider any point y > ȳ∗. Differentiating
the equation g(F̄ (y), L(F̄ (y), y), y) = 0 with respect to y, using (131), and observing
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that Ḡ(y) = L(F̄ (y), y), we calculate

F̄ ′(y) = − F̄m+1(y)Ḡ−n
[
Ḡ−(n−m)(y) − F̄−(n−m)(y)

]−1 [
H(F̄ (y), y) + rK−]−1

×
∫ Ḡ(y)

F̄ (y)

[(
Ḡ(y)

s

)n

−
(
Ḡ(y)

s

)m]
1

s
Hy(s, y) ds > 0,(139)

the inequality following thanks to assumption (21), the first inequality in (105), and
the fact that m < 0 < n. Also, differentiating the equation f(F̄ (y), L(F̄ (y), y), y) = 0
with respect to y, and using (132) and (139), we calculate

Ḡ′(y) = − F̄−n(y)Ḡm+1
[
Ḡ−(n−m)(y) − F̄−(n−m)(y)

]−1 [
H(Ḡ(y), y) − rK+

]−1

×
∫ Ḡ(y)

F̄ (y)

[(
F̄ (y)

s

)n

−
(
F̄ (y)

s

)m]
1

s
Hy(s, y) ds > 0,

the inequality following thanks to (105) and (21). However, these calculations show
that F̄ and Ḡ are both C1 and strictly increasing.

Step 5. Finally, suppose that (25) in Assumption 2 is also true. With reference
to the equation f(F̄ (y), Ḡ(y), y) = 0, we calculate

0 = −
∫ Ḡ(y)

F̄ (y)

s−m−1
[
H(s, y) − rK+

]
ds− 1

m
r
(
K+ + K−) F̄−m(y)

≥ −
[

βC

α−m
Ḡα−m(y)y−(1−β) +

rϑ

m
Ḡ−m(y)

]
+

[
βC

α−m
F̄α−m(y)y−(1−β) − 1

m
r
(
K+ + K− − ϑ

)
F̄−m(y)

]
.

Since ϑ < K+ + K− by assumption, the second term on the right-hand side of this
expression is strictly positive. Therefore, we must have

βC

α−m
Ḡα−m(y)y−(1−β) +

rϑ

m
Ḡ−m(y) > 0.

This inequality can be true only if Ḡ(y) is strictly greater than the unique strictly
positive solution of the equation

βC

α−m
zα−my−(1−β) +

rϑ

m
z−m = 0,

which yields

Ḡ(y) ≥
(
−rϑ(α−m)

βCm

) 1
α

y
1−β
α for all y > ȳ∗.

However, this implies (106).
Proof of Lemma 8. We develop the proof along a series of steps.
Step 1. We first prove (114). Consider (109), and note that the upper bound in

(25) in Assumption 2 implies that

0 < A(y) ≤ βC

σ2(n−m)(n− α)

∫ ∞

y

u−(1−β)G−(n−α)(u) du.(140)
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Recalling the inequalities α < α
1−β < n, we fix any ε0 > 0 such that

ε0 < n− α

1 − β
< n− α.

Using the fact that G is increasing and the estimate provided by (91) and (106), we
calculate∫ ∞

y

u−(1−β)G−(n−α)(u) du ≤ G−ε0(y)

∫ ∞

y

u−(1−β)G−(n−α−ε0)(u) du

≤ αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n− ε0) − α
G−ε0(y)y1− (1−β)(n−ε0)

α ,

which implies that∫ ∞

y

u−(1−β)G−(n−α)(u) du ≤ αC
(1−β)(n−α−ε0)/α
4

(1 − β)(n− ε0) − α
G−ε0(y) for all y ≥ 1.

(141)

Also, the fact that G is increasing implies that

Gn(y)

∫ 1

y

u−(1−β)G−(n−α)(u) du ≤ Gα(y)

∫ 1

y

u−(1−β) du

≤ 1

β
Gα(1) for all y < 1.(142)

However, (140)–(142) imply that

A(y)xn ≤ A(y)Gn(y)

≤ βC

σ2(n−m)(n− α)

[
αC

(1−β)(n−α−ε0)/α
4

(1 − β)(n− ε0) − α
Gn−ε0(y)1{y≥1}

+

(
αC

(1−β)(n−α−ε0)/α
4

(1 − β)(n− ε0) − α
Gn−ε0(1) +

1

β
Gα(1)

)
1{y<1}

]
= C51

(
1 + Gn−ε0(y)

)
, for all y ≥ 0 and x ≤ G(y),(143)

where C51 > 0 is a constant.
If y∗ < ∞, then (110), the assumption that K+ + K− > 0, the lower bound in

(25) in Assumption 2, and the fact that F is increasing imply that, given any y > y∗,

B(y) ≤ − C + rK+

σ2m(n−m)

∫ y

y∗
F−m(u) du

≤ − C + rK+

σ2m(n−m)
yF−m(y).

In light of this calculation and the fact that m < 0, we can see that

sup
x∈[F (y),G(y)]

B(y)xm ≤ B(y)Fm(y) ≤ C52y, for all y > y∗,(144)
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where C52 > 0 is a constant. Since R is increasing in x (see (26) in Assumption 2 and
(16)), the upper bound in Lemma 2 implies that

sup
x≤G(y)

R(x, y) ≤ R(G(y), y)

≤ C1

(
1 + y + Gn−ϑ(y) + Gα(y)yβ

)
for all y ≥ 0.

However, combining this estimate with (143) and (144), we can see that w satisfies

w(x, y) ≤ C53

(
1 + y + Gn−ε0∧ϑ(y) + Gα(y)yβ

)
, for all (x, y) ∈ W,(145)

for some constant C53 > 0. With regard to the structure of w provided by (112)–(113),
this inequality and the estimates provided by (91) and (106) imply that

w(x, y) ≤ w(x,G[−1](x)) + K+y

≤ C53

(
1 + G[−1](x) + xn−ε0∧ϑ + xα

[
G[−1](x)

]β)
+ K+y

≤ C54

(
1 + y + xn−ε0∧ϑ + xα/(1−β)

)
, for (x, y) ∈ I,(146)

for some constant C54 > 0. Also, since Φ(x) ≤ y, for all (x, y) ∈ D, and G is
increasing,

w(x, y) ≤ w(x,Φ(x)) + |K−|y
≤ C53

(
1 + Φ(x) + Gn−ε0∧ϑ(Φ(x)) + Gα(Φ(x))Φβ(x)

)
+ |K−|y

≤ C55

(
1 + y + Gn−ε0∧ϑ(y) + Gα(y)yβ

)
, for (x, y) ∈ D,(147)

where C55 > 0 is a constant. However, in view of the assumption α
1−β < n, if we

choose any

ε4 ∈
]
0, ε0 ∧ ϑ ∧

(
n− α

1 − β

)[
and C5 ≥ C53 ∨ C54 ∨ C55,

then we can see that (145)–(147) imply (114).
Step 2. To show that w satisfies (54), we first observe that the positivity of A, B

and the lower bound in Lemma 2 imply that

w(x, y) ≥ −C1(1 + y) for all (x, y) ∈ W.(148)

This estimate and the definition of w in I, provided by (112)–(113), imply that

w(x, y) ≥ −(C1 + K+)G[−1](x) − C1

≥ −(C1 + K+)C4x
α/(1−β) − C1, for all (x, y) ∈ I,(149)

the second inequality following thanks to (91) and (106). Also, if y∗ < ∞, then (148)
and the definition of w in D, given by (113), imply that

w(x, y) ≥ −C1(1 + Φ(x)) − |K−|max{y,Φ(x)}
≥ −(C1 + |K−|)y − C1.(150)

However, (148)–(150) establish (54).
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Step 3. With reference to the construction of w, we will show that w is C2 if we
prove that wx, wxx, and wyy are continuous along the free boundaries F and G. To
this end, we calculate

wx(x, y) = wx

(
x,G[−1](x)

)
+
[
wy

(
x,G[−1](x)

)
−K+

] dG[−1](x)

dx

= wx

(
x,G[−1](x)

)
, for (x, y) ∈ I,(151)

and

wxx(x, y) = wxx

(
x,G[−1](x)

)
+ wxy

(
x,G[−1](x)

) dG[−1](x)

dx

= wxx

(
x,G[−1](x)

)
, for (x, y) ∈ I,(152)

the second equalities following thanks to (80) that have been among the requirements
leading to the equations specifying the function G. However, these calculations and
the structure of w provided by (112)–(113) show that wx and wxx are continuous
along G.

Now, if y∗ > 0 and y ∈ [0, y∗] ∩ R, we can use (79) and (88) to calculate

lim
x↑G(y)

wyy(x, y) = A′′(y)Gn(y) + Ryy(G(y), y)

=
G−1(y)

σ2(n−m)

[
G′(y)

[
H(G(y), y) − rK+

]
+ Gm+1(y)

∫ G(y)

0

s−m−1Hy(s, y) ds

]
= 0,(153)

the last equality following thanks to (125). Also, if y∗ < ∞ and y > y∗, we can use
(79), (95), and (97) to calculate

lim
x↑G(y)

wyy(x, y) = A′′(y)Gn(y) + B′′(y)Gm(y) + Ryy(G(y), y)

= 0.(154)

However, combining (153) and (154) with the fact that wyy(x, y) = 0, for (x, y) ∈ I,
we conclude that wyy is continuous along G.

Showing that wx, wxx, and wyy are continuous along F involves similar arguments.
Step 4. By construction, we will prove that w satisfies the HJB equation (49)–(50)

if we show that

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) ≤ 0, for (x, y) ∈ I,(155)

wy(x, y) + K− ≥ 0, for (x, y) ∈ I, y > 0,(156)

wy(x, y) −K+ ≤ 0, for (x, y) ∈ W,(157)

wy(x, y) + K− ≥ 0, for (x, y) ∈ W, y > 0,(158)

and, if D �= ∅,

σ2x2wxx(x, y) + bxwx(x, y) − rw(x, y) + h(x, y) ≤ 0, for (x, y) ∈ D,(159)

wy(x, y) −K+ ≤ 0 for (x, y) ∈ D.(160)
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It is straightforward to see that either of (156) or (160) is equivalent to K++K− ≥
0, which is true by assumption. Recalling that H ≡ hy, we can easily verify that,
since y ≤ G[−1](x), for all (x, y) ∈ I, (151) and (152) imply that (155) is equivalent
to ∫ G[−1](x)

y

[
H(x, u) − rK+

]
du ≥ 0 for (x, y) ∈ I.

However, this inequality follows immediately from the assumption that H(x, ·) is
strictly decreasing, for all x, and (90) together with the second inequality in (105).
Similarly, we can show that if D �= ∅, then (159) is equivalent to∫ y

Φ(x)

[
H(x, u) + rK−] du ≤ 0, for (x, y) ∈ D,

where Φ is defined by (111). However, we can see that this inequality is true once
we combine the first inequality in (105) with the assumption that H(x, ·) is strictly
decreasing, for all x, and the assumption that H(·, 0) is strictly increasing.

Now, suppose that y∗ < ∞, and fix any y > y∗. Since wy(F (y), y) = −K− and
wy(G(y), y) = K+, we will prove that both (157) and (158) are satisfied if we show
that

wyx(x, y) ≥ 0 for all x ∈ ]F (y), G(y)[.(161)

To this end, we consider the transformation of the independent variable x > 0 provided
by z = lnx, and we write w(x, y) = u(lnx, y) for some function u = u(z, y). It follows
that (161) is true if and only if

uyz(z, y) ≥ 0 for all z ∈ ] lnF (y), lnG(y)[.(162)

Now, since w = w(x, y) satisfies (77) for x ∈ ]F (y), G(y)[, uy satisfies

σ2uyzz(z, y) +
(
b− σ2

)
uyz(z, y) − ruy(z, y) + H(ez, y) = 0 for z ∈ ] lnF (y), lnG(y)[.

Recalling that Hx is continuous and Hx(·, y) ≥ 0 (see Assumption 1), we can differ-
entiate this equation with respect to z to obtain

σ2(uyz)zz(z, y) +
(
b− σ2

)
(uyz)z(z, y) − ruyz(z, y) = −ezHx(ez, y)

≤ 0 for z ∈ ] lnF (y), lnG(y)[.

This inequality and the maximum principle imply that uyz(·, y) does not have a neg-
ative minimum in the interval ] lnF (y), lnG(y)[, and so

inf
z∈ ] lnF (y),lnG(y)[

uyz(z, y) ≥ min
z=lnF (y),lnG(y)

0 ∧ uyz(z, y)

= min
z=F (y),G(y)

0 ∧ wyx(x, y)

= 0.

However, this calculation implies (162).
To proceed further, fix any y ∈ [0, y∗] ∩ R. Using the definition of R in (79), the

expression for A′(y) provided by (88), and the fact that G(y) satisfies (86), we can
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see that if we define u(x, y) = wy(x, y) −K+, then

ux(x, y) =
1

σ2(n−m)

[
−mxm−1

∫ G(y)

x

s−m−1
[
H(s, y) − rK+

]
ds

+ nxn−1

∫ G(y)

x

s−n−1
[
H(s, y) − rK+

]
ds

]
for x ∈ ]0, G(y)[.

This calculation and the assumption that H(·, y) is strictly increasing imply that
ux(x, y) = wyx(x, y) > 0, for all x ∈ [x†(y), G(y)[, where x†(y) ∈ ]0, G(y)[ is the
unique point such that H

(
x†(y), y

)
− rK+ = 0 (see Lemma 6). This observation and

the boundary condition wy (G(y), y) = K+ imply that

wy(x, y) −K+ < 0 for all x ∈ [x†(y), G(y)[.(163)

Furthermore, since

σ2x2uxx(x, y) + bxux(x, y) − ru(x, y) = −
[
H(x, y) − rK+

]
≥ 0, for x ∈ ]0, x†(y)[,

the maximum principle implies that the function x �→ u(x, y) = wy(x, y) − K+ has
no positive maximum in the interval ]0, x†(y)[, and so

sup
x∈ ]0,x†(y)[

[
wy(x, y) −K+

]
≤ max

x=0,x†(y)
0 ∨
[
wy(x, y) −K+

]
= 0,(164)

the equality following thanks to (163) and the fact that

lim
x↓0

wy(x, y) = lim
x↓0

Ry(x, y) = lim
x↓0

H(x, y)

r
∈ [−K−,K+[.(165)

The second equality here holds true because of (17), while the inclusion follows from
the context (see Lemmas 6 and 7). However, (163) and (164) establish (157). Finally,
if we define u(x, y) = wy(x, y) + K−, then (165) and the assumption that H(·, y) is
increasing imply that

σ2x2uxx(x, y) + bxux(x, y) − ru(x, y) = −
[
H(x, y) + rK−] ≤ 0 for all x ∈ ]0, G(y)[.

This calculation and the maximum principle imply that the function x �→ u(x, y) =
wy(x, y) + K− has no negative minimum inside ]0, G(y)[, and so

inf
x∈ ]0,G(y)[

[
wy(x, y) + K−] = min

x=0,G(y)
0 ∧
[
wy(x, y) + K−] ,

which, combined with (165) and the boundary condition wy(G(y), y) + K− = K+ +
K− > 0, proves (158), and the proof is complete.
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EXACT CONTROLLABILITY OF A NONLINEAR KORTEWEG–
DE VRIES EQUATION ON A CRITICAL SPATIAL DOMAIN∗

EDUARDO CERPA†

Abstract. We consider the boundary controllability problem for a nonlinear Korteweg–de Vries
equation with the Dirichlet boundary condition. We study this problem for a spatial domain with a
critical length for which the linearized control system is not controllable. In order to deal with the
nonlinearity, we use a power series expansion of second order. We prove that the nonlinear term gives
the local exact controllability around the origin provided that the time of control is large enough.

Key words. controllability, Korteweg–de Vries equation, power series expansion
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1. Introduction. Let L > 0 be fixed. Let us consider the following Korteweg–de
Vries (KdV) control system with the Dirichlet boundary condition⎧⎨⎩

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),

(1.1)

where the state is y(t, ·) : [0, L] → R and the control is u(t) ∈ R. This is a well-known
example of a nonlinear dispersive partial differential equation. This equation has been
introduced by Korteweg and de Vries in [14] to describe approximately long waves
in water of relatively shallow depth. A very good book to understand both physical
motivation and deduction of the KdV equation is the book by Whitham [23].

We are concerned with the exact controllability properties of (1.1). In [17] Rosier
has proved that this control system is locally exactly controllable around the origin
provided that the length of the spatial domain is not critical. This was done using
multiplier techniques and the Hilbert Uniqueness Method (HUM) method introduced
by Lions (see [15]).

Theorem 1.1 (see [17, Theorem 1.3]). Let T > 0, and assume that

(1.2) L /∈ N :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N

∗

}
.

Then there exists r > 0 such that, for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r
and ‖yT ‖L2(0,L) < r, there exist u ∈ L2(0, T ) and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1.1), y(0, ·) = y0, and y(T, ·) = yT .
Moreover, Rosier proved that the linearized control system of (1.1) around the

origin, which is given by ⎧⎨⎩
∂ty + ∂xy + ∂3

xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),

(1.3)
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2007; published electronically June 12, 2007.
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is not controllable if L ∈ N . Indeed, there exists a finite-dimensional subspace of
L2(0, L), denoted by M , which is unreachable for the linear system. More pre-
cisely, for every nonzero state ψ ∈ M , for every u ∈ L2(0, T ), and for every y ∈
C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L)) satisfying (1.3) and y(0, ·) = 0, one has
y(T, ·) �= ψ.

Remark 1.2. If one is allowed to use more than one boundary control input, there
is no critical spatial domain, and the exact controllability holds for any L > 0. More
precisely, let us consider the nonlinear control system{

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = u1(t), y(t, L) = u2(t), ∂xy(t, L) = u3(t),
(1.4)

where the controls are u1(t), u2(t), and u3(t). As has been pointed out by Rosier in
[17], for every L > 0 the system (1.4) with u1 ≡ 0 is locally exactly controllable in
L2(0, L) around the origin. Moreover, using all three control inputs, Zhang proved in
[24] that for every L > 0 the system (1.4) is exactly controllable in the space Hs(0, L)
for any s ≥ 0 in a neighborhood of a given smooth solution of the KdV equation.

Recently, Coron and Crépeau in [8] have proved Theorem 1.1 for the critical
lengths L = 2kπ, with k ∈ N

∗ satisfying

�(m,n) ∈ N
∗ × N

∗, with m2 + mn + n2 = 3k2 and m �= n.(1.5)

For these values of L, the subspace M of missed directions is one-dimensional and is
generated by the function f(x) = 1 − cos(x). Their method consists, first, in moving
along this direction by performing a power series expansion of the solution and then
in using a fixed point theorem.

Remark 1.3. The condition (1.5) has been communicated to the author by Coron
and Crépeau. They pointed out that if it is not satisfied, then the dimension of the
missed directions subspace is higher than one, and the proof given in [8] does not
work anymore.

In this paper, we follow the method of Coron and Crépeau to investigate the case
of critical lengths for which the subspace M is two-dimensional. The set of lengths for
which it holds is denoted by N ′. We will see in section 2 that N ′ contains an infinite
number of lengths.

This paper is organized as follows. First, in section 2, we study the linearized
control system (1.3), and we provide a complete description of the space M in terms
of the length L of the spatial domain (0, L). Then, in section 3, we prove in the case
L ∈ N ′ that the nonlinear term y∂xy allows us to reach all of the missed directions
provided that the time of control is large enough. We give an explicit expression of
the minimal time required by our method. Finally, in section 4, we get the local exact
controllability by means of a fixed point theorem; i.e., we prove our main result.

Theorem 1.4. Let L ∈ N ′. There exists TM > 0 such that for any T > TM there
exist C > 0 and r > 0 such that for every (y0, yT ) ∈ L2(0, L)2 with ‖y0‖L2(0,L) < r
and ‖yT ‖L2(0,L) < r there exist u ∈ L2(0, T ) with

‖u‖L2(0,T ) ≤ C(‖y0‖L2(0,L) + ‖yT ‖L2(0,L))
1/2(1.6)

and

y ∈ C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L))

satisfying (1.1), y(0, ·) = y0, and y(T, ·) = yT .



CONTROLLABILITY OF A KORTEWEG–DE VRIES EQUATION 879

Remark 1.5. The power 1/2 in the estimate (1.6) comes, as we will see, from
performing a power series expansion of second order to deal with the nonlinearity. The
same estimate holds with power 1/3 for the critical lengths studied in [8] (third-order
expansion) and with power 1 for the noncritical lengths studied in [17] (first-order
expansion).

Remark 1.6. In order to complete the study of the exact controllability of system
(1.1), it is necessary to investigate the case where the dimension of the space M is
bigger than 2. An approach would be to use the exact controllability of the nonlinear
equation around nontrivial stationary solutions proved by Crépeau (in [10] for the
domains (0, 2πk) and in [11] for any other domain (0, L)) and then to apply the method
introduced in [5] (see also [1, 2]), that is, the return method (see [3, 4]), together with
quasi-static deformations (see also [9]). With such a method, one should obtain the
exact controllability of (1.1) for a large time. However, it seems that the minimal
time required with this approach is far from being optimal.

Remark 1.7. In Theorem 1.4, we get the local controllability for (1.1) provided
that the time of control is large enough. However, we may wonder if this condition
on the time is really necessary. This is an interesting open problem since one knows
that even if the speed of propagation of the KdV equation is infinite, it may exist a
minimal time of control. This is, for example, the case of a nonlinear control system
for the Schrödinger equation studied by Beauchard and Coron in [2]. They proved the
local controllability of this system along the ground state trajectory for a large time.
More recently, Coron proved in [6] and [7, Theorem 9.8] that this local controllability
does not hold in small time, even if the Schrödinger equation has an infinite speed of
propagation.

Remark 1.8. In [1, 2], there appear Schrödinger linear control systems which are
not controllable. One could apply the method used in this paper to prove the local
controllability of the corresponding nonlinear control systems. The main difficulty
is that in those cases the subspace of missed directions for the linear system is not
finite-dimensional.

Remark 1.9. Concerning the stabilization of the KdV equation, some results in
the case of periodic boundary conditions can be found in [13] (damping distributed
all along the domain), [20] (damping distributed with localized support), and [19]
(boundary damping). In the case of the Dirichlet boundary condition, exponential
decay of the solution has been obtained in [16] by adding a localized damping term
(see also [18] for a generalization of this result). However, the decay rate is unknown.
A natural open problem is to design for the control system (1.1) (or the linearized
one (1.3)) stabilizing feedback laws which give us an explicit decay rate. This kind of
result, even with a prescribed arbitrarily large decay rate, has been obtained in [12, 22]
for a general class of second-order (in time) systems including the wave equation and
platelike systems. It uses the fact that these systems are time-reversible. This is not
the case of the control system (1.1).

2. Linearized control system. We first recall some properties proved by Rosier
in [17]. Let L > 0 and T > 0. In order to study the following linear KdV equation:

⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy = f,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0,

(2.1)
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we define the space B := C([0, T ], L2(0, L)) ∩ L2(0, T,H1(0, L)) endowed with the
norm

‖y‖B = max
t∈[0,T ]

‖y(t)‖L2(0,L) +

(∫ T

0

‖y(t)‖2
H1(0,L)dt

)1/2

.

Let A denote the operator Aw = −w′ − w′′′ on the domain D(A) ⊂ L2(0, L)
defined by

D(A) :=
{
w ∈ H3(0, L); w(0) = w(L) = w′(L) = 0

}
.

One can see that both A and its adjoint A∗ are closed and dissipative. Hence A
generates a strongly continuous semigroup of contractions. Using this fact and the
multiplier method, Rosier proved the following existence and uniqueness result.

Proposition 2.1 (see [17, Propositions 3.2 and 3.7]). There exist unique con-
tinuous linear maps Ψ and δ

Ψ : L2(0, L) × L2(0, T ) × L1(0, T, L2(0, L)) −→ B,
(y0, u, f) �−→ Ψ(y0, u, f),

δ : L2(0, L) × L2(0, T ) × L1(0, T, L2(0, L)) −→ L2(0, T ),
(y0, u, f) �−→ δ(y0, u, f),

such that, for y0 ∈ D(A), u ∈ C2([0, T ]), with u(0) = 0, and f ∈ C1([0, T ], L2(0, L)),
then Ψ(y0, u, f) is the unique classical solution of (2.1) and

δ(y0, u, f) = ∂xΨ(y0, u, f)(·, 0).

The function Ψ(y0, u, f) is called the mild solution or simply the solution of (2.1)
in the context of this paper.

Now we focus our attention on the domains of critical length. In particular, we
describe the space M of unreachable states for the linear control system (1.3). Let
L ∈ N . There exists a finite number of pairs {(kj , lj)}nj=1 ⊂ N

∗ × N
∗, with kj ≥ lj ,

such that

L = 2π

√
k2
j + kj lj + l2j

3
.(2.2)

From the work of Rosier in [17], we know that for each j ∈ {1, . . . , n} there exist two
nonzero real-valued functions ϕj

1 = ϕj
1(x) and ϕj

2 = ϕj
2(x) such that ϕj := ϕj

1 + iϕj
2 is

a solution of ⎧⎨⎩
−ip(kj , lj)ϕ

j + ϕj′ + ϕj′′′ = 0,
ϕj(0) = ϕj(L) = 0,
ϕj′(0) = ϕj′(L) = 0,

(2.3)

where, for (k, l) ∈ N
∗ × N

∗, p(k, l) is defined by

p(k, l) :=
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
.

Easy computations lead to

ϕj
1 = C

(
cos(γj

1x) − γj
1 − γj

3

γj
2 − γj

3

cos(γj
2x) +

γj
1 − γj

2

γj
2 − γj

3

cos(γj
3x)

)
,

ϕj
2 = C

(
sin(γj

1x) − γj
1 − γj

3

γj
2 − γj

3

sin(γj
2x) +

γj
1 − γj

2

γj
2 − γj

3

sin(γj
3x)

)
,

(2.4)
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where C is a constant and the numbers γj
m, with m = 1, 2, 3, are the three roots of

x3 − x + p(kj , lj) = 0. One can easily verify that these roots are given by

γj
1 = −2π

L

(
2kj + lj

3

)
, γj

2 = γj
1 +

2πkj
L

, γj
3 = γj

2 +
2πlj
L

.(2.5)

Moreover, by choosing the constant C, we can assume that

‖ϕj
1‖L2(0,L) = ‖ϕj

2‖L2(0,L) = 1.

Roughly speaking, the functions ϕj
1 and ϕj

2 for j = 1, . . . , n are unreachable states for
the linear KdV control system (1.3) since the following functions:

y1(t, x) = Re(e−ip(kj ,lj)tϕj(x)) and y2(t, x) = Im(e−ip(kj ,lj)tϕj(x))

are solutions of (1.3) with u(t) ≡ 0, but they do not satisfy the next observability
inequality leading to the exact controllability

‖y(0, x)‖L2(0,L) ≤ C‖∂xy(t, 0)‖L2(0,T ).

Let us define the following subspaces of L2(0, L):

M := 〈{ϕ1
1, ϕ

1
2, . . . , ϕ

n
1 , ϕ

n
2}〉 and H := M⊥.

Remark 2.2. If p(kj , lj) = 0 for some j ∈ {1, . . . , n}, then ϕj
1 = ϕj

2 = 1 − cos(x).
It occurs when kj = lj , i.e., if L = 2πkj . If kj satisfies the condition (1.5), then
the space M is one-dimensional. This is the case treated in [8]. It corresponds, for
example, to the length L = 2π.

Remark 2.3. If p(kj , lj) �= 0, it is easy to see that ϕj
1 ⊥ ϕj

2. Moreover, for distinct
j1, j2 ∈ {1, . . . , n}, ϕj1

m ⊥ ϕj2
s for m, s = 1, 2. Let us give some examples. The pair

(2, 1) defines a critical length for which the space M is two-dimensional. The pair
(11, 8) defines a critical length for which the space M is four-dimensional since the
pairs (11, 8) and (16, 1) define the same critical length.

At this point, we can state the following controllability result which follows di-
rectly from the work of Rosier in [17, Propositions 3.3 and 3.9].

Theorem 2.4. Let T > 0. For every (y0, yT ) ∈ H ×H, there exist u ∈ L2(0, T ),
and y ∈ B satisfying (1.3), y(0, ·) = y0, and y(T, ·) = yT .

Now let us define the set N ′ by

N ′ :=

{
2π

√
k2 + kl + l2

3
; (k, l) ∈ N

∗ × N
∗ satisfying k > l and (2.7)

}
(2.6)

∀m,n ∈ N
∗\{k}, k2 + kl + l2 �= m2 + mn + n2.(2.7)

It is easy to see that N ′ is the set of critical lengths for which the space of unreachable
states is two-dimensional. Indeed, let L ∈ N ′; from (2.7) there exists a unique pair
(k1, l1) := (k, l) satisfying (2.2), and since k1 > l1, p(k1, l1) > 0, and therefore the
functions ϕ1

1, ϕ
1
2 are orthogonal.

Let us follow the proof of Proposition 8.3 in [7] in order to see that N ′ contains
an infinite number of elements. Let q ≥ 1 be an integer satisfying

∀m,n ∈ N
∗\{q}, m2 + mn + n2 �= 7q2.(2.8)
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Let us consider the critical length Lq defined by the pair (2q, q), that is,

Lq := 2π

√
(2q)2 + 2q2 + q2

3
= 2πq

√
7

3
.

From (2.8), it is easy to see that Lq ∈ N ′. One can verify that (2.8) holds for
q = 1, 2, 3, and therefore L1, L2, L3 ∈ N ′. Moreover, the following lemma says that
the set N ′ contains an infinite number of lengths Lq.

Lemma 2.5. There are infinitely many positive integers q satisfying (2.8).
Proof. Let q > 3 be a prime integer which does not satisfy (2.8), that is, such

that

∃m,n ∈ N
∗\{q}, m2 + mn + n2 = 7q2.(2.9)

From (2.9) one gets

−3mn = (m− n)2 (mod q), mn = (m + n)2 (mod q).(2.10)

It is easy to see that m + n �= 0 (mod q), and consequently from (2.10) we have

−3 =
(
(m + n)−1(m− n)

)2
(mod q);(2.11)

that is, −3 is a square modulo q. Let us introduce the Legendre symbol, where s is a
prime and x ∈ Z is an integer not divisible by s:(x

s

)
:=

{
1 if x is a square modulo s,

−1 if x is not a square modulo s.

We have the quadratic reciprocity law due to Gauss for every prime integer z > 2,
s > 2 (see [21, Chapter 3]) (s

z

)
=

(z
s

)
(−1)ε(z)ε(s),(2.12)

where

ε(z) =

{
0 if z = 1 (mod 4),
1 if z = −1 (mod 4).

From [21, Chapter 3], we also have that for every x, y coprime to s(xy
s

)
=

(x
s

)(y
s

)
(2.13)

and for every s > 2 prime integer

(−1)ε(s) =
(−1

s

)
.(2.14)

Using (2.12), (2.14), (2.13), and (2.11) with s = q, z = 3, and since ε(3) = 1, one
obtains (q

3

)
=

(
3

q

)
(−1)ε(q) =

(
3

q

)(
−1

q

)
=

(
−3

q

)
= 1;

that is, q = 1 (mod 3).
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Hence, if q > 3 is a prime integer such that q = 2 (mod 3), then q satisfies
(2.8). As there are two possible nonzero congruences modulo 3, the Dirichlet density
theorem (see [21, Chapter 4]) says that (2.8) holds on a set of prime integers of density
1/2. In particular, there are infinitely many positive integers q satisfying (2.8).

From now on and until the end of this paper, we consider L ∈ N ′. From (2.7),
for each L ∈ N ′ we can define a unique

p :=
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
,

and the space M is then defined by

M := 〈ϕ1, ϕ2〉 = {αϕ1 + βϕ2 ; α, β ∈ R} ,

where ϕ1 and ϕ2 are given by (2.4) with γj
m replaced by γm, where γ1, γ2, and γ3 are

the three roots of x3 − x + p = 0. From (2.3) we also have that ϕ1 and ϕ2 satisfy⎧⎨⎩
ϕ′

1 + ϕ′′′
1 = −pϕ2,

ϕ1(0) = ϕ1(L) = 0,
ϕ′

1(0) = ϕ′
1(L) = 0,

(2.15)

and ⎧⎨⎩
ϕ′

2 + ϕ′′′
2 = pϕ1,

ϕ2(0) = ϕ2(L) = 0,
ϕ′

2(0) = ϕ′
2(L) = 0.

(2.16)

Now we investigate the evolution of the projection on the subspace M of a solution
of (1.3). Let us consider (y, u) ∈ B × L2(0, T ) satisfying (1.3). Let us multiply (2.15)
by y and integrate on [0, L]. Using integrations by parts we get

d

dt

(∫ L

0

y(t, x)ϕ1(x)dx

)
= −p

∫ L

0

y(t, x)ϕ2(x)dx.(2.17)

Similarly, multiplying (2.16) by y, we get

d

dt

(∫ L

0

y(t, x)ϕ2(x)dx

)
= p

∫ L

0

y(t, x)ϕ1(x)dx.(2.18)

Hence, from (2.17) and (2.18), we obtain∫ L

0

y(t, x)ϕ1(x) dx =

∫ L

0

y(0, x)(cos(p t)ϕ1(x) − sin(p t)ϕ2(x)) dx,(2.19) ∫ L

0

y(t, x)ϕ2(x) dx =

∫ L

0

y(0, x)(sin(p t)ϕ1(x) + cos(p t)ϕ2(x)) dx.(2.20)

From (2.19) and (2.20), we see that the projection on M of y(t, ·), denoted by
PM (y(t, ·)), only turns in this two-dimensional subspace and therefore conserves its
L2(0, L)-norm. The period of this rotation is 2π/p. Furthermore, we see that if the
initial condition y(0, ·) lies in H, the solution does too for every time t. Combining
this rotation with Theorem 2.4, we obtain the following proposition.
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Proposition 2.6. Let y0, y1 ∈ L2(0, L) be such that

‖PM (y0)‖L2(0,L) = ‖PM (y1)‖L2(0,L).

Then there exists t∗ ≤ 2π
p and u ∈ L2(0, t∗) such that the solution y = y(t, x) of (1.3),

with y(0, ·) = y0, satisfies y(t∗, ·) = y1.
Proof. Let yM = yM (t, x) be the solution of (1.3), with yM (0, ·) = PM (y0) and

without control (u ≡ 0). We know that there exists a time 0 < t∗ ≤ 2π
p such that

yM (t∗, ·) = PM (y1). On the other hand, from Theorem 2.4 there exists a control
uH ∈ L2(0, t∗) such that the corresponding solution yH = yH(t, x) of (1.3) satisfies

yH(0, ·) = PH(y0) ∈ H and yH(t∗, ·) = PH(y1).

Then y(t, x) := yH(t, x) + yM (t, x) satisfies (1.3), with u = uH , y(0, ·) = y0, and
y(t∗, ·) = y1, which ends the proof of this proposition.

3. Motion in the missed directions. Let us first explain the general idea of
the method. Let y = y(t, x) be a solution of (1.1) with control u = u(t). We consider a
power series expansion of (y, u) with the same scaling on the state and on the control

y = εy1 + ε2y2 + ε3y3 . . . ,

u = εu1 + ε2u2 + ε3u3 . . . .

In this way, we see that the nonlinear term is given by

y∂xy = ε2y1∂xy1 + ε3y1∂xy2 + ε3y2∂xy1 + (higher terms),

and therefore, for a small ε, we have the expansion of second order y ≈ εy1 + ε2y2,
where y1 and y2 are given by⎧⎨⎩

∂ty1 + ∂xy1 + ∂3
xy1 = 0,

y1(t, 0) = y1(t, L) = 0,
∂xy1(t, L) = u1(t),

and ⎧⎨⎩
∂ty2 + ∂xy2 + ∂3

xy2 = −y1∂xy1,
y2(t, 0) = y2(t, L) = 0,
∂xy2(t, L) = u2(t),

respectively. The strategy consists first in proving that the expansion to the second
order of y = y(t, x), i.e., εy1 + ε2y2, can reach all of the missed directions and then in
using a fixed point argument to prove that it is sufficient to get Theorem 1.4. This is
a classical approach to study the local controllability of a finite-dimensional control
system, and it has been applied in [8] to prove the local exact controllability around
the origin of the control system (1.1) for some critical domains.

Now we see that we can “enter” into the subspace M . More precisely, the result
we prove is the following one.

Proposition 3.1. Let T > 0. There exists (u, v) ∈ L2(0, T )2 such that if
α = α(t, x) and β = β(t, x) are the solutions of⎧⎪⎪⎨⎪⎪⎩

∂tα + ∂xα + ∂3
xα = 0,

α(t, 0) = α(t, L) = 0,
∂xα(t, L) = u(t),
α(0, ·) = 0,

(3.1)
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and ⎧⎪⎪⎨⎪⎪⎩
∂tβ + ∂xβ + ∂3

xβ = −α∂xα,
β(t, 0) = β(t, L) = 0,
∂xβ(t, L) = v(t),
β(0, ·) = 0,

(3.2)

then

α(T, ·) = 0 and β(T, ·) ∈ M\{0}.

Proof. In order to study the trajectory β = β(t, x), we set β = βu + βv, where
βu = βu(t, x) and βv = βv(t, x) are the solutions of⎧⎪⎪⎨⎪⎪⎩

∂tβ
u + ∂xβ

u + ∂3
xβ

u = −α∂xα,
βu(t, 0) = βu(t, L) = 0,
∂xβ

u(t, L) = 0,
βu(0, ·) = 0,

(3.3)

and ⎧⎪⎪⎨⎪⎪⎩
∂tβ

v + ∂xβ
v + ∂3

xβ
v = 0,

βv(t, 0) = βv(t, L) = 0,
∂xβ

v(t, L) = v(t),
βv(0, ·) = 0,

(3.4)

respectively. If u ∈ L2(0, T ) is given, by Theorem 2.4 one can find v ∈ L2(0, T ) such
that

βv(T, ·) = −PH(βu(T, ·))

and thus β(T, ·) = PM (βu(T, ·)). From this fact, one sees that the proof of Proposition
3.1 can be reduced to prove

∃u ∈ L2(0, T ) such that α(T, ·) = 0 and PM (βu(T, ·)) �= 0.(3.5)

Let u ∈ L2(0, T ). Let us multiply (3.3) by ϕ1 and integrate the resulting equality
on [0, L]. Then, using integration by parts, (2.15), and the boundary and initial
conditions in (3.3), one gets

d

dt

(∫ L

0

βu(t, x)ϕ1(x)dx

)
= −p

∫ L

0

βu(t, x)ϕ2(x)dx +
1

2

∫ L

0

α2(t, x)ϕ′
1(x)dx.

In a similar way, if we now multiply (3.3) by ϕ2, we get

d

dt

(∫ L

0

βu(t, x)ϕ2(x)dx

)
= p

∫ L

0

βu(t, x)ϕ1(x)dx +
1

2

∫ L

0

α2(t, x)ϕ′
2(x)dx.

If we call

ηk(t) :=

∫ L

0

βu(t, x)ϕk(x)dx for k = 1, 2,
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we can write the system⎧⎪⎨⎪⎩
(
η̇1(t)
η̇2(t)

)
=

(
0 −p
p 0

)(
η1(t)
η2(t)

)
+

(
1
2

∫ L

0
α2(t, x)ϕ′

1(x)dx
1
2

∫ L

0
α2(t, x)ϕ′

2(x)dx

)
,

η1(0) = 0, η2(0) = 0.

(3.6)

The solution of (3.6) is given by(
η1(t)
η2(t)

)
=

(
cos(p t) − sin(p t)
sin(p t) cos(p t)

)(
I1(t)
I2(t)

)
,

where

I1(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(cos(ps)ϕ′
1(x) + sin(ps)ϕ′

2(x))dx ds,

I2(t) :=
1

2

∫ t

0

∫ L

0

α2(s, x)(− sin(ps)ϕ′
1(x) + cos(ps)ϕ′

2(x))dx ds.

If we work with complex numbers calling ϕ := ϕ1 + iϕ2, we get

η1(t) + iη2(t) =
1

2
eip t

∫ t

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds.

Now let us assume that (3.5) fails to be true; i.e., let us suppose that

∀u ∈ L2(0, T ), η1(T ) = η2(T ) = 0 or α(T, ·) �= 0.(3.7)

If we define

Uad :=
{
u ∈ L2(0, T ) ; the solution α of (3.1) satisfies α(T, ·) = 0

}
,

then condition (3.7) implies that

∀u ∈ Uad,

∫ T

0

∫ L

0

e−ipsα2(s, x)ϕ′(x)dx ds = 0.(3.8)

Let α1 = α1(t, x) and α2 = α2(t, x) be two solutions of (3.1) such that

α1(T, ·) = α2(T, ·) = 0.

Now, for (ρ1, ρ2) ∈ R
2, let α := ρ1α1 + ρ2α2 and u := αx(·, L). By linearity, we see

that α = α(t, x) is a solution of (3.1) and u ∈ Uad. Consequently, (3.8) implies that,
for every (ρ1, ρ2) ∈ R

2,

ρ2
1

∫ T

0

∫ L

0

e−ipsα2
1(s, x)ϕ′(x)dx ds + 2ρ1ρ2

∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s)ϕ
′(x)dx ds

+ ρ2
2

∫ T

0

∫ L

0

e−ipsα2
2(s, x)ϕ′(x)dx ds = 0.

Looking at the coefficient of ρ1ρ2, we get∫ T

0

∫ L

0

e−ipsα1(s, x)α2(s, x)ϕ′(x)dx ds = 0.(3.9)
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Let t1, t2 be such that 0 < t1 < t2 < T . We choose the trajectories α1 = α1(t, x)
and α2 = α2(t, x) such that

α2 is not identically equal to 0,(3.10)

α2(t, x)|([0,t1]∪[t2,T ])×[0,L] = 0 and α1(t, x)|[t1,t2]×[0,L] = Re(eλtyλ(x)),(3.11)

where λ ∈ C\{±ip} and yλ = yλ(x) is a complex-valued function which satisfies{
λyλ + y′λ + y′′′λ = 0,
yλ(0) = yλ(L) = 0.

(3.12)

If λ �= ±ip, one can see that Re(yλ), Im(yλ) ∈ H, and then by Theorem 2.4 there
exists such a trajectory α1 = α1(t, x).

Let us introduce the operator Ãw = −w′ − w′′′ on the domain D(Ã) ⊂ L2(0, L)
defined by

D(Ã) :=
{
w ∈ H3(0, L); w(0) = w(L) = 0, w′(0) = w′(L)

}
.

It is not difficult to see that iÃ is a self-adjoint operator on L2(0, L) with compact
resolvent. Hence, the spectrum σ(Ã) of Ã consists only of eigenvalues. Furthermore,
the spectrum is a discrete subset of iR.

If we take λ such that (−ip+λ) /∈ σ(Ã), the operator (Ã−(−ip+λ)I) is invertible,
and thus, there exists a unique complex-valued function φλ = φλ(x) solution of⎧⎨⎩

(−ip + λ)φλ + φ′
λ + φ′′′

λ = yλϕ
′,

φλ(0) = φλ(L) = 0,
φ′
λ(0) = φ′

λ(L).
(3.13)

We multiply (3.13) by α2(t, x)e(−ip+λ)t, integrate on [0, L], and use integrations by
parts together with (3.1), and the boundary and initial conditions in (3.13) to get

e−ip t

∫ L

0

eλtyλα2(t, x)ϕ′(x)dx =

d

dt

(∫ L

0

e(−ip+λ)tφλ(x)α2(t, x)dx

)
− e(−ip+λ)tφ′

λ(L)∂xα2(t, x)
∣∣∣L
x=0

.

Then let us integrate this equality on [0, T ] and use the fact that α2(0, ·) = 0 and
α2(T, ·) = 0. We obtain

(3.14)

∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt =

− φ′
λ(L)

∫ T

0

e(−ip+λ)t (∂xα2(t, L) − ∂xα2(t, 0)) dt.

On the other hand, by (3.9) and (3.11), it follows that∫ T

0

∫ L

0

e−ip tRe(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0,(3.15)
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and, since one can also take a trajectory α̃1 = α̃1(t, x) such that

α̃1(t, x)|[t1,t2]×[0,L] = Im(eλtyλ(x)),

one deduces from (3.9) that∫ T

0

∫ L

0

e−ip tIm(eλtyλ)α2(t, x)ϕ′(x)dx dt = 0.(3.16)

Therefore, from (3.15) and (3.16), one gets∫ T

0

∫ L

0

e−ip teλtyλα2(t, x)ϕ′(x)dx dt = 0,

and consequently from (3.14), for every λ �= ±ip such that (−ip+ λ) /∈ σ(Ã), one has

φ′
λ(L)

∫ T

0

e(−ip+λ)t (∂xα2(t, L) − ∂xα2(t, 0)) dt = 0.(3.17)

Let a ∈ R\[−1/
√

3, 1/
√

3]. We take λ = 2ai(4a2 − 1). Let

yλ(x) = Ce(−
√

3a2−1−ai)x + (1 − C)e(
√

3a2−1−ai)x − e2aix,(3.18)

where

C =
e2aiL − e(

√
3a2−1−ai)L

e(−
√

3a2−1−ai)L − e(
√

3a2−1−ai)L
.

One easily checks that such a yλ = yλ(x) satisfies (3.12) and yλ �= 0. Let us define

Σ :=
{
a ∈ R\[−1/

√
3, 1/

√
3] ; λ /∈ σ(Ã), (λ− ip) /∈ σ(Ã)

}
,

where λ = 2ai(4a2 − 1). Then the function S : Σ → C, S(a) = φ′
λ(L) is continuous.

Now we use the fact that S is not identically equal to the function 0 (the proof of this
statement will be given in Lemma 3.6 at the end of this section). Then there exist
â ∈ Σ and ε > 0 such that, for every a ∈ Σ with |a − â| < ε, S(a) �= 0. From (3.17)
one gets

∀ a ∈ Σ, |a− â| < ε,

∫ T

0

e(−p+2a(4a2−1))i t (∂xα2(t, L) − ∂xα2(t, 0)) dt = 0,

and since the function β ∈ C �→
∫ T

0
eβt (∂xα2(t, L) − ∂xα2(t, 0)) dt ∈ C is holomorphic,

it follows that

∀β ∈ C,

∫ T

0

eβt
(
∂xα2(t, L) − ∂xα2(t, 0)

)
dt = 0,

which implies that ∂xα2(t, 0) − ∂xα2(t, L) = 0 for every t. In summary, one has that
α2 = α2(t, x) satisfies ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tα2 + ∂xα2 + ∂3
xα2 = 0,

α2(t, 0) = α2(t, L) = 0,
∂xα2(t, 0) = ∂xα2(t, L),
α2(0, ·) = 0,
α2(T, ·) = 0.

(3.19)
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If we multiply (3.19) by α2, integrate on [0, L], and use integration by parts together
with the boundary conditions, we obtain that

d

dt

∫ L

0

|α2(t, x)|2dx = 0,

which, together with α2(0, ·) = 0, implies that

α2(t, x) = 0 ∀x ∈ [0, L], ∀ t ∈ [0, T ].(3.20)

But this is in contradiction with (3.10). Thus, we have proved (3.5) and therefore
Proposition 3.1.

From now on, for each Tc > 0, we denote by (uc, vc) ∈ L2(0, T )2 the controls
given by Proposition 3.1 and by (αc, βc) the corresponding trajectories. Let us define
ϕ̃1 := βc(Tc, ·). Let us notice that, by scaling the controls, we can assume that
‖ϕ̃1‖L2(0,L) = 1. We will prove now that in any time T > π/p, we can reach all of the
states lying in M .

Proposition 3.2. Let T > π/p. Let ψ ∈ M . There exists (u, v) ∈ L2(0, T )2

such that if α = α(t, x) and β = β(t, x) are the solutions of (3.1) and (3.2), then

α(T, ·) = 0 and β(T, ·) = ψ.

Proof. Let T̂ > 0 be such that T = (π/p) + T̂ . Let Tc be such that 0 < Tc < T̂ .
Let Ta := T − Tc. If we take in (3.1) and (3.2) the controls

(u1, v1)(t) =

{
(0, 0) if t ∈ (0, Ta),

(uc(t− Ta), vc(t− Ta)) if t ∈ (Ta, T ),

we obtain that β1(T, ·) = ϕ̃1, where β1 = β1(t, x) is the corresponding solution of
(3.2). Now we use the rotation showed in section 2 (see, in particular, (2.19) and
(2.20)) in order to reach other states lying in M . Let us define ϕ̃2 := β2(T, ·), where
β2 = β2(t, x) is defined by the controls

(u2, v2)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − π

2p ),

(uc(t− Ta + π
2p ), vc(t− Ta + π

2p )) if t ∈ (Ta − π
2p , T − π

2p ),

(0, 0) if t ∈ (T − π
2p , T ).

In a similar way, the controls

(u3, v3)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − π

p ),

(uc(t− Ta + π
p ), vc(t− Ta + π

p )) if t ∈ (Ta − π
p , T − π

p ),

(0, 0) if t ∈ (T − π
p , T )

allow us to define ϕ̃3 := β3(T, ·). Notice that ϕ̃3 = −ϕ̃1.
Let Tθ be such that 0 < Tθ < min{π/(2p), T̂ − Tc}, and let Tb := (π/p) + Tθ. Let

us define ϕ̃4 := β4(T, ·), where β4 = β4(t, x) is the solution of (3.2), with

(u4, v4)(t) =

⎧⎨⎩
(0, 0) if t ∈ (0, Ta − Tb),

(uc(t− Ta + Tb), vc(t− Ta + Tb)) if t ∈ (Ta − Tb, T − Tb),
(0, 0) if t ∈ (T − Tb, T ).
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We have thus proved that we can reach the missed directions {ϕ̃k}4
k=1. Let us

now define the cones

M1 := {d1ϕ̃1 + d2ϕ̃2; d1 > 0, d2 ≥ 0},
M2 := {d1ϕ̃2 + d2ϕ̃3; d1 > 0, d2 ≥ 0},
M3 := {d1ϕ̃3 + d2ϕ̃4; d1 > 0, d2 ≥ 0},
M4 := {d1ϕ̃4 + d2ϕ̃1; d1 > 0, d2 ≥ 0}.

By construction of these cones, one has that M = ∪4
k=1Mk.

Remark 3.3. It is easy to see that if one chooses Tc, Tθ such that Tc < Tθ, then
the supports of the trajectories αk = αk(t, x) for k = 1, . . . , 4 are disjoint.

For each w = (w1, w2) ∈ R
2, let us define

ρw :=
√

w2
1 + w2

2 and zw := (w1ϕ1 + w2ϕ2)/ρw ∈ M.

We have that zw ∈ Mi for some i ∈ {1, . . . , 4}, and hence there exist d1w > 0 and
d2w ≥ 0 such that zw = d1wϕ̃i + d2wϕ̃i+1. If we take the control

(uw, vw) = (d
1/2
1w ui + d

1/2
2w ui+1, d1wv

i + d2wv
i+1)

and use the fact that the trajectories αk for k = 1, . . . , 4 are disjoints, then we see
that the corresponding solution βw = βw(t, x) of (3.2) satisfies βw(T, ·) = zw.

Finally, let ψ ∈ M . With R := ‖ψ‖L2(0,L) we can write ψ = Rzw for a (w1, w2) ∈
R

2 such that w2
1 + w2

2 = 1. It is easy to see that the control (u, v) = (R1/2uw, Rvw)
allows us to reach the state ψ, and so the proof of this proposition is ended.

Remark 3.4. The proof of Proposition 3.2 is the only part which needs a time
large enough. Hence, Theorem 1.4 holds for TM := π/p.

Remark 3.5. In [8] an expansion to the second order is not sufficient, and the
authors must go to the third order to enter into the subspace of missed directions.
Since in their case this subspace is one-dimensional and since they use an odd order
expansion, one can reach all of the missed states with a scaling argument. Our case is
different. We can also enter into the subspace of missed directions in any time, but,
in order to reach all of these states, our method needs a time large enough.

It remains to prove the following lemma to complete the proof of Proposition 3.1.
Lemma 3.6. The function S is not identically equal to 0.
Proof. Let a ∈ Σ and λ = 2ai(4a2 − 1). Let μ ∈ C, and let yμ = yμ(x) be a

solution of {
μyμ + y′μ + y′′′μ = 0,
yμ(0) = yμ(L) = 0.

We multiply (3.13) by yμ and integrate by parts on [0, L]. Thus, we get

(λ− ip + μ)

∫ L

0

φλyμdx− φ′
λ(L)

(
y′μ(L) − y′μ(0)

)
=

∫ L

0

yλϕ
′yμdx.(3.21)

From now on, we set μ = μ(a) := −λ + ip. With this choice we obtain from (3.21)

−S(a)
(
y′μ(L) − y′μ(0)

)
=

∫ L

0

yλϕ
′yμdx.
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Therefore, if we prove that the function

a ∈ Σ −→ J(a) :=

∫ L

0

yλϕ
′yμdx ∈ C

is not identically equal to 0, the proof of this lemma is ended. Let b ∈ R be such that
μ = 2bi(4b2 − 1). We take the function yμ given by

yμ(x) = De(−
√

3b2−1−bi)x + (1 −D)e(
√

3b2−1−bi)x − e2bix,(3.22)

where

D =
e2biL − e(

√
3b2−1−bi)L

e(−
√

3b2−1−bi)L − e(
√

3b2−1−bi)L
.

In the next computations, we use the fact that eiγ1L = eiγ2L = eiγ3L (see (2.5))
and the following formula:∫ L

0

e(v+iw)xϕ′ =

(
1 + γ2

1 − 2p/γ1

)(
1 − e(v+iw+iγ1)L

)
(vi− w)

(vi− w)3 − (vi− w) + p
,(3.23)

which holds if v + iw �= −iγm for m = 1, 2, 3.
We want to show that as a → ∞, the following expression diverges, which is in

contradiction with the fact that J(a) ≡ 0:

R(a) :=
(e(−

√
3a2−1−ai)L − e(

√
3a2−1−ai)L)(e(−

√
3b2−1−bi)L − e(

√
3b2−1−bi)L)

1 + γ2
1 − 2p/γ1

J(a).

In fact, by using (3.23), one computes explicitly J(a), and thus one sees that, as a
tends to infinity, the dominant term of R(a) is given by

Z(a) := e(
√

3a2−1+
√

3b2−1)L
{ (e(−ai−bi)L − e(ai+bi+γ1i)L)(−2a− 2b)

(−2a− 2b)3 − (−2a− 2b) + p

+
e(−ai−bi)L(−i

√
3a2 − 1 − i

√
3b2 − 1 + a + b)

(−i
√

3a2 − 1 − i
√

3b2 − 1 + a + b)3 − (−i
√

3a2 − 1 − i
√

3b2 − 1 + a + b) + p

− e(ai+bi+γ1i)L(i
√

3a2 − 1 + i
√

3b2 − 1 + a + b)

(i
√

3a2 − 1 + i
√

3b2 − 1 + a + b)3 − (i
√

3a2 − 1 + i
√

3b2 − 1 + a + b) + p

+
e(ai+bi+γ1i)L(i

√
3a2 − 1 + a− 2b)

(i
√

3a2 − 1 + a− 2b)3 − (i
√

3a2 − 1 + a− 2b) + p

− e(−ai−bi)L(−i
√

3b2 − 1 − 2a + b)

(−i
√

3b2 − 1 − 2a + b)3 − (−i
√

3b2 − 1 − 2a + b) + p

+
e(ai+bi+γ1i)L(i

√
3b2 − 1 − 2a + b)

(i
√

3b2 − 1 − 2a + b)3 − (i
√

3b2 − 1 − 2a + b) + p

− e(−ai−bi)L(−i
√

3a2 − 1 + a− 2b)

(−i
√

3a2 − 1 + a− 2b)3 − (−i
√

3a2 − 1 + a− 2b) + p

}
.
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Using that as a → ∞, b → −∞ and a + b ∼ −p/(24a2), we obtain the following
asymptotical expression for the right-hand factor of Z(a):

−(e
p

24a2 iL − e−
p

24a2 iL+iγ1L)

12a2
∼

⎧⎨⎩ − (1−eiγ1L)
12a2 if eiγ1L �= 1,

− ipL
144a4 if eiγ1L = 1.

One can see that in both cases Z(a) diverges as a → ∞, and therefore R(a)
does, which implies that J(a) is not identically equal to 0. It ends the proof of
this lemma.

4. Proof of Theorem 1.4.

4.1. Existence and uniqueness results. Let us recall the existence property
proved by Coron and Crépeau in [8] for the following nonlinear KdV equation:⎧⎪⎪⎨⎪⎪⎩

∂ty + ∂xy + ∂3
xy + y∂xy = f,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0.

(4.1)

Proposition 4.1 (see [8, Proposition 14]). Let L > 0 and T > 0. There exist
ε > 0 and C > 0 such that, for every f ∈ L1(0, T, L2(0, L)), u ∈ L2(0, T ), and
y0 ∈ L2(0, L) such that

‖f‖L1(0,T,L2(0,L)) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L) ≤ ε,

there exists at least one solution of (4.1) which satisfies

‖y‖B ≤ C(‖f‖L1(0,T,L2(0,L)) + ‖u‖L2(0,T ) + ‖y0‖L2(0,L)).(4.2)

For the uniqueness, one has the following.
Proposition 4.2 (see [8, Proposition 15]). Let T > 0, and let L > 0. There

exists C > 0 such that for every (y01, y02) ∈ L2(0, L)2, (u1, u2) ∈ L2(0, T )2, and
(f1, f2) ∈ L1(0, T, L2(0, L))2 for which there exist solutions y1 = y1(t, x) and y2 =
y2(t, x) of (4.1), one has the following estimates:

∫ T

0

∫ L

0

|∂xy1(t, x) − ∂xy2(t, x)|2dxdt ≤ e
C(1+‖y1‖2

L2(0,T,H1(0,L))
+‖y2‖2

L2(0,T,H1(0,L))
)

·
(
‖u1 − u2‖2

L2(0,T ) + ‖f1 − f2‖2
L1(0,T,L2(0,L)) + ‖y01 − y02‖2

L2(0,L)

)
,

∫ L

0

|y1(t, x) − y2(t, x)|2dx ≤ e
C(1+‖y1‖2

L2(0,T,H1(0,L))
+‖y2‖2

L2(0,T,H1(0,L))
)

·
(
‖u1 − u2‖2

L2(0,T ) + ‖f1 − f2‖2
L1(0,T,L2(0,L)) + ‖y01 − y02‖2

L2(0,L)

)
for every t ∈ [0, T ].

4.2. Settings and a technical lemma. Until the end of this paper, we adopt
some important notations. Let us denote, for D > 0 and R > 0,

BD
R :=

{
ξ ∈ L2(0, D) ; ‖ξ‖L2(0,D) ≤ R

}
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and recall that for each w = (w1, w2) ∈ R
2, we write ρw :=

√
w2

1 + w2
2 and zw :=

(w1ϕ1 + w2ϕ2)/ρw. We also write (uw, vw) ∈ L2(0, T ) the controls defined in section
3 in order to drive the solutions βw = βw(t, x) from zero at t = 0 to zw at t = T .

By the work of Rosier in [17], we know that for each y0 ∈ L2(0, L) there exists
a continuous linear affine map (it is a consequence of applying the HUM method to
prove Theorem 2.4)

Γ0 : h ∈ H ⊂ L2(0, L) �−→ Γ0(h) ∈ L2(0, T )

such that the solution of ⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = Γ0(h),
y(0, ·) = PH(y0)

satisfies y(T, ·) = h. Moreover, there exist constants D1, D2 > 0 such that

∀y0 ∈ L2(0, L), ∀h ∈ H, ‖Γ0(h)‖L2(0,T ) ≤ D1(‖h‖L2(0,L) + ‖y0‖L2(0,L)),(4.3)

∀y0 ∈ L2(0, L), ∀h, g ∈ H, ‖Γ0(h) − Γ0(g)‖L2(0,T ) ≤ D2‖h− g‖L2(0,L).(4.4)

Let y0 ∈ L2(0, L) be such that ‖y0‖L2(0,L) < r, r > 0 to be chosen later. Let us
define the functions G and F

G : L2(0, L) −→ L2(0, T ),

z = PH(z) + w1ϕ1 + w2ϕ2 �→ G(z) = Γ0(PH(z)) + ρ
1/2
w uw + ρwvw,

F : BT
ε1 ∩ L2(0, T ) −→ L2(0, L),

u �−→ F (u) = y(T, ·),

where y = y(t, x) is the solution of⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy + y∂xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = u(t),
y(0, ·) = y0,

(4.5)

and ε1 is small enough so that the function F is well defined. It holds if ε1 + r < ε,
where ε is given by Proposition 4.1. The map F is even continuous according to
Proposition 4.2. Let yT ∈ L2(0, L) be such that ‖yT ‖ < r. Let Λy0,yT

denote the map

Λy0,yT
: BL

ε2 ∩ L2(0, L) −→ L2(0, L),
z �−→ Λy0,yT

(z) = z + yT − F ◦G(z),

where ε2 is small enough so that Λy0,yT
is well defined (ε2 exists according to Propo-

sition 4.1 and to the continuity of G).
Let us notice that if we find a fixed point z̃ ∈ L2(0, L) of the map Λy0,yT

, then we
will have F ◦G(z̃) = yT , and this means that the control u := G(z̃) ∈ L2(0, T ) drives
the solution of (4.5) from y0 at t = 0 to yT at t = T .

Let us assert the following technical result which will be needed to study the map
Λy0,yT

.
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Lemma 4.3. There exist ε3 > 0 and C3 > 0 such that for every z, y0 ∈ BL
ε3 the

following estimate holds:

‖z − F (G(z))‖L2(0,L) ≤ C3(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).

Proof. Let z, y0 ∈ L2(0, L). Let w = (w1, w2) ∈ R
2 be such that z = PH(z) +

ρwzw. Let y = y(t, x) be a solution of⎧⎪⎪⎨⎪⎪⎩
∂ty + ∂xy + ∂3

xy + y∂xy = 0,
y(t, 0) = y(t, L) = 0,
∂xy(t, L) = G(z),
y(0, ·) = y0.

(4.6)

From (4.3) and since ρw ≤ ‖z‖L2(0,L), one deduces that if ‖z‖L2(0,L) is smaller

than 1 (and therefore ‖z‖L2(0,L) ≤ ‖z‖1/2
L2(0,L)), then there exists a constant D3 such

that

‖G(z)‖L2(0,T ) ≤ D3(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)).(4.7)

Remark 4.4. Let us notice that the controls uw, vw in the definition of the map
G drive the solution βw from the origin at t = 0 to the state zw at t = T , with
‖zw‖L2(0,L) = 1, and therefore they are uniformly bounded.

By using (4.2) and (4.7), one can find ε2, C2 > 0 such that for every z, y0 ∈ BL
ε2

the unique solution of (4.6) satisfies

‖y‖B ≤ C2(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)).(4.8)

Let ỹ = ỹ(t, x), αw = αw(t, x), βw = βw(t, x), and β0 = β0(t, x) be the solutions
of ⎧⎪⎪⎨⎪⎪⎩

∂tỹ + ∂xỹ + ∂3
xỹ = 0,

ỹ(t, 0) = ỹ(t, L) = 0,
∂xỹ(t, L) = Γ0(PH(z)),
ỹ(0, ·) = PH(y0),⎧⎪⎪⎨⎪⎪⎩

∂tαw + ∂xαw + ∂3
xαw = 0,

αw(t, 0) = αw(t, L) = 0,
∂xαw(t, L) = uw(t),
αw(0, ·) = 0,⎧⎪⎪⎨⎪⎪⎩

∂tβw + ∂xβw + ∂3
xβw = −αw∂xαw,

βw(t, 0) = βw(t, L) = 0,
∂xβw(t, L) = vw(t),
βw(0, ·) = 0,⎧⎪⎪⎨⎪⎪⎩

∂tβ
0 + ∂xβ

0 + ∂3
xβ

0 = 0,
β0(t, 0) = β0(t, L) = 0,
∂xβ

0(t, L) = 0,
β0(0, ·) = PM (y0),

respectively. Let us define

φ := y − ỹ − ρ1/2
w αw − ρwβw − β0.
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We have that φ = φ(t, x) satisfies⎧⎪⎪⎨⎪⎪⎩
∂tφ + ∂xφ + ∂3

xφ + φ∂xφ = −∂x(φa) − b,
φ(t, 0) = φ(t, L) = 0,
∂xφ(t, L) = 0,
φ(0) = 0,

where

a := ỹ + ρ
1/2
w αw + ρwβw + β0,

b := ỹ∂xỹ + ∂x(ỹ(ρ
1/2
w αw + ρwβw + β0)) + ρ

3/2
w ∂x(αwβw)

+ ρ2
wβw∂x(βw) + ρ

1/2
w ∂x(αwβ

0) + ρw∂x(βwβ
0) + β0∂xβ

0.

It is easy to see that there exists C4 > 0 such that for every z, y0 ∈ BL
ε2

‖φ‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)),(4.9)

‖a‖B ≤ C4(‖y0‖L2(0,L) + ‖z‖1/2
L2(0,L)),(4.10)

‖b‖L1(0,T,L2(0,L)) ≤ C4(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).(4.11)

One can also prove that there exists C5 > 0 such that for every f, g ∈ B

‖∂x(fg)‖L1(0,T,L2(0,L)) ≤ C5‖f‖B‖g‖B.(4.12)

By (4.2), (4.11), and (4.12), there exists C6 > 0 such that

‖φ‖2
B ≤ C6(‖φ‖2

B‖a‖2
B + ‖y0‖2

L2(0,L) + ‖z‖3
L2(0,L));

i.e., one has

‖φ‖2
B(1 − C6‖a‖2

B) ≤ C6(‖y0‖2
L2(0,L) + ‖z‖3

L2(0,L)),

which, together with (4.10), implies the existence of ε3 and C7 such that for every
z, y0 ∈ BL

ε3

‖φ‖B ≤ C7(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)).(4.13)

Finally, from (4.13) and using that ‖β0(0)‖L2(0,L) = ‖β0(T )‖L2(0,L) (β0 turns
only in the subspace M), one obtains with C3 := C7 + 1

‖z − F ◦G(z)‖L2(0,L) ≤ ‖z − F ◦G(z) + β0(T )‖L2(0,L) + ‖β0(T )‖L2(0,L)

= ‖φ(T )‖L2(0,L) + ‖β0(0)‖L2(0,L)

≤ ‖φ‖B + ‖y0‖L2(0,L)

≤ C7(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)) + ‖y0‖L2(0,L)

≤ C3(‖y0‖L2(0,L) + ‖z‖3/2
L2(0,L)),

which ends the proof of Lemma 4.3.
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4.3. Fixed point in the subspace H. For w = (w1, w2) ∈ R
2 fixed, let us

study the map Π := PH ◦ Λy0,yT
(· + ρwzw) on the subspace H (recall that ρwzw =

w1ϕ1 + w2ϕ2):

Π : H −→ H,
h �−→ Π(h) = h + PH(yT ) − PH(F ◦G(h + ρwzw)).

In order to prove the existence of a fixed point of the map Π, we will apply the Banach
fixed point theorem to the restriction of Π to the closed ball BL

R ∩ H, with R > 0
small enough. By using Lemma 4.3 we see that

‖Π(h)‖L2(0,L) ≤ ‖yT ‖L2(0,L) + ‖h + ρwzw − F ◦G(h + ρwzw)‖L2(0,L)

≤ ‖yT ‖L2(0,L) + C3(‖y0‖L2(0,L) + ‖h + ρwzw‖3/2
L2(0,L))

≤ C ′
3(‖y0‖L2(0,L) + ‖yT ‖L2(0,L) + ρ

3/2
w ) + C3‖h‖3/2

L2(0,L)

≤ C ′
3(2r + ρ

3/2
w ) + C3‖h‖3/2

L2(0,L),

where C ′
3 := C3 + 1. Hence, if we choose R such that R3/2 ≤ R

2C3
and r, ρw such that

C ′
3(2r + ρ3/2

w ) ≤ R

2
,

then it follows that

‖Π(h)‖L2(0,L) ≤ R and so Π(BL
R ∩H) ⊂ (BL

R ∩H).

It remains to prove that the map Π is a contraction. Let g, h ∈ BL
R ∩ H. Let

y = y(t, x), q = q(t, x), ỹ = ỹ(t, x), and q̃ = q̃(t, x) be the solutions of the following
problems: ⎧⎪⎪⎨⎪⎪⎩

∂ty + ∂xy + ∂3
xy + y∂xy = 0,

y(t, 0) = y(t, L) = 0,
∂xy(t, L) = G(g + ρwzw),
y(0, ·) = y0,⎧⎪⎪⎨⎪⎪⎩
∂tq + ∂xq + ∂3

xq + q∂xq = 0,
q(t, 0) = q(t, L) = 0,
∂xq(t, L) = G(h + ρwzw),
q(0, ·) = y0,⎧⎪⎪⎨⎪⎪⎩

∂tỹ + ∂xỹ + ∂3
xỹ = 0,

ỹ(t, 0) = ỹ(t, L) = 0,
∂xỹ(t, L) = Γ0(g),
ỹ(0, ·) = PH(y0),⎧⎪⎪⎨⎪⎪⎩
∂tq̃ + ∂xq̃ + ∂3

xq̃ = 0,
q̃(t, 0) = q̃(t, L) = 0,
∂xq̃(t, L) = Γ0(h),
q̃(0, ·) = PH(y0),

repsectively. Let us define φ := y − ỹ, ψ := q − q̃, and γ := φ − ψ. One sees that γ
satisfies ⎧⎪⎪⎨⎪⎪⎩

∂tγ + ∂xγ + ∂3
xγ + γ∂xγ = −∂x(γa) − b,

γ(t, 0) = γ(t, L) = 0,
∂xγ(t, L) = 0,
γ(0) = 0,

(4.14)
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where

a := ỹ + ψ and b := ∂x (q(ỹ − q̃)) + (ỹ − q̃)∂x(ỹ − q̃).

It is easy to see that there exists a constant C8 > 0 such that

‖b‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖ỹ − q̃‖B,(4.15)

‖∂x(aγ)‖L1(0,T,L2(0,L)) ≤ C8 (‖q‖B + ‖ỹ‖B + ‖q̃‖B) ‖γ‖B.(4.16)

By using Proposition 4.2, (4.15), and (4.16) we get the existence of C9 > 0 such that

‖γ‖2
B ≤ C9(‖q‖B + ‖ỹ‖B + ‖q̃‖B)2(‖ỹ − q̃‖2

B + ‖γ‖2
B).(4.17)

In addition, since w := ỹ − q̃ satisfies the following linear equation:⎧⎪⎪⎨⎪⎪⎩
∂tw + ∂xw + ∂3

xw = 0,
w(t, 0) = w(t, L) = 0,
∂xw(t, L) = Γ0(g) − Γ0(h),
w(0, ·) = 0,

there exists C10 > 0 such that

‖ỹ − q̃‖B ≤ C10‖Γ0(g) − Γ0(h)‖L2(0,T ),

and so, from (4.4), one gets

‖ỹ − q̃‖B ≤ C10D2‖g − h‖L2(0,L).(4.18)

Moreover, it is easy to see that there exists a constant C11 > 0 such that

‖q‖B + ‖q̃‖B + ‖ỹ‖B ≤ C11(‖y0‖L2(0,L) + ‖h‖L2(0,L) + ‖g‖L2(0,L) + ρ1/2
w ).(4.19)

Thus, using (4.17)–(4.19) we see that if R, ρw, r are small enough, it follows that

‖γ‖B ≤ 1
2‖g − h‖L2(0,L).

Therefore, we have

‖Π(g) − Π(h)‖L2(0,L) ≤ ‖g − F ◦G(g + ρwzw) − h + F ◦G(h + ρwzw)‖L2(0,L)

= ‖γ(T )‖L2(0,L) ≤ ‖γ‖B
≤ 1

2‖g − h‖L2(0,L),

which implies the existence of a unique fixed point h(y0, yT , w1, w2) ∈ BL
R ∩H of the

map Π|BL
R∩H . Moreover, the more precise proposition follows.

Proposition 4.5. There exist R0 > 0, D > 1 such that for every 0 < R < R0,
for every y0, yT ∈ BL

R/D, (w1, w2) ∈ R
2, with ρw < R/D, there exists a unique

h(y0, yT , w1, w2) ∈ BL
R ∩H fixed point of the map Π|BL

R∩H .

4.4. Fixed point in the subspace M . We now apply the Brouwer fixed point
theorem to the restriction of the map

τ : M −→ M,
w1ϕ1 + w2ϕ2 → PM (ρwzw + yT − F ◦G(ρwzw + h(y0, yT , w1, w2)))
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to the closed ball BL
R̂
∩M , with R̂ small enough. Using Lemma 4.3, the continuity (in a

neighborhood of 0 ∈ (L2(0, L))2×R
2) of the map (y0, yT , w1, w2) �−→ h(y0, yT , w1, w2)

and choosing r small enough, we get the existence of a radius R̂ > 0 such that
τ(BL

R̂
∩ M) ⊂ BL

R̂
∩ M . This inclusion and the continuity of the map τ allow us to

apply the Brouwer fixed point theorem. Therefore, there exists (w̃1, w̃2) ∈ R
2, with

w̃2
1 + w̃2

2 ≤ R̂2, such that h̃ := h(y0, yT , w̃1, w̃2) satisfies

PM (yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = 0.(4.20)

Using the fact that

Π(h̃) = PH(h̃ + yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = h̃,

we obtain

PH(yT − F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2)) = 0,

which together with (4.20) implies that

yT = F ◦G(h̃ + w̃1ϕ1 + w̃2ϕ2),

which ends the proof of Theorem 1.4. Let us remark that from our proof it follows
that if r is chosen small enough, one can take R̂ := rD, where D > 0 is given by
Proposition 4.5. By using this proposition one obtains the estimate (1.6).

Acknowledgments. I thank Jean-Michel Coron for having attracted my atten-
tion to this problem, for his constant support, and for fruitful discussions. I also thank
Emmanuelle Crépeau for interesting remarks.
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Abstract. A two-player, zero-sum, switching game is formulated for general stochastic differen-
tial systems and is studied using a combined dynamic programming and viscosity solution approach.
The existence of the game value is proved. For the proof of the related dynamic programming prin-
ciple (DDP) for the lower and upper value functions, the measurability problem, of the same kind
as mentioned in the paper of Fleming and Souganidis, is also encountered, and we are able to get
around it via a delicate adaptation of their technique. Moreover, the traditional direct method to
prove the time continuity of lower and upper value functions also gives rise to a serious measurability
problem. To get around the new difficulty, a subtle dynamic programming argument is developed to
obtain the time continuity, which in return is used to derive the DDP for random intermediate times
from the DDP with deterministic intermediate times.

Key words. stochastic differential games, dynamic programming inequalities, switching strate-
gies, value function, viscosity solution
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1. Introduction. Consider a differential game of the following stochastic differ-
ential system on Wiener space (Ω,F , P ):

(1.1)

{
dy(t) = f(t, y(t), a(t), b(t)) dt + g(t, y(t), a(t), b(t)) dw(t), t ∈ (s, 1],

y(s) = x

with the cost functional

(1.2)

Js,x(a(·), b(·)) = Esx

{∫ 1

s

f0(t, y(t), a(t), b(t)) dt + h(y(1))

+
∑
i≥1

k(θi, ai−1, ai) −
∑
j≥1

l(τj , bj−1, bj)

}
.

Here f, g, f0, and h are given maps; w(·) is the coordinate process in Ω, and its natural
filtration is denoted by Ft. The subscript sx of the expectation operator E indicates
that the underlying mathematical expectation is taken under the condition that the
underlying system state process y(·) takes the value x at time s. The first player
chooses the control a from a given finite set A to minimize the payoff (1.2), and each
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of his instantaneous actions is related with one positive cost k, while the second player
chooses the control b from a given finite set B to maximize the payoff (1.2), and each
of his instantaneous actions is associated with the other positive cost l.

For differential switching games, a key point in connecting value functions with
the corresponding Isaacs’ equations is to prove the following fact: It is the best way
for a player to keep his underlying switching position for some time of a positive
length, whenever he is not on his switching set. In the deterministic case, such an
assertion is easy to understand from the following almost obvious fact: If he is not
on his switching set, a player will keep away from the set for some deterministic
time interval of a positive length, as the system state evolves continuously. See Yong
[10] for details. In the stochastic case, the situation becomes complicated due to the
nature of diffusion: Even if he is not on his switching set, it is possible for a player
to arrive at his switching set in an arbitrarily short time. That is, if he is not on his
switching set, although the system state still evolves continuously, a player can keep
away from the switching set only for some random (rather than deterministic, in
general) time interval, almost surely (rather than uniformly, in general) of a positive
length. Then the intuition of the dynamic programming principle for the underlying
switching game suggests that if he is not on his switching set, the optimal action of a
player has to vary with different events, even within a very short deterministic time
period. We show in section 3 by using arguments quite different from the deterministic
case that, whenever he is not on his switching set, a player’s best action is to keep his
underlying switching position, before he escapes from a sufficiently small ball centered
at the current state, within some deterministic time interval of a positive length.

It has been widely recognized that the dynamic programming method is both
easy and efficient for the study of deterministic optimal control and differential games
within the framework of viscosity solutions. The general nonsmooth feature of inf-sup
functions is no longer a difficulty in view of the notion of viscosity solutions. However,
applications of dynamic programming to optimal stochastic controls and stochastic
differential games still encounter difficulties; the reader is referred to Bertsekas and
Shreve [1] and Fleming and Souganidis [6] for detail. It was noticed by Fleming
and Souganidis [6], in the study of classical stochastic differential games, that the
conventional proof of the dynamic programming principle for the lower and upper
value functions encounters a serious measurability issue. In this paper, we observe
that the traditional direct approach to show the time continuity of lower and upper
value functions also gives rise to a serious measurability problem. The difficulty is
circulated using a dynamic programming argument.

In this paper, the coefficients of differential games are allowed to grow linearly,
and a powerful simple test function is given to prove the uniqueness of unbounded
viscosity solutions for the associated Isaacs’ system of variational inequalities.

The rest of our paper is organized as follows. Section 2 is devoted to the for-
mulation of our stochastic switching game, the definitions of some restrictive class of
admissible controls, and strategies to be used in the following sections. Several useful
dynamic programming results and the time continuous properties are established in
section 3. The existence of the value is proved for our game in section 4.

There are some related papers which remain to be mentioned. For the optimal
switching problem, the reader is referred to Capuzzo Dolcetta and Evans in [2] in
the deterministic case, and to Evans and Friedman [4], Tang and Yong [7] and the
references therein in the stochastic case. For the switching game, the reader is referred
to Yong [10] in the deterministic case with the dynamic programming approach and
the notion of viscosity solution, and to Yamada [8, 9] in the stochastic and infinite
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time-horizon case with an analytical approach rather than the dynamic programming
approach.

2. Preliminaries. Let A = {1, 2, . . . ,m}, B = {1, 2, . . . , n}, and X be a finite-
dimensional Euclidean space. Let f : [0, 1] × X × A × B → X, g : [0, 1] × X × A ×
B → X × W, f0 : [0, 1] × X × A × B → R, k : [0, 1] × A × A → R+ ≡ [0,∞), and
l : [0, 1] ×B ×B → R+ be continuous functions satisfying the following hypotheses.

Hypothesis 1. There exists a constant L > 0 such that for all x, x̂ ∈ X, t ∈
[0, 1], a ∈ A, and b ∈ B,

|f(t, x, a, b) − f(t, x̂, a, b)| + |g(t, x, a, b) − g(t, x̂, a, b)| ≤ L|x− x̂|,
|f(t, x, a, b)| + |g(t, x, a, b)| ≤ L(1 + |x|),
|f0(t, x, a, b) − f0(t, x̂, a, b)| + |h(x) − h(x̂)| ≤ L|x− x̂|,
|f0(t, 0, a, b)| + |h(0)| ≤ L.

Hypothesis 2. For all a, â, ã ∈ A, a �= â �= ã, and 0 ≤ s ≤ t ≤ 1,

k(t, a, ã) < k(t, a, â) + k(t, â, ã),

k(t, a, â) > 0, k(t, a, a) = 0,

k(t, a, ã) ≤ k(s, a, ã).

Hypothesis 3. For all b, b̂, b̃ ∈ B, b �= b̂ �= b̃, and 0 ≤ s ≤ t ≤ 1,

l(t, b, b̃) < l(t, b, b̂) + l(t, b̂, b̃),

l(t, b, b̂) > 0, l(t, b, b) = 0,

l(t, b, b̃) ≤ l(s, b, b̃).

For s, ŝ ∈ [0, 1] such that s < ŝ, let

(2.1) Ωs,ŝ = {ω ∈ C([s, ŝ]; Rd) : ω(s) = 0}.

Denote by Fs,ŝ the topological σ-field of Ωs,ŝ and consider the Wiener space
(Ωs,ŝ,Fs,ŝ, Ps,ŝ). Let

(2.2) Ωs = Ωs,1, Ps = Ps,1, Fs = Fs,1,

and

(2.3)

⎧⎪⎨⎪⎩
ω1 = ω|[s,ŝ],
ω2 = (ω − ω(ŝ))|[ŝ,1],
Πω = (ω1, ω2).

We see that the map Π : Ωs → Ωs,ŝ × Ωŝ induces an identification

(2.4) Ωs = Ωs,ŝ × Ωŝ.

Moreover, the inverse of Π is defined in an evident way: Ωs = Π−1(Ωs,ŝ,Ωŝ). Finally,
we have

Ps = Ps,ŝ ⊗ Pŝ.
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Define

(2.5) w(r, ω) = ω(r), (ω, r) ∈ Ωs × [s, 1].

Then {w(r), r ∈ [s, 1]} is a standard Wiener process.
Definition 2.1. An admissible switching process for player I (resp., II) on [s, 1]

with initial value a0 (resp., b0) is defined to be a pair of sequences {ai, θi}i≥0 (resp.,
{bi, τi}i≥0) such that each θi (resp., τi) is an Fs,.-stopping time, with

s = θ0 ≤ θ1 ≤ · · · ≤ 1 a.s.

(resp., s = τ0 ≤ τ1 ≤ · · · ≤ 1 a.s.),

each ai (resp., bi) is Fs,θi- (resp., Fs,τi-) measurable with values in A (resp., B), and

E
∑
i≥1

k(θi, ai−1, ai) < ∞
(

resp., E
∑
j≥1

l(τj , bj−1, bj) < ∞
)
.

Denote by Aa[s, ŝ] (resp., Bb[s, ŝ]) the totality of the admissible switchings for player
I (resp., II) on [s, ŝ] with the initial value a (resp., b).

We shall identify {ai, θi}i≥0 ∈ Aa[s, 1] with

a(r) =
∑
i≥1

ai−1χ[θi−1,θi)(r), r ∈ [s, 1].

Note that in the case of θ1 = θ2 the term a1χ[θ1,θ2)(r) will be void, but we still
keep it in the above expression. This is due to the fact that the sequence {ai, θi}
with or without (a1, θ1) represents two different switching controls and their costs are
different. A similar identification will also be used for {bi, τi} ∈ Bb[t, 1].

Following Elliott and Kalton [3] and Fleming and Souganidis [6], we define in the
switching game an admissible strategy as follows.

Definition 2.2. For s ∈ [0, 1] and a ∈ A (resp., b ∈ B), an admissible strategy
αa,s (resp., βb,s) with the initial value a (resp., b) for player I (resp., II) on [s, 1] is
a mapping αa,s : ∪b∈BBb[s, 1] → Aa[s, 1] (resp., βb,s : ∪a∈AAa[s, 1] → Bb[s, 1]) such
that

b(r) = b̂(r) (resp., a(r) = â(r)) a.s. ∀r ∈ [s, ŝ]

implies

αa,t[b(·)](r) = αa,t [̂b(·)](r) (resp., βb,t[a(·)](r) = βb,t[â(·)](r))

for r ∈ [s, ŝ].
We denote all admissible strategies with the initial value a (resp., b) for player I

(resp., II) on [s, 1] by Γa[s, 1] (resp., Δb[s, 1]). We adopt the convention that

(2.6)
Aa[1, 1] = a, Γa[1, 1] = a,

Bb[1, 1] = b, Δb[1, 1] = b.

Set for (s, x) ∈ [0, 1] ×X,

(2.7)
Va,b(s, x) = inf

α∈Γa[s,1]
sup

b(·)∈Bb[s,1]

Js,x(α(b(·)), b(·)), V (s, x) = (Va,b(s, x))a∈A,b∈B ;

Ua,b(s, x) = sup
β∈Δb[s,1]

inf
a(·)∈Aa[s,1]

Js,x(a(·), β(a(·))), U(s, x) = (Ua,b(s, x))a∈A,b∈B .
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The matrix-valued functions V and U are called the lower and the upper value func-
tion, respectively. If V = U , we say that the above stochastic switching game has a
value. Our aim is to study the existence of the value of our stochastic switching game.
U and V should satisfy the dynamic programming principle. However, the conven-
tional proof leads to serious technical problems related to measurability issues, which
have been noticed by Fleming and Souganidis [6] in the study of classical stochastic
differential games . To circumvent these problems, we borrow the techniques of Flem-
ing and Souganidis [6] and introduce in the following the concepts of restrictive class
of admissible strategies, π-admissible switching processes, and π-admissible strategies.

Consider s ∈ [0, 1], ŝ ∈ (s, 1), and b(·) ∈ Bb[s, 1]. For Ps,ŝ-a.s. ω1 ∈ Ωs,ŝ, the map
b(ω1) : [ŝ, 1] × Ωŝ → B defined by

b(ω1)(ω2)(r) = b(ω1, ω2)(r), r ∈ [ŝ, 1],

is an admissible control for player II, i.e., b(ω1) ∈ Bb(ŝ)[ŝ, 1].
Definition 2.3. Let α ∈ Γa[ŝ, 1]. If for ∀s ∈ (0, ŝ) and ∀b(·) ∈ Bb[s, 1], b ∈ B,

the map (τ, ω) �→ α[b(ω1)](ω2)(τ) is B([ŝ, τ ]) ⊗ Fs,τ -measurable for every τ ∈ [ŝ, 1],
then α is called an r-strategy with initial value a for player I on [s, 1]. The set of
r-strategies with initial value a on [s, 1] of player I is denoted by Γa

1 [s, 1].
Similarly, we define r-strategies with initial value b ∈ B on [s, 1] for player II and

denote their collection by Δb
1[s, 1].

Set

(2.8)
V 1
a,b(s, x) = inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Js,x(α(b(·)), b(·)), V 1(s, x) = (V 1
a,b(s, x))a∈A,b∈B ;

Ua,b
1 (s, x) = sup

β∈Δb
1[s,1]

inf
a(·)∈Aa[s,1]

Js,x(a(·), β(a(·))), U1(s, x) = (Ua,b
1 (s, x))a∈A,b∈B .

The matrix-valued functions V 1 and U1 are called the r-lower and the r-upper value
function, respectively.

Let πs = {s = t0 < t1 < · · · < tM = 1} be a partition of [s, 1], and denote
by ||πs|| = max1≤i≤M (ti − ti−1) its mesh. The notions of π-admissible switching
processes and π-admissible strategies are then defined as follows.

Definition 2.4. Let a(·) = {ai, θi}i≥0 ∈ Aa[s, 1]. If each θi is a πs-valued
stopping time, then it is called a π-admissible switching process with initial value
a ∈ A on [s, 1] for player I. The set of π-admissible switching processes with initial
value a ∈ A on [s, 1] for player I is denoted by Aa

π[s, 1]. The π-admissible switching
processes with initial value b ∈ B on [s, 1] for player II are defined in a similar way,
and their collection is denoted by Bb

π[s, 1].
Definition 2.5. α ∈ Γa[s, 1] is called a π-admissible strategy with initial value

a ∈ A on [s, 1] for player I, if it satisfies the following properties: (1) ∀b(·) ∈
Bb[s, 1], b ∈ B, α[b(·)] ∈ Aa

π[s, 1]. (2) Fix b ∈ B. If s ∈ [ti0 , ti0+1), then
α[b1(·)]|[s,ti0+1) = α[b2(·)]|[s,ti0+1) ∀ b1(·), b2(·) ∈ Bb[s, 1]. (3) If b(·) = b̄(·) on [s, ti),

then α[b(·)](ti) = α[b̄(·)](ti), Ps-a.s. for i ∈ {i0 + 1, . . . ,M}. The collection of π-
admissible strategies with initial value a ∈ A on [s, 1] for player I is denoted by Γa

π[s, 1].
The π-admissible strategies with initial value b ∈ B on [s, 1] for player II are defined
in a similar way, and their collection is denoted by Δb

π[s, 1].
It is crucial, in our case of the switching game, that α[b(·)](ti) in Definition 2.5 is

required to be independent of b(ti) for α ∈ Γa
π[s, 1] and i = i0 + 1, . . . ,M . Definition

2.5 differs from Fleming and Souganidis’ in that α[b(·)]|[s,ti0+1) may depend on b(s−)
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even if α ∈ Γa
π[s, 1], and this is due to the fact that the initial position of a player is

crucial in our switching game.
According to the definitions of V 1

a,b(s, x), Ua,b
1 (s, x), Va,b(s, x), and Ua,b(s, x), we

have immediately the following two relations:

(2.9) Va,b(s, x) ≤ V 1
a,b(s, x) and Ua,b

1 (s, x) ≤ Ua,b(s, x).

Next, let us introduce some operators. For any m × n matrix-valued function
W (·, ·) = (W a,b(·, ·)) defined on [0, 1]×X, we define for (a, b, s, x) ∈ A×B× [0, 1]×X

(2.10)

Ma,b[W ](s, x) = min
â�=a

{W â,b(s, x) + k(s, a, â)},

Ma,b[W ](s, x) = max
b̂ �=b

{W a,b̂(s, x) − l(s, b, b̂)}.

The two operators are called obstacle operators. According to the definitions, for
any (a, b, s, x) ∈ A×B × [0, 1] ×X, the following are true:

(2.11)

Ma,b[V ](s, x) ≤ Va,b(s, x) ≤ Ma,b[V ](s, x),

Ma,b[V
1](s, x) ≤ V 1

a,b(s, x) ≤ Ma,b[V 1](s, x),

Ma,b[U ](s, x) ≤ Ua,b(s, x) ≤ Ma,b[U ](s, x),

Ma,b[U1](s, x) ≤ Ua,b
1 (s, x) ≤ Ma,b[U1](s, x).

Before closing this section, we state without proof the following result on the
continuity in the space variable of the costs and the value functions.

Proposition 2.1. (1) For any a(·) ∈ Aa[s, 1], b(·) ∈ Bb[s, 1], α ∈ Γa[s, 1], and β ∈
Δb[s, 1], the functions Jsx(α[b(·)], b(·)) and Jsx(a(·), β[a(·)]), (s, x) ∈ [0, T ]×X, grow
linearly, are Lipschitz continuous in the space variable x, and are Hölder-continuous in
the time variable s, uniformly with respect to the other variable s and x, respectively,
and uniformly as well with respect to the four parameters: α, a(·), β, and b(·).

(2) The functions V, V 1, U, and U1 grow linearly and are Lipschitz continuous in
the space variable x, uniformly with respect to the time variable s.

The time continuity of value functions turns out to be a measurability issue and
will be considered in the next section.

3. Dynamic programming and time continuity of various value func-
tions. In this section, we use the Bellman dynamic programming principle to study
the time continuity and the dynamics of various value functions related to our game.

Proposition 3.1. (1) The lower value function V 1(·, ·) satisfies the following
suboptimality condition: For any (a, b) ∈ A×B, x ∈ X, and 0 ≤ s < ŝ ≤ 1,

(3.1a)

V 1
a,b(s, x) ≤ inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + V 1
α[b(·)](ŝ),b(ŝ)(ŝ, y(ŝ))

}
,

where {ai, θi} and {bj , τj} are associated with α[b(·)] and b(·), respectively, and
α[b(·)](ŝ) = α[b(·)](ŝ + 0), b(ŝ) = b(ŝ + 0).

(2) The upper value function U1(·, ·) satisfies the following superoptimality condi-
tion: For any (a, b) ∈ A×B, x ∈ X, and 0 ≤ s < ŝ ≤ 1,
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(3.1b)

Ua,b
1 (s, x) ≥ sup

β∈Δb
1[s,1]

inf
a(·)∈Aa[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), a(·), β[a(·)](r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + U
a(ŝ),β[a(·)](ŝ)
1 (ŝ, y(ŝ))

}
,

where {ai, θi} and {bj , τj} are associated with a(·) and β[a(·)], respectively, and
β[a(·)](ŝ) = β[a(·)](ŝ + 0), b(ŝ) = b(ŝ + 0).

Proof of Proposition 3.1. We prove only the inequality (3.1a); the inequality
(3.1b) can be proved in the same manner.

Let (s, x, a, b) be fixed, and let Wa,b(s, x) be the right-hand side of (3.1a). Then,
∀ε > 0, there exists α ∈ Γa

1 [s, 1] such that

(3.2)

Wa,b(s, x) ≥ Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + V 1
α[b(·)](ŝ),b(ŝ)(ŝ, y(ŝ))

}
− ε

for every b(·) ∈ Bb[s, 1]. Also, for each â ∈ A, b̂ ∈ B, ξ ∈ X,

(3.3) V 1
â,b̂

(ŝ, ξ) = inf
α∈Γâ

1 [ŝ,1]
sup

b(·)∈Bb̂[ŝ,1]

Jŝξ(α[b(·)], b(·));

thus there exists αâ,b̂
ξ ∈ Γâ

1 [ŝ, 1] for which

(3.4) V 1
â,b̂

(ŝ, ξ) ≥ sup
b(·)∈Bb̂[ŝ,1]

Jŝξ(α
â,b̂
ξ [b(·)], b(·)) − ε.

Next let {Ai : i = 1, 2, . . . } be a partition of X by Borel sets, and choose ξi ∈
Ai(i = 1, 2, . . . ). If the diameter of the Ai’s is sufficiently small, then for i = 1, 2, . . .
and w ∈ Ai,

(3.5)

|Jŝw(α[b(·)], b(·)) − Jŝξi(α[b(·)], b(·))| < ε for any b(·) ∈ Bb̂[ŝ, 1] and α ∈ Γâ
1 [ŝ, 1],

and

(3.6) |V 1
â,b̂

(ŝ, w) − V 1
â,b̂

(ŝ, ξi)| < ε.

Now we use the strategies α and αâ,b̂
ξi

, i = 1, . . . , â ∈ A, b̂ ∈ B, to construct a new

admissible strategy α̃ ∈ Γa
1 [s, 1] as follows: For (r, ω) ∈ [s, 1] × Ωs and b(·) ∈ Bb[s, 1],

we define

(3.7)
α[b(·)](ω)(r)

=

{
α[b(·)](ω)(r) if r < ŝ,∑∞

i=1

∑
â∈A,b̂∈B χ{b(ŝ)=b̂,α[b(·)](ŝ)=â}χAi(ysx(ŝ))αâ,b̂

ξi
[b(ω1)](ω2)(r) if r ≥ ŝ,

where ω = (ω1, ω2) ∈ Ωt,ŝ × Ωŝ and b(ω1)(·) ∈ Bb(ŝ)[ŝ, 1] is given by b(ω1)(ω2)(r) =
b(ω1, ω2)(r).
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Consequently for any b(·) ∈ Bb[s, 1], using (3.2), (3.4), and (3.6), we obtain

(3.8)

Wa,b(s, x) ≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

∑
â∈A,b̂∈B

χ{α[b(·)](ŝ)=â,b(ŝ)=b̂}χAi
(ys,x(ŝ))V 1

â,b̂
(ŝ, y(ŝ))

}
− ε

≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

∑
â∈A,b̂∈B

χ{α[b(·)](ŝ)=â,b(ŝ)=b̂}χAi(ys,x(ŝ))V 1
â,b̂

(ŝ, ξi)

}
− 2ε.

On the other hand, for ysx(ŝ) ∈ Ai, i = 1, 2, . . . and ∀ b(·) ∈ Bb̂[ŝ, 1], we derive
from (3.4) and (3.5) that

(3.9) V 1
â,b̂

(ŝ, ξi) ≥ Jŝξi(α
â,b̂
ξi

[b(·)], b(·)) − ε ≥ Jŝysx(ŝ)(α
â,b̂
ξi

[b(·)], b(·)) − 2ε.

Combining the above inequalities, we have

(3.10)

Wa,b(s, x) ≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

χAi(ys,x(ŝ))Eŝysx(ŝ)

{∫ 1

ŝ

f0(r, y(r), α̃[b(·)](r), b(r)) dr

+
∑
θi>ŝ

k(θi, ai−1, ai) −
∑
τj>ŝ

l(τj , bj−1, bj) + h(y(1))

}}
− 4ε.

Therefore,

Wa,b(s, x) ≥ Jsx(α̃, b(·)) − 4ε,

which in turn implies

Wa,b(s, x) ≥ V 1
a,b(s, x) − 4ε,

and the result now follows.
From Proposition 3.1, we can obtain the following time continuity of V 1 and U1.
Proposition 3.2. There exists L > 0 such that for any a ∈ A, b ∈ B, x ∈ X,

and s, t ∈ [0, 1]

(3.11)
|V 1

a,b(s, x) − V 1
a,b(t, x)| ≤ L(1 + |x|)

√
|s− t|,

|Ua,b
1 (s, x) − Ua,b

1 (t, x)| ≤ L(1 + |x|)
√
|s− t|.



908 SHANJIAN TANG AND SHUI-HUNG HOU

Proof of Proposition 3.2. We prove only the 1
2 -Hölder continuity of the r-lower

value function V 1 in the time variable the 1
2 -Hölder continuity of the r-upper value

function U1 in the time variable can be proved in the same way.
Suppose that s < t. First, we prove the following:

(3.12) V 1
a,b(s, x) − V 1

a,b(t, x) ≤ L(1 + |x|)
√
t− s.

From Proposition 3.1 and Hypothesis 3, we derive

(3.13)
V 1
a,b(s, x)

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr −
∑
τj≤t

l(τj , bj−1, bj) + V 1
a,b(t)(t, y(t))

}

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr −
∑
τj≤t

l(t, bj−1, bj) + V 1
a,b(t)(t, y(t))

}

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr − l(t, b, b(t)) + V 1
a,b(t)(t, y(t))

}
≤ sup

b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr + V 1
a,b(t, y(t))

}
.

Note that in the last step, we have used the relation (2.11). We then have

(3.14)

V 1
a,b(s, x) − V 1

a,b(t, x)

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr + V 1
a,b(t, y(t)) − V 1

a,b(t, x)

}
,

which proves (3.12) by the uniformly Lipschitz continuity of V 1
a,b(t, x) in x and the

following estimate:

E|ysx(t) − x| ≤ L(1 + |x|)
√
t− s.

Second, we prove the following:

(3.15) V 1
a,b(s, x) − V 1

a,b(t, x) ≥ −L(1 + |x|)
√
t− s.

In fact, for any b̂(·) ∈ Bb[t, 1] and α ∈ Γa
1 [s, 1], we define

b(r) =

{
b, r ∈ [s, t),

b̂(r), r ∈ [t, 1],

and

(3.16)
α̂(ω1)[̂b(·)](r) = α[b(·)](ω1)(r), r ∈ [t, 1],

α̂(ω1)[̂b(·)](t− 0) = a.
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Then we see that b(·) ∈ Bb[s, 1] and α̂(ω1) ∈ Γa
1 [s, 1], a.s. It follows that

(3.17)
Jsx(α[b(·)], b(·))

≥ Esx

{∫ t

s

f0(r, y(r), α[b(·)](r), b(r)) dr + l(t, a, a(t)) + Jtx(α(ω1)[b(·)], b̂(·))

+

∫ 1

t

[f0(r, y(r), α̂(ω1)[̂b(·)](r), b̂(r)) − f0(r, y(r), α̂(ω1)[̂b(·)](r), b(r))] dr
}
.

Here we have used Hypothesis 2. Then we see that

(3.18)

sup
b(·)∈Bb[s,1]

Jsx(α[b(·)], b(·))

≥ sup
b(·)∈Bb[s,1]

Esx[V 1
α[b(·)](t),b(t, x) + l(t, a, α[b(·)](t))] − L(1 + |x|)

√
t− s

≥ V 1
a,b(t, x) − L(1 + |x|)|s− t|1/2,

which implies (3.15).
Remark 3.1. It is still true to replace in Proposition 3.1 the deterministic time

ŝ ∈ (s, 1] with a stopping time τ which takes its values in (s, 1]. In fact, in this version
of Proposition 3.2, it is sufficient to note that, for any (x, a, b) ∈ X ×A×B, the two

random variables V 1
a,b(τ, x) and Ua,b

1 (τ, x) may be sufficiently approximated by

N−1∑
i=0

V 1
a,b(ti, x)χ[ti,ti+1)(τ) and

N−1∑
i=0

Ua,b
1 (ti, x)χ[ti,ti+1)(τ),

respectively, by letting N be sufficiently large. Here we have used the following
notation:

ti =
i(1 − s)

N
, i = 0, 1, . . . , N.

For (s, x, δ) ∈ [0, 1] ×X × (0,∞) and (a(·), b(·)) ∈ Aa[s, 1] × Bb[s, 1], define

τ δs,x(a(·), b(·)) := inf
{
t ∈ [s, T ] : |ya(·),b(·)

s,x (t) − x| ≥ δ
}
∧ T,

where y
a(·),b(·)
s,x is the solution of the system (1.1) corresponding to (a(·), b(·)) ∈

Aa[s, 1]×Bb[s, 1], which will occasionally be abbreviated as ysx or simply y to simplify
the notation. It is easy to see that τ δs,x(a(·), b(·)) is a stopping time for any triplet

(s, x, δ) ∈ [0, 1] × X × [0,∞) and any pair (a(·), b(·)) ∈ Aa[s, 1] × Bb[s, 1]. To sim-
plify the notation, we shall simply write τ δ for τ δs,x(a(·), b(·)) when the dependence
on (s, x, a(·), b(·)) is not confused from the context. We also have

|ya(·),b(·)
s,x (t ∧ τd) − x| ≤ δ

for s ≤ t ≤ 1, a(·) ∈ Aa[s, 1], and b(·) ∈ Bb[s, 1]. Moreover, we have

lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

P ({ŝ ≥ τ δ})
ŝ− s

= 0.
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In fact, we have

P ({τ δ ≤ ŝ}) = P

({
sup

s≤t≤ŝ
|ya(·),b(·)

s,x (t) − x| ≥ δ

})

≤
N∑
i=1

P δ,i
s,x(a(·), b(·)),

where N is the dimension of the state space X, for i = 1, . . . , N , ei is the unit vector
of X whose ith component is one, and

P δ,i
s,x(a(·), b(·)) := P

({
sup

s≤t≤ŝ
〈ei, ya(·),b(·)

s,x (t) − x〉 ≥ δN− 1
2

})
.

Define

fδ
s,x := sup{|f(t, y, a, b)| : (t, a, b) ∈ [s, 1] ×A×B, |y − x| ≤ δ}

and

gδs,x := sup{|g(t, y, a, b)| : (t, a, b) ∈ [s, 1] ×A×B, |y − x| ≤ δ}.

For θ ∈ X, from Itô’s formula, it follows that the process

Zδ,θ
s,x(t; a(·), b(·))

:= exp

{〈
θ, ys,x(t ∧ τ δ) − x−

∫ t∧τδ

s

f(r, ys,x(r), a(r), b(r)) dr

〉

−1

2

∫ t∧τδ

s

|g∗(r, ys,x(r), a(r), b(r))ei|2 dr
}
, t ∈ [s, 1],

is a continuous martingale, and E[Zδ,θ
s,x(t; a(·), b(·))] = 1 for any (t, a(·), b(·), θ) ∈

[s, T ] × Aa[s, 1] × Bb[s, 1] ×X. Therefore, using Doob’s inequality, we have for h :=
ŝ− s, λ > 0, δ0 ≥ δ > 0, a(·) ∈ Aa[s, 1], and b(·) ∈ Bb[s, 1]

P δ,i
s,x(a(·), b(·))

≤ P

({
sup

s≤t≤ŝ
Zδ,λei
s,x (t; a(·), b(·)) ≥ exp

[
λ(δN− 1

2 − hfδ0
s,x) − 1

2
λ2h|gδ0s,x|2

]})
≤ exp

[
−λ(δN− 1

2 − hfδ0
s,x) +

1

2
λ2h|gδ0s,x|2

]
.

As h is sufficiently small, take

λ =
δN− 1

2 − hfδ0
s,x

h|gδ0s,x|2
,

and we further have

P δ,i
s,x(a(·), b(·)) ≤ exp

{
−|δN− 1

2 − hfδ0
s,x|2

2h|gδ0s,x|2

}
.
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Hence,

lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

P ({τ δ ≤ ŝ})
ŝ− s

≤ lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

h−1
N∑
i=1

P δ,i
s,x(a(·), b(·))

≤ lim
h→0

Nh−1 exp

{
−|δN− 1

2 − hfδ0
s,x|2

2h|gδ0s,x|2

}
= 0.

The desired result then follows.
Proposition 3.3. (1) The r-lower value function V 1(·, ·) satisfies the following:

Suppose at (a, b, s, x) ∈ A×B × [0, 1] ×X

(3.19a) V 1
a,b(s, x) > Ma,b[V

1](s, x).

Then there exist a deterministic time s0 > s and a sufficiently small number
δ0 > 0, such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.19b) V 1
a,b(s, x) ≤ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.
(2) The r-upper value function U1(·, ·) satisfies the following: Suppose at (a, b, s, x) ∈

A×B × [0, 1] ×X

(3.20a) Ua,b
1 (s, x) < Ma,b[U1](s, x).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.20b) Ua,b
1 (s, x) ≥ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + Ua,b
1 (ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.
Remark 3.2. Proposition 3.3 can be viewed as a stochastic version of Theorem

3.2 by Yong [10]. However, it is by no means trivial and is of stochastic nature in
its formulation. The upper limits of the integrals in (3.19b) and (3.20b) are more
complicated than the deterministic counterparts: The former are a deterministic time
ŝ > s which is sufficiently close to the initial time s, stopped by the first time of
the system state process ya,bs,x (steered by both players I and II with constant actions
a ∈ A and b ∈ B, respectively) escaping from a sufficiently small ball centered at
the initial state x, while the latter are simply a deterministic time ŝ > s which is
sufficiently close to the initial time s. Obviously, both coincide. Our proof below is
quite different from the deterministic case and is of stochastic nature; it includes a
delicate analysis.

Proof of Proposition 3.3. We prove only statement (1); the proof of statement (2)
is similar.

If statement (1) were not true, then there would exist sequences ŝ → s, δ → 0+,
and ε → 0+ such that

(3.21) V 1
a,b(s, x)−ε > Esx

{∫ ŝ∧τδ

s

f0(s, y(s; a, b), a, b) ds+V 1
a,b(ŝ∧τ δ, y(ŝ∧τ δ; a, b))

}
.
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On the other hand, using Proposition 3.2 and the idea exposed in Remark 3.1, we can
show the following analogy to Proposition 3.1 (1):

V 1
a,b(s, x) ≤ inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Esx

{∫ ŝ∧τδ
a(·),b(·)

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

θi≤ŝ∧τδ
a(·),b(·)

k(θi, ai−1, ai) −
∑

τj≤ŝ∧τδ
a(·),b(·)

l(τj , bj−1, bj)

+ V 1
α[b(·)](ŝ),b(ŝ)(ŝ ∧ τ δa(·),b(·), y(ŝ ∧ τ δa(·),b(·)))

}
,

where {ai, θi} and {bj , τj} are associated with α[b(·)] and b(·), respectively; α[b(·)](ŝ) =
α[b(·)](ŝ + 0), b(ŝ) = b(ŝ + 0), and τ δa(·),b(·) := τ δs,x(a(·), b(·)). Therefore, we have

(3.22)

V 1
a,b(s, x) ≤ sup

b(·)∈Bb,s

Esx

{∫ ŝ∧τδ
a,b(·)

s

f0(r, y(r), a, b(r)) dr

−
∑

τj≤ŝ∧τδ
a,b(·)

l(τj , bj−1, bj) + V 1
a,b(ŝ)(ŝ ∧ τ δa,b(·), y(ŝ ∧ τ δa,b(·)))

}
.

Furthermore, by definition, we conclude that there exists bε(·) ∈ Bb[s, 1] such that

(3.23)

V 1
a,b(s, x) − ε ≤ Esx

{∫ ŝ∧τδ
a,bε(·)

s

f0(r, y(r), a, bε(r)) dr

−
∑

τε
j ≤ŝ∧τδ

a,bε(·)

l(τεj , b
ε
j−1, b

ε
j) + V 1

a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·)))

}
,

where {τεj , bεj} = bε(·).
Set

B1 := {ω : bε(r ∧ τ δa,bε(·), ω) �= b for some r ∈ [s, ŝ ∧ τ δa,bε(·)]},
Bc

1 := Ω\B1 = {ω : bε(r ∧ τ δa,bε(·), ω) = b ∀ r ∈ [s, ŝ ∧ τ δa,bε(·)]}.

Note that B1 and Bc
1 depend on (δ, ŝ). Then the two inequalities (3.21) and (3.23)

yield

(3.24) E[χB1
] > 0 for sufficiently small positive δ and ŝ.

Combining (3.21) and (3.23), we have

(3.25) (I) + (II) + (III) > 0,
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where

(3.26)

(I) = Esx

{∫ ŝ∧τδ
a,bε(·)

s

f0(r, y(r; a, bε(·)), a, bε(r)) dr −
∫ ŝ∧τδ

a,b

s

f0(r, y(r; a, b), a, b) dr

}
≤ C((ŝ− s)(1 + |x| + δ))EχB1 ,

(II) = Esx

{
−

∑
τε
j ≤ŝ∧τδ

a,bε(·)

l(τεj , b
ε
j−1, b

ε
j)

}
≤ −Esx

{ ∑
τε
j ≤ŝ∧τδ

a,bε(·)

l(ŝ ∧ τ δa,bε(·), b
ε
j−1, b

ε
j)

}
,

(III) = Esx[V 1
a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·); a, b

ε(·))) − V 1
a,b(ŝ ∧ τ δa,b, y(ŝ ∧ τ δa,b; a, b))]

= Esx

{
[V 1

a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·); a, b
ε(·)))

− V 1
a,b(ŝ ∧ τ δa,b, y(ŝ ∧ τ δa,b; a, b))]χB1

}
.

Hence, noting Propositions 2.1 and 3.2, we have

(3.27)
0 ≤ (I) + (II) + (III)

≤ {Ma,b[V
1](s, x) − V 1

a,b(s, x) + C[
√
ŝ− s(1 + |x|) + δ]}EχB1

for some positive constant C, which implies that

(3.28) Ma,b[V
1](s, x) − V 1

a,b(s, x) ≥ −C
√
ŝ− s(1 + |x|) + δ.

Letting δ → 0+ and ε → 0+, we have

Ma,b[V
1](s, x) ≥ V 1

a,b(s, x),

which contradicts (3.19a).
Note that the time continuity of V 1 and U1 given by Proposition 3.2 is used in

the proof of Proposition 3.3.
Denote by C0,1(X,Rm×n) the totality of R

m×n-valued uniformly Lipschitz con-
tinuous functions on X. For ϕ(·) = (ϕa,b(·))a∈A,b∈B ∈ C0,1(X,Rm×n), define

(3.29a)

Fa,b(s, ŝ)ϕ(x) = sup
b̂∈B

inf
a(·)∈Aa[s,ŝ]

Esx

{
ϕa(ŝ−),b̂(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), a(r), b̂) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) − l(s, b, b̂)

}
, (a, b, x) ∈ A×B ×X;

F (s, ŝ)ϕ = (Fa,b(s, ŝ)ϕ)a∈A,b∈B

and

(3.29b)

Ga,b(s, ŝ)ϕ(x) = inf
â∈A

sup
b(·)∈Bb[s,ŝ]

Esx

{
ϕâ,b(ŝ−)(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), â, b(r)) dr

+ k(s, a, â) −
∑

s≤τj<ŝ

l(τj , aj−1, aj)

}
, (a, b, x) ∈ A×B ×X;

G(s, ŝ)ϕ = (Ga,b(s, ŝ)ϕ)a∈A,b∈B .
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It is easily shown that F (s, ŝ) and G(s, ŝ) are self-mappings on C0,1(X,Rm×n). There-
fore, the function V π : [0, 1] ×X → C0,1(X,Rm×n) given by

(3.30a)
V π(1, x) = (V π

a,b(1, x))a∈A,b∈B , V π
a,b(1, x) ≡ h(x) for (a, b) ∈ A×B, with x ∈ X;

V π(s, x) = F (s, ti0+1)

M∏
i=i0+2

F (ti−1, ti)h(x), x ∈ X, if s ∈ [ti0 , ti0+1),

is well defined. Let V π
a,b(s, x) be the (a, b)-component of the matrix V π(s, x). Similarly,

define Uπ = (Ua,b
π )a∈A,b∈B : [0, 1] ×X → C0,1(X,Rm×n) as follows:

(3.30b)
Uπ(1, x) = (Ua,b

π (1, x))a∈A,b∈B , Ua,b
π (1, x) ≡ h(x) for (a, b) ∈ A×B, with x ∈ X;

Uπ(s, x) = G(s, ti0+1)

M∏
i=i0+2

G(ti−1, ti)h(x), x ∈ X, if s ∈ [ti0 , ti0+1).

We have the following.
Proposition 3.4. For (a, b, s, x) ∈ A×B× [0, 1]×X and ŝ ∈ π ∩ [s, 1], we have

(3.31a)

V π
a,b(s, x) = inf

α∈Γa[s,1]
sup

b(·)∈Bb
π [s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ V π
α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {ai, θi}, and

(3.31b)

Ua,b
π (s, x) = sup

β∈Δb[s,1]

inf
a(·)∈Aa

π [s,1]
Esx

{∫ ŝ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ Ua(ŝ−),β[a(·)](ŝ−)
π (ŝ, y(ŝ))

}
,

where a(·) = {ai, θi} and b(·) = β[a(·)] = {bj , τj}.
Proof of Proposition 3.4. We prove only (3.31a) here; the proof of (3.31b) is

identical and therefore will be omitted.
For a(·) ∈ Aa[s, 1] and b(·) ∈ Bb[s, 1], set

(3.32)

Ĵsx(a(·), b(·)) =Esx

{∫ ŝ

s

f0(r, y(r), a(r), b(r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤tj<ŝ

l(tj , bj−1, bj)

+ V π
a(ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
.

The desired result can be derived from the following assertion: For (a, b, s, x) ∈ A ×
B × [0, 1] ×X and ∀ε > 0, there exist βε ∈ Δb

π[s, 1] and αε ∈ Γa[s, 1] such that

(3.33) V π
a,b(s, x) ≥ Ĵsx(αε[b(·)], b(·)) − ε ∀b(·) ∈ Bb

π[s, 1]
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and

(3.34) V π
a,b(s, x) ≤ Ĵsx(a(·), βε[a(·)]) + ε ∀a(·) ∈ Γa[s, 1].

In fact, the inequality (3.33) implies (3.31a) with the equality sign replaced by
“≥.” On the other hand, for any α ∈ Γa[s, 1], the pair of strategies of βε ∈ Δb

π[s, 1]
and α ∈ Γa[s, 1] define a pair of switching processes aε(·) ∈ Aa[s, 1] and bε ∈ Bb

π[s, 1]
such that

(3.35) Ĵsx(aε(·), βε) = Ĵsx(α, bε(·)),

and this gives the other inequality in (3.31a). We invite the reader to see Fleming
and Souganidis [6] for the details of the proof.

We conclude the proof by establishing (3.33) and (3.34). For ϕ ∈ C0,1(X,Rm×n),
define

(3.36)

ψa,b(s, x, ŝ, ϕ, b̃) = inf
a(·)∈Aa[s,ŝ)

Esx

{
ϕa(ŝ−),b̃(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), a(r), b̃) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) − l(s, b, b̃)

}
.

Here ysx(·) is the solution of (1.1) with b(r) = b̃, r ∈ [s, ŝ].

(3.37) Fa,b(s, ŝ)ϕ(x) = sup
b̃∈B

ψa,b(s, x, ŝ, ϕ, b̃).

If s ∈ [ti0 , ti0+1) for i0 ∈ {0, 1, . . . ,M − 1}, let DM = h,Dj = F (tj , tj+1)Dj+1, for
j = i0 + 1, . . . ,M − 1, and Ds,i0 = F (t, ti0+1)Di0+1. Thus,

(3.38) Ds,i0(x) = V π
a,b(s, x),

and, in particular,

(3.39) Di0(x) = V π
a,b(ti0 , x).

We partition X into Borel sets {Ai : i = 1, 2, . . . } of diameter less than δ, where
δ is to be specified later, and we choose xi ∈ Ai. Given γ > 0, we can choose δ small
enough and b̃ai(j−1) ∈ B for i = 1, 2, . . . and j = i0 + 1, . . . ,M such that

(3.40a) ψa,b(tj−1, xi, tj , Dj , b̃
a
i(j−1)) > Fa,b(tj−1, tj)Dj(xi) − γ,

and thus

(3.40b)

Etj−1xi

{
D

a(tj−),b̃ai(j−1)

j (y(tj)) +

∫ tj

tj−1

f0(r, y(r), a(r), b̃ai(j−1)) dr

+
∑

tj−1≤θi<tj

k(θi, ai−1, ai) − l(tj−1, b, b̃)

}
> Da,b

j−1(xi) − γ ∀a(·) ∈ Aa[tj−1, tj ].
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We also choose ab̃i(j−1)(·) ∈ Aa(tj−1, tj) such that, for a(·) = ab̃ij(·) and b(r) = b̃, r ∈
(tj−1, tj ],

(3.41)

Etj−1xi

{
D

a(tj−),b̃
j (y(tj ; a

b̃
i(j−1)(·), b̃)) +

∫ tj

tj−1

f0(r, y(r), ab̃i(j−1)(r), b̃) dr

+
∑

tj−1≤θi<tj

k(θi, ai−1, ai) − l(tj−1, b, b̃)

}
< ψa,b(tj−1, xi, tj , Dj , b̃) + γ = Da,b

j (xi) + γ,

where for j = i0 + 1 we replace ti0 by s. Here ytjxi
(·; ab̃ij(·), b̃) is the solution of (1.1)

with the initial data (tj−1, xi) and on the switchings a(·) = ab̃ij(·) and b(·) ≡ b̃.
We need to introduce more notations. As before, we identify ω ∈ Ωs with the pair

(ω1j , ω2j) for j = i0 + 2, . . . ,M , where ω1j = ω|[s,tj−1] and ω2j = ω − ωtj−1 |[tj−1,1].
With this identification, the Wiener measure Ps on Ωs can be regarded as the product
measure P1j ⊗P2j of the two probability measures P1j and P2j , which are defined on
the two measure spaces (Ωs,tj−1 ,Fs,tj−1

) and (Ωtj−1
,Ftj−1), respectively. In view of

this identification, we will be writing

(3.42) EP2j ≡ Etj−1xi
.

The strategies αε ∈ Γa[s, 1] and βε ∈ Δb
π[s, 1] are defined as follows. Let

(a, b, s, x) ∈ A×B × [0, 1) ×X be fixed. For a(·) ∈ Aa[s, 1], we define

(3.43)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βε[a(·)](r) =bχ[s,s) + χ[s,ti0+1)(r)

∞∑
i=1

b̃aii0χAi(x)

+

M−1∑
j=i0+1

χ[tj ,tj+1)(r)

∞∑
ã∈A
i=1

b̃ãijχAi
(ysx(tj))χ{a(tj−)=ã}, r ∈ [s, 1),

βε[a(·)](1) =βε[a(·)](1−),

where the random variable ysx(·) is defined successively on intervals [s, ti0+1], [tj , tj+1],
j = i0 + 1, . . . ,M − 1, as the solution to (1.1) with b(r) = βε[a(·)](r). Note that
∀a(·) ∈ Aa[s, 1] and r ∈ (s, 1), βε[a(·)](r) depends only on a(·)|[s,r) and is independent

of a(r). For b(·) ∈ Bb[s, 1], we define

(3.44)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αε[b(·)](r) =χ[s,s)

∞∑
i=1

ãbii0χAi
(x) + χ[s,ti0+1)(r)

∞∑
b̃∈B,i=1

ãb̃ii0(r)χAi
(x)χ{b(s)=b̃}

+

M−1∑
j=i0+1

χ[tj ,tj+1)(r)

∞∑
b̃∈B,i=1

ãb̃ij(r)χAi
(ysx(tj))χ{b(r)=b̃}, r ∈ [s, 1);

αε[b(·)](1) =αε[b(·)](1−),

where again ysx(·) is defined successively on intervals [s, ti0+1], [tj , tj+1],
j = i0 + 1, . . . ,M − 1, as the solution to (1.1) with a(r) = αε[b(·)](r). Note that
for any b(·) ∈ Bb[s, 1] and r ∈ [s, 1], αε[b(·)](r) depends on b(r).
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For either a(·) ∈ Aa[s, 1] and b(·) = βε[a(·)] or b(·) ∈ Bb
π[s, 1] and a(·) = αε[b(·)],

we have

(3.45)

V π
a,b(s, x) − Ĵsx(a(·), b(·))

= EPs

∑
ti0+1≤tj≤ŝ

{
D

a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1))

+ EPs

[
−
∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr −
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

+
∑

tj−1≤τj<tj

l(τj , bj−1, bj) −D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]}
.

To obtain (3.33) and (3.34), it suffices to show that the following statements hold:

(3.46)

D
a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1)) ≥

EPs

[∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr +
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

−
∑

tj−1≤τj<tj

l(τj , bj−1, bj) + D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]
− ε(tj − tj−1),

Ps-a.s. ∀ b(·) ∈ Bb
π[s, 1] and a(·) = αε[b(·)]

and

(3.47)

D
a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1))

≤ EPs

[∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr +
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

−
∑

tj−1≤τj<tj

l(τj , bj−1, bj) + D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]
+ ε(tj − tj−1),

Ps-a.s. ∀ a(·) ∈ Aa[s, 1] and b(·) = βε[a(·)].
They can be derived from (3.41) and (3.40b), separately.

It is easy to see that V π
a,b(s, x) and Ua,b

π (s, x) grow in a linear way in the state
variable x ∈ X, uniformly with respect to (a, b, s) ∈ A×B × [0, T ] and the partition
π. Analogous to the first part of the proof of Proposition 3.2, we can also show some
time continuity of V π and Uπ. These properties are summarized into the following.

Proposition 3.5. There is a positive constant L such that for s ∈ [0, 1], t ∈
π ∩ [s, 1], a ∈ A, b ∈ B, x ∈ X, and y ∈ X we have

(3.48)

|V π
a,b(s, x)| + |Ua,b

π (s, x)| ≤ L(1 + |x|),
|V π

a,b(s, x) − V π
a,b(s, y)| + |Ua,b

π (s, x) − Ua,b
π (s, y)| ≤ L|x− y|,

|V π
a,b(s, x) − V π

a,b(t, x)| + |Ua,b
π (s, x) − Ua,b

π (t, x)| ≤ L(1 + |x|)
√
t− s.

Next we assume that πi = {j/2i}2i

j=0, i = 0, 1, 2, . . . . Then ||πi|| = 1/2i, and, from
the definition of V πi and Uπi , i = 0, 1, 2, . . . , and Proposition 3.4, we have

(3.49a) V π0

a,b ≤ V π1

a,b ≤ · · · ≤ V πi

a,b ≤ · · · ≤ Va,b, (a, b) ∈ A×B
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and

(3.49b) Ua,b
π0

≥ Ua,b
π1

≥ · · · ≥ Ua,b
πi

≥ · · · ≥ Ua,b, (a, b) ∈ A×B.

Proposition 3.6. For (a, b) ∈ A×B, let va,b = limi→∞ V πi

a,b and v := (va,b)a∈A,b∈B.
Then, for s, t ∈ [0, 1] and x, y ∈ X, we have

(3.50a)

va,b(s, x) ≤ Va,b(s, x),

|va,b(s, x)| ≤ L(1 + |x|),
|va,b(s, x) − va,b(t, x)| ≤ L(1 + |x|)

√
|t− s|,

|va,b(s, x) − va,b(s, y)| ≤ L|x− y|.

Similarly, let ua,b = limi→∞ Ua,b
πi

and u := (ua,b)a∈A,b∈B. Then, for s, t ∈ [0, 1] and
x, y ∈ X,

(3.50b)

ua,b(s, x) ≥ Ua,b(s, x),

|ua,b(s, x)| ≤ L(1 + |x|),
|ua,b(s, x) − ua,b(t, x)| ≤ L(1 + |x|)

√
|t− s|,

|ua,b(s, x) − ua,b(s, y)| ≤ L|x− y|.
Proof of Proposition 3.6. First, we prove (3.50a). Assume, without loss of gener-

ality, that s < t. Let {ti}∞i=1 ⊂ ∪∞
i=0πi ∩ [t, 1] and limi→∞ ti = t. Then we have from

Proposition 3.5 that

(3.51)

|va,b(s, x) − va,b(t, x)|
≤ |va,b(s, x) − va,b(ti, x)| + |va,b(ti, x) − va,b(t, x)|
≤ L(1 + |x|)(

√
ti − s +

√
ti − t), i = 1, 2, . . . .

This concludes the 1
2 -Hölder continuity in the time variable of va,b. Its linear growth

and uniform Lipschitz continuity in the space variable x is straightforward.
In an identical way, we can show (3.50b).
Passing to the limit ‖π‖ → 0 in Proposition 3.4, we obtain that two functions v

and u satisfy the following dynamic programming principle.
Proposition 3.7. For (a, b, s, x) ∈ A×B× [0, 1]×X and ŝ ∈ ∪∞

i=0πi ∩ [s, 1], we
have

(3.52a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.52b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ ua(ŝ−),β[a(·)](ŝ−)(ŝ, y(ŝ))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}.
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Proof of Proposition 3.7. We only derive the equality (3.52a) from the equality
(3.31a) in Proposition 3.4. The proof of the equality (3.52b) is similar.

Since ŝ ∈ ∪∞
i=0πi ∩ [s, 1], we have ŝ ∈ πi ∩ [s, 1] when i is sufficiently large. From

Proposition 3.4, we have that, when i is sufficiently large,

(3.53)

V πi

a,b(s, x) = inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}.
Set, for any C > 0,

OC(x) := {y : |y − x| ≤ C}, Oc
C(x) := {y : |y − x| > C}.

It is easy to see from Propositions 3.5 and 3.6 that

(3.54)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|
≤ Esx{χOc

C(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}
+ Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}

≤ {Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|2}
1
2 {P (Oc

C(x))} 1
2

+ Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}.

From Propositions 3.5 and 3.6, we have that, for any given positive constant C,

lim
i→∞

V πi(ŝ, y) = v(ŝ, y) uniformly in y ∈ OC(x),

which implies that

(3.55)
lim
i→∞

Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|} = 0.

Moreover,

(3.56) Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|2 ≤ L(1 + Esx|y(ŝ)|2).

Since

(3.57)
Esx|y(ŝ)|2 ≤ L(1 + |x|2),
P (Oc

C(x)) ≤ C−2Esx|y(ŝ) − x|2 ≤ LC−2(1 + |x|2),

we see that

0 ≤ lim
i→∞

sup
α,b(·)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))−vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))| ≤ LC−2(1+ |x|2)

for an arbitrary sufficiently large positive number C, and therefore

(3.58) lim
i→∞

sup
α,b(·)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))| = 0.

The last equality implies (3.52a) immediately.
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Note that

(3.59) va,b(1, x) = ua,b(1, x) = h(x), (a, b, x) ∈ A×B ×X.

It follows from Proposition 3.7 that, for (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.60a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ 1

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<1

k(θj , aj−1, aj) −
∑

s≤τj<1

l(τj , bj−1, bj) + h(y(1))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.60b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ 1

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<1

k(θj , aj−1, aj) −
∑

s≤τj<1

l(τj , bj−1, bj) + h(y(1))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}. From the above two formulas, we
have

(3.61a) Ma,b[v](s, x) ≤ va,b(s, x) ≤ Ma,b[v](s, x), (a, b, s, x) ∈ A×B × [0, 1] ×X,

and

(3.61b) Ma,b[u](s, x) ≤ ua,b(s, x) ≤ Ma,b[u](s, x), (a, b, s, x) ∈ A×B × [0, 1] ×X.

In view of the time continuity given by Proposition 3.6, the deterministic time
ŝ may be replaced in Proposition 3.7 with an arbitrary stopping time which takes
values in [s, 1]. That is, we have the following.

Proposition 3.8. For (a, b, s, x) ∈ A× B × [0, 1] ×X and any stopping time τ
which take values in [s, 1], we have

(3.62a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ τ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<τ

k(θj , aj−1, aj) −
∑

s≤τj<τ

l(τj , bj−1, bj)

+ vα[b(·)](τ−),b(τ−)(τ, y(τ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.62b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ τ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<τ

k(θj , aj−1, aj) −
∑

s≤τj<τ

l(τj , bj−1, bj)

+ ua(τ−),β[a(·)](τ−)(τ, y(τ))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}.
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Proceeding similarly as in the proof of Proposition 3.3, we derive from Proposition
3.8 the following.

Proposition 3.9. (1) The lower value function v(·, ·) := (va,b)a∈A,b∈B satisfies
the following: Suppose at (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.63a) va,b(s, x) > Ma,b[v](s, x) (resp., va,b(s, x) < Ma,b[v](s, x)).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.63b)

va,b(s, x) ≤ (resp., ≥) Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + va,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.

(2) The upper value function u(·, ·) := (ua,b)a∈A,b∈B satisfies the following: Sup-
pose at (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.64a) ua,b(s, x) < Ma,b[u](s, x) (resp., ua,b(s, x) > Ma,b[u](s, x)).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.64b)

ua,b(s, x) ≥ (resp., ≤) Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + ua,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.

4. Viscosity solutions, uniqueness result, dynamic programming equa-
tions, and existence of the game value. In this section, we shall introduce the
generalized notion of viscosity solution for our Isaacs’ system of variational inequali-
ties. The value functions defined in sections 2 and 3 turn out to be its viscosity sub- or
supersolutions. We then prove the uniqueness of the viscosity solution and establish
the existence of the value of our stochastic switching game.

Define for (a, b, t, x, q,Q) ∈ A×B × [0, 1] ×X ×X × S,

(4.1) Ha,b(t, x, q,Q) := f0(t, x, a, b)+ < q, f(t, x, a, b) > +
1

2
tr(Qgg∗(t, x, a, b)).

Here S is the set of all real symmetric transformations in X. Let C1,2([0, 1) ×X) be
the set of all continuous functions which are continuously differentiable in t and twice
continuously differentiable in x.

Associated with our stochastic switching game is the following Isaacs’ system of
quasi-variational inequalities where W is to be solved:

(1) For (a, b, t, x) ∈ A×B × [0, 1] ×X,

(4.2) Ma,b[W ](t, x) ≤ Wa,b(t, x) ≤ Ma,b[W ](t, x);

(2) for (a, b, t, x) ∈ A×B × [0, 1] ×X such that Wa,b(t, x) > Ma,b[W ](t, x),

(4.3)
∂

∂t
Wa,b(t, x) + Ha,b(t, x,∇Wa,b(t, x),∇2Wa,b(t, x)) ≥ 0;
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(3) for (a, b, t, x) ∈ A×B × [0, 1] ×X such that Wa,b(t, x) < Ma,b[W ](t, x),

(4.4)
∂

∂t
Wa,b(t, x) + Ha,b(t, x,∇Wa,b(t, x),∇2Wa,b(t, x)) ≤ 0;

(4) the terminal condition

(4.5) Wa,b(1, x) = h(x), (a, b, x) ∈ A×B ×X.

Definition 4.1. An R
m×n-valued continuous function W = (Wa,b)a∈A,b∈B on

[0, T ]×X is called a viscosity sub- (resp., super-) solution of (4.2)–(4.5) if it satisfies
(4.2) and (4.5), and moreover, for any ϕ(·, ·) ∈ C1,2([0, 1) ×X) and (a, b) ∈ A × B,
whenever Wa,b(·, ·) − ϕ(·, ·) attains a local maximum (resp., minimum) at (t0, x0) ∈
[0, 1) ×X and

Wa,b(t0, x0) > Ma,b[W ](t0, x0) (resp., Wa,b(t0, x0) < Ma,b[W ](t0, x0)),

we have

∂

∂t
ϕ(t0, x0) + Ha,b(t0, x0,∇ϕ(t0, x0),∇2ϕ(t0, x0)) ≥ 0(

resp.,
∂

∂t
ϕ(t0, x0) + Ha,b(t0, x0,∇ϕ(t0, x0),∇2ϕ(t0, x0)) ≤ 0

)
.

An R
m×n-valued function W = (Wa,b)a∈A,b∈B on [0, T ] × X is called a viscosity

solution of (4.2)–(4.5) if it is both a viscosity sub- and supersolution of (4.2)–(4.5).
Propositions 3.3 and 3.9 imply the following result.
Proposition 4.1. (1) The r-lower and r-upper value functions V 1 and U1 are

viscosity sub- and supersolutions of (4.2)–(4.5), respectively.
(2) The functions v = (va,b) and u = (ua,b) defined in Proposition 3.6 are viscosity

solutions of (4.2)–(4.5).
Proof of Proposition 4.1. We now prove that the r-lower value function V 1 is a

viscosity subsolution of (4.2)–(4.5). From the definition, it follows that V 1
a,b = h for

(a, b) ∈ A×B. In view of (2.11), we see that V 1 satisfies (4.2).
Consider ϕ(·, ·) ∈ C1,2([0, 1)×X) and (a, b) ∈ A×B. Assume that V 1

a,b(·, ·)−ϕ(·, ·)
attains a local maximum at (s, x) ∈ [0, 1) ×X and

V 1
a,b(s, x) > Ma,b[V

1](s, x).

From Proposition 3.3, we see that there exist a deterministic time s0 > s and a
sufficiently small number δ0 > 0, such that for all ŝ ∈ (s, s0] and δ ∈ (0, δ0], we have

V 1
a,b(s, x) ≤ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ. For sufficiently small ŝ ∈ [s, s0] and δ ∈
(0, δ0], we have

(4.6) V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) − ϕ(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) ≤ V 1(s, x) − ϕ(s, x).

Therefore,

Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + ϕ(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) − ϕ(s, x)

}
≥ 0.
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From Itô’s formula, we conclude that

Esx

∫ ŝ∧τδ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(r, ya,b(r),∇ϕ(r, ya,b(r)),∇2ϕ(r, ya,b(r)))

]
dr ≥ 0.

Noting (see the arguments following Remark 3.1) that

lim
ŝ→s+

P ({τ δ ≤ ŝ})
ŝ− s

= 0,

we have

0 ≤ lim
ŝ→s+

(ŝ− s)−1Esx

{∫ ŝ∧τδ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(· · · )

]
dr

}

= lim
ŝ→s+

(ŝ− s)−1Esx

{
χ{ŝ≤τδ}

∫ ŝ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(· · · )

]
dr

}

=
∂

∂t
ϕ(s, x) + Ha,b(s, x,∇ϕ(s, x),∇2ϕ(t, x)).

Concluding the above, we see that V 1 is a viscosity subsolution.
Noting (3.59), (3.61a), and (3.61b), we can prove all other assertions in Proposi-

tion 4.1 in an identical way.
Let us introduce the following sets, which are adopted from Evans and Ishii [5].

For function v : [0, 1] ×X → [−∞,+∞] and (s, z) ∈ [0, 1) ×X, define

(4.7)

℘2,+v(s, z) :=
{

(p, q,Q) ∈ R ×X × S : v(t, x)

≤ v(s, z) + p(t− s) + 〈q, x− z〉 + 1
2 〈Q(x− z), x− z〉

+ o(|t− s| + |x− z|2) as [0, 1] ×X � (t, x) → (s, z)
}
,

(4.8)

℘̄2,+v(s, z) :=
{

(p, q,Q) ∈ R ×X × S : ∃(ti, xi) ∈ [0, 1] ×X,

(pi, qi, Qi) ∈ ℘2,+v(ti, xi),

(ti, xi, v(ti, xi), pi, qi, Qi) → (s, z, v(s, z), p, q,Q)
}
.

Define for (s, z) ∈ [0, 1) ×X

(4.9) ℘2,−v(s, z) = −℘2,+(−v)(s, z) and ℘̄2,−v(s, z) = −℘̄2,+(−v)(s, z).

The following result is standard.
Proposition 4.2. An R

m×n-valued function W = (Wa,b)a∈A,b∈B on [0, T ] ×X
is a viscosity sub- (resp., super-) solution of (4.2)–(4.5) if and only if it satisfies
(4.2) and (4.5), and moreover, for any (t, x, a, b) ∈ [0, 1) × X × A × B, whenever
(p, q,Q) ∈ ℘̄2,+Wa,b(t, x) (resp., ℘̄2,−Wa,b(t, x)) and

Wa,b(t0, x0) > Ma,b[W ](t0, x0) (resp., Wa,b(t0, x0) < Ma,b[W ](t0, x0)),

we have

(4.10) p + Ha,b(t, x, q,Q) ≥ 0 (resp., p + Ha,b(t, x, q,Q) ≤ 0).
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Now let us make a further assumption that will play an important role in the
proof of the uniqueness result.

Hypothsis 4. For any loop {ai, bi}j+1
i=1 ⊂ A×B, with the properties that

(4.11)
j ≤ mn, aj+1 = a1, bj+1 = b1,

and either ai+1 = ai or bi+1 = bi ∀ 1 ≤ i ≤ j,

we have

(4.12)

j∑
i=1

k(s, ai, ai+1) −
j∑

i=1

l(s, bi, bi+1) �= 0 ∀s ∈ [0, 1].

Theorem 4.1. Assume Hypotheses 1– 4. If W and Ŵ are continuous viscos-
ity sub- and supersolutions of (4.2)–(4.5), respectively, and satisfy for (t, x, y, a, b) ∈
[0, 1] ×X ×X ×A×B the following:

(4.13)
|Wa,b(t, x)| + |Ŵa,b(t, x)| ≤ C(1 + |x|),
|Wa,b(t, x) −Wa,b(t, y)| + |Ŵa,b(t, x) − Ŵa,b(t, y)| ≤ C|x− y|,

then

(4.14) Wa,b(t, x) ≤ Ŵa,b(t, x) ∀(t, x, a, b) ∈ [0, 1] ×X ×A×B.

Proof of Theorem 4.1. We prove the theorem by contradiction. So suppose that
∃(ā, b̄, t̄, x̄) ∈ A×B × (0, 1) ×X such that

(4.15) Wā,b̄(t̄, x̄) − Ŵā,b̄(t̄, x̄) = η > 0.

Consider the following test function:

(4.16) ψ(t, x, y) =
|x− y|2

2ε
+ αe−βt(1 + |x|2 + |y|2), (t, x, y) ∈ [0, 1] ×X ×X,

with parameters α > 0 and β > 0. We choose a sufficiently small α > 0 such that it
does not depend on the parameter β > 0 and that it satisfies the following:

(4.17) ψ(t̄, x̄, x̄) <
η

2
∀β > 0.

Now consider the function

(4.18)

Ψa,b(t, x, y) = Wa,b(t, x)−Ŵa,b(t, y)−ψ(t, x, y), (a, b, t, x, y) ∈ A×B×[0, 1]×X×X.

From (4.13), (4.15), and (4.17), we see that there is a point (a0, b0, t0, x0, y0) ∈ A ×
B × [0, 1] ×X ×X such that

(4.19) Ψa0,b0(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y) ≥ Ψā,b̄(t̄, x̄, x̄) ≥ η

2
.

At this stage, we have the following two conclusions.
Conclusion 1. Following the arguments of Yamada [9, pp. 424–425], we can show

the following assertion: Without loss of generality, we may assume that

(4.20) Ma0,b0 [W ](t0, x0) < Wa0,b0(t0, x0), Ma0,b0 [Ŵ ](t0, y0) > Ŵa0,b0(t0, y0).
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Otherwise, we have

(4.21) Ma0,b0 [W ](t0, x0) = Wa0,b0(t0, x0) or Ma0,b0 [Ŵ ](t0, y0) = Ŵa0,b0(t0, y0).

Consequently, there is b1 ∈ B or a1 ∈ A such that

(4.22) Wa0,b0(t0, x0) = Wa0,b1(t0, x0) − l(t0, b0, b1)

or

(4.23) Ŵa0,b0(t0, y0) = Ŵa1,b0(t0, y0) + k(t0, a0, a1).

On the other hand, from (4.19), we have

(4.24) Ψa0,b0(t0, x0, y0) ≥ Ψa1,b0(t0, x0, y0),

which implies immediately

(4.25) Wa0,b0(t0, x0) − Ŵa0,b0(t0, y0) ≥ Wa1,b0(t0, x0) − Ŵa1,b0(t0, y0).

Therefore, we have

(4.26)
0 ≥Wa0,b0(t0, x0) −Wa1,b0(t0, x0) − k(t0, a0, a1)

≥Ŵa0,b0(t0, y0) − Ŵa1,b0(t0, y0) − k(t0, a0, a1),

which shows the following:

(4.27) Wa0,b0(t0, x0) = Wa1,b0(t0, x0) + k(t0, a0, a1)

if (4.23) is true. In summary, there is b1 ∈ B or a1 ∈ A such that either (4.22) or
(4.27) is true. Moreover, we have

(4.28) Wa0,b0(t0, x0) − Ŵa0,b0(t0, y0) = Wa1,b0(t0, x0) − Ŵa1,b0(t0, y0),

from which it follows that

(4.29) Ψa0,b0(t0, x0, y0) = Ψa1,b0(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Symmetrically, we have

(4.30) Ψa0,b0(t0, x0, y0) = Ψa0,b1(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Set (ã1, b̃1) := (a0, b0). We can repeat the above argument to start from the pair
of parameters (ã2, b̃2)—which is (a1, b̃1) or (ã1, b1)—to find a new pair of parameters
(a2, b2) such that either

(4.31) Wã2,b̃2
(t0, x0) = Wã2,b2(t0, x0) − l(t0, b̃2, b2)

or

(4.32) Wã2,b̃2
(t0, x0) = Wa2,b̃2

(t0, x0) + k(t0, ã2, a2)
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is true. Moreover,

(4.33) Ψã2,b2(t0, x0, y0) = Ψa2,b̃2(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Then we can continue the procedure until we find a loop {ãi, b̃i}j+1
i=1 which satisfies

the properties (4.11). Summing up (4.31)–(4.32) for the loop, we get

(4.34)

j∑
i=1

k(s, ãi, ãi+1) −
j∑

i=1

l(s, b̃i, b̃i+1) = 0.

Then we get a contradiction to Hypothesis 4.
Conclusion 2. On the maximum point (a0, b0, t0, x0, y0), we have the following

properties:
(i) There is a constant Cα,β , which depends on positive α, β such that |x0|+|y0| ≤

Cα,β ;
(ii) from (4.13) and the following inequality:

2Ψa0,b0(t0, x0, y0) ≥ Ψa0,b0(t0, x0, x0) + Ψa0,b0(t0, y0, y0),

we obtain |x0 − y0| ≤ εCα,β . Hence, |x0 − y0| → 0 as ε → 0, while keeping α and β
fixed;

(iii) since Ψa0,b0(1, x0, y0) ≤ h(x0)− h(y0) ≤ C|x0 − y0|, we conclude from (4.19)
that t0 ∈ [0, 1) whenever ε > 0 is sufficiently small.

A simple computation gives rise to the following:

(4.35)

∂tψ(t, x, y) = −βαe−βt(1 + |x|2 + |y|2),

∂xψ(t, x, y) =
(x− y)

ε
+ 2αe−βtx,

∂yψ(t, x, y) =
(y − x)

ε
+ 2αe−βty,

∂2
(x,y)ψ(t, x, y) =

1

ε

(
I −I
−I I

)
+ 2αe−βt

(
I 0
0 I

)
.

Then, applying Theorem 9 of Evans and Ishii [5] to the function

Wa0,b0(t, x) + (−Ŵa0,b0)(t, y) − ψ(t, x, y)

at the point (t0, x0, y0), we can find p1, p2 ∈ R and Q1, Q2 ∈ S such that

(4.36)

(p1, ∂xψ(t0, x0, y0), Q1) ∈ ℘̄2,+Wa0,b0(t0, x0),

(p2, ∂yψ(t0, x0, y0), Q2) ∈ ℘̄2,+(−Ŵa0,b0)(t0, y0),

p1 + p2 = ∂tψ(t0, x0, y0),(
Q1 0
0 Q2

)
≤ ∂2

(x,y)ψ(t0, x0, y0) + ε
(
∂2
(x,y)ψ(t0, x0, y0)

)2

.

By the definitions of viscosity sub- and supersolutions, and in view of (4.20), we have

(4.37)

p1 + Ha,b

(
t0, x0,

(x0 − y0)

ε
+ 2αe−βt0x0, Q1

)
≥ 0,

−p2 + Ha,b

(
t0, y0,−

(y0 − x0)

ε
− 2αe−βt0y0,−Q2

)
≤ 0.
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Thus, we have (see (4.36))

βαe−βt0(1 + |x0|2 + |y0|2)

≤ Ha,b

(
t0, x0,

(x0 − y0)

ε
+ 2αe−βt0x0, Q1

)
−Ha,b

(
t0, y0,−

(y0 − x0)

ε
− 2αe−βt0y0,−Q2

)
≤ 1

2
tr[(g∗Q1g)(t0, x0, a0, b0) + (g∗Q2g)(t0, y0, a0, b0)]

+

[〈
x0 − y0

ε
, f(t0, x0, a0, b0) − f(t0, y0, a0, b0)

〉
+ 2αe−βt0

(
〈x0, f(t0, x0, a0, b0)〉 + 〈y0, f(t0, y0, a0, b0)〉

)]
+ f0(t0, x0, a0, b0) − f0(t0, y0, a0, b0).

Set

(I) :=
1

2
tr[(g∗Q1g)(t0, x0, a0, b0) + (g∗Q2g)(t0, y0, a0, b0)]

(II) :=

〈
x0 − y0

ε
, f(t0, x0, a0, b0) − f(t0, y0, a0, b0)

〉
+ 2αe−βt0 (〈x0, f(t0, x0, a0, b0)〉 + 〈y0, f(t0, y0, a0, b0)〉)

(III) := f0(t0, x0, a0, b0) − f0(t0, y0, a0, b0).

We now estimate (I), (II), and (III) separately. It is immediate that

(4.38)

∂2
(x,y)ψ(t0, x0, y0) + ε

(
∂2
(x,y)ψ(t0, x0, y0)

)2

≤ 3

ε

(
I −I
−I I

)
+ 4αe−βt0

(
I −I
−I I

)
+ (4εα2e−2βt0 + 2αe−βt0)

(
I 0
0 I

)
.

Then we have

(4.39)

(I) ≤ C

ε
|x0 − y0|2 + Cαe−βt0 |x0 − y0|2

+ C(2εα2e−2βt0 + αe−βt0)(1 + |x0|2 + |y0|2),

(II) ≤ C

ε
|x0 − y0|2 + Cαe−βt0(1 + |x0|2 + |y0|2),

(III) ≤ C|x0 − y0|.

Hence, we have

(4.40)

βαe−βt0(1 + |x0|2 + |y0|2)

≤ C

ε
|x0 − y0|2 + C|x0 − y0| + Cαe−βt0(|x0 − y0|2 + 1 + |x0|2 + |y0|2)

+ C(2εα2e−2βt0 + αe−βt0)(1 + |x0|2 + |y0|2).
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Letting ε → 0, we get

(4.41) βαe−βt(1 + 2|x|2) ≤ Cαe−βt(1 + 2|x|2) + C(2εα2e−2βt + αe−βt)(1 + 2|x|2)

for some (t, x) ∈ [0, 1] × X, which immediately implies β ≤ C + Cα. Since we can
choose β to be sufficiently large so that β > C + αC, we arrive at a contradiction.
Hence, (4.14) is proved.

Remark 4.1. Note that the stochastic nature leads to the corresponding Isaacs’
system of variational inequalities involving a second-order differential operator, and
thus the proof of the uniqueness of the viscosity solutions necessarily involves the
computation of the second-order differentials of the chosen test function, say, ψ in our
proof. Due to this feature, the test function used by Yong [10] does not seem to carry
over to our case. Here we use a different test function. It is both simpler and more
powerful in proving the uniqueness of unbounded viscosity solutions, as is shown in
the above proof.

Theorem 4.2. Let Hypotheses 1– 4 be satisfied. Then our stochastic differential
switching game described by (1.1) and (1.2) has a value. The function V 1 = v = V =
U = u = U1 is the unique viscosity solution of (4.2)–(4.5).

Proof of Theorem 4.2. From Proposition 4.1, we see that V 1 is a viscosity subso-
lution and v is a viscosity supersolution, while u is a viscosity subsolution and U1 is
a viscosity supersolution. From Theorem 4.1, it follows immediately that

V 1
a,b(t, x) ≤ va,b(t, x) and ua,b(t, x) ≤ Ua,b

1 (t, x), (t, x, a, b) ∈ [0, 1] ×X ×A×B.

In view of Proposition 3.6, we have

V 1
a,b ≤ va,b ≤ Va,b, Ua,b

1 ≥ ua,b ≥ Ua,b, (a, b) ∈ A×B.

Combining these inequalities with (2.9), we have

V 1
a,b = va,b = Va,b, Ua,b

1 = ua,b = Ua,b, (a, b) ∈ A×B.

In short form, we have

V 1 = v = V, U1 = u = U.

From Proposition 4.1, we also know that u and v are two viscosity solutions of (4.2)–
(4.5). By Theorem 4.1, we have u = v.

Concluding the above, we have

V 1 = v = V = U1 = u = U.

Therefore, our stochastic differential switching game described by (1.1) and (1.2) has
a value, and the function V 1 = v = V = U = u = U1 is the unique viscosity solution
of (4.2)–(4.5).
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A BIRKHOFF CONTRACTION FORMULA WITH APPLICATIONS
TO RICCATI EQUATIONS∗
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Abstract. In this paper we show that the symplectic Hamiltonian operators on a Hilbert space
give rise to linear fractional transformations on the open convex cone of positive definite opera-
tors that contract a natural invariant Finsler metric, the Thompson or part metric, on the convex
cone. More precisely, the constants of contraction for the Hamiltonian operators satisfy the classical
Birkhoff formula: the Lipschitz constant for the corresponding linear fractional transformations on
the cone of positive definite operators is equal to the hyperbolic tangent of one fourth the diameter
of the image. By means of the close connections between Hamilitonian operators and Riccati equa-
tions, this result and the associated machinery are applied to obtain convergence results for discrete
algebraic Riccati equations and Riccati differential equations.

Key words. Riccati equation, Birkhoff formula, contraction, symplectic group, control theory,
Lie semigroup, Hamiltonian operator, positive definite operator
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1. Introduction. Connections between linear control theory, the Riccati equa-
tion, and the symplectic group are well known; see, for example, Hermann [13], Shay-
man [22], Jurdjevic [14, Chapter 8], and [23], and the references cited in those sources.
In this paper we focus particularly on connections to the symplectic subsemigroup,
which consists of those symplectic transformations that are sometimes called Hamil-
tonian. In [15] we studied in some detail this subsemigroup of symplectic operators in
the infinite dimensional setting and its close connection to Riccati differential equa-
tions arising in linear control systems. The canonical triple factorization of symplectic
Hamiltonian operators and their action via linear fractional transformation on the
open convex cone P0 of positive definite operators on a Hilbert space have played
key roles in the study of Riccati equations via Lie semigroup theory. In this paper
we study the contraction property of symplectic Hamiltonian operators acting on the
convex cone P0 for the natural invariant Finsler metric (Thompson’s part metric),
and apply it to finite- and infinite dimensional discrete algebraic Riccati equations
and Riccati differential equations.

One of our main results is the Birkhoff theorem (section 5) for symplectic Hamil-
tonian operators with respect to Thompson’s metric p(X,Y ): each symplectic Hamil-
tonian g =

[
A B
C D

]
, regarded as the self map on P0 given by the linear fractional

transformation

g.X = (AX + B)(CX + D)−1,
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satisfies the contraction formula

sup
X,Y ∈P0
X �=Y

p(g(X), g(Y ))

p(X,Y )
= tanh

(
diam(g)

4

)
,

where diam(g) denotes the diameter of the image g(P0) for the Thompson’s met-
ric. The diameter is completely determined by diam(g) = p(BD−1, AC−1) when
both BD−1 and AC−1 are positive definite; otherwise diam(g) = ∞ (Theorem
5.8). This beautiful and important formula had its origin with Birkhoff [4] for
Möbius transformations with positive entries with respect to the Riemannian met-
ric p(a, b) = | log a − log b| on the positive reals. Liverani and Wojtkowski [18] and
Lim [16] have generalized it to fractional transformations on the symmetric cone of
positive definite matrices and on symmetric cones arising from Euclidean Jordan al-
gebras with respect to the invariant Finsler metric associated with the spectral norm.
In the linear setting, the Birkhoff formula for positive linear maps on Banach spaces
for Hilbert’s projective (pseudo)metric [5] is well known, with many applications in
analysis [4], [8], [17]; see also [20], [21] and the references therein. It has also found
applications in control theory, primarily in filtering theory; see, e.g., [3], [7].

In the connections between linear control theory, the Riccati equation, and sym-
plectic Hamiltonians, the contraction property of symplectic Hamiltonians with ex-
plicitly given contraction coefficient is applied to the iterative method of solution for
discrete algebraic Riccati equations,

X = A∗XA−A∗XB(R + B∗XB)−1B∗XA + H,

and to the asymptotic behavior of solutions of the Riccati differential equation,

K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t),

on an arbitrary Hilbert space. Bougerol [6] has proved that symplectic Hamilto-
nian matrices are contractions for the standard Riemannian metric on the symmetric
space of positive definite matrices and given applications to Kalman filtering theory
(cf. [12], [9]). However, in the Riemannian metric case, there is no explicit formula
for the contraction coefficient of Hamiltonian matrices. In section 7, we prove that
under the invertiblity condition of A and BR−1B∗, the discrete Riccati equation has
a unique positive solution X∞ approached by any iteration Xn ∈ P0 with the rate of
convergence determined by the computable Birkhoff constant with respect to Thomp-
son’s part metric. Using the best estimation given by the Birkhoff constant on the
Lie wedge of the symplectic Hamiltonian semigroup studied in section 6, we prove
in section 8 that, under the uniform boundedness condition S1/2(t)R(t)S1/2(t) ≥ μI,
the solution K(t) of the Riccati differential equation with K(0) ∈ P0 is exponen-
tially attracting for Thompson’s part metric. These results, obtained mainly from the
Birkhoff formula and the invariant Finsler metric, provide new techniques for study
of Riccati equations, even for the finite dimensional case, where illustrative numerical
experiments can be calculated.

2. Symplectic Hamiltonian operators. In this section we review some basic
material on the algebraic structure of the symplectic Lie group and the associated
symplectic Hamiltonian semigroup from [15].

Let E be a real Hilbert space with inner product 〈·, ·〉 : E × E → R, and let
VE = E ⊕E. We denote members of VE by column vectors

[ x
y

]
, where x, y ∈ E. The
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standard symplectic form Q on VE is defined by

Q

([
x1

y1

]
,

[
x2

y2

])
:= 〈x1, y2〉 − 〈y1, x2〉.

We denote by End(VE) (resp., End(E)) the set of bounded linear operators on VE

(resp., E), and by GL(VE) (resp., GL(E)) those that are invertible. We shall always
assume that the topology is generated by the operator norm. For a bounded linear
transformation A on E, let A∗ denote the unique linear operator such that 〈Ax, y〉 =
〈x,A∗y〉 for all x, y in E. We call A∗ the adjoint of A. We say that A is symmetric if
A∗ = A. A bounded symmetric operator A on E is positive semidefinite if 〈x,Ax〉 ≥ 0
for all x ∈ E. We denote by P (resp., P0) all positive semidefinite (resp., positive
semidefinite invertible) bounded operators on E.

For (VE , Q) a standard sympletic space, the symplectic Lie group is defined by

Sp(VE) := {M ∈ GL(VE) : ∀x, y ∈ VE , Q(Mx,My) = Q(x, y)}

and has the following characterizations.

Proposition 2.1 (see Proposition 2.5 of [15]). Let M ∈ GL(VE). The following
are equivalent:

1. M ∈ Sp(VE); i.e., M preserves Q(·, ·).
2. M∗JM = J, where J =

[
0 I
−I 0

]
∈ End(VE).

3. If M has block matrix form [ A B
C D ], then

(a) A∗C, B∗D are symmetric;
(b) A∗D − C∗B = I.

Members of Sp(VE) viewed as linear operators on VE are called linear sympletic
maps.

Recall that the symplectic Lie algebra sp(VE) consists of all X ∈ End(VE) such
that exp(tX) ∈ Sp(VE) for all t ∈ R.

Proposition 2.2. Let X ∈ End(VE). The following are equivalent:

1. X ∈ sp(VE).
2. X∗J + JX = 0.
3. If X =

[
A B
C D

]
, then

(a) B and C are symmetric;
(b) D = −A∗.

We consider four subsets of Sp(VE):

S =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P

}
,

S1 =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P0, CD∗ ∈ P

}
,

S2 =

{[
A B
C D

]
∈ Sp(VE) : D is invertible, B∗D ∈ P, CD∗ ∈ P0

}
,

S0 = S1 ∩ S2.

We define

ΓU =

{[
I B
0 I

]
: B ∈ P

}
, ΓU

0 =

{[
I B
0 I

]
: B ∈ P0

}
,
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ΓL =

{[
I 0
C I

]
: C ∈ P

}
, ΓL

0 =

{[
I 0
C I

]
: C ∈ P0

}
.

We further define a group H of block diagonal matrices by

H =

{[
A∗ 0
0 A−1

]
: A ∈ GL(E)

}
.

Theorem 2.3. We have that S is a subsemigroup of Sp(VE) and SSiS ⊆ Si for
i = 0, 1, 2; i.e., Si is a semigroup ideal. We alternatively have that S = ΓUHΓL, S1 =
ΓU

0 HΓL, S2 = ΓUHΓL
0 , and S0 = ΓU

0 HΓL
0 . Furthermore these “triple decompositions”

are unique: the multiplication mapping from ΓU ×H ×ΓL to S is a homeomorphism.
Proof. The proof follows from Theorem 6.7 and [15, Lemmas 6.4, 6.5]. See also

[6], [9].
The unique triple factorization of a symplectic Hamiltonian M =

[
A B
C D

]
∈ S is

given by

M =

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
.

This factorization occurs more generally for any member M ∈ Sp(VE) with invert-
ible (2, 2)-entry. The semigroup S of the preceding theorem is called the sympletic
semigroup, and members of S are sometimes called Hamiltonian operators of Sp(VE).

3. Fractional transformations and compressions. In this section we show
that Hamiltonians arise exactly as compressions of the open convex cone of positive
definite operators under the canonical fractional transformation action.

We consider the lower block triangular subgroup P of Sp(VE) given by

P :=

{[
A 0
C D

]
∈ Sp(VE) : A,C,D ∈ End(E)

}
.

We note from Proposition 2.1 that such a lower triangular block matrix is in Sp(VE)
if and only if A∗ = D−1 and A∗C = D−1C is symmetric. We denote by M the
homogeneous space

M := Sp(VE)/P.

In the finite dimensional setting, P is a parabolic subgroup and the homogeneous space
is a flag manifold of Sp(VE). The set Sym(E) of symmetric operators in End(E) is
embedded into M as a dense open subset (see Lemma 9.2 of [15]):

X �→
[
I X
0 I

]
P ∈ M.

If M =

[
A B
C D

]
∈ Sp(VE) and X ∈ Sym(E) such that CX + D is invertible,

then

M

[
I X
0 I

]
P =

[
I (AX + B)(CX + D)−1

0 I

]
P.

This defines the (partial) action by fractional transformations of Sp(VE) on Sym(E) ⊆
M:

M.X = (AX + B)(CX + D)−1 if (CX + D)−1 exists.(3.1)
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For X,Y ∈ Sym(E), we define

X < Y :⇐⇒ Y −X ∈ P0,

X ≤ Y :⇐⇒ Y −X ∈ P.

The order ≤ is sometimes called the Loewner order. For X ≤ Y (resp., X < Y ) we
define the order intervals

[X,Y ] = {Z ∈ Sym(E) : X ≤ Z ≤ Y },
(X,Y ) = {Z ∈ Sym(E) : X < Z < Y },

respectively.
Proposition 3.1 (see Propositions 9.6 and 9.7 of [15]). The sets {(−(1/n)A,

(1/n)A) : n ∈ N} form a basis of open sets at 0 in Sym(E) for any A ∈ P0. For an
element A ∈ Sym(E), the following are equivalent:

1. A ∈ P;
2. A + X is invertible for all X ∈ P0;
3. A + rI is invertible for all r > 0.

Proposition 3.2 (see Propositions 9.6 and 9.9 of [15]). Each order interval
[A,B] = {X ∈ Sym(E) : A ≤ X ≤ B} for A ≤ B is closed in M, the interior of
[A,B] is equal to (A,B), and the closure P of P in M has interior P0.

Let us call a member of Sp(VE) a compression if it carries P0 into itself under
the action of fractional transformation (3.1).

Lemma 3.3. If M =
[
A B
C D

]
∈ Sp(VE) is a compression and the image of 0E ∈

Sym(E) ⊆ M under M is in P, then M belongs to the sympletic semigroup S.
Proof. The image of 0E under M is BD−1. This means that D is invertible, and

hence M has a triple decomposition in Sp(VE) of the form

M =

[
I BD−1

0 I

] [
(D−1)∗ 0

0 D

] [
I 0

D−1C I

]
.

Since 0E ∈ M corresponds to P in Sp(VE)/P, we conclude that the last two factors
of M applied to it return 0E . Thus, by (3.1),

M.0E =

[
I BD−1

0 I

]
.0 = BD−1.

Since the latter is in P by hypothesis, we conclude that BD−1 is positive semidefinite,
and hence that the first factor of M is in S. The second factor is trivially in S.

Let X ∈ P0. Then[
I 0

D−1C I

]
.X =

[
D∗ 0
0 D−1

] [
I −BD−1

0 I

]
M.X,

where the right-hand side must be in Sym(E) ⊆ M. It follows that D−1CX + I is
invertible for all X ∈ P0. Since X is invertible, (D−1CX + I)X−1 = D−1C + X−1

is invertible for all X ∈ P0. It then follows from Proposition 3.1 that D−1C is in P.
Thus the third factor of M is also in S.

Theorem 3.4. Let M ∈ Sp(VE). The following are equivalent:
1. M.P0 ⊆ P;
2. M is a compression;
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3. M ∈ S.
Proof. If M.P0 ⊆ P, then since M is a homeomorphism, it must carry P0 into

intP, which by Proposition 3.2 is P0. Thus M is a compression. The converse is
immediate. Hence items 1 and 2 are equivalent.

It turns out that elements of S carry P0 into itself (Proposition 7.1 of [15]).
Conversely suppose that M.P0 ⊆ P0. Define Mn = M ◦ tn, where tn has matrix
representation

[
I (1/n)I
0 I

]
. Since tn.0 = (1/n)I, we conclude that Mn.0 ∈ P0. Hence

by the preceding lemma, Mn ∈ S.
Let A := M.I. By hypothesis we may write the result in this form with A ∈ P0.

Since A is in the open order interval (0, 2A), we have for n large enough that Mn.I ∈
(0, 2A). Since Mn is order-preserving (Proposition 3.5), we have

0 ≤ Mn.0 ≤ Mn.I ≤ 2A.

Since the interval [0, 2A] is closed in M (Proposition 3.2), we conclude that

M.0 = lim
n

Mn.0 ∈ [0, 2A].

We can now apply the preceding lemma to M to conclude that M ∈ S.
Proposition 3.5 (see Proposition 9.10 of [15]). Members of the symplectic

semigroup S satisfy the following monotonicity properties:
1. For g ∈ S and X,Y ∈ P0, X ≤ Y if and only if g(X) ≤ g(Y ).
2. For g ∈ S and X,Y ∈ P, X ≤ Y implies g(X) ≤ g(Y ).

4. Hamiltonian operators and the standard sector. There is an alternative
context in which Hamiltonian operators arise naturally. We consider the quadratic
form Q on the symplectic space (VE , Q),

Q(w) = 〈x, y〉, w =

[
x
y

]
∈ VE ,

and the standard sector of the symplectic space (VE , Q), which is defined by

C = {w ∈ VE : Q(w) ≥ 0}.

By C◦ we denote the interior of C:

C◦ = {w ∈ VE : Q(w) > 0}.

By continuity g(C◦) ⊂ C◦ for any Q-monotone g. Each member of H, the subgroup
of block diagonals in Sp(VE), acts as an Q-isometry.

The following is immediate from the triple decompositions of S and S0 (Theorem
2.3) and the preservation of (strict) Q-monotonicity under composition.

Theorem 4.1. Each member of S (resp., S0) is Q-monotone (resp., strictly
Q-monotone). Furthermore, each member of S (resp., S0) increases (resp., strictly
increases) the quadratic form.

Remark. The quadratic form Q and the associated sector C define two natural
closed subsemigroups in Sp(VE) containing the symplectic semigroup S: the subsemi-
group of (strictly) monotone maps and the subsemigroup of (strictly) symplectic maps
(strictly) increasing the quadratic form. It turns out that these are all the same in
the finite dimensional case [19].
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We derive an explicit relationship between the action of symplectic Hamiltonians
on the sector C◦ and the Möbius action of fractional transformation on the positive
definite cone P0.

Lemma 4.2. Let
[ x
y

]
∈ C◦. Then there exists a positive definite operator P on E

such that y = Px. In particular,

C◦ =

{[
x
Px

]
: x �= 0, P ∈ P0

}
.

Proof. Let W be the subspace generated by x and y. If x and y are linearly
dependent, then y = λx for some λ > 0, so we may take P = λI. Suppose that W is
two-dimensional. Then it is enough to construct a positive definite operator A on W

sending x into y by observing that P :=

[
A 0
0 IW⊥

]
is positive definite.

Suppose that x = (x1, x2), y = (y1, y2) ∈ R
2 such that l := x1y1 + x2y2 > 0. We

will solve the equations ax1 + bx2 = y1, bx1 + dx2 = y2 with a > 0, ad > b2.
Case 1. If x1 = 0, then take b = y1/x2, d = y2/x2 > 0, and a (positive) large

enough. If x2 = 0, then take b = y2/x1, a = y1/x1 > 0, and d large enough.
Case 2. x1 �= 0 and x2 �= 0: If x1x2 > 0, then take

b < min

{
y1

x2
,
y1y2

l

}
, a =

(y1 − bx2)

x1
, d =

(y2 − bx1)

x2
.

If x1x2 < 0, then take b > max{y1/x2, y1y2/l}, a = (y1 − bx2)/x1, and d = (y2 −
bx1)/x2.

A slice of the sector C◦ consists of sets of the form

Px =

{
Px :=

[
Px
x

]
: P ∈ P0

}
.

The preceding lemma shows that the sector C◦ is the disjoint union of slices.
Proposition 4.3. Let g =

[
A B
C D

]
∈ S. Then for P > 0,

g(Px) = (g.P )(CP+D)x.

Proof. We calculate that[
A B
C D

] [
Px
x

]
=

[
(AP + B)x
(CP + D)x

]
=

[
(AP + B)(CP + D)−1y

y

]
=

[
(g.P )y

y

]
,

where y = (CP + D)x.

5. Contractions and the Birkhoff formula. In this section, we show that
each element of S (resp., S0) is a contraction (resp., strict contraction) of P0 for
a natural invariant metric on it, with an explicit contraction constant given by the
Birkhoff formula.

For A,B ∈ P0, we define

M(A/B) := inf{t > 0 : A ≤ tB},
m(A/B) := sup{t > 0 : tB ≤ A}.
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Then M(A/B) = m(B/A)−1. Thompson’s metric (sometimes called the part metric)
on P0 is defined by

p(A,B) = log(max{M(A/B),M(B/A)});

see, e.g., [24], [25], [20].
Lemma 5.1. The set P0 becomes a complete metric space with respect to the

metric p, and the metric p induces the topology of P0.
Proof. The space Sym(E) of symmetric operators equipped with the operator

norm is a Banach space satisfying that 0 ≤ A ≤ B implies ‖A‖ ≤ ‖B‖. It follows
from Proposition 3.1 that for A,B ∈ P0 there exists t ∈ R such that A ≤ tB. It then
follows from Lemma 3 of [24] that the Thompson metric p is indeed a metric and is
complete on P0, and by Proposition 1.1 of [21] that the Thompson metric induces the
same topology.

Lemma 5.2. The metric p is invariant under the block diagonal group H and
inversion j(A) = A−1.

Proof. The lemma follows directly from the observations

∀D ∈ GL(E),M(D∗AD/D∗BD) = M(A/B), M(A−1/B−1) = M(B/A),

where the last equality follows from the fact that inversion on P0 is order-reversing
(cf. Proposition 9.8 of [15]).

A map γ : [0, 1] → P0 is said to be a minimal geodesic for the metric p if, whenever
0 ≤ t1 ≤ t2 ≤ 1, we have

p(γ(t1), γ(t2)) = (t2 − t1)p(γ(0), γ(1)).

Proposition 5.3 (see Proposition 1.10 of [20]). Let A,B ∈ P0. Then

γ(t) = A1/2(A−1/2BA−1/2)tA1/2

is a minimal geodesic curve from A to B with respect to p.
For X ∈ Sym(E), the order unit norm for the order unit I is given by

‖X‖ = inf{t > 0 : −tI ≤ X ≤ tI}.

Lemma 5.4. On Sym(E) we have the following:
1. The order unit norm agrees with the operator norm on Sym(E).
2. For X ∈ P0, m(X/I) = ‖X−1‖−1.
3. The map X �→ m(X/I) is continuous on P.

Proof. Part 1. Let us temporarily denote the order unit norm by ‖X‖or. Then

|〈x,Xx〉| ≤ ‖x‖(‖X‖ ‖x‖) = ‖X‖〈x, Ix〉 = 〈x, ‖X‖Ix〉

implies that ‖X‖or ≤ ‖X‖. For ‖x‖ = 1 and X ≥ 0, we have

‖X1/2x‖2 = 〈X1/2x,X1/2x〉 = 〈x,Xx〉 ≤ 〈x, ‖X‖orIx〉 = ‖X‖or.

It follows that ‖X‖ ≤ ‖X1/2‖2 ≤ ‖X‖or. We then have for arbitrary symmetric X

‖X‖2 = ‖X∗X‖ = ‖X2‖ = ‖X2‖or ≤ ‖X‖2
or,

since −tI ≤ X ≤ tI implies that t2I −X2 = (tI + X)1/2(tI −X)(tI + X)1/2 ≥ 0.
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2. For X ∈ P0, we have directly that

m(X/I) = sup{t > 0 : tI ≤ X} = sup{t > 0 : (1/t)I ≥ X−1}
= sup{(1/s) > 0 : X−1 ≤ sI} = ‖X−1‖−1.

3. It follows from part 2 that the function X �→ m(X/I) is continuous on P0. For
X ∈ P, let 0 ≤ Xn → X. Then for ε > 0, Xn + εI → X + εI in P0, which in turn
implies m(Xn + εI/I) → m(X + εI/I). Since m(A+ εI/I) = m(A/I) + ε for A ∈ P,
the desired conclusion follows.

Remarks. (1) The map X �→ m(X/I) on P0 is one of special interest; it agrees
with the smallest eigenvalue function in the finite dimensional case.

(2) For X ∈ P0, ||X|| = M(X/I), and hence p(I,X) = max log{||X||, ||X−1||}.
Thus for X,Y ∈ P0,

p(X,Y ) = p(I,X−1/2Y X−1/2) = log max{||X−1/2Y X−1/2||, ||X1/2Y −1X1/2||}.

Identifying the tangent bundle TP0 of P0 with P0 × Sym(E), we define a Finsler
structure on P0 by

|X|A := ||A−1/2XA−1/2||

for A ∈ P0, X ∈ Sym(E). Then it is easy to see that | · |A is a norm on the tangent
space Sym(E) at A.

Theorem 5.5 (see Theorem 1.1 of [21]). Let A,B ∈ P0. Then

p(A,B) = inf

{∫ 1

0

|ψ′(t)|ψ(t)dt

}
,

where the infimum is taken over all piecewise C1 maps ψ from A = ψ(0) to B = ψ(1).
In particular,

p(A,B) =

∫ 1

0

|γ′(t)|γ(t)dt,

where γ(t) = A1/2(A−1/2BA−1/2)tA1/2.
For notational convenience, we denote for A ∈ P and D ∈ GL(E),

tA :=

[
I A
0 I

]
∈ ΓU ,

t̃A :=

[
I 0
A I

]
∈ ΓL,

hD :=

[
D∗ 0
0 D−1

]
∈ H.

Then under the action of fractional transformation (3.1),

tA(B) = A + B, hD(B) = D∗BD, t̃A(B) = (A + B−1)−1 = (jtAj)(B)

for B ∈ P0, where j(A) = A−1, the inversion operator on P0.
Proposition 5.6. Let X,Y ∈ P0 and let D ∈ GL(E). Then

tX ◦ hD ◦ t̃Y = hY −1/2D ◦ tY 1/2(D−1)∗XD−1Y 1/2 ◦ t̃I ◦ hY 1/2 .
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Proof. The proof is straightforward.

Set ∞ :=
[

0 I
−I 0

]
P ∈ M. It is easy to see that for g ∈ Sp(VE), g · ∞ = ∞ if and

only if g is an upper triangular block matrix.

Lemma 5.7. Let 0 < A ≤ B. If X,Y ∈ [A,B], then p(X,Y ) ≤ p(A,B).

Proof. Suppose that p(X,Y ) = logM(X/Y ). Since A ≤ X ≤ M(X/A)A ≤
M(X/A)Y, we have M(X/Y ) ≤ M(X/A). The fact A ≤ X implies that m(X/A) ≥ 1
and hence M(A/X) = m(X/A)−1 ≤ 1. Thus M(X/A) ≥ 1. Therefore

p(X,Y ) = logM(X/Y ) ≤ logM(X/A) = p(A,X).(5.1)

Now, X ≤ B ≤ M(B/A)A implies that M(X/A) ≤ M(B/A) and hence by (5.1)

p(X,A) = logM(X/A) ≤ logM(B/A) ≤ p(B,A).

Therefore p(X,Y ) ≤ p(A,B). Similarly, we have that p(X,Y ) ≤ p(A,B) when
p(X,Y ) = logM(X/Y ).

Theorem 5.8. Let g ∈ S0. Then g(P0) = (g(0), g(∞)), g(P) = [g(0), g(∞)] ⊆
P0, and the diameter Δ(g) of g(P0) for the metric p is the distance p(g(0), g(∞)). If
g ∈ S \ S0, then Δ(g) = ∞.

Proof. Let g = tX ◦ hD ◦ t̃Y ∈ S0. By Theorem 2.3, X,Y ∈ P0. Then g(0) = X
and g(∞) = X+D∗Y −1D. Suppose that Z ∈ (X,X+D∗Y −1D). Then Z = X+A =
X+D∗Y −1D−B for some A,B ∈ P0. Note that A = D∗Y −1D−B, so A < D∗Y −1D.
Since the inversion j is order-reversing on P0 (cf. Proposition 9.8 of [15]), W :=
(DA−1D∗ − Y )−1 ∈ P0. This implies that Z = X + A = g(W ) ∈ g(P0). Conversely,
suppose that Z ∈ g(P0). Then Z = g(W ) = X+D∗(Y +W−1)−1D for some W ∈ P0.
It is obvious that X < Z. Since W−1 ∈ P0, we have that Y −1 > (Y +W−1)−1. Thus
D∗Y −1D > D∗(Y + W−1)−1D. This implies that

g(∞) − Z = (X + D∗Y −1D) − (X + D∗(Y + W−1)−1D) > 0.

Therefore Z ∈ (g(0), g(∞)). So, g(P0) = (g(0), g(∞)). The second assertion follows
from this, Proposition 3.1, the fact that g acts as a homeomorphism on M, and our
computation of g(0) and g(∞).

That the diameter of g(P0) = (g(0), g(∞)) is the Thompson distance p(g(0), g(∞))
follows from the preceding lemma.

Suppose that g = tA ◦hD ◦ t̃B ∈ S \S0. Then by Theorem 2.3 either A or B lies in
P \ P0. Suppose that A ∈ P \ P0. Pick C ∈ g(P0) with C > 0. Let Yn = g( 1

nI) ∈ P0.
Then Yn → g(0) = A. Since g(0) = A ∈ P\P0, for each k > 0, there exists nk > 0 such
that Ynk

/∈ [ 1
kC, kC], that is, Ynk

� kC or 1
kC � Ynk

. By definition, M(C/Ynk
) ≥ k

or M(Ynk
/C) ≥ k. Therefore log k ≤ p(C, Ynk

) → ∞, and hence Δ(g) = ∞. Similarly,
if g(∞) = B ∈ P \ P0, then Δ(g) = ∞.

Lemma 5.9. Let A,X ∈ P0. Then

|(I + A)−1U(I + A)−1|X+(I+A−1)−1 ≤
(√

m(X/I) +
√

1 + m(X/I)
)−2

|U |A

for all U ∈ Sym(E).

Proof. First, we show that

(I + A)X(I + A) + A2 + A ≥
(√

m(X/I) +
√

1 + m(X/I)
)2

A.
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It immediately follows from m(X/I)I ≤ X that

m(X/I)(I + A)2 = m(X/I)(I + A)I(I + A) ≤ (I + A)X(I + A).

We then have

(I + A)X(I + A) + A2 + A

≥ m(X/I)(I + A)2 + A2 + A

= (m(X/I) + 1)A2 + m(X/I)I + (2m(X/I) + 1)A

≥ 2
√
m(X/I)(m(X/I) + 1)A + (2m(X/I) + 1)A

= (
√

m(X/I) +
√

1 + m(X/I))2A,

where the second inequality follows from the fact that the square of
√

m(X/I) + 1A−√
m(X/I)I is positive semidefinite.

Set k := (
√
m(X/I) +

√
1 + m(X/I))−2. Then −tI ≤ kA−1/2UA−1/2 ≤ tI for

some t > 0, or equivalently (−t/k)A ≤ U ≤ (t/k)A. From the first paragraph, we
obtain that

−t
(
(I + A)X(I + A) + A2 + A

)
≤ −t

k
A ≤ U ≤ t

k
A ≤ t((I + A)X(I + A) + A2 + A).

Since (I + A)−1(A2 + A)(I + A)−1 = (I + A−1)−1, this implies that

−t(X + (I + A−1)−1) ≤ (I + A)−1U(I + A)−1 ≤ t(X + (I + A−1)−1)

and hence

−tI ≤ (X + (I + A−1)−1)−1/2(I + A)−1U(I + A)−1(X + (I + A−1)−1)−1/2 ≤ tI.

Therefore from the definition of the order unit norm,

||(X+(I+A−1)−1)−1/2(I+A)−1U(I+A)−1(X+(I+A−1)−1)−1/2|| ≤ k||A−1/2UA−1/2||,

and the lemma follows immediately.
Lemma 5.10. Let X ∈ P0 and let 0 < α < β. Then

M(X + βI/X + αI) ≥ m(X/I) + β

m(X/I) + α
≥ 1.

In particular,

M

(
X +

β

β + 1
I/X +

α

α + 1

)
≥

m(X/I) + β
β+1

m(X/I) + α
α+1

≥ 1.

Proof. If X + βI ≤ t(X + αI) for t > 0, then

m(X/I) + β = m(X + βI/I) ≤ m(t(X + αI)/I) = t(m(X/I) + α).

Let us introduce the Lipschitz constant (the least coefficient of contraction) of
g ∈ S,

N(g) = sup
A,B∈P0
A �=B

p(g(A), g(B))

p(A,B)
.
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Note that N(g1g2) ≤ N(g1)N(g2).

Theorem 5.11. Let g ∈ S. Then

N(g) = tanh

(
Δ(g)

4

)
.

Proof. Let g ∈ S0. Note that N(g) = N(h ◦ g ◦ h′) for any h, h′ ∈ H by the
H-invariance of the metric. By Proposition 5.6, we may assume that g = tX ◦ t̃I
for some X ∈ P0. Then g(0) = X, g(∞) = X + I, and hence Δ(g) = p(X,X + I) =
logM(X+I/X) = log(1+M(I/X)) = log(1+ 1

m(X/I) ). A straightforward calculation

yields

tanh

(
Δ(g)

4

)
= tanh

(
1

4
log

(
1 +

1

m(X/I)

))

=
(1 + 1

m(X/I) )
1
4 − (1 + 1

m(X/I) )
− 1

4

(1 + 1
m(X/I) )

1
4 + (1 + 1

m(X/I) )
− 1

4

=
(√

m(X/I) +
√

1 + m(X/I)
)−2

.(5.2)

Furthermore, for the differential of the mapping g(Y ) = X + (I + Y −1)−1, we have

dg(A)(U) = (I + A−1)−1(A−1UA−1)(I + A−1)−1 = (I + A)−1U(I + A)−1

for A ∈ P0, U ∈ Sym(E).

Let A,B ∈ P0, and let γ(t) = A
1
2 (A− 1

2BA− 1
2 )tA

1
2 be the minimal geodesic curve

passing from A to B. Then by Lemma 5.9,

p(g(A), g(B)) ≤
∫ 1

0

|(g ◦ γ)′(t)|g(γ(t))dt

=

∫ 1

0

|dg(γ(t))(γ′(t))|g(γ(t))dt

=

∫ 1

0

|(I + γ(t))−1γ′(t)(I + γ(t))−1|X+(I+γ(t)−1)−1dt

≤ (
√
m(X/I) +

√
1 + m(X/I))−2

∫ 1

0

|γ′(t)|γ(t)dt

= (
√
m(X/I) +

√
1 + m(X/I))−2p(A,B),

where in the last equality we have used the fact that the distance p(A,B) is equal to
the Finsler length of the geodesic curve γ(t). Therefore

N(g) ≤
(√

m(X/I) +
√

1 + m(X/I)
)−2

.

To show that equality holds, it is enough to show that(√
m(X/I) +

√
1 + m(X/I)

)−2

≤ sup
α,β∈R

+

α<β

p(g(αI), g(βI))

p(αI, βI)
.
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By Lemma 5.10, we obtain that

sup
α,β∈R

+

α<β

p(g(αI), g(βI))

p(αI, βI)
= sup

α,β∈R
+

α<β

p(X + (I + α−1I)−1), X + (I + β−1I)−1)

p(αI, βI)

= sup
α,β∈R

+

α<β

logM
(
X + β

β+1I/X + α
α+1I

)
log β

α

≥ sup
α,β∈R

+

α<β

log
m(X/I)+ β

β+1

m(X/I)+ α
α+1

log β
α

= sup
α,β∈R

+

α<β

log
g(β)

g(α)

log β
α

,

where g =
[

1+m(X/I) m(X/I)
1 1

]
∈ SL(2,R) is the usual Möbius transformation on R.

By the Birkhoff formula on the positive reals [4],

sup
α,β∈R

+

α<β

log
g(β)

g(α)

log β
α

= tanh

(
Δ(g)

4

)

= tanh

(
1

4
log

(
1 +

1

m(X/I)

))
5.2
=

(√
m(X/I) +

√
1 + m(X/I)

)−2

.

This shows that the Birkhoff formula holds for S0.
It follows from previous result that every member of S0 is a strict contraction.

By definition we have that the operator gn :=
[

I 0
(1/n)I I

]
is in S2, the operator hn :=[

I (1/n)I
0 I

]
is in S1, and gn, hn → e, the identity element of Sp(VE). Then for any

g ∈ S, gnhng → g and gnhng ∈ S0 since S1 and S2 are ideals by Theorem 2.3 and
S0 = S1 ∩ S2 by definition. It follows from standard continuity arguments and the
density of S0 in S that all members of S are contractions.

Define σ : S → R
+ = [0,∞) by

σ(tAhD t̃B) =
(√

m(Q/I) +
√

1 + m(Q/I)
)−2

, where Q = B1/2(D−1)∗AD−1B1/2.

Then σ is well defined from the unique triple factorization of S (Theorem 2.3) and
is continuous by Lemma 5.4. By Proposition 5.6 and the calculation above, σ(g) =

N(g) = tanh
(Δ(g)

4

)
for any g ∈ S0. Let g = tAhD t̃B ∈ S \ S0. Then either A or

B is not invertible; thus m(B1/2(D−1)∗AD−1B1/2/I) = 0, and hence σ(g) = 1. By
Theorem 5.8, tanh(Δ(g)/4) = 1. For small positive ε, pick gε ∈ S0 sufficiently close
to the identity such that σ(g) − ε ≤ σ(gεg). Then

σ(g) − ε ≤ σ(gεg) = N(gεg) ≤ N(gε)N(g) ≤ N(g) ≤ 1,

which shows that N(g) = 1 = σ(g) = tanh(Δ(g)/4). Thus the Birkhoff formula holds
for S \ S0, which completes the proof.

We refer the reader to the references [6] and [12] for applications of contraction
results to Riccati transformations and control. There it is shown that the Riccati
transformation of linear filtering/control theory is a contraction on the space of pos-
itive definite matrices. The metric used there is the standard Riemannian metric on
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the symmetric space of positive definite matrices. Since we extend these results to the
infinite dimensional case as well, it has been necessary to substitute the Thompson
metric for the Riemannian metric. We have sharpened the results in another sense by
calculating the constant of contraction, the one given by the Birkhoff formula. These
formulas have been derived in the finite dimensional case in [18].

6. The Birkhoff formula on the Lie wedge. For the symplectic semigroup
S, which is a closed subsemigroup of the symplectic Lie group Sp(VE), the Lie wedge
of S,

L(S) := {X ∈ g : exp(tX) ∈ S ∀ t ≥ 0},

which is the tangent object of S in the Lie algebra, is explicitly described as follows.
Proposition 6.1 (see Proposition 8.1 of [15]). The symplectic semigroup S has

Lie wedge

L(S) =

{[
A B
C −A∗

]
: B,C ≥ 0

}
.

Setting

h =

{[
A 0
0 −A∗

]
: A ∈ End(VE)

}
,

W =

{[
0 R
S 0

]
: R,S ≥ 0

}
,

we have L(S) = h ⊕ W. In particular, h is the Lie subalgebra of the subgroup H of
block diagonal matrices.

We recall the Birkhoff constant map

N : S → [0, 1], N(g) = tanh
(�(g)

4

)
= sup

X,Y >0
X �=Y

p(g(X), g(Y ))

p(X,Y )
,

and define

f : L(S) → [0,∞),

[
A R
S −A∗

]
�→

√
m(S1/2RS1/2/I).

Then f is a continuous, homogeneous, AdH -invariant function and is an extension of
the map X �→ m(X/I) on P.

Theorem 6.2. We have log ◦N ◦ exp ≤ −2f on L(S).
Proof. Let

[
0 R
S 0

]
∈ W ◦, the interior of W, i.e., R,S > 0. Then

exp

[
0 R
S 0

]
=

[
S−1/2 0

0 S1/2

]
· exp

[
0 S1/2RS1/2

I 0

]
·
[

S1/2 0
0 S−1/2

]
,

and it follows by homogeneity of the Thompson metric that

N

(
exp

[
0 R
S 0

])
= N

(
exp

[
0 S1/2RS1/2

I 0

])
.
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Setting X = S1/2RS1/2 and g = exp
[

0 X
I 0

]
, we have

g =

[
coshX1/2 X1/2 sinhX1/2

X−1/2 sinhX1/2 coshX1/2

]
and therefore

g(0) = X1/2 sinhX1/2(coshX1/2)−1 = X1/2 tanhX1/2, g(∞) = X1/2 cothX1/2.

Then

�(g) = p(g(0), g(∞))

= p(X1/2 tanhX1/2, X1/2 cothX1/2)

= p(I, coth2 X1/2)

= logM(cothX1/2/I)2

≤ log coth2 m(X1/2/I),

where the third equality follows from the homogeneity of the metric, the fourth from
cothX1/2 ≥ I, and the last inequality from the fact that for t > 0, tI ≤ X implies
tnI ≤ Xn and hence (exp t)I ≤ expX and consequently (coth t)I ≥ cothX. By direct
computation we have

N(g) = tanh
(�(g)

4

)
≤ tanh

(
1

2
log cothm(X1/2/I)

)
= e−2m(X1/2/I) = e−2

√
m(X/I).

By continuity of N(·) and m(·/I), the asserted inequality holds for arbitrary members
of W.

Finally, the assertion of the inequality on all of L(S) follows from the preceding,
from the fact that both sides of the inequality reduce to 0 on h, from the Lie–Trotter
product formula, and from the multiplicative property of the Birkhoff constant func-
tion: N(gh) ≤ N(g)N(h).

Remark. In the finite dimensional case, the inequality in Theorem 6.2 becomes
an equality on W : log ◦N ◦ exp = −2f . This follows from the fact that

|| cothX|| = coth ||X−1||−1, X > 0.

Set R =
{
[ 0 X
I 0 ] : X > 0

}
⊆ W ◦, the interior of W.

Theorem 6.3. We have

S0 = ΓU
0 HΓL

0 = H(expR)H = H(expW ◦).

Proof. The first equality follows by Theorem 2.3. We have observed in the proof
of Theorem 6.2 that expW ◦ ⊆ H(expR)H and hence H expW ◦ ⊆ H(expR)H. Since
W ◦ is AdH -invariant, (expR)H ⊆ H expW ◦, and therefore H(expR)H ⊆ H expW ◦,
the third equality is proved.

Let X > 0. Then

exp

[
0 X
I 0

]
=

[
coshX1/2 X1/2 sinhX1/2

X−1/2 sinhX1/2 coshX1/2

]
=

[
I X1/2 tanhX1/2

0 I

] [
(coshX1/2)−1 0

0 coshX1/2

] [
I 0

X−1/2 tanhX1/2 I

]
∈ S0 = ΓU

0 HΓL
0
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because X1/2 tanhX1/2 > 0 and X−1/2 tanhX1/2 > 0. The ideal property of S0

implies that H(expR)H ⊆ S0. However, the explicit triple decomposition and Propo-
sition 5.6 imply that

exp

[
0 X
I 0

]
∈ H ·

[
0 (sinhX1/2)2

I 0

] [
I 0
I I

]
·H,

and thus each element in the right-hand side belongs to H(expR)H. Suppose that
g ∈ S0 = ΓU

0 HΓL
0 . Then by Proposition 5.6, g = hD1

[
I A
0 I

][
I 0
I I

]
hD2

for some A > 0

and Di ∈ GL(E). Set X = [log(A1/2 + (A + I)1/2)]2. Then X > 0, and by direct
computation sinhX1/2 = A1/2, so that g ∈ H(expR)H.

7. Discrete algebraic Riccati equations. The discrete algebraic Riccati equa-
tion (DARE) arises in the context of minimizing a quadratic cost for discrete-time lin-
ear time-invariant systems (see, for example, [23, Chapter 8.4]). We consider (DARE)
on a Hilbert space E:

X = A∗XA−A∗XB(R + B∗XB)−1B∗XA + H,(7.1)

where R and H are symmetric and positive definite [10].
It will be convenient to work with a simpler form of (DARE). We begin with the

following result.
Lemma 7.1.

1. If A + B is invertible, then A(A + B)−1B = A−A(A + B)−1A.
2. B(I + B∗XB)−1 = (I + BB∗X)−1B.

Proof. For the first assertion move the longer term from the right-hand side to
the left, factor, and simplify. For the second eliminate the inverses by moving the
expressions to the other side of the equation.

Lemma 7.1 can be used to show that (DARE) is equivalent to

X = A∗X(I + GX)−1A + H, G = BR−1B∗.(7.2)

Indeed,

X −XB(R + B∗XB)−1B∗X

= X −XBR−1/2(I + R−1/2B∗XBR−1/2)−1R−1/2B∗X

C=BR−1/2

= X −XC(I + C∗XC)−1C∗X

Lemma 7.1(2)
= X −X(I + CC∗X)−1CC∗X

G=CC∗
= X −X(I + GX)−1GX

Lemma 7.1(1)
= X −X

(
I − (I + GX)−1

)
= X(I + GX)−1.

Theorem 7.2. If A is invertible and G = BR−1B∗ is positive definite, then
(DARE) has a unique positive definite solution X∞ and the iteration

Xn+1 = H + A∗Xn(I + GXn)−1A

starting at any point X0 ∈ P0 converges to X∞ with

p(X∞, Xn) ≤ Ln

1 − L
p(X1, X0),
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where Λ = H−1/2A∗G−1/2, L = tanh
(
(1/4) log ‖I + ΛΛ∗‖

)
.

Proof. We note that positive definite solutions of (DARE) correspond to positive
definite fixed points of the map

X �→ A∗X(I + GX)−1A + H(7.3)

on P0. Under the fractional transformation, the mapping (7.3) becomes

X �→ H + A∗X(I + GX)−1A =

[
I H
0 I

] [
A∗ 0
0 A−1

] [
I 0
G I

]
.X.

The operator of the right-hand side,[
I H
0 I

] [
A∗ 0
0 A−1

] [
I 0
G I

]
,(7.4)

belongs to S0 and hence is a strict contraction for Thompson’s metric p by Theorems
5.11 and 5.8. By completeness of the metric, it has a unique fixed point on the
positive definite cone P0, and therefore (DARE) has a unique positive definite solution.
Obviously the solution X∞ is represented as a limit of iteration Xn+1 = H+A∗Xn(I+
GXn)−1A with initial point in P0. Set X∞ = limn→∞ Xn, X0 > 0. The p-diameter of
the map X �→ H + A∗X(I + GX)−1A is computed from Theorem 5.8:

Δ = p(H,H + A∗G−1A) = p(I, I + ΛΛ∗) = log ||I + ΛΛ∗||,

where Λ =: Λ(H,R,A,B) = H−1/2A∗G−1/2. Then its contraction constant is

L := tanh

(
Δ

4

)
= tanh

(
log ||I + ΛΛ∗||

4

)
,

and the error bound may be estimated by p(X∞, Xn) ≤ Ln

1−L p(X1, X0).
Remark. We observe that the unique positive definite solution S(H,R,A,B) in

the above theorem depends on the parameters H,R,A,B, where H,R vary over the
positive definite operators and A,B over invertible operators on E. This defines the
solution map of DARE

S : P0 × P0 × GL(E) × GL(E) → P0, (H,R,A,B) → S(H,R,A,B).

In the finite dimensional case it is shown in [2] that the solution map is continuous
and extends to the set of singular A. Under the additional condition that A is stable
(leaves the unit ball invariant) but without the invertibility condition of G = BR−1B∗,
(DARE) has a unique positive definite solution (Corollary 5.7 of [11]).

Remark. In [9] (DARE) is called the standard symplectic form (SSF) when both
H and G are invertible, which is the case of Theorem 7.2; that is, the associated
symplectic Hamiltonian (7.4) is in S0. An efficient numerical method is developed,
the so-called structure-preserving doubling (SDP) algorithm, which requires the fact
that the (positive) powers of the associated symplectic Hamiltonian Z remain in
SSF (Theorem 2.1 of [9]). We have already obtained the semigroup property (even
ideal property) of S0 in Theorem 2.3. The SDP algorithm produces the sequence

Z2k

, k = 1, 2, . . . , and the rate of convergence is estimated in terms of eigenvalues of
the associated symplectic pencil (Theorem 3.1 of [9]; see also [10]).



A BIRKHOFF CONTRACTION FORMULA 947

Remark. The unique positive definite solution of (DARE) or (7.3) lies in the open
order interval

(H,H + A∗G−1A).

Thus it is more effective to begin the iteration method starting at a point in this inter-
val. There are three positive definite operators lying in the interval. The harmonic-
geometric-arithmetic inequalities of the positive definite operators A,B > 0 (cf. [1]),

2(A−1 + B−1)−1 ≤ A#B := A1/2(A−1/2BA−1/2)1/2A1/2 ≤ A + B

2
,

imply that the open order interval (H,H+A∗G−1A) contains the harmonic, geometric,
and arithmetic means of H and H + A∗G−1A:

2(H−1 + (H + A∗G−1A)−1)−1, H#(H + A∗G−1A), H +
A∗G−1A

2
.

One can also show that 1
2 (H + H#(H + 4A∗G−1A)) lies in the interval (H,H +

A∗G−1A).

8. Stability of Riccati differential equations. We consider the control sys-
tem given by the basic group control equation (BGCE) on Sp(VE):

(BGCE) ġ(t) = u(t)g(t),

where u : I → sp(VE), I a (finite or infinite) subinterval of R, is called a steering or
control function. In the case that E is finite dimensional, we assume that u(·) belongs
to the class of measurable functions from I into sp(VE), which are locally bounded,
that is, bounded on every finite subinterval, and in the case of general E we assume
that u(·) is a regulated function, that is, a function that on each finite subinterval of
its domain is a uniform limit of piecewise constant functions. A solution of (BGCE),
called a trajectory, is an absolutely continuous function x(·) from I into G such that
the equation (BGCE) holds a.e., where a.e. means on the complement of a set of
measure 0 in the finite dimensional setting and the complement of a countable set
otherwise. The solution for initial condition g(0) = idV (E) is called the fundamental
solution of the basic group control equation and denoted Φ(t). By right invariance
the general solution to (BGCE) with initial condition g(t0) = g0 is then given by
g(t) = Φ(t)(Φ(t0))

−1g0.
Proposition 8.1 (see [15, Proposition 8.3]). Each solution Φ(t) for t ≥ 0 of the

basic group control equation on Sp(VE),

ġ(t) = u(t)g(t), g(0) = idV (E), u(t) ∈ L(S),

is contained in the semigroup S; i.e., the attainable set is contained in S. If Φ(s) ∈ Si

for some s and some i = 0, 1, or 2, then Φ(t) ∈ Si for all t > s.
We return to the material on the Lie wedge of the symplectic semigroup at the

beginning of section 6. Note that L(S) = h⊕W has interior h⊕W ◦ in sp(VE), where

W ◦ =

{[
0 R
S 0

]
: R,S > 0

}
.

Since the exponential function is locally a homeomorphism in a neighborhood N(0) of
the 0-matrix, we conclude that members of (h +W ◦)∩N(0) are carried by the expo-
nential map into the interior of S. Since for any Y ∈ sp(VE), exp(Y ) = (exp(1/n)Y )n
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and S is a subsemigroup, we conclude that exp(h + W ◦) is carried into the interior
of S. It follows readily from the homeomorphic triple decomposition of Theorem 2.3
that the interior of S is contained in S0 (indeed they are equal), so exp(h+W ◦) ⊆ S0.

We need the following elementary lemma.
Lemma 8.2. Let Φ : R

+ ×X → X be a continuous semiflow of the nonnegative
reals on a Hausdorff space X. Set φt(x) = Φ(t, x). If φt has exactly one fixed point
for each t = 1/2n, n ∈ N, then the fixed point is a common one for all φt, t ∈ R

+.
Consider on the Hilbert space E the Riccati differential equation

(RDE) K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t), K(t0) = K0,

where the coefficient functions are locally bounded and measurable in the finite dimen-
sional case and regulated otherwise. It was shown in [15, section 5] that the solution
of equation (RDE) for the case that R(t), S(t),K0 ≥ 0 arises through the fundamen-
tal solution of basic control equation (BGCE) acting by fractional transformations on
P ⊆ M:

K(t) = Φ(t)(Φ(t0))
−1(K0), where u(t) =

[
A(t) R(t)
S(t) −A(t)∗

]
.

In the case of constant coefficients with R,S > 0, then for t > 0, Φ(t) = exp(tM) lies
in S0 (as we have seen), where M =

[
A R
S −A∗

]
. It follows that for each t > 0, exp(tM)

is a strict contraction on P0 by Theorems 5.8 and 5.11 and hence has a unique fixed
point. Hence by the preceding Lemma 8.2 we conclude that there is a common fixed
point P ∗ for all φt, t ≥ 0. Hence the vector field, given by (RDE), must have a
0-vector at P ∗, i.e., the algebraic Riccati equation (ARE)

R + AK + KA∗ −KSK = 0, R, S > 0,

must have a unique positive definite solution. (Note that another solution would
yield another fixed point for the φt.) We have thus rederived from our machinery the
following familiar result.

Proposition 8.3. The ARE

R + AK + KA∗ −KSK = 0, R, S > 0,

has a unique positive definite solution.
Recall the homogeneous function defined on the Lie wedge L(S),

f : L(S) → [0,∞),

[
A R
S −A∗

]
�→

√
m(S1/2RS1/2/I).

Corollary 8.4. Let Φ(t) be the fundamental solution of the basic control equa-
tion

ġ(t) = u(t)g(t), g(0) = idV (E), u(t) ∈ L(S).

If there exists μ > 0 such that u(t) ∈ f−1([μ,∞)) for all t ≥ 0, then N(Φ(t)) ≤ e−2tμ

for each t ≥ 0.
Proof. The density of the set of piecewise constant controls yields that Φ(t) is a

limit of finite products of elements of the form

exp(α1X1) exp(α2X2) · · · exp(αnXn),
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where
∑n

i=1 αi = t and αi ≥ 0, Xi ∈ f−1([μ,∞)) for i = 1, 2, . . . , n. Theorem 6.2
ensures that

N(expαiXi) ≤ e−2f(αiXi) = e−2αif(Xi) ≤ e−2αiμ

and hence

N(exp(α1X1) exp(α2X2) · · · exp(αnXn)) ≤ e−2α1μe−2α2μ · · · e−2αnμ = e−2tμ.

By continuity (see the last part of the proof of Theorem 5.11), N(Φ(t)) ≤ e−2tμ.

Example. Let u(t) =
[A(t) R(t)
S(t) −A(t)∗

]
∈ L(S). Then u(t) ∈ f−1([μ,∞)) for all t ≥ 0

if and only if m(S1/2(t)R(t)S1/2(t)/I) ≥ μ2 for all t ≥ 0, and this includes the case
when S(t) is invertible and R(t) ≥ μ2S−1(t) for all t ≥ 0.

The next theorem shows that under general conditions two solutions of the Riccati
differential equation (RDE) exponentially converge toward each other.

Theorem 8.5. Let K1(t),K2(t) be two solutions with initial values K1(t0) =
K1 > 0 and K2(t0) = K2 > 0 of the Riccati differential equation

K̇(t) = R(t) + A(t)K(t) + K(t)A∗(t) −K(t)S(t)K(t), where R(t), S(t) ≥ 0.

If there exists μ > 0 and t1 ≥ t0 such that m(S(t)1/2R(t)S(t)1/2/I) ≥ μ2 for all
t ≥ t1, then

p(K1(t),K2(t)) ≤ e−2(t−t1)μp(K1,K2)

for t ≥ t1.

Proof. Let u(t) =
[A(t) R(t)
S(t) −A(t)∗

]
. Since R(t), S(t) ≥ 0, then u(t) ∈ L(S), t ≥ t0.

Let Φ(t) be the fundamental solution of the basic group control equation

ġ(t) = u(t)g(t), g(0) = idVE
.

Then

K1(t) = Φ(t)Φ(t0)
−1(K1) = Φ(t)Φ(t1)

−1Φ(t1)Φ(t0)
−1(K1)

and K2(t) = Φ(t)Φ(t1)
−1Φ(t1)Φ(t0)

−1(K2). Note that Ψ(t) := Φ(t+ t1)Φ(t1)
−1 is the

fundamental solution of the basic group control equation

ġ(t) = u(t + t1)g(t), g(0) = idV (E).

By assumption,

u(t + t1) ∈ f−1([μ,∞)) =

{[
A R
S −A∗

]
∈ L(S) : m(S1/2RS1/2) ≥ μ2

}
,

and by the previous corollary N(Ψ(t)) ≤ e−2tμ for all t ≥ 0. Similarly, Φ(t1)Φ(t0)
−1 ∈

S, a contraction. Therefore for t ≥ t1

p(K1(t),K2(t)) = p(Ψ(t− t1)Φ(t1)Φ(t0)
−1(K1),Ψ(t− t1)Φ(t1)Φ(t0)

−1(K2))

≤ e−2(t−t1)μp(Φ(t1)Φ(t0)
−1(K1),Φ(t1)Φ(t0)

−1(K2))

≤ e−2(t−t1)μp(K1,K2).
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There has been extensive study of conditions for the existence of a (positive
definite) solution K to the ARE

R + AK + KA∗ −KSK = 0, R, S > 0;

see, for example [23, Chapter 8.4]. The preceding allows one to draw results in the
converse direction.

Corollary 8.6. If K∗ is the unique positive definite solution for the constant
coefficient ARE, then all solutions of the corresponding Riccati differential equation
K̇ = R + AK + KA∗ − KSK, R,S > 0, that enter the space of positive definite
operators converge exponentially toward K∗.

Proof. We consider a trajectory of the given Riccati differential equation that
takes on a value K0 > 0 at some time t0. Then the trajectory satisfies (RDE) with
initial condition K0 at time t0. Since K∗ satisfies ARE, the value of the Riccati
differential equation at K∗ is 0, and thus the solution through K∗ is constant. Since
the coefficients R,S are constant and positive definite, the appropriate boundedness
condition of the previous theorem for S1/2RS1/2 is satisfied. Hence the first trajectory
converges exponentially toward the second trajectory with constant value K∗.
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Abstract. We obtain error estimates for the numerical approximation of a distributed control
problem governed by the stationary Navier–Stokes equations, with pointwise control constraints. We
show that the L2-norm of the error for the control is of order h2 if the control set is not discretized,
while it is of order h if it is discretized by piecewise constant functions. These error estimates are
obtained for local solutions of the control problem, which are nonsingular in the sense that the lin-
earized Navier–Stokes equations around these solutions define some isomorphisms, and which satisfy
a second order sufficient optimality condition. We establish a second order necessary optimality
condition. The gap between the necessary and sufficient second order optimality conditions is the
usual gap known for finite dimensional optimization problems.
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1. Introduction. The goal of this paper is to derive some error estimates for
the numerical approximation of a distributed optimal control problem governed by
the steady-state Navier–Stokes equations, with pointwise control constraints. More
precisely we consider the following problem:

(P) inf
{
F (u,y) | u ∈ Uad and (u,y) satisfies (1.2)

}
,

where

(1.1) F (u,y) =
1

2

∫
Ω

|y(x) − yd(x)|2dx +
N

2

∫
ω

|u(x)|2dx,

(1.2) −νΔy + (y · ∇)y + ∇p = f + Cu in Ω, div y = 0 in Ω, y = 0 on Γ,

C is a localization operator, ω ⊂ Ω, N > 0, ν > 0, and

Uad =
{
u ∈ L2(ω; Rm) | α ≤ u(x) ≤ β for almost every (a.e.) x ∈ ω

}
.

In this setting, Ω is a bounded open and connected subset in R
d, of class C2, with

d = 2 or d = 3, and ω is a nonempty open subset in Ω. We can easily show that
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problem (P) admits at least one solution. On one hand, uniqueness of solution to
problem (P) is not necessarily guaranteed even if (1.2) has a unique solution (which
is not necessarily the case). On the other hand, we can only hope to obtain error
estimates for solutions to problem (P) which are locally unique. Local uniqueness can
be proved for solutions satisfying first order and sufficient second order optimality
conditions. When first order optimality conditions in qualified form are satisfied by a
local solution (ū, ȳ) of problem (P), we have

ū = Proj[α,β]

(
− 1

N
C∗Φ̄

)
,

where Proj[α,β] is a projection operator and Φ̄ is the adjoint state associated with

(ū, ȳ). Thus, even if Φ̄ is regular, because of the projection operator Proj[α,β] (due
to control constraints), ū is only a Lipschitz function.

Assuming that (ū, ȳ) satisfies first order and sufficient second order optimality
conditions, we can define a discrete control problem (Ph) by discretizing the state
equation (1.2) with a finite element method (here h is the mesh size of the underlying
triangulation, and we assume that the family of triangulations is regular; see section
4). We consider two cases, the case where the control set in (Ph) is still Uad, and
the case where the control set Uh

ad is the set of functions in Uad which are piecewise

constant on the elements of the triangulation. We show that there exists ĥ such
that, for all 0 < h ≤ ĥ, the discrete control problem (Ph) admits at least one local
solution ūh in a ball Bρ(ū). We prove that the corresponding sequences {ūh}h strongly
converge to ū in L2 (see Theorem 4.11). When the control set in (Ph) is Uad, we show
that

(1.3) ‖ūh − ū‖L2 ≤ Ch2,

while if the control set is Uh
ad, we prove that

(1.4) ‖ūh − ū‖L2 ≤ Ch

(see Theorem 4.18). To the best of our knowledge both results are new. For numerical
computations it seems easier to solve (Ph) when the control set is discretized, that is,
when controls belong to Uh

ad. However, it is also possible to solve it without a priori
discretizing the control set (see, e.g., [16]).

Before comparing our results with the ones existing in the literature, let us make
some comments. Knowing that ū is a Lipschitz function, the error estimate (1.4),
obtained when the discrete control set is defined with piecewise constant functions, is
consistent with estimates obtained by approximating Lipschitz functions by piecewise
constant functions. The result obtained in (1.3) is more surprising. Indeed, as we
are going to see, this kind of result is already known for problems without control
constraints. But in that case the optimal control belongs to H2, and the error estimate
is then directly derived from error estimates for the adjoint state. Here we obtain the
same order of error estimate, but with control constraints. As far as we know, this
kind of result was not previously known. Moreover, our method is quite general, and
it can be used in some other problems, provided that we are able to obtain error
estimates for the discrete state and discrete adjoint equations.

Let us come back to the existing results in the literature. For optimal control
problems of the steady-state Navier–Stokes equations with a distributed control and
a slightly different functional, Gunzburger, Hou, and Svobodny have proved error
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estimates similar to (1.3) in the case when there is no control constraints and when the
control acts everywhere in Ω (see [13, end of section 5.2]). But for a distributed control
localized in Ω, the error estimate is only of order h3/2−ε (see [13, end of section 5.3]).
To prove these estimates they do not assume that the optimal solution (ū, ȳ), which
they want to approximate, satisfies a sufficient second order optimality condition.
But they assume that the optimality system satisfied by (ū, ȳ) is regular, in the
sense that the corresponding linearized optimality system defines some isomorphism.
This approach is the extension—to optimality systems of control problems—of the
classical one used in the numerical approximation of the steady-state Navier–Stokes
equations; see, e.g., [12]. This method has been used in the literature for other
similar problems [17] and for the boundary control of the stationary Navier–Stokes
equations [14, 15]. Observe that the estimates are not the same if the boundary of the
domain where the control is applied is empty or nonempty [14, Theorem 4.6 and the
assumptions in Theorem 3.5]. In any case this method cannot be used for problems
with control constraints. Another approach used more recently for problems without
control constraints is the one by Deckelnick and Hinze [10], which is based on the
Kantorovich convergence theorem of the Newton method. In that case a second order
sufficient optimality condition is needed, but the Kantorovich convergence theorem
is proved only for systems of equations and not for generalized equations. Thus this
method cannot be used for problems with control constraints.

For problems with control constraints the obtention of both optimality conditions
and error estimates is more complicated. Indeed even if the nonlinear Navier–Stokes
equations are well posed, the linearized ones are not necessarily well posed. Thus
in general one can obtain optimality conditions only in nonqualified form, that is,
optimality conditions of Fritz–John type. Such optimality conditions for optimal
control problems of the stationary Navier–Stokes equations have been obtained by
Abergel and Casas [1]; see also Casas [3]. Optimality conditions in qualified form,
that is, optimality conditions of Karush–Kuhn–Tucker type, may be obtained either
by assuming that data of the problem are small enough with respect to the viscosity
parameter ν (see, e.g., Roubiček and Tröltzsch [19], Tröltzsch and Wachsmuth [21],
De Los Reyes [18]) or by assuming some qualification condition of the set of feasible
controls as in Gunzburger, Hou, and Svobodny [15, condition (2.7)] or in [1].

Here, since we are mainly interested in the numerical approximation of control
problem (P), we assume that the local optimal solution (ū, ȳ) we want to approximate
is a nonsingular solution, that is, that the linearized Navier–Stokes equations about
ȳ define some isomorphism. As already mentioned, this is the classical assumption
used in the numerical approximation of the Navier–Stokes equations (see, e.g., [12, p.
297]). Thanks to this assumption we derive a necessary optimality condition of the
form

(1.5) J ′′(ū)v2 ≥ 0 ∀v ∈ Cū,

where Cū is the set of directions belonging to the tangent cone at ū to Uad satisfying
J ′(ū)v = 0; see Theorem 3.6 and Corollary 3.7 (here J(u) = F (u,yu), where yu is
the unique solution to (1.2) corresponding to u, when u belongs to some ball Bρ(ū)).
The weakest sufficient optimality condition we can state is the following:

(1.6) J ′′(ū)v2 > 0 ∀v ∈ Cū such that v 	= 0.

Under this condition, and assuming that the first order optimality conditions are in
qualified form, we prove that (ū, ȳ) is the unique local solution to (P) in some ball
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Bρ(ū). (See Theorem 3.8. Notice that we cannot hope to prove such a result without
assuming that ū satisfies the first order optimality conditions in qualified form and
condition (1.6).) This local uniqueness result is essential to carry out some numerical
analysis of the control problem. The discrete state equation is stated in section 4.
The well posedness of the discrete state equation is performed in Theorem 4.8, and
error estimates are obtained in Lemma 4.10. The discrete adjoint equation is studied
in section 4.3. Its well posedness and error estimates are proved in Lemmas 4.12 and
4.13. Error estimates for the control problem are obtained in section 4.4.

Let us finally mention that in the case of control problems governed by scalar
semilinear elliptic equations, this approach to derive error estimates has been devel-
oped by Arada, Casas, and Tröltzsch [2], Casas [4, 5], Casas, Mateos, and Tröltzsch
[6], and Casas and Raymond [7].

2. Assumptions and preliminary results. Let us recall that Ω is a bounded
open and connected subset in R

d, of class C2, with d = 2 or d = 3, and that ω is a
nonempty open subset in Ω. We assume that M : ω → R

d×m is a Lipschitz function,
with 1 ≤ m ≤ d (Rd×m denotes the space of d×m real matrices). Let us consider the
linear operator C ∈ L(L2(ω; Rm), L2(Ω; Rd)), defined by (Cu)(x) = M(x)u(x)χω(x),
where χω is the characteristic function of ω. In the functional F : L2(Ω; Rd) ×
L2(ω; Rm) �−→ R, defined in (1.1), we assume that N > 0 and yd ∈ Lr̄(Ω; Rd), for
some r̄ > d, are given fixed. For u ∈ L2(ω; Rm), we denote by uj the components of
u, that is, u = (uj)1≤j≤m. For 1 ≤ j ≤ m, let −∞ ≤ αj < βj ≤ +∞ be extended
real numbers, and set

Uad =
{
u ∈ L2(ω; Rm) | αj ≤ uj(x) ≤ βj for a.e. x ∈ ω, 1 ≤ j ≤ m

}
.

In the case when αj = −∞, this means that the corresponding constraint is absent.
The same convention is adopted if βj = ∞.

In (1.2) we assume that ν > 0 and f ∈ Lr̄(Ω; Rd).
To study (1.2) we have to introduce some function spaces and operators. Through-

out the following we set H1(Ω) = H1(Ω; Rd), H1
0(Ω) = H1

0 (Ω; Rd), H−1(Ω) =
(H1

0(Ω))′, Lp(Ω) = Lp(Ω; Rd), and Ws,p(Ω) = W s,p(Ω; Rd) for 1 ≤ p ≤ ∞ and
s > 0. We introduce different spaces of divergence-free vector fields:

V0
n(Ω) =

{
u ∈ L2(Ω) | div u = 0 in Ω, u · n = 0 in H−1/2(Γ)

}
,

V1
0(Ω) = H1

0(Ω) ∩ V0
n(Ω),

where n is the outward unit normal to Γ. The dual space of V1
0(Ω) with respect to

the pivot space V0
n(Ω) is denoted by V−1(Ω). Thus we have

V1
0(Ω) ↪→ V0

n(Ω) ↪→ V−1(Ω),

with dense and continuous imbeddings. The orthogonal projector from L2(Ω) onto
V0

n(Ω) will be denoted by P . The operator P can be extended to a bounded operator
from H−1(Ω) to V−1(Ω). For notational simplicity this extension will still be denoted
by P .

Let us consider the bilinear form on H1
0(Ω) defined by

a(y, z) = ν

∫
Ω

∇y : ∇z dx = ν

d∑
i,j=1

∫
Ω

∂xiyj ∂xizj ,
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and the trilinear form on b : L4(Ω) × H1
0(Ω) × L4(Ω) defined by

b(y, z,Φ) =

∫
Ω

(y · ∇)z · Φ dx.

We define A ∈ L(H1
0(Ω),H−1(Ω)) by〈
Ay, z

〉
H−1(Ω),H1

0(Ω)
= a(y, z) ∀ z, y ∈ H1

0(Ω),

and the nonlinear operator B from H1
0(Ω) to H−1(Ω) by〈

B(y), z
〉
H−1(Ω),H1

0(Ω)
= b(y,y, z) ∀ z, y ∈ H1

0(Ω).

Equation (1.2) is equivalent to the variational problem

(2.1)
Find y ∈ V1

0(Ω) such that

a(y, z) + b(y,y, z) = (f + Cu, z) ∀ z ∈ V1
0(Ω),

or to the weak formulation

y ∈ V1
0(Ω),

〈
Ay + B(y), z

〉
H−1(Ω),H1

0(Ω)
=

〈
f + Cu, z

〉
H−1(Ω),H1

0(Ω)
∀z ∈ V1

0(Ω).

This last equation is equivalent to

y ∈ V1
0(Ω), PAy + PB(y) = P (f + Cu) in V−1(Ω),

which we shall simply write in the form

(2.2) y ∈ V1
0(Ω), Ay + B(y) = f + Cu in V−1(Ω).

We know that, for all u ∈ L2(ω; Rm), equation (2.1), or equivalently (2.2), admits
at least one solution y ∈ V1

0(Ω). The pressure appearing in (1.2) is the unique function
in

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫
Ω

v(x) dx = 0

}
,

obeying

(2.3) ∇p = (I − P )(f + Cu + νΔy − (y · ∇)y).

It is a consequence of [12, Chapter 1, Lemma 2.1].
The following properties are well known. For all y ∈ L4(Ω) obeying divy = 0 in

Ω, and z,w ∈ H1
0(Ω)

(2.4) b(y, z,w) = −b(y,w, z) and b(y, z, z) = 0.

The next lemma follows directly from Green’s formula.
Lemma 2.1. For all y ∈ H1

0(Ω), the operators B′(y) ∈ L(H1
0(Ω),H−1(Ω)) and

B′(y)∗ ∈ L(H1
0(Ω),H−1(Ω)) satisfy

〈B′(y)z,Φ〉 = b(y, z,Φ) + b(z,y,Φ)
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and

〈B′(y)∗Φ, z〉 =

∫
Ω

(∇y)TΦ · z dx− b(y,Φ, z) −
∫

Ω

(div y)Φ · z dx

for all z, Φ ∈ H1
0(Ω). Moreover, B′′ ∈ L(H1

0(Ω) × H1
0(Ω),H−1(Ω)) obeys

〈B′′(y, z),Φ〉 = b(y, z,Φ) + b(z,y,Φ) ∀ z,y,Φ ∈ H1
0(Ω).

The following regularity result will be used throughout this paper. It is an im-
mediate consequence of the classical result by Cattabriga [8].

Theorem 2.2. There exists a constant C > 0 such that if u ∈ L2(ω; Rm) and if
y ∈ V1

0(Ω) is a solution to (2.2), then

‖y‖V1
0(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(ω;Rm)).

There exists a constant Cr > 0 such that if u ∈ Lr(ω; Rm), f ∈ Lr(Ω) with 2 ≤ r < ∞
and y ∈ V1

0(Ω) is a solution to (2.2) and p the associated pressure, then y ∈ W2,r(Ω),
p ∈ W1,r(Ω), and

(2.5) ‖p‖W1,r(Ω) + ‖y‖W2,r(Ω) ≤ Cr(1 + ‖f‖7
Lr(Ω) + ‖u‖7

Lr(ω;Rm)).

Proof. The estimate of ‖y‖V1
0(Ω) is classical. Using this estimate, since d ≤ 3, we

can write

‖y‖L6(Ω) ≤ C‖y‖V1
0(Ω)

and

‖y ⊗ y‖(L3(Ω))d ≤ C‖y‖2
V1

0(Ω).

Thus, from estimates for the Stokes equation, we successively deduce

‖y‖W1,3(Ω) ≤ C(‖y ⊗ y‖(L3(Ω))d + ‖f‖L2(Ω) + ‖u‖L2(ω;Rm))

≤ C(‖f‖2
L2(Ω) + ‖u‖2

L2(ω;Rm) + 1)

and

‖y‖H2(Ω) ≤ C(‖y‖W1,3(Ω)‖y‖L6(Ω) + ‖f‖L2(Ω) + ‖u‖L2(ω;Rm))

≤ C(‖f‖3
L2(Ω) + ‖u‖3

L2(ω;Rm) + 1).

Therefore

‖(y · ∇)y‖(L3(Ω))d ≤ C‖y‖H1(Ω)‖y‖H2(Ω) ≤ C(‖f‖4
L2(Ω) + ‖u‖4

L2(ω;Rm) + 1),

which yields

‖y‖W2,r(Ω) ≤ C(‖f‖4
Lr(Ω) + ‖u‖4

Lr(ω;Rm) + 1)
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if 2 ≤ r ≤ 3. Next we have

‖(y · ∇)y‖(Lr(Ω))d ≤ Cr‖y‖H2(Ω)‖y‖W2,3(Ω) ≤ C(‖f‖7
L2(Ω) + ‖u‖7

L2(ω;Rm) + 1)

if 3 ≤ r < ∞, which provides the desired estimate.
It is well known that the solution of (1.2) is unique when ν is large enough with

respect to the right-hand side; see, for instance, Temam [20]. Since this is a strong
assumption we are interested in the solutions of (1.2) for which the equation is locally
unique. These solutions, called nonsingular solutions, are defined below.

Definition 2.3. A function y ∈ V1
0(Ω) is a nonsingular solution of (1.2), or

equivalently (2.2), if P (A + B′(y)) is an isomorphism from V1
0(Ω) into V−1(Ω). If,

moreover, Ay +B(y) = f + Cu in V−1(Ω), with u ∈ L2(ω; Rm), we will also say that
the pair (u,y) is a nonsingular solution of (1.2).

Remark 2.4. For a nonsingular solution (u,y) of (1.2), the condition P (A +
B′(y)) ∈ isom(V1

0(Ω),V−1(Ω)) corresponds to the one stated in [12, Chapter 4,
condition (3.4)], which is used to get the error estimates for the approximation of the
Navier–Stokes equations.

The following theorem is a straightforward consequence of the implicit function
theorem and will be useful in what follows.

Theorem 2.5. Let (ū, ȳ) ∈ L2(ω; Rm)×V1
0(Ω) be a nonsingular solution of (1.2);

then there exist an open neighborhood O(ū) of ū in L2(ω; Rm), an open neighborhood
O(ȳ) of ȳ in V1

0(Ω), and a mapping G from O(ū) to O(ȳ) of class C∞ such that,
for all u ∈ O(ū), G(u) = yu is the unique solution in O(ȳ) to (2.2). Moreover,
if zv = G′(u)v ∈ V1

0(Ω) and w = G′′(u)v2 ∈ V1
0(Ω), then zv and w satisfy the

equations

Azv + B′(yu)zv = Cv in V−1(Ω),(2.6)

Aw + B′(yu)w + B′′(zv, zv) = 0 in V−1(Ω),(2.7)

and P (A + B′(yu)) is an isomorphism from V1
0(Ω) into V−1(Ω) for all u ∈ O(ū).

Lemma 2.6. Let (ū, ȳ) be as in Theorem 2.5, and let p̄ be the associated pressure
(the solution of (2.3) corresponding to ȳ). Let (uk)k be a sequence in O(ū) weakly
converging to ū in L2(ω; Rm). Let yk be the solution to (1.2) in O(ȳ) corresponding
to uk, and let pk be the associated pressure. Then (yk)k converges to ȳ in V1

0(Ω),
and (pk)k converges to p̄ in L2

0(Ω).
Proof. The proof is an easy consequence of Theorem 2.2 and of formula (2.3).

3. Analysis of the control problem. The existence of a solution of problem
(P) can be obtained by the usual approach of taking a minimizing sequence, which
is bounded in L2(ω; Rm)×V1

0(Ω), and passing to the limit; see, for instance, [18] for
a detailed proof. In this section we will derive the first and second order optimality
conditions for a local solution (ū, ȳ) in Uad × V1

0(Ω).

3.1. First order optimality conditions. Let us precisely define local solutions
of (P).

Definition 3.1. We shall say that (ū, ȳ) ∈ Uad × V1
0(Ω) is a local solution

of (P) if and only if (ū, ȳ) satisfies (1.2) and there exist neighborhoods O(ū) of ū
in L2(ω; Rm) and O(ȳ) of ȳ in V1

0(Ω) such that F (ū, ȳ) ≤ F (u,y) for all pairs
(u,y) ∈ (Uad ∩ O(ū)) ×O(ȳ) satisfying (1.2).

The following theorem was proved by Abergel and Casas [1] for a slightly different
functional, but the proof can be repeated for our problem step by step, just by doing
the obvious modifications.
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Theorem 3.2. Let (ū, ȳ) ∈ Uad × V1
0(Ω) be a local solution of (P); then there

exist a real number λ̄ and some elements Φ̄ ∈ W2,r̄(Ω) and π̄, p̄ ∈ W 1,r̄(Ω) such that

λ̄ + ‖Φ̄‖V1
0(Ω) > 0,(3.1)

−νΔȳ + (ȳ · ∇)ȳ + ∇p̄ = f + Cū in Ω, div ȳ = 0 in Ω, ȳ = 0 on Γ,(3.2)

−νΔΦ̄ + (∇ȳ)T Φ̄ − (ȳ · ∇)Φ̄ + ∇π̄ = λ̄(ȳ − yd) in Ω,(3.3)

div Φ̄ = 0 in Ω, Φ̄ = 0 on Γ,(3.4) ∫
ω

(C∗Φ̄ + λ̄N ū) · (u − ū) dx ≥ 0 ∀u ∈ Uad.(3.5)

These conditions for optimality are of Fritz–John type, and we are interested in
the cases where λ̄ can be chosen equal to one. Gunzburger, Hou, and Svobodny [14]
introduced an assumption on Uad for the local solution (ū, ȳ). The control set Uad is
said to have the property (C) at (ū, ȳ) if the system

−νΔΦ + (∇ȳ)TΦ − (y · ∇)Φ + ∇π = λ̄(ȳ − yd) in Ω, div Φ = 0 in Ω, Φ = 0 on Γ,

admits at least a nonzero solution (Φ, π) ∈ V1
0(Ω) × L2

0(Ω), and if for any nonzero
solution (Φ, π) we can find u ∈ Uad such that∫

ω

C∗Φ · (u − ū) dx < 0.

It is obvious that if Uad has the property (C) at (ū, ȳ), then (3.2)–(3.5) hold with
λ̄ = 1.

Here we will make a different assumption which will be crucial in what follows,
in particular for the numerical analysis. We consider only local solutions (ū, ȳ) of
(P) such that (ū, ȳ) is a nonsingular solution of (2.2). In that case we shall say that
(ū, ȳ) is a local nonsingular solution of (P). For such a local nonsingular solution we
can apply Theorem 2.5 and define the control problem

(PO(ū)) inf
{
J(u) | u ∈ Uad ∩ O(ū)

}
,

where J : U �−→ R is given by J(u) = F (u, G(u)). Then ū is a local solution of
(PO(ū)). Let us study the differentiability properties of J .

Theorem 3.3. Function J is of class C∞ in O(ū), and for every u ∈ O(ū) and
v ∈ L2(ω; Rm) we have

J ′(u)v =

∫
ω

(C∗Φu + Nu) · v dx,(3.6)

J ′′(u)v2 =

∫
Ω

(|zv|2 − 2(zv · ∇)zv · Φu)dx + N

∫
ω

|v|2dx,(3.7)

where zv is the solution of (2.6) and Φu ∈ V1
0(Ω) satisfies

(3.8)

{
−νΔΦu + (∇yu)TΦu − (yu · ∇)Φu + ∇πu = yu − yd in Ω,

div Φu = 0 in Ω, Φu = 0 on Γ.

The proof follows easily from Theorem 2.5. The only delicate point is the def-
inition of Φu. Let us remark that (3.8) is equivalent to the equation A∗Φu +
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B′(yu)∗Φu = yu − yd in V−1(Ω), and due to Theorem 2.5 the operator P (A∗ +
B′(yu)∗) is an isomorphism from V1

0(Ω) into V−1(Ω).
By using the previous theorem we get the following result.
Theorem 3.4. Let (ū, ȳ) ∈ Uad × V1

0(Ω) be a local nonsingular solution of (P),
and let p̄ be the associated pressure; then there exist some elements Φ̄ ∈ V1

0(Ω) and
π̄ ∈ L2

0(Ω) such that (3.2)–(3.5) hold with λ̄ = 1.
Proof. It is enough to take into account that J ′(ū)(u − ū) ≥ 0 for all u ∈ Uad

and to use (3.6).
Using the first order necessary conditions we can deduce some extra regularity

for the optimal control, the state, and the adjoint state.
Theorem 3.5. Let (ū, ȳ) be a local nonsingular solution of (P) and let Φ̄ be

the adjoint state as defined by (3.3)–(3.4) with λ̄ = 1. Then ȳ, Φ̄ ∈ W2,r̄(Ω), p̄, π̄ ∈
W 1,r̄(Ω), and ū ∈ C0,1(ω̄; Rm).

Proof. Taking into account that Cū ∈ L2(Ω) and the assumption on f , it is
enough to apply Theorem 2.2 to deduce that ȳ belongs to H2(Ω) and that Φ̄ belongs
to W2,r̄(Ω). On the other hand, Φ̄ ∈ W2,r̄(Ω) ⊂ C0,1(Ω̄; Rd) because r̄ > d. Now
using the Lipschitz property of the function M defining C and the representation of
the optimal control deduced from (3.5), we obtain

(3.9) ūj(x) = Proj[αj ,βj ]

(
− 1

N
(C∗Φ̄)j(x)

)
for a.e. x ∈ ω,

which gives the desired regularity for ū. Now still using Theorem 2.2, we obtain the
regularity of ȳ.

3.2. Second order optimality conditions. To perform the numerical analysis
of the problem as well as the analysis of the algorithms of optimization, second order
sufficient conditions are required. These sufficient conditions should be as unrestrictive
as possible. One way of measuring this is to compare them with the necessary second
order conditions and check if the gap is small. This is the reason why we first introduce
the second order necessary conditions.

Second order conditions have to be written for directions v ∈ TUad
(ū) such that

J ′(u)v = 0, where TUad
(ū) is the tangent cone at ū to Uad. To characterize these

directions, we introduce d̄(x) = C∗Φ̄(x) + N ū(x) for x ∈ ω, and the following condi-
tions:

vj(x) = 0 if d̄j(x) 	= 0,(3.10)

vj(x) ≥ 0 if −∞ < αj = ūj(x) and d̄j(x) = 0,(3.11)

vj(x) ≤ 0 if ūj(x) = βj < ∞ and d̄j(x) = 0.(3.12)

Now we define the cone

Cū =
{
v ∈ L2(ω; Rm) | v satisfies (3.10)–(3.12)

}
.

Notice that

(3.13)
J ′(ū)v =

∫
ω

d̄(x) · v(x) dx ∀v ∈ L2(ω; Rm),

d̄(x) · v(x) = 0 for a.e. x ∈ ω and all v ∈ Cū.

Theorem 3.6. Let (ū, ȳ) be a nonsingular local solution of (P). Then

J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.
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Proof. We sketch the proof in the case where −∞ < αj < βj < ∞ for all
1 ≤ j ≤ m. The modifications for the other cases are obvious. Take v ∈ Cū, and for
ε < min{(βj − αj)/2 : 1 ≤ j ≤ m} define

vj,ε(x) =

⎧⎨⎩
0 if αj < ūj(x) < αj + ε,
0 if βj − ε < ūj(x) < βj ,

Proj[− 1
ε ,

1
ε ]

(vj(x)) otherwise.

It is clear that |vj,ε(x)| ≤ |vj(x)| and that vj,ε(x) → vj(x) for a.e. x ∈ ω as ε → 0,
and hence vε → v in L2(ω; Rm). A simple inspection convinces us that vε ∈ Cū. Let
us check that ū + ρvε ∈ Uad for every 0 < ρ < ε2. If d̄j(x) 	= 0, then vj,ε(x) = 0. So
ūj(x) + ρvj,ε(x) = ūj(x) ∈ [αj , βj ]. For d̄j(x) = 0, we have the following:

(1) If ūj(x) = αj , then vj(x) ≥ 0 and vj,ε(x) ≥ 0. So clearly αj ≤ uj(x)+ρvj,ε(x).

For the other inequality we write uj(x) + ρvj,ε(x) ≤ αj + ε2 1
ε ≤ αj+βj

2 < βj . If
ūj(x) = βj , the argument is completely analogous.

(2) If αj < ūj(x) < αj + ε, then ūj(x) + ρvj,ε(x) = ūj(x) ∈ [αj , βj ]. The same
applies if βj − ε < ūj(x) < βj .

(3) If αj+ε ≤ ūj(x) ≤ βj−ε, then on the left side, ūj(x)+ρvj,ε(x) ≥ αj+ε−ε2 1
ε =

αj , and on the right side ūj(x) + ρvj,ε(x) ≤ βj − ε + ε2 1
ε = βj .

Thus ū + ρvε belongs to Uad. Making a second order Taylor expansion of J at
ū and taking into account that it is a local minimum for ρ < ε2 small enough, there
exists 0 < θρ < ρ such that

0 ≤ J(ū + ρvε) − J(ū) = ρJ ′(ū)vε +
ρ2

2
J ′′(ū + θρvε)v

2
ε .

Since vε ∈ Cū, (3.13) implies that J ′(ū)vε = 0. Therefore the above inequality leads
to J ′′(ū + θρvε)v

2
ε ≥ 0. Now we must take the limit as ρ → 0 to get J ′′(ū)v2

ε ≥ 0.
Next it is enough to take the limit as ε → 0. To do this, let us recall the expression
of J ′′(ū) provided by (3.7):

J ′′(ū)v2
ε =

∫
Ω

(|zvε |2 − 2(zvε · ∇)zvε · Φū) dx + N

∫
ω

|vε|2dx

−→
∫

Ω

(|zv|2 − 2(zv · ∇)zv · Φū) dx + N

∫
ω

|v|2dx = J ′′(ū)v2 as ε → 0.

The following result is an obvious consequence of the previous theorem and the
expression of J ′′ given by (3.7).

Corollary 3.7. Let (ū, ȳ) be a nonsingular local solution of (P) and let Φ̄ be
the corresponding adjoint state. Then

(3.14)

∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄)dx + N

∫
ω

|v|2dx ≥ 0

for every (v, z) satisfying the linearized state equation (2.6) and v ∈ Cū.
To state second order sufficient conditions we will not suppose that (ū, ȳ) is a

nonsingular solution of the Navier–Stokes equations (1.2). The result we are going to
state is the following.

Theorem 3.8. Let (ū, ȳ, Φ̄) ∈ L2(ω; Rm) × V1
0(Ω) × V1

0(Ω) satisfy (3.2)–(3.5)
with λ̄ = 1. Let us suppose that

(3.15)

∫
Ω

(z2 − 2(z · ∇)z · Φ̄)dx + N

∫
ω

v2dx > 0
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for every (v, z) 	= (0, 0) satisfying the linearized state equation (2.6) and v ∈ Cū.
Then there exist ε > 0 and μ > 0 such that

F (ū, ȳ) +
μ

2

(
‖u − ū‖2

L2(ω;Rm) + ‖y − ȳ‖2
L2(Ω)

)
≤ F (u,y)

for every (u,y) satisfying (1.2), u ∈ Uad, and ‖u− ū‖2
L2(ω;Rm) + ‖y− ȳ‖2

L2(Ω) ≤ ε2.
Proof. Let us suppose the theorem is false. In that case, for all k ∈ N, there exists

(uk,yk) satisfying (1.2), uk ∈ Uad,

‖uk − ū‖2
L2(ω;Rm) + ‖yk − ȳ‖2

L2(Ω) <
1

k2
,

and

(3.16) F (ū, ȳ) +
1

k

(
‖uk − ū‖2

L2(ω;Rm) + ‖yk − ȳ‖2
L2(Ω)

)
> F (uk,yk).

Since the sequence {uk}∞k=1 is bounded in L2(ω; Rm), Theorem 2.2 implies that

{yk}∞k=1 is bounded in H2(Ω) ∩ V1
0(Ω). Let us set

ρk =
√
‖uk − ū‖2

L2(ω;Rm) + ‖yk − ȳ‖2
L2(Ω), vk =

uk − ū

ρk
, zk =

yk − ȳ

ρk
.

Clearly ‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω) = 1, and hence there exist weakly convergent

subsequences in L2(ω; Rm) and L2(Ω), still indexed by k, such that vk ⇀ v, zk ⇀ z.
We are going to check that the pair (v, z) satisfies the linearized equation (2.6) and
v ∈ Cū.

The pair (vk, zk) satisfies the equation

(3.17)

{
−νΔzk + (ȳ · ∇)zk + (zk · ∇)yk + ∇πk = Cvk in Ω,

div zk = 0 in Ω, zk = 0 on Γ,

where πk = (p̄− pk)/ρk, which is equivalent to the variational formulation

(3.18) a(zk, z) + b(ȳ, zk, z) + b(zk,yk, z) = (Cvk, z) ∀ z ∈ V1
0(Ω).

Taking z = zk and using (2.4), we obtain

a(zk, zk) = (Cvk, zk) −
∫

Ω

(zk · ∇)yk · zkdx.

Using the equality ‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω) = 1 and the imbedding H1(Ω) ⊂ L4(Ω),
we obtain

ν‖zk‖2
H1(Ω) ≤ ‖C‖ + ‖yk‖H1(Ω)‖zk‖2

L4(Ω) ≤ C(1 + ‖zk‖2
L4(Ω)),

because (yk)k is bounded in H1(Ω). From the well-known interpolation inequality
when d = 3 (see Temam [20, Lemma 3.5, p. 296]),

‖ζ‖L4(Ω) ≤
√

2‖ζ‖1/4
L2(Ω)‖ζ‖

3/4
H1(Ω) ∀ζ ∈ H1

0 (Ω),

and the bound ‖zk‖L2(Ω) ≤ 1, it follows that

‖zk‖2
H1(Ω) ≤ C

(
1 + ‖zk‖3/2

H1(Ω)

)
.
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Thus the sequence {zk} is bounded in V1
0(Ω), and therefore {zk} converges strongly

to z in L2(Ω). Now we can take the limit in (3.18), and we obtain that (v, z) satisfies
(2.6).

Let us now check that v ∈ Cū. The sign condition (3.11)–(3.12) is satisfied by
vk,j , and this is conserved when we pass to the weak limit because the set of functions
satisfying these sign conditions is closed and convex in L2(ω; Rm). On the other hand,
using condition (3.16), for all k, we have

ρk
k

>
F (ū + ρkvk, ȳ + ρkzk) − F (ū, ȳ)

ρk

=
1

2

∫
Ω

|ȳ + ρkzk − yd|2 − |ȳ − yd|2
ρk

dx +
N

2

∫
ω

|ū + ρkvk|2 − |ū|2
ρk

dx

=
1

2

∫
Ω

(2(ȳ − yd) + ρkzk) · zk dx +
N

2

∫
ω

(2ū + ρkvk) · vk dx.

Since ‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω) = 1, ρk < 1/k converges to 0, zk → z in L2(Ω), and

vk ⇀ v weakly in L2(ω; Rm), we can pass to the limit when k tends to infinity, and
we get ∫

Ω

(ȳ − yd) · z dx + N

∫
ω

ū · v dx ≤ 0,

which is exactly ∫
ω

d̄(x) · v(x) ≤ 0.

The sign condition (3.5) implies that d̄j(x)vj(x) ≥ 0 for a.e. x ∈ ω; therefore the
above inequality is equivalent to

m∑
j=1

∫
Ω

|d̄j(x)vj(x)| dx ≤ 0.

Thus if d̄j(x) 	= 0, vj(x) = 0, 1 ≤ j ≤ m, and hence v ∈ Cū.
Making a second order Taylor expansion of F at (ū, ȳ), with condition (3.16), we

obtain

(3.19)
1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) +

1

2

∫
Ω

|zk|2 dx +
N

2

∫
ω

|vk|2 dx <
1

k
.

Notice that the pair (vk, zk) satisfies (3.17), but does not satisfy the linearized equa-
tion (2.6). Thus 1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) is not equal to

∫
ω
d̄(x) · vk(x)dx.

We can write (3.17) as follows:

−νΔzk + (ȳ · ∇)zk + (zk · ∇)ȳ + ∇πk = Cvk − (zk · ∇)(yk − ȳ) in Ω,

div zk = 0 in Ω, zk = 0 on Γ.

Since

∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk =

∫
Ω

(ȳ − yd) · zkdx + N

∫
ω

ū · vkdx,
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using the adjoint state Φ̄ and making an integration by parts, we get that∫
Ω

(ȳ − yd) · zkdx =

∫
Ω

Φ̄ · (Cvk − (zk · ∇)(yk − ȳ)) dx,

and therefore

1

ρk
(∂uF (ū, ȳ)vk + ∂yF (ū, ȳ)zk) =

1

ρk

∫
ω

d̄(x) · vk(x)dx−
∫

Ω

(zk · ∇)zk · Φ̄dx.

Since vk satisfy the sign condition, we have d̄(x) ·vk(x) ≥ 0; therefore (3.19) leads to

−2

∫
Ω

(zk · ∇)zk · Φ̄dx +

∫
Ω

|zk|2dx + N

∫
ω

|vk|2dx <
2

k
∀k.

Taking the inferior limit in this inequality we deduce∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄)dx + N

∫
ω

|v|2dx ≤ 0.

Since v ∈ Cū and the pair (v, z) satisfies the linearized equation (2.6), this is possible
only if (v, z) = (0, 0).

The sequence {zk}∞k=1 converges strongly in L2(Ω) and weakly in V1
0(Ω). Since

Φ̄ ∈ L∞(Ω), by passing to the limit when k tends to infinity, we obtain

−2

∫
Ω

(zk · ∇)zk · Φ̄dx +

∫
Ω

|zk|2dx → −2

∫
Ω

(z · ∇)z · Φ̄dx +

∫
Ω

|z|2dx = 0.

The last three relations imply that vk → 0 strongly in L2(ω; Rm). So we have proved
that (vk, zk) → 0 strongly in L2(ω)m × L2(Ω), which contradicts the fact that

‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω) = 1.

The proof is complete.
The sufficient condition (3.15) is the best possible. Actually the gap between

(3.15) and the second order necessary condition (3.14) is the same as in finite dimen-
sion. In the case of nonsingular solutions we have the following result analogous to
Theorem 3.6.

Corollary 3.9. Let us assume that (ū, ȳ) is a nonsingular solution of (1.2) and
(ū, ȳ, Φ̄) satisfies (3.2)–(3.5) with λ̄ = 1. Then (3.15) is equivalent to J ′′(ū)v2 > 0
for every v ∈ Cū \ {0}.

This corollary is an immediate consequence of (3.7) and the fact that z = zv if
(v, z) satisfies (2.6).

To make the numerical analysis of control problem (P), we will use the following
equivalent condition to (3.15), which may seem stronger but is not, as we will see
below. Given τ > 0, let us define a bigger cone than Cū in the following way:

vj(x) = 0 if |d̄j(x)| > τ,(3.20)

vj(x) ≥ 0 if −∞ < αj = ūj(x) and |d̄j(x)| ≤ τ,(3.21)

vj(x) ≤ 0 if ūj(x) = βj < ∞ and |d̄j(x)| ≤ τ,(3.22)

and

Cτ
ū =

{
v ∈ L2(ω; Rm) | v satisfies (3.20)–(3.22)

}
.
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Theorem 3.10. Let (ū, ȳ, Φ̄) ∈ L2(ω; Rm) × V1
0(Ω) × V1

0(Ω) satisfy (3.2)–(3.5)
with λ̄ = 1. Then the condition (3.15) is equivalent to the existence of δ > 0 and
τ > 0 such that

(3.23)

∫
Ω

(|z|2 − 2(z · ∇)z · Φ̄) dx + N

∫
ω

|v|2 dx ≥ δ
(
‖v‖2

L2(ω;Rm) + ‖z‖2
L2(Ω)

)

for every (v, z) satisfying the linearized state equation (2.6) and v ∈ Cτ
ū.

Proof. Notice that Cū = C0
ū ⊆ Cτ

ū; therefore (3.23) implies (3.15).

Suppose that (3.15) holds and (3.23) is false. In that case, for every k ∈ N there

exists a pair (vk, zk) satisfying the linearized state equation (2.6), vk ∈ C
1/k
ū , and

(3.24)

∫
Ω

(|zk|2 − 2(zk · ∇)zk · Φ̄)dx + N

∫
ω

v2
kdx <

1

k

(
‖vk‖2

L2(ω;Rm) + ‖zk‖2
L2(Ω)

)
.

We can suppose that ‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω) = 1; otherwise we can redefine vk =

vk/ρk and zk = zk/ρk, with ρk = (‖vk‖2
L2(ω;Rm) + ‖zk‖2

L2(Ω))
1/2. Then there exist

two weakly convergent subsequences in L2(ω; Rm) and L2(Ω), still indexed by k, such
that vk ⇀ v and zk ⇀ z. Repeating the argument of the proof of Theorem 3.8,
we deduce that the pair (v, z) satisfies the linearized equation (2.6) and {zk}∞k=1 is
bounded in V1

0(Ω). Thus {zk}∞k=1 converges strongly in L4(Ω). Let us prove that
v ∈ Cū. The sign condition (3.11)–(3.12) is again trivial since every vk satisfies it. To
check condition (3.10) we are going to prove that if |d̄j(x)| 	= 0, then vj(x) = 0. Let

us fix ε > 0 and define ωε = {x ∈ ω : |dj(x)| > ε}. Notice that
∫
ωε

vj,k(x)d̄j(x)dx →∫
ωε

vj(x)d̄j(x)dx when k tends to infinity. From the definition of C
1/k
ū it follows that

for k > 1/ε all the terms of the sequence {
∫
ωε

vj,k(x)d̄j(x)dx}k are 0, and so the limit

is also 0. Since v satisfies the sign condition (3.5), this can happen only if vj(x) = 0
almost everywhere in ωε. Since ε is arbitrarily small, we conclude that vj(x) = 0 for
a.e. x such that |d̄j(x)| 	= 0, and so v ∈ Cū.

Finally, taking the lower limit in (3.24) we obtain that

∫
Ω

(z2 − 2(z · ∇)z · Φ̄)dx + N

∫
ω

v2dx ≤ 0.

We complete the proof by arguing as at the end of the proof of Theorem 3.8.

Corollary 3.11. Let us assume that (ū, ȳ) is a nonsingular solution of (1.2)
and (ū, ȳ, Φ̄) satisfies (3.2)–(3.5) with λ̄ = 1. Then (3.15) is equivalent to the exis-
tence of δ > 0 and τ > 0 such that

(3.25) J ′′(ū)v2 ≥ δ‖v‖2
L2(ω;Rm) ∀v ∈ Cτ

ū.

This a consequence of Theorem 3.10 and the expression of J ′′(ū) stated in (3.7).
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4. Numerical approximation of the control problem.

4.1. Numerical analysis of the state equation. Let Xh ⊂ H1
0(Ω) and Mh ⊂

L2
0(Ω) be two finite dimensional spaces satisfying the assumptions (H1)–(H3) stated

below.
(H1) (Approximation property of Xh). There exists an operator rh ∈ L(H2(Ω)∩

H1
0(Ω),Xh) such that

(a) ‖y − rhy‖H1
0(Ω) ≤ Ch‖y‖H2(Ω) ∀y ∈ H2(Ω) ∩ H1

0(Ω),

(b) ‖y − rhy‖L2(Ω) ≤ Ch2‖y‖H2(Ω) ∀y ∈ H2(Ω) ∩ H1
0(Ω),

(c) ‖y − rhy‖L∞(Ω) ≤ Ch2−d/2‖y‖H2(Ω) ∀y ∈ H2(Ω) ∩ H1
0(Ω),

(d) ‖yh‖L∞(Ω) ≤ Ch−d/2‖yh‖L2(Ω) ∀yh ∈ Xh.

(H2) (Approximation property of Mh). There exists an operator sh ∈ L(L2
0(Ω),Mh)

such that

‖p− shp‖L2
0(Ω) ≤ Ch‖p‖H1(Ω) ∀ p ∈ H1(Ω) ∩ L2

0(Ω).

(H3) (Uniform inf-sup condition). For each ph ∈ Mh there exists yh ∈ Xh such
that

(ph,div yh) = ‖ph‖2
L2

0(Ω) and ‖yh‖H1
0(Ω) ≤ C‖ph‖L2

0(Ω),

where C > 0 is independent of h, ph, and yh.
Remark 4.1. Assumptions (H1)(b), (H1)(c), and (H1)(d) are needed to establish

uniform convergence for the approximation of the state and the adjoint state (cf.
Lemmas 4.10 and 4.13). In particular, if we use the finite element method when the
family of triangulations is quasi-uniform, the above assumptions are satisfied for the
Taylor–Hood finite element method and for the (P1-Bubble, P1) finite element method
(see [12, p. 98, Lemma A.7 on p. 103, and Chapter 2]). The quasi-uniformity condition
can be relaxed in some cases. For instance, Eriksson [11] gives some conditions on a
locally refined family of triangulations in order to have an inverse inequality similar
to (H1)(d).

Assumption (H3) is equivalent to the classical inf-sup condition. See Girault–
Raviart [12, Remark II.1.4].

For ρ > 0, ȳ ∈ H1
0(Ω), p̄ ∈ L2

0(Ω), and ū ∈ L2(ω; Rm), let us set

Bρ(ȳ) =
{
y ∈ H1

0(Ω) | ‖y − ȳ‖H1
0(Ω) ≤ ρ

}
,

Bρ(p̄) =
{
p ∈ L2

0(Ω) | ‖p− p̄‖L2
0(Ω) ≤ ρ

}
,

Bρ(ū) =
{
u ∈ L2(ω; Rm) | ‖u − ū‖L2(ω;Rm) ≤ ρ

}
.

For all u ∈ L2(ω; Rm), we define a discrete state equation in Xh×Mh, associated
with (1.2), as follows:

(4.1)

Find (yd, ph) ∈ Xh ×Mh satisfying

a(yh,wh) + b(yh,yh,wh) − (ph,div wh) = (f + Cu,wh) ∀wh ∈ Xh,

(λh,div yh) = 0 ∀λh ∈ Mh.
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For a given u ∈ L2(ω; Rm), this equation does not necessarily have a unique
solution yh. Our main objective in this section is to show that there exist ρ1 > 0
and ρ2 > 0 independent of h, such that, for all u ∈ Bρ2(ū), (4.1) admits a unique
solution in Bρ1(ȳ) × Bρ1(p̄). Let T be the bounded linear operator from H−1(Ω) to
V1

0(Ω) × L2
0(Ω) defined by Tg = (z, q), where (z, q) is the solution of

−νΔz + ∇q = g in Ω, div z = 0 in Ω, z = 0 on Γ.

Let F be the nonlinear mapping from L2(ω; Rm)×H1
0(Ω)×L2

0(Ω) into H1
0(Ω)×L2

0(Ω)
defined by

F(u,y, p) = (y, p) + T [B(y) − (f + Cu)].

Notice that F(u,y, p) = 0 if and only if Ay+B(y) = f +Cu in V−1(Ω) and p ∈ L2
0(Ω)

satisfies ∇p = (I−P )(f +Cu+νΔy−(y ·∇)y). The operator ∂(y,p)F(u,y, p) belongs
to L(H1

0(Ω) × L2
0(Ω)) and is defined by

∂(y,p)F(u,y, p)(z, q) = (z, q) + T [B′(y)z].

Observe that ∂(y,p)F(u,y, p) does not depend on u ∈ L2(ω; Rm) and p ∈ L2
0(Ω).

Lemma 4.2. Let (ū, ȳ) ∈ L2(ω; Rm)×V1
0(Ω) be a solution of (1.2), with associ-

ated pressure p̄. Then (ū, ȳ) is a nonsingular solution if and only if ∂(y,p)F(ū, ȳ, p̄)
is an automorphism in H1

0(Ω) × L2
0(Ω).

Proof. Let us assume that (ū, ȳ) ∈ L2(ω; Rm) × V1
0(Ω) is a nonsingular solution

of (1.2). Let (ŷ, p̂) be in H1
0(Ω) × L2

0(Ω). We have to check that there exists a
unique pair (y, p) ∈ H1

0(Ω) × L2
0(Ω) such that (y, p) + T [B′(ȳ)y] = (ŷ, p̂). Let

(y0, p0) ∈ V1
0(Ω) × L2

0(Ω) be the unique solution of the equation

−νΔy0 + B′(ȳ)y0 + ∇p0 = −B′(ȳ)ŷ in Ω, div y0 = 0 in Ω, y0 = 0 on Γ.

Set y = y0 + ŷ and p = p0 + p̂. The equality (y, p) + T [B′(ȳ)(y)] = (ŷ, p̂), i.e.,
T [−B′(ȳ)y0 −B′(ȳ)ŷ] = (y0, p0), follows from the definition of T and of (y0, p0). So
we have proved the surjectivity of ∂(y,p)F(ū, ȳ, p̄). For the injectivity let us assume
that (y, p) + T [B′(ȳ)y] = (0, 0). This implies that Ay +B′(ȳ)y = 0 in V−1(Ω); then
y = 0 and therefore p = 0 too.

Conversely, let us assume that ∂(y,p)F(ū, ȳ, p̄) is an automorphism in H1
0(Ω) ×

L2
0(Ω). Let g ∈ V−1(Ω). Let (ŷ, p̂) ∈ V1

0(Ω) × L2
0(Ω) be the solution of the equation

−νΔŷ + ∇p̂ = g.

Let (y, p) ∈ H1
0(Ω) × L2

0(Ω) be the solution of the equation

∂(y,p)F(ū, ȳ, p̄)(y, p) = (ŷ, p̂).

It is easy to check that y ∈ V1
0(Ω) is the unique solution of Ay + B′(ȳ)y = g.

Let Th be the bounded linear operator from H−1(Ω) to Xh × Mh defined by
Thg = (zh, qh), where (zh, qh) ∈ Xh ×Mh is the solution of

a(zh,wh) − (qh,div wh) = (g,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

Let Fh be the nonlinear mapping from L2(ω; Rm)×H1
0(Ω)×L2

0(Ω) into H1
0(Ω)×L2

0(Ω)
defined by

Fh(u,y, p) = (y, p) + Th[B(y) − (f + Cu)].
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Remark 4.3. Notice that if Fh(u,y, p) = 0, then (y, p) belongs to Xh ×Mh and
is a solution of (4.1). Conversely if (y, p) ∈ Xh × Mh is a solution of (4.1), then
Fh(u,y, p) = 0.

Now we want to prove that if ȳ is nonsingular and if ‖y−ȳ‖H1
0(Ω) is small enough,

then ∂(y,p)Fh(u,y, p) is an automorphism in H1
0(Ω) × L2

0(Ω). For that we make the
following additional and usual assumptions concerning the approximation results for
the Stokes problem.

(S1) limh→0 ‖(T − Th)g‖H1
0(Ω)×L2

0(Ω) = 0 ∀g ∈ H−1(Ω).

(S2) ‖(T − Th)g‖H1
0(Ω)×L2

0(Ω) ≤ Ch‖g‖L2(Ω) ∀g ∈ L2(Ω).

Before proving the desired property of ∂(y,p)Fh(u,y, p), we establish several lemmas.
Lemma 4.4. There exists C > 0 independent of h such that

‖Th‖L(H−1(Ω),H1
0(Ω)×L2

0(Ω)) ≤ C.

Proof. We want to estimate sup
{
‖Thg‖H1

0(Ω)×L2
0(Ω) | ‖g‖H−1(Ω) ≤ 1

}
. Recall

that Thg is the solution (zh, qh) to the discrete Stokes problem

a(zh,wh) − (qh,div wh) = (g,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

Taking wh = zh, we obtain ‖zh‖H1
0(Ω) ≤ C‖g‖H−1(Ω). The estimate for the pressure

qh follows from inf-sup condition (H3). Indeed if we take wh such that (qh,div wh) =
‖qh‖2

L2
0(Ω)

and ‖wh‖H1
0(Ω) ≤ C‖qh‖L2

0(Ω), it is clear that ‖qh‖L2
0(Ω) ≤ C‖g‖H−1(Ω).

We will need the following standard result.
Lemma 4.5. Let X be a Banach space, A ∈ L(X) invertible and B ∈ L(X). If

‖A−B‖L(X) < 1/‖A−1‖L(X), then B is invertible. If ‖A−B‖L(X) < 1/(2‖A−1‖L(X)),
then ‖B−1‖L(X) ≤ 2‖A−1‖L(X).

Proof. A−1B = I −A−1(A−B). Since ‖A−1(A−B)‖ ≤ ‖A−1‖ ‖A−B‖ < 1, we
have that A−1B is invertible and so is B.

B−1A = (I − A−1(A− B))−1 =
∑∞

k=1(A
−1(A− B))k. So ‖B−1‖ ≤ ‖A−1‖/(1 −

‖A−1(A−B)‖) ≤ 2‖A−1‖.
Lemma 4.6. Let ȳ ∈ V1

0(Ω) be a nonsingular solution of (2.2). Then for every
ε > 0 there exist hε > 0 and ρε > 0 such that

‖T [B′(ȳ)] − Th[B′(y)]‖L(H1
0(Ω),H1

0(Ω)×L2
0(Ω)) < ε

for all 0 < h < hε and all y ∈ Bρε(ȳ).
Proof. With classical calculations we can write

‖T [B′(ȳ)] − Th[B′(y)]‖L(H1
0(Ω),H1

0(Ω)×L2
0(Ω))

≤ ‖(T − Th)[B′(ȳ)]‖L(H1
0(Ω),H1

0(Ω)×L2
0(Ω)) + ‖Th[B′(ȳ) −B′(y)]‖L(H1

0(Ω),H1
0(Ω)×L2

0(Ω))

≤ sup‖z‖
H1

0(Ω)
≤1 ‖(T − Th)[B′(ȳ)z]‖H1

0(Ω)×L2
0(Ω)

+ sup‖z‖
H1

0(Ω)
≤1 ‖Th[(B′(ȳ) −B′(y))z]‖H1

0(Ω)×L2
0(Ω).

Since ȳ ∈ H2(Ω), B′(ȳ)z belongs to L2(Ω), and due to assumption (S2) we have

sup‖z‖
H1

0(Ω)
≤1 ‖(T − Th)[B′(ȳ)z]‖H1

0(Ω)×L2
0(Ω)

≤ Ch sup‖z‖
H1

0(Ω)
≤1 ‖B′(ȳ)z‖L2(Ω) ≤ Ch‖ȳ‖H2(Ω).
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On the other hand, using Lemma 4.4 we have

sup
‖z‖

H1
0(Ω)

≤1

‖Th[(B′(ȳ) −B′(y))z]‖H1
0(Ω)×L2

0(Ω)

≤ ‖Th‖L(H−1(Ω),H1
0(Ω)×L2

0(Ω)) sup
‖z‖

H1
0(Ω)

≤1

‖(B′(ȳ) −B′(y))z‖H−1(Ω)

≤ C‖ȳ − y‖H1
0(Ω).

Taking hε and ρε small enough, we obtain the desired result.
Theorem 4.7. Let (ū, ȳ) ∈ L2(ω; Rm)×V1

0(Ω) be a nonsingular solution of (2.2)
and p̄ the associated pressure. There exist h0 > 0 and ρ0 > 0 such that for all 0 <
h < h0 and all y ∈ Bρ0(ȳ), ∂(y,p)Fh(u,y, p) is an automorphism in H1

0(Ω) × L2
0(Ω),

and

‖∂(y,p)Fh(u,y, p)−1‖L(H1
0(Ω)×L2

0(Ω)) ≤ 2‖∂(y,p)F(ū, ȳ, p̄)−1‖L(H1
0(Ω)×L2

0(Ω)).

Proof. The proof is a straightforward consequence of the previous lemmas. Take

ε =
1

2‖∂(y,p)F(ū, ȳ, p̄)−1‖L(H1
0(Ω)×L2

0(Ω))

,

and set (h0, ρ0) = (hε, ρε), where (hε, ρε) is the pair corresponding to ε and defined
in Lemma 4.6. For every 0 < h < h0 and all y ∈ Bρ0(ȳ), we have

‖∂(y,p)F(ū, ȳ, p̄) − ∂(y,p)Fh(u,y, p)‖L(H1
0(Ω)×L2

0(Ω)) =

‖T [B′(ȳ)] − Th[B′(y)]‖L(H1
0(Ω),H1

0(Ω)×L2
0(Ω)) < ε,

and the result follows from Lemma 4.5.
Theorem 4.8. Let (ū, ȳ) be as in Theorem 4.7; then there exist ρ1 > 0, ρ2 > 0,

and h1 > 0 such that for all 0 < h < h1 and u ∈ Bρ2(ū), the equation Fh(u,yh, ph) =
0 admits a unique solution in Bρ1

(ȳ) ×Bρ1(p̄).
Proof. Let ρ0 and h0 be the positive constants given by Theorem 4.7. For ρ ≤

ρ0, h ≤ h0, and u ∈ Bρ2(ū), we define the mapping Ψu from Bρ(ȳ) × Bρ(p̄) into
H1

0(Ω) × L2
0(Ω) by

Ψu(y, p) = (y, p) −
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 Fh(u,y, p).

It is clear that any fixed point of Ψu is a solution of Fh(u,y, p) = 0. Let us show that
Ψu is a strict contraction if ρ is small enough.

(i) First, we show that Ψu is a mapping from Bρ(ȳ)×Bρ(p̄) into itself. With the
identity F(ū, ȳ, p̄) = 0, and a Taylor formula we obtain

‖Ψu(y, p) − (ȳ, p̄)‖H1
0(Ω)×L2

0(Ω)

= ‖
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 {
∂(y,p)Fh(ū, ȳ, p̄)(y − ȳ, p− p̄)

+ [−Fh(u,y, p) + Fh(u, ȳ, p̄)] + [−Fh(u, ȳ, p̄) + F(ū, ȳ, p̄)]} ‖H1
0(Ω)×L2

0(Ω)

≤ C‖∂(y,p)Fh(ū, ȳ, p̄)(y − ȳ, p− p̄)

−
∫ 1

0

∂(y,p)Fh(ū,yθ, pθ)(y − ȳ, p− p̄)dθ‖H1
0(Ω)×L2

0(Ω)

+ C‖Fh(u, ȳ, p̄) −F(ū, ȳ, p̄)‖H1
0(Ω)×L2

0(Ω)

≤ C

∫ 1

0

‖∂(y,p)Fh(ū,yθ, pθ) − ∂(y,p)Fh(ū, ȳ, p̄)‖L(H1
0(Ω)×L2

0(Ω))dθ

×‖(y − ȳ, p− p̄)‖H1
0(Ω)×L2

0(Ω)

+ C‖(Th − T )[B(ȳ) − f ]‖H1
0(Ω)×L2

0(Ω) + C‖(T − Th)[Cū]‖H1
0(Ω)×L2

0(Ω)

+ C‖Th[C(ū − u)]‖H1
0(Ω)×L2

0(Ω),
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where (yθ, pθ) = (ȳ + θ(y − ȳ), p̄ + θ(p− p̄)).
Let us estimate each of the terms. Using the definition of Fh and Lemma 4.4 we

get

‖∂(y,p)Fh(ū, ȳ + θ(y − ȳ), p̄ + θ(p− p̄)) − ∂(y,p)Fh(ū, ȳ, p̄)‖L(H1
0(Ω)×L2

0(Ω))

= ‖Th[B′(ȳ + θ(y − ȳ)) −B′(ȳ)]‖L(H1
0(Ω)×L2

0(Ω))

≤ C‖B′(y − ȳ)‖L(H1
0(Ω),H−1(Ω)) ≤ C‖y − ȳ‖H1

0(Ω).(4.2)

With assumption (S2) we have

‖(Th − T )[B(ȳ) − f ]‖H1
0(Ω)×L2

0(Ω) ≤ Ch(‖ȳ‖H2(Ω) + ‖f‖L2(Ω)),

and

‖(T − Th)[Cū]‖H1
0(Ω)×L2

0(Ω) ≤ Ch‖ū‖L2(ω;Rm).

Finally, from Lemma 4.4 it follows that

‖Th[C(ū − u)]‖H1
0(Ω)×L2

0(Ω) ≤ C‖ū − u‖L2(ω;Rm).

Collecting these estimates all together, we have proved that there exists a constant
Ĉ > 0 independent of h and ρ such that

‖Ψu(y, p) − (ȳ, p̄)‖H1
0(Ω)×L2

0(Ω) ≤ Ĉ(h + ρ2).

We choose ρ̂1 ≤ min{ρ0, 1/(2Ĉ)}, ρ̂2 = ρ̂2
1, and ĥ1 = min{h0, ρ̂1/(2Ĉ)}. It is clear

that for all 0 < h < ĥ1 and all u ∈ Bρ̂2(ū), Ψu is a mapping from Bρ̂1(ȳ) × Bρ̂1(p̄)
into itself.

(ii) Now we look for conditions to have a strict contraction. Take (y1, p1), (y2, p2) ∈
Bρ̂1

(ȳ) ×Bρ̂1
(p̄), 0 < h < ĥ1, and u ∈ Bρ̂2

(ū). Classical calculations lead to

‖ Ψu(y1, p1) − Ψu(y2, p2)‖H1
0(Ω)×L2

0(Ω)

=
∥∥∥(y1 − y2, p1 − p2)

−
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1
{
Fh(u,y1, p1) −Fh(u,y2, p2)

}∥∥∥
H1

0(Ω)×L2
0(Ω)

=
∥∥∥ [∂(y,p)Fh(ū, ȳ, p̄)

]−1
{
∂(y,p)Fh(ū, ȳ, p̄)(y1 − y2, p1 − p2)

−
∫ 1

0

∂(y,p)Fh(ū,y1 + θ(y2 − y1), p1 + θ(p2 − p1))(y1 − y2, p1 − p2)dθ
}∥∥∥

H1
0(Ω)×L2

0(Ω)
.

The norm ‖
[
∂(y,p)Fh(ū, ȳ, p̄)

]−1 ‖L(H1
0(Ω)×L2

0(Ω)) can be estimated by a constant C

independent of h; see Theorem 4.7. To estimate the expression in brackets we can
repeat the argument of inequalities (4.2), since y = y1 + θ(y2 − y1) ∈ Bρ̂1

(ȳ). There

then exists C̃ > 0 independent of ρ̂1 and h such that

‖Ψu(y1, p1) − Ψu(y2, p2)‖H1
0(Ω)×L2

0(Ω) ≤ C̃ρ̂2
1.

Choosing ρ1 = min
{
ρ0, 1/(2Ĉ), 1/

√
2C̃

}
, ρ2 = ρ2

1, and h1 = min
{
h0, ρ1/(2Ĉ)

}
, we

have established that, for all 0 < h < h1 and all u ∈ Bρ2
(ū), Ψu is a strict contraction

in Bρ1
(ȳ) ×Bρ1

(p̄).
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Remark 4.9. We have proved that, for all 0 < h < h1 and all u ∈ Bρ2
(ū), the

equation Fh(u,yh, ph) = 0 admits a unique solution (yh(u), ph(u)) in (Bρ1(ȳ) ×
Bρ1(p̄)) ∩ (Xh × Mh), and that ∂(y,p)Fh(u,yh(u), ph(u)) is an automorphism in
H1

0(Ω) × L2
0(Ω). Therefore the mapping Gh from Bρ2(ū) into (Bρ1(ȳ) × Bρ1(p̄)) ∩

(Xh ×Mh) defined by Gh(u) = (yh(u), ph(u)), obeys Fh(u, Gh(u)) = 0, and the im-
plicit function theorem implies that it is of class C∞ in the interior of the ball Bρ2

(ū).
Notice that Gh is not an approximation of G because G(u) = yu is a velocity field,
while Gh(u) stands for a velocity field and a pressure.

4.2. Discretization of the control problem. For simplicity throughout the
following we assume that ω is a polygonal domain. But we could consider a more
general situation if we take into account the error we introduce by approximating ω
by a polygonal domain.

For h > 0, let Th be a triangulation of ω. Although the discretization of the control
can be done independently of the discretization of the state equation, in practice, when
we use the finite element method to approximate the state and adjoint state equation,
the same family of triangulations is used. Some assumptions must be made on the
family of triangulations in order to have the inverse estimate of assumption (H1)(d).
We will suppose that the family is quasi-uniform (see, e.g., [9, p. 135]): In this case
h = maxT∈Th

ρ(T ), where ρ(T ) is the diameter of the set T . We denote by σ(T )
the diameter of the largest ball contained in T . We assume there exist two positive
constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all 0 < h.
In the following we would like to treat in the same way the cases when the control

set is discretized and when it is not. We shall see that we obtain better estimates
when the control set is not discretized. For that we set

Uh =
{
u ∈ L2(ω; Rm) | ui|T ∈ P0(T ) ∀T ∈ Th

}
,

Uh
ad =

{
u ∈ Uh | αi ≤ ui ≤ βi ∀ 1 ≤ i ≤ d

}
.

In the discrete control problem stated below, the case when the control set is not
discretized corresponds to the choice Uad,h = Uad, while the case when the control set
is discretized corresponds to Uad,h = Uh

ad.
We can now define the discrete control problem associated with (P) in the follow-

ing way:

(Ph) inf
{
F (u,y) | (u,y, p) ∈ Uad,h × Xh ×Mh and (u,y, p) satisfies (4.1)

}
.

Let us recall that (u,y, p) satisfies (4.1) if and only if

(4.3) Fh(u,y, p) = 0.

Our aim is to study the existence of local minima of problems (Ph) which ap-
proximate the local minima of (P). This can be proved for nonsingular local solutions
of (P). Let us start by proving some error estimates for the state equation. Given a
nonsingular solution (ū, ȳ) of (1.2), let h1 > 0 and ρ2 > 0 be given by Theorem 4.8.
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By using the function Gh from Bρ2
(ū) into (Bρ1

(ȳ)×Bρ1
(p̄))∩ (Xh×Mh) intro-

duced at the end of the previous section in Remark 4.9, we set (yh
u, p

h
u) = Gh(u) =

(yh(u), ph(u)). Now we have the following result.
Lemma 4.10. Let (ū, ȳ) be as in Theorem 4.7. There exists a constant C > 0

such that, for all u, û ∈ B̄ρ2(ū), and 0 < h < h1, the following estimates hold:

‖yu − yh
u‖L2(Ω) ≤ Ch2‖yu‖H2(Ω),(4.4)

‖yu − yh
û‖H1

0(Ω) + ‖pu − phû‖L2
0(Ω) ≤ C(h + ‖u − û‖L2(ω;Rm)).(4.5)

Moreover, if uh ∈ Bρ2(ū) and uh ⇀ u weakly in L2(ω; Rm), then yh
uh

→ yu in

C(Ω̄; Rd).
Proof. (i) The estimate (4.4) directly follows from usual estimates for the approx-

imation of the Navier–Stokes equations by a finite element method. See, for instance,
Girault–Raviart [12, Theorem IV.4.2].

(ii) To prove (4.5), let us write

‖yu − yh
û‖H1

0(Ω) ≤ ‖yu − yh
u‖H1

0(Ω) + ‖yh
u − yh

û‖H1
0(Ω),

‖pu − phû‖L2
0(Ω) ≤ ‖pu − phu‖L2

0(Ω) + ‖phu − phû‖L2
0(Ω).

Usual finite element estimates [12, estimate (4.7)] give us

‖yu − yh
u‖H1

0(Ω) + ‖pu − phu‖L2
0(Ω) ≤ Ch.

If u belongs to the interior of Bρ2(ū), from the definition of Gh it follows that

G′
h(u)v = −[∂(y,p)Fh(u,yh

u, p
h
u)]−1Th[Cv].

Hence, with Lemma 4.4 and Theorem 4.7 we obtain

‖Gh(u) −Gh(û)‖H1
0(Ω)×L2

0(Ω)

=

∥∥∥∥∫ 1

0

[∂(y,p)Fh(uθ,y
h
uθ
, phuθ

)]−1Th[C(u − û)]

∥∥∥∥
H1

0(Ω)×L2
0(Ω)

≤ C‖u − û‖L2(ω;Rm),

where uθ = û + θ(u − û). Collecting the previous estimates, the proof of (4.5) is
complete.

(iii) Let (uh)h be a sequence in Bρ2(ū)∩Uad, weakly converging to u in L2(ω; Rm).
Due to Theorem 2.2, yu belongs to W2,r̄(Ω) and {yuh

}h is bounded in W2,r̄(Ω).
Thus it converges to yu in Lp(Ω) for all 2 ≤ p < ∞, and the sequence {yuh

⊗ yuh
}h

converges to yu ⊗ yu in (Lp(Ω))d for all 2 ≤ p < ∞. The function yuh
− yu satisfies

the equation

A(yuh
− yu) = div

(
(yu ⊗ yuh

) − (yuh
⊗ yu)

)
+ C(uh − u) in V−1(Ω).

Let p satisfy d < p < 6. From classical estimates for the Stokes equations it follows
that

‖yuh
− yu‖W1,p(Ω) ≤ C‖div

(
(yu ⊗ yuh

) − (yuh
⊗ yu)

)
+ C(uh − u)‖W−1,p(Ω)

≤ C
(
‖(yu ⊗ yuh

) − (yuh
⊗ yu)‖Lp(Ω) + ‖C(uh − u)‖W−1,p(Ω)

)
.

Since W1,p(Ω) ↪→ L∞(Ω), and L2(Ω) is compactly embedded in W−1,p(Ω) (because
p < 6), it is clear that {yuh

}h tends to yu in L∞(Ω).
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We have

‖yh
uh

− yu‖L∞(Ω) ≤ ‖yuh
− yu‖L∞(Ω) + ‖yh

uh
− yuh

‖L∞(Ω)

≤ ‖yuh
− yu‖L∞(Ω) + ‖yh

uh
− rhyuh

‖L∞(Ω) + ‖rhyuh
− yuh

‖L∞(Ω).

From (H1)(c) and (H1)(d) we deduce that

‖yuh
− rhyuh

‖L∞(Ω) ≤ Ch2−d/2‖yuh
‖H2(Ω),

and

‖rhyuh
− yh

uh
‖L∞(Ω) ≤ Ch−d/2‖rhyuh

− yh
uh

‖L2(Ω)

≤ Ch−d/2‖rhyuh
− yuh

‖L2(Ω) + Ch−d/2‖yuh
− yh

uh
‖L2(Ω).

With (H1)(b) and (4.4) we have

‖rhyuh
− yuh

‖L2(Ω) ≤ Ch2‖yuh
‖H2(Ω),

‖yuh
− yh

uh
‖L2(Ω) ≤ Ch2‖yuh

‖H2(Ω).

Collecting together these estimates and the previous convergence result we have
proved that {yh

uh
}h converges to yu in L∞(Ω).

Theorem 4.11. Let us assume that (P) has a nonsingular local minimum (ū, ȳ).
Then there exists h2 > 0 such that, for all 0 < h < h2, (Ph) has at least one solution.
If, furthermore, (ū, ȳ) is a strict local minimum of (P), then (Ph) has a local minimum
(ūh, ȳh) in a neighborhood of (ū, ȳ) for all 0 < h < h2 and the following identities
hold:

lim
h→0

Jh(ūh) = J(ū), lim
h→0

‖ū − ūh‖L2(ω) = 0, and lim
h→0

‖ȳ − ȳh‖H1
0(Ω) = 0,

where Jh(ūh) = F (ūh, ȳh).
Proof. Let us start by proving that the set of feasible pairs (u,y) for problem

(Ph) is nonempty for h small enough. We prove it only in the case when Uad,h = Uh
ad.

The case when Uad,h = Uad is obvious.
Since (ū, ȳ) is a nonsingular local minimum, with the aid of Theorem 4.8 we

derive the existence of ρ ≤ ρ2 such that

(4.6) J(ū) ≤ J(u) ∀u ∈ Uad ∩Bρ(ū).

Let us define Πhū ∈ Uh by

(4.7) Πhū|T =
1

|T |

∫
T

ū(x)dx.

It is clear that Πhū ∈ Uad,h. Let us prove that it belongs to Bρ(ū) if h is small enough.
Since ū is Lipschitz continuous (see Theorem 3.5), we can write∫

ω

(Πhūi(s) − ūi(s))
2ds =

∑
T⊂ω

∫
T

(
1

|T |

∫
T

ūi(x)dx− ūi(s)

)2

ds

=
∑
T⊂ω

∫
T

(ūi(xT ) − ūi(s))
2ds ≤ |ω|‖ū‖2

W 1,∞(ω;Rm)h
2.
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Therefore if

h2 = min

{
h1,

ρ

‖ū‖W 1,∞(ω;Rm)|ω|1/2

}
,

then Πhū belongs to Uad,h ∩ Bρ(ū) for all h ≤ h2. Now setting uh = Πhū and
(yh

uh
, phuh

) = Gh(uh), we have that (uh,y
h
uh

, phuh
) satisfies (4.3) and (uh,y

h
uh

) is a
feasible pair for (Ph) for any h ≤ h2.

Since the set of feasible points of (Ph) is nonempty and closed, and Fh is contin-
uous, convex on Uad,h ×Xh, and coercive with respect to u ∈ Uad,h, then (Ph) has at
least one solution.

Now let us assume that (ū, ȳ) is a strict local solution of (P) in (Uad ∩Bρ(ū)) ×
Bρ(ȳ). We consider the problems

(Qh)

{
minJh(u),
u ∈ Uad,h ∩Bρ(ū),

where Jh(u) = F (u,yh
u) with (yh

u, p
h
u) = Gh(u), Gh being defined in Remark 4.9.

Above we have proved that Uad,h ∩ Bρ(ū) is nonempty for h ≤ h2. Observe that
Uad,h ∩Bρ(ū) is convex, bounded, and closed in L2(ω; Rm), the mapping u �→

∫
ω
|u|2

is lower semicontinuous for the weak topology of L2(ω; Rm), and from Remark 4.9 it
follows that the mapping u �→

∫
Ω
|yh

u − yd|2 is continuous for the weak topology of
L2(ω; Rm). Therefore (Qh) has at least one solution ūh. From any subsequence of
{ūh}h, we can extract another subsequence, still indexed by h to simplify the notation,
converging weakly in L2(ω; Rm) to some ũ ∈ Bρ(ū). Let us check that ũ = ū. Let us
take again uh = Πhū ∈ Uad,h ∩Bρ(ū) for all h < h2. By passing to the limit when h
tends to zero, with the convergence result stated in Lemma 4.10, we can write

J(ũ) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(Πhū) = J(ū).

Since ũ ∈ Bρ(ū) and the inequality in (4.6) is strict for u 	= ū, the above inequality
implies that ũ = ū. Thus we have

lim
h→0

Jh(ūh) = J(ū),

and still with Lemma 4.10, we deduce that

lim
h→0

∫
ω

|ūh|2 =

∫
ω

|ū|2.

Therefore the subsequence {ūh}h converges to ū in L2(ω; Rm). Since ū is the only
cluster point for the weak topology of L2(ω; Rm) of the original sequence {ūh}h, it
is clear that the convergence properties stated in the theorem hold for the whole
sequence {ūh}h. The convergence of the corresponding states is a consequence of
Lemma 4.10. Finally, the strong convergence ūh → ū in L2(ω; Rm) implies that
ūh belongs to the interior of the ball Bh

ρ (ū), which implies that (ūh, ȳh) is a local
minimum of (Ph).

4.3. Discrete adjoint equation. We define the discrete adjoint state (Φh
u, π

h
u)

∈ Xh ×Mh associated with a control u ∈ Bρ2(ū) as the solution to the problem

(4.8)

a(Φh
u,wh) + b(yh

u,wh,Φ
h
u) + b(wh,y

h
u,Φ

h
u) − (πh

u,div wh)

= (yh
u − yd,wh) ∀wh ∈ Xh,

(λh,div Φh
u) = 0 ∀λh ∈ Mh.
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Lemma 4.12. Let (ū, ȳ) be as in Theorem 4.7. There exist 0 < h3 ≤ h2 and
0 < ρ3 ≤ ρ2 such that, for all u ∈ Bρ3(ū) and all 0 < h ≤ h3, the system (4.8) admits
a unique solution (Φh

u, π
h
u) ∈ Xh ×Mh.

Proof. (i) For y ∈ H1
0(Ω), consider the mapping Gy from H1

0(Ω) × L2
0(Ω) into

itself defined by

Gy(Φ, π) = (Φ, π) + T [B′(y)∗Φ].

As in Lemma 4.2, we can easily show that Gy is an automorphism in H1
0(Ω) × L2

0(Ω)
if and only if y is a nonsingular solution of (2.2). Thus Gȳ is an automorphism in
H1

0(Ω) × L2
0(Ω). We also introduce the mapping Gy,h from H1

0(Ω) × L2
0(Ω) into itself

defined by

Gy,h(Φ, π) = (Φ, π) + Th[B′(y)∗Φ].

Arguing as in the proof of Theorem 4.7, we can assume that h0 is chosen so that,
for all 0 < h < h0 and all y ∈ Bρ0(ȳ), Gy,h is an automorphism in H1

0(Ω) × L2
0(Ω).

In particular, according to estimate (4.5), there exist 0 < h3 ≤ h2 and 0 < ρ3 ≤ ρ2

such that, for all 0 < h ≤ h3 and all u ∈ Bρ3(ū), Gyh
u,h

is an automorphism in

H1
0(Ω) × L2

0(Ω) and

‖G−1
yh
u,h

‖L(H1
0(Ω)×L2

0(Ω)) ≤ 2‖G−1
ȳ ‖L(H1

0(Ω)×L2
0(Ω)).

Without loss of generality we can also assume that Gy(u) is an automorphism in
H1

0(Ω) × L2
0(Ω) for all u ∈ Bρ3(ū).

(ii) Now we are going to show that (Φh
u, π

h
u) ∈ Xh ×Mh is a solution of (4.8) if

and only if

(4.9) Gyh
u,h

(Φh
u, π

h
u) = (zh, qh),

where (zh, qh) ∈ Xh ×Mh is the solution of the discrete Stokes problem,

(4.10)
a(zh,wh) − (qh,div wh) = (yh(u) − yd,wh) ∀wh ∈ Xh,

(λh,div zh) = 0 ∀λh ∈ Mh.

To prove this result, we notice that (4.9) is satisfied if and only if

(Φh
u − zh, π

h
u − qh) = −Th[B′(yh

u)∗Φh
u],

which is equivalent to

(4.11)
a(Φh

u − zh,wh) − (πh
u − qh,div wh) = (B′(yh

u)∗Φh
u,wh) ∀wh ∈ Xh,

(λh,div Φh
u − div zh) = 0 ∀λh ∈ Mh.

Now using equation (4.10), we see that (4.11) is equivalent to (4.8). This completes
the proof.

We are going to prove error estimates for the discrete adjoint state. Set

Vh =
{
Φh ∈ Xh | (λh,div Φh) = 0 ∀λh ∈ Mh

}
.

Lemma 4.13. Let (ū, ȳ) be as in Theorem 4.7. There exists a constant C > 0
such that, for all u, û ∈ Bρ3(ū) and all 0 < h < h3, the solution (Φu, πu) to (3.8)
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and the solutions (Φh
u, π

h
u) and (Φh

û, π
h
û) to (4.8) obey the following estimates:

‖Φu − Φh
u‖L2(Ω) ≤ Ch2,(4.12)

‖Φu − Φh
u‖H1

0(Ω) + ‖πu − πh
u‖L2

0(Ω) ≤ Ch,(4.13)

‖Φu − Φh
û‖H1

0(Ω) + ‖πu − πh
û‖L2

0(Ω) ≤ C(h + ‖u − û‖L2(ω;Rm)).(4.14)

Moreover, if uh ∈ Bρ3(ū) and uh ⇀ u weakly in L2(ω; Rm), then Φh
u → Φu strongly

in C(Ω̄; Rd).
Proof. (i) We first show (4.13). From the proof of Lemma 4.12 it follows that

Gyu is an automorphism in H1
0(Ω) × L2

0(Ω), and that, for all u ∈ Bρ3
(ū) and all

0 < h < h3, Gyh
u

is an automorphism in H1
0(Ω) × L2

0(Ω) and

‖G−1
yh
u,h

‖L(H1
0(Ω)×L2

0(Ω)) ≤ 2‖G−1
ȳ ‖L(H1

0(Ω)×L2
0(Ω)).

Let us recall that (Φu, πu) is the solution of the equation

Gyu(Φu, πu) = T (yu − yd),

and that (Φh
u, π

h
u) is the solution of

Gyh
u,h

(Φh
u, π

h
u) = Th(yh

u − yd).

Thus we have

Gyh
u,h

(Φu − Φh
u, πu − πh

u)

= (Φu, πu) + Th(B′(yh
u)∗Φu) − Gyh

u,h
(Φh

u, π
h
u)

= Th[B′(yh
u)∗Φu] − T [B′(yu)∗Φu] + T (yu − yd) − Th(yh

u − yd)

= (T − Th)[yh
u −B′(yh

u)∗Φu − yd]

+T [B′(yh
u)∗Φu −B′(yu)∗Φu] + T [yu − yh

u],

which yields

(Φu − Φh
u, πu − πh

u)

=
(
Gyh

u,h

)−1(
(T − Th)[yh

u −B′(yh
u)∗Φu − yd]

+ T [B′(yh
u)∗Φu −B′(yu)∗Φu] + T [yu − yh

u]
)
.

With estimate (4.5) and assumption (S2), we obtain

‖Φu − Φh
u‖H1

0(Ω) + ‖πu − πh
u‖L2

0(Ω) ≤ Ch.

(ii) To prove (4.12) we proceed as in [12, Chapter 2, Theorems 1.2 and 1.9]. The
solution (Φu, πu) to (3.8) and the solution (Φh

u, π
h
u) to (4.8) satisfy

(4.15)

a(Φu − Φh
u,wh) + b(yu,wh,Φu − Φh

u) + b(wh,yu,Φu − Φh
u)

− (πu − πh
u,div wh) = (yu − yh

u,wh) + b(yu − yh
u,wh,Φ

h
u)

+ b(wh,yu − yh
u,Φ

h
u) ∀ wh ∈ Xh,

(λh,div Φu − div Φh
u) = 0 ∀λh ∈ Mh.
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For all g ∈ L2(Ω), let us consider the solution (zg, qg) ∈ H1
0(Ω) × L2

0(Ω) to

(4.16)
a(zg,w) + b(yu, zg,w) + b(zg,yu,w) − (qg,div w) = (g,w) ∀w ∈ H1

0(Ω),

(λ,div zg) = 0 ∀λ ∈ L2
0(Ω),

and the solution (zhg, q
h
g) ∈ H1

0(Ω) × L2
0(Ω) to

a(zhg,wh) + b(yu, z
h
g,wh) + b(zhg,yu,wh) − (qhg ,div wh) = (g,wh) ∀w ∈ Xh,

(λ,div zhg) = 0 ∀λ ∈ Mh.

Choosing wh = zhg in (4.15) and w = Φu − Φh
u in (4.16) and combining the two

identities, we obtain

(g,Φu − Φh
u) = a(Φu − Φh

u, zg − zhg) + b(yu, zg − zhg,Φu − Φh
u)

+ b(zg − zhg,yu,Φu − Φh
u) + (πu − πh

u,div zhg) − (qg,div Φu − div Φh
u)

+ (yu − yh
u, z

h
g) + b(yu − yh

u, z
h
g,Φ

h
u) + b(zhg,yu − yh

u,Φ
h
u)

= a(Φu − Φh
u, zg − zhg) − b(yu,Φu − Φh

u, zg − zhg) − b(zg − zhg,Φu − Φh
u,yu)

+ (yu − yh
u, z

h
g) − b(yu − yh

u,Φ
h
u, z

h
g) − b(zhg,Φ

h
u,yu − yh

u)

+ (πu − πh
u,div zhg − div zg) − (qg − qhg ,div Φu − div Φh

u).

Thus we have

(4.17)

‖Φu − Φh
u‖L2(Ω) = sup

‖g‖L2(Ω)=1

(g,Φu − Φh
u)

≤ C sup
‖g‖L2(Ω)=1

{
‖Φu − Φh

u‖H1
0(Ω)‖zg − zhg‖H1

0(Ω)

+ ‖Φu − Φh
u‖H1

0(Ω)‖zg − zhg‖L2(Ω)‖yu‖L∞(Ω)

+ ‖yu − yh
u‖L2(Ω)‖zhg‖L2(Ω) + ‖yu − yh

u‖L2(Ω)‖zhg‖L∞(Ω)‖Φh
u‖H1

0(Ω)

+ ‖πu − πh
u‖L2

0(Ω)‖zg − zhg‖H1
0(Ω) + ‖qg − qhg‖L2

0(Ω)‖Φu − Φh
u‖H1

0(Ω)

}
.

To complete estimate (4.12), we are going to use (4.13) and a similar error estimate
for (zg, qg):

(4.18) ‖zg − zhg‖H1
0(Ω) + ‖qg − qhg‖L2

0(Ω) ≤ Ch(‖zg‖H2(Ω) + ‖qg‖H1(Ω)).

With (4.17), (4.13), (4.18), and (4.4), we obtain

‖Φu − Φh
u‖L2(Ω) ≤ Ch2.

The proof of (4.12) is complete. Estimate (4.14) and the last statement in the lemma
can now be proved in the same way as we did it for the state.

Let (ū, ȳ) be a nonsingular strict local minimum of (P) and {(ūh, ȳh)}h≤h3
be a

sequence of local minima of problems (Ph) converging to (ū, ȳ) in L2(ω; Rm)×H1
0(Ω),

with ūh ∈ Bρ3(ū), where h3 and ρ3 are given by Lemma 4.12. Then every element
ūh from a sequence {ūh}h≤h3 is a local solution of the problem

(̂Ph)

{
minJh(u) = F (u,yh

u),
u ∈ Uad,h,
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where (yh
u, p

h
u) = Gh(u), Gh being defined in Remark 4.9.

Lemma 4.14. Let ūh be a solution to problem (̂Ph), and let (ȳh, p̄h) ∈ Xh ×Mh

be the corresponding state and pressure. Then ūh satisfies∫
ω

(C∗Φ̄h + N ūh) · (uh − ūh) dx ≥ 0 ∀uh ∈ Uad,h,

where (Φ̄h, π̄h) = (Φh
ūh

, πh
ūh

) ∈ Xh ×Mh is the discrete adjoint state associated with
ūh, that is, the solution to the system (4.8) where u is replaced by ūh.

Proof. The lemma is a consequence of the following identity:

J ′
h(ūh)(uh − ūh) =

∫
ω

(C∗Φ̄h + N ūh) · (uh − ūh) dx.

Now we can establish uniform convergence for the controls.
Lemma 4.15. Let ūh be as in Lemma 4.14; then limh→0‖ūh − ū‖L∞(ω;Rm) = 0.

Proof. Let us start with the case where Uad,h = Uh
ad. Since the components of

the elements of Uh are constant on every triangle, for all T ∈ Th and 1 ≤ i ≤ m, we
have

ūi,h|T = Proj[αi,βi]

(
− 1

N |T |

∫
T

(C∗Φ̄h)i(x)dx

)
.

For all x ∈ T , using (3.9), the integral mean value theorem, and the Lipschitz conti-
nuity of Φ̄, we can write

|ūi,h(x) − ūi(x)| ≤
∣∣∣∣ 1

N |T |

∫
T

(C∗Φ̄h)i(s)ds−
1

N
(C∗Φ̄)i(x)

∣∣∣∣
=

1

N
|(C∗Φ̄h)i(xT ) − (C∗Φ̄)i(x)|

≤ 1

N
|(C∗Φ̄h)i(xT ) − (C∗Φ̄)i(xT )| + 1

N
|(C∗Φ̄)i(xT ) − (C∗Φ̄)i(x)|

≤ C‖Φ̄h − Φ̄‖L∞(Ω) + C|xT − x| ≤ C(‖Φ̄h − Φ̄‖L∞(Ω) + h)

for some xT ∈ T . The uniform convergence of the adjoint states allows us to complete
the proof in the case when Uad,h = Uh

ad.
In the case when Uad,h = Uad we have

ūi,h(x) = Proj[αi,βi]

(
− 1

N |T | (C
∗Φ̄h)i(x)

)
.

The convergence of ūh follows from Lemma 4.13.

4.4. Error estimates. Let (ū, ȳ) be a nonsingular local solution of (P) satisfy-
ing the sufficient second order optimality conditions (3.15) or, equivalently, (3.25). As
a consequence of these conditions, we know that (ū, ȳ) is a strict local minimum of
(P). Let {(ūh, ȳh)}h be a sequence of local solutions of problems (Ph) converging to
(ū, ȳ); see Theorem 4.11 and Lemma 4.15. We assume that h ≤ h3 and ūh ∈ Bρ3(ū),

so that ūh is a local minimum of (̂Ph). The goal of this section is to estimate the
order of convergence of this sequence.

Lemma 4.16. Let δ > 0 be the constant defined in Corollary 3.11. There exists
0 < h4 ≤ h3 such that

δ

2
‖ū − ūh‖2

L2(ω;Rm) ≤ (J ′(ūh) − J ′(ū))(ūh − ū) ∀ 0 < h < h4.
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Proof. First, let us check that for h > 0 small enough, ūh − ū belongs to Cτ
ū.

The sign condition (3.21)–(3.22) is trivial since ūh ∈ Uad. We have to check condition
(3.20). Let us set

d̄h(x) = (C∗Φ̄h)(x) + N ūh(x).

Take h4 small enough to have

‖d̄ − d̄h‖L∞(ω) <
τ

4
, and ‖d̄(x1) − d̄(x2)‖Rm <

τ

4
if ‖x1 − x2‖Rd < h,

for all 0 < h ≤ h4. First consider the case where Uad,h = Uad. In that case, if d̄i(ξ) > τ
(respectively, d̄i(ξ) < −τ), we have d̄i,h(ξ) > 3τ/4 (respectively, d̄i,h(ξ) < −3τ/4),
and ūi(ξ) = αi and ūi,h(ξ) = αi > −∞ (respectively, ūi(ξ) = βi and ūi,h(ξ) = βi <
∞). Thus ui,h(ξ) = ui(ξ) if |d̄i(ξ)| > τ , and condition (3.20) is satisfied.

Now consider the case where Uad,h = Uh
ad. For all T ∈ Th and all 1 ≤ i ≤ m let

us set

Ii,T =

∫
T

d̄i,h(x)dx.

Take ξ ∈ ω such that d̄i(ξ) > τ . In this case ūi(ξ) = αi > −∞. Choose x in the same
triangle T as ξ. Then

d̄i,h(x) = d̄i,h(x) − d̄i(x) + d̄i(x) − d̄i(ξ) + d̄i(ξ) > −τ

4
− τ

4
+ τ =

τ

2
.

Therefore Ii,T > 0 and ūi,h|T = αi. In particular ūi,h(ξ) = αi and ūi,h(ξ)− ūi(ξ) = 0.
Similarly if d̄i(ξ) < −τ , we have ūi,h(ξ) = βi < ∞ and ūi,h(ξ) − ūi(ξ) = 0, and
condition (3.20) is still satisfied in that case.

Thus second order sufficient conditions stated in Corollary 3.11 can be applied,
and we have

J ′′(ū)(ūh − ū)2 ≥ δ‖ūh − ū‖2
L2(ω;Rm).

On the other hand, with the mean value theorem, we obtain

(J ′(ūh) − J ′(ū))(ūh − ū) = J ′′(ū + θh(ū − ūh))(ūh − ū)2

for some 0 < θh < 1. Due to the uniform convergence properties stated for the control
and the adjoint state and the explicit form of the second derivative of J , it is clear
that we can choose h4 small enough to have

J ′′(ū + θh(ū − ūh))(ūh − ū)2 ≥ δ

2
‖ūh − ū‖2

L2(ω;Rm)

for all 0 < h ≤ h4. The proof is complete.
Lemma 4.17. Assume that Uad,h = Uh

ad. There exists 0 < h5 ≤ h4 such that for
every 0 < h ≤ h5 there exist u∗

h ∈ Uh and a constant C > 0 independent of h such
that

(1) u∗
h ∈ Uad,h,

(2) J ′(ū)ū = J ′(ū)u∗
h,

(3) ‖ū − u∗
h‖L∞(ω;Rm) ≤ Ch.
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Proof. For every triangle T ∈ Th and 1 ≤ i ≤ m, define

Ii,T =

∫
T

d̄i(x)dx

and

u∗
i,h|T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Ii,T

∫
T

di(x)ūi(x)dx if Ii,T 	= 0,

1

|T |

∫
T

ūi(x)dx if Ii,T = 0.

Due to the Lipschitz continuity of ū, there exists 0 < h5 ≤ h4 such that, for 0 <
h ≤ h5, each component ūi cannot achieve both values α and β in the same triangle.
Hence, for each T ∈ Th, either d̄i(x) is nonnegative for all x ∈ T or d̄i(x) is nonpositive
for all x ∈ T . Therefore, Ii,T = 0 if and only if d̄i(x) = 0 for all x ∈ T . Moreover,
if Ii,T 	= 0, then d̄i(x)/Ii,T ≥ 0 for all x ∈ T . So applying the integral mean value
theorem if Ii,T = 0 or the generalized mean value theorem if Ii,T 	= 0, we have
u∗
i,h|T = ūi(xT ) for some xT ∈ T . As a first consequence, u∗

h ∈ Uad,h. Moreover, due
to the Lipschitz continuity of ū, we have that for x ∈ ω, if we fix the triangle T such
that x ∈ T ,

|ūi(x) − u∗
i,h(x)| = |ūi(x) − ūi(x

i
T )| ≤ C‖x− xi

T ‖Rd ≤ Ch,

and we have proved statement 3.
Since Ii,T = 0 if and only if d̄i(x) = 0 for all x ∈ T , we can claim that

Ii,Tu
∗
i,h|T =

∫
T

d̄i(x)ūi(x)dx

for all T ∈ Th and all 1 ≤ i ≤ m. A straightforward calculation yields statement 2:

J ′(ū)u∗
h =

∫
ω

d̄(x) · ū∗
h(x)dx =

m∑
i=1

∑
T∈Th

∫
T

d̄i(x)u∗
i,h(x)dx

=

m∑
i=1

∑
T∈Th

Ii,Tu
∗
i,h|T =

m∑
i=1

∑
T∈Th

∫
T

d̄i(x)ūi(x)dx = J ′(ū)ū.

Theorem 4.18. There exists a constant C > 0 such that, for all 0 < h ≤ h5, we
have

‖ū − ūh‖L2(ω;Rm) ≤ Ch2 if Uad,h = Uad,

while

‖ū − ūh‖L2(ω;Rm) ≤ Ch if Uad,h = Uh
ad.

Proof. (i) Let us start with the case where Uad,h = Uh
ad. For 0 < h ≤ h5, we have

(4.19)

δ

2
‖ū − ūh‖2

L2(ω;Rm) ≤ (J ′(ū) − J ′(ūh))(ū − ūh)

= (J ′(ū) − J ′
h(ūh))(ū − ūh) + (J ′

h(ūh) − J ′(ūh))(ū − ūh).
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With (4.12) in Lemma 4.13, we can estimate the last term as follows:

(4.20)

(J ′
h(ūh) − J ′(ūh))(ū − ūh)

=

∫
ω

(C∗(Φ̄h − Φūh
) + N(ūh − ūh)) · (ū − ūh)dx

≤ C‖Φ̄h − Φūh
‖L2(Ω)‖ū − ūh‖L2(ω;Rm)

≤ Ch2‖ū − ūh‖L2(ω;Rm).

Let us check what happens with the first term. From first order optimality conditions
for problems (P) and (Ph) we have

J ′(ū)(ūh − ū) ≥ 0,

J ′
h(ūh)(u∗

h − ūh) = J ′
h(ūh)(u∗

h − ū) + J ′
h(ūh)(ū − ūh) ≥ 0.

Making the sum of these two expressions and using Lemma 4.17(2)–(3), we have

(4.21)

J ′(ū)(ū − ūh) − J ′
h(ūh)(ū − ūh) ≤ J ′

h(ūh)(u∗
h − ū)

= J ′
h(ūh)(u∗

h − ū) − J ′(ū)(u∗
h − ū)

=

∫
ω

(C(Φ̄h − Φ̄) + N(ūh − ū)) · (u∗
h − ū)dx

≤ C(‖Φ̄h − Φ̄‖L2(Ω) + ‖ūh − ū‖L2(ω;Rm))‖u∗
h − ū‖L2(ω;Rm)

≤ Ch(‖Φ̄h − Φūh
‖L2(Ω) + ‖Φūh

− Φ̄‖L2(Ω) + ‖ūh − ū‖L2(ω;Rm))

≤ Ch(h2 + ‖ūh − ū‖L2(ω;Rm)).

From (4.19), (4.20), and (4.21), we deduce that therefore there exists a constant
C > 0, independent of h, such that

δ

2
‖ū − ūh‖2

L2(ω;Rm) ≤ Ch3 + Ch‖ūh − ū‖L2(ω;Rm).

We conclude with Young’s inequality.
(ii) Now let us consider the case where Uad,h = Uad. We rewrite the previous

steps by introducing the simplifications corresponding to this case. For 0 < h ≤ h5,
we have

δ

2
‖ū − ūh‖2

L2(ω;Rm) ≤ (J ′(ū) − J ′(ūh))(ū − ūh)

= (J ′(ū) − J ′
h(ūh))(ū − ūh) + (J ′

h(ūh) − J ′(ūh))(ū − ūh).

Since Uad,h = Uad, from the first order optimality conditions satisfied by ū and ūh

we have

(J ′(ū) − J ′
h(ūh))(ū − ūh) ≤ 0.

We have already seen that

(J ′
h(ūh) − J ′(ūh))(ū − ūh) ≤ Ch2‖ū − ūh‖L2(ω;Rm).

Therefore there exists a constant C > 0 independent of h such that

δ

2
‖ū − ūh‖2

L2(ω;Rm) ≤ Ch2‖ūh − ū‖L2(ω;Rm).
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The proof is complete.
From the previous theorem and Lemmas 4.10 and 4.13 we deduce

‖ȳ − ȳh‖H1
0(Ω) + ‖p̄− p̄h‖L2

0(Ω) ≤ Ch,

‖Φ̄ − Φ̄h‖H1
0(Ω) + ‖π̄ − π̄h‖L2

0(Ω) ≤ Ch.
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Abstract. This paper studies an impulsive dynamical system that is in the form of a measure-
driven differential inclusion. The employed solution concept depends upon a graph completion of the
measure. The first main result shows that a subsequence of discrete-time trajectories graph-converges
to a solution, and, under Lipschitz hypotheses, that every solution can be obtained in this manner.
The second main result pursues a similar development with classical systems that approximate the
given one.
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1. Introduction. This paper studies a measure-driven dynamical system of the
form

(1.1)

{
dx ∈ F

(
x(t)

)
dt + G

(
x(t)

)
μ(dt),

x(0−) = x0,

where F (·) and G(·) are multifunctions (set-valued maps) whose values, respectively,
are subsets of R

n and Mn×m (= the n×m matrices), and μ is a vector-valued measure
with values in a closed convex cone K ⊆ R

m. The system (1.1) is also referred to as
an impulsive system since the measure may have atoms (i.e., impulses) which in effect
may force the state trajectory x(·) to be discontinuous. Analogously to classical ODE
theory, one can also consider the following integral inclusion:

(1.2)

⎧⎨⎩ x(t) ∈ x0 +

∫ t

0

F
(
x(τ)

)
dτ +

∫
[0,t)

G
(
x(τ)

)
μ(dτ),

x(0−) = x0.

One expects and certainly desires that the solution sets of (1.1) and (1.2) coincide;
however, in both cases the precise notion of solution needs further explanation (see
section 2 below). The mathematical formalisms (1.1) and (1.2) combine the following:
(i) the system studied in [20, 21, 23] where the measure is positive and scalar-valued
(that is, m = 1), and (ii) the system in [7] where the the set-valued maps are singletons
(that is, (1.1) is an impulsive differential equation). The goal of the present paper is
to prove closure and approximation results. More specifically, we develop an analogue
of the Euler time-discretization method and prove results on absolute continuous
approximations of μ. There are subtle modeling issues between the vector and scalar
cases that we will discuss in more detail below. We first give a brief review of the
relevant literature.
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The early study of impulsive systems dates back to Rishel’s paper [17], where the
idea of handling impulses through time reparametrization was introduced. Warga [24]
soon after extended this technique to a more general context. Another key insight was
observed by Dal Maso and Rampazzo [7] (see also [3, 4, 10]), where the subtlety in
defining the multiplication of a point-mass measure with a state-dependent term was
observed as not well-defined unless a graph completion was also provided. Loosely
speaking, a graph completion is a relation in graph space that extends the graph of
the distribution function u(·) of μ to a connected subset by prescribing an arc to
connect the right- and left-hand limits of u(·) at the points of discontinuity. This
additional information is crucial since different graph completions can give rise to
different solutions. The notion of a solution to a measure-driven differential equation
(that is, F (·) and G(·) in (1.1) are singleton-valued) was defined in [7] as the solution
to an auxiliary system that is reparameterized in time and depends on a given graph
completion. The measure in [7] is vector-valued and is interpreted as the derivative of
a control function of bounded variation. A natural extension to differential inclusions
is considered in [21], where the main goals are to extend the robust solution concept
to set-valued dynamics and to prove a closure property of the set of solutions. The
measure here, however, is real-valued and positive, which essentially only uses the
canonical completion. This will be discussed further in the next paragraph.

The idea of a reparameterized solution is further developed in a control setting
by Bressan [2], Bressan and Rampazzo [3, 4], Motta and Rampazzo [14], Rampazzo
and Sartori [16], and others. For the applications in mind, it is natural in these
papers to use vector-valued measures since they appear as the derivative of a vector-
valued control. We adopt that viewpoint as well. The major technical difference
between a vector-valued versus a scalar-valued measure is the prominent feature of a
graph completion in the former. In the [21] formulation, the measure is scalar-valued
and so the graph completion is a straight-line scalar completion of the distribution
of μ, and the behavior of the trajectory during a jump is driven by a differential
inclusion involving only G during a time interval with length equal to the magnitude
of the measure’s atom. In [2, 4, 25] and in the present paper, μ is vector-valued
and the choice of a graph completion is incorporated into the definition of solution.
This means the behavior during a jump depends on the particular graph completion.
The relationship between the two solution concepts is related but can be different
if the underlying vector fields appearing as the columns of G(·) do not commute;
see [3, 4]. These papers write G(x)dμ as

∑m
i=1 gi(x, u)u̇i; again there are some subtle

modeling issues as to whether the formalisms are equivalent to (1.1), which will be the
topic of future work. If μ is vector valued, then the scalar-valued measure dμ

d|μ|d|μ| as

developed in [21] can capture the same dynamics only when a straight-line completion
is used. One can also incorporate the cone constraint into G(·) and obtain a solution
set consisting of all solutions that exist for some graph completion; this is discussed
further in the conclusion of the paper. Thus the solution set defined in [21] does not
distinguish between solutions that arise from different graph completions, and thus are
essentially only widely applicable in systems where the vector fields {gi(·)} commute.

There is a vast and rapidly growing literature mostly in the engineering commu-
nity of so-called hybrid systems. A consensus is perhaps forming as to what constitutes
a hybrid system, but there is no universally accepted formulation. The key feature
of all hybrid systems is that discrete and continuous variables interact over time; we
refer the reader to the literature [12, 19, 9] and their many references. Although (1.1)
has discrete features that may appear through the presence of atoms in the measure
μ, the relationship between (1.1) and other formulations of hybrid systems found in
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the engineering literature partially overlaps but is not exact.
We also mention related and independent work by Murray [15] who studied a

proper extension of integral functionals from absolutely continuous arcs to ones of
bounded variation. This approach can handle the above dynamics by encoding them
through the technique of infinite penalization. The extension required the same type
of graph completion of a vector-valued measure and the arcs are of bounded variation
of the type we employ here.

We have proven in [25] that a related concept of solution, called a direct solution,
can be formulated directly from the differential form (1.1) of the inclusion by matching
the components of the decomposition of each measure into its absolutely continuous,
continuous singular, and discrete parts (cf. [8, p. 102]). We show in [25] that it
is equivalent to the other solution concepts. The advantage, in our view, of the
direct solution concept is that it provides insight into formulating invariance concepts,
developing a Hamilton–Jacobi theory, and proving stability results. These topics will
be developed in future work.

The two major issues addressed in the present paper involve (1) time discretiza-
tion of (1.1), and (2) absolutely continuous approximation to (1.1). We show in
Theorem 3.1 that an analogue to the Euler one-step method can be developed to pro-
duce a sequence of sampled solutions that graph-converge to a solution of (1.1). The
second part of this theorem shows that under additional Lipschitz assumptions, every
solution of (1.1) is the limit of such a sequence. Time discretizations play a major role
in classical optimal control theory in several ways. For example, sampling techniques
are employed in proving invariance results (see [6]), deriving refined necessary con-
ditions (see [13]), etc. For the same reasons that time-discretion has been a fruitful
development in classical control systems, it seems desirable that such techniques are
available for impulsive systems.

The second issue is the approximation of the measure μ by measures that are
absolutely continuous with respect to Lebesgue measure. This is also natural and
desirable, for it validates the interpretation that impulsive systems are the “comple-
tions” of classical ones. Theorem 4.1 has two parts analogous to the two parts of
Theorem 3.1. The first part shows that if a sequence of absolutely continuous mea-
sures graph-converge to a given graph completion of μ, then any sequence {x(·)} of
associated solutions contains a graph-convergent subsequence. The second part of the
theorem shows that under additional Lipschitz assumptions, every solution of (1.1) is
the limit of such a sequence. Further motivation and comparison of this result with
the closure theorem in [20] is given in the conclusion.

Impulsive systems are introduced precisely in section 2, and the main result of [25]
is reviewed to provide motivational background. Section 3 develops our sampling
method, and section 4 relates solutions of (1.1) with solutions of approximate sys-
tems that have absolutely continuous measures. In section 5, we conclude the paper
by comparing our limiting theorems with the main robustness result in [20]. The
distinction will be more clear after we have precisely developed our results.

Throughout the paper, the following data with accompanying assumptions are
given:

(H1) A closed convex cone K ⊆ R
m.

(H2) A multifunction F : R
n ⇒ R

n with closed graph and convex values, and
satisfying

f ∈ F (x) =⇒ |f | ≤ c(1 + |x|) ∀x ∈ R
n

(where c > 0 is a given constant).
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(H3) A multifunction G : R
n ⇒ Mn×m (where Mn×m denotes the n×m dimen-

sional matrices with real entries) with closed graph and closed convex values,
and satisfying

g ∈ G(x) =⇒ ‖g‖ ≤ c(1 + |x|) ∀x ∈ R
n.

The set of vector-valued Borel measures defined on the interval [0, T ] ⊂ R with values
in K is denoted by BK([0, T ]).

2. Impulsive systems and their trajectories. Suppose μ ∈ BK([0, T ]) is
given. The impulsive system considered in this paper is described by the differential
inclusion (1.1). Basic theory of differential inclusions without impulses is covered in [1,
22, 5, 6]. The trajectory x(·) is a function of bounded variation; however, as described
in the introduction, further information is required to frame an unambiguous solution
concept. Recall that the (right continuous) distribution function u(·) : [0, T ] → R

m of
μ is given by u(t) = μ([0, t]). Following [4, 2], a graph completion of u(·) consists of a
Lipschitz continuous map (φ0, φ) : [0, S] → [0, T ]× R

m so that φ0(·) is nondecreasing
and mapping onto [0, T ], and for every t ∈ [0, T ], there exists an s ∈ [0, S] with(
φ0(s), φ(s)

)
= (t, u(t)). The role of the graph completion is to pin down the behavior

of the trajectory x(·) during the “jumps” of u(·) so that multiplication by G(x) during
this fast time movement is unambiguous. The function φ0 is a reparameterized time
variable, and in this paper we avoid additional technical issues by always choosing it
as the “filled-in” inverse of

(2.1) η(t) := t + |μ|([0, t]);

that is,

(2.2) φ0(s) = t ⇔ η(t−) ≤ s ≤ η(t+),

where η(t−) and η(t+), respectively, denote the left-hand limit limt↗t0 η(t) and right-
hand limit limt↘t0 η(t). These left- and right-hand limits are equal if and only if t is
not an atom of μ. If 0 is an atom of μ, then η(0−) = 0 by convention. We let I be the
at most countable index set of atoms T := {ti}i∈I , and Ii := [s−i , s

+
i ] := φ−1

0 (ti) the
“fast” time consumed during the jump. Since φ0 will always be specified as in (2.1)
and (2.2), only the spatial component φ(·) will be referred to as the graph completion,
and it is uniquely determined at each s /∈ ∪i∈I Ii, since then t = φ0(s) is uniquely
determined and φ(s) = u(t). We also require cone adherence of φ(·), which means
that

(2.3) φ̇(s) ∈ K

hold for almost all s ∈ [0, S].
Suppose we are now given μ ∈ BK([0, T ]). Consider a three-tuple

(2.4) Xμ :=
(
x(·), φ(·), {yi(·)}i∈I

)
with the following constituents: x(·) : [0, T ] → R

n is of bounded variation with its
points of discontinuity contained in the set T of μ’s atoms, φ(·) : [0, S] → R

m is a graph
completion of μ’s distribution function u(·), and {yi(·)}i∈I is a collection of Lipschitz
functions, each defined on the nondegenerate interval Ii := [s−i , s

+
i ] := φ−1

0 (ti) and
satisfying yi(s

±
i ) = x(ti±).
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The following is a slight modification of a definition given in [4, 2].

Definition 2.1. Consider a three-tuple Xμ as in (2.4), and let

(2.5) y(s) =

{
x(t) if s /∈ ∪i∈I Ii, t = φ0(s),
yi(s) if s ∈ Ii.

Then Xμ is a reparameterized solution of (1.1) provided y(·) is Lipschitz on [0, S]
and satisfies

(2.6)

{
ẏ(s) ∈ F

(
y(s)

)
φ̇0(s) + G

(
y(s)

)
φ̇(s) a.e. s ∈ [0, S],

y(0) = x0.

One may observe that y(·) defined by (2.5) is a graph completion of the vector-
valued function x(·).

We next introduce a solution concept with the same data structure as in (2.4),
but which requires properties stated directly in the original time frame. Recall that
an arc x(·) of bounded variation induces a measure dx that can be decomposed into
absolutely continuous, continuous singular, and discrete (that is, purely atomic) parts,
and so can be written as

dx = ẋ(t) dt + dxσ + dxD,

where dxσ is a singular continuous measure and dxD :=
∑

i∈I δxti is the discrete part
with δxti denoting the point mass jump of the vector x(ti+) − x(ti−). If 0 is an
atom, then the initial point of the jump is denoted by x(0−). Likewise, the measure
μ ∈ BK([0, T ]) decomposes into μ = u̇(t) dt + μσ + μD, where μD =

∑
i∈I δuti .

Definition 2.2. The three-tuple Xμ in (2.4) is a solution of (1.1) provided

(i) for almost all t ∈ [0, T ],{
ẋ(t) ∈ F

(
x(t)

)
+ G

(
x(t)

)
u̇(t),

x(0−) = x0;

(ii) there exists a bounded μσ-measurable selection γ(t) ∈ G
(
x(t)

)
with

dxσ = γ(t)μσ (as measures on [0, T ]);

(iii) the set of atoms of dx is contained in T = {ti}i∈I , and for each i ∈ I,
yi(s

−
i ) = x(ti−), yi(s

+
i ) = x(ti+), and

ẏi(s) ∈ G
(
yi(s)

)
φ̇(s) a.e. s ∈ Ii.

The fundamental role played by the graph completion in this definition surfaces in
the differential inclusions stated in (iii), and in effect circumscribes the fast velocities
that are available during that jump in t time. A simple concrete example is given
in [2] where different graph completions give different reachable sets.

The following theorem is proven in [25]. Although this result is not required in
the proofs that follow, we state it for completeness.

Theorem 2.1. Suppose μ ∈ BK([0, T ]) and Xμ is as in (2.4). Then Xμ is a
reparameterized solution of (1.1) if and only if Xμ is a solution of (1.1).
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3. A sampling method. An Euler-type discretization procedure is introduced
in this section that produces approximate discrete solutions (called sampled trajecto-
ries) when the measure μ and a graph completion are given. The limit of a subse-
quence of approximations will be shown to graph-converge in the Hausdorff metric to
some solution Xμ of (1.1). In future work, we shall describe a sampling method that
produces the measure and graph completion as well.

With Xμ as in (2.4), its graph is defined as the set

grXμ := {(t, x(t)) : t ∈ [0, T ]} ∪ {(ti, yi(s)) : s ∈ Ii, i ∈ I}.

The idea is to discretize the ordinary trajectory y(·) that is defined in (2.5), where the
“compactness of trajectories” is known to hold, and to project it down into t-space.

Let N be a positive integer, and let h := S
N be the step-size parameter. Let

s0 = 0 = t0, and for each j = 1, . . . , N , let sj = jh, tj = φ0(sj), and λj = tj − tj−1.
Sampled points {xj}Nj=1 are defined and “velocity” data are selected as follows (the
parameter N is suppressed in this notation):

x0 = x0 f0 ∈ F (x0) g0 ∈ G(x0)

x1 = x0 + λ1f0 + g0

(
φ(s1) − φ(s0)

)
f1 ∈ F (x1) g1 ∈ G(x1)

...
...

...
xj+1 = xj + λjfj + gj

(
φ(sj) − φ(sj−1)

)
fj+1 ∈ F (xj+1) gj+1 ∈ G(xj+1)

...
...

...

xN = xN−1 + λNfN−1 + gN−1

(
φ(sN ) − φ(sN−1)

)
We denote by ΩN the graph of a sampled trajectory:

(3.1) ΩN :=
{
(tj , xj) : j = 0, . . . , N

}
.

Recall that the Hausdorff distance distH(A1, A2) between two compact subsets
A1, A2 of R

n is defined by

distH(A1, A2) = min
{
δ ≥ 0 : A1 ⊆ A2 + δB and A2 ⊆ A1 + δB

}
,

and that any multifunction M : R
n ⇒ R

m with compact values is locally Lipschitz if
for every bounded set C ⊂ R

n there exists a constant c so that

distH
(
M(x), M(y)

)
≤ c‖x− y‖ ∀x, y ∈ C.

The main result of this section follows.
Theorem 3.1. Suppose μ ∈ BK([0, T ]) and a graph completion φ(·) are given.
(a) For every sequence {ΩN}N of graphs of sampled trajectories, there is a solu-

tion Xμ of (1.1) and a subsequence {ΩNk}k of {ΩN}N such that

distH
(
ΩNk , grXμ

)
→ 0 as k → ∞.
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(b) Assume F and G are locally Lipschitz. For every solution Xμ of (1.1), there
exists a sequence {ΩN}N of graphs of sampled trajectories so that

distH
(
ΩN , grXμ

)
→ 0 as N → ∞.

Proof. Suppose the sequences {fj}, {gj}, {xj} are constructed by the sampling
method described above. We first show there exists a constant c1 independent of N
so that

(3.2) max
j

{
‖xj‖, ‖fj‖, ‖gj‖

}
≤ c1

for all j and N ∈ N. Indeed, with r as in (2.3) (which is the Lipschitz constant of
φ(·)) and c as in (H2) and (H3), we have

|xj+1| ≤ |xj | + h|fj | + ‖gj‖rh
≤ |xj | +

[
c(1 + |xj |) + c(1 + |xj |r)

]
h

= hα +
[
1 + hα

]
|xj |,

where α := c(1 + r). It follows from the discrete Gronwall inequality that

|xj | ≤ eαS
(
1 + |x0|

)
− 1,

and that then (3.2) holds by (H2) and (H3) with c1 := c[eαS(1 + |x0|)].
Define the multifunction M : [0, S] × R

n ⇒ R
n by

(3.3) M(s, y) = F (y)φ̇0(s) + G(y)φ̇(s),

which is L × B measurable, has nonempty compact convex values, and has linear
growth. Moreover, M(s, ·) has closed graph for almost all s ∈ [0, S]. For each N ∈ N,
let Ω̃N be the sampled trajectory in s-time:

(3.4) Ω̃N :=
{
(sj , xj) : j = 0, . . . , N

}
.

Also consider its related polygonal arc yN (·) defined on [0, S] given by

(3.5) yN (s) := xj +
s− sj

h
(xj+1 − xj) for s ∈ [sj , sj+1].

Note for later use that

(3.6) distH
(
Ω̃N , gr yN (·)

)
≤ max

{
h, c1(1 + r)h

}
.

We claim there exist the sequences of
• positive numbers δN and rN so that δN → 0 and rN → 0, and
• measurable sets AN ⊆ [0, S] so that m(AN ) → 0,

where the limits are as N → ∞, and that they satisfy

(3.7) inf
{
‖ẏN (s) − v‖ : v ∈ M

(
s, yN (s) + δNB

)}
≤ rN a.e. s ∈ AN .

To see this, let δN = S
N c1(1+r), where c1 is as in (3.2). Note for each j = 1, 2, . . . , N−1

and s ∈ [sj−1, sj ] that∣∣yN (s) − xj

∣∣ ≤ ∣∣xj+1 − xj

∣∣
=

∣∣λj+1fj + gj
(
φ(sj+1) − φ(sj)

)∣∣
≤ h

[
|fj | + ‖gj‖r

]
≤ δN .
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Next, for s ∈ [0, S − h], define

ΦN
0 (s) :=

1

h

∫ s+h

s

φ̇0(s
′)ds′ and ΦN (s) :=

1

h

∫ s+h

s

φ̇(s′)ds′

and recall that ΦN
0 (s) → φ̇0(s) and ΦN

0 (s) → φ̇(s) for almost all s ∈ [0, S] as N → ∞.
By Egoroff’s theorem, there exist measurable sets AN ⊆ [0, S] with m(AN ) → 0 (and
for notational simplicity, we may assume [S − h, S] ⊆ AN ) and satisfying

rN := c1 max
s∈[0,S]\AN

{∣∣ΦN
0 (s) − φ̇0(s)

∣∣, ∣∣ΦN (s) − φ̇(s)
∣∣} → 0

as N → ∞. Now let

vN (s) := fj φ̇0(s) + gj φ̇(s) for s ∈ [sj , sj+1],

and note that vN (s) ∈ M(s, xj) for almost all s ∈ [sj , sj+1]. Recall that ẏN (s) =
ΦN

0 (sj)fj + gjΦ
N (sj), and thus

max
s∈[0,S]\AN

∣∣ẏN (s)−vN (s)
∣∣ ≤ max

j=1,...,N
s∈[sj ,sj+1]\AN

∣∣∣∣(ΦN
0 (s)−φ̇0(s)

)
fj+gj

(
ΦN (s)−φ̇(s)

)∣∣∣∣ ≤ rN .

We have shown that (3.7) holds.
From the compactness of trajectories theorem [6, Theorem 4.1.11], there exists

a trajectory y(·) of M and a subsequence (labeled {yNk(·)}k) of {yN (·)}N so that
yNk(·) → y(·) uniformly on [0, S]. One sees easily that this means

(3.8) distH
(
gr yNk(·), gr y(·)

)
→ 0

as k → ∞. We define the components of a solution Xμ to (1.1) as follows. Let
x(·) : [0, T ] → R

n be given by x(t) = y
(
η(t)

)
, and define the functions yi(·) (for each

i ∈ I) as the restriction of y(·) to Ii.
Now recall ΩN as in (3.1) and Ω̃N as in (3.4), and observe the second coordinates

are the same for each j = 1, . . . , N . Similarly, the second coordinates of grXμ and
gr y(·) :=

{(
s, y(s)

)
: s ∈ [0, S]

}
are the same for each t /∈ T , t = φ0(s); and when

t ∈ T , the set of projections onto the second coordinate are the same. Thus the
difference between the Hausdorff distances of ΩN and grXμ on the one hand and Ω̃N

and gr y(·) on the other is affected by only the first coordinate. It follows that

(3.9) distH
(
ΩN , grXμ

)
≤ distH

(
Ω̃N , gr y(·)

)
,

where the right-hand side is at most h larger than the left-hand side. By the triangle
inequality, one has

(3.10) distH
(
Ω̃N , gr y(·)

)
≤ distH

(
Ω̃N , gr yN (·)

)
+ distH

(
gr yN (·), gr y(·)

)
.

Finally, passing to the subsequence {Nk} and starting from (3.9), it follows from
(3.10), (3.6), and (3.8) that

distH
(
ΩNk , grXμ

)
→ 0,

which finishes the proof of part (a).
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To prove part (b), assume now that F and G are locally Lipschitz, and Xμ is as
in (2.4) and is a solution of (1.1). Let y(·) be defined as in (2.5), and so there exist
measurable selections f(·) and g(·) of F

(
y(·)

)
and G

(
y(·)

)
, respectively, so that

ẏ(s) = f(s)φ̇0(s) + g(s)φ̇(s) a.e. s ∈ [0, S].

In a manner similar to proving the discrete bound (3.2), one can show there exists a
constant c2 so that |y(s)| ≤ c2. Observe that for 0 ≤ s̄ < ŝ ≤ S, one has

(3.11)
∣∣y(ŝ) − y(s̄)

∣∣ ≤ ∫ ŝ

s̄

|ẏ(s)| ds ≤ (1 + c2)(1 + r)(ŝ− s̄) =: c3(ŝ− s̄).

Let L > 0 be the Lipschitz constant for F and G on c2B, and denote by projF (y)(f)
the projection of f into F (y) (which is unique since F (y) is convex). If |yj | ≤ c2
(j = 1, 2) and f ∈ F (y1), then |f − projF (y2)(f)| ≤ L|y1 − y2|. Similar considerations
hold with F replaced by G.

We use the notation of the sampling method and will show there exists a sequence
{ΩN} that graph-converges to grXμ.

Let f0 = 1
h

∫ s1
0

projF (x0)

(
f(s)

)
ds, let g0 = 1

h

∫ s1
0

projG(x0)

(
g(s)

)
ds, and let x1 be

defined as in the sampling method. We observe

x1 − y(s1) =
φ0(s1) − φ0(0)

h

∫ s1

0

[
projF (x0)

(
f(s)

)
− f(s)

]
ds

+

∫ s1

0

[
projG(x0)

(
g(s)

)
− g(s)

](φ(s1) − φ(0)

h

)
ds

+

∫ s1

0

(
φ0(s1) − φ0(0)

h
− φ̇0(s)

)
f(s) ds

+

∫ s1

0

g(s)

(
φ(s1) − φ(0)

h
− φ̇(s)

)
ds

=: I + II + III + IV.

Recall that φ0(·) is Lipschitz of rank 1, and so by the Lipschitz property of F , we
have

|I| ≤ L

∫ s1

0

∣∣y(s) − x0

∣∣ ds ≤ Lc3

∫ s1

0

s ds =
Lc3
2

h2,

where the second inequality follows from (3.11). In the same way, one can show
|II | ≤ Lc3r

2 h2 since φ(·) is Lipschitz of rank r. To estimate III and IV, we reuse
earlier notation to redefine ΦN (·) on [0, S] by setting

ΦN (s) := max

{∣∣∣∣φ0(sj+1) − φ0(sj)

h
− φ̇0(s)

∣∣∣∣ , ∣∣∣∣φ(sj+1) − φ(sj)

h
− φ̇(s)

∣∣∣∣}
whenever s ∈ [sj , sj+1]. Then it follows that both |III | and |IV | are bounded above
by c(1 + c2)

∫ s1
0

ΦN (s) ds. Putting all this together, we have

|x1 − y(s1)| ≤
Lc3(1 + r)

2
h2 + 2c(1 + c2)

∫ s1

0

ΦN (s) ds.
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Inductively, one proceeds by setting fj = 1
h

∫ sj+1

sj
f(s) ds and gj = 1

h

∫ sj+1

sj
g(s) ds, and

letting xj+1 be as in the sampling method construction. The same argument used
above can operate at each iteration, and inductively one has the following estimate:

|xj − y(sj)| ≤
Lc3(1 + r)

2
jh2 + 2c(1 + c2)

∫ sj

0

ΦN (s) ds.

Since ΦN (s) is bounded above and converges to 0 almost everywhere, it follows that
Ω̃N := {(sj , xj) : j = 1, . . . , N} satisfies distH

(
Ω̃N , gr y(·)

)
→ 0 as N → ∞. The

bound in (3.9) is still valid here, and the conclusion of (b) readily follows.

4. Approximate controls. The original and perhaps most natural approach to
defining solutions to the impulsive inclusion (1.1) is to consider limits of a sequence
of solutions xN (·) of an approximate control problem of the form

(4.1) ẋN (t) ∈ F
(
x(t)

)
φ̇0(t) + G

(
x(t)

)
u̇N (t),

where dμN = u̇N (·)dt are absolutely continuous measures that approximate μ in some
sense. See, for example, the discussion in [2]. We introduce in this section a concept
of “graph convergence” of measures that is appropriate to carry out such an analysis.
Graph convergence as defined below is perhaps considerably stronger than would be
desirable, but we mention that even when the solutions of (4.1) are unique (which
happens, for example, in the singleton case F (x) = {f(x)} and G(x) = {g(x)} with
f(·) and g(·) smooth functions), the limit arc may not be unique if the measures
converge in some weaker sense.

Suppose we are given the following: a measure μ ∈ BK([0, T ]), an associated
graph completion φ(·) : [0, S] → R

n that is Lipschitz of rank r, and a sequence
{μN} of absolutely continuous measures belonging to BK([0, T ]) whose associated
distribution functions uN (t) := μN

(
[0, t]

)
are Lipschitz.

Definition 4.1. The sequence {μN}N of absolutely continuous measures graph-
converges to (μ, φ) provided

(i) there exist numbers SN > 0 such that SN → S;
(ii) for each N , there exists a strictly increasing function φN

0 (·) : [0, SN ] → [0, T ]
that is onto and Lipschitz of rank at most one, and such that∫ min{S,SN}

0

∣∣φ̇N
0 (s) − φ̇0(s)

∣∣ ds → 0 as N → ∞;

(iii) for each N , the sequence of functions defined by φN (s) :=
(
uN ◦ φN

0

)
(s) is

Lipschitz with lim supN→∞ ‖φ̇N (·)‖∞ ≤ r and satisfies∫ min{S,SN}

0

∣∣φ̇N (s) − φ̇(s)
∣∣ ds → 0 as N → ∞.

The main result in this section follows.
Theorem 4.1. Suppose the measure μ ∈ BK([0, T ]) and an associated graph

completion φ(·) : [0, S] → R
n are given.

(a) Suppose {μN} is a sequence of absolutely continuous measures that graph-
converges to

(
μ, φ(·)

)
, and {xN (·)} is a sequence of absolutely continuous

arcs satisfying

(4.2) ẋN (t) ∈ F
(
xN (t)

)
+ G

(
xN (t)

)
u̇N (t).
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Then there exists a solution Xμ of (1.1) and a subsequence {xNk(·)} of
{xN (·)} such that

distH
(
grxNk(·), grXμ

)
→ 0 as k → ∞.

(b) Conversely, suppose F and G are locally Lipschitz multifunctions and Xμ :=(
x(·), φ(·), {yi(·)}i∈I

)
is a solution of (1.1). Then there is a sequence {μN}

of absolutely continuous measures that graph converge to
(
μ, φ(·)

)
, and a

sequence xN (·) of solutions to (4.2) so that

distH
(
grxN (·), grXμ

)
→ 0 as N → ∞.

Proof. Suppose we are given the measures dμN = u̇N (t)dt, the functions φN
0 (·) and

φN (·) satisfying Definition 4.1, and solutions xN (·) of (4.2). Set S̄N := min{S, SN}.
Let yN (s) = (xN ◦ φN

0 )(s), which for almost all s ∈ [0, S̄N ] satisfies

ẏN (s) = ẋN
(
φN

0 (s)
)
φ̇N

0 (s)

∈ F
(
yN (s)

)
φ̇N

0 (s) + G
(
yN (s)

)
u̇N

(
φN

0 (s)
)
φ̇N

0 (s)

= F
(
yN (s)

)
φ̇N

0 (s) + G
(
yN (s)

)
φ̇N (s),

where the last equality follows since φ̇N (s) = u̇N
(
φN

0 (s)
)
φ̇N

0 (s) almost everywhere.

It follows that there exist measurable selections fN (s) ∈ F
(
yN (s)

)
and gN (s) ∈

G
(
yN (s)

)
so that

ẏN (s) = fN (s)φ̇N
0 (s) + gN (s)φ̇N (s).

Recall that Definition 4.1 imposes a priori bounds on the Lipschitz rank of φN
0 (·) and

φN (·), and that F (·) and G(·) satisfy linear growth assumptions. A standard argument
involving Gronwall’s inequality implies there exists a constant c4 independent of N
that is an upper bound of both ‖fN (·)‖∞ and ‖gN (·)‖∞.

Let M : [0, S] × R
n ⇒ R

n be defined as in (3.3), define żN (·) : [0, S̄N ] → R
n by

żN (s) := fN (s)φ̇0(s) + gN (s)φ̇(s),

and define zN (·) : [0, S̄N ] → R
n by zN (s) := x0 +

∫ s

0
żN (s′) ds′. It is clear from the

definitions that

(4.3) żN (s) ∈ M
(
s, yN (s)

)
a.e. s ∈ [0, S̄N ].

Furthermore, it is readily seen that

sup
s∈[0,S̄N ]

∣∣zN (s) − yN (s)
∣∣ ≤ c4

{
‖φ̇N

0 − φ̇0‖1 + ‖φ̇N − φ̇‖1

}
,

which implies via the assumption of the graph convergence of the measures that
yN − zN approaches zero uniformly. In view of (4.3) and the compactness of trajec-
tories theorem [6, Theorem 4.1.11], there exists y(·) : [0, S] → R

n that is a trajectory
of M and to which a subsequence of {zN (·)}, and hence also of {yN (·)}, converges
uniformly. That is, there exists a subsequence Nk for which

(4.4) distH
(
gr yNk(·), gr y(·)

)
→ 0 as k → ∞.
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We now define Xμ as before; see the paragraph containing (3.8) in the previous
section. Similar reasoning as employed there shows also that distH

(
grxNk(·), grXμ

)
is bounded above by

distH
(
gr yNk(·), gr y(·)

)
+ sup

s∈[0,S̄Nk ]

|φNk
0 (s) − φ0(s)|,

which goes to zero as k → ∞ by (4.4) and the assumption contained in Definition
4.1(ii). This finishes the proof of part (a).

We turn to part (b). Suppose F and G are now locally Lipschitz and Xμ is a
solution to (1.1). For N = 1, . . . , we proceed to construct the absolutely continuous
measures μN and solutions xN (·) of (4.2) that will converge in graph to Xμ. Fix
N > 0 and set h = S

N , and for j = 1, . . . , N , set sj = jh and tj = φ0(sj). We will first
introduce a new partition {t̄j} of [0, T ] consisting of N distinct points that resembles
the partition {tj} but has repeated nodes “pulled apart” and indexed accordingly. To
this end, let JN

0 be those indices j for which tj−1 < tj < tj+1 (to treat the endpoints,
by convention, we take t−1 < t0 and tN+1 > tN ; thus t0 ∈ JN

0 if t0 < t1 and tN ∈ JN
0

if tN−1 < tN ). We set t̄j = tj whenever j ∈ JN
0 . Let JN be those indices j for which

tj−1 < tj = tj+1 (by convention, then, t0 ∈ JN if t0 = t1 and tN cannot belong to
JN ). For these latter j, let kj ≥ 1 be such that tj = tj+1 = · · · = tj+kj < tj+kj+1,
and

λj :=
1

2
min

{
h2, tj − tj−1, tj+kj+1 − tj

}
(if 0 ∈ JN , then λ0 := min{h2,

tj+kj+1−tj

2 }). If j /∈ JN
0 , then j = j̄ + k, where there

exists precisely one pair (j̄, k) with j̄ ∈ JN and 0 ≤ k ≤ kj̄ . In this case t̄j is defined
by

t̄j :=

{
tj +

[
2k
kj

− 1
]
λj if j �= 0,

k
k0
λ0 if j = 0.

Thus a new partition {t̄j} of [0, T ] has been constructed consisting of N distinct
points, and which satisfy

(4.5) |t̄j − tj | ≤ h2 ∀j.

Next, we define φN
0 (·) : [0, S] → [0, T ] by

φN
0 (s) = t̄j +

s− sj
h

(t̄j+1 − t̄j) whenever s ∈ [sj , sj+1],

which is onto and Lipschitz of rank at most 1. We claim that φ̇N
0 (·) converges to φ̇0(·)

in L1[0, S]. Indeed, let φ̃N
0 (·) : [0, S] → [0, T ] be given by

φ̃N
0 (s) = tj +

s− sj
h

(tj+1 − tj) whenever s ∈ [sj , sj+1].

The difference between the linear interpolations φN
0 (·) and φ̃N

0 (·) is that φN
0 (·) maps

sj to t̄j , whereas φ̃N
0 (·) maps sj to tj . For s ∈ [sj , sj+1], we have

(4.6)
∣∣φ̇N

0 (s) − ˙̃
φN

0 (s)
∣∣ =

1

h
|t̄j+1 − t̄j − tj+1 + tj | ≤ 2h,
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where the inequality is justified by (4.5). The Lebesgue differentiation theorem says

that
˙̃
φN

0 (s) → φ̇0(s) as N → ∞ for almost all s ∈ [0, S], and since these functions are

bounded above by 1, the dominated convergence theorem implies that
˙̃
φN

0 (·) → φ̇0(·)
in L1[0, S]. It follows from this and (4.6) that φ̇N

0 (·) → φ̇0(·) in L1[0, S], as claimed.
Now define uN (·) : [0, T ] → R

n as the piecewise linear interpolation satisfying
uN (t̄j) = φ(sj); that is,

uN (t) = φ(sj) +
t− t̄j

t̄j+1 − t̄j

(
φ(sj+1) − φ(sj)

)
whenever t ∈ [t̄j , t̄j+1].

Let φN (·) := (uN ◦ φN
0 )(·), and note φN (sj) = φ(sj) for all j, and for s ∈ [sj , sj+1]

that

φ̇N (s) = u̇N
(
φN

0 (s)
)
φ̇N

0 (s) =
φ(sj+1) − φ(sj)

t̄j+1 − t̄j

t̄j+1 − t̄j
h

=
φ(sj+1) − φ(sj)

h
.

Since φ(·) is Lipschitz of rank r, it follows that each of φN (·) are also of rank at
most r. Completely analogous to the proof above showing φ̇N

0 (·) → φ̇0(·) in L1[0, S]
as N → ∞, one has that φ̇N (·) → φ̇(·) in L1[0, S] as N → ∞. Therefore, with μN

the absolutely continuous measure satisfying dμN = u̇N (t)dt, we have shown that μN

graph-converges to (μ, φ(·)) as N → ∞ (where SN = S for all N in Definition 4.1).
We now turn to approximating a given solution Xμ by a solution of (4.2). By

Theorem 3.1(b), there exists a sequence of sampled trajectories whose graphs converge
to grXμ. Denote these graphs by

ΩN := {(tj , xj) | j = 1, . . . , N},

where xj+1 = xj + (tj+1 − tj)fj + (gj)
(
φ(sj+1)− φ(sj)

)
, fj ∈ F (xj), and gj ∈ G(xj),

and they satisfy

(4.7) distH
(
ΩN , grXμ

)
→ 0 as N → ∞.

For simplicity of notation, the dependence of xj , fj , and gj on N has been suppressed.
A new sampled set of points {x̄j} is defined by replacing the partition {tj} by {t̄j}
and “tracking” the given sampled data. This is done as follows. Let f̄0 = f0 and
ḡ0 = g0 and define

x̄1 = x̄0 + (t̄1 − t̄0)f̄0 + (ḡ0)
(
φ(s1) − φ(s0)

)
.

Having chosen the data at stage j − i, inductively let f̄j ∈ F (x̄j) and ḡj ∈ G(x̄j) be
the projections of fj and gj onto F (x̄j) and G(x̄j), respectively. That is, f̄j ∈ F (x̄j)
and satisfies

|f̄j − fj | = inf
f∈F (x̄j)

|f − fj |,

and similarly for ḡj . Define the next node by

x̄j+1 = x̄j + (t̄j+1 − t̄j)f̄j + (ḡj)
(
φ(sj+1) − φ(sj)

)
.

The linear growth assumptions on F and G guarantee that all of the sampled data
remain in a bounded set, and let c1 be as in (3.2) but such that it also bounds the
newly sampled data. With L a Lipschitz constant for both F and G on c1B, one has

(4.8) |f̄j − fj | ≤ L|x̄j − xj | and ‖ḡj − gj‖ ≤ L|x̄j − xj |.
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The estimate between the nodes xj and x̄j is calculated by∣∣x̄j+1 − xj+1

∣∣ ≤ |x̄j − xj | + |tj+1 − tj − t̄j+1 + t̄j | |fj |
+ |t̄j+1 − t̄j | |f̄j − fj | + ‖ḡj − gj‖ |φ(sj+1) − φ(sj)|

≤ |x̄j − xj | + 2h2c1 + hL|x̄j − xj | + hLr|x̄j − xj |
= 2h2c1 + (1 + hL + hLr)|x̄j − xj |,

where the second inequality was deduced using (4.5), (4.8), and the fact that φ(·) is
Lipschitz of rank r. Gronwall’s inequality implies

|x̄j − xj | ≤ 2hc1
eLS(1+r) − 1

L(1 + r)

for each j = 0, 1, . . . , N and in particular implies that

(4.9) distH(ΩN , Ω̄N ) → 0 as N → ∞,

where Ω̄N is the newly sampled graph:

Ω̄N := {(t̄j , x̄j) | j = 1, . . . , N}.
Next, let x̄N (·) be the piecewise linear arc interpolating the points in Ω̄N (·), which
specifically means

x̄N (t) = x̄j + (t− t̄j)f̄j + (t− t̄j)ḡj
φ(sj+1) − φ(sj)

t̄j+1 − t̄j
and

˙̄xN (t) = f̄j + ḡj u̇
N (t) ∈ F (x̄j) + G(x̄j)u̇

N (t) whenever t ∈ (t̄j , t̄j+1).(4.10)

Let ΓN (·) : [0, T ] × R
n ⇒ R

n be given by ΓN (t, x) := F (x) + G(x)u̇N (t), which is
the multifunction appearing in (4.2). It has convex compact values, is measurably
Lipschitz (see [5]), and has linear growth in x. We will find a trajectory xN (·) of ΓN

that is close to x̄N (·). Following the notation in [5], we have

ρΓ

(
x̄N (·)

)
:=

∫ T

0

dist

(
˙̄xN (t),ΓN

(
t, x̄N (t)

))
dt

=

N−1∑
j=0

∫ tj+1

tj

dist

(
˙̄xN (t),ΓN

(
t, x̄N (t)

))
dt

≤
N−1∑
j=0

∫ tj+1

tj

distH

(
ΓN

(
t, x̄j

)
,ΓN

(
t, x̄N (t)

))
dt

≤ L

N−1∑
j=0

∫ tj+1

tj

(
1 + |u̇N (t)|

)∣∣x̄N (t) − x̄j

∣∣ dt,(4.11)

where (4.10) was used in the first inequality, and the Lipschitz property of F and G
in the second. For t ∈ [t̄j , t̄j+1], one has∣∣ ˙̄xN (t) − x̄j

∣∣ ≤ t− t̄j
t̄j+1 − t̄j

∣∣x̄j+1 − x̄j

∣∣
≤ t− t̄j

t̄j+1 − t̄j

[
(t̄j+1 − t̄j)|f̄j | + ‖ḡj‖ |φ(sj+1) − φ(sj)|

]
≤ c1

[
1 +

rh

t̄j+1 − t̄j

]
(t− t̄j)
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and

|u̇N (t)| =

∣∣∣∣φ(sj+1) − φ(sj)

t̄j+1 − t̄j

∣∣∣∣ ≤ rh

t̄j+1 − t̄j
.

We thus have∫ tj+1

tj

(
1 + |u̇N (t)|

)∣∣x̄N (t) − x̄j

∣∣ dt ≤ [
1 +

rh

t̄j+1 − t̄j

]
c1

[
1 +

rh

t̄j+1 − t̄j

] ∫ tj+1

tj

(t− t̄j) dt

= c1

[
1 +

rh

t̄j+1 − t̄j

]2
(t̄j+1 − t̄j)

2

2

≤ c6h
2

for some constant c6. Combined with (4.11), this estimate yields that

ρΓ

(
x̄N (·)

)
≤ LSc6h,

and so by Filippov’s theorem (see [5, Theorem 3.1.6, p. 115]), for each N there exists
a trajectory xN (·) of ΓN such that xN (0) = x0 and for which

(4.12) distH
(
grxN (·), gr x̄N (·)

)
→ 0

as N → ∞. Finally, we have by the triangular inequality

distH
(
grxN (·), grXμ

)
≤ distH

(
grxN (·), gr x̄N (·)

)
+ distH

(
gr x̄N (·), Ω̄N

)
+ distH

(
Ω̄N , ΩN

)
+ distH

(
ΩN , grXμ

)
,

which approaches 0 as N → ∞ by (4.12), (4.9), and (4.7). This finishes the proof.

5. Conclusion. We developed a sampling method for impulsive systems that is
analogous to the classical Euler one-step method of ODEs. These techniques will be
employed in forthcoming work on invariance and Hamilton–Jacobi theory.

The second major result of the paper is concerned with approximation of the given
measure by systems without impulses. We showed such approximation was possible if
the measures graph-converged, which is a considerably stronger property than weak-

convergence of the measures. It is interesting to compare this result with the closure
theorem in [21], which is the analogue of the compactness of trajectories theorem. It
is shown in Theorem 5.1 of [21] that if a sequence of (positive, scalar-valued) measures
{μN}N converges weak-
 to μ, then a subsequence of a given sequence of associated
solutions to the inclusion involving μN converges to a solution of (1.1). The difference
between this result and our Theorem 4.1 lies in the fact that the limiting arc in [21]
would in general be a solution associated to some graph completion, whereas our goal
in Theorem 4.1 was to tie the convergence to a particular graph completion.
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Problems, Birkhäuser, Boston, 2002.

[20] G. N. Silva and R. B. Vinter, Measure driven differential inclusions, J. Math. Anal. Appl.,
202 (1996), pp. 767–746.

[21] G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems,
SIAM J. Control Optim., 35 (1997), pp. 1829–1846.

[22] G. V. Smirnov, Introduction to the Theory of Differential Inclusions, AMS, Providence, RI,
2002.

[23] R. B. Vinter and F. M. F. L. Pereira, A maximum principle for optimal processes with
discontinuous trajectories, SIAM J. Control Optim., 26 (1988), pp. 205–229.

[24] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New
York, 1972.
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CONVEX PROGRAMS FOR TEMPORAL VERIFICATION OF
NONLINEAR DYNAMICAL SYSTEMS∗

STEPHEN PRAJNA† AND ANDERS RANTZER‡

Abstract. A methodology for safety verification of continuous and hybrid systems using barrier
certificates has been proposed recently. Conditions that must be satisfied by a barrier certificate can
be formulated as a convex program, and the feasibility of the program implies system safety in the
sense that there is no trajectory starting from a given set of initial states that reaches a given unsafe
region. The dual of this problem, i.e., the reachability problem, concerns proving the existence of
a trajectory starting from the initial set that reaches another given set. Using insights from the
linear programming duality appearing in the discrete shortest path problem, we show in this paper
that reachability of continuous systems can also be verified through convex programming. Several
convex programs for verifying safety and reachability, as well as other temporal properties such as
eventuality, avoidance, and their combinations, are formulated. Some examples are provided to
illustrate the application of the proposed methods. Finally, we exploit the convexity of our methods
to derive a converse theorem for safety verification using barrier certificates.

Key words. temporal verification, safety verification, reachability analysis, barrier certificate,
density function, convex programming, duality
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1. Introduction. Consider a continuous-time dynamical system of the form

ẋ(t) = f(x(t)),

where x(t) is the state of the system, taking its value in the set X ⊆ R
n. Also given

are the set of possible initial states X0 ⊆ X , the set of “bad” states Xu ⊆ X , and the
set of “good” states Xr ⊆ X . In this paper, we will be concerned with methods for
verifying or proving temporal properties of the system such as the following:

• safety : all trajectories of the system starting from X0 will never reach Xu;
• avoidance: at least one trajectory of the system starting from X0 will never

reach Xu;
• eventuality : all trajectories of the system starting from X0 will reach Xr in

finite time;
• reachability : at least one trajectory of the system starting from X0 will reach

Xr in finite time.
They will be defined more precisely later in the paper. In addition, we will look at
more complex temporal properties, which are the combinations of the above, and will
also consider systems with uncertain time-varying disturbance inputs.

When the system under consideration is a discrete transition system, such as
a finite automaton, the problem described above has been studied extensively in the
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computer science literature, and has applications, e.g., in the verification of correctness
of computer protocols, algorithms, and software. See [8, 10, 12, 18]. The methods
that have been proposed fall into two mainstream approaches: model checking [8]
and deductive verification (or theorem proving) [18]. Model checking performs an
exhaustive exploration of all possible system behaviors in a fully automated way, but
is applicable only to finite state systems. Deductive verification, on the other hand,
verifies system properties through formal deduction based on a set of inference rules.
It is applicable to infinite state systems, but has a drawback in the sense that guidance
from users is often needed in the process.

Uncountable state space and continuous dynamics are introduced when we con-
sider applications in control, since they usually involve physical plants whose dynamics
is governed by differential equations. Here the need for temporal verification arises
as the complexity of the system increases, especially in safety-critical applications
such as air traffic management [29], automated highway systems [11], and life support
systems [9]. For such systems, exact verification cannot be performed through simu-
lation, due to the infinite number of possibilities taken by the continuous state and
also the uncertainties of the system.

The success of model checking techniques in verification of discrete, finite state
transition systems has prompted the development of analogous approaches for con-
tinuous and hybrid systems. These approaches (see, e.g., [1, 2, 3, 5, 7, 15, 16, 30, 31])
require explicit computation of the states reachable from the initial set, which, for
example, is performed by propagating the set of states. Unfortunately, although they
allow us to compute an exact or nearly exact approximation of reachable sets, it is very
difficult to perform such a computation due to the uncountability of the state space,
especially when the system is nonlinear and uncertain. Note also that most of the
existing literature focuses on the verification of safety property, although some of their
techniques can be used to verify other temporal properties stated at the beginning of
this paper.

In a different vein, a deductive method for safety verification that does not require
explicit computation of the reachable sets, but instead is based on functions of states
termed barrier certificates, has been recently proposed in a work by the first author
[21]. The idea here is to study properties of the system without the need to compute
the flow explicitly. Our conditions for safety can be stated as follows. Suppose that
the vector field f(x) is continuous and that there exists a continuously differentiable
function B : R

n → R such that the inequalities

B(x) ≤ 0 ∀x ∈ X0,(1.1)

B(x) > 0 ∀x ∈ Xu,(1.2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X(1.3)

are satisfied. Then the safety property is verified, namely, there is no trajectory
x(t) of the system ẋ = f(x) such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T ]. The function B(x) here is called a barrier certificate.
When f(x) is polynomial and the sets X , X0, Xu are semialgebraic, a polynomial
barrier certificate B(x) can be efficiently searched using sum of squares programming
[22]—a convex optimization framework based on sum of squares decompositions of
multivariate polynomials [20] and semidefinite programming [6]. Because of this, our
method appears to be more scalable than many other methods. The method has also
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been extended to handle hybrid, uncertain, and stochastic systems [21], and successful
application to a NASA life support system, which is a nonlinear hybrid system with
6 discrete modes and 10 continuous state variables, has been reported [9]. To the best
of our knowledge, all other verification methods that can handle nonlinear hybrid
systems are practically limited to about 5 continuous state variables.

The above method is analogous to the Lyapunov method for stability analysis
[14]. Contrary to stability analysis, however, no notion of equilibrium, stability, or
convergence is required in temporal verification. For example, the system does not
need to have an equilibrium, and also for the eventuality and reachability properties
the system is not required to stay in Xr once the set is reached. Our method is also
related to the viability theory [4], the smallest invariant set [13], and the invariant
generation [26, 27, 28] approaches to safety verification. However, one of the distinc-
tive features of our approach is that we use convex programming to verify properties
of interest, which gives benefit in terms of computation and in terms of its inherent
duality structure.

In the present paper, we use insights from the linear programming duality ap-
pearing in the discrete shortest path problem [19] and the concept of density function
[23, 24] to formulate a convex program for proving reachability. In fact, not only
safety and reachability, but also other temporal properties such as eventuality, avoid-
ance, and their combinations can be verified through convex programming. Several
convex programs for this will be formulated. Similar to before, when the description
of the system is polynomial and the sets are semialgebraic, polynomial solutions to
these programs can be searched using sum of squares programming. In addition to
this, we will exploit strong duality to prove a converse theorem for safety verification
using barrier certificates.

The outline of the paper is as follows. In section 2, we give an intuitive illustration
of some main ideas by addressing the verification of a simple discrete transition system.
The convex programs for verification of continuous-time systems are presented and
proven in section 3. In section 4, some examples will be presented to illustrate the
applications of the proposed method. A converse theorem for barrier certificates will
be stated and proven in section 5, and we offer some conclusions in section 6.

2. Discrete example. Let us consider the verification of a simple discrete tran-
sition system, shown in Figure 2.1. The system has four states, labeled 1 through 4,
and three transitions between states, represented by the directed edges in the graph.
We assume that node 1 is the initial state and node 4 is the bad/unsafe state.

For verifying the safety property, conditions analogous to (1.1)–(1.3) that must
be satisfied by a barrier certificate can be formulated. One way to find a barrier
certificate which proves safety is by solving the linear program (LP)1

max sTB

subject to ATB ≤ 0,

where B � col(B1, B2, B3, B4) ∈ R
4 is the decision variable of the LP (i.e., the barrier

1Here we assume that there are only one initial state and one unsafe state. A generalization
of this can be formulated by considering a bigger graph obtained by augmenting an extra “source”
node and edges that connect it to all initial states, as well as an extra “sink” node and edges that
connect all unsafe states to it.
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Fig. 2.1. Verification of a simple discrete transition system. The nodes represent the states of
the system, while the directed edges represent transitions between states. Node 1 is the initial state
and node 4 is the unsafe state.

certificate); A is the incidence matrix of the graph, in this case given by

A =

⎡⎣−1 1 0 0
0 −1 1 0
0 −1 0 1

⎤⎦T

;

and s is a 4 × 1 column vector whose ith entry is equal to 1 if the ith node is the
unsafe state, and equal to −1 if the ith node is the initial state. This formulation
is similar to the continuous case. Analogous to (1.3), we ask that Bj ≤ Bi if there
is a directed edge from node i to node j. The objective function of the LP is just
the difference between the values of B at the unsafe state and at the initial state. If
there is a feasible solution to the above LP such that the objective function is strictly
positive, then the safety property can be inferred; i.e., we prove that there is no path
going from node 1 to node 4.

The dual of the above LP is as follows:

min 0

subject to Aρ = s,

ρ ≥ 0,

where ρ � col(ρ12, ρ23, ρ24) ∈ R
3 is the dual decision variables, whose entries corre-

spond to the edges in the graph. The dual decision variable ρij can be interpreted as
the transportation density from node i to node j. The equality constraints basically
state that conservation of flows holds at each node, namely, that the total flow into
a node is equal to the total flow out. In addition, the first and third equality con-
straints indicate that there exist a unit source at node 1, i.e., the initial state, and a
unit sink at node 4, i.e., the unsafe state. This duality interpretation has been studied
extensively in the past; see, e.g., [19] and the references therein.

The existence of a feasible solution to the dual LP implies the existence of a path
from the initial state to the unsafe state. This can be shown using the facts that the
flows are conserved and that there are a unit source and a unit sink at the initial state
and unsafe state, respectively. Hence, solving the dual LP can be used for verifying
reachability. As a matter of fact, we obtain a linear programming formulation of the
shortest path problem if we also add the objective function

∑
ρij to the dual LP. In



CONVEX PROGRAMS FOR TEMPORAL VERIFICATION 1003

this case, the nonzero entries corresponding to any optimal vertex solution to the LP
will indicate a shortest path from the initial node to the unsafe node [19].

This duality argument can also be used to prove that the existence of a barrier
certificate is both sufficient and necessary for safety. For this, suppose that there exists
no barrier certificate for the system, which is equivalent to the maximum objective
value of the primal LP being equal to zero. This objective value is attained by, e.g.,
Bi = 0 for all i. The linear programming duality [6] implies that there exists a feasible
solution to the dual LP, from which we can further conclude the existence of a path
from the initial state to the unsafe state, as explained in the previous paragraph. In
the continuous case, a strong duality argument will also be used to prove a converse
theorem for barrier certificates later in this paper.

For the above example, the optimal objective value of the primal LP is equal to
zero, and hence the safety property does not hold. The unique feasible solution to the
dual LP is given by ρ12 = 1, ρ23 = 0, ρ24 = 1, which shows the path from node 1 to
node 4. If the direction of the edge from node 2 to node 4 were reversed, for example,
the optimal objective value of the corresponding primal LP would be ∞, and there
would be no feasible solution to the dual LP.

Other properties of this discrete transition system such as eventuality and avoid-
ance can also be verified by solving some appropriate LPs. We will not state them
here, but instead we will now proceed to discuss the corresponding convex programs
for continuous systems.

3. Continuous systems. We denote the space of m-times continuously differ-
entiable functions mapping X ⊆ R

n to R
p by Cm(X,Rp). When p = 1, we will simply

write Cm(X), and for continuous functions (m = 0), we will omit the superscript.
The solution x(t) of ẋ = f(x) starting from x(0) = x0, if unique, is denoted by φt(x0).
For a set Z, we define φt(Z) � {φt(x) : x ∈ Z}.

The divergence of a vector field f ∈ C1(X,Rn) is denoted by ∇ · f(x). Finally,
let cl(X) denote the closure of a set X, and let ∂X denote the boundary of X.

The following version of Liouville’s theorem (from [23]) will be used in the proofs
of the main theorems.

Lemma 3.1. Let f ∈ C1(D,Rn), where D ⊆ R
n is open, and let ρ ∈ C1(D,R) be

integrable, i.e.,
∫
D
ρ(x)dx is finite. Consider the system ẋ = f(x). For a measurable

set Z, assume that φτ (Z) is a subset of D for all τ between 0 and T . Then∫
φT (Z)

ρ(x)dx−
∫
Z

ρ(z)dz =

∫ T

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ.(3.1)

3.1. Safety and reachability verification. At this point, we are ready to
state and prove the first pair of convex programs that verify safety and reachability
for continuous systems. The first convex program was proposed in [21] but will be
repeated here for completeness.

Theorem 3.2. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn). Let the
sets X ⊆ R

n, X0 ⊆ X , and Xu ⊆ X be given. Suppose that there exists a function
B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.2)

B(x) > 0 ∀x ∈ Xu,(3.3)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X .(3.4)
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Then the safety property holds; i.e., there exists no trajectory x(t) of the system such
that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

Proof. Our proof is by contradiction. Assume that there exists a barrier certificate
B(x) satisfying conditions (3.2)–(3.4), while at the same time the system is not safe;
i.e., there exist a time instance T ≥ 0 and an initial condition x0 ∈ X0 such that a
trajectory x(t) of the system starting at x(0) = x0 satisfies x(t) ∈ X for all t ∈ [0, T ]
and x(T ) ∈ Xu. Condition (3.4) implies that the derivative of B(x(t)) with respect to
time is nonpositive on the time interval [0, T ]. A direct consequence of this (which,
for example, can be shown using the mean value theorem) is that B(x(T )) must be
less than or equal to B(x(0)), which is contradictory to (3.2)–(3.3). Thus the initial
hypothesis is not correct: the safety property must hold.

We will next present a convex program for verifying reachability. It can be viewed
as a continuous-time version of the dual LP in section 2. The decision variable ρ(x)
in this convex program is termed density function and has an interpretation as the
stationary density of a substrate that is generated and consumed in various parts of
the state space, and that is transported according to the vector field of the system.
It has been previously used in an almost global stability criterion in [23].

Theorem 3.3. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let the sets
X ⊂ R

n, X0 ⊆ X , and Xr ⊆ X be given. Assume that the sets are bounded and that
X0 has a nonempty interior. If there exists a function ρ ∈ C1(Rn) satisfying∫

X0

ρ(x)dx ≥ 0,(3.5)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr),(3.6)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.7)

then the reachability property holds; i.e., there exists a trajectory x(t) of the system
such that x(0) ∈ X0, x(T ) ∈ Xr for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

Proof. Let X ⊆ X0 be an open set on which ρ(x) ≥ 0. We will first prove that
there must be an initial condition x0 ∈ X whose flow φt(x0) leaves X \ Xr in finite
time. In fact, the set of all initial conditions in X whose flows do not leave X \ Xr in
finite time is a set of measure zero. To show this, let Y be an open neighborhood of
X \ Xr such that ∇ · (ρf)(x) > 0 on cl(Y ). Now define

Z =
⋂

i=1,2,...

{x0 ∈ X : φt(x0) ∈ Y ∀t ∈ [0, i]} .

The set Z is an intersection of countable open sets and hence is measurable. It
contains all initial conditions in X for which the trajectories stay in Y for all t ≥ 0.
That Z is a set of measure zero can be shown using Lemma 3.1 as follows. Since
φt(Z) ⊂ Y , Y is bounded, and ρ(x) is continuous, the left-hand side of∫

φt(Z)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ t

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ

is bounded for all t ≥ 0. Therefore, for the above equation to hold, we must have∫
φτ (Z)

[∇ · (fρ)] (x)dx → 0 as τ → ∞, or, equivalently, the measure of φτ (Z) converges

to zero as τ → ∞. Suppose now that Z has nonzero measure. We have a contra-
diction since limt→∞

∫
φt(Z)

ρ(x)dx = 0, whereas limt→∞
∫ t

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ +
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Z
ρ(x)dx is strictly positive, as implied by (3.5) and (3.7). Using this argument, we

conclude that Z has measure zero. Since X \ Xr ⊂ Y , it follows immediately that
the set of all initial conditions in X whose flows stay in X \ Xr for all time is a set of
measure zero.

Now take any x0 ∈ X whose flow leaves X \ Xr in finite time; we will show that
such a flow must enter Xr before leaving X . Suppose to the contrary that the flow
φt(x0) leaves X without entering Xr first. Let T > 0 be the “first” time instant
φt(x0) leaves X . By this we mean that either φt(x0) ∈ X \ Xr for all t ∈ [0, T ) and
φT (x0) /∈ X , or φt(x0) ∈ X \ Xr for all t ∈ [0, T ] and φT+ε(x0) /∈ X for any ε > 0.
From conditions (3.6)–(3.7), it follows that for a sufficiently small neighborhood U of
x0 we have

ρ(x) ≥ 0 ∀x ∈ U,

ρ(x) < 0 ∀x ∈ φT (U),

∇ · (ρf)(x) > 0 ∀x ∈ φt(U), t ∈ [0, T ].

Apply Lemma 3.1 again to obtain a contradiction. According to the above, the left-
hand side of ∫

φT (U)

ρ(x)dx−
∫
U

ρ(x)dx =

∫ T

0

∫
φτ (U)

[∇ · (fρ)] (x)dxdτ

is negative, while the right-hand side is positive. Thus there is a contradiction, and
we conclude that for x(0) = x0 there must exist T ≥ 0 such that x(T ) ∈ Xr and
x(t) ∈ X for all t ∈ [0, T ].

Remark 3.4. Modulo the following modification on the assertion of Theorem 3.3,
the conclusion will still hold even when the sets are not bounded. In particular, we
need to add the condition that ρ(x) is integrable on X (i.e.,

∫
X ρ(x)dx is finite) and

replace (3.7) by

∇ · (ρf)(x) ≥ ε ∀x ∈ (X \ Xr)

for a positive number ε.
Notice that all the conditions presented in the above theorems (as well as in the

theorems that will be presented later) form convex programming problems, as the
sets of B(x)’s satisfying (3.2)–(3.4) or ρ(x)’s satisfying (3.5)–(3.7) are convex. This
just follows from the definition of convexity. For example, if B1(x) and B2(x) satisfy
(3.2)–(3.4), then for any α ∈ [0, 1], the function αB1(x)+(1−α)B2(x) also satisfies the
conditions. The convexity of the programs opens the possibility of computing B(x)
and ρ(x) using convex optimization. For systems whose vector fields are polynomial
and whose set descriptions are semialgebraic (i.e., described by polynomial equalities
and inequalities), a computational method called sum of squares programming can
be utilized if we use a polynomial parameterization for B(x) or ρ(x). The method
is based on the sum of squares decomposition of multivariate polynomials [20] and
semidefinite programming [6]. Software tools [22] are helpful for this purpose. See
[21] for details.

When we set Xu = Xr, the convex programs in Theorems 3.2 and 3.3 form a pair of
weak alternatives: at most one of them can be feasible. Nevertheless, strictly speaking
it should be noted that these convex programs are not pairs of Lagrange dual problems
[6] in the sense of convex optimization. We deliberately do not use Lagrange dual
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problems to avoid computational problems when we postulate B(x) or ρ(x) as poly-
nomials. For example, the Lagrange dual problem of the safety test in Theorem 3.2
will require ∇ · (ρf)(x) to be zero on X \ (X0 ∪ Xu) (cf. section 5). Although useful
for theoretical purposes, this will hinder the computation of ρ(x) through polynomial
parameterization and sum of squares programming. In this regard, some interesting
future directions would be to see if a pair of Lagrange dual problems can be formu-
lated so that both problems can be solved using sum of squares programming, or,
more importantly, to see if the dual infeasibility certificate of one convex program can
be interpreted directly as a feasible solution to the dual convex program.

3.2. Eventuality and avoidance verification. We will now present two other
convex programs for verifying the eventuality and avoidance properties. Analogous
to what we have in the previous subsection, when Xu = Xr these programs form a
pair of weak alternatives.

Theorem 3.5. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , and Xr ⊆ X be bounded sets. If there exists a function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.8)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr),(3.9)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr),(3.10)

then the eventuality property holds; i.e., for all initial conditions x0 ∈ X0, the trajec-
tory x(t) of the system starting at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X for all
t ∈ [0, T ] for some T ≥ 0.

Proof. Consider any point x0 ∈ X0, for which B(x0) ≤ 0, and let x(t) be a
trajectory of the system starting at x(0) = x0. The trajectory x(t) must leave X \Xr

in finite time, since the derivative inequality (3.10) holds and B(x) is bounded below
on X . Now, suppose that x(t) leaves X without entering Xr first, and consider the
“first” time instant t = T at which it happens. Similar to the proof of Theorem 3.3, by
this we mean that either x(t) ∈ X \Xr for all t ∈ [0, T ) and x(T ) /∈ X , or x(t) ∈ X \Xr

for all t ∈ [0, T ] and x(T + ε) /∈ X for any ε > 0. From (3.10) and B(x0) ≤ 0, it
follows that B(x(T )) is nonpositive, which is contradictory to (3.9). Thus we conclude
that for any trajectory x(t) starting at x(0) = x0 there must exist T ≥ 0 such that
x(T ) ∈ Xr and x(t) ∈ X for all t ∈ [0, T ]. Since x0 is an arbitrary point in X0, the
conclusion of the theorem follows.

Remark 3.6. Similarly to before, with some modifications to the assertion of the
theorem, the conclusion of Theorem 3.5 will still hold even when the sets are not
bounded. In particular, we need to add the condition that B(x) is bounded below on
X and replace (3.10) by

∂B

∂x
(x)f(x) ≤ −ε ∀x ∈ (X \ Xr)

for a positive number ε.

Theorem 3.7. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊆ R
n,

X0 ⊆ X , and Xu ⊆ X be some given sets, with X0 having a nonempty interior. If
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there exist an open set X̃ and a function ρ ∈ C1(Rn) such that X ⊆ X̃ and∫
X0

ρ(x)dx ≥ 0,(3.11)

ρ(x) < 0 ∀x ∈ Xu,(3.12)

∇ · (ρf)(x) ≥ 0 ∀x ∈ X̃ ,(3.13)

then the avoidance property holds; i.e., for some initial condition x0 ∈ X0, there
exists no T ≥ 0 such that trajectory x(t) of the system starting at x(0) = x0 satisfies
x(T ) ∈ Xu and x(t) ∈ X for all t ∈ [0, T ].

Proof. From (3.11), it follows that there exists an open set X ⊆ X0 on which
ρ(x) ≥ 0. Take any x0 in X—we will show that the trajectory starting from this
point will never reach Xu. Suppose to the contrary that there exists a T ≥ 0 such
that φT (x0) ∈ Xu and φt(x0) ∈ X for t ∈ [0, T ]. Then it follows from (3.12)–(3.13)
that for a sufficiently small neighborhood Z of x0 we have

ρ(x) ≥ 0 ∀x ∈ Z,

ρ(x) < 0 ∀x ∈ φT (Z),

∇ · (ρf)(x) ≥ 0 ∀x ∈ φt(Z), t ∈ [0, T ].

Now apply Lemma 3.1 to obtain a contradiction. Use a bounded but sufficiently large
D ⊂ R

n such that φt(Z) ⊂ D for all t ∈ [0, T ]; then ρ(x) is integrable on D. According
to the above, the left-hand side of∫

φT (Z)

ρ(x)dx−
∫
Z

ρ(x)dx =

∫ T

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ

is negative and the right-hand side is nonnegative. Hence there is a contradiction and
the proof is complete.

In applications where the system has stable equilibrium points, it is often conve-
nient to exclude a neighborhood of the equilibria from the region where the divergence
inequality (3.13) must be satisfied, since the inequality is otherwise impossible to sat-
isfy without a singularity in ρ(x). This does not make the conclusion of the theorem
weaker, as long as the excluded set does not intersect Xu and is entirely surrounded
by a region of positive ρ(x).

Similarly, the Lie derivative inequality (3.10) is impossible to satisfy when the
system has equilibrium points in X \Xr. In this case, a neighborhood of the equilibria
should also be excluded from the region where the inequality is to be satisfied. The
conclusion of the theorem is still valid as long as the excluded set is entirely surrounded
by a region of positive B(x).

3.3. Some extensions. Whereas the convex programs for safety and reacha-
bility as well as eventuality and avoidance are related since they form pairs of weak
alternatives, the safety property is also related to avoidance, and eventuality to reach-
ability, via replacing the universal quantifier with an existential quantifier. As a
consequence, reachability and avoidance verification can also be performed using the
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barrier certificate B(x). The conditions are similar to those in Theorems 3.5 and 3.2,
respectively, but with conditions (3.8) and (3.2) replaced by∫

X0

B(x)dx ≤ 0,

where we also ask that X0 has a nonempty interior. The proof is similar to the proofs
of Theorems 3.5 and 3.2, noting that B(x) will then be less than or equal to zero in
some open set contained in X0.

A modification of the convex program involving ρ(x) in Theorem 3.7 can also be
used to verify the safety property. For this, we need to replace (3.11) by

ρ(x) ≥ 0 ∀x ∈ X̃0,

where X̃0 is an open set containing X0. Note that in this case X0 no longer needs to
have a nonempty interior.

On the other hand, an analogous modification of Theorem 3.3 can only be used to
verify the eventuality property in the weak sense: that almost all trajectories of the
system starting from X0 will reach Xr in finite time. This is stated in the corollary
below.

Corollary 3.8. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let the
sets X ⊂ R

n, X0 ⊆ X , and Xr ⊆ X be given. Assume that the sets are bounded, and
let X̃0 be an open set containing X0. If there exists a function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X̃0,(3.14)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr),(3.15)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.16)

then the weak eventuality property holds; i.e., for almost all 2 initial conditions x0 ∈
X0, there exists T ≥ 0 such that the trajectory x(t) of the system starting at x(0) = x0

satisfies x(T ) ∈ Xr and x(t) ∈ X for all t ∈ [0, T ].
Proof. Using an argument similar to the proof of Theorem 3.3, it can be shown

that for almost all initial conditions x0 ∈ X̃0, there exists T ≥ 0 such that the
trajectory x(t) of the system starting at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X
for all t ∈ [0, T ]. Since X0 ⊆ X̃0, the corollary follows.

Example 3.9. To show that the weak eventuality property mentioned above
cannot in general be strengthened to eventuality, consider the system ẋ = x, with X =
(−5, 5) ⊂ R, X0 = (−1, 1), Xr = (−5,−4) ∪ (4, 5). The function ρ(x) = 1 satisfies all
the conditions that guarantee weak eventuality; hence almost all trajectories starting
from X0 will reach Xr in finite time. The only exception in this case is the trajectory
x(t) = 0.

Let us now consider the verification of a system with disturbance input ẋ =
f(x, d), where f ∈ C(Rn+m,Rn); the disturbance signal d(t) is assumed to be piece-
wise continuous, bounded on any finite time interval, and take its value in a set
D ⊆ R

m. Then solving the convex program in Theorem 3.2 with the Lie derivative
inequality (3.4) replaced by

∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X ×D

2This is in the sense that the set of initial conditions which do not satisfy the property is a set
of measure zero.
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will prove safety under all possible disturbances d(t). Also, solving the convex program
in Theorem 3.5 with the Lie derivative inequality (3.10) replaced by

∂B

∂x
(x)f(x, d) ≤ −ε ∀(x, d) ∈ (X \ Xr) ×D

for some positive ε will prove eventuality under all possible disturbances d(t). Sim-
ilar adaptations can be applied to the convex programs that verify reachability and
avoidance using B(x).

At present, it is unclear how a similar worst-case analysis for systems with time-
varying disturbance can be formulated using ρ(x). However, as pointed out in [23],
the density function ρ(x) seems to have a better convexity property that is more
beneficial for controller design. For a system ẋ = f(x) + g(x)u(x), where u(x) is the
control input (assumed to be in a state feedback form), the inequalities (3.5)–(3.6)
and

∇ · [ρ(f + ug)](x) > 0 ∀x ∈ cl(X \ Xr)

(and similarly for (3.11)–(3.13)) are certainly convex conditions on the pair (ρ, ρu).
It is therefore natural to introduce ψ = ρu as a search variable and use convex
optimization to find a feasible pair (ρ, ψ), then recover the control law as u(x) =
ψ(x)/ρ(x). Some results along this direction are available in [25].

While one may argue that the reachability and avoidance properties can be shown
by running a numerical simulation of ẋ = f(x) starting from a properly chosen
x0 ∈ X0, the merit of the convex programming tests presented before is twofold.
First, a solution to the convex programs for reachability or avoidance will automati-
cally indicate a set from which all points (or almost all points) can be chosen as the
initial state. Second, the use of these convex programs allows us to also consider the
verification of systems with disturbance (which obviously cannot be performed using
simulation), or even the controller design problem, as we have seen above.

3.4. Other temporal properties. It is clear that the convex programs in the
previous subsections can also be extended to prove combined temporal properties such
as reachability–safety:

there exists a trajectory x(t) such that x(0) ∈ X0, x(T ) ∈ Xr for
some T ≥ 0, and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ];

and eventuality–safety3 (or weak eventuality–safety):

for all (or almost all) initial states x0 ∈ X0, the trajectory x(t) start-
ing at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0 and x(t) /∈ Xu,
x(t) ∈ X for all t ∈ [0, T ].

Note that for the above temporal specifications, the system can reach Xu after it
reaches Xr first.

For instance, convex programs for verifying the eventuality–safety and weak
eventuality–safety properties are stated in the following corollaries.

Corollary 3.10. Consider the system ẋ = f(x) with f ∈ C(Rn,Rn) and let
X ⊂ R

n, X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. Suppose that there exists a function

3In linear temporal logic (LTL), for example, this property corresponds to the “until” operator.
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B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(3.17)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu,(3.18)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr).(3.19)

Then the eventuality–safety property holds; i.e., for all initial states x0 ∈ X0, the
trajectory x(t) starting at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0 and
x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ].

Corollary 3.11. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let
X ⊂ R

n, X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. If there exist an open set X̃0

containing X0 and a function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X̃0,(3.20)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu,(3.21)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr),(3.22)

then the weak eventuality–safety property holds; i.e., for almost all initial states x0 ∈
X0, the trajectory x(t) starting at x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0
and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ]. In this case, the safety property holds also
for trajectories that do not reach Xr in finite time.

4. Examples. We will now consider some examples to illustrate the application
of the proposed methods. The MATLAB m-files for solving these examples can be
found at http://www.cds.caltech.edu/∼prajna/files/PraR06.

4.1. Successive safety and reachability refinements. Consider the two-
dimensional system

ẋ1 = x2,

ẋ2 = −x1 +
1

3
x3

1 − x2,

and let the set of states be X = [−3.5, 3.5] × [−3.5, 3.5] ⊂ R
2. Furthermore, define

X0 = [−3.4, 3.4] × [3.35, 3.45], X2 = [−3.5, 3.5] × {−3.5},

X1 = {3.5} × [−3.5, 3.5], X3 = {−3.5} × [−3.5, 3.5].

In this example, we will investigate the reachability of X1, X2, X3 from X0. Such facet-
to-facet analysis is encountered when constructing a discrete abstraction of continuous
or hybrid systems, or when analyzing a counterexample found during the verification
of such an abstraction [1].

The convex programs in Theorems 3.2 and 3.3 will be used for our analysis.
Since the vector field is polynomial and the sets are semialgebraic, we use polynomial
parameterization for B(x) and ρ(x), and then utilize sum of squares programming to
compute them. A degree bound equal to 8 is imposed on B(x) and ρ(x). Because
of this, we might not be able to find a single B(x) or ρ(x) that proves safety or
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[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (?)

[−3.4,−1.7]; (S) [−1.7,0]; (R)

(a) X0 → X1

[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (S)

[−3.4,−1.7]; (?) [−1.7,0]; (S)

[−3.4,−2.55]; (?) [−2.55,−1.7]; (S)

[−3.4,−2.975]; (R)

(b) X0 → X3

Fig. 4.1. Proving the reachability of X1 and X3 from X0 in the example of section 4.1. At each
node we indicate the range of x1 in X0 for which safety and reachability are tested. If neither is
verified (denoted by ?), then the x1-interval is divided into two and the tests are applied to the smaller
sets. The annotation S (respectively, R) indicates that B(x) (respectively, ρ(x)) is found. Breadth-
first search starting from the leftmost branch is used. The verification of X0 � X2 terminates at
the top node, since a barrier certificate B(x) can be found directly.

reachability for the whole X0. If neither B(x) nor ρ(x) can be found, we divide the
interval of x1 in X0 into two parts and apply the tests again to the smaller sets. A
set is pruned if B(x) is found, and this process is repeated until a ρ(x) is found or
the whole X0 is proven safe.

The result is as follows.
• We prove that the set X1 is reachable from X0. The verification progress is

shown in Figure 4.1(a).
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0 1 2 3

0

1

2

3

x
1

x 2 X
1

(a) X0 → X1
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(b) X0 � X2

0 1 2 3

0

1

2

3

x
1

x 2 X
3

(c) X0 → X3

Fig. 4.2. Possible transitions from X0 to X1, X2, and X3 in the example of section 4.1. In (a)
and (c), dashed curves are the zero level sets of ρ(x)’s that certify reachability. In (b), the dashed
curve is the zero level set of B(x) that certifies safety; trajectories starting from X0 cannot cross
this level set to reach X2. Thick solid lines at the top of the figures are the initial sets for which the
certificates are computed. Some trajectories of the system are depicted by solid curves.

• It can be proven directly that X2 is not reachable from X0.
• It is proven that the set X3 is reachable from X0. See Figure 4.1(b).

For proofs of the corresponding reachability and safety, see Figure 4.2.

Obviously, the above bisection algorithm is just a simple, straightforward ap-
proach to refine and prune the initial set, and other algorithms that are more efficient
can be proposed in the future.

4.2. Van der Pol oscillator. Consider the van der Pol oscillator with distur-
bance input:

ẋ1 = x2,

ẋ2 = x2(1 − x2
1) − x1 + d,

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let
X = {x ∈ R

2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let
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Fig. 4.3. Verifying temporal properties of the van der Pol oscillator with disturbance. It is to be
verified that under all possible disturbance input, if the system starts in XA, then both XB and XC

are reached in finite time, but XC will not be reached before the system reaches XB. The nominal
trajectory of the system (i.e., for d = 0) starting at x = (0, 2) is depicted by the solid curve.

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.3, where a nominal trajectory of the system starting
at x = (0, 2) is also shown. Our objective in this example is to verify that under all
possible piecewise continuous and bounded disturbances d(t), if the system starts in
XA, then both XB and XC are reached in finite time, but XC will not be reached
before the system reaches XB .

To verify this temporal specification, we will search for two barrier certificates
B1(x) and B2(x) satisfying the following conditions:⎧⎪⎪⎨⎪⎪⎩

B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x f(x, d) ≤ −ε ∀(x, d) ∈ (X \ XB) ×D,⎧⎪⎪⎨⎪⎪⎩
B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,

∂B2

∂x f(x, d) ≤ −ε ∀x ∈ (X \ XC) ×D

for some positive ε. Using sum of squares programming, polynomials B1(x) and B2(x)
of degree 10 can be found, and thus the temporal specification is verified.

5. A converse theorem. In this section, we will prove a converse theorem for
safety verification using barrier certificates by exploiting the convexity of the problem
formulation. The main result of the section can be stated as follows.
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Theorem 5.1. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X be compact sets, and suppose that there exists a function B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . Then there exists a function B ∈ C1(Rn)

that satisfies

B(x) ≤ 0 ∀x ∈ X0,(5.1)

B(x) > 0 ∀x ∈ Xu,(5.2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X(5.3)

if and only if the safety property holds, i.e., if there exists no trajectory x(t) of the
system such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all
t ∈ [0, T ].

Notice that in the theorem we have used a seemingly strong assumption that

there exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . Later in

the section we will show that in many cases of interest the existence of such B̃(x) is
actually guaranteed.

Our proof of the converse statement in Theorem 5.1 consists of two parts, given in
Lemmas 5.2 and 5.4 below. In the first lemma, we use the Hahn–Banach theorem to
show that the nonexistence of a B(x) satisfying the conditions in Theorem 5.1 implies
the existence of measures ψ0, ψu, ρ satisfying some appropriate conditions. Then in
Lemma 5.4 we show that the existence of such ψ0, ψu, ρ actually implies that there
exists an unsafe trajectory of the system.

Lemma 5.2. Let f ∈ C1(Rn,Rn), and let X ⊂ R
n, X0 ⊆ X , Xu ⊆ X be compact

sets. Suppose there exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all

x ∈ X . Then there exists no B ∈ C1(Rn) satisfying (5.1)–(5.3) only if there are
measures of bounded variation ψ0, ψu, ρ (each defined on R

n) such that ψ0, ψu, ρ are
nonnegative on R

n and equal to zero outside X0, Xu, and X , respectively; and∫
X0

dψ0 = 1,

∫
Xu

dψu = 1,

∇ · (ρf) = ψ0 − ψu,

where ∇ · (ρf) is interpreted as a distributional derivative.
Proof. Let us consider the convex optimization problem

sup Bu −B0

subject to B(x) −B0 ≤ 0 ∀x ∈ X0,

B(x) −Bu ≥ 0 ∀x ∈ Xu,

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X ,

with the supremum denoted by γ, and taken over all B0 ∈ R, Bu ∈ R, and B ∈
C1(Rn). Since B0 = 0, Bu = 0, and B(x) = 0 satisfy the constraint, γ must be greater
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than or equal to zero. In addition, since the objective function and the constraints are
all linear, the value of γ is either zero or ∞. There exists no B ∈ C1(Rn) satisfying
(5.1)–(5.3) if and only if the value of γ is equal to zero.

Now suppose that γ = 0. Let K = R × (C(X ))3, B = R
2 × C1

0 (Rn), and define
K1, K2 as follows:

K1 =

{
(z, h0, hu, h) ∈ K : h0 = B0 −B, hu = B −Bu, h = −∂B

∂x
f on X ;

z = Bu −B0; and (B0, Bu, B) ∈ B
}
,

K2 = {(z, h0, hu, h) ∈ K : z ≥ 0, h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.

Then both K1 and K2 are convex sets, and K2 has a nonempty interior in K. Fur-
thermore, since γ = 0, it follows that the first component in K1 is less than or equal
to zero when the second, third, and fourth components are greater than or equal to
zero, and therefore K1 ∩ int(K2) = ∅. Now, by the Hahn–Banach theorem [17], there
exists a nonzero k∗ = (a, ψ̃0, ψ̃u, ρ̃) ∈ K∗ = R × (C(X )∗)3 such that

sup
k1∈K1

〈k∗, k1〉 ≤ inf
k2∈K2

〈k∗, k2〉,(5.4)

where C(X )∗ in this case is the set of measures on X with bounded variation. The
right-hand side of the inequality can be expanded as follows:

inf
k2∈K2

〈k∗, k2〉 = inf
(z,h0,hu,h)∈K2

az + 〈ψ̃0, h0〉 + 〈ψ̃u, hu〉 + 〈ρ̃, h〉

=

⎧⎪⎪⎨⎪⎪⎩
0 if a ≥ 0; ψ̃0, ψ̃u, ρ̃ ≥ 0; and

ψ̃0, ψ̃u are zero outside X0,Xu, respectively;

−∞ otherwise.

Now denote the extension of ψ̃0, ψ̃u, ρ̃ to the whole R
n by ψ0, ψu, ρ, which are

obtained by letting them be equal to zero outside of X . Then, for the left-hand side
of (5.4), we have the following equality:

sup
k1∈K1

〈k∗, k1〉 = sup
(B0,Bu,B)∈B

a(Bu −B0) + 〈ψ0, B0 −B〉

+ 〈ψu, B −Bu〉 +

〈
ρ,−∂B

∂x
f

〉

= sup
(B0,Bu,B)∈B

(
−a +

∫
dψ0

)
B0 +

(
a−

∫
dψu

)
Bu

+ 〈−ψ0 + ψu + ∇ · (ρf), B〉

=

⎧⎪⎪⎨⎪⎪⎩
0 if

∫
Rn dψ0 = a,

∫
Rn dψu = a, and

−ψ0 + ψu + ∇ · (ρf) = 0;

∞ otherwise,
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where ∇ · (ρf) is interpreted as a distributional derivative. Thus, for the supremum
to be less than or equal to the infimum, we must have a nonzero (a, ψ0, ψu, ρ), where
ψ0, ψu, ρ are measures of bounded variation on R

n, such that a ≥ 0; ψ0, ψu, ρ are
nonnegative; ψ0, ψu, ρ are equal to zero outside X0, Xu, and X , respectively; and∫

Rn

dψ0 = a,

∫
Rn

dψu = a,

∇ · (ρf) = ψ0 − ψu.

We will next show that because of the assumption that there exists a B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X , we must have a > 0. For this, let L = (C(X ))3,

and define

L1 =

{
(h0, hu, h) ∈ L : h0 = B0 −B, hu = B −Bu, h = −∂B

∂x
f on X ;

and (B0, Bu, B) ∈ B
}
,

L2 = {(h0, hu, h) ∈ L : h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.

Note in particular that due to the above assumption and the compactness of X0,
Xu, X , we have L1 ∩ int(L2) �= ∅ . Now consider k∗ = (a, ψ̃0, ψ̃u, ρ̃) that we have
before. Suppose that a = 0 and substitute this to (5.4). Then we have a nonzero
(ψ̃0, ψ̃u, ρ̃) ∈ (C(X )∗)3, such that

sup
�1∈L1

〈(ψ̃0, ψ̃u, ρ̃), 
1〉 ≤ inf
�2∈L2

〈(ψ̃0, ψ̃u, ρ̃), 
2〉.

This implies that L1 ∩ int(L2) = ∅, which is contradictory to the above. Thus a must
be strictly positive. Without loss of generality, assume that k∗ is scaled such that
a = 1. This completes the proof of our lemma.

Next, we will show that the existence of ψ0, ψu, ρ in the conclusion of Lemma 5.2
implies that there exists an unsafe trajectory of the system. Since in this case we have
a density function ρ which is in fact a measure, we need a version of the Liouville
theorem which applies to measures.

Lemma 5.3. Let f ∈ C1(D,Rn), where D ⊆ R
n is open. For a measurable set

Z, assume that φt(Z) is a subset of D for all t between 0 and T . If ρ is a measure
of bounded variation on D such that ρ has a compact support and the distributional
derivative ∇ · (ρf) is also a measure of bounded variation with compact support, then∫

φT (Z)

dρ−
∫
Z

dρ =

∫ T

0

∫
φt(Z)

d(∇ · (ρf))dt.

Proof. Choose ρ1, ρ2, . . . ∈ C∞
0 (D) such that ρk → ρ in the (weak) topology

of distributions. Then also ∇ · (ρkf) → ∇ · (ρf) in the sense of distributions. In
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particular

lim
k→∞

∫
X

d|ρk − ρ| = 0,

lim
k→∞

∫
X

d|∇ · (ρkf) −∇ · (ρf)| = 0

for every X ⊂ D. The lemma (cf. Lemma 3.1) was proven for the case of smooth ρ
in [23], i.e., ∫

φT (Z)

ρk(x)dx−
∫
Z

ρk(x)dx =

∫ T

0

∫
φt(Z)

[∇ · (ρkf)(x)]dxdt.

So the desired equality is obtained in the limit as k → ∞.
Lemma 5.4. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn), and let X ⊂ R

n,
X0 ⊆ X , Xu ⊆ X be compact sets. Suppose there exist measures of bounded variations
ψ0, ψu, ρ such that ψ0, ψu, ρ are nonnegative on R

n and equal to zero outside X0, Xu,
and X , respectively; and

∫
X0

dψ0 = 1,
∫
Xu

dψu = 1, ∇ · (ρf) = ψ0 − ψu. Then there

exists a T ≥ 0 and a trajectory x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu,
and x(t) ∈ X for all t ∈ [0, T ].

Proof. Let X1, X2, . . . ⊆ R
n be a sequence of open sets such that X0 ⊆ Xi for all

i and limi→∞ Xi = X0. In addition, define the measurable sets

Zi =
⋃

x0∈Xi

{x ∈ R
n : x = φt(x0) for some t ≥ 0} for i = 1, 2, . . . .

By the assertions of the lemma, both ρ and ∇ · (ρf) are measures with bounded
variation and compact support, so we can use Lemma 5.3 and ∇ · (ρf) = ψ0 − ψu to
obtain the relation ∫

φt(Zi)

dρ−
∫
Zi

dρ =

∫ t

0

∫
φτ (Zi)

d(ψ0 − ψu)dτ

for all t ≥ 0. Since ρ ≥ 0 and φt(Zi) ⊆ Zi for all t ≥ 0, the left-hand side of
the above expression is less than or equal to zero. It follows from

∫
X0

dψ0 = 1 and

ψ0 ≥ 0 that Xu ∩ Zi �= ∅ for all i = 1, 2, . . . , for otherwise the right-hand side of the
expression can be made strictly greater than zero by taking some t > 0, and we obtain
a contradiction. Since the sets X0 and Xu are closed, we conclude that φT (x0) ∈ Xu

for some T ≥ 0 and x0 ∈ X0. For our purposes, let T be the first time instance such
that φT (x0) ∈ Xu.

The case in which T = 0 is trivial since X0 ⊆ X . Consider now the case in which
T > 0. We will show that φt(x0) ∈ X for all t ∈ [0, T ] by a contradiction. Suppose
to the contrary that there exists T̃ ∈ (0, T ) such that φT̃ (x0) /∈ X . Then, for a
sufficiently small open neighborhood U of x0, we have

φT̃ (U) ⊂ R
n \ (X ),

φt(U) ∩ Xu = ∅ ∀t ∈ [0, T̃ ].

Using Lemma 5.3 again we obtain∫
φT̃ (U)

dρ−
∫
U

dρ =

∫ T̃

0

∫
φτ (U)

d(ψ0 − ψu)dτ.
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Since ρ = 0 on R
n \ (X ), the first term on the left is equal to zero, and therefore the

left-hand side is nonpositive, which leads to a contradiction since the right-hand side
is strictly greater than zero. This lets us conclude that φt(x0) ∈ X for all t ∈ [0, T ],
thus finishing the proof of the lemma.

We are now ready to present the proof of the main theorem.
Proof of Theorem 5.1.
(⇒): This has been proven in Theorem 3.2.
(⇐): This follows from Lemmas 5.2 and 5.4.

5.1. Some remarks. The result stated in Theorem 5.1 uses the assumption that
the following Slater-like condition [6] is fulfilled: there exists a function B̃ ∈ C1(Rn)

such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X . While in the discrete case strong duality holds

(and hence so does the necessity of barrier certificates) without such an assumption,
its proof depends on a special property of polyhedral convex sets, which does not
carry over to the continuous case. Eliminating this condition in the continuous case
will presumably require a different proof technique than the one presented in this
paper. Nevertheless, there are cases in which the condition is automatically fulfilled—
for instance, when the trajectories of the system starting from any x0 ∈ X leave a
neighborhood of X at least once, as shown in the following proposition.

Proposition 5.5. Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let
X ⊂ R

n be a compact set. Suppose there exist an open neighborhood X̃ of X and a
time instant T > 0 such that for all initial conditions x0 ∈ X , we have the flow φt(x0)
outside of cl(X̃ ) for some t ∈ [0, T ]. Then there exists a function B̃ ∈ C1(Rn) such

that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X .

Proof. Let Y be an open neighborhood of X such that its closure is contained
in X̃ . In addition, let ξ ∈ C1(Rn) be a nonnegative function such that ξ(x) = 1 for
all x ∈ Y and ξ(x) = 0 for all x /∈ X̃ ; also let ψ ∈ C1(Rn) be a function such that
ψ(x) > 0 for all x ∈ X and ψ(x) = 0 for all x /∈ Y. Now consider the differential
equation ẋ = ξ(x)f(x). Denote the flow of ẋ = ξ(x)f(x) starting at x0 by φ̃t(x0).
Modulo a time reparameterization, the flows φ̃t(x0) and φt(x0) are identical up to
some finite time. Next define

B̃(x0) =

∫ ∞

0

ψ(φ̃t(x0))dt.

For all x0 in a neighborhood of X , the flow φ̃t(x0) is outside of Y for large t and thus
by its construction ψ(φ̃t(x0)) is equal to zero for large t and for all such x0. It follows
that B̃(x) is well defined on a neighborhood of X . The function B̃(x) is continuously
differentiable on X since both ψ(x) and φ̃t(x) are also continuously differentiable.
Taking the total derivative of B̃(x) with respect to time, we obtain

∂B̃

∂x
(x)ξ(x)f(x) = −ψ(x),

which is strictly less than zero, on X . Finally, recall that on X we have ξ(x) = 1.
This completes the proof of the proposition.

While the above Slater-like condition excludes the possibility of applying Theo-
rem 5.1 when there is, e.g., an equilibrium point in X , analysis can still be performed
by excluding a neighborhood of the equilibrium point from X in the condition (3.4).
If the excluded region is either backward or forward invariant, and does not intersect
X0 and Xu, then the safety criterion (5.1)–(5.3) will still apply in terms of the original
sets.



CONVEX PROGRAMS FOR TEMPORAL VERIFICATION 1019

Finally, note also that when all the connected components of R
n \ X are either

forward or backward invariant, an even stronger safety criterion can be obtained, as
in the following proposition.

Proposition 5.6. Let the system ẋ = f(x) with f ∈ C1(Rn,Rn) and the compact
sets X0 ⊂ R

n, Xu ⊂ R
n be given, with 0 /∈ X0∪Xu. Suppose that the origin is a globally

asymptotically stable equilibrium of the system with a global strict Lyapunov function
V (x).4 Let ε1 = minx∈X0∪Xu V (x) and ε2 = maxx∈X0∪Xu V (x). Then there exists a
function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0,(5.5)

B(x) > 0 ∀x ∈ Xu,(5.6)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ {x ∈ R

n : ε1 ≤ V (x) ≤ ε2}(5.7)

if and only if there exists no trajectory x(t) of the system such that

x(0) ∈ X0,(5.8)

x(T ) ∈ Xu for some T ≥ 0.(5.9)

Proof. Define X = {x ∈ R
n : ε1 ≤ V (x) ≤ ε2}. In this case, the existence of a

function B̃ ∈ C1(Rn) such that ∂B̃
∂x (x)f(x) < 0 for all x ∈ X is guaranteed by Proposi-

tion 5.5, and even the Lyapunov function V (x) can be used as B̃(x). By Theorem 5.1,
there exists a function B ∈ C1(Rn) satisfying (5.5)–(5.7) if and only if there exists
no trajectory x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T ].

Since the connected components of R
n \ X are either forward or backward in-

variant, however, there can be no trajectory x(t) of the system and time instants
T1, T2, T3 such that T1 < T2 < T3, x(T1) ∈ X , x(T2) ∈ R

n \ X , and x(T3) ∈ X . This
combined with the fact that X0,Xu ⊆ X implies that the set of trajectories satisfying
x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0 and x(t) ∈ X for all t ∈ [0, T ] is the same
as the set of trajectories satisfying (5.8)–(5.9), and therefore the statement of the
proposition follows.

6. Conclusions. In the previous sections, we have used insights from the linear
programming duality appearing in the shortest path problem and the concept of
density function to formulate a convex program for reachability, which together with
a convex program for safety verification using barrier certificates proposed in an earlier
work form a pair of weak alternatives for safety and reachability verification. We have
additionally shown that other temporal properties such as eventuality and avoidance
can also be verified via convex programming and have presented convex programs to do
so. This opens the possibility of performing the verification using convex optimization.
In particular, sum of squares programming can be used for this purpose when the
vector field of the system is polynomial and the sets are semialgebraic.

We have further commented on the use of this methodology for worst-case veri-
fication or controller synthesis. It was pointed out that the convex programs can be
combined to verify properties such as reachability–safety and eventuality–safety. Some

4That is, V ∈ C1(Rn) is radially unbounded, V (x) > 0 for all x �= 0, and ∂V
∂x

(x)f(x) < 0 for all
x �= 0.
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examples have been presented for illustration. At the end of the paper, a converse
theorem in safety verification using barrier certificates was proven.

Even though the present tests are aimed for continuous systems, they are useful
for constructing discrete abstractions of hybrid systems. In addition, we expect that
all of them can also be extended to handle hybrid systems directly, using an approach
similar to the one presented in [21].
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Abstract. This paper deals with the local exact boundary controllability for dynamics governed
by nonlinear wave equations, subject to Dirichlet, Neumann, or any other kind of boundary controls
which result in well-posedness of the corresponding initial-boundary value problem. A constructive
method is developed. The local exact boundary controllability for semilinear wave equations is
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1. Introduction. The problems of controllability are clearly of significant prac-
tical interest. There is an extremely large number of publications on these topics.
Some classical references are Lions [15] and Russell [17].

The aim of this paper is to study the local exact boundary controllability for
semilinear and quasi-linear wave equations in several space dimensions. The problem
can be described as follows: Let Ω0 be a bounded open subset of R

n (n = 1, 2, 3 in
the applications) with a smooth boundary Γ. The equations under consideration take
the form

(1.1) �u = F (t, x, u, u′), 0 < t < T, x ∈ Ω0,

in the semilinear case, and the form

(1.2) �u = G(t, x, u, u′, u′′), 0 < t < T, x ∈ Ω0,

in the quasi-linear case, where � = ∂2
t − Δ is the wave operator, the Laplace Δ is

taken with respect to the spatial variables x = (x1, x2, . . . , xn) ∈ R
n, and F and

G are smooth functions of their arguments, vanishing together with their first-order
derivatives with respect to (u, u′) or (u, u′, u′′) at (u, u′) = 0 or (u, u′, u′′) = 0; namely,
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the following holds in a neighborhood of (u, u′) = 0 or (u, u′, u′′) = 0:

(1.3)

{
F (t, x, u, u′) = O

(
|u|2 + |u′|2

)
,

G(t, x, u, u′, u′′) = O
(
|u|2 + |u′|2 + |u′′|2

)
,

and u′ = (ut,∇u), u′′ = (utt,∇ut,∇2u) are the first-order and second-order space-
time derivatives of u(t, x). Without loss of generality, we shall assume that

(1.4) G(t, x, u, u′, u′′) = giα(t, x, u, ut,∇u)∂2
iαu + F (t, x, u, u′),

where giα are smooth functions with

(1.5) giα(t, x, 0, 0, 0) = 0

for all 1 ≤ i ≤ n and 0 ≤ α ≤ n. We point out here that in what follows, Latin
indices i, j, k, . . . range over 1, 2, . . . , n, Greek indices α, β, γ, . . . over 0, 1, 2, . . . , n,
and summations over repeated indices are always well understood.

Consider the initial data

(1.6) u(0, x) = f0(x), ut(0, x) = f1(x), x ∈ Ω0,

and the final data

(1.7) u(T, x) = g0(x), ut(T, x) = g1(x), x ∈ Ω0,

with f0, g0 ∈ Hs+1(Ω0) and f1, g1 ∈ Hs(Ω0), Hs(Ω0) being the standard Sobolev
space of order s. We impose any one of the following boundary conditions for 0 ≤ t ≤
T and x ∈ ∂Ω0:

(1.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = h(t, x) of Dirichlet type,
∂u
∂n = h(t, x) of Neumann type,
∂u
∂n + bu = h(t, x) of the third type,
∂u
∂n + but = h(t, x) of the dissipative type,

where b and b are given positive constants.
Then the problem of exact boundary controllability for (1.1) or (1.2) is stated as

follows: given T > 0, is it possible, for any initial data (f0, f1) and final data (g0, g1),
to find an appropriate boundary control h(t, x), such that the solution u(t, x) of the
semilinear system (1.1) with (1.6) and (1.8) (the quasi-linear system (1.2) with (1.6)
and (1.8), respectively) satisfies the final state (1.7)?

This problem has received considerable attention in the literature, with numerous
contributions over the past several decades, by using the so-called Hilbert uniqueness
method introduced by Lions [14]. When F = G ≡ 0, the problem is by now well
understood; for example, see [15, 17] and their references. In the case of linear wave
equations with variable coefficients, there are also the works by Bardos, Lebeau,
and Rauch [1], Cavalcanti [2], Tataru [18], and Yao [21]. For the semilinear case,
there are plenty of results when F = F (u) [8, 24, 25]. These works succeed in the
framework of weak solutions such that the Hilbert uniqueness method can work. In
the framework of classical solutions, Li [10] and Li et al. [12, 13] recently studied local
exact boundary controllability for one-dimensional quasi-linear wave equations and
hyperbolic systems with both one-sided and two-sided boundary controls. Yu [23] also
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studied local exact boundary controllability for higher-order one-dimensional quasi-
linear hyperbolic equations. However, even in the weak sense, to our knowledge few
results are known for the semilinear wave equations of the form (1.1) and the quasi-
linear wave equations of the form (1.2) in the multidimensional case. After completion
of this work, we discovered that similar results were announced in Yao [22], a recently
completed manuscript dealing with exact boundary controllability for quasi-linear
wave equations under some geometrical conditions on the domain. His proof relies on
the observability inequalities.

Our results are obtained in the framework of the classical solutions of wave equa-
tions. A constructive method is developed. We point out that the methods pre-
sented here are completely different from the recent work by Yao [22]. In the case of
semilinear wave equations in three (odd) space dimensions, the local exact boundary
controllability is established and the boundary control is time optimal. The proof
relies on the so-called Huygens principle for the linear wave equation, which had been
used by Russell [17] to treat the exact boundary controllability in the linear case. In
the case of semilinear wave equations in two (even) space dimensions, we proved the
fact that the energy is linearly dissipative when one adds a boundary condition of
dissipative type by using Morawetz energy estimates. Then the desired local exact
boundary controllability is established. We point out here that a similar idea and
results have appeared in [17] in the linear case. The quasi-linear case is similar to
the even space–dimensional semilinear case, but it is much more complicated and
difficult. The proof relies on an exponentially dissipative energy estimate by using a
shift technique, which reveals the underlying conservation law governing the system.
In what follows, for convenience, the proofs will be illustrated in the cases of two and
three space dimensions. However, the results presented here are also valid for general
multidimensional cases.

Without loss of generality, we assume that

(1.9) Ω0 ⊂⊂ Bρ,

where Bρ is a ball of radius ρ > 0 centered at the origin. Define

R(T ) = Ω0 × (0, T ).

The main result on the local exact boundary controllability for the three-dimensional
semilinear wave equations can be stated as follows.

Theorem 1.1. Assume that n = 3 and F is a smooth function with respect to its
arguments. Assume, furthermore, that (1.3) and (1.9) hold. Let T > 2ρ. Then, for
any given initial data (f0, f1) and final data (g0, g1) with f0, g0 ∈ Hs+1(Ω0), f1, g1 ∈
Hs(Ω0), s ≥ 2, there exist boundary controls h such that the mixed initial-boundary
value problem (1.1) and (1.6), (1.8) admits a unique ∩s+1

j=0C
j
(
[0, T ];Hs+1−j(Ω0)

)
so-

lution u = u(t, x) on the domain R(T ) satisfying the final condition (1.7), provided
that

(1.10) ‖(f0, g0)‖Hs+1(Ω0) + ‖(f1, g1)‖Hs(Ω0) ≤ ε1,

where ε1 is a sufficiently small positive constant.
Remark 1.2. The control time T > 2ρ can be replaced by T > diam(Ω0) in

Theorem 1.1. See also Remark 2.2.
In the case of semilinear wave equations in two space dimensions, the boundary

control is obtained for an appropriately large time.
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Theorem 1.3. Assume that n = 2 and F is a smooth function with respect to
its arguments. Assume, furthermore, that (1.3) and (1.9) hold. Then, for any given
initial data (f0, f1) and final data (g0, g1) with f0, g0 ∈ Hs+1(Ω0), f1, g1 ∈ Hs(Ω0),
s ≥ 2, there exist boundary controls h such that the mixed initial-boundary value
problem (1.1) and (1.6), (1.8) admit a unique ∩s+1

j=0C
j
(
[0, T ];Hs+1−j(Ω0)

)
solution

u = u(t, x) on the domain R(T ) satisfying the final condition (1.7), provided that T
is a big enough constant and

(1.11) ‖(f0, g0)‖Hs+1(Ω0) + ‖(f1, g1)‖Hs(Ω0) ≤ ε2,

where ε2 is a sufficiently small positive constant.
Remark 1.4. There are results in the literature (see, e.g., [15, 7, 16]) where the

control time T > diam(Ω0) for a class of linear wave equations. Unfortunately, we
cannot get this kind of sharp result for nonlinear wave equations.

Remark 1.5. For semilinear wave equations in n space dimensions, the results
in Theorems 1.1 and 1.3 are also valid if integer s > n

2 . This amount of regularity is
required for the classical local existence theorem of semilinear wave equations.

Moreover, the local exact boundary controllability is also established for the quasi-
linear wave equation in several space dimensions.

Theorem 1.6. Assume that n = 2 or 3 and G is a smooth function with respect
to its arguments. Assume, furthermore, that (1.9) and (1.4)–(1.5) hold. Then, for
any given initial data (f0, f1) and final data (g0, g1) with f0, g0 ∈ Hs+1(Ω0), f1, g1 ∈
Hs(Ω0), s ≥ 3, there exist boundary controls h such that the mixed initial-boundary
value problem (1.2) and (1.6), (1.8) admits a unique ∩s+1

j=0C
j
(
[0, T ];Hs+1−j(Ω0)

)
so-

lution u = u(t, x) on the domain R(T ) satisfying the final condition (1.7), provided
that T is a big enough constant and

(1.12) ‖(f0, g0)‖Hs+1(Ω0) + ‖(f1, g1)‖Hs(Ω0) ≤ ε3,

where ε3 is a sufficiently small positive constant.
Remark 1.7. For quasi-linear wave equations in n space dimensions, the results

in Theorem 1.6 are also valid if integer s > n
2 + 1. This amount of regularity is

required for the classical local existence theorem of quasi-linear wave equations.
We point out here that the boundary control is not unique. By way of our

construction, it does not matter what kind of boundary condition in (1.8) we use
as long as the initial-boundary value problem is well-posed. However, the type of
boundary condition may be relevant for other different approaches (especially when
the control is assumed to be applied only on a part of the boundary, in which case
the type of boundary control may lead to differences; for an example, see Lasiecka,
Triggiani, and Zhang [9]). In what follows, we will concentrate on boundary controls
of Dirichlet type.

The paper is organized as follows: Section 2 is devoted to establishing exact
boundary controllability for linear wave equations. In the case of three space di-
mensions, one can utilize the so-called Huygens principle and then get time-optimal
control. In the case of two space dimensions, one can construct the desired control-
lability by using Morawetz energy estimates, but one does not know how large the
control time is. The results are then extended to the semilinear cases by the con-
traction mapping principle in section 3. The proofs of Theorems 1.1 and 1.3 can be
found there. In section 4, the exponentially dissipative energy estimates of solutions
for quasi-linear wave equations are established, and then the local exact boundary
controllability is obtained for quasi-linear wave equations in both two and three space
dimensions using a direct constructive method.
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2. Exact boundary controllability for linear wave equations. In this sec-
tion we investigate the controllability problem for the linear wave equation

(2.1) �u = 0, 0 ≤ t ≤ T, x ∈ Ω0,

with initial data (1.6) and final data (1.7), and boundary condition of Dirichlet type

(2.2) u|∂Ω0 = h, 0 ≤ t ≤ T, x ∈ ∂Ω0.

We point out here that exact boundary controllability for linear wave equations has
been studied by many authors and is now well known (see, e.g., [1, 16, 17, 15]). We
study exact boundary controllability for linear wave equations in order to establish a
basis for semilinear and quasi-linear wave equations.

Without loss of generality, we can assume that ρ = 1 and

Ω0 ⊂⊂ B1.

In fact, if ρ 
= 1, we can define û(t, x) = u(ρt, ρx), f̂0(x) = f0(ρx), f̂1(x) = f1(ρx),
ĝ0(x) = g0(ρx), ĝ1(x) = g1(ρx), and then consider the controllability problems for the

û system with initial data f̂0, f̂1 and final data ĝ0, ĝ1. Then we can always extend the
functions f0, g0, f1, g1 to f̃0, g̃0, f̃1, g̃1 such that

(2.3) supp(f̃0, g̃0, f̃1, g̃1) ⊂⊂ B1

and

(2.4)

{
‖f̃0‖Hs+1(B1) + ‖g̃0‖Hs+1(B1) ≤ Cs

(
‖f0‖Hs+1(Ω0) + ‖g0‖Hs+1(Ω0)

)
,

‖f̃1‖Hs(B1) + ‖g̃1‖Hs(B1) ≤ Cs

(
‖f1‖Hs(Ω0) + ‖g1‖Hs(Ω0)

)
for some constants Cs > 0 and s ≥ 0 (for example, see [4]). In what follows, we will
use the same extension several times and always denote the extension operator by˜ : f −→ f̃ .

In three space dimensions, with the aid of the so-called Huygens principle, it is
rather easy to construct the exact boundary control for the linear wave equation,
and the control time is optimal in the sense of T > diam(Ω0). But in two space
dimensions, the Huygens principle is invalid, the exact boundary controllability is not
trivial, and we do not know how large the control time T is based on our methods.
We begin with the easier case of three space dimensions.

2.1. Exact boundary controllability for linear wave equations in three
space dimensions. First of all, we consider the Cauchy problem

(2.5)

{
�v = 0, 0 ≤ t ≤ T, x ∈ R

3;

v(0, x) = f̃0, vt(0, x) = f̃1, x ∈ R
3,

and the inverted Cauchy problem from some positive time T to 0,

(2.6)

{
�w = 0, 0 ≤ t ≤ T, x ∈ R

3;

w(T, x) = g̃0, wt(T, x) = g̃1, x ∈ R
3.

By the Huygens principle, we have that

(2.7)

{
v(T, x) = vt(T, x) = 0,

w(0, x) = wt(0, x) = 0,
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provided T > 2 and x ∈ B1.
Thus, if one defines

(2.8) L
(
f̃0, g̃0, f̃1, g̃1

)
= v + w, 0 ≤ t ≤ T, x ∈ Ω0,

then it is obvious that u = L
(
f̃0, g̃0, f̃1, g̃1

)
solves (2.1) in R(T ) and verifies the initial

and final data (1.6) and (1.7) for x ∈ Ω0. Consequently,

(2.9) h = u|∂Ω0

is the boundary control we want. We point out here that a similar method was used
by Russell [16, 17] in the seventies.

Summing up, we have the following lemma.
Lemma 2.1. Consider the linear wave equation (2.1) in three space dimen-

sions. Then, for any given initial data (f0, f1) and final data (g0, g1) with f0, g0 ∈
Hs+1(Ω0), f1, g1 ∈ Hs(Ω0), s ≥ 1, there exist boundary controls h such that
the mixed initial-boundary value problem (2.1), (2.2) and (1.6) admits a unique
∩s+1
j=0C

j
(
[0, T ];Hs+1−j(Ω0)

)
solution u = u(t, x) on the domain R(T ) which arrives

at the final condition (1.7), provided T > 2. Moreover, we have

(2.10) sup
0≤t≤T

s+1∑
j=0

‖∂j
t u‖2

Hs+1−j(Ω0)
≤ CT

(
‖(f̃0, g̃0)‖2

Hs+1(B1)
+ ‖(f̃1, g̃1)‖2

Hs(B1)

)
,

where C is a positive constant independent of T , u, and the initial and final data.
Proof. It remains to prove (2.10). By energy estimates, it is rather easy to see

that

s∑
j+k=0

d

dt

(
‖∇k∂j+1

t v‖2
L2(R3) + ‖∇∇k∂j

t v‖2
L2(R3)

)
= 0,

which results in

s+1∑
j=1

‖∂j
t v‖2

Hs+1−j(R3) + ‖∇v‖2
Hs(R3) ≤ C

(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
.

On the other hand, by using the identity

v(t, x) = f̃0 +

∫ t

0

vs(s, x)ds,

we have

‖v‖2
L2(R3) ≤ 2‖f̃0‖2

L2(R3) + CT sup
0≤t≤T

‖vt‖2
L2(R3) ≤ CT

(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
.

Consequently, we have

s+1∑
j=0

‖∂j
t v‖2

Hs+1−j(R3) ≤ CT
(
‖(f̃0, g̃0)‖2

Hs+1(B1)
+ ‖(f̃1, g̃1)‖2

Hs(B1)

)
.

Obviously, the same result holds for w. Thus, (2.10) is proved.
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Remark 2.2. It is obvious that the result in Lemma 2.1 is also valid by replacing
B1 by any open, connected set Ω1 ⊃ Ω0; then T > 2 can be replaced by T > diam(Ω0)
by choosing Ω1 such that the distance of ∂Ω1 and ∂Ω0 is small enough. Thus, the
boundary controls for three-dimensional semilinear wave equations in section 3 are in
fact time-optimal in the sense that T > diam(Ω0). In section 3, we will present the
results in two- and three-dimensional cases in the uniform way since we do not pursue
the time-optimal controls in the two-dimensional case.

2.2. Exact boundary controllability for linear wave equations in two
space dimensions. Now we shall construct the boundary controls for the linear
wave equation (2.1) in two space dimensions. There are many well-known results on
this subject, and time-optimal controllability especially has also been obtained for
a class of hyperbolic equations (see, e.g., [7]). The result we present below is not
time-optimal. However, our method has the flexibility to work in the quasi-linear
case.

Compared to three space dimensions, the difficulty in two space dimensions lies in
the invalidity of the Huygens principle. The proof relies first on the linearly dissipative
energy estimates of solutions for a mixed initial-boundary value linear wave equation
with a dissipative boundary condition, and then on a constructive method.

First of all, we focus our attention on the following initial-boundary value problem
with a dissipative boundary condition:

(2.11)

⎧⎪⎨⎪⎩
�ψ = 0, 0 ≤ t ≤ T, x ∈ B1,

ψt + ψr = 0, 0 ≤ t ≤ T, x ∈ S1,

ψ(0, x) = f̃0, ψt(0, x) = f̃1, x ∈ B1,

where ψr is the outer normal derivative of ψ on S1.
For system (2.11), we desire to establish the following lemma. See also [1], where

similar results are obtained even for linear wave equations with variant coefficients.
However, the methods we use below can be generalized to nonlinear cases.

Lemma 2.3. There exists a constant T0 > 0, such that every solution ψ(t, x) of
system (2.11) satisfies

(2.12) ‖∇ψ(T, ·)‖2
L2(B1)

+ ‖ψt(T, ·)‖2
L2(B1)

≤ λ0

(
‖f̃0‖2

H1(B1)
+ ‖f̃1‖2

L2(B1)

)
for T > T0 and some λ0 ∈ (0, 1). Thus, we have

(2.13) ‖∇ψ(T, ·)‖2
L2(Ω0)

+ ‖ψt(T, ·)‖2
L2(Ω0)

≤ λ0

(
‖f̃0‖2

H1(B1)
+ ‖f̃1‖2

L2(B1)

)
for T > T0 and some λ0 ∈ (0, 1).

Proof. Let ψ(t, x) be the solution of system (2.11). First of all, we claim that

(2.14)

∫
B1

ψt(t, x)dx +

∫
S1

ψ(t, y)dσy =

∫
B1

f̃1dx.

To carry out the details, let us integrate the linear wave equation with respect to
x on the unit ball B1 to yield

d

dt

∫
B1

ψtdx−
∫

S1

ψrdσy = 0,
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where we used the so-called Green’s formula. By using the boundary condition in
(2.11), we get

(2.15)
d

dt

(∫
B1

ψtdx +

∫
S1

ψdσy

)
= 0.

Noting (2.3), we have ∫
S1

f̃0dσy = 0.

Then we have proved the claim (2.14).
Let us continue the proof of Lemma 2.3 under (2.14). By taking the L2 inner

product of the linear wave equation in system (2.11) with ψt, one obtains the following
energy estimate:

1

2

d

dt

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
−
∫

S1

ψtψrdσy = 0.

With the aid of the boundary condition in (2.11), we have

(2.16)
1

2

d

dt

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
+ ‖ψt‖2

L2(S1) = 0,

which implies that

‖∇ψ(T, ·)‖2
L2(B1)

+ ‖ψt(T, ·)‖2
L2(B1)

(2.17)

≤ ‖∇ψ(t, ·)‖2
L2(B1)

+ ‖ψt(t, ·)‖2
L2(B1)

≤ ‖∇ψ(0, ·)‖2
L2(B1)

+ ‖ψt(0, ·)‖2
L2(B1)

for 0 ≤ t ≤ T .
Next we do the following energy estimate of Morawetz type. By taking the L2

inner product of the linear wave equation in system (2.11) with x · ∇ψ, one gets

d

dt

∫
B1

(x · ∇ψ)ψtdx−
∫

B1

x · ∇|ψt|2
2

dx(2.18)

=

∫
B1

∇k

(
∇kψx · ∇ψ

)
− |∇ψ|2 − x · ∇|∇ψ|2

2
dx.

Thus, by using Green’s formula and integration by parts, one has

d

dt

∫
B1

(x · ∇ψ)ψtdx +
1

2

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
(2.19)

≤ −1

2

∫
B1

(
|ψt|2 − |∇ψ|2

)
dx + ‖ψt‖2

L2(S1) −
1

2
‖Ωψ‖2

L2(S1),

where we used the boundary condition in system (2.11) and the following decompo-
sition of spatial derivatives into radial and angular components:

(2.20) ∇ =
x

r
∂r −

x ∧ Ω

r2
.
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On the other hand, a straightforward calculation shows that∫
B1

(
|ψt|2 − |∇ψ|2

)
dx(2.21)

=
d

dt

∫
B1

ψψtdx−
∫

B1

ψΔψ + |∇ψ|2dx

=
d

dt

∫
B1

ψψtdx− 1

2

∫
S1

∂rψ
2dσy

=
d

dt

(∫
B1

ψψtdx +
1

2

∫
S1

ψ2dσy

)
.

Combining (2.19) and (2.21), and with the aid of (2.16), we arrive at

1

2

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
+

1

2
‖Ωψ‖2

L2(S1)(2.22)

≤ ‖ψt‖2
L2(S1) −

d

dt

[∫
B1

(1

2
ψ + x · ∇ψ

)
ψtdx +

1

4
‖ψ‖2

L2(S1)

]
= − d

dt

[∫
B1

(1

2
ψ + x · ∇ψ

)
ψtdx +

1

4
‖ψ‖2

L2(S1)

+
1

2

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)]
.

To estimate the right side of (2.22), we calculate∣∣∣∫
B1

(1

2
ψ + x · ∇ψ

)
ψtdx

∣∣∣(2.23)

≤ 1

2

∫
B1

ψ2
t dx +

1

2

∫
B1

[1

4
ψ2 + (x · ∇ψ)2 +

1

2
x · ∇ψ2

]
dx

≤ 1

2

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
+

1

4
‖ψ‖2

L2(S1) −
3

8
‖ψ‖2

L2(B1)
.

Noting (2.17), and with the aid of (2.23), we integrate (2.22) with respect to t from
0 to T , which yields

T

2

(
‖∇ψ(t, ·)‖2

L2(B1)
+ ‖ψt(t, ·)‖2

L2(B1)

)
(2.24)

≤
∣∣∣∫

B1

(n− 1

2
ψ + x · ∇ψ

)
ψtdx

∣∣∣
t=0

+
1

4
‖ψ(0, ·)‖2

L2(S1)

+
∣∣∣∫

B1

(n− 1

2
ψ + x · ∇ψ

)
ψtdx

∣∣∣
t=T

− 1

4
‖ψ(T, ·)‖2

L2(S1)

+
(
‖∇ψ(0, ·)‖2

L2(B1)
+ ‖ψt(0, ·)‖2

L2(B1)

)
≤ 2

(
‖∇ψ(0, ·)‖2

L2(B1)
+ ‖ψt(0, ·)‖2

L2(B1)

)
+

1

2
‖ψ(0, ·)‖2

L2(S1).

In view of the so-called Poincaré inequality, we have

(2.25) ‖ψ(0, ·)‖L2(B1) ≤ C
[
‖∇ψ(0, ·)‖L2(B1) +

∣∣∣∫
S1

ψ(0, ·)dx
∣∣∣].
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Thus, by (2.14), (2.25), and the trace theorem, it follows that

(2.26)

{
‖ψ(0, ·)‖L2(B1) ≤ C

(
‖∇f̃0‖L2(B1) + ‖f̃1‖L2(B1)

)
,

‖ψ(0, ·)‖L2(S1) ≤ C
(
‖∇f̃0‖L2(B1) + ‖f̃1‖L2(B1)

)
.

Finally, combining (2.24) and (2.26), we arrive at

T
(
‖∇ψ(T, ·)‖2

L2(B1)
+ ‖ψt(T, ·)‖2

L2(B1)

)
≤ C

(
‖f̃0‖2

H1(B1)
+ ‖f̃1‖2

L2(B1)

)
.

We find that (2.12) is satisfied, provided T0 = 2C and λ0 = 1
2 . Then the proof of

Lemma 2.3 is complete.
Remark 2.4. It is obvious that the conclusion in Lemma 2.3 is also valid for

arbitrary time T > 0 if λ0 is replaced by C0

T for some constant C0 > 0.
We also need the following improved regularity.
Theorem 2.5. Consider the initial-boundary value problem (2.11). Suppose that

f0 ∈ Hs+1(Ω0), f1 ∈ Hs(Ω0), s ≥ 1. Then there exists a positive constant T1, such
that if T ≥ T1, then

(2.27) ‖∇ψ(T, ·)‖2
Hs(Ω0)

+

s+1∑
j=1

‖∂j
tψ(T, ·)‖2

Hs+1−j(Ω0)
≤ λ1

(
‖f̃0‖2

Hs+1(B1)
+‖f̃1‖2

Hs(B1)

)
holds for some λ1 ∈ (0, 1).

Proof. This follows from Lemma 2.3 and the interior elliptic estimates. In fact,
applying ∂l

t, 1 ≤ l ≤ s, to system (2.11) and then using Lemma 2.3, we deduce that

‖∂s+1
t ψ(T, ·)‖2

L2(B1)
+

s∑
j=1

‖∂j
tψ(T, ·)‖2

H1(B1)
+ ‖∇ψ(T, ·)‖2

L2(B1)

≤ Cλ0

(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
.

On the other hand, by regarding the wave equation as an elliptic equation

Δψ = ψtt

and using the interior elliptic estimates, we have

(2.28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖∂s−1
t ψ(T, ·)‖2

H2(B
1− 1

s
d
) ≤ C‖∂s+1

t ψ(T, ·)‖2
L2(B1)

+ C‖∂s−1
t ψ(T, ·)‖2

L2(B1)
,

‖∂s−2
t ψ(T, ·)‖2

H3(B
1− 2

s
d
) ≤ C‖∂s

tψ(T, ·)‖2
H1(B

1− 1
s
d
)

+ C‖∂s−2
t ψ(T, ·)‖2

L2(B
1− 1

s
d
),

‖∂s−3
t ψ(T, ·)‖2

H4(B
1− 3

s
d
) ≤ C‖∂s−1

t ψ(T, ·)‖2
H2(B

1− 2
s
d
)

+ C‖∂s−3
t ψ(T, ·)‖2

L2(B
1− 2

s
d
),

· · · · · · ,
‖∇ψ(T, ·)‖2

Hs(Ω0)
≤ C‖∂2

t ψ(T, ·)‖2
Hs−1(B

1− s−1
s

d
)

+ C‖∇ψ(T, ·)‖2
L2(B

1− s−1
s

d
),
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where d = dist(S1, ∂Ω0), dist(·, ·) being the standard distance function. Then (2.27)
follows by selecting a small enough λ0.

Remark 2.6. It is obvious that the conclusion in Theorem 2.5 is also valid for
arbitrary time T > 0 if λ1 is replaced by C1

T for some constant C1 > 0.
At last, we construct the exact boundary control for the linear wave equation

(2.1) in two space dimensions.
Theorem 2.7. Consider the linear wave equation (2.1) in two space dimensions.

Then, for any given initial data (f0, f1) and final data (g0, g1) with f0, g0 ∈ Hs+1(Ω0),
f1, g1 ∈ Hs(Ω0), s ≥ 1, there exist a positive constant T0 and a boundary control
function h such that the mixed initial-boundary value problem (2.1), (2.2) and (1.6)
admits a unique ∩s+1

j=0C
j
(
[0, T ];Hs+1−j(Ω0)

)
solution u = u(t, x) on the domain R(T )

which arrives at the final condition (1.7), provided T > T0. Moreover, we have

(2.29) sup
0≤t≤T

s+1∑
j=0

‖∂j
t u‖2

Hs+1−j(Ω0)
≤ C

(
‖(f̃0, g̃0)‖2

Hs+1(B1)
+ ‖(f̃1, g̃1)‖2

Hs(B1)

)
.

Proof. For m ≥ 1, define

(2.30) u(m) =

m∑
k=1

(−1)k−1
(
v(k) + w(k)

)
,

where v(1) and w(1) are defined as the solutions of the following linear initial-boundary
value problems:

(2.31)

⎧⎪⎨⎪⎩
�v(1) = 0, 0 ≤ t ≤ T, x ∈ B1,

v
(1)
t + v

(1)
r = 0, 0 ≤ t ≤ T, x ∈ S1,

v(1)(0, x) = f̃0, v
(1)
t (0, x) = f̃1, x ∈ B1,

and

(2.32)

⎧⎪⎨⎪⎩
�w(1) = 0, 0 ≤ t ≤ T, x ∈ B1,

−w
(1)
t + w

(1)
r = 0, 0 ≤ t ≤ T, x ∈ S1,

w(1)(T, x) = g̃0, w
(1)
t (T, x) = g̃1, x ∈ B1.

For k ≥ 2, v(k) and w(k) are inductively defined as the solutions of the following linear
initial-boundary value problems:

(2.33)

⎧⎪⎨⎪⎩
�v(k) = 0, 0 ≤ t ≤ T, x ∈ B1,

v
(k)
t + v

(k)
r = 0, 0 ≤ t ≤ T, x ∈ S1,

v(k)(0, x) = [χw(k−1)]˜(0, x), v
(k)
t (0, x) = [χw

(k−1)
t ]˜(0, x), x ∈ B1,

and

(2.34)

⎧⎪⎨⎪⎩
�w(k) = 0, 0 ≤ t ≤ T, x ∈ B1,

−w
(k)
t + w

(k)
r = 0, 0 ≤ t ≤ T, x ∈ S1,

w(k)(T, x) = [χv(k−1)]˜(T, x), w
(k)
t (T, x) = [χv

(k−1)
t ]˜(T, x), x ∈ B1,

where χ is the characteristic function defined as{
χ ≡ 1, x ∈ Ω0,

χ ≡ 0, x ∈ B1 \ Ω0,
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and [·]˜ represents the extension operator defined at the beginning of section 2.
First of all, we observe that

(2.35) �u(m) = 0, 0 < t < T, x ∈ Ω0,

and

(2.36)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(m)(0, x) = f0 + (−1)m−1w(m)(0, x),

u
(m)
t (0, x) = f1 + (−1)m−1w

(m)
t (0, x),

u(m)(T, x) = g0 + (−1)m−1v(m)(T, x),

u
(m)
t (T, x) = g1 + (−1)m−1v

(m)
t (T, x)

for m ≥ 1.
To show that u(m) defined in (2.30) is convergent, together with

(2.37)

{(
u

(m)
t (0, x), u

(m)
t (T, x)

)
−→ (f1, g1) in Hs(Ω0),(

u(m)(0, x), u(m)(T, x)
)
−→ (f0, g0) in Hs+1(Ω0),

as m −→ ∞, we need the following lemma.
Lemma 2.8. Let v(k) and w(k) be defined as the solutions of systems (2.31)–(2.34);

s ≥ 1 is an integer. Then the estimates

s+1∑
j=0

(
‖∂j

t v
(k)(T, ·)‖Hs+1−j(Ω0) + ‖∂j

tw
(k)(0, ·)‖Hs+1−j(Ω0)

)

≤ 1

8

s+1∑
j=0

(
‖∂j

t v
(k−1)(T, x)‖Hs+1−j(Ω0) + ‖∂j

tw
(k−1)(0, x)‖Hs+1−j(Ω0)

+ ‖∂j
t v

(k−2)(T, x)‖Hs+1−j(Ω0) + ‖∂j
tw

(k−2)(0, x)‖Hs+1−j(Ω0)

)
hold, provided that λ1 is small enough and T is big enough.

Proof. Integrate (2.31) with respect to x on the unit ball B1 to yield

d

dt

[∫
B1

∂tv
(k)dx +

∫
S1

v(k)dσy

]
= 0.

Then, by integrating the above equality with respect to t from 0 to T , we have

‖∇v(k)(T, ·)‖L2(B1) +
∣∣∣∫

S1

v(k)(T, x)dσy

∣∣∣
≤ ‖∇v(k)(T, ·)‖L2(B1) +

∣∣∣∫
B1

∂tv
(k)(T, x)dx

∣∣∣
+

∣∣∣∫
S1

v(k)(0, x)dσy +

∫
B1

∂tv
(k)(0, x)dx

∣∣∣
≤ ‖∇v(k)(T, ·)‖L2(B1) + C‖∂tv(k)(T, x)‖L2(B1)

+
∣∣∣∫

S1

[χw(k−1)]˜(0, x)dσy +

∫
B1

[χ∂tw
(k−1)]˜(0, x)dx

∣∣∣
= ‖∇v(k)(T, ·)‖L2(B1) + C‖∂tv(k)(T, x)‖L2(B1)
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+
∣∣∣∫

B1

[χ∂tw
(k−1)]˜(0, x)dx

∣∣∣
≤ C

(
‖∇v(k)(T, ·)‖L2(B1) + ‖∂tv(k)(T, x)‖L2(B1) + ‖[χ∂tw(k−1)]˜(0, x)‖L2(B1)

)
≤ C

(
‖∇v(k)(T, ·)‖L2(B1) + ‖∂tv(k)(T, x)‖L2(B1) + ‖∂tw(k−1)(0, x)‖L2(B1)

)
.

By (2.12), Remark 2.4, and (initial or final data in) (2.31)–(2.34), we arrive at

‖∇v(k)(T, ·)‖L2(B1) +
∣∣∣∫

S1

v(k)(T, x)dσy

∣∣∣(2.38)

≤ C

T

(
‖v(k)(0, x)‖H1(B1) + ‖∂tv(k)(0, x)‖L2(B1)

+ ‖w(k−1)(T, x)‖H1(B1) + ‖∂tw(k−1)(T, x)‖L2(B1)

)
=

C

T

(
‖[χw(k−1)]˜(0, x)‖H1(B1) + ‖[χ∂tw(k−1)]˜(0, x)‖L2(B1)

+ ‖[χv(k−2)]˜(T, x)‖H1(B1) + ‖[χ∂tv(k−2)]˜(T, x)‖L2(B1)

)
≤ C

T

(
‖w(k−1)(0, x)‖H1(Ω0) + ‖∂tw(k−1)(0, x)‖L2(Ω0)

+ ‖v(k−2)(T, x)‖H1(Ω0) + ‖∂tv(k−2)(T, x)‖L2(Ω0)

)
.

The same results are also valid for ‖∇w(k)(0, ·)‖L2(B1) + |
∫

S1 w
(k)(0, x)dσy|. Thus,

by Poincaré’s inequality, we have

‖v(k)(T, ·)‖L2(B1) + ‖w(k)(0, ·)‖L2(B1)(2.39)

≤ C
(
‖∇v(k)(T, ·)‖L2(B1) +

∣∣∣∫
S1

v(k)(T, x)dσy

∣∣∣)
+ C

(
‖∇w(k)(0, ·)‖L2(B1) +

∣∣∣∫
S1

w(k)(0, x)dσy

∣∣∣)
≤ C

T

(
‖w(k−1)(0, x)‖H1(Ω0) + ‖∂tw(k−1)(0, x)‖L2(Ω0)

+ ‖v(k−2)(T, x)‖H1(Ω0) + ‖∂tv(k−2)(T, x)‖L2(Ω0)

+ ‖v(k−1)(T, x)‖H1(Ω0) + ‖∂tv(k−1)(T, x)‖L2(Ω0)

+ ‖w(k−2)(0, x)‖H1(Ω0) + ‖∂tw(k−2)(0, x)‖L2(Ω0)

)
.

The combination of (2.39) and (2.27) gives

s+1∑
j=0

(
‖∂j

t v
(k)(T, ·)‖Hs+1−j(Ω0) + ‖∂j

tw
(k)(0, ·)‖Hs+1−j(Ω0)

)

≤ 1

8

s+1∑
j=0

(
‖∂j

tw
(k−1)(0, x)‖Hs+1−j(Ω0) + ‖∂j

t v
(k−1)(T, x)‖Hs+1−j(Ω0)

+ ‖∂j
t v

(k−2)(T, x)‖Hs+1−j(Ω0) + ‖∂j
tw

(k−2)(0, x)‖Hs+1−j(Ω0)

)
,

provided that λ1 is small enough and T is big enough.
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Let us continue the proof of Theorem 2.7. By Lemma 2.8, we have

s+1∑
j=0

(
‖∂j

t v
(k)(T, ·)‖2

Hs+1−j(Ω0)
+ ‖∂j

tw
(k)(0, ·)‖2

Hs+1−j(Ω0)

)
(2.40)

≤ C

2k

(
‖(f0, g0)‖2

Hs+1(Ω0)
+ ‖(f1, g1)‖2

Hs(Ω0)

)
for any k ≥ 1. Consequently, it follows that

(2.41)

{
‖∂tw(m)(0, x)‖Hs(Ω0) + ‖∂tv(m)(T, x)‖Hs(Ω0) −→ 0,

‖w(m)(0, x)‖Hs+1(Ω0) + ‖v(m)(T, x)‖Hs+1(Ω0) −→ 0

as m → +∞, which proves (2.37).
On the other hand, (2.41) is also valid with T being replaced by t for 0 ≤ t ≤ T

by an argument similar to that above. Thus, the series {u(m)} is convergent to a
limit function u(t, x). And, moreover, by (2.35), (2.40), and (2.37), the limit function
u(t, x) satisfies the linear wave equation (2.1), estimates (2.29), and verifies the initial
data (1.6) and final data (1.7). Thus, if we let

(2.42) h(t, x) = u(t, x)|∂Ω0 ,

then h(t, x) is the desired boundary control.

3. Local exact boundary control for semilinear wave equations. In this
section we intend to construct the boundary controls for the semilinear wave equations
(1.1). Applying the contraction mapping theorem, we can extend the results for the
linear wave equations in section 2 to the semilinear case and prove Theorems 1.1 and
1.3.

Let s ≥ 2. Define

Σθ =
{
v : [0, T ] × Ω0 → R

∣∣v(0, x) = f0, vt(0, x) = f1,

v(T, x) = g0, vt(T, x) = g1,DΣ(v) ≤ θ
}
,(3.1)

where

(3.2) DΣ(v) = sup
0≤t≤T

(s+1∑
j=0

‖∂j
t v(t, ·)‖2

Hs+1−j(Ω0)

) 1
2

,

and T > 2 in three space dimensions and T > T0, with T0 being determined in
Theorem 2.7 in two space dimensions. We want to find a map

(3.3) ΠΣ : v → u = ΠΣv,

such that ΠΣ is a strict contraction from Σθ to itself, provided θ is small enough.
Let the operator ΠΣ be defined as follows. For n = 2 or 3, given a function

v ∈ Σθ, let ϕ solve the Cauchy problem

(3.4)

⎧⎪⎨⎪⎩
�ϕ = F (t, x, ṽ, ṽt,∇ṽ), 0 ≤ t ≤ T, x ∈ B1,

ϕ(t, x) = 0, 0 ≤ t ≤ T, x ∈ S
n−1,

ϕ(0, x) = 0, ϕt(0, x) = 0, x ∈ B1.



1036 YI ZHOU AND ZHEN LEI

Then, by using ϕ(T, x) and ϕt(T, x), we define φ via the following exact boundary
controllability problem:

(3.5)

⎧⎪⎨⎪⎩
�φ = 0, 0 ≤ t ≤ T, x ∈ Ω0,

φ(0, x) = f0, φt(0, x) = f1, x ∈ Ω0,

φ(T, x) = g0 − ϕ(T, x), φt(T, x) = g1 − ϕt(T, x), x ∈ Ω0.

The theory set forth in section 2 ensures that φ is well-defined. At last, for (t, x) ∈
[0, T ] × Ω0, we define

(3.6) ΠΣv(t, x) = ϕ(t, x) + φ(t, x).

We claim the following.
Lemma 3.1. ΠΣ is a strict contraction from Σθ to Σθ, provided that θ > 0 is

sufficiently small.
To complete the proof of the above lemma, we need the following lemma.
Lemma 3.2. Suppose that H = H(t, x, w) is a sufficiently smooth function of

its arguments with H(t, x, 0) = 0 and Ω0 ⊆ R
n is a bounded domain with smooth

boundary. Then, for any given integer s ≥ 0 and integer m > 0, if a smooth vector
function w = w(t, x) ∈ R

m satisfies

w(t, ·) ∈ Hs(Ω0) and ‖w(t, ·)‖L∞(Ω0) ≤ 1,

then the composite function H(t, x, w) ∈ Hs(Ω0) and satisfies

‖H
(
t, ·, w(·)

)
‖Hs(Ω0) ≤ C(T )‖w(t, ·)‖Hs(Ω0)

for 0 ≤ t ≤ T .
The proof of Lemma 3.2 relies on the following proposition (see [20, Chapter 1,

Proposition 3.9] or [11, Chapter 1, Theorem 4.3]).
Proposition 3.3. Suppose that H0 = H0(w) is a sufficiently smooth function

with H0(0) = 0. Then, for any given integer s ≥ 0 and integer m > 0, if a smooth
vector function w = w(x) ∈ R

m satisfies

w(·) ∈ Hs(Rn) and ‖w‖L∞(Rn) ≤ 1,

then the composite function H0(w) ∈ Hs(Rn) and satisfies

‖H0

(
w(·)

)
‖Hs(Rn) ≤ C‖w(·)‖Hs(Rn),

where the constant C > 0 depends only on H0.
Now we apply Proposition 3.3 to prove Lemma 3.2. First of all, we general-

ize Proposition 3.3 to the case when H0 = H0

(
t, x, w(x)

)
with H0(t, x, 0) = 0 and

H0(t, x, w) = 0 for |x| > 2diam(Ω0). In fact, it is obvious that

∂μ
t ∇(l0)

x H0(t, x, 0) = 0,

where, in the context of the proof of Lemma 3.2, (l0), (l1), . . . , (k0), (k1), . . . are used
to represent multi-indices. Then, by the chain rule, the following holds:

‖∇(l0)
x

[
H0

(
t, ·, w(·)

)]
‖L2(Rn)

≤ C
∑

(l1)+(l2)+···+(lm)≤(l0)

{
‖∇(l1)

x w1(·)∇(l2)
x w2(·) · · · ∇(lm)

x wm(·)‖L2(Rn)

×
∑

|(k0)|≤|(l0)|,|(k0)|+|(k1)|≤|(l0)|
‖∇(k0)

w [∇(k1)
x H0]

(
t, ·, w(·)

)
‖L∞(Rn)

}
.
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Since H0(t, x, w) is smooth enough, ‖w‖L∞(Rn) ≤ 1, and H(t, x, w) = 0 for |x| >
2diam(Ω0), we have

‖∇(l0)
x

[
H0

(
t, ·, w(·)

)]
‖L2(Rn)

≤ C(T )
∑

(l1)+(l2)+···+(lm)≤(l0)

‖∇(l1)
x w1(·)∇(l2)

x w2(·) · · · ∇(lm)
x wm(·)‖L2(Rn).

Then the desired generalization follows from the following lemma (see [20, Chapter 1,
Lemma 3.10]).

Lemma 3.4. Let s =
∑m

i=1 |(li)|, |(li)| > 0. Then

‖∇(l1)
x w1(·)∇(l2)

x w2(·) · · · ∇(lm)
x wm(·)‖L2(Rn)

≤ C
∑

1≤k≤m

‖w1(·)‖L∞(Rn)‖w2(·)‖L∞(Rn) · · · ‖wm(·)‖L∞(Rn)

‖wk(·)‖L∞(Rn)
‖w(·)‖Hs(Rn)

holds if the right-hand side is bounded.
Next, for any function w ∈ {w|w(·) ∈ Hs(Ω0), ‖w‖L∞(Ω0) ≤ 1}, we can use the

extension operator to get w̃ (see (2.3) and (2.4)) such that

‖w̃(·)‖Hs(Rn) ≤ Cs‖w(·)‖Hs(Ω0),

where Cs is independent of w for w ∈ {w|w(·) ∈ Hs(Ω0), ‖w‖L∞(Ω0) ≤ 1}. Thus, we
have

‖H0

(
t, ·, w(·)

)
‖Hs(Ω0) ≤ ‖H0

(
t, ·, w̃(·)

)
‖Hs(Rn)

≤ C(T )‖w̃(·)‖Hs(Rn) ≤ C(T )Cs‖w(·)‖Hs(Ω0).

Note that the constants in the above inequalities are uniform for functions with
bounded Hs(Ω0) and L∞(Ω0) norms. Consequently, they are also valid for w =
w(t, x), which satisfies the restrictions in Proposition 3.3. We complete the proof of
Lemma 3.2.

Similarly, we also have the following lemma.
Lemma 3.5. Suppose that H = H(t, x, w) is a sufficiently smooth function of

its arguments with H(t, x, 0) = 0 and ∇wH(t, x, 0) = 0, and Ω0 ⊆ R
n is a bounded

domain with smooth boundary. Then, for any given integer s ≥ 0 and integer m > 0,
if a smooth vector function w = w(t, x) ∈ R

m satisfies

w(t, ·) ∈ Hs(Ω0) and ‖w(t, ·)‖L∞(Ω0) ≤ 1,

then the composite function H(t, x, w) ∈ Hs(Ω0) and satisfies

‖H
(
t, ·, w(·)

)
‖Hs(Ω0) ≤ C(T )‖w(t, ·)‖L∞(Ω0)‖w(t, ·)‖Hs(Ω0)

for 0 ≤ t ≤ T .
Lemma 3.6. Suppose that H = H(t, x, w) is a sufficiently smooth function of

its arguments with H(t, x, 0) = 0 and ∇wH(t, x, 0) = 0, and Ω0 ⊆ R
n is a bounded

domain with smooth boundary. Then, for any given integer s ≥ 0 and integer m > 0
if two smooth vector functions w1 = w1(t, x) ∈ R

m, w2 = w2(t, x) ∈ R
m satisfy

(w1, w2)(t, ·) ∈ Hs(Ω0) and ‖(w1, w2)(t, ·)‖L∞(Ω0) ≤ 1,
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then we have

‖H
(
t, ·, w1(·)

)
−H

(
t, ·, w2(·)

)
‖Hs(Ω0)

≤ C(T )
(
‖w1(t, ·)‖L∞(Ω0) + ‖w2(t, ·)‖L∞(Ω0)

)
‖w1(t, ·) − w2(t, ·)‖Hs(Ω0)

for 0 ≤ t ≤ T .
Lemmas 3.5 and 3.6 can be proved by arguments similar to those of Lemma 3.2.

We refer the reader to [11, Chapter 1, Corollary 4.3 and Theorem 4.6] for details.
Now let us begin to prove Lemma 3.1.
Proof. First of all, it is rather easy to see that

(3.7)

{
u(0, x) = f0, ut(0, x) = f1,

u(T, x) = g0, ut(T, x) = g1

for x ∈ Ω0.
To confirm that u = ΠΣv ∈ Σθ, we need to go to estimate DΣ(u). Applying ∂j

t

to (3.4), and then taking the L2 inner product of the resulting equation with ∂j+1
t ϕ

for j = 0, 1, . . . , s, respectively, and then adding them up, we have

1

2

d

dt

(
‖∂s+1

t ϕ(t, ·)‖2
L2(B1)

+

s∑
j=1

‖∂j
tϕ(t, ·)‖2

H1(B1)
+ ‖∇ϕ(t, ·)‖2

L2(B1

)
(3.8)

≤ C

s∑
j=0

‖∂j+1
t ϕ(t, ·)‖L2(B1)

s∑
j=0

‖ dj

dtj
F (t, x, ṽ, ṽt,∇ṽ)‖L2(B1).

Write w = (ṽ, ṽt,∇ṽ). By (1.3),{
∂j
tF (t, x, 0) = 0, ∂j

t∇wF (t, x, 0) = 0,∑s
j=2

∑
2≤|(k)|≤j ‖∂

j−|(k)|
t ∇(k)

w F (t, x, ṽ, ṽt,∇ṽ)‖L∞(B1) ≤ C(T )

holds, since F is smooth, where integer j ≥ 0 and (k) is a multi-index similar to
that in the proof of Lemma 3.2. Thus, by (3.1), and looking at ∇wF = 0, ∂j

tF , and
∂j
t∇wF as new functions appearing in Lemma 3.2 or Lemma 3.5, we have

s∑
j=0

∥∥∥ dj

dtj
F (t, x, ṽ, ṽt,∇ṽ)

∥∥∥
Hs−j(B1)

≤ ‖F (t, x, ṽ, ṽt,∇ṽ)‖Hs(B1)(3.9)

+
(
‖Ft(t, x, ṽ, ṽt,∇ṽ)‖Hs−1(B1) + ‖∇wF (t, x, ṽ, ṽt,∇ṽ)wt‖Hs−1(B1)

)
+

s∑
j=2

(
‖∂j

tF (t, x, ṽ, ṽt,∇ṽ)‖Hs−j(B1) + ‖∂j−1
t ∇wF (t, x, ṽ, ṽt,∇ṽ)wt‖Hs−j(B1)

+
∑

2≤|(k)|≤j

‖∂j−|(k)|
t ∇(k)

w F (t, x, ṽ, ṽt,∇ṽ)∂
(k)
t w‖Hs−j(B1)

)
≤ C(T )θ2.

Consequently,

(3.10) ‖∂s+1
t ϕ(t, ·)‖2

L2(B1)
+

s∑
j=1

‖∂j
tϕ(t, ·)‖2

H1(B1)
+ ‖∇ϕ(t, ·)‖2

L2(B1)
≤ C(T )θ4.
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Invoking (3.9) and the elliptic estimates in (2.28), and by arguments similar to those
in Theorem 2.5, we have

(3.11) sup
0≤t≤T

(s+1∑
j=0

‖∂j
tϕ(t, ·)‖2

Hs+1−j(Ω0)

) 1
2 ≤ 1

4
θ,

provided that θ is sufficiently small.
It is obvious that the estimate (3.11) also holds for φ, provided ε1 and ε2 are

small enough. Thus, we conclude that ΠΣv ∈ Σθ.
It remains to demonstrate that ΠΣ is a strict contraction. Given vi ∈ Σθ, i = 1, 2,

let ϕi solve

(3.12)

⎧⎪⎨⎪⎩
�ϕi = F (t, x, ṽi, ∂tṽi,∇ṽi), 0 < t < T, x ∈ B1,

ϕi(t, x) = 0, 0 ≤ t ≤ T, x ∈ S
n−1,

ϕi(0, x) = 0, ∂tϕi(0, x) = 0, x ∈ B1.

Then, by using ϕi(T, x) and ∂tϕ(T, x), we define φi via the following exact boundary
controllability problem:

(3.13)

⎧⎪⎨⎪⎩
�φi = 0, 0 < t < T, x ∈ Ω0,

φi(0, x) = f0, ∂tφi(0, x) = f1, x ∈ Ω0,

φi(T, x) = g0 − ϕi(T, x), ∂tφi(T, x) = g1 − ∂tϕi(T, x), x ∈ Ω0.

Of course φi may not be unique in general; we point out here that the ones we used
here are constructed by Lemma 2.1 and Theorem 2.7. Let

ui = ϕi + φi.

We must show that

(3.14) DΣ(u1 − u2) ≤ λDΣ(v1 − v2)

for some positive constant 0 < λ < 1.
To confirm (3.14), it is enough to show

(3.15)

{
DΣ(ϕ1 − ϕ2) ≤ λ

2DΣ(v1 − v2),

DΣ(φ1 − φ2) ≤ λ
2DΣ(v1 − v2)

for some positive constant 0 < λ < 1.
On one hand, note that⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(φ1 − φ2) = 0, 0 < t < T, x ∈ Ω0,

(φ1 − φ2)(0, x) = 0, ∂t(φ1 − φ2)(0, x) = 0, x ∈ Ω0,

(φ1 − φ2)(T, x) = (ϕi − ϕ1)(T, x), x ∈ Ω0,

∂t(φ1 − φ2)(T, x) = ∂t(ϕ2 − ϕ1)(T, x), x ∈ Ω0.

By Lemma 2.1 and Theorem 2.7, we have

DΣ(φ1 − φ2) ≤ C
(
‖∂t(ϕ2 − ϕ1)(T, ·)‖2

Hs(Ω0)
+ ‖(ϕ2 − ϕ1)(T, ·)‖2

Hs+1(Ω0)

)
≤ CDΣ(ϕ1 − ϕ2).
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Thus, to confirm (3.15), it is enough to show that

(3.16) DΣ(ϕ1 − ϕ2) ≤
λ

M
DΣ(v1 − v2)

for an appropriately large constant M .
On the other hand, it is easy to see that⎧⎪⎨⎪⎩

�(ϕ1 − ϕ2) = F (t, x, ṽ1, ∂tṽ1,∇ṽ1) − F (t, x, ṽ2, ∂tṽ2,∇ṽ2), 0 < t < T, x ∈ B1,

(ϕ1 − ϕ2)(t, x) = 0, 0 ≤ t ≤ T, x ∈ S
n−1,

(ϕ1 − ϕ2)(0, x) = 0, ∂t(ϕ1 − ϕ2)(0, x) = 0, x ∈ B1.

By standard energy estimates, it is easy to verify (3.16) since (by Lemma 3.6 and
arguments similar to those in (3.9))

s∑
j=0

∥∥∥ dj

dtj

(
F (t, x, ṽ1, ∂tṽ1,∇ṽ1) − F (t, x, ṽ2, ∂tṽ2,∇ṽ2)

)∥∥∥
Hs−j(B1)

(3.17)

≤ C(T )θDΣ(v1 − v2).

Hence, we complete the proof of Lemma 3.4.
By the standard contraction mapping theorem, there exists a point u ∈ Σθ, such

that u = ΠΣu. For (t, x) ∈ [0, T ] × ∂Ω0, let

h(t, x) = u(t, x);

then h is the desired control and the proofs of Theorems 1.1 and 1.3 are complete.

4. Local exact boundary controllability for quasi-linear wave equations.
In this section, we study local exact boundary controllability for the quasi-linear wave
equations (1.2). The argument is similar to the two-dimensional semilinear case in
section 3, but much more complicated. The difficulty lies in the quasi-linearity, which
leads to the invalidity of the equality (2.14). To overcome the difficulty, we introduce a
shift variable below. This shift variable can only be used in the basic Morawetz energy
estimates, not in the standard energy estimates or any higher-order energy estimates,
because it will lead to the loss of derivatives. The proof relies on the careful estimates
of both the original and shift variables.

For simplicity, we assume that n = 2 or 3, and F (t, x, u, u′) ≡ 0 in (1.4). The
following presentation can be easily generalized to the case that F (t, x, u, u′) is not
identically zero by arguments similar to those in section 3.

Let s ≥ 3 be an integer. Define

Λθ =
{
v : [0, T ] × Ω0 → R

∣∣v(0, x) = f0, vt(0, x) = f1,

v(T, x) = g0, vt(T, x) = g1,DΛ(v) ≤ θ
}
,(4.1)

where

(4.2) DΛ(v) = sup
0≤t≤T

s+1∑
j=0

(
‖∂j

t v(t, ·)‖2
Hs+1−j(Ω0)

) 1
2

and with T > 0 to be determined. We mention here that if F (t, x, u, u′) is not zero
identically, the definitions for Λθ and DΛ(v) are the same as in (4.1) and (4.2).
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For any v ∈ Λθ, let us define the series {ϕ(i)} and {φ(i)} as follows. Let ϕ(1) be
the solution of the linear initial-boundary value problem

(4.3)

⎧⎪⎨⎪⎩
�ϕ(1) = giα(t, x, ṽ, ṽt,∇ṽ)∂2

iαϕ
(1), 0 ≤ t ≤ T, x ∈ B1,

ϕ
(1)
t + ϕ

(1)
r = 0, 0 ≤ t ≤ T, x ∈ S

n−1,

ϕ(1)(0, x) = f̃0, ϕ
(1)
t (0, x) = f̃1, x ∈ B1,

and let φ(1) be the solution of the inverted initial-boundary value problem

(4.4)

⎧⎪⎨⎪⎩
�φ(1) = giα(t, x, ṽ, ṽt,∇ṽ)∂2

iαφ
(1), 0 ≤ t ≤ T, x ∈ B1,

φ
(1)
t − φ

(1)
r = 0, 0 ≤ t ≤ T, x ∈ S

n−1,

φ(1)(T, x) = g̃0, φ
(1)
t (T, x) = g̃1, x ∈ B1,

where we used the extension operator defined in (2.3) and (2.4). For j ≥ 2, ϕ(j) is
defined inductively as the solution of the linear initial-boundary value problem

(4.5)

⎧⎪⎨⎪⎩
�ϕ(j) = giα(t, x, ṽ, ṽt,∇ṽ)∂2

iαϕ
(j), 0 ≤ t ≤ T, x ∈ B1,

ϕ
(j)
t + ϕ

(j)
r = 0, 0 ≤ t ≤ T, x ∈ S

n−1,

ϕ(j)(0, x) = [χφ(j−1)]˜(0, x), ϕ
(j)
t (0, x) = [χφ(j−1)]˜(0, x), x ∈ B1,

and φ(j) is defined as the solution of the inverted initial-boundary value problem

(4.6)

⎧⎪⎨⎪⎩
�φ(j) = giα(t, x, ṽ, ṽt,∇ṽ)∂2

iαφ
(j), 0 ≤ t ≤ T, x ∈ B1,

φ
(j)
t − φ

(j)
r = 0, 0 ≤ t ≤ T, x ∈ S

n−1,

φ(j)(T, x) = [χϕ(j−1)]˜(T, x), φ
(j)
t (T, x) = [χϕ

(j−1)
t ]˜(T, x), x ∈ B1,

where χ is the characteristic function and [·]˜ represents the extension operator defined
in section 2.

Next, let us formally define a map u = ΠΛv by

(4.7) ΠΛv =

∞∑
i=1

(−1)i−1
(
ϕ(i) + φ(i)

)
.

We must show that the series is well-defined, and ΠΛ maps Λθ to itself and is a strict
contraction with respect to the norm sup0≤t≤T

∑s
j=0(‖∂

j
t v(t, ·)‖2

Hs−j(Ω0)
)

1
2 , provided

that ε3 and θ are sufficiently small. Then, by the standard contraction mapping
theorem, we can prove Theorem 1.6.

To verify this, we find that it is enough to prove the following theorem, and then
all arguments are similar to those in sections 2 and 3.

Theorem 4.1. For v ∈ Λθ, consider the following linear initial-boundary value
problem:

(4.8)

⎧⎪⎨⎪⎩
�w = giα(t, x, ṽ, ṽt,∇ṽ)∂2

iαw, 0 ≤ t ≤ T, x ∈ B1,

wt + wr = 0, 0 ≤ t ≤ T, x ∈ S
n−1,

w(0, x) = f̃0, wt(0, x) = f̃1, x ∈ B1.

Suppose that f0 ∈ Hs+1(Ω0), f1 ∈ Hs(Ω0), s ≥ 3. Then there exists a positive
constant T1, such that if T ≥ T1, then

(4.9) ‖∇w(T, ·)‖2
Hs(Ω0)

+

s+1∑
j=1

‖∂j
tw(T, ·)‖2

Hs+1−j(Ω0)
≤ λ2

(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
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holds for some λ2 ∈ (0, 1).
The well-posedness of classical solutions for linear system (4.8) can be established

similarly by using semigroup methods as in Hughes, Kato, and Marsden [6] or energy
methods based on differentiating the equation with respect to t as in Dafermos and
Hrusa [3].

To complete the proof of the above theorem, we recall the following elliptic esti-
mates involving the boundary condition of Neumann type [19].

Lemma 4.2. Suppose that Ω0 is a bounded domain with smooth boundary ∂Ω0 and
k = 0, 1, 2, . . . . Given f ∈ Hk(Ω0), g ∈ Hk+ 1

2 (∂Ω0), and a solution h ∈ Hk+2(Ω0) to
the Neumann system {

−Δh = f on Ω0,
∂h
∂n = g on ∂Ω0,

one has the estimate

‖h‖2
Hk+2(Ω0)

≤ Ck

(
‖f‖2

Hk(Ω0)
+ ‖g‖2

Hk+ 1
2 (∂Ω0)

+ ‖h‖2
L2(Ω0)

)
.

Next we return to prove Theorem 4.1.
Proof. The proof relies on the use of the underlying conservation law of the

system, which is revealed by the shift technique presented below, and also on the
energy estimates of Morawetz type. As the proof is rather long, we divide it into four
steps.

Step 1. A shift technique and estimates for ‖w‖L2(B1) and ‖w‖L2(Sn−1). Let us
integrate the linear wave equation in system (4.8) with respect to x on the unit ball
B1 to yield

d

dt

∫
B1

wtdx−
∫

Sn−1

wrdσy =

∫
B1

giα∂
2
iαwdx.

Noting the dissipative boundary condition in system (4.8), we have

d

dt

[∫
B1

wtdx +

∫
Sn−1

wdσy

]
=

∫
B1

giα∂
2
iαwdx.

Let

μ0 =

∫
B1

f̃1dx +

∫
Sn−1

f̃0dσy =

∫
B1

f̃1dx,

and then introduce a shift variable

(4.10) w = w − 1

|Sn−1|

[
μ0 +

∫ t

0

∫
B1

giα∂
2
iαwdxdτ

]
.

We deduce that

(4.11)

∫
B1

wtdx +

∫
Sn−1

wdσy = − |B1|
|Sn−1|

∫
B1

giα∂
2
iαwdx.

Moreover, a direct calculation shows that

(4.12)
∣∣∣∫

B1

giα∂
2
iαwdx

∣∣∣ ≤ C(T )θ
(
‖∇wt‖L2(B1) + ‖∇2w‖L2(B1)

)
.
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Let us now go to estimate ‖w‖L2(B1) and ‖w‖L2(Sn−1). Combining (4.11) and
(4.12), it is easy to get∣∣∣∫

B1

wtdx +

∫
Sn−1

wdσy

∣∣∣ ≤ C(T )θ
(
‖∇wt‖L2(B1) + ‖∇2w‖L2(B1)

)
.(4.13)

Invoking the Poincaré inequality∥∥∥w − 1

|Sn−1|

∫
Sn−1

wdσy

∥∥∥
L2(B1)

≤ C‖∇w‖L2(B1),

we can deduce from (4.13) that

‖w‖L2(B1)(4.14)

≤ C‖∇w‖L2(B1) + C
∣∣∣∫

Sn−1

wdσy

∣∣∣
≤ C

(
‖∇w‖L2(B1) + ‖wt‖L2(B1)

)
+ C(T )θ

(
‖∇wt‖L2(B1) + ‖∇2w‖L2(B1)

)
.

Then, by the trace theorem, it follows that

‖w‖L2(Sn−1) ≤ C‖w‖H1(B1)(4.15)

≤ C
(
‖∇w‖L2(B1) + ‖wt‖L2(B1)

)
+ C(T )θ

(
‖∇wt‖L2(B1) + ‖∇2w‖L2(B1)

)
.

Step 2. Standard energy estimates. The following energy estimates are standard.
By taking the L2 inner product of the linear wave equation in system (4.8) with wt,
and using Green’s formula and integration by parts, we can compute as follows:

1

2

d

dt

∫
B1

(
|wt|2 + |∇w|2

)
dx−

∫
Sn−1

wtwrdx

=

∫
B1

(
gi0∂i

|wt|2
2

+ ∇j(gij∇iwwt)

− d

dxj
gij∇iwwt −

1

2
gij

d

dt
(∇iw∇jw)

)
dx

= −1

2

d

dt

∫
B1

gij∇iw∇jwdx−
∫

B1

( d

dxi
gi0

|wt|2
2

+
d

dxj
gij∇iwwt −

1

2

d

dt
gij∇iw∇jw

)
dx

+

∫
Sn−1

(1

2
gi0xi|wt|2 + gijxj∇iwwt

)
dσy

≤ −1

2

d

dt

∫
B1

gij∇iw∇jwdx + ‖∂giα‖L∞(B1)

(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)

)
+‖giα‖L∞(Ss−1)

(
‖wt‖2

L2(Ss−1) + ‖Ωw‖2
L2(Ss−1)

)
.

Keeping in mind (1.3), (1.5), and the boundary condition in (4.8), we deduce that

d

dt

1

2

[
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+

∫
B1

gij∇iw∇jwdx
]

+ ‖wt‖2
L2(Sn−1)(4.16)

≤ C(T )θ
(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(Ss−1) + ‖Ωw‖2
L2(Ss−1)

)
.
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Next, we do the higher-order energy estimates. The process is similar to the above.
For s ≥ 3 and 1 ≤ k ≤ s, we apply the ∂k

t derivative to the linear wave equation in
system (4.8), and then take the L2 inner product of the resulting equation with ∂k+1

t w.
Noting that ∂k+1

t w + ∂k
t wr = 0 on the boundary, we finally arrive at

s∑
k=1

{1

2

d

dt

(
‖∂k+1

t w‖2
L2(B1)

+ ‖∇∂k
t w‖2

L2(B1)
(4.17)

+

∫
B1

gij∇i∂
k
t w∇j∂

k
t wdx

)
+ ‖∂k+1

t w‖2
L2(Sn−1)

}
≤ C(T )θ

s∑
k=0

(
‖∂k+1

t w‖2
L2(Ss−1) + ‖Ω∂k

t w‖2
L2(Ss−1)

)
+ C(T )θ

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
+ C(T )θ‖∇w‖2

Hs(B1)
.

Note that in the right-hand side of the above estimate ‖w‖2
Hs+1(B1)

doesn’t appear.

By (4.8), we have{
Δ(∂s+1−k

t w) = ∂s+3−k
t w − ∂s+1−k

t [giα(t, x, ṽ, ṽt,∇ṽ)∂2
iαw], x ∈ B1,

(∂s+1−k
t w)r = −∂s+2−k

t w, x ∈ S
n−1.

Thus, proceeding from Lemma 4.2, we have

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
= ‖∂s+1

t w‖2
L2(B1)

+ ‖∂s
tw‖2

H1(B1)
+

s∑
k=2

‖∂s+1−k
t w‖2

Hk(B1)

≤ ‖∂s+1
t w‖2

L2(B1)
+ ‖∂s

tw‖2
H1(B1)

+ C

s∑
k=2

(
‖∂s+1−k

t w‖2
L2(B1)

+ ‖∂s+1−k
t

(
wtt − giα∂

2
iαw

)
‖2
Hk−2(B1)

+ ‖∂s+2−k
t w‖2

Hk−2+ 1
2 (Sn−1)

)
.

By the trace theorem, we obtain

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)

≤ ‖∂s+1
t w‖2

L2(B1)
+ ‖∂s

tw‖2
H1(B1)

+ C

s∑
k=2

(
‖∂s+1−k

t w‖2
L2(B1)

+ ‖∂s+3−k
t w‖2

Hk−2(B1)
+ ‖∂s+1−k

t

(
giα∂

2
iαw

)
‖2
Hk−2(B1)

+ ‖∂s+2−k
t w‖2

Hk−1(B1)

)
≤ C‖∂s+1

t w‖2
L2(B1)

+ C

s∑
k=1

‖∂k
t w‖2

H1(B1)

+ C

s−1∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
+ C‖∂s+1−k

t

(
giα∂

2
iαw

)
‖2
Hk−2(B1)

.
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Thus, by (1.5), (4.1), and Lemma 3.5, we arrive at

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)

≤ C

s−1∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
+ C‖∂s+1

t w‖2
L2(B1)

+ C

s∑
k=1

‖∂k
t w‖2

H1(B1)

+ C(T )θ
( s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
+ ‖∇w‖2

Hs(B1)

)
,

which leads to

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
≤ C

s−1∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)

+ C‖∂s+1
t w‖2

L2(B1)
+ C

s∑
k=1

‖∂k
t w‖2

H1(B1)
+

1

2
‖∇w‖2

Hs(B1)

if we choose θ so small that C(T )θ < 1
2 .

Repeating the above procedure for s− 1 steps, we finally arrive at

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
(4.18)

≤ C
(
‖∂s+1

t w‖2
L2(B1)

+

s∑
k=1

‖∂k
t w‖2

H1(B1)
+ ‖∇w‖2

Hs(B1)

)
.

Similarly, by (4.14) and Lemma 4.2, we have

(4.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖∇w‖2
H1(B1)

≤ C
(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)

+ ‖wt‖2
L2(B1)

+ ‖wtt‖2
L2(B1)

+ ‖∇wt‖2
L2(B1)

)
,

‖∇w‖2
H2(B1)

≤ C
(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)

+ ‖wt‖2
L2(B1)

+ ‖wtt‖2
H1(B1)

+ ‖∇wt‖2
H1(B1)

)
,

· · · · · · ,
‖∇w‖2

Hs(B1)
≤ C

(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)

+ ‖wt‖2
L2(B1)

+
∑s

k=1 ‖∂
s+1−k
t w‖2

Hk(B1)

)
,

where the first estimate follows from the following calculation:

‖∇w‖2
H1(B1)

= ‖∇w‖2
H1(B1)

≤ ‖w‖2
H2(B1)

≤ C
(
‖w‖2

L2(B1)
+ ‖wr‖2

H
1
2 (Sn−1)

+ ‖wtt‖2
L2(B1)

)
+ C(T )θ

(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
= C

(
‖w‖2

L2(B1)
+ ‖wr‖2

H
1
2 (Sn−1)

+ ‖wtt‖2
L2(B1)

)
+ C(T )θ

(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
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≤ C(T )θ‖∇2w‖2
L2(B1)

+ C
(
‖wtt‖2

L2(B1)
+ ‖∇wt‖2

L2(B1)

+ ‖∇w‖2
L2(B1)

+ ‖wt‖2
L2(B1)

+ ‖wt‖2
L2(B1)

)
,

which implies that

‖∇w‖2
H1(B1)

+ ‖w‖2
H2(B1)

≤ C
(
‖∇w‖2

L2(B1)
(4.20)

+ ‖wt‖2
L2(B1)

+ ‖wtt‖2
L2(B1)

+ ‖wt‖2
H1(B1)

)
.

The second estimate in (4.19) can be obtained by similar argument:

‖∇w‖2
H2(B1)

= ‖∇w‖2
H2(B1)

≤ ‖w‖2
H3(B1)

≤ C
(
‖w‖2

L2(B1)
+ ‖wr‖2

H
3
2 (Sn−1)

+ ‖wtt‖2
H1(B1)

)
+ C(T )θ

(
‖∇wt‖2

H1(B1)
+ ‖∇2w‖2

H1(B1)

)
≤ C

(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)
+ ‖wt‖2

L2(B1)

+ ‖wtt‖2
H1(B1)

+ ‖∇wt‖2
H1(B1)

)
+ C(T )θ‖∇w‖2

H2(B1)
,

which implies that

‖∇w‖2
H2(B1)

+ ‖w‖2
H3(B1)

≤ C
(
‖∇w‖2

L2(B1)

+ ‖wt‖2
L2(B1)

+ ‖wtt‖2
H1(B1)

+ ‖wt‖2
H2(B1)

)
,

and similar arguments yield the remaining estimates in (4.19).

Combining (4.18) and (4.19), we have

‖∇w‖2
Hs(B1)

+

s∑
k=0

‖∂s+1−k
t w‖2

Hk(B1)
(4.21)

≤ C
(
‖∂s+1

t w‖2
L2(B1)

+

s∑
k=1

‖∂k
t w‖2

H1(B1)

+ ‖∇w‖2
L2(B1)

+ ‖wt‖2
L2(B1)

)
.

By (4.10) and (4.12), it is easy to get

(4.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖∇w‖2
L2(B1)

+ ‖wt‖2
L2(B1)

≤ C
(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)

)
+ C(T )θ

(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
,

‖∇w‖2
L2(B1)

+ ‖wt‖2
L2(B1)

≤ C
(
‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(B1)

)
+ C(T )θ

(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
,

‖wt‖2
L2(Sn−1) ≤ ‖wt‖2

L2(Sn−1) + C(T )θ
(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
,

‖wt‖2
L2(Sn−1) ≤ ‖wt‖2

L2(Sn−1) + C(T )θ
(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
.
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Finally, by using (4.21) and (4.22), we can improve (4.17) as follows:

s∑
k=1

{1

2

d

dt

(
‖∂k+1

t w‖2
L2(B1)

+ ‖∇∂k
t w‖2

L2(B1)
(4.23)

+

∫
B1

gij∇i∂
k
t w∇j∂

k
t wdx

)
+ ‖∂k+1

t w‖2
L2(Sn−1)

}
≤ C(T )θ

s∑
k=0

(
‖∂k+1

t w‖2
L2(Ss−1) + ‖Ω∂k

t w‖2
L2(Ss−1)

)
+ C(T )θ

(
‖∂s+1

t w‖2
L2(B1)

+

s∑
k=1

‖∂k
t w‖2

H1(B1)
+ ‖∇w‖2

L2(B1)

)
.

Step 3. Morawetz’s energy estimates. First of all, we rewrite the linear wave
equation in system (4.8) in terms of the shift variable w as follows:

(4.24) �w = giα(t, x, v, vt,∇v)∂2
iαw − 1

|Sn−1|
d

dt

∫
B1

giα∂
2
iαwdx.

Next, we do the energy estimates of Morawetz type. By taking the L2 inner
product of (4.24) with x · ∇w, we deduce that

d

dt

[∫
B1

x · ∇w wtdx +
1

|Sn−1|

∫
B1

x · ∇wdx

∫
B1

giα∂iαwdx
]

−
∫

B1

∇j(x · ∇w∇jw)dx +

∫
B1

|∇w|2dx

=
1

2

∫
B1

x · ∇
(
|wt|2 − |∇w|2

)
dx +

∫
B1

x · ∇wgiα∇iwαdx

+
1

|Sn−1|

∫
B1

x · ∇wtdx

∫
B1

giα∂iαwdx.

Keeping in mind the boundary condition in (4.8) and giα = gαi, and using Green’s
formula and integration by parts, we compute

d

dt

[∫
B1

x · ∇w wtdx +
1

|Sn−1|

∫
B1

x · ∇wdx

∫
B1

giα∂iαwdx
]

−
∫

Sn−1

|wt|2dσy +
1

2

∫
B1

|wt|2 + |∇w|2dx

= −n− 1

2

∫
B1

(
|wt|2 − |∇w|2

)
dx +

1

2

∫
Sn−1

(
|wt|2 − |∇w|2

)
dσy

+

∫
Sn−1

x · ∇wgiαxi∂αwdσy −
∫

B1

(
giα∇iw∇αw + x · ∇w

d

dxi
giα∂αw

)
dx

+
1

|Sn−1|

(∫
Sn−1

wtdσy − n

∫
B1

wtdx
)∫

B1

giα∂iαwdx

+
1

2

∫
B1

(
ngiα∇iw∇αw + x · ∇giα∇iw∇αw

)
dx− 1

2

∫
Sn−1

giα∇iw∇αwdσy

≤ −n− 1

2

∫
B1

(
|wt|2 − |∇w|2

)
dx− 1

2

∫
Sn−1

|Ωw|2dσy
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+ C(T )θ
(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(Sn−1) + ‖Ωw‖2
L2(Sn−1)

+ ‖∇wt‖2
L2(B1)

+ ‖∇2w‖2
L2(B1)

)
,

where in the last inequality we used (2.20), (4.12), and (4.22). Consequently, we arrive
at

d

dt

[∫
B1

x · ∇w wtdx +
1

|Sn−1|

∫
B1

x · ∇wdx

∫
B1

giα∂iαwdx
]

(4.25)

+
2

5

(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+ ‖Ωw‖2

L2(Sn−1)

)
≤ 2‖wt‖2

L2(Sn−1) + C(T )θ
(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
− n− 1

2

∫
B1

(
|wt|2 − |∇w|2

)
dx.

At this stage, it is clear that we should estimate the last term of the above
inequality. A straightforward calculation shows that∫

B1

(
|wt|2 − |∇w|2

)
dx

=
d

dt

∫
B1

w wtdx−
∫

B1

{
|∇w|2 + w

(
Δw

+ giα∇i∂αw − 1

|Sn−1|
d

dt

∫
B1

giα∂iαwdx
)}

dx

=
d

dt

[∫
B1

w wtdx +
1

|Sn−1|

∫
B1

wdx

∫
B1

giα∂iαwdx
]

−
∫

Sn−1

w
(
∂rw + giαxi∂αw

)
dσy +

∫
B1

(
giα∇iw∂αw

+ ∇igiαw∂αw
)
dx− 1

|Sn−1|

∫
B1

wtdx

∫
B1

giα∂iαwdx.

By (4.12), (4.14), (4.15), and (4.22), we arrive at∫
B1

(
|wt|2 − |∇w|2

)
dx(4.26)

≤ d

dt

[∫
B1

w wtdx +
1

|Sn−1|

∫
B1

wdx

∫
B1

giα∂iαwdx +
1

2

∫
S1

w2dσy

]
+ C(T )θ

(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+ ‖wt‖2

L2(Ss−1)

+ ‖Ωw‖2
L2(Ss−1) + ‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
.

Combining (4.22), (4.25), and (4.26), we finally arrive at

d

dt

[∫
B1

(n− 1

2
w + x · ∇w

)
wtdx +

n− 1

4

∫
Sn−1

w2dσy(4.27)

+
n + 1

2|Sn−1|

∫
B1

wdx

∫
B1

giα∂iαwdx
]

+
1

4

(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)
+ ‖Ωw‖2

L2(Sn−1)

)
≤ 3‖wt‖2

L2(Ss−1) + C(T )θ
(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
.
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Noting that at the boundary

∂k+1
t w + ∂k

t wr = 0

holds for 1 ≤ k ≤ s, s ≥ 3, a similar argument yields that

s∑
k=1

{ d

dt

[∫
B1

(n− 1

2
∂k
t w + x · ∇∂k

t w
)
∂k+1
t wdx +

n− 1

4
‖∂k

t w‖2
L2(Sn−1)

]
(4.28)

+
1

4

(
‖∂k+1

t w‖2
L2(B1)

+ ‖∇∂k
t w‖2

L2(B1)
+ ‖Ω∂k

t w‖2
L2(Sn−1)

)}
≤ 3

s∑
k=0

‖∂k+1
t w‖2

L2(Ss−1)

for s ≥ 3 and 1 ≤ k ≤ s. Note that for the higher-order Morawetz energy estimates,
we cannot use the shift variable w, which will be made clear in the next step. We also
point out that in the above estimate we used the same techniques as in (4.23).

Step 4. Dissipative energy estimates. Define

X0 =

∫
B1

(n− 1

2
w + x · ∇w

)
wtdx +

n− 1

4
‖w‖2

L2(Sn−1)(4.29)

+
n− 1

2|Sn−1|

∫
B1

wdx

∫
B1

giα∂iαwdx

and

(4.30) Xk =

∫
B1

(n− 1

2
∂k
t w + x · ∇∂k

t w
)
∂k+1
t wdx +

n− 1

4
‖∂k

t w‖2
L2(Sn−1)

for 1 ≤ k ≤ s, s ≥ 3. By (2.23), (4.15), (4.12), and (4.22), it is obvious that

(4.31)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∫
B1

(
n−1

2 ∂k
t w + x · ∇∂k

t w
)
∂k+1
t wdx

∣∣∣
≤ 1

2

(
‖∂k+1

t w‖2
L2(B1)

+ ‖∇∂k
t w‖2

L2(B1)

)
+ n−1

4 ‖∂k
t w‖2

L2(Sn−1),∣∣∣X0 − n−1
4 ‖w‖2

L2(Sn−1)

∣∣∣ ≤ C
(
‖wt‖2

L2(B1)
+ ‖∇w‖2

L2(B1)

)
+ C(T )θ

(
‖∇wt‖2

L2(B1)
+ ‖∇2w‖2

L2(B1)

)
,

where 1 ≤ k ≤ s.
Noting (4.21), we multiply inequalities (4.16) and (4.17) by MC and then add

the resulting inequalities to (4.27) and (4.28) to yield

(4.32)
d

dt
(As + MCEs) +

Bs

8
≤ 0,

where M is a big enough positive constant, As and Bs are defined as⎧⎨⎩As =
∑s

k=0

(
MC

∫
B1

gij∇i∂
k
t w∇i∂

k
t wdx + Xk

)
,

Bs = Es +
∑s

k=0(‖Ω∂k
t w‖2

L2(Sn−1) + ‖∂k+1
t w‖2

L2(Sn−1)),

and Es is given by

Es = ‖∇w‖2
L2(B1)

+ ‖∂s+1
t w‖2

L2(B1)
+

s∑
k=1

‖∂k
t w‖2

H1(B1)
.
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By (4.29), (4.30), and (4.31), it is easy to see that

−CEs ≤ As ≤ CBs,

which implies that

(4.33) Es ≤ As + CMEs ≤
1

γ
Bs

for some small positive constant γ. Thus, we get

d

dt
(As + MCEs) + γ(As + MCEs) ≤ 0.

Noting (4.30) and (4.31), it is easy to get

As(0) ≤ C
(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
.

By Gronwall’s inequality, we have

(4.34) Es ≤ C exp(−γt)
(
‖f̃0‖2

Hs+1(B1)
+ ‖f̃1‖2

Hs(B1)

)
.

Finally, the estimate (4.9) follows (4.21), (4.22), (4.34), and the elliptic estimates in
(2.28).

In what follows, we will outline the steps to construct local exact boundary con-
trollability for quasi-linear wave equations (1.2) with initial data (1.6) and final data
(1.7), which are similar to those in sections 2 and 3.

Analogous to Lemma 2.8, we have the following.

Lemma 4.3. Let ϕ(k) and φ(k) be defined as the solutions of systems (4.3)–(4.6);
s ≥ 3 is an integer. Then the estimates

s+1∑
j=0

(
‖∂j

tϕ
(k)(T, ·)‖Hs+1−j(Ω0) + ‖∂j

tφ
(k)(0, ·)‖Hs+1−j(Ω0)

)

≤ 1

8

s+1∑
j=0

(
‖∂j

tϕ
(k−1)(T, x)‖Hs+1−j(Ω0) + ‖∂j

tφ
(k−1)(0, x)‖Hs+1−j(Ω0)

+ ‖∂j
tϕ

(k−2)(T, x)‖Hs+1−j(Ω0) + ‖∂j
tφ

(k−2)(0, x)‖Hs+1−j(Ω0)

)
hold, provided that θ is small enough and T is big enough.

By the above lemma, we can show that u = ΠΛv is well-defined and u ∈ Λθ,
similarly to Theorem 2.7.

Then, analogously to section 3, we can show that ΠΛ : v → u = ΠΛv is a strict
contraction from Λθ to itself. By the standard contraction mapping theorem, there
exists a point u ∈ Λθ, such that u = ΠΛu. For (t, x) ∈ [0, T ] × ∂Ω0, let

h(t, x) = u(t, x);

then h is the desired control and the proof of Theorem 1.6 is complete.
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Abstract. Antiangiogenic therapy is a novel treatment approach in cancer therapy that aims
at preventing a tumor from developing its own blood supply system that it needs for growth. In this
paper a mathematical model for antiangiogenic treatments based on a biologically validated model
by Hahnfeldt et al. is analyzed as an optimal control problem and a full solution of the problem is
given. Geometric methods from optimal control theory are utilized to arrive at the solution.
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1. Introduction. The most important limiting factor for the success of cancer
chemotherapy treatments lies in both intrinsic and acquired drug resistance. Malig-
nant cancer cell populations are highly heterogeneous—the number of genetic errors
present within one cancer cell can lie in the thousands [16]—and fast duplications
combined with genetic instabilities provide just one of several mechanisms which al-
low for quickly developing acquired resistance to anticancer drugs. In addition, in-
trinsic resistance (i.e., the specific drug’s activation mechanism simply doesn’t work)
makes some cancer cells not susceptible to many cytotoxic agents. “. . . the truly sur-
prising thing is that some malignancies can be cured even with current approaches”
[8, p. 65]. Several mechanisms to circumvent the problem of drug resistance have been
tried but so far without success, and currently no medical solution to the problem
exists. In fact, it is acquired or intrinsic drug resistance which eventually makes most
chemotherapy fail. At the same time, similar phenomena do not take place for the
healthy proliferating cells. For example, regretfully, bone marrow does not develop
drug resistance to the killing agent [10].

As of today, the search for therapy approaches that would avoid drug resistance
still is of tantamount importance in medicine. Two such approaches that are cur-
rently being pursued in their experimental stages are immunotherapy and antiangio-
genic treatments. While immunotherapy tries to coax the body’s immune system to
take action against the cancerous growth, tumor antiangiogenesis aims at depriving
a tumor from developing the necessary blood cells and capillaries that it needs for
further growth. Since the treatment does not target cancer cells but normal cells, no
occurrence of drug resistance has been reported in lab studies. (These treatments,
however, are only in the stage of experimental studies and initial clinical trials.) For
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this reason tumor antiangiogenesis has been called a therapy resistant to resistance
which provides a new hope in treatment of tumor-type cancers [10].

There exist several mathematical models for the evolution of tumor antiangiogene-
sis as a dynamical system, with the one formulated by Hahnfeldt et al. in [9] probably
being the most prominent one. This model was biologically validated in lab ex-
periments and became the basis for several modifications and simplifications [5, 6]
undertaken in an effort to both better understand the dynamical properties of the un-
derlying mechanisms and to make the mathematical model easier and more tractable
for analysis. For example, a dynamical systems analysis of the model by Hahnfeldt
et al. and of several modifications (with more general growth models for the growth
of cancer cells and slightly different dynamics for the evolution related to endothelial
cells) is given in the paper by d’Onofrio and Gandolfi [5]; Ergun, Camphausen, and
Wein [6] consider an optimal control problem for the scheduling of antiangiogenic
inhibitors both as monotherapy and in combination with radiotherapy. While these
models are variations of the specific dynamics proposed by Hahnfeldt et al. in [9], in
the papers by Agur et al. [1] and Forys, Keifetz, and Kogan [7] more generally dynam-
ical properties of models for angiogenesis are investigated under minimal assumptions
on the form of the growth functions describing the dynamics.

In this paper we consider the original mathematical model for tumor antiangioge-
nesis formulated and validated by Hahnfeldt et al. in [9] and analyze it as an optimal
control problem. Using geometric methods of optimal control theory, for this model
we compute how to schedule a given amount of angiogenic inhibitors to achieve the
maximum reduction in tumor volume possible. The key feature of the solution is an
optimal singular arc whose geometric analysis forms the core of the mathematical ar-
gument. Optimal controls then are concatenations of bang controls (constant controls
that give either a full or no dose of inhibitors) and the optimal singular control (a
specific smooth control that administers the inhibitors using a time-varying feedback
schedule at less than a maximum rate). The most general structure of optimal controls
possible is a concatenation of the form “0asa0, ” where a and 0 denote trajectories
with full, respectively, no antiangiogenic therapy, and s stands for a segment along the
singular arc. However, depending on the initial condition not all of these pieces are
present. Our theoretical analysis reduces the structure of optimal controls to at most
this structure but for some initial conditions still allows for a one-parameter family
of extremals of this form. Then, given any initial condition, the optimal solution is
easily computed numerically based on our analysis. The most typical and medically
most relevant scenarios are optimal protocols that take the simple form “a0” when
all inhibitors are administered at the beginning or “as0” when the dosage is adjusted
as the singular arc is reached and then all available inhibitors are being used up along
the singular arc. If the optimal policy along the singular arc comes close to a point
where the singular control saturates at the upper value a, then optimal trajectories
actually leave the singular arc prior to saturation (and this is consistent with the
behavior of optimal controls near saturation points; see, for example, [17] or [2]) and
are of the type “asa0.” The full structure “0asa0” arises only for initial conditions
that are not significant for the underlying problem.

A preliminary announcement of some partial results presented in this paper has
been given without proofs in [14]. Here the analysis is completed, and proofs are
included.

2. Medical background and mathematical model [9]. A growing tumor,
after it reaches just a few millimeters in diameter, no longer can rely on blood vessels
of the host for its supply of nutrients, but it needs to develop its own vessels and
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capillaries for blood supply. In this process, called angiogenesis, there is a reciprocal
signaling between endothelial cells and tumor cells. Tumor cells produce vascular en-
dothelial growth factor (VEGF) to stimulate endothelial cell growth; endothelial cells
in turn provide the lining for the newly forming blood vessels that supply nutrients
to the tumor and thus sustain tumor growth. But endothelial cells also have recep-
tors which make them sensitive to inhibitors of inducers of angiogenesis such as, for
example, endostatin, and pharmacologic therapies typically target the growth factor
VEGF trying to impede the development of new blood vessels and capillaries. Over-
all, angiogenesis can be viewed as a complex balance of stimulatory and inhibitory
mechanisms regulated through microenvironmental factors.

In the model developed by Hahnfeldt et al. in [9] these effects are summarized in a
two-dimensional dynamical system with the primary tumor volume p and the carrying
capacity of the vasculature q as variables. The latter is defined as the “maximal
tumor volume potentially sustainable by the network” [9] and is implicitly assumed
proportional to the number of endothelial cells. Thus the set D0 = {(p, q) ∈ R

2
+ :

p = q} corresponds to points where the vasculature is adequate to support the tumor,
while D− = {(p, q) ∈ D : p < q} corresponds to growing tumors and D+ = {(p, q) ∈
D : p > q} to shrinking tumors. A growth function describes the size of the tumor
dependent on the carrying capacity q and is chosen as Gompertzian in the original
model. Other models are equally realistic and are considered, for instance, in [5] or
[7], but here we stay with the original choice. Thus the rate of change in the primary
tumor volume is modeled as

(2.1) ṗ = −ξp ln

(
p

q

)
,

where ξ denotes a tumor growth parameter. The overall dynamics for the carrying
capacity is a balance between stimulation and inhibition, and its basic structure is of
the form

(2.2) q̇ = −μq + S(p, q) − I(p, q) −Guq,

where μq describes the loss of endothelial cells due to natural causes (death, etc.),
I and S denote endogenous inhibition and stimulation terms, respectively, and Guq
represents a loss due to additional outside inhibition. The variable u represents the
control in the system and corresponds to the angiogenic dose rate, while G is a constant
that represents the antiangiogenic killing parameter. Generally μ is small, often this
term is negligible compared to the other factors, and thus in the literature often μ is
set to 0 in this equation.

In [9] a spatial analysis of the underlying consumption-diffusion model was carried
out that led to the following two principal conclusions:

1. The inhibitor will impact endothelial cells in a way that grows like the volume
of cancer cells to the power 2

3 .
The exponent 2

3 arises since inhibitors need to be released through the surface of the
tumor. Thus in [9] the inhibitor term is taken in the form

(2.3) I(p, q) = dp
2
3 q,

with d a constant, the “death” rate. The second implication of the analysis in [9] is
that:

2. the inhibitor term will tend to grow at a rate of qαpβ faster than the stimulator
term where α + β = 2

3 .
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However, the choice of α and β is not imperative in their analysis and in fact is one of
the main sources for the various other models also considered in the literature [5, 6].
In their original work [9] Hahnfeldt et al. select α = 1 and β = − 1

3 resulting in the
simple stimulation term

(2.4) S(p, q) = bp,

with b a constant, the “birth” rate. However, other choices are possible, and, for
example, choosing α = 0 and β = 2

3 results in the equally simple form S(p, q) = bq
chosen in [5]. In that paper the dynamics for both models is analyzed, and it is shown
for the uncontrolled system that there exists a unique globally asymptotically stable
equilibrium (which, of course, is not viable biologically). Adding a control term, this
equilibrium can be shifted to lower values or, depending on the parameter values,
even eliminated altogether. In the latter case all trajectories converge to the origin in
infinite time. This, in principle, would be the desired situation.

The problem then becomes how to administer a given amount of inhibitors to
achieve the “best possible” effect. In this paper we use the dynamics of the original
model from [9] and formulate this aim as the following optimal control problem.

[HPFH]. For a free terminal time T , minimize the value p(T ) subject to the
dynamics

ṗ = −ξp ln

(
p

q

)
, p(0) = p0,(2.5)

q̇ = bp− (μ + dp
2
3 )q −Guq, q(0) = q0,(2.6)

ẏ = u, y(0) = 0,(2.7)

over all measurable functions u : [0, T ] → [0, a] for which the corresponding trajectory
satisfies y(T ) ≤ A.

As is customary in optimal control formulations, we adjoin the constraint as a
third variable. Later on, for all of our numerical illustrations we use the following pa-
rameter values which are taken from [9]: The variables p and q are volumes measured
in mm3; ξ = 0.192

ln 10 = 0.084 per day (adjusted to the natural logarithm), b = 5.85 per
day, d = 0.00873 per mm2 per day, G = 0.15 kg per mg of dose per day, and for
illustrative purposes we chose a small positive value for μ: μ = 0.02 per day. But we
want to emphasize already that our mathematical analysis and conclusions are valid
independently of the specific parameter values and lead to robust implications about
the structure of optimal controls for this model.

3. The dynamical systems for constant controls. For the analysis of the
optimal control problem it is of benefit to fully understand the dynamic properties of
the systems for a constant control u ≡ v, with v some value in the control set [0, a].
Our statements in this section are only minor extensions of the analysis given in the
paper by d’Onofrio and Gandolfi [5], and we refer the reader to that paper for the
proofs about our claims of stability properties of the equilibria. All statements are
for the natural domain R

2
+ = {(p, q) : p > 0, q > 0} of the system. The following fact

about the dynamical behavior of the system is an easy corollary of the results proven
in [5].

Proposition 3.1. For any admissible control u and arbitrary positive initial
conditions p0 and q0, the corresponding solution (p, q) exists for all times t ≥ 0, and
both p and q remain positive.
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Assuming b > μ, the uncontrolled system (u = 0) has a unique globally asymptot-

ically stable equilibrium point at (p̄, q̄) given by p̄ = q̄ = ( b−μ
d )

3
2 . This value naturally

is far too high to be acceptable, and the medically relevant region is contained in the
domain

(3.1) D = {(p, q) : 0 < p ≤ p̄, 0 < q ≤ q̄}.

In order to exclude irrelevant discussions about the structure of optimal controls in
regions where the model does not represent the underlying medical problem to begin
with, we henceforth restrict our discussions to this square domain D.

Proposition 3.2. D is positively invariant for the flow of the control system; i.e.,
if (p0, q0) ∈ D, then for any admissible control u defined over the interval [0,∞) the
solution (p(·), q(·)) to the corresponding dynamics with initial condition (p(0), q(0)) =
(p0, q0) exists for all times t ≥ 0 and lies in D, (p(t), q(t)) ∈ D.

Proof. The positive invariance of the region P = {(p, q) : 0 < p, 0 < q} for any
admissible control u directly follows from Proposition 3.1. The dynamics is clearly
pointing into D on the boundary segment {(p, q) ∈ D : p = p̄, 0 < q < q̄}, since for
p > q we always have ṗ < 0. For a constant control v, the isoclines for q̇ = 0 are given
by

(3.2) q = Ξv(p) =
bp

μ + Gv + dp
2
3

.

The functions Ξv are strictly increasing, Ξv(0) = 0, and at p̄ take the value

(3.3) Ξv(p̄) =
b

b + Gv
p̄.

In particular, the smallest value is given for v = a and Ξ0(p̄) = p̄. It thus follows
that on the boundary segment {(p, q) ∈ D : 0 < p < p̄, q = q̄} we have q̇ < 0 for all
controls. The point (p̄, q̄) is the equilibrium point for u = 0, and the dynamics points
into D for u = a at this point. Thus, regardless of the control value v, trajectories
can never leave the region D.

By increasing the value v of the control, the equilibrium can be shifted towards
the origin along the diagonal and finally be eliminated altogether. As a function of v
the equilibrium is the unique fixed point of the equation p = Ξv(p) in {p > 0} and is
given by

(3.4) p̄(v) = q̄(v) =

(
b− μ−Gv

d

) 3
2

provided b− μ > Gv, and this equilibrium (p̄(v), q̄(v)) still is globally asymptotically
stable. As b − μ ≤ Gv, the system no longer has an equilibrium point, and now all
trajectories converge to the origin as t → ∞ [5]. Thus, theoretically eradication of the
tumor was possible in this case under the unrealistic scenario of constant treatment
with an unlimited supply of inhibitors. Since this is the most desirable situation, for
our analysis of the optimal control problem we also assume that

(3.5) (A) Ga > b − μ > 0.

Figure 3.1 shows the phase portraits of the uncontrolled system on the left and for
u ≡ a on the right. In our figures we prefer to have the tumor volume as the vertical
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Fig. 3.1. Phase portraits for u = 0 and u = a = 75.

axis since this better visualizes the tumor reduction (respectively, increase). For
comparison the diagonal is included in these figures as a dashed-dotted line. It is not
difficult to extend all results of this paper to the case when the dynamics for u ≡ a
still has a positive equilibrium, but this will not be pursued here for reasons of space.

However, the domain D still contains initial conditions that give rise to degenerate
cases that we want to exclude. Recall that D+ = {(p, q) ∈ D : p > q}, D0 = {(p, q) ∈
D : p = q}, and D− = {(p, q) ∈ D : p < q}. Both of the trajectories for the constant
controls u = 0 and u = a cross the diagonal portion D0 transversally: For u = 0
trajectories cross from D+ into D−, while they cross in the opposite direction from
D− into D+ for u = a. Also, trajectories for u = 0 approach the stable equilibrium
(p̄, q̄) from within the region D−, while trajectories for u = a converge to the origin
as t → ∞ in the region D+. It follows from the dynamics for p, (2.5), that the p-
value of trajectories is always decreasing in D+ and always increasing in D−. As a
result, for some initial conditions (p0, q0, y0), with (p0, q0) ∈ D−, it is possible that
the (mathematically) optimal time T is T = 0. This situation arises when the amount
of available inhibitors simply is not sufficient to reach a point in the region D+ that
would have a lower p-value than p0. In such a case it is not possible to decrease the
tumor volume with the available amount of inhibitors. It is possible only to slow
down the tumor’s growth. Indeed, it is correct that the best way of doing this is to
give the full dose u = a until all inhibitors run out—this follows from the structure
of optimal controls to be shown later—but this is not the mathematically “optimal”
solution for problem [HPFH]. This one is simply to do nothing and take T = 0. Since
this introduces a number of degeneracies into the analysis, we make the following
definition.

Definition 3.3. We say an initial condition (p0, q0) ∈ D− is ill-posed if for any
admissible control it is not possible to reach a point (p, q) with p < p0. In this case
the optimal solution for the problem [HPFH] is given by T = 0. Otherwise (p0, q0) is
well-posed and the optimal time T will be positive.

It is clear that all initial conditions with (p0, q0) ∈ D+ ∪D0 are well-posed (since
p decreases in D+ and trajectories with u = a enter D+ from D0), and it is easily
decided whether an initial condition (p0, q0) ∈ D− is ill-posed. For our analysis of
optimal controls, however, we consider only well-posed initial conditions.

4. The maximum principle and preliminary analysis of optimal con-
trols. It follows from classical results that there exists an optimal solution to our
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problem [4]. First-order necessary conditions for optimality of a control u are given
by the Pontryagin maximum principle [18, 3, 4]: If u∗ is an optimal control defined
over an interval [0, T ] with corresponding trajectory (p∗, q∗, y∗)

T , then there exist a
constant λ0 ≥ 0 and an absolutely continuous covector λ : [0, T ] → (R3)∗ (which we
write as a row vector) such that (a) (λ0, λ(t)) 	= (0, 0) for all t ∈ [0, T ], (b) the adjoint
equations hold with transversality conditions

λ̇1 = ξλ1

(
ln

(
p∗(t)

q∗(t)

)
+ 1

)
+ λ2

(
2

3
d
q∗(t)

p
1
3∗ (t)

− b

)
, λ1(T ) = λ0,

(4.1)

λ̇2 = −ξλ1
p∗(t)

q∗(t)
+ λ2

(
μ + dp

2
3∗ (t) + Gu

)
, λ2(T ) = 0,

(4.2)

λ̇3 = 0, λ3(T ) =

{
0 if y(T ) < A,

free if y(T ) = A,

(4.3)

and (c) the optimal control u∗ minimizes the Hamiltonian H

(4.4) H = −λ1ξp ln

(
p

q

)
+ λ2

(
bp−

(
μ + dp

2
3

)
q −Guq

)
+ λ3u,

along (λ(t), p∗(t), q∗(t)) over the control set [0, a] with the minimum value given by 0.
We call a pair ((p, q, y), u) consisting of an admissible control u with corresponding

trajectory (p, q, y) an extremal (pair) if there exist multipliers (λ0, λ) such that the
conditions of the maximum principle are satisfied and the triple ((p, q, y), u, (λ0, λ))
is an extremal lift (to the cotangent bundle). Extremals with λ0 = 0 are called
abnormal, while those with a positive multiplier λ0 are called normal. In this case it
is possible to normalize λ0 = 1. The following lemmas summarize some elementary
properties of optimal controls and extremals for well-posed initial conditions.

Lemma 4.1. If u∗ is an optimal control with corresponding trajectory (p∗, q∗, y∗)
T ,

then at the final time p∗(T ) = q∗(T ) and y∗(T ) = A; i.e., all available inhibitors have
been used up.

Proof. Since the p-dynamics is Gompertzian, (2.5), the cancer volume is growing
for p < q and is shrinking for p > q. This implies that optimal trajectories can
terminate only at times where p∗(T ) = q∗(T ). For, if p∗(T ) < q∗(T ), then it would
simply have been better to stop earlier since p was increasing over some interval
(T − ε, T ]. (Recall that we are assuming that the initial condition is well-posed so
that the optimal final time T is positive.) On the other hand, if p∗(T ) > q∗(T ), then
we can always add another small interval (T, T + ε] with the control u = 0 without
violating any of the constraints and p will decrease along this interval if ε is small
enough. Thus at the final time necessarily p∗(T ) = q∗(T ). If now y(T ) < A, then we
can still add a small piece of a trajectory for u = a over some interval [0, ε]. Since
q̇ < 0 on the diagonal D0, the corresponding trajectory lies in D+, and thus the value
of p is decreasing along this trajectory contradicting the optimality of T .

Lemma 4.2. Extremals are normal. The multipliers λ1 and λ2 cannot vanish
simultaneously; λ2 has only simple zeros. The multiplier λ3 is constant and nonneg-
ative.

Proof. The multipliers λ1 and λ2 satisfy the homogeneous linear system (4.1) and
(4.2), and thus they vanish identically if they vanish at some time t. If λ0 = 0, then
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the nontriviality of (λ0, λ(t)) implies that the multiplier λ3, which is constant, is not
zero. The condition H ≡ 0 on the Hamiltonian therefore gives u ≡ 0; i.e., the initial
condition is ill-posed. Thus, without loss of generality we may assume that λ0 = 1
and hence λ1 and λ2 cannot vanish simultaneously. In particular, whenever λ2(t) = 0,
then λ̇2(t) 	= 0, and thus λ2 has only simple zeros.

For the final time T it follows from p∗(T ) = q∗(T ), the transversality condition
λ2(T ) = 0, and the condition H(T ) ≡ 0 that λ3u∗(T ) = 0. If λ3 < 0, then the
function Φ(t) = λ3 − λ2(t)Gq∗(t) will be negative on some interval (T − ε, T ], and
thus by the minimization condition (c) on the Hamiltonian the control must be given
by u∗(t) = a on this interval which is a contradiction. Hence λ3 ≥ 0.

Lemma 4.3. If λ3 = 0, then the corresponding optimal control is constant over
the interval [0, T ] and given by the control u ≡ a.

Proof. In this case the Hamiltonian function reduces to

(4.5) H = −λ1ξp ln

(
p

q

)
+ λ2

(
bp−

(
μ + dp

2
3

)
q −Guq

)
,

and thus the minimization condition (c) implies that

u∗(t) =

{
0 if λ2(t) < 0,
a if λ2(t) > 0.

Since λ2(T ) = 0 and λ̇2(T ) = −ξλ1(T )p∗(t)
q∗(t) = −ξ < 0, λ2 is positive on some interval

(τ, T ], and here the control is given by u∗(t) = a. Since p∗(T ) = q∗(T ), it follows
that the trajectory entirely lies in D− as long as the control is u ≡ a. But then λ2

cannot have another zero τ since otherwise H(τ) = −λ1(τ)ξp(τ) ln(p(τ)
q(τ) ) 	= 0. Thus

the control must be constant u ≡ a.
Except for this extremely degenerate case (the initial condition is such that with

giving the full dose we reach the diagonal exactly when all inhibitors have been ex-
hausted), we can, as we henceforth do, without loss of generality therefore assume
that λ3 is positive.

Lemma 4.4. If λ3 > 0, then optimal controls end with an interval (τ, T ] where
u∗ ≡ 0.

The function

(4.6) Φ(t) = λ3 − λ2(t)Gq∗(t),

which determines the structure of the optimal control u∗ through the minimization
property (c) on the Hamiltonian H, is called the switching function of the problem,
and optimal controls satisfy

(4.7) u∗(t) =

{
0 if Φ(t) > 0,
a if Φ(t) < 0.

A priori the control is not determined by the minimum condition at times when
Φ(t) = 0. If Φ(τ) = 0, but Φ̇(τ) 	= 0, then the control switches between u = 0 and
u = a depending on the sign of Φ̇(τ). On the other hand, if Φ(t) vanishes identically
on an open interval, then the minimization property in itself gives no information
about the control. However, in this case also all derivatives of Φ(t) must vanish, and
this may and typically does determine the control. Controls of this kind are called
singular, while we refer to the constant controls as bang controls. Optimal controls
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then need to be synthesized from these candidates through an analysis of the switching
function and its derivatives.

The computations of the derivatives of the switching function Φ can be expressed
concisely within the framework of geometric optimal control theory, and we therefore
now write the state as a 3-dimensional vector z = (z1, z2, z3)

T , with z1 = p, z2 = q,
and z3 = y. In vector notation the dynamics takes the form

(4.8) ż = f(z) + ug(z),

with

(4.9) f(z) =

⎛⎜⎜⎝
−ξp ln

(
p
q

)
bp−

(
μ + dp

2
3

)
q

0

⎞⎟⎟⎠
and

(4.10) g(z) =

⎛⎝ 0
−Gq

1

⎞⎠ .

The adjoint equation then simply becomes

(4.11) λ̇(t) = −λ(t) (Df(z(t)) + u∗(t)Dg(z(t))) ,

where Df and Dg denote the matrices of the partial derivatives of the vector fields
which are evaluated along z(t). The derivatives of the switching function can easily be
computed using the following well known result that can be verified by an elementary
direct calculation. Here 〈·, ·〉 denotes the standard inner product on R

3, i.e., for a
covector λ ∈ (R3)∗ and a vector z ∈ R

3, 〈λ, z〉 = λz.
Proposition 4.5. Let h be a continuously differentiable vector field, and define

(4.12) Ψ(t) = 〈λ(t), h(z(t))〉 .

Then the derivative of Ψ along a solution to the system equation (4.8) for control u
and a solution λ to the corresponding adjoint equation (4.11) is given by

(4.13) Ψ̇(t) = 〈λ(t), [f + ug, h]z(t)〉 ,

where

(4.14) [f, h](z) = Dh(z)f(z) −Df(z)h(z)

denotes the Lie bracket of the vector fields f and h.

5. Synthesis of optimal controlled trajectories. In this section we first give
an overview of the structure of optimal controlled trajectories, but the proofs will be
postponed to the remaining sections of the paper. We summarize the general structure
of optimal controls and trajectories in the following theorem.

Theorem 5.1. Given z̃ = (p̃, q̃, 0), with (p̃, q̃) ∈ D, optimal controls are at most
concatenations of the form 0asa0, with 0 denoting an arc along the constant control
u = 0, a denoting an arc along the constant control u = a, and s denoting an arc
along the singular curve S.
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Fig. 5.1. The regions I, II, III, and IV.

This result limits the possible concatenations in the sense that it provides an
upper bound. But for many initial conditions the concatenation structure is quite
shorter (pieces are missing), and there exists a unique extremal of this type which is
the optimal solution. However, there also are initial conditions for which there exists a
one-parameter family of extremals of this type, and in these cases the optimal control
needs to be computed numerically through minimizing a 1-dimensional function (see
section 8). Once a simple maximal concatenation structure such as the one given in
Theorem 5.1 has been determined, this is a straightforward argument.

Clearly, optimal trajectories lie in R
3, and at every point the actions depend

on the available amount of inhibitors. However, it is more illustrative to consider the
projections of trajectories into the (p, q)-plane,1 and it is convenient, and only a slight
abuse of terminology, not to distinguish in our language between the trajectories in
(p, q, y)-space and their projections onto the (p, q)-coordinates.

The anchor piece of the synthesis is an optimal singular arc. It will be shown in
section 6 that singular trajectories can lie only on a looplike curve S in (p, q)-space
where the vector fields f and the Lie bracket [f, g] are linearly dependent and that
there exists a unique arc Γ on S where the singular control is admissible, i.e., satisfies
the control constraints 0 ≤ u ≤ a. This curve S and the diagonal D0 = {(p, q) : p = q}
also form boundary curves between optimal bang-bang switchings in the order a0
and of the reverse order 0a, and the concatenation structure of optimal controls is
determined by the location of the initial condition relative to these curves. Denote
by S+ the region outside of the singular loop S and by S− the region inside this loop,
and define the following regions (see Figure 5.1):

I = D+ ∩ S+, II = D+ ∩ S−, III = D− ∩ S−, IV = D− ∩ S+.

In Figure 5.2 we indicate the structure of optimal controlled trajectories for a
representative collection of initial conditions and have highlighted one example as
a thick curve. (Pieces of trajectories corresponding to u = a are shown as dashed
curves, and pieces of u = 0 trajectories are shown as solid curves; pieces along the
singular arc follow the curve S.) The initial condition for the highlighted trajectory
lies in region II, and the optimal control is of the form as0: The control initially is

1In our graphs we prefer to have q as the horizontal variable and p along the vertical axis. Visually
this better corresponds to a decrease or increase in the primary cancer volume.
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Fig. 5.2. Synthesis of optimal controlled trajectories.

given by u = a until the singular arc Γ is reached; at this time the control switches to
the singular control and follows the admissible singular arc Γ until all inhibitors have
been exhausted; due to aftereffects the minimum value for the tumor volume then is
reached when, after termination of therapy, the system crosses the diagonal along the
trajectory for u = 0. This is the typical structure of optimal controlled trajectories for
initial conditions in II, but it depends on two facts: The overall amount of inhibitors is
large enough to reach the singular arc, but it is not so large that the singular control
would saturate along the singular arc at a specific point x∗

u (computed in section
6.2). If there are not enough inhibitors to reach Γ, the optimal control is simple
and is just of type a0, giving all inhibitors at maximum dosage from the beginning
until they become exhausted. If the amount of inhibitors is large enough so that the
singular control would saturate at the point x∗

u while following the singular arc, the
structure of optimal controls is more complex, and in this case controls can be of type
a0 or asa0. Typically, as the singular arc Γ is reached, now the control switches and
follows the singular arc for some time period, but in this case optimal trajectories
leave the singular arc before reaching x∗

u, and the remaining inhibitors are exhausted
along a full dose segment with u = a. But for trajectories that meet the singular
arc close to the saturation point x∗

u optimal controls do not switch to the singular
control but simply follow u = a until inhibitors are exhausted. The precise structure
of optimal trajectories that come close to the saturation point is rather difficult but
for a particular initial condition is easily resolved numerically.

For well-posed initial conditions in regions III and IV, optimal controlled trajec-
tories will eventually enter region II along a trajectory for u = a and then follow
the pattern described above. The specific form depends on the amount of inhibitors
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Fig. 5.3. An optimal as0 trajectory with corresponding control.

left over as the diagonal is crossed. For a typical initial condition, before crossing
the diagonal D0, the control will simply be constant given by u = a until region II
is reached. Only for some initial conditions with a low p-value and a relatively high
q-value can the control be u = 0 initially and then will switch to u = a. For some
points in IV optimal controls could in principle have the full concatenation structure
0asa0, but these are not of separate interest for the underlying problem. (Essentially,
following u = 0 the trajectory enters the part of region III where the control switches
to u = a and then ends with the pattern described for region II.)

For initial conditions in region I the most typical structure of optimal controls
is 0s0. Since p > q, the tumor is shrinking already, but as the system reaches the
singular arc, it is best to administer therapy according to the singular control until all
inhibitors become exhausted. As above, if the trajectory comes close to the saturation
point, this structure changes into 0sa0, and if the initial condition actually already is
close to this point, it may simply be a0 again.

A more precise description of all of these possibilities is given in section 8, where we
prove these results. Also, the diagrams shown here are generated using the parameter
values given in section 2 that are taken from [9], but the qualitative structure of the
solutions described here is robust with respect to parameter changes. Only if the
upper limit a on the dosage becomes too small will the singular arc disappear.

In Figure 5.3 we give one specific example of an optimal trajectory (on the left)
and its corresponding control (on the right) of the type as0. The initial condition is
given by (p̃, q̃) = (12000, 15000) in region III. The optimal control takes the maximal
value u = a for the short interval from 0 to t1 = 0.0905 when the trajectory reaches the
singular arc. At this point the control switches to the time-varying singular control
until all inhibitors are being exhausted at time t2 = 6.5579. Then, due to aftereffects,
the minimum value of the tumor volume is realized a short period later at the final
time T = 6.7221 when the corresponding u = 0 trajectory reaches the diagonal. Note
the extremely fast q-dynamics away from the singular arc. The optimal final value is
given by p∗(T ) = 8533.4. The optimal trajectory is shown as a solid curve in Figure
5.3, and the singular curve S and the diagonal D0 are shown as dotted curves. For
comparison we also show the a0 trajectory that corresponds to the trajectory which
applies all available inhibitors initially as a dashed curve. (Its initial segment agrees
with the optimal trajectory and is not marked separately.) This strategy leads to a
tumor reduction with value 8707.4 at time 4.1934.



1064 URSZULA LEDZEWICZ AND HEINZ SCHÄTTLER

6. Analysis of the singular arc. In this section we compute an explicit form
for the singular control and the corresponding singular curve S. We also show that
there exists a unique connected arc of S where the singular control is admissible, i.e.,
satisfies the control constraints. Furthermore, the strengthened Legendre–Clebsch
condition holds along S, and thus the singular arc is locally optimal.

6.1. Computation of the singular control. Using Proposition 4.5 we get for
the switching function Φ(t) = 〈λ(t), g(z(t))〉 that

(6.1) Φ̇(t) = 〈λ(t), [f, g]z(t)〉

and

(6.2) Φ̈(t) = 〈λ(t), [f + ug, [f, g]]z(t)〉 .

Direct calculations verify that

(6.3) [f, g](z) = Gp

⎛⎝ ξ
−b
0

⎞⎠
and

(6.4) [g, [f, g]](z) = −G2bp

⎛⎝ 0
1
0

⎞⎠ .

If the switching function Φ(t) = λ3 − λ2(t)Gq∗(t) vanishes at some time t, then λ2(t)
is positive since λ3 > 0, and thus we have

(6.5) 〈λ(t), [g, [f, g]]z(t)〉 = −λ2(t)G
2dp∗(t) < 0;

i.e., the so-called strengthened Legendre–Clebsch condition [11] is satisfied. Hence,
and provided it is admissible, the singular control is of order 1, locally optimal, and
given by

(6.6) usin(t) = −〈λ(t), [f, [f, g]]z(t)〉
〈λ(t), [g, [f, g]]z(t)〉 .

Another direct computation verifies that

(6.7) [f, [f, g]](z) = Gp

⎛⎜⎜⎝
ξ2 + ξbpq

ξb ln
(

p
q

)
+ ξ

(
2
3d

q∗(t)
3
√

p∗(t)
− b

)
−
(
μ + dp

2
3∗ (t)

)
b

0

⎞⎟⎟⎠ .

The vector fields g, [f, g], and [g, [f, g]] are everywhere linearly independent, and thus
[f, [f, g]] can be expressed as a linear combination in this basis. In fact,

(6.8) [f, [f, g]] =

(
ξ + b

p

q

)
[f, g] − ψ[g, [f, g]],

with

(6.9) ψ = ψ(p, q) =
1

G

(
ξ ln

(
p

q

)
+ b

p

q
+

2

3
ξ
d

b

q

p
1
3

−
(
μ + dp

2
3

))
.
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Along a singular arc we have that

(6.10) Φ̇(t) = 〈λ(t), [f, g](z(t))〉 ≡ 0,

and therefore

〈λ(t), [f, [f, g]](z(t))〉 = −ψ(z(t)) 〈λ(t), [g, [f, g]](z(t))〉 .

Since 〈λ(t), [g, [f, g]](z(t))〉 	= 0, the singular control defined by (6.6) is simply given
by the function ψ in feedback form, more precisely

(6.11) usin(t) = −〈λ(t), [f, [f, g]]z(t)〉
〈λ(t), [g, [f, g]]z(t)〉 = ψ(p(t), q(t)).

Summarizing, we have so far the following.
Proposition 6.1. Let (z∗, u∗) be an extremal pair. If the control u∗ is singular on

an open interval (α, β), then u∗ is of order 1, and the strengthened Legendre–Clebsch
condition is satisfied. The singular control is given in feedback form as

usin(t) = ψ(p∗(t), q∗(t))

=
1

G

(
ξ ln

(
p∗(t)

q∗ (t)

)
+ b

p∗(t)

q∗ (t)
+

2

3
ξ
d

b

q∗(t)

p
1
3∗ (t)

−
(
μ + dp

2
3∗ (t)

))
.(6.12)

But note that the singular control is admissible only if this value lies in the interval
[0, a]. Before addressing this issue, we first compute the singular curve itself.

6.2. Computation of the singular curve. For a trajectory to be an extremal,
the singular curve also needs to satisfy the extra requirement that H ≡ 0 or, equiva-
lently,

(6.13) 〈λ(t), f(z(t))〉 ≡ 0.

Hence, along a singular arc, λ(t) vanishes against the vector fields f , g, and [f, g].
Since λ(t) 	= 0, these vector fields must be linearly dependent. But g is always linearly
independent of f and [f, g], and thus the singular curve is precisely the locus where
f and [f, g] are linearly dependent. Both vector fields do not depend on y and have
a y-coordinate equal to 0. With slight abuse of notation we can therefore also view
them as vector fields on (p, q)-space and define the singular curve S as

(6.14) S = {(p, q) : f(p, q) ∧ [f, g](p, q) = 0},

where

(6.15) f(p, q) ∧ [f, g](p, q) =

∣∣∣∣∣∣∣∣
−ξp ln

(
p
q

)
ξ

bp−
(
μ + dp

2
3

)
q −b

∣∣∣∣∣∣∣∣ .
Thus the singular curve is given by the solutions of the equation

(6.16) μ + dp
2
3 = b

p

q

(
1 − ln

(
p

q

))
.
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The geometry of the singular curve becomes clear if we introduce a projective coor-
dinate, i.e., make a blowup in the variables of the form

(6.17) p = xq, x > 0.

The quotient q
p is proportional to the endothelial density which is used to replace the

carrying capacity of the vasculature as a variable in some models like, for example,
in [7]. As it turns out, the singular curve and its corresponding singular control can
be expressed solely in terms of the variable x introduced here. This fact confirms
mathematically the importance of this quantity. However, for the overall analysis,
and in particular in view of a ready interpretation of the results, we preferred to keep
the original variables p and q and use x only in the analysis of the singular arc. In
these variables (6.16) simplifies to

(6.18) μ + dp
2
3 = bx (1 − lnx)

and can be rewritten in the form

(6.19) p2 + ϕ(x)3 = 0,

with

(6.20) ϕ(x) =
bx(lnx− 1) + μ

d
.

The function ϕ is strictly convex with a minimum at x = 1 and minimum value μ−b
d .

In particular, if μ ≥ b, then this equation has no positive solutions, and thus no
admissible singular arc exists. The case μ < b, which we assumed in (3.5), is the
medically relevant case. For μ = 0 the zeros of ϕ are given by x∗

1 = 0 and x∗
2 = e, and

ϕ is negative on the interval (0, e). In general, for μ > 0, we have ϕ(0) = μ
d = ϕ(e),

and thus now the zeros x∗
1 and x∗

2 satisfy 0 < x∗
1 < 1 < x∗

2 < e. We thus have the
following.

Proposition 6.2. The singular curve S entirely lies in the sector {(p, q) : x∗
1q <

p < x∗
2q}, where x∗

1 and x∗
2 are the unique zeros of the equation ϕ(x) = 0 and satisfy

0 ≤ x∗
1 < 1 < x∗

2 ≤ e. In the variables (p, x), with x = p
q , the singular curve can be

parameterized in the form

(6.21) p2 =

(
bx(1 − lnx) − μ

d

)3

for x∗
1 < x < x∗

2.

Proposition 6.3. Along the singular arc the singular control can be expressed
solely as a function of x in the form

(6.22) Ψ(x) =
1

G

[(
1

3
ξ + bx

)
lnx +

2

3
ξ
(
1 − μ

bx

)]
.

There exists exactly one connected arc on the singular curve S along which the control
is admissible, i.e., satisfies the bounds 0 ≤ Ψ ≤ a. This arc is defined over an interval
[x∗

� , x
∗
u], where x∗

� and x∗
u are the unique solutions to the equations Ψ(x∗

� ) = 0 and
Ψ(x∗

u) = a, respectively, and these values satisfy x∗
1 < x∗

� < x∗
u < x∗

2.
Figure 6.1 on the left gives a plot of the singular curve for the parameter values

from [9] specified earlier and μ = 0.02 and shows the admissible portion of the petallike
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Fig. 6.1. The singular curve and its admissible part.

singular curve S for a = 75 marked as a solid curve on the right. The qualitative
structure shown in Figure 6.1 is generally valid with the admissible portion shrinking
for smaller values a.

Proof. In the variables p and x the singular control is given by

(6.23) usin(t) =
1

G

(
ξ lnx(t) + bx(t) +

2

3
ξ
dp(t)

2
3

bx(t)
−
(
μ + dp(t)

2
3

))
.

But along the singular arc we have p
2
3 = −ϕ(x), and thus we obtain the singular

control as a feedback function of x alone, usin(t) = Ψ(x(t)), namely,

Ψ(x) =
1

G

(
ξ lnx + bx +

2

3
ξ
bx(1 − lnx) − μ

bx
− bx (1 − lnx)

)
=

1

G

[(
1

3
ξ + bx

)
lnx +

2

3
ξ
(
1 − μ

bx

)]
.

Note that limx↘0 Ψ(x) = −∞ and limx→∞ Ψ(x) = +∞. Now

Ψ′(x) =
1

G

[
b (lnx + 1) +

1

3
ξ

(
1

x
+ 2

μ

bx2

)]
,(6.24)

Ψ′′(x) =
1

Gx3

(
bx2 − 1

3
ξx− 4

3
ξ
μ

b

)
,

and the second derivative has a unique positive zero at

x∗ =
1

6

ξ

b

(
1 +

√
1 + 48

μ

ξ

)
.

It follows that Ψ is strictly concave for 0 < x < x∗ and strictly convex for x > x∗.
If the function Ψ has no stationary points, then Ψ is strictly increasing, and thus, as
claimed, there exists a unique interval [x∗

� , x
∗
u] when Ψ takes values in [0, a], and the

limits are the unique solutions of the equations Ψ(x) = 0 and Ψ(x) = a, respectively.
The same holds if Ψ has a unique stationary point at x∗. In the remaining case, it
follows from the convexity properties that Ψ has a unique local maximum at x̃1 < x∗
and a unique local minimum at x̃2 > x∗. It suffices to show that Ψ is negative at



1068 URSZULA LEDZEWICZ AND HEINZ SCHÄTTLER

its local maximum. This, as before, implies that Ψ is strictly increasing when it is
positive. Suppose now that Ψ′(x̃) = 0. Then

−b ln x̃ = b +
1

3
ξ

(
1

x̃
+ 2

μ

bx̃2

)
> 0,

and thus

Ψ(x̃) =
1

G

[(
1

3
ξ + bx̃

)(
−1 − 1

3

ξ

b

(
1

x̃
+ 2

μ

bx̃2

))
+

2

3
ξ
(
1 − μ

bx̃

)]
=

1

G

[
−bx̃− 1

9

ξ2

b

(
1

x̃
+ 2

μ

bx̃2

)
− 4

3

ξμ

bx̃

]
< 0.

Hence Ψ is negative at any stationary point.

7. Analysis of bang-bang junctions. Optimal controls are concatenations of
the singular control with bang-bang structures, and in this section we analyze possible
switchings among bang-bang pieces of an optimal trajectory. We start with a strictly
local analysis of switchings that establishes the regions in (p, q)-space where switchings
from u = a to u = 0 or from u = 0 to u = a are possible. We then proceed to analyze
extremal bang-bang concatenation structures over the full interval. These results will
then be used in section 8 to determine the overall concatenation structures of optimal
controls.

The singular curve computed in section 6.2 also is a boundary curve between
optimal switchings in the order a0 and of the reverse order 0a. Recall that I = D+∩S+,
II = D+ ∩ S−, III = D− ∩ S−, and IV = D− ∩ S+.

Proposition 7.1. Along optimal trajectories there are no switchings from u = a
to u = 0 at points (p̃, q̃) in regions I and III, and there are no switchings from u = 0
to u = a at points (p̃, q̃) in regions II and IV.

Proof. It follows from (4.7) that the derivative of the switching function must
be nonpositive at any time τ where the control switches from u = 0 to u = a and
nonnegative at every switching from u = a to u = 0. Furthermore, since H ≡ 0 along
extremal lifts, at any switching τ , the adjoint variable λ(τ) vanishes against both
f(z(τ)) and g(z(τ)). Except for the points on the diagonal D0 = {(p, q) : p = q},
the vector fields f and g and the coordinate vector field ∂

∂y = (0, 0, 1)T are linearly

independent, and thus the Lie bracket [f, g] can be written as a linear combination of
these vector fields in the form

[f, g](z) = α(z)f(z) + β(z)g(z) + γ(z)
∂

∂y
;

i.e.,

Gp

⎛⎝ ξ
−b
0

⎞⎠ = α(z)

⎛⎜⎜⎝
−ξp ln

(
p
q

)
bp−

(
μ + dp

2
3

)
q

0

⎞⎟⎟⎠ + β(z)

⎛⎝ 0
−Gq

1

⎞⎠ + γ(z)

⎛⎝ 0
0
1

⎞⎠ .

Thus we have

α(z) = − G

ln
(

p
q

) , β(z) =
b
(

p
q

)(
ln
(

p
q

)
− 1

)
+
(
μ + dp

2
3

)
ln
(

p
q

) ,
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and

(7.1) γ(z) = −β(z).

At a switching time τ ,

Φ̇(τ) = 〈λ(τ), [f, g](z(τ))〉
= α(z) 〈λ(τ), f(z(τ))〉 + β(z) 〈λ(τ), g(z(τ))〉 − β(z)λ3

= −β(z)λ3,

and by Lemma 4.3 we may assume that λ3 is positive. Thus the sign of Φ̇(τ) is the
opposite of the sign of β. The denominator of β is positive in D+ and negative in D−.
The zero set of the numerator of β is exactly the locus where the vector fields f and
[f, g] are linearly dependent, i.e., the singular curve S (see (6.16)). We have labeled
the regions so that the numerator is positive in S+ and negative in S− (recall that
b > μ). Hence Φ̇(τ) is negative in regions I and III and positive in regions II and IV.
This proves the proposition.

We now proceed to the analysis of bang-bang controls over the full interval. The
admissible portion of the singular arc does not meet D−, and in D− optimal controls
will be bang-bang. We therefore begin with this analysis and assume as given a well-
posed initial condition z̃ = (p̃, q̃, ỹ), with (p̃, q̃) ∈ D−. We first establish that optimal
trajectories that start in D− will enter D+ but then cannot return to D− any more.

Proposition 7.2. Suppose (p∗(·), q∗(·)) is an optimal trajectory defined over the
interval [0, T ] with a well-posed initial condition (p̃, q̃) ∈ D−. Then there exists a time
τ ∈ (0, T ) so that the trajectory lies in D− for t ∈ [0, τ), crosses into D+ at time τ ,
and remains in D+ for times t ∈ (τ, T ). Over the interval [0, τ) the control either is
constant given by u ≡ a or is of the form 0a. In the latter case the junction must lie
in the set N− = {(p, q) ∈ D− : bp < (μ + dp

2
3 )q}.

Proof. Recall once more that we consider only initial conditions that are well-
posed; i.e., the corresponding optimal trajectory does cross over into D+. Define τ as
the (possibly) first time when the trajectory lies on the diagonal D0. We first show
that τ cannot be a switching time. For, if this were the case, then, since p(τ) = q(τ),

(7.2) H(τ) = λ2(τ)p(τ)
(
b−

(
μ + dp(τ)

2
3

))
= 0.

But on D0 we have b > μ + dp(τ)
2
3 , and thus λ2(τ) = 0. Hence the switching

function at time τ is positive: Φ(τ) = λ3 > 0. But then the control must be u = 0
in a neighborhood of τ , and the trajectory crosses from D+ into D−, which is a
contradiction.

Of the bang controls only u = a steers the system from D− into D+, and nothing
more needs to be shown about the interval [0, τ) if the control is constant and given
by u = a on this interval. If not, there exists a maximal interval (α, β), with 0 < α <
τ < β < T , so that the switching function is negative for t ∈ (α, β) and has zeros at
α and β: Φ(α) = Φ(β) = 0. The function Φ has a minimum over the interval [α, β]
at some time σ ∈ (α, β), and by (6.1) and (6.3) we have

(7.3) Φ̇(σ) = Gp(σ) (ξλ1(σ) − bλ2(σ)) = 0.

Hence λ1(σ) and λ2(σ) have the same sign. But λ2 is positive along trajectories for
u = a since Φ(t) = λ3−λ2(t)Gq(t) < 0 and λ3 > 0. Hence λ1(σ) > 0. Since there is a
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Fig. 7.1. The curve N0.

junction at time α, there also exists an interval (α− ε, α) where the control is u = 0,
and on this interval we have

(7.4) H(t) = −λ1(t)ξp(t) ln

(
p(t)

q(t)

)
+ λ2(t)

(
bp(t) −

(
μ + dp(t)

2
3

)
q(t)

)
= 0,

while λ2 is still positive for ε small. If we have

(7.5) bp(α) > (μ + dp(α)
2
3 )q(α)

at the junction, then, by (7.4), λ1 must be negative on this interval and also λ1(α) < 0.
Hence there exists a last zero for λ1 in the interval (α, σ), say, λ1(ρ) = 0. At this zero
the adjoint equation (4.2) reads

(7.6) λ̇1(ρ) = λ2(ρ)

(
2

3
d

q(ρ)
3
√
p(ρ)

− b

)
.

The curve N0 = {(p, q) : bp = (μ + dp
2
3 )q} is the q̇-nullcline for u = 0, and since at

the points on the q̇-nullcline we have

(7.7) f(z) =

⎛⎜⎝ −ξp ln
(

p
q

)
0
0

⎞⎟⎠
with the first coordinate positive in D−, corresponding trajectories cross N0 from
N− = {(p, q) : bp < (μ + dp

2
3 )q} into N+ = {(p, q) : bp > (μ + dp

2
3 )q} (Figure 7.1).

Because of the extra control term −Gqa in the vector field g, this also holds for
trajectories corresponding to the control u = a. Hence, if the junction at time α
satisfies (7.5), then so does the arc forward in time; i.e., for all t ∈ (α, σ) we have

(7.8) q(t) <
bp(t)

μ + dp(t)
2
3

.
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Hence

(7.9)
2

3
d

q(ρ)
3
√
p(ρ)

− b <
2

3
d

bp(ρ)
2
3

μ + dp(ρ)
2
3

− b =
2

3
b

dp(ρ)
2
3

μ + dp(ρ)
2
3

− b < −1

3
b < 0.

Since the multiplier λ2 is positive along u = a, we therefore have λ̇1(ρ) < 0, which is a
contradiction. Thus no 0a-junction can lie in the interior of N+. The same reasoning
also precludes that 0a-junctions would lie on the q̇-nullcline for u = 0, i.e., on N0. In
this case it follows that λ1(α) = 0 and λ̇1(α) < 0, and thus again there still exists a
last zero of λ1 in the interval (α, σ) where the same contradiction arises. Thus, any
possible 0a-junction in D− must lie in N−.

We now show that if there is a junction at some time α, then the control must
be constant u = 0 on the initial interval [0, α). Since trajectories for u = 0 cross N0

from N− into N+, it follows that, as long as the control u = 0 is used for t < α,
the trajectory lies in N−. Since this trajectory also necessarily lies in D− we have
p(t) < q(t). But then the identity

(7.10) H(t) = −λ1(t)ξp(t) ln

(
p(t)

q(t)

)
+ λ2(t)

(
bp(t) −

(
μ + dp(t)

2
3

)
q(t)

)
= 0

implies that neither λ1 nor λ2 can have any zeros (otherwise they would need to
vanish simultaneously, contradicting Lemma 4.2). Hence λ2 is positive, and λ1 must
be negative as long as the control is u = 0. This precludes any more switchings. For,
if there is another switching 0 < θ < α, then there also needs to be another zero for
the derivative of the switching function in (θ, α), and at this derivative λ1 and λ2

must have the same sign.
Thus, if (p̃, q̃) ∈ D− is a well-posed initial condition, then there exists a first time

τ at which the trajectory crosses from D− into D+ and the control over [0, τ) is either
constant and given by u ≡ a or it has exactly one switching from 0 to a with the
junction in N−. It still remains to show that the trajectory cannot return from D+

into D− for times t > τ , i.e., that (p(t), q(t)) lies in D+ for t ∈ (τ, T ). (It follows from
Lemma 4.1 that the end point lies on D0.)

If the trajectory were to return to D−, then there would exist another time κ > β
where the trajectory again would cross D0 with control u = 0 in a neighborhood of
κ. Now (7.10) implies that λ2(κ) = 0, and thus the adjoint equation for λ2 gives
λ̇2(κ) = −ξλ1(κ). Since λ1 and λ2 cannot vanish simultaneously, we have λ1(κ) 	= 0,
and λ2 changes sign at τ . If λ1(κ) > 0, then λ2 is negative for t > τ , t near τ .
However, after crossing into D−, trajectories for u = 0 entirely lie in D− and do
not cross back into D+. Consequently it follows from (7.10) that λ2 cannot have
another zero along an u = 0 arc. (In D− the expression λ1ξp ln(pq ) can vanish only if

λ1 = 0, and this precludes λ2 from having a zero.) But then the switching function
Φ(t) = λ3 − λ2(t)Gq remains positive, and so there cannot be another switching in
the control. But this structure clearly is not optimal since the value for p increases
in D−, which is a contradiction. If λ1(κ) < 0, we are back in the situation considered
above: If all inhibitors have not been used up, there needs to exist another switching
to u = a; but the entire forward orbit of the u = 0 trajectory lies in N+, and therefore
this switching would lie in N+, violating the earlier statement.

This proposition implies that, for well-posed initial conditions (p̃, q̃, 0), with (p̃, q̃) ∈
N+, the optimal control is given in feedback form by u ≡ a until the trajectory crosses
over into D+ at time τ . The further structure of the optimal control depends on the
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amount of inhibitors y(τ) that are still available at this time. If this amount is too
small to reach the singular arc, then, since only junctions in the order a0 are optimal
in region II = D+∩S−, the optimal control is simply given by u = a until all inhibitors
are exhausted and then follows u = 0 until the trajectory terminates on the diagonal
D0. (If the control would switch prior to the time when all inhibitors are exhausted,
by Proposition 7.1 it cannot switch back to the control u = a in region II and thus
would reach the diagonal with inhibitors still available, contradicting Lemma 4.1.)
Hence, if enough inhibitors are available for the trajectory to reach the singular curve
S, then the trajectory will follow u = a in region II.

We now consider the further structure of optimal controls for segments of the
trajectory that lie in D+. We first show that segments corresponding to the control
u = 0 can lie only at the beginning or at the end of the interval [0, T ].

Proposition 7.3. Let (α, β) be a maximal open interval where the optimal con-
trol is given by u ≡ 0 with corresponding trajectory (p∗, q∗) lying in D+. Then α and
β cannot both be switching times. If α is a switching time, then β = T , the final time,
and if β is a switching time, then α = 0, the initial time.

Proof. As before, on the interval (α, β), (7.10) holds, and on D+ we have

ξp ln(pq ) > 0 and bp − (μ + dp
2
3 )q > 0. As above, in this case neither λ1 nor λ2

can vanish, and therefore λ1 and λ2 have the same sign over (α, β). Since λ2 is posi-
tive at switching times, it follows that both λ1 and λ2 are positive over [α, β] if at least
one of the end points is a switching time. Along u = 0 the derivatives of the switching
function are given by Φ̇(t) = 〈λ(t), [f, g](z(t))〉 and Φ̈(t) = 〈λ(t), [f, [f, g]](z(t))〉. If
there exists a time τ ∈ (α, β) where Φ̇(τ) = 0, then it follows from (6.3) and (6.8)
that

Φ̈(τ) =

(
ξ + b

p(τ)

q(τ)

)
〈λ(τ), [f, g](z(τ))〉 − ψ(p(τ), q(τ)) 〈λ(τ), [g, [f, g]](z(τ))〉

=

(
ξ + b

p(τ)

q(τ)

)
Φ̇(τ) − ψ(p(τ), q(τ)) 〈λ(τ), [g, [f, g]](z(τ))〉

= ψ(p(τ), q(τ))bG2p(τ)λ2(τ) > 0.(7.11)

Here we use the fact that ψ is positive in D+.
Suppose α is a switching time. Then there exists an ε > 0 so that Φ̇ is positive

in (α, α + ε). (Since the control is u = 0, we have Φ̇(τ) ≥ 0, and even if Φ̇(α) = 0,
then this is implied by Φ̈(α) > 0.) Thus, if Φ̇ has zeros in (α, β), then there exists
a smallest one; call it τ . But then Φ̇(t) > 0 on the interval (α, τ), and so Φ cannot
have a local minimum at τ , contradicting Φ̈(τ) > 0. Hence Φ is strictly increasing
over (α, β) as long as the control u = 0 is used, and there cannot be another zero at
β. Similarly, if β is a switching time, then Φ is strictly decreasing over (α, β) as long
as the control u = 0 is used, and again there cannot exist a previous zero at α.

Proposition 7.4. Suppose (p∗, q∗) is an optimal trajectory corresponding to the
constant control u = a over some open interval (α, β) with switching times at α and
β. Then (p(α), q(α)) /∈ II and (p(β), q(β)) ∈ II. Furthermore, there exists a time
τ ∈ (α, β) where ψ(p(t), q(t)) ≥ a.

Proof. The statements about the junction points follow from Proposition 7.1.
Along u = a the switching function is negative over (α, β) and has a minimum at
some time τ ∈ (α, β) where Φ̇(τ) = 0 and Φ̈(τ) ≥ 0; the derivatives of the switching
function are now given by Φ̇(t) = 〈λ(t), [f, g](z(t))〉 and

Φ̈(t) = 〈λ(t), [f + ag, [f, g]](z(t))〉 .
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As above, it follows from (6.3) and (6.8) that

Φ̈(τ) =

(
ξ + b

p(τ)

q(τ)

)
〈λ(τ), [f, g](z(τ))〉 + {a− ψ(p(τ), q(τ))} 〈λ(τ), [g, [f, g]](z(τ))〉

=

(
ξ + b

p(τ)

q(τ)

)
Φ̇(τ) + {a− ψ(p(τ), q(τ))} 〈λ(τ), [g, [f, g]](z(τ))〉

= {ψ(p(τ), q(τ)) − a} bG2p(τ)λ2(τ).

(7.12)

Since Φ(τ) = λ3 − λ2(τ)Gaq(τ) < 0, we have λ2(τ) > 0, and thus we must have
ψ(p(τ), q(τ)) ≥ a. This proves the result.

8. Synthesis of optimal controls. We now put together the results, consider
concatenations between singular and bang arcs, and prove the results of section 5. We
start with a strictly local analysis of singular junctions analogous to Proposition 7.1
for bang-bang junctions and show that all possible concatenations of bang controls
with the singular arc are extremal. This classical result is included for the sake of
completeness and is a direct consequence of the fact that the strengthened Legendre–
Clebsch condition is satisfied. We then show that extremals which contain a saturating
arc are not optimal and proceed to the analysis of the possible concatenations of bang
and singular arcs.

Proposition 8.1. Let I be an open interval on which the optimal control u∗ is
singular and takes values in the interior of the control set. Then concatenations of
both the forms bs and sb, where b stands for any of the two bang controls u = 0 or
u = a, are extremal along I.

Proof. Recall that, for any control u that is continuous from the left (−) or right
(+), the second derivative of the switching function is given by

Φ̈(t±) = 〈λ(t), [f, [f, g]](z(t))〉 + u(t±) 〈λ(t), [g, [f, g]](z(t))〉 ,

and it vanishes identically on I along the singular control. Since the strengthened
Legendre–Clebsch condition is satisfied, we have 〈λ(t), [g, [f, g]](z(t))〉 < 0. By as-
sumption the singular control takes values in the interior of the control set [0, a], and
thus 〈λ(t), [f, [f, g]](z(t))〉 > 0. Hence, for u = 0 we get Φ̈(t) > 0, and for u = a we
have Φ̈(t) < 0. These signs are consistent with entry and exit from the singular arc
for each control; i.e., for example, if u = 0 on an interval (τ − ε, τ), then Φ is positive
over this interval, consistent with the choice u = 0 as minimizing control.

Thus, as long as the singular control has not saturated, it is possible to jump onto
or off the singular arc with the constant controls u = 0 or u = a at any point without
violating the conditions of the maximum principle locally. Naturally, optimality over
longer time intervals is not guaranteed and still needs to be analyzed. As an example,
it follows from Proposition 7.3 that the singular arc can be left with the control u = 0
only when all inhibitors have been exhausted. On the other hand, trajectories for
u = a can (and sometimes must) leave the singular arc before all inhibitors have been
exhausted. This follows from the result below. Recall that x∗

u is the point introduced
in Proposition 6.3 where the singular control saturates at the upper control value a.

Proposition 8.2. At the saturation point x∗
u on the singular arc where the

singular control saturates at the upper value u = a, it is not optimal to continue the
control with u = a. Thus optimal trajectories need to leave the singular arc before
saturation.
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This result may seem somewhat counterintuitive, but this is indeed the typical
behavior at saturation in low dimensions (see, for example, [17] or [2]).

Proof. Consider the trajectory that follows the singular arc and at the saturation
time τ continues with the control u = a. In general, we have

Φ̈(t) =

(
ξ + b

p(t)

q(t)

)
Φ̇(t) + (u(t) − ψ(p(t), q(t))) 〈λ(t), [g, [f, g]](z(t))〉 .

Along the singular arc Φ̇(τ) = 0 and at the saturation point we also have Φ̈(τ) = 0
for the control u = a since ψ = a. Hence, along u = a we get from the right that

Φ(3)(τ+) = −
(

d

dt |t=τ
ψ(p(t), q(t))

)
〈λ(t), [g, [f, g]](z(t))〉(8.1)

=

(
d

dt |t=τ
ψ(p(t), q(t))

)
bG2λ2(τ)p(τ).(8.2)

Recall that ψ(p(t), q(t)) = Ψ(x(t)), with x = p
q and Ψ defined in (6.22) in Proposition

6.3. We thus have

(8.3)
d

dt |t=τ
ψ(p(t), q(t)) = Ψ′(x∗

u)ẋ(τ).

It follows from the proof of Proposition 6.3 that Ψ′(x∗
u) > 0, and in general we have

ẋ =
ṗq − pq̇

q2
= −ξx lnx− bx2 + (μ + dp

2
3 )x + Gux.

Substituting (μ + dp
2
3 ) = bx(1 − lnx) along the singular arc (cf. (6.18)), we get

ẋ = x (Gu− (ξ + bx) lnx) .

But at the saturation point we also have

Gu(τ) = Ga =

(
1

3
ξ + bx(τ)

)
lnx(τ) +

2

3
ξ

(
1 − μ

bx(τ)

)
,

and thus

ẋ(τ) =
2

3
ξ
(
x(τ) (1 − lnx(τ)) − μ

b

)
=

2

3

ξ

b
dp(τ)

2
3 > 0.

Hence

(8.4) Φ(3)(τ+) > 0,

and Φ is positive for t > τ , t near τ , contradicting the minimization property for
u = a.

Thus optimal trajectories cannot continue with the saturated control u = a after
the saturation point but instead must leave the singular arc prior to saturating. The
analogous computation with u = 0 for t > τ shows that we can switch to u =
0 at saturation, but by Proposition 7.3 this is optimal only if all inhibitors have
been exhausted. In general, if inhibitors are available to go beyond the saturation
point, optimal trajectories must leave the singular arc before saturation occurs. When
precisely this happens depends on the amount of inhibitors left. For example, it is
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clear that if z̃ = (p̃, q̃, ỹ) is a point with (p̃, q̃) ∈ S before saturation for which A − ỹ
is small, then it is not optimal to leave the singular arc simply because there are not
enough inhibitors left so that the system could reach the region II = D+ ∩ S−, where
a switching from u = a to u = 0 again is optimal. In this case optimal trajectories
follow the singular arc until inhibitors are exhausted. However, if enough inhibitors
are available so that the singular arc would lose admissibility before they all are used
up, then indeed by leaving the singular arc earlier trajectories can enter region II,
and this will be the optimal strategy. But now the argument needs to become global.
Since by now we have sufficiently reduced the possibilities in the structures of optimal
controls and trajectories, we can reduce this problem to a 1-dimensional optimization
problem that can easily be solved numerically. Based on our previous analysis of
the structure of extremals, we now determine the optimal synthesis on D. We not
only establish the qualitative structure claimed in Theorem 5.1 but also show how to
compute the optimal control for a given initial condition z̃ = (p̃, q̃, 0).

We will prove that, except for some initial conditions (p̃, q̃) in regions III and IV
(which are less relevant for the underlying problem), our local analysis above only
allows for at most a one-parameter family of extremals Γε(s) = (pε(s), qε(s), yε(s)),
0 ≤ s ≤ T (ε), with the parameter ε ranging over a compact interval I = [0, θ]. The
corresponding value of the objective is given by υ(ε), υ(ε) = pε(T (ε)), and it will be
clear from the definition of the family Γε that the value υ(ε) depends continuously on
ε. Thus, for every initial condition there exists an optimal control that is determined
by numerical minimization of υ(ε) over [0, θ]. However, the structure of this one-
parameter family of extremals depends on the location of (p̃, q̃), and we need to
distinguish three cases.

Case 1. We start with an initial condition (p̃, q̃) in region I and will show that
in this case optimal controls at most have the form 0sa0 (possibly with the initial 0s
sequence absent). Let ς+ denote the reference trajectory that starts at z̃ = (p̃, q̃, 0),
uses the control u = 0 until the singular arc is reached at some time τ (the existence of
such a time is clear for initial conditions of this type), and then follows the singular arc
for time σ until either all available inhibitors have been exhausted or the saturation
point is reached. We now use the time ε along this trajectory as a parameter and
construct the family Γε over the compact parameter interval [0, θ], with θ = τ + σ as
follows: The trajectory Γε(·) agrees with the reference trajectory ς+ up to time ε and
switches at time ε to the control u = a, which will then be followed until all remaining
inhibitors have been exhausted, and then the control still is u = 0 until the trajectory
terminates at time T as the diagonal is reached.

This family indeed contains all possible extremals starting at initial condition z̃:
Initially the control can be only u = 0 or u = a. If the control is u = a, then it follows
from the phase portrait for u = a that this trajectory does not meet the admissible
portion of the singular curve. Since any possible junction will lie in D+, it follows
from Proposition 7.3 that the control can switch only to u = 0 as all inhibitors have
been exhausted. At this point the optimal control then is still given by u = 0 until
the diagonal D0 is reached at time T (0) and the trajectory is terminated. This is
the trajectory Γ0(·) in our family. It actually follows from Proposition 7.1 that this
trajectory would not be an extremal if the switching were to lie in region I, and in this
case this trajectory could be excluded a priori. However, even if this is the case, for
simplicity of argument we retain this curve anyway. Similarly, if initially the control
is u = 0 on [0, ε], with ε ≤ τ , and then switches to u = a, the same reasoning applies,
and the structure of the corresponding control is simply 0a0. For ε > τ , the trajectory
Γε(·) now follows the control u = 0 until time τ and then stays on the singular arc
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Fig. 8.1. Parameterized extremals for an initial condition in region I without saturation.

until time ε, at which time it leaves the singular arc to use u = a until all inhibitors
are being exhausted. The remaining time along the a trajectory is given by

(8.5) η(ε) =
1

a

(
A−

∫ ε

τ

ψ(pε(s), qε(s))ds

)
,

with η(τ + θ) = 0 if the inhibitors get exhausted along the singular arc. If the
singular control saturates, we know that the trajectory Γθ(·) is no longer optimal and
therefore can terminate the construction of the one-parameter family of extremals
with the trajectory that switches to u = a at saturation. This simply provides us
with a compact parameter interval, but in this case the minimum will be attained at
a parameter ε < θ. It follows from our local analysis given before that any possible
extremal that could start at z̃ is part of this family Γε(·). Essentially, trajectories
cannot switch to u = 0 before all inhibitors have been exhausted, and thus once they
switch to u = a they need to use up all remaining inhibitors.

It is just a consequence of the continuous dependence of a solution to an ordinary
differential equation on initial data and parameters that the end point pε(T (ε)) and
thus the value υ(ε) depend continuously on ε. Hence, if ε̂ is a parameter value where
υ(ε) attains its minimum over [0, θ], then Γε̂(·) is the optimal trajectory starting at z̃
with a correspondingly defined optimal control.

The family Γε(s), 0 ≤ s ≤ T (ε), is illustrated in Figure 8.1 for the initial condi-
tions p̃ = 10000 and q̃ = 3500. The reference trajectory is shown as a thick solid curve,
and some sample trajectories of Γε are shown as dashed-dotted curves. The heavily
dotted curve is the curve of points when all inhibitors are being exhausted. Here the
optimal control is of the type 0s0 and given for ε = θ; i.e., the optimal trajectory
follows u = 0 until the singular curve S is reached, then follows the singular arc until
all inhibitors have been exhausted, and finally uses u = 0 to reach the diagonal. This
is always the case for initial conditions whose available inhibitors are too small to
reach region II inside the loop S using the control u = a. This is the case for this
example, and in fact the only extremal corresponding to this initial condition is the
optimal trajectory Γθ. On the other hand, if initial conditions have an abundance of
inhibitors so that the singular arc would saturate, then optimal trajectories exit the
singular arc.
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Case 2. Let G = II ∪ D0 ∪ (III ∩ N+), i.e., the region inside the loop S, but
“above” the curve N0, and consider a well-posed initial condition z̃ = (p̃, q̃, 0) ∈ G.
Then the optimal control is initially given by u = a. (If the control starts with u = 0,
then the entire forward orbit lies in G, and in G switchings from 0 to a are not optimal
(cf. Propositions 7.1 and 7.2)). If the a trajectory starting at z̃ does not intersect the
admissible singular arc, the optimal control is simply u = a until all inhibitors have
been exhausted, and then u = 0 until the diagonal is reached. Nothing else needs to
be done in this case. Otherwise let ς− denote the reference trajectory that starts at
z̃ = (p̃, q̃, 0), uses the control u = a until the singular arc is reached at some time
τ , and then, as above, follows the singular arc for time σ until either all available
inhibitors have been exhausted or the saturation point is reached. Again we use the
time along the singular arc of the reference trajectory as a parameter and construct
the family Γε over the compact parameter interval [0, θ], with θ = σ as follows: The
trajectory Γε(·) agrees with the reference trajectory ς− along the initial segment for
u = a until the singular arc is reached at time τ and then Γε(·) still follows the singular
arc for time ε when it again switches to the control u = a. The end is as before: The
control u = a is used until all remaining inhibitors have been exhausted, at which time
a final segment with u = 0 is added until the trajectory terminates at time T on the
diagonal. Note that ε = 0 corresponds to the special case when the trajectory does
not follow the singular arc but continues straight with u = a. As above, this family
contains all possible extremals that start at z̃ but also may have some members that
are not extremals (for example, the second arc with u = 0 may violate Proposition
7.4). The optimal trajectory is given by Γε̂(·), where ε̂ is a minimizer of υ(ε) over
[0, θ]. In particular, in this case optimal controls at most have the form asa0 with
possibly some of the pieces absent.

Figure 8.2 shows an example of this family Γε(s), 0 ≤ s ≤ T (ε), for initial
conditions p0 = 8000 and q0 = 7000. Like in Figure 8.1 the reference trajectory ς− is
shown as a thick solid curve, sample trajectories from the family are shown as dashed-
dotted curves, and the heavily dotted curve of points is the curve when all inhibitors
have been exhausted. As above, no saturation occurs, and it is optimal to follow the
singular arc until all inhibitors have been exhausted (the trajectory corresponding to
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the rightmost parameter value θ gives the minimum value). Also for this example this
is in fact the only extremal.

This, however, is no longer true when there are still inhibitors available at the sat-
uration point. An example of this scenario is given for the initial condition p0 = 5000
and q0 = 2500 in region III. In this case, however, the numerical differences between
the values of the objectives are minute. In fact, no difference in the trajectories of
the family is discernable, and the cost varies only between 3761.65 and 3761.98. It is
clear that, although present mathematically, these differences are of no significance,
and for all practical purposes one may simply continue the singular arc at saturation
with u = a without any noticeable loss.

It is furthermore clear that the case of initial conditions with (p̃, q̃) on the admis-
sible portion of the singular arc can be analyzed in exactly the same way by setting
τ = 0. If the initial condition lies on the inadmissible portion, optimal controls are of
the form a0 with all inhibitors being exhausted along u = a.

Case 3. The last case corresponds to initial conditions (p̃, q̃) in the region F =
(III ∩ N−) ∪ (S ∩ D−) ∪ IV, i.e., points that lie in D− “below” N0. These initial
conditions all have relatively very large q-values in contrast to small p-values. In
these cases, in principle, the control can start with u = 0 and switch to u = a, while
still in F . Once the control is u = a, the trajectory enters the region G and the
construction of Case 2 applies. Thus, and if a large amount of inhibitors is available,
here the full structure 0asa0 can arise. Since trajectories eventually enter the region
G, and this leads to a repetition of the construction, we skip a precise description of
what now would be a two-parameter family of extremals over a compact rectangle.

9. Conclusion. We presented a complete solution for a mathematical model for
tumor antiangiogenesis for the problem of optimally scheduling a given number of
inhibitors in order to minimize the primary tumor volume. Based on our theoretical
analysis of the problem, for any specific initial condition the optimal solution can
easily be computed numerically and as such provides a benchmark value to which
other strategies should be compared. From a practical point of view, it is not realistic
to employ the singular control. It is a feedback control, and the required information
certainly is not available, although it could be predetermined offline from the initial
condition. Naturally, strategies of the type a0 which give all available inhibitors in one
session are the easiest to implement in practice. It follows from our analysis that for
some initial conditions these are indeed the optimal ones. This is certainly the case for
initial conditions for which a trajectories do not meet the admissible singular arc but
also for initial conditions when this intersection point is close to the saturation point.
Indeed, the dynamics for u ≡ a very much has a differential algebraic structure with
the q-dynamics fast and the p-dynamics slow. As a result, after a brief transient phase
in steady state the system essentially follows the q̇-nullcline. This nullcline is very
close to the singular curve near the saturation point, and thus there the differences in
the objective are almost unnoticeable. For initial conditions far away from this point
the singular arc and the q̇-nullcline are separated, and then the singular control is
noticeably better. Of course, only knowing the optimal solution allows one to make
such an analysis. However, this, and also comparisons with other models, will be
pursued elsewhere.

Here we only conclude with the statement that it is shown in [12, 13] that the
qualitative structure of optimal solutions as concatenations of the form 0asa0 for the
model by Hahnfeldt et al. [9] analyzed in this paper is exactly the same for the modified
model considered by Ergun et al. [6] while optimal controls are bang-bang with at
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most two switchings of the form 0a0 for the modification considered by d’Onofrio and
Gandolfi [5, 15].
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Abstract. We study the evolution of a layered quasi-electrostatic piezoelectric system. Under
suitable assumptions on the geometry of a region and the interfaces as well as a monotonicity condi-
tion on the coefficients, we prove a boundary observation inequality which together with the Hilbert
uniqueness method introduced by Lions give us a solution of the exact controllability problem for
the model under study.
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1. Introduction. Piezoelectricity is an electromechanical interaction. Piezo-
electric materials have the property that an electric field creates stress and that a
deformation creates polarization. These very special properties explain why such
materials are of great use in industry: They are both actuators and sensors. The
constitutive equations relate the stress tensor to the electric field and the polarization
vector to the strain tensor (see [5] or [6]). In this work we consider the evolution
problem of a piezoelectric structure whose three-dimensional (3-D) mechanical dis-
placement vector field u = u(x, t) = (u1, u2, u3) and electric field E are acting on a
bounded domain Ω of R

3 with smooth boundary ∂Ω = S0 ∪ S1 . The coupled system
which models the phenomenon is

(1.1)

{
utt − Div σ = 0

divD = 0
in Ω × (0,+∞),

where

σ = C E(u) − PE,

D = P t E(u) + DE.

Here σ is the mechanical stress and D is the electric displacement. The linearized

strain tensor E(u) =
[
Ek�(u)

]
has components Ek�(u) = 1

2

(
∂u�

∂xk
+ ∂uk

∂x�

)
, 1 ≤ �, k ≤ 3.
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We assume that the electric field E is such that E = −∇q, where q is the so-called
electric potential. In (1.1), C = (cijk�) is the fourth order elasticity tensor, which is
symmetric and positive, P = (ekij) is a third order piezoelectric symmetric tensor,
and D = (dij) is a second order symmetric and positive dielectric tensor. We assume
that the material is piecewise homogeneous.

From now on, a summation convention with respect to repeated indices will be
used. With the above considerations the quasi-electrostatic piezoelectric system (1.1)
can be rewritten as (1 ≤ i ≤ 3)

(1.2)

⎧⎪⎪⎨⎪⎪⎩
ui
tt −

∂

∂xj
σij(u, q) = 0

∂

∂xi
Di(u, q) = 0

in Ω × (0,+∞),

where σij(u, q) = cijk�Ek�(u) + ekij
∂q
∂xk

and Di(u, q) = eik� Ek�(u) − dij
∂q
∂xj

. We

assume that the domain Ω with smooth boundary S has the form Ω = O0\O1, where
O0 and O1 are open bounded domains with O1 ⊂ O0, where O1 denotes the closure
of O1, ∂O0 = S0, and ∂O1 = S1 . Thus S = S0 ∪ S1 . Let n > 1 be a given integer.
For each m with 1 ≤ m ≤ n let Bm be an open subset with smooth boundary Γm

and such that O1 ⊂ Bm ⊂ O0, Bm ⊂ Bm+1 . We set Ω0 = B1\O1, Ωm = Bm+1\Bm

for 1 ≤ m ≤ n− 1 and Ωn = O0\Bn .
We associate with system (1.2) the following given initial conditions,

(1.3) u(x, 0) = f1(x), ut(x, 0) = f2(x),

and boundary conditions

(1.4)

{
σij(u, q)ηj = 0

q = 0
on S0 × (0,+∞),

(1.5)

{
Di(u, q)ηi = 0

u = 0
on S1 × (0,+∞),

where η = η(x) = (η1, η2, η3) is the unit normal vector pointing toward the exterior
of Ω.

Our main purpose in this work will be to prove a special uniqueness theorem
(boundary observation) for the transmission problem associated with (1.2)–(1.5). We
will assume that the transmission conditions are the following:

(1.6)

⎧⎪⎨⎪⎩
σij

(
u(m−1), q(m−1)

)
ηj = σij

(
u(m), q(m)

)
ηj ,

Di

(
u(m−1), q(m−1)

)
ηi = Di

(
u(m), q(m)

)
ηi,

u(m−1) = u(m), q(m−1) = q(m),

for any (x, t) ∈ Γm × (0,+∞), m = 1, 2, . . . , n, and all i, j ∈ {1, 2, 3}. Here η = η(x)
is the unit normal vector pointing toward the exterior of Bm .

In (1.6), u(m) and q(m) denote the restrictions of the corresponding functions on
Ωm, 1 ≤ m ≤ n. Figures 1 and 2 illustrate simple such situations when n = 0 or
n = 2.
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Fig. 1. n = 0

Fig. 2. n = 2

From now on we will assume that the coefficients cijk�, dij , and eik� satisfy the
symmetries

cijk� = ck�ij = cjik�,

dij = dji, eik� = ei�k.

Also, the tensors (cijk�) and (dij) are elliptic in the sense that there exist c0 > 0 and
d0 > 0 such that

(1.7) cijk� λk� λij ≥ c0

3∑
i,j=1

(λij)
2, dijξjξi ≥ d0|ξ|2

for any real symmetric matrix [λij ] of order 3 and any vector ξ = (ξ1, ξ2, ξ3) ∈ R
3.

In order to mention the main result of this paper we describe the assumptions on
the coefficients for problem (1.2)–(1.6).

Hypothesis I. The coefficients cijk� = cijk�(x) and dij = dij(x) are piecewise
constant functions on Ω, which lose continuity only on Γ1,Γ2, . . . and Γn . All the
coefficients ekij are constant on Ω.

We will obtain an estimate of the form

(1.8)

(T − T0)

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m)) + d

(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx

≤ C

∫ T

0

∫
S0

|ut|2 dΓ dt

for some T0 > 0, C > 0, and any T > T0. Here we use the notation |ut|2 = ∂u
∂t · ∂u

∂t ,
where the dot · denotes the usual inner product in R

3 and
∫
S0

|ut|2 dΓ means the

surface integral of |ut|2 over the surface S0 .
This is a so-called boundary observation inequality, which will be stated and

proved in section 3 (see Theorem 3.3), provided that we assume geometric properties
on the region Ω and the interfaces Γi. Such assumptions are basically of “star-shaped”
type. In addition, to prove (1.8) we will assume monotonicity conditions on the
coefficients of system (1.2).
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The need for the above requirements was already noticed by Lions in [16] while
treating transmission problems. Later on, Lagnese [13] also used those types of
assumptions to prove controllability results for a large class of hyperbolic problems.

Results on controllability of physical systems are quite important, especially in the
case of systems driven by coupled equations such as those found in thermoelasticity
[14], magnetoelasticity [4], or for flexible multistructures [3], among many others.

In a simple case we may check that our monotonicity conditions are in fact optimal
(see Hypothesis II, (e) and (f), in section 3): Suppose that the tensor (ekij) vanishes
in Ω. In this case the electric potential does not interact with the displacement vector,
and u satisfies a wave-like equation that may be chosen to be a scalar wave equation
with the corresponding boundary conditions. It follows from [13] that in this situation
the above monotonicity assumptions are optimal. In the general case, that is, when
the tensor (ekij) does not vanish, the optimality would require further study.

Using (1.8) and the Hilbert uniqueness method (HUM) introduced by Lions [15],
[16], we study the following exact controllability problem: Given, as in (1.3), an
initial distribution f = (f1, f2) and a desired terminal state g = (g1, g2), with f and
g belonging to appropriate function spaces, we want to find a vector-valued function
Q = Q(x, t) (the control function) in a suitable function space and a time T > 0 such
that the solution u of (1.2), (1.3), (1.6) with boundary conditions{

σij(u, q)ηj = Qi(x, t)

q = 0
on S0 × (0,+∞),

(1.9) {
Di(u, q)ηi = 0

u = 0
on S1 × (0,+∞)

satisfies

(1.10) u(x, T ) = g1(x), ut(x, T ) = g2(x).

Several authors have considered the well-posedness of the initial-boundary value
problem for quasi-electrostatic equations; see, for instance, [1], [2], [11], and [17] (and
the references therein). The exact controllability problem for system (1.2) has been
studied by Miara [18]. Boundary controllability in transmission problems for the wave
equation was considered by Lions [16] and Nicaise [19], [20]. Uniform stabilization and
exact control for the Maxwell system in multilayered media was studied by Kapitonov
[7] (see also [21]). Boundary controllability in transmission problems for a class of
second order hyperbolic systems has been studied by Lagnese [13]. Stabilization and
exact boundary controllability for a system of electromagneto-elasticity was studied
recently by Kapitonov and Perla Menzala [8], [10] and by Kapitonov and Raupp [9].

The sections of this paper are as follows. Solvability of (1.2)–(1.6) for the appro-
priate class of functions is shown in section 2. This is done via semigroup theory and
with the help of known results for transmission problems for elliptic equations (see
(2.1)–(2.2) below). Actually, for such a problem we could also give the variational
form and the expression of the energy and conclude that the solution is a saddle point
of this energy (hence, the Lax–Milgram theorem applies as well). In section 3 we
prove the boundary observation result via the multiplier method “slightly” modified
in order to take into account additional terms after spatial integration of the funda-
mental identity. In the last section, the exact controllability problem is solved using
the boundary observability inequality and HUM.
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2. Well-posedness. The well-posedness of the initial-boundary value problem
with transmission conditions (1.2)–(1.6) is proved by standard semigroup methods.
Thus, we just outline the proof of well-posedness. Let Ω be a bounded region of R

3

with Lipschitz boundary as considered in section 1. Let us assume Hypothesis I on
the coefficients and consider F = [Fk�] to be a real symmetric matrix of order 3 such
that Fk� ∈ H1(Ωm), m = 0, 1, 2, . . . , n. In Ω we consider the elliptic problem

(2.1)
∂

∂xi

(
dij

∂q

∂xj

)
=

∂

∂xi

(
eik� Fk�

)
in Ωm, m = 0, 1, 2, . . . , n,

with boundary conditions

(2.2)

⎧⎨⎩
q = 0 on S0,

dij
∂q

∂xj
ηi = eik� Fk� ηi on S1,

and transmission conditions on Γm, m = 1, 2, . . . , n,

(2.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q(m−1) = q(m),

d
(m−1)
ij

∂q(m−1)

∂xj
ηi − d

(m)
ij

∂q(m)

∂xj
ηi

= eik� F
(m−1)
k� ηi − eik� F

(m)
k� ηi.

Using well-known elliptic results, we deduce that there exists a unique solution
q ∈ H2(Ωm) of problem (2.1)–(2.3), which we will denote by q = β(F ). (Observe
that the existence of a solution q ∈ H2(Ωm) of problem (2.1)–(2.3) depends on the
regularity of the boundary and the boundary loading.) Additionally, the restriction
of q to the subset Ωm will be written as q(m) = β(m)(F ). Let X be the real Hilbert
space of pairs (u, v) of three-component vector-valued functions u and v such that
v(m) ∈ [L2(Ωm)]3, u(m) ∈ [H2(Ωm)]3, and u = 0 on S1 . Here Hs(Ω) denotes the
Sobolev space of order s.

The inner product in X is given as follows:

〈(u, v), (ũ, ṽ)〉X =

n∑
m=0

∫
Ωm

{
v · ṽ + cijk� Ek�(u)Eij(ũ)

+ dij
∂

∂xj
(β(E(u)))

∂

∂xi
(β(E(ũ)))

}
dx,

where E(u) = [Ek�(u)]. In X we define the unbounded operator A with domain D(A),
which consists of all elements (u, v) belonging to X such that

v(m) ∈
[
H1(Ωm)

]3
, v = 0 on S1,[

cijk� Ek�(u) + ekij
∂

∂xk
(β(E(u)))

]
ηj = 0 on S0,

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(m) = u(m−1),[
c
(m−1)
ijk� Ek�(u(m−1)) + ekij

∂

∂xk

(
β(m−1)(E(u))

)]
ηj

=

[
c
(m)
ijk� Ek�(u(m)) + ekij

∂

∂xk

(
β(m)(E(u))

)]
ηj
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on Γm, m = 1, 2, . . . , n. In D(A) the operator A is given by

A(u, v) =

(
v,

∂

∂xi

{
cijk� Ek�(u) + ekij

∂

∂xk
(β(E(u)))

})
.

The skew-self-adjointness of A can be verified in the standard way. Consequently,
the operator A generates a one-parameter group of unitary operators

{
U(t)

}
t∈R

on

X, U(t) is strongly continuous with respect to t, and U(t)f is strongly differentiable
with respect to t whenever f = (f1, f2) ∈ D(A). Furthermore, if f = (f1, f2) ∈ X,
we consider fn = (fn

1 , f
n
2 ) ∈ D(A) such that ||f − fn||X → 0 as n → +∞. Let

Φ ∈ L2(0, T ;D(A∗)) such that d
dtΦ ∈ L2(0, T ;X) and Φ(T ) = 0. For any such Φ we

have that U(t)fn satisfies the identity

(2.4)

∫ T

0

{〈
U(t)fn,

d

dt
Φ

〉
X

+ 〈U(t)fn,A∗Φ〉X
}
dt = −〈fn,Φ(0)〉X .

Passing to the limit in (2.4) as n → +∞, we obtain that

(2.5)

∫ T

0

{〈
U(t)f,

d

dt
Φ

〉
X

+ 〈U(t)f,A∗Φ〉X
}
dt = −〈f,Φ(0)〉X ;

that is, U(t)f is the weak solution of the abstract Cauchy problem

dV

dt
= AV, V (0) = f

associated with (1.2)–(1.6).

3. Boundary observation. In this section we prove the boundary observation
result (1.8). The proof is based on the theory of multipliers and is motivated by
the invariance of system (1.2) relative to the one-parameter group of dilations in all
variables. A good reference for the use of this technique is Komornik’s book [12]. The
multipliers have to be conveniently modified in such a way that we can handle the
extra boundary terms appearing in the identities. Let h = h(x) be an auxiliary scalar
smooth function on Ω (which we will choose later on). Consider the multipliers M1

and M2 (which is actually an operator) given by

M1 u
i = t

∂ui

∂t
+ ∇h · ∇ui + ui, i = 1, 2, 3,

and

M2 q = tq
∂

∂t
−∇h · ∇q.

We will use the standard notation

∇h · ∇ =
3∑

j=1

∂h

∂xj

∂

∂xj
.

Let us multiply the first equation of (1.2) by 2M1u
i and apply the operator 2M2h to

the second equation in (1.2). Here the derivatives of the components of the tensors
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C = (cijk�), D = (dij), and P t = (ekij) have to be understood in the distributional
sense. Adding and rearranging terms, we obtain

0 = 2M1u
i

[
ui
tt −

∂

∂xj

(
cijk� Ek�(u) + ekij

∂q

∂xk

)]

+ 2M2q

[
∂

∂xi

{
eik� Ek�(u) − dij

∂q

∂xj

}]

=
∂

∂t
F − ∂

∂xj
Gj − J,(3.1)

where

F = t

[
|ut|2 + cijk� Ek�(u)Eij(u) + dij

∂q

∂xj

∂q

∂xi

]
(3.2)

+ 2ut ·
[
(∇h · ∇)u + u

]
,

Gj = 2
[
t ui

t + ∇h · ∇ui + ui
] [

cijk� Ek�(u) + ekij
∂q

∂xk

]

+ 2

(
tq

∂

∂t
−∇h · ∇q

)(
dij

∂q

∂xi
− ejk� Ejk�(u)

)

+
∂h

∂xj

[
|ut|2 + dk�

∂q

∂x�

∂q

∂xk
− cpqk� Ek�(u)Epq(u)(3.3)

− 2eki� Ei�(u)
∂q

∂xk

]
,

J = (Δh− 1)cijk� Ek�(u)Eij(u)

− 2
∂2h

∂xp∂xj
cijk� Ek�(u)

∂ui

∂xp
+ (3 − Δh)|ut|2

+ 2
∂2h

∂xi∂xk
dij

∂q

∂xj

∂q

∂xk
+ (1 − Δh)dij

∂q

∂xj

∂q

∂xi

+ 2(Δh− 1)ekij Eij(u)
∂q

∂xk
(3.4)

− 2
∂2h

∂xj∂x�
ekij

∂ui

∂x�

∂q

∂xk
− 2

∂2h

∂xi∂xj
eik� Ek�(u)

∂q

∂xj
.

Observation. If we consider h(x) = 1
2 |x − x0|2 for some x0 ∈ R

3, then we can
verify that J ≡ 0. In that case identity (3.1) represents a true conservation law.
However, due to the terms appearing in Gj (see (3.4)), we would require a definite
sign for ∂h

∂η · That is why we will choose h as a “small” perturbation of 1
2 |x− x0|2.

Let {u, q} be a smooth solution of (1.2)–(1.6). Integration over Ωm × (0, T ) of



BOUNDARY OBSERVATION OF A PIEZOELECTRIC SYSTEM 1087

identity (3.1) and summation over m implies that

T

n∑
m=0

∫
Ωm

{
|ut|2 + cijk� Ek�(u)Eij(u) + dij

∂q

∂xj

∂q

∂xi

}
dx

+

[
2

n∑
m=0

∫
Ωm

ut ·
{
(∇h · ∇)u + u

}
dx

]t=T

t=0

=

n∑
m=1

∫ T

0

∫
Γm

(
Vm−1 − Vm

)
dΓ dt

+

∫ T

0

∫
S0

Vn dΓ dt +

∫ T

0

∫
S1

V0 dΓ dt

+

n∑
m=0

∫ T

0

∫
Ωm

Jm(x, t)dx dt,(3.5)

where Jm = Jm(u, q, h) denotes the restriction of J (given by (3.4)) to the region Ωm

and

Vm = 2
[
t u

(m)
t + (∇h · ∇)u(m) + u(m)

]i[
c
(m)
ijk� Ek�(u(m)) + ekij

∂q(m)

∂xk

]
ηj

+
∂h

∂η

[
|u(m)

t |2 + d
(m)
k�

∂q(m)

∂x�

∂q(m)

∂xk
− c

(m)
pqk� Ek�(u(m))Epq(u(m))

− 2eki� Ei�(u(m))
∂q(m)

∂xk

]
+ 2tq(m)

[
d
(m)
ij

∂2q(m)

∂xi∂t
− ejk� Ek�(u(m)

t )

]
ηj

− 2∇h · ∇q(m)

[
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

]
ηj(3.6)

(0 ≤ m ≤ n).

In (3.6), ∂h
∂η denotes the normal derivative of h at x ∈ Γm (or S0, S1). The lemma

that we prove below shows that the differences Vm−1 − Vm will have the “good” sign
if we choose h conveniently and assume a monotonicity condition on the coefficients,
as follows.

Lemma 3.1. Let {u, q} be a smooth solution of problem (1.2)–(1.6). Then, the
identity

Vm−1 − Vm = −∂h

∂η

[(
c
(m−1)
ijk� − c

(m)
ijk�

)
Ek�(u(m−1))Eij(u(m−1))

+ c
(m)
ijk� Ek�(u(m) − u(m−1))Eij(u(m) − u(m−1))

+
(
d
(m)
ij − d

(m−1)
ij

) ∂q(m)

∂xj

∂q(m)

∂xi

+ d
(m−1)
ij

(
∂q(m−1)

∂xj
− ∂q(m)

∂xj

)(
∂q(m−1)

∂xi
− ∂q(m)

∂xi

)]
(3.7)

holds on Γm for m = 1, 2, . . . , n.
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Proof. We use interface conditions (1.6). In fact, direct calculations using (3.6)
and the interface conditions imply that

Vm−1 − Vm = 2(∇h · ∇)(ui(m−1) − ui(m))

(
c
(m)
ijk� Ek�(u(m)) + ekij

∂q(m)

∂xk

)
ηj

− ∂h

∂η

[
c
(m−1)
pqk� Ek�(u(m−1))Epq(u(m−1)) − c

(m)
pqk� Ek�(u(m))Epq(u(m)

]
+

∂h

∂η

[
d
(m−1)
k�

∂q(m−1)

∂x�

∂q(m−1)

∂xk
− d

(m)
k�

∂q(m)

∂x�

∂q(m)

∂xk

]
− 2

∂h

∂η

[
eki� Ei�(u(m−1))

∂q(m−1)

∂xk
− eki� Ei�(u(m))

∂q(m)

∂xk

]
− 2

[
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

]
ηj

[
∇h · ∇q(m−1) −∇h · ∇q(m)

]
.(3.8)

We use the identity

(∇h · ∇)(u(m−1) − u(m)) =
∂h

∂xk

(
∂u(m−1)

∂xk
− ∂u(m)

∂xk

)
=

∂h

∂xk
ηk

(
∂u(m−1)

∂η
− ∂u(m)

∂η

)
=

∂h

∂η

(
∂u(m−1)

∂η
− ∂u(m)

∂η

)
in order to obtain

2(∇h · ∇)(ui(m−1) − ui(m))

(
c
(m)
ijk� Ek�(u(m)) + ekij

∂q(m)

∂xk

)
ηj

= 2
∂h

∂η

[(
∂ui(m−1)

∂η
− ∂ui(m)

∂η

)
ηj

] [
c
(m)
ijk� Ek�(u(m)) + ekij

∂q(m)

∂xk

]
= 2

∂h

∂η

[(
∂ui(m−1)

∂xj
− ∂ui(m)

∂xj

)][
c
(m)
ijk� Ek�(u(m)) + ekij

∂q(m)

∂xk

]
= 2

∂h

∂η
c
(m)
ijk� Ek�(u(m)) Eij(u(m−1)) − 2

∂h

∂η
c
(m)
ijk� Ek�(u(m)) Eij(u(m))

+ 2
∂h

∂η
ekij Eij(u(m−1))

∂q(m)

∂xk
− 2

∂h

∂η
ekij Eij(u(m))

∂q(m)

∂xk
.(3.9)

In a similar way we get

−2

[
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

]
ηj

[(
∇h · ∇q(m−1)

)
−
(
∇h · ∇q(m)

)]
= −2

[
∇h · η

(
∂q(m−1)

∂η
− ∂q(m)

∂η

)][
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

]
ηj

= −2
∂h

∂η

[(
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

)
ηj

(
∂q(m−1)

∂η
− ∂q(m)

∂η

)]
= 2

∂h

∂η

[
d
(m)
ij

∂q(m)

∂xi
− ejk� Ek�(u(m))

] [
∂q(m)

∂xj
− ∂q(m−1)

∂xj

]
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= 2
∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi
− 2

∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m−1)

∂xi

+ 2
∂h

∂η
ejk� Ek�(u(m))

∂q(m−1)

∂η
− 2

∂h

∂η
ejk� Ek�(u(m))

∂q(m)

∂xj
.(3.10)

From (3.8)–(3.10) we obtain the identity

Vm−1 − Vm = 2
∂h

∂η
c
(m)
ijk� Ek�(u(m))Eij(u(m−1))

− ∂h

∂η
c
(m)
ijk� Ek�(u(m))Eij(u(m))

− ∂h

∂η
c
(m−1)
ijk� Ek�(u(m−1))Eij(u(m−1))

− 2
∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m−1)

∂xj
+

∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

+
∂h

∂η
d
(m−1)
ij

∂q(m−1)

∂xj

∂q(m−1)

∂xi

+ 2
∂h

∂η
ekij Eij(u(m−1))

∂q(m)

∂xk
− 2

∂h

∂η
ekij Eij(u(m))

∂q(m)

∂xk

+ 2
∂h

∂η
ekij Eij(u(m))

∂q(m−1)

∂xk
− 2

∂h

∂η
ekij Eij(u(m−1))

∂q(m−1)

∂xk
.(3.11)

Using the interface conditions

Dk

(
u(m−1), q(m−1)

)
ηk = Dk

(
u(m), q(m)

)
ηk,

we obtain [
ekijEij(u(m)) − eikjEij(u(m−1))

]
ηk

=

(
d
(m)
k�

∂q(m)

∂x�
− d

(m−1)
k�

∂q(m−1)

∂x�

)
ηk.(3.12)

Using (3.12), we deduce

2
∂h

∂η
ekij Eij(u(m−1))

∂q(m)

∂xk
− 2

∂h

∂η
ekij Eij(u(m))

∂q(m)

∂xk

+ 2
∂h

∂η
ekij Eij(u(m))

∂q(m−1)

∂xk
− 2

∂h

∂η
ekij Eij(u(m−1))

∂q(m−1)

∂xk

= 2
∂h

∂η

[
ekij Eij(u(m)) − ekij Eij(u(m−1))

] [∂q(m−1)

∂xk
− ∂q(m)

∂xk

]
= 2

∂h

∂η

[
ekij Eij(u(m)) − ekij Eij(u(m−1))

]
ηk

[
∂q(m−1)

∂η
− ∂q(m)

∂η

]
= 2

∂h

∂η

[
d
(m)
k�

∂q(m)

∂x�
− d

(m−1)
k�

∂q(m−1)

∂x�

]
ηk

[
∂q(m−1)

∂η
− ∂q(m)

∂η

]
= −2

∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi
+ 2

∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m−1)

∂xi

− 2
∂h

∂η
d
(m−1)
ij

∂q(m−1)

∂xj

∂q(m−1)

∂xi
+ 2

∂h

∂η
d
(m−1)
ij

∂q(m−1)

∂xj

∂q(m)

∂xi
.(3.13)
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From (3.9)–(3.13) it follows that

Vm−1 − Vm = 2
∂h

∂η
c
(m)
ijk� Ek�(u(m))Eij(u(m−1))

− ∂h

∂η
c
(m)
ijk� Ek�(u(m))Eij(u(m))

− ∂h

∂η
c
(m−1)
ijk� Ek�(u(m−1))Eij(u(m−1))

+ 2
∂h

∂η
d
(m−1)
ij

∂q(m−1)

∂xj

∂q(m)

∂xi
− ∂h

∂η
d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

− ∂h

∂η
d
(m−1)
ij

∂h(m−1)

∂xj

∂q(m−1)

∂xi
.(3.14)

The conclusion of Lemma 3.1 follows from (3.14), observing the validity of the iden-
tities

c
(m)
ijk� Ek�(u(m)) Eij(u(m)) + c

(m−1)
ijk� Ek�(u(m−1)) Eij(u(m−1))

− 2 c
(m)
ijk� Ek�(u(m)) Eij(u(m−1))

=
(
c
(m−1)
ijk� − c

(m)
ijk�

)
Ek�(u(m−1))Eij(u(m−1))

+ c
(m)
ijk�

[
Ek�(u(m)) − Ek�(u(m−1))

] [
Eij(u(m)) − Eij(u(m−1))

]
and

d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xk
+ d

(m−1)
ij

∂q(m−1)

∂xj

∂q(m−1)

∂xi
− 2 d

(m−1)
ij

∂q(m−1)

∂xj

∂q(m)

∂xi

=
(
d
(m)
ij − d

(m−1)
ij

) ∂q(m)

∂xj

∂q(m−1)

∂xi

+ d
(m−1)
ij

(
∂q(m−1)

∂xj
− ∂q(m)

∂xj

)(
∂q(m−1)

∂xi
− ∂q(m)

∂xi

)
.

Both identities together with (3.14) imply the conclusion of Lemma 3.1.
Next, we would like to get a bound for the last term on the right-hand side of

(3.5), as follows. Let us choose a convenient function h(x): Let Φ(x) be the solution
of the elliptic problem

(3.15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δ Φ = 1 in Ω,

∂Φ

∂η
= 2

Vol(Ω)

Area(S0)
on S0,

∂Φ

∂η
= − Vol(Ω)

Area(S0)
on S1,

where Area(Sj) means the surface area of Sj .
Clearly, problem (3.15) admits a solution Φ(x) (depending on the boundary reg-

ularity) such that Φ ∈ C2(Ω) ∩ C1(Ω). Let δ > 0 and x0 ∈ R
3 (to be chosen later)

and define

(3.16) h(x) = δΦ(x) +
1

2
|x− x0|2.
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Now, we will estimate the term
∑n

m=0

∫ T

0

∫
Ωm

Jm dxdt in (3.5).
Lemma 3.2. Under the assumption of Lemma 3.1, Hypothesis I, and choosing h

as in (3.16), we have that

n∑
m=0

∫ T

0

∫
Ωm

Jm dxdt(3.17)

≤ δ C T

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m)) + d

(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx

for any δ > 0 and some positive constant C which depends only on Φ and the coeffi-
cients of system (1.2).

Proof. The index m will be omitted to simplify notation. With our choice of h(x),
straightforward calculations show that J given by (3.4) while restricted to Ω can be
written as

J = −δ

[
|ut|2 + cijk� Ek�(u)Eij(u) + dij

∂q

∂xj

∂q

∂xi

]
+ 2δ

[
cijk� Ek�(u)Eij(u) − ∂2Φ

∂xp∂xj
cijk� Ek�(u)

∂ui

∂xp

+
∂2Φ

∂xi∂xk
dij

∂q

∂xj

∂q

∂xk
+ ekij Eij(u)

∂q

∂xk

− ∂2Φ

∂xj∂x�
ekij

∂ui

∂x�

∂q

∂xk
− ∂2Φ

∂xi∂xj
eik� Ek�(u)

∂q

∂xj

]
.(3.18)

Let us estimate each term on the right-hand side of (3.18).

Let us note ψ = (ψ1, ψ2, ψ3), where ψi = ∂2Φ
∂xi∂xj

∂q
∂xk

· Thus, for any δ1 > 0 we

have the inequality

(3.19) 2δ
∂2Φ

∂xi∂xj
dij

∂q

∂xj

∂q

∂xk
= 2δ D∇q · ψ ≤ δ δ1 D∇q · ∇q + δ δ−1

1 Dψ · ψ,

where D = (dij). Letting

C(Φ) = max
x∈Ω

i,j=1,2,3

∣∣∣∣ ∂2Φ

∂xi∂xj

∣∣∣∣ ,
the use of Hypothesis I with (1.7) yields the inequality

|Dψ · ψ| ≤ 9||D||C2(Φ)d−1
0 D∇q · ∇q,

which together with (3.19) gives us the estimate

(3.20) 2δ
∂2Φ

∂xi∂xk
dij

∂q

∂xj

∂q

∂xk
≤ δ

[
δ1 + 9d−1

0 δ−1
1 ||D||C2(Φ)

]
dij

∂q

∂xj

∂q

∂xi
.

Next, for any δ2 > 0 we have the inequality

2δ ekij Eij(u)
∂q

∂xk
≤ 3δ δ2||P ||E2

ij(u) + 9δδ−1
2 ||P || |∇q|2,
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where P = (ekij). Again, we use Hypothesis I and (1.7) to obtain from the above
inequality the estimate
(3.21)

2δ ekij Eij(u)
∂q

∂xk
≤ 3δδ2||P ||c−1

0 cjk� Ek�(u)Eij(u) + 9δδ−1
2 ||P ||d−1

0 dij
∂q

∂xj

∂q

∂xi
.

In a similar way we can deduce that for any δ3 > 0

−2δ
∂2Φ

∂xi∂xj
eik� Ek�(u)

∂q

∂xj
≤ 3δδ3||P ||c−1

0 cijk� Ek�(u)Eij(u)

+ 81 δδ−1
3 ||P ||d−1

0 dij
∂q

∂xj

∂q

∂xi
.(3.22)

Now, let us note vij = ∂2Φ
∂xj∂x�

∂ui

∂x�
· Clearly, we have that v2

ij ≤ 9C2(Φ)
(
∂uk

∂x�

)2
. For

any δ4 > 0, we have the estimate

−2δ
∂2Φ

∂xj∂x�
ekij

∂ui

∂x�

∂q

∂xk
= −2 δ ekij vij

∂q

∂xk

≤ 3 δδ4||P ||v2
ij + 9δδ−1

4 ||P || |∇q|2

≤ 27 δδ4||P ||C2(Φ)

3∑
i=1

|∇ui|2 + 9 δδ−1
4 ||P ||d−1

0 dij
∂q

∂xj

∂q

∂xi
.(3.23)

Finally, we estimate the term −2δ ∂2Φ
∂xp∂xj

cijk� Ek�(u) ∂ui

∂xp
. Denoting by C̃ =

max1≤i,j,k,�≤3 |cijk�|, and for any δ5 > 0, we have the inequalities

− 2δ
∂2Φ

∂xp∂xj
cijk� Ek�(u)

∂ui

∂xp
≤ 6 δ c̃|Ek�(u)|c(Φ)

3∑
j=1

∣∣∣∣ ∂ui

∂xj

∣∣∣∣
≤ 3 δδ−1

3 c̃c(Φ)c−1
0 cijk� Ek�(u)Eij(u) + 9 δδ5c̃ c(Φ)|∇ui|2,(3.24)

where we again used Hypothesis I. Integration of identity (3.18) on Ωm×(0, T ), adding
from m = 0 up to m = n, and estimates (3.19)–(3.24) give us the inequality

n∑
m=0

∫ T

0

∫
Ωm

Jm dxdt ≤ δ A

n∑
m=0

∫ T

0

∫
Ωm

c
(m)
ijk� Ek�(u(m))Eij(u(m))dxdt

+ δ B

n∑
m=0

∫ T

0

∫
Ωm

d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi
dxdt(3.25)

for some positive constants A and B. According to our estimates (3.19)–(3.24) we
can take

A = 1 + 3c̃(̧Φ)δ−1
5 c−1

0 + 3c̃ c−1
0 (δ2 + δ3) + 9α−1

0 δ5c̃ c(Φ) + 27 δ4α
−1
0 c̃ c2(Φ)

and

B = δ1 + 9 d−1
0 δ−1

1 ||D||c2(Φ) + 9 d−1
0 δ−1

2 c̃ + 81 c̃ d−1
0 δ−1

3 + 9 c̃ d−1
0 δ−1

4 − 1,

where α0 > 0 is chosen such that

(3.26)
n∑

m=0

∫
Ωm

c
(m)
ijk� Ek�(u(m))Eij(u(m))dx ≥ α0

n∑
m=0

||u(m)||2[H1(Ωm)]3
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for any u(m) ∈ [H1(Ωm)]3 with u(m−1) = u(m) on Γm, m = 1, 2, . . . , n, and u
∣∣
S1

= 0.

Choosing δ1 > 1, we conclude from (3.25) the existence of a positive constant C such
that

n∑
m=0

∫ T

0

∫
Ωm

Jm dxdt

≤ δ C

n∑
m=0

∫ T

0

∫
Ωm

{
c
(m)
ijk� Ek�(u(m)) Eij(u(m)) + d

(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dxdt

≤ δ C T

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m)) + d

(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx

because we can easily verify that if {u, q} is the solution of problem (1.2)–(1.6) as
constructed in section 2, then the quantity

E(t) =

n∑
n=0

∫
Ω

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m)) + d

(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx

is independent of t. This proves Lemma 3.2.
Hypothesis II. There exist δ0 ≥ 0 and x0 ∈ O1 (O1 is as in section 1) such that
(a) δ0C < 1, where C > 0 is as in the conclusion of Lemma 3.2,
(b) δ0

∂Φ
∂η + (x− x0) · η ≥ 0 for any x ∈ Γm, m = 1, 2, . . . , n,

(c) (x− x0) · η ≥ −2δ0
Vol(Ω)

Area(S0)
for any x ∈ S0,

(d) (x− x0) · η ≤ δ0
Vol(Ω)

Area(S1)
for any x ∈ S1 .

The coefficients of system (1.2) satisfy

(e)
(
c
(m−1)
ijk� − c

(m)
ijk�

)
λk�λij ≥ 0, m = 1, 2, . . . , n, for any real symmetric matrix

(λij) of order 3,

(f)
(
d
(m)
ij −d

(m−1)
ij

)
ξjξi ≥ 0, m = 1, 2, . . . , n, for any (real) vector ξ = (ξ1, ξ2, ξ3).

Remark. We note that above assumptions (a)–(d) in Hypothesis II are valid
when δ0 = 0 for star-shaped surfaces Γ1,Γ2, . . . ,Γn, S0, S1 . Moreover, if Γ1, . . . ,Γn

are strongly star-shaped with respect to a point x0, then the above conditions hold
with δ0 > 0 for a class of domains Ω which includes star-shaped domains. In this
sense condition (b) could be considered as a relaxation of the star-shape condition
that we usually find in piezoelectric problems.

From now on we fix δ0 > 0 and x0 ∈ O1 satisfying Hypothesis II. Thus, we will
work with the auxiliary function

h(x) = δ0 Φ(x) +
1

2
|x− x0|2.

The following inequality can be proved by standard arguments:∣∣∣∣∣2
n∑

m=0

∫
Ωm

u
(m)
t ·

[
(∇h · ∇)u(m) + u(m)

]
dx

∣∣∣∣∣
≤ C2

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ei�(u(m))Eij(u(m))

}
dx(3.27)

for some positive constant C2 which actually could be chosen to be C2 = Max {4, α−1
0

max{1, C(Ω)}}, where α0 > 0 is as in (3.26) and

C(Ω) = 2 max
x∈Ω

{
δ2
0 |∇Φ(x)|2 + |x− x0|2

}
.
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Theorem 3.3. Let {u, q} be the unique solution of problem (1.2)–(1.6) obtained
in section 2. Then, the inequality

[(1 − δ0C)T − C2]

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m))

+ d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx ≤

∫ T

0

∫
S0

∂h

∂η
|ut|2 dΓ dt

holds, where δ0 is the fixed positive constant in the definition of h(x), C > 0, and C2

is as in (3.27).
Proof. Using assumptions (b), (e), and (f) of Hypothesis II together with Lemma

3.1, we deduce that

Vm−1 − Vm ≤ 0 on Γm for m = 1, 2, . . . , n.

Thus, from (3.5), Lemma 3.2, and (3.27) we obtain that

[(1 − δ0C)T − C2]

n∑
m=0

∫
Ωm

{
|u(m)

t |2 + c
(m)
ijk� Ek�(u(m))Eij(u(m))

+ d
(m)
ij

∂q(m)

∂xj

∂q(m)

∂xi

}
dx ≤

∫ T

0

∫
S0

Vn dΓ dt +

∫ T

0

∫
S1

V0 dΓ dt.(3.28)

Using the boundary conditions (1.4)–(1.5) and the expressions of Vm and V0 in (3.6),
we deduce that

Vn

∣∣∣∣
S0

=
∂h

∂η
|ut|2 −

∂h

∂η

{
cijk� Ek�(u)Eij(u) + dij

∂q

∂xj

∂q

∂xi

}
,

V0

∣∣∣∣
S1

=
∂h

∂η

{
cijk� Ek�(u)Eij(u) + dij

∂q

∂xj

∂q

∂xi

}
.

Substitution of the above expression into (3.28) proves the conclusion of Theorem
3.3.

Corollary 3.4. Under the assumptions of Theorem 3.3, let (f1, f2) ∈ D(A).
Suppose that {u, q} is the solution of problem (1.2)–(1.6) satisfying the condition

u(x, t) = 0 for any (x, t) ∈ S0 × (0, T ).

Then, u(x, t) ≡ 0, q(x, t) ≡ 0 ∀ (x, t) ∈ Ω × (0, T ) for any T > T0 = C2

1−δ0C
.

4. Exact controllability. As a consequence of Corollary 3.4 it follows that for
T > T0 = C2

1−δ0C
the expression

(4.1) ||(f1, f2)||F =

(∫ T

0

∫
S0

|ut|2 dΓ dt

)1/2

defines a norm on the set of initial data (f1, f2) (where (u, ut) = U(t)(f1, f2) and
F denotes the Hilbert space obtained by completing D(A) with respect to the norm
(4.1)). We also have

||(f1, f2)|| ≤ C||(f1, f2)||F .
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Let us denote by F ′ the dual space of F with respect to X. In the cylinder Ω× (0, T )
we consider the mixed problem

(4.2)

⎧⎪⎪⎨⎪⎪⎩
∂2wi

∂t2
− ∂

∂xj
σij(w,ψ) = 0

∂

∂xi
Di(w,ψ) = 0

in Ωm × (0,+∞),

m = 0, 1, 2, . . . , n,

(4.3) w(x, 0) = g1(x), wt(x, 0) = g2(x) in Ωm,

{
σij(w,ψ)ηj = Qi(x, t)

ψ = 0
on S0 × (0,+∞),

(4.4) {
Di(w,ψ)ηi = 0

w = 0
on S1 × (0,+∞),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σij

(
w(m−1), ψ(m−1)

)
ηj = σij

(
w(m), ψ(m)

)
ηj ,

Di

(
w(m−1), ψ(m−1)

)
ηi = Di

(
w(m), ψ(m)

)
ηi,

w(m−1) = w(m), ψ(m−1) = ψ(m),

on Γm × (0, T ), m = 1, 2, . . . , n,

(4.5)

where Q = Q(x, t) ∈ [L2(S0 × (0, T ))]3 and g = (g1, g2) ∈ F ′.
In order to give a definition of a solution of problem (4.2)–(4.5) we observe that,

in the case when we have a smooth (vector) function w and scalar function ψ, the
identity

n∑
m=0

∫
Ωm

{
ut · wt + cijk� Ek�(u)Eij(w)

+ dij
∂

∂xj
(β(E(u)))

∂

∂xi
(β(E(w))

}
dx

∣∣∣∣
t=T

=

n∑
m=0

∫
Ωm

{
f2 · g2 + cijk� Ek�(f1)Eij(g1)

+ dij
∂

∂xj
(β(E(f1))

∂

∂xi
(β(E(g1))

}
dx

+

∫ T

0

∫
S0

ut ·QdΓ dt(4.6)

holds for all f = (f1, f2) ∈ D(A). Here, we note (u, ut) = U(t)f . Given E(y) (or
E(w)), we note β(E(u)) (or β(E(w))), the solution of problem (2.1)–(2.3) as described
in section 2.

We rewrite (4.2) in the form d
dt (w, w̃) = A(w, w̃). By definition, (w(t), w̃(t)) ∈

L∞(0, T ;F ′) is a solution of (4.2)–(4.5) if

(4.7) 〈(w(t), w̃(t)), U(t)ϕ〉X = 〈g, ϕ〉X +

∫ t

0

∫
S0

Q · vt dΓ ds
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for all ϕ ∈ F and 0 < t < T . Let (v, vt) = U(t)ϕ and 〈, 〉 be the duality F ′F . In a
similar way we define a solution of (4.2), (4.4), and (4.5) with zero data at t = T as
an element (w(t), w̃(t)) ∈ L∞(0, T,F ′) such that

(4.8) 〈(w(t), w̃(t)), U(t)ϕ〉X = −
∫ T

t

∫
S0

Q · vt dΓ ds

for all ϕ ∈ F and 0 < t < T .
Let f be an arbitrary element of F and (w(t), w̃(t)) be a solution of (4.2), (4.4),

(4.5) with zero data at t = T > T0 = C2

1−δ0C
and boundary function Q = −ut, where

(u, ut) = U(t)f . Let us define Mf = (w(x, 0), w̃(x, 0)). From (4.8) we deduce that

(4.9) 〈Mf,ϕ〉 =

∫ T

0

∫
S0

ut · vt dΓ dt = 〈f, ϕ〉F .

From this it follows that M is an isomorphism from F onto F ′.
Finally, we consider problem (4.2)–(4.5) and suppose that the initial data g =

(g1, g2) belongs to F ′. We set

f = M−1g, (u, ut) = U(t)f, Q = −ut .

Using identity (4.7) with t = T > T0, we find that

(4.10) 〈(w(T ), w̃(T )), U(T )ϕ〉 = 〈Mf,ϕ〉 − 〈f, ϕ〉F = 0

for any ϕ ∈ F , due to (4.9). This means that (w(T ), w̃(T )) “generates” the zero
functional on F . In conclusion, we have proved the following theorem.

Theorem 4.1. Let us assume Hypotheses I and II. If T > T0 = C2

1−δ0C
, then

for any initial data f = (f1, f2) ∈ F ′ of problem (1.2), (1.3), (1.6) with boundary
conditions {

σij(u, q)ηj = Qi(x, t)

q = 0
on S0 × (0,+∞),(4.11) {

Di(u, q)ηi = 0

u = 0
on S1 × (0,+∞),(4.12)

we can find a vector-valued function Q(x, t) ∈
[
L2(0, T ;L2(S0))

]3
such that the cor-

responding solution of (1.2), (1.3), (1.6), (4.11), (4.12) satisfies

u(x, T ) = 0, ut(x, T ) = 0.
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[18] B. Miara, Contrôlabilité d’un corps piézoélectrique, C.R. Acad. Sci. Paris, 333 (2001), pp.

267–270.
[19] S. Nicaise, Boundary exact controllability of interface problems with singularities I: Addition

of the coefficients of singularities, SIAM J. Control Optim., 34 (1996), pp. 1512–1532.
[20] S. Nicaise, Boundary exact controllability of interface problems with singularities II: Addition

of internal controls, SIAM J. Control Optim., 35 (1997), pp. 585–603.
[21] D. L. Russell, The Dirichlet–Neumann boundary control problem associated with Maxwell’s

equations in a cylindrical region, SIAM J. Control Optim., 24 (1986), pp. 199–229.
[22] P. Russell, Exact boundary value controllability theorems for waves and heat processes in

star-complemented regions, in Differential Games and Control Theory, E. O. Roxin, P.-T.
Lin, and R. Sternberg, eds., Marcel-Dekker, New York, 1974.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 3, pp. 1098–1115

ON REGULARITY OF SOLUTIONS AND LAGRANGE
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Abstract. A class of nonlinear elliptic and parabolic optimal control problems with mixed
control-state constraints is considered. Extending a method known for the control of ordinary dif-
ferential equations to the case of PDEs, the Yosida–Hewitt theorem is applied to show that the
Lagrange multipliers are functions of certain Lp-spaces. By bootstrapping arguments, under natural
assumptions, optimal controls are shown to be Lipschitz continuous in the elliptic case and Hölder
continuous for parabolic problems.
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1. Introduction. The solutions of optimal control problems with mixed control-
state constraints exhibit better regularity properties than those with pure pointwise
state constraints. This fact about the control of ordinary differential equations has
been known for a long time. We refer the reader, for instance, to early contributions
to linear programming problems related to control problems with constraints of bot-
tleneck type in [22] or [11] and to the more recent exposition by Dmitruk [8]. A first
extension to an optimal control problem for the heat equation was presented in [19].

More recently, associated results were shown for more general parabolic equations
in Bergounioux and Tröltzsch [4] and Arada and Raymond [3], and for elliptic prob-
lems in Tröltzsch [21] and Rösch and Tröltzsch [17]. In all of these papers on the
control of PDEs, it was shown that Lagrange multipliers exist in certain Lp-spaces.
Different techniques were applied to prove these results. While [4], [17], and [21] used
duality theorems, in [3] it was shown that multipliers in (L∞)∗ are more regular by ex-
ploiting the smoothing property of the state equation and using some compactification
approach for parabolic equations.

Here, assuming a natural regularity condition, we show the regularity of Lagrange
multipliers by the Yosida–Hewitt theorem [23], following an idea explained for ordi-
nary differential equations by Dmitruk [8]. This approach is close to the one suggested
by Arada and Raymond but still simplifies and unifies the proof, since compactifica-
tion arguments are not needed. We also deal with the elliptic case that needs slightly
different techniques than the parabolic problems discussed in [3].

Moreover, our paper differs from our former ones by deriving higher regularity of
multipliers and optimal controls up to Lipschitz continuity. We extend ideas presented
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by Rösch and Wachsmuth [18] for a simplified class of elliptic problems. This is the
main contribution of this paper.

2. Elliptic optimal control problem and main assumptions. We consider
first the following elliptic optimal control problem:

(2.1) minJ(y, u) =

∫
Ω

ϕ(x, y, u) dx +

∫
Γ

ψ(x, y) ds

subject to

(2.2)

Ay + d(x, y) = u in Ω,

∂y

∂νA
+ b(x, y) = 0 on Γ

and to

(2.3) gi(x, y(x), u(x)) ≤ 0 a.e. on Ω, i = 1, . . . , k.

The inequalities (2.3) are our mixed control-state constraints, which are the main
issue of this paper.

Our theory is based upon the following assumptions:
(A1) Ω ⊂ R

N , N ∈ N, is a bounded domain with Lipschitz boundary in the sense
of Nečas [13].

(A2) A is a uniformly elliptic differential operator of the form

Ay(x) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
y(x)

)
+ c0(x)y(x)

with coefficients aij ∈ C0,1(Ω̄), i, j = 1, . . . , N , that satisfy the condition of
uniform ellipticity

N∑
i,j=1

aij(x)ξiξj ≥ m0|ξ|2 ∀x ∈ Ω̄, ∀ξ ∈ R
N

with some m0 > 0. Moreover, c0 belongs to L∞(Ω) and satisfies c0 ≥ 0 a.e.
on Ω and c0(x) > 0 on a set of positive measure.

(A3) ϕ = ϕ(x, y, u) : Ω × R
2 → R and gi = gi(x, y, u) : Ω × R

2 → R are given
functions enjoying the following properties:
For all fixed y, u, they are Lipschitz with respect to x ∈ Ω. They are partially
differentiable with respect to y and u for all fixed x ∈ Ω̄. The derivatives are
uniformly Lipschitz on bounded sets, i.e.,
For all M > 0 there exists L(M) > 0 such that

(2.4)

|ϕ(x, y1, u1) − ϕ(x, y2, u2)| +
∣∣∣∣∂ϕ∂y (x, y1, u1) −

∂ϕ

∂y
(x, y2, u2)

∣∣∣∣
+

∣∣∣∣∂ϕ∂u (x, y1, u1) −
∂ϕ

∂u
(x, y2, u2)

∣∣∣∣
≤ L(M)(|y1 − y2| + |u1 − u2|),

(2.5)

|gi(x, y1, u1) − gi(x, y2, u2)| +
∣∣∣∣∂gi∂y

(x, y1, u1) −
∂gi
∂y

(x, y2, u2)

∣∣∣∣
+

∣∣∣∣∂gi∂u
(x, y1, u1) −

∂gi
∂u

(x, y2, u2)

∣∣∣∣
≤ L(M)(|y1 − y2| + |u1 − u2|)
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hold for a.e. x ∈ Ω, for all real yj , uj with max(|yj |, |uj |) ≤ M , j = 1, 2, and
for i = 1, . . . , k. Moreover, we require

|ϕ(x, 0, 0)| +
∣∣∣∣∂ϕ∂y (x, 0, 0)

∣∣∣∣ +

∣∣∣∣∂ϕ∂u (x, 0, 0)

∣∣∣∣ ≤ C a.e. on Ω,

|gi(x, 0, 0)| +
∣∣∣∣∂gi∂y

(x, 0, 0)

∣∣∣∣ +

∣∣∣∣∂gi∂u
(x, 0, 0)

∣∣∣∣ ≤ C a.e. on Ω.

(A4) The functions ψ = ψ(x, y) : Γ × R → R, d = d(x, y) : Ω × R → R, and
b = b(x, y) : Γ × R → R are measurable with respect to x ∈ Γ or x ∈ Ω,
respectively, for all fixed y ∈ R, and differentiable with respect to y for all x.
For y = 0, they are bounded with respect to x; i.e.,

‖ψ(·, 0)‖L∞(Ω) +

∥∥∥∥∂ψ∂y (·, 0)

∥∥∥∥
L∞(Ω)

+ ‖b(·, 0)‖L∞(Γ) +

∥∥∥∥ ∂b∂y (·, 0)

∥∥∥∥
L∞(Γ)

+‖d(·, 0)‖L∞(Ω) +

∥∥∥∥∂d∂y (·, 0)

∥∥∥∥
L∞(Ω)

≤ C.

Moreover, they are uniformly Lipschitz on bounded sets; i.e., ψ, b, d, and
their derivatives ∂ψ/∂y, ∂b/∂y, ∂d/∂y satisfy (2.4) or (2.5) with respect to y
for almost all x ∈ Ω or x ∈ Γ, respectively.

(A5) It holds that

∂d

∂y
(x, y) ≥ 0 ∀y ∈ R, a.e. on Ω,

∂b

∂y
(x, y) ≥ 0 ∀y ∈ R, a.e. on Γ.

We should mention that the Lipschitz continuity with respect to x of ϕ and gi, i =
1, . . . , k, is needed only for the results of sections 5 and 6. To have
Lagrange multipliers in Lp-spaces, measurability and boundedness with respect to
x are sufficient.

3. L1-regularity of Lagrange multipliers. We consider the controls in the
space U = L∞(Ω) and the states y in Y = H1(Ω) ∩ C(Ω̄). Then, thanks to the
assumptions (A1), (A2), and (A4), for all u ∈ U a unique state yu ∈ Y exists that
solves (2.2) in the weak sense. We refer the reader to Alibert and Raymond [2], who
consider the nonlinear system (2.2) including distributed and boundary control and
certain unbounded coefficients. Due to their more general setting, their assumptions
differ slightly from ours. We also mention Casas [5], who presented a similar technique
for the case of boundary control under assumptions that are analogous to ours. The
boundedness of the solution y was proven in [2], [5] by the Stampacchia truncation
method. For (2.2) and our assumptions, this method can be found in [21, Thm. 7.3].

The control-to-state mapping G : u 
→ y is continuously Fréchet differentiable
from U to Y ; cf. again the technique of [2], [5] that can be directly transferred to our
problem.

We assume now once and for all that ū ∈ U is a locally optimal control with
associated state ȳ = G(ū). Local optimality means that there is an ε > 0 such that

J(y, u) ≥ J(ȳ, ū)

is satisfied for all (y, u) that satisfy (2.2)–(2.3) and ‖u− ū‖L∞(Ω) < ε.
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We do not discuss the existence of global solutions of the optimal control problem.
If the constraints (2.3) include, in particular, α ≤ u ≤ β with α, β ∈ L∞(Ω), the
admissible set is nonempty, and suitable assumptions on the behavior of ϕ and gi
with respect to u are required, then the existence of a global solution can be shown.
This is, however, not the issue of this paper.

We begin our analysis with the existence of Lagrange multipliers in (L∞(Ω))∗,
the dual space to L∞(Ω). The elements of (L∞(Ω))∗ can be represented by finitely
additive set functions on Ω̄ that are also called finitely additive measures. We shall
use the latter terminology.

To derive necessary optimality conditions, we need a standard constraint qualifi-
cation and assume the following linearized Slater condition:

(A6) There exist û ∈ L∞(Ω) and σ > 0 such that

(3.1)
gi(x, ȳ(x), ū(x)) +

∂gi
∂y

(x, ȳ(x), ū(x))ŷ(x)

+
∂gi
∂u

(x, ȳ(x), ū(x))û(x) ≤ −σ a.e. in Ω,

where ŷ ∈ Y is the solution of the linearized equation

(3.2)

Aŷ +
∂d

∂y
(x, ȳ(x))ŷ = û in Ω

∂ŷ

∂νA
+

∂b

∂y
(x, ȳ(x))ŷ = 0 on Γ.

Remark 3.1. It holds that ŷ = G′(ū)û.
Invoking this assumption, the following first-order necessary conditions of Karush–

Kuhn–Tucker type can be shown.
Theorem 3.2. Suppose that ū is locally optimal for (2.1)–(2.3) with associated

state ȳ = G(ū). If the assumptions (A1)–(A6) are satisfied, then there exist non-
negative finitely additive measures μi ∈ L∞(Ω)∗, i = 1, . . . , k, and an adjoint state
p ∈ W 1,s(Ω) for all 1 ≤ s < N

N−1 , such that the conditions

∫
Ω

(
∂ϕ

∂u
(x, ȳ, ū) + p

)
h dx +

∫
Ω

k∑
i=1

∂gi
∂u

(x, ȳ, ū)h dμi = 0 ∀h ∈ L∞(Ω),(3.3) ∫
Ω

gi(x, ȳ, ū) dμi = 0, i = 1, . . . , k,(3.4)

and the adjoint equation

(3.5)

A∗p +
∂d

∂y
(x, ȳ)p =

∂ϕ

∂y
(x, ȳ) +

k∑
i=1

(
∂gi
∂y

(x, ȳ, ū)∗μi

) ∣∣∣∣
Ω

,

∂p

∂νA∗
+

∂b

∂y
(x, ȳ)p =

∂ψ

∂y
(x, ȳ) +

k∑
i=1

(
∂gi
∂y

(x, ȳ, ū)∗μi

) ∣∣∣∣
Γ

are satisfied.
The proof of the theorem can be performed analogously to Alibert and Raymond

[2] or Casas [5], where also the definition and the proof of existence and uniqueness of
a weak solution of (3.5) are presented. Notice that the multiplication operators y 
→
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∂gi
∂y (x, ȳ, ū) y are continuous from C(Ω̄) to L∞(Ω). Therefore, the adjoint mappings

μi 
→ ∂gi
∂y (x, ȳ, ū)∗ μi are continuous from L∞(Ω)∗ to C(Ω̄)∗ so that their images are

regular Borel measures, and the restrictions of them to Ω and Γ are well defined.
As linear continuous functionals on L∞(Ω), the finitely additive measures μi

must vanish on sets of Lebesgue measure zero. Thanks to Theorem 1.24 of Yosida
and Hewitt [23], each μ ∈ L∞(Ω)∗ can be uniquely written in the form

μ = μc + μp,

where μc is countably additive and μp is purely finitely additive. Moreover, if μ ≥ 0,
then μc and μp are nonnegative, too [23, Thm. 1.23].

Let us briefly comment on the associated definitions. Countable additivity is equiv-
alent to the following property: For every sequence {En}∞n=1 of Lebesgue-measurable
sets with Ω̄ ⊃ E1 ⊃ E2 . . . ⊃ En . . . and ∩∞

n=1En = ∅, it holds that

(3.6) lim
n→∞

μc(En) = 0.

Pure finite additivity is defined as follows [23, Def. 1.13]: A nonnegative finitely
additive measure μ is said to be purely finitely additive if every countably additive
measure λ with 0 ≤ λ ≤ μ is identically zero. An arbitrary finitely additive measure is
purely finitely additive if its nonnegative and its nonpositive parts are purely finitely
additive.

Every nonnegative purely finitely additive measure μp can be characterized by the
following behavior [23, Thm. 1.22]: If λ is nonnegative and countably additive, then
there exists a decreasing sequence Ω̄ ⊃ E1 ⊃ E2 . . . ⊃ En . . . of Lebesgue-measurable
sets such that limn→∞ λ(En) = 0 and μp(En) = μp(Ω) for all n. We refer the reader
also to Ioffe and Tikhomirov [10, Chap. 8.3.3].

We shall apply this theorem with the Lebesgue measure λ. This means that
λ(En) = meas(En) → 0, n → ∞, but

(3.7)

∫
En

dμp = ‖μp‖L∞(Ω)∗ ∀n.

Our next goal is to show that, under an additional constraint qualification, the singular
(i.e., purely finitely additive) parts of all Lagrange multipliers vanish. In this case, we
will have at least μi ∈ L1(Ω) for all i ∈ {1, . . . , k}. This property is a consequence of
the Radon–Nikodym theorem, since the measures vanish on sets of Lebesgue measure
zero.

The following assumption is needed for this purpose.
(A7) Define, for δ > 0, the δ-active sets

M δ
i := {x ∈ Ω : gi(x, ȳ(x), ū(x)) ≥ −δ}.

Assume that there exist δ > 0 and ũ ∈ L∞(Ω) such that there holds

(3.8)
∂gi
∂u

(x, ȳ(x), ū(x))ũ(x) ≥ 1 a.e. on M δ
i

for all i ∈ {1, . . . , k}.
We shall discuss the consequences of this assumption later. It is equivalent to a
“uniformly positive linear independence condition”; cf. Dmitruk [8]. For some types
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of constraints, this assumption is automatically satisfied. In other cases, the optimal
solution must fulfill a separation condition.

Theorem 3.3. Suppose that ū ∈ U , ȳ ∈ Y , and μi ∈ L∞(Ω)∗, μi ≥ 0, i ∈
{1, . . . , k}, satisfy the first-order necessary optimality conditions of Theorem 3.2, and
assume that (A7) is satisfied. Then the purely finitely additive parts of all μi are
vanishing so that all μi, i = 1, . . . , k, can be represented by densities in L1(Ω).

Proof. The proof follows the one given by Dmitruk [8] for the case of ordinary
differential equations. We mention first that∫

Ω\Mδ
i

dμi = 0

holds true for all i ∈ {1, . . . , k}. Otherwise the complementarity condition (3.4) cannot
be satisfied, since gi < −δ on Ω \M δ

i .

Consider, for arbitrary j ∈ {1, . . . , k}, the singular part μp,j of μj . Thanks to
Theorem 1.22 of Yosida and Hewitt, there exists a decreasing sequence {En}∞n=1 with
the properties mentioned above such that

(3.9)

∫
En

dμp,j =

∫
Ω

dμp,j ∀n.

Without limitation of generality, we can assume En ⊂ M δ
j . We define now

hn = χEn ũ,

where ũ is taken from (3.8) and χEn
denotes the characteristic function of En. In-

serting hn into the gradient equation (3.3), we find that

−
∫

Ω

(
∂ϕ

∂u
(x, ȳ, ū) + p

)
hn dx =

∫
Ω

k∑
i=1

∂gi
∂u

(x, ȳ, ū)hn dμi

=

k∑
i=1

∫
Mδ

i

∂gi
∂u

(x, ȳ, ū) ũ χEn dμi ≥
∫
Ms

j

∂gi
∂u

(x, ȳ, ū) ũ χEn dμj

≥
∫
Mδ

j

∂gj
∂u

(x, ȳ, ū) ũ χEn dμp,j ≥
∫
Mδ

j

χEn dμp,j

=

∫
En

χEn
dμp,j =

∫
Ω

χEn
dμp,j = ‖μp,j‖L∞(Ω)∗ .

The last inequality was obtained by (3.8). In view of (3.6), the left-hand side
tends to zero as n → ∞. Therefore, ‖μp,j‖L∞(Ω)∗ = 0.

Remark 3.4. Thanks to the regularity μi ∈ L1(Ω), the adjoint equation admits
the simpler form

A∗p +
∂d

∂y
(x, ȳ)p =

∂ϕ

∂y
(x, ȳ) +

k∑
i=1

∂gi
∂y

(x, ȳ, ū)μi,(3.10)

∂p

∂νA∗
+

∂b

∂y
(x, ȳ)p =

∂ψ

∂y
(x, ȳ).
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Moreover, the optimality condition (3.3) and the complementarity condition (3.4)
read now

∂ϕ

∂u
(x, ȳ, ū) + p +

k∑
i=1

∂gi
∂u

(x, ȳ, ū)μi = 0 a.e. in Ω,(3.11) ∫
Ω

gi(x, ȳ, ū)μi(x) dx = 0 ∀i ∈ {1, . . . , k}.(3.12)

4. Some examples of constraints. Next, we discuss the regularity condition
(3.8) for some examples that might be of interest in the applications.

Example 1 (control constraints). Consider the constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. on Ω.

We define

g1(x, y, u) = u− ub(x),

g2(x, y, u) = ua(x) − u.

Assume ub(x)−ua(x) ≥ α > 0 a.e. on Ω, and take δ = α/3. Then M1(δ)∩M2(δ) = ∅.
Therefore, we can define

ũ(x) =

⎧⎨⎩
1 on M δ

1 ,
−1 on M δ

2 ,
0 else.

Then

∂g1

∂u
ũ = 1 on M δ

1 ,

∂g2

∂u
ũ = 1 on M δ

2 .

In this case, the assumption (A7) is automatically satisfied. However, the existence of
regular Lagrange multipliers can here be obtained in an easier and even better way,
without assuming ub(x) − ua(x) ≥ α > 0, since

μ1(x) =

(
∂ϕ

∂u
(x) + p(x)

)+

,

μ2(x) =

(
∂ϕ

∂u
(x) + p(x)

)−

are Lagrange multipliers; see [20, Thm. 2.29, (2.58), or sect. 6.1, (6.8)].
Example 2 (pure mixed control-state constraints of bottleneck type). Consider

the constraint

ya(x) ≤ λu(x) + y(x) ≤ yb(x)

with λ �= 0 and assume again yb(x)−ya(x) ≥ α > 0 a.e. on Ω. We define g1(x, y, u) =
λu + y − yb(x), g2(x, y, u) = −λu− y + ya(x), and

ũ(x) =

⎧⎪⎪⎨⎪⎪⎩
1
λ on M δ

1 ,

− 1
λ on M δ

2 ,

0 else.
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Again, condition (3.8) is automatically satisfied. Also here, the regularity of Lagrange
multipliers can be obtained without assuming yb − ya ≥ α by a transformation to a
control constrained problem; cf. [12].

Example 3 (control constraints and unilateral mixed constraint). Let the following
constraints be given:

ua(x) ≤ u(x) ≤ ub(x),
λu(x) − y(x) ≤ yb(x),

with λ > 0. We define

g1(x, y, u) = u− ub(x),

g2(x, y, u) = ua(x) − u,

g3(x, y, u) = λu− y − yb(x)

and assume, for some δ > 0, the separation condition M δ
2 ∩ M δ

3 = ∅. Moreover, we
assume again ub(x) − ua(x) ≥ α > 0. Then, if δ is sufficiently small, M δ

1 ∩M δ
2 = ∅ is

automatically satisfied. We set

ũ(x) =

⎧⎪⎪⎨⎪⎪⎩
max(1/λ, 1) on M δ

1 ∪M δ
3 ,

−1 on M δ
2 ,

0 else.

Then (3.8) is satisfied. However, we had to assume a separation condition that de-
pends on the unknown solution (ū, ȳ). If we have, for example, ua(x) ≡ 0 and we
know from maximum principle arguments that u ≥ 0 ⇒ yu ≥ 0 a.e. on Ω, then
obviously yb(x) ≥ β > 0 yields y(x) + yb(x) ≥ β > 0. In this case, M δ

2 ∩ M δ
3 = ∅

is automatically satisfied; we have obtained a result of [17]. We should mention that
Arada and Raymond [3] also introduced a separation condition of this type.

Example 4 (equidirected mixed constraints). Consider the general constraints
(2.3) and assume that condition (5.2) below is satisfied. Here we can define

ũ(x) ≡ 1

m
∀x ∈ Ω,

and (3.8) is automatically satisfied.
Example 5 (bilateral control and mixed control-state constraints). For the follow-

ing constraints, a separation condition is needed again:

ua ≤ u ≤ ub,
ya ≤ u + y ≤ yb.

We define g1, g2, g3, and M δ
i , i = 1, 2, 3, analogously to Example 3. Additionally, we

introduce

g4(x, y, u) = ya(x) − u− y

and M δ
4 = {x ∈ Ω : ya(x) − ū(x) − ȳ(x) ≥ −δ}. We require, for some δ > 0,

(4.1) (M δ
2 ∪M δ

4 ) ∩ (M δ
1 ∪M δ

3 ) = ∅.

Then, by the same arguments as before, we see that (A7) is fulfilled. Again, we have
to assume (4.1), an additional separation condition.
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5. Higher regularity of local solutions. In this section we show how the
regularity μi ∈ L1(Ω) can be improved by bootstrapping arguments to finally obtain
Lipschitz regularity of ū. To this aim, we have to impose stronger conditions on ϕ
and on the gi:

(A8) The function ϕ possesses the second derivative ∂2ϕ/∂u2(x, y, u) on Ω̄ × R
2.

All functions gi, i = 1, . . . , k, are defined on D × R
2, where D ⊂ R

N is an
open set containing Ω̄. They satisfy (A3) on this extended set.
Moreover, there is a constant m > 0 such that the monotonicity properties

∂2ϕ

∂u2
(x, y, u) ≥ m ∀x ∈ Ω̄, ∀(y, u) ∈ R

2,(5.1)

∂gi
∂u

(x, y, u) ≥ m ∀x ∈ D, ∀(y, u) ∈ R
2(5.2)

are satisfied.
Remark 5.1. The extension of the gi from Ω̄ to a larger open set D is needed in

the proof of the next theorem. We apply the Robinson implicit function theorem in
an open covering of Ω̄ × [−M,M ]. In our examples, the dependence of the gi on x
comes with that of the functions ua, ub or ya, yb defining the bounds. The extension
of these functions to a neighborhood around Ω̄ should not cause difficulties.

We will also consider bilateral constraints of the form

(5.3) αi(x) ≤ γi(x, y(x), u(x)) ≤ βi(x), i = 1, . . . , l,

where the γi, i = 1, . . . , l, satisfy (A8) and αi ≤ βi are Lipschitz functions.
Lemma 5.2. Suppose that g1,. . . , gk satisfy assumption (A8). Then there exist

functions φi : Ω̄ × R
2 → R with the following properties: All φi(x, y) are Lipschitz

with respect to x for all y ∈ R,

(5.4) |φi(x, y1) − φi(x, y2)| ≤ L(M)|y1 − y2|

is satisfied for all x ∈ Ω̄ and all |yj | ≤ M , and there holds

(5.5) gi(x, y, u)

⎧⎨⎩
= 0 ⇔ u = φi(x, y),
< 0 ⇔ u < φi(x, y),
> 0 ⇔ u > φi(x, y).

Proof. Consider, for fixed i, the equation

(5.6) gi(x, y, u) = 0.

By (5.2) we have limu→±∞ gi(x, y, u) = ±∞, and hence, for each (x, y) ∈ D×R, (5.6)
has a unique solution u = φi(x, y). To show the Lipschitz property of φi, we invoke the
implicit function theorem of Robinson [16, Thm. 2.1]. It ensures that, for each pair
(x0, y0) ∈ D×R and each ε > 0, there is an (open) neighborhood Nε(x0, y0) ⊂ D×R

such that

(5.7) |φi(x, y) − φi(ξ, η)| ≤ (λ + ε)|gi(x, y, φi(x, y)) − gi(ξ, η, φi(x, y))|

holds for all (x, y) and (ξ, η) in Nε(x0, y0), where λ = 1/m with m defined by (5.2).
The collection of all neighborhoods Nε(x0, y0), (x0, y0) ∈ D × [−M,M ], defines

an open covering of the compact set Ω̄× [−M,M ]. Selecting a finite covering, an easy
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application of the triangle inequality shows that (5.4) holds everywhere in Ω̄×R with
a suitable constant L(M).

In view of the strong monotonicity of g with respect to u for all fixed (x, y), the
reader may now readily verify the relations (5.5).

Lemma 5.3. Assume that the optimality system (3.10)–(3.12) is fulfilled with
Lagrange multipliers μi ∈ L1(Ω). If (A8) is satisfied, then the Lagrange multipliers
μi satisfy a.e. on Ω the equation
(5.8)

k∑
i=1

∂gi
∂u

(x, ȳ(x), ū(x))μi(x) = max

(
0,−

(
∂ϕ

∂u

(
x, ȳ(x), min

i=1,...,k
φi(x, ȳ(x))) + p(x)

))
.

Proof. We extend an idea introduced in [18] and consider two cases for x ∈ Ω.

(i) x ∈ M+ = {x ∈ Ω :
∑k

i=1
∂gi
∂u (x, ȳ(x), ū(x))μi(x) > 0}.

Assumption (A8) ensures in particular that ∂gi/∂u ≥ 0 so that, for each x ∈ M+,
at least one multiplier μi(x) must be positive. In view of the complementary slackness
condition (3.12), a.e. in this set, at least one inequality constraint is active. Therefore,
in view of (5.5), we have

(5.9) ū(x) = min
i

φi(x, ȳ(x)) a.e. on M+.

Moreover, from
∑k

i=1
∂gi
∂u (x, ȳ(x), ū(x))μi(x) > 0 and the gradient equation (3.11) we

deduce

∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x) < 0 a.e. on M+.

Inserting the expression (5.9) for ū in this inequality, it follows that

0 < −
(
∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))) + p(x)

)
a.e. on M+.

Therefore, again in view of (3.11), we obtain

k∑
i=1

∂gi
∂u

(x, ȳ(x), ū(x))μi(x) = max

(
0,−

(
∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))) + p(x)

))
,

since the left-hand side is positive.
(ii) x ∈ Ω \M+ = {x ∈ Ω :

∑k
i=1

∂gi
∂u (x, ȳ(x), ū(x))μi(x) = 0}.

Here, the gradient equation (3.11) shows

(5.10) −
(
∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x)

)
= 0.

Moreover, we have

ū(x) ≤ min
i

φi(x, ȳ(x)).

From the monotonicity condition (5.1), it follows that

∂ϕ

∂u
(x, ȳ(x), ū(x)) ≤ ∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))).
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Together with (5.10), this implies

−
(
∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))) + p(x)

)
≤ 0,

and hence

k∑
i=1

∂gi
∂u

(x, ȳ(x), ū(x))μi(x) = 0 = max

(
0,−

(
∂ϕ

∂u
(x, ȳ(x),min

i
φi(x, ȳ(x))) + p(x)

))
holds also a.e. in Ω \M+, too.

Theorem 5.4. Suppose that (ȳ, ū) ∈ H1(Ω) ∩ C(Ω̄) × L∞(Ω) satisfy, together
with p ∈ W 1,s(Ω), 1 ≤ s < N

N−1 , and μ1, . . . , μk ∈ L1(Ω), the optimality conditions
of Theorem 3.2. If the assumptions (A3) and (A8) are satisfied, then all multipliers
μi, i = 1, . . . , k, are bounded and measurable functions. If Γ is of class C1,1, then ū
and

∑k
i=1

∂gi
∂u (x, ȳ, ū)μi are Lipschitz functions on Ω̄.

Proof. We show this result by a bootstrapping argument. At the beginning, we
know that ū ∈ L∞(Ω) and ȳ ∈ C(Ω̄).

Thanks to p ∈ W 1,s(Ω), by Sobolev embedding theorems there is a σ > 0 such
that p ∈ Ls1(Ω) with s1 = 1 + σ (see also our arguments at the end of the proof).
From the gradient equation (3.11), we deduce

(5.11)

k∑
i=1

∂gi
∂u

(x, ȳ, ū)μi = −∂ϕ

∂u
(x, ȳ, ū) − p ∈ Ls1(Ω).

Because of (5.2) and by the nonnegativity of the multipliers μi, this implies μi ∈
Ls1(Ω) for all i ∈ {1, . . . , k} and hence

k∑
i=1

∂gi
∂y

(x, ȳ, ū)μi ∈ Ls1(Ω).

Inserting this into (3.10), the right-hand side is seen to belong to Ls1(Ω). Therefore,

p ∈ W 1,s1(Ω) ↪→ Ls2(Ω), where s2 = s1 + σ and σ > 0.

We explain below why the same σ can be taken. By (5.11), we find

k∑
i=1

∂gi
∂u

(x, ȳ, ū)μi ∈ Ls2(Ω).

Repeating this bootstrapping method, we get numbers si with si+1 ≥ si + σ. We can
take the same σ > 0 for all i for the following reason: If p ∈ W 1,s(Ω), then p ∈ Lr(Ω)
for all r given by

(5.12)
1

r
=

1

s
− 1

N
,

provided that 1 < N
s ; cf. Adams [1]. Let us assume 1 < N

s . Then (5.12) implies

r − s =
s2

N − s
>

s2

N
> 1/N
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by s ≥ 1, and we are justified to take σ = 1/N .
After finitely many steps, in any case we arrive at a situation, where N/si+1 < 1

while N/si > 1 (notice that we have some freedom in the choice of σ to avoid the
equality sign in both the equations).

In this case, it holds that p ∈ W 1,si+1(Ω) ↪→ C(Ω̄). This implies

μi ∈ L∞(Ω) ∀i ∈ {1, . . . , k}.

Now we need the higher smoothness C1,1 of Γ. Exploiting again (3.10), we obtain
p ∈ W 2,s(Ω) for all s < ∞. This regularity result follows from Grisvard [9]. Therefore,
p is continuously differentiable (Adams [1]) and hence Lipschitz.

Now, we invoke formula (5.8). Since ū is bounded and measurable, ȳ is also
Lipschitz. The same holds true for the function

min
i∈{1,...,k}

φi(x, ȳ(x)),

since all φi are Lipschitz. Thanks to this, the right-hand side of (5.8) is Lipschitz so
that the left-hand side must have this property, too.

From the gradient equation (5.11), we now obtain

(5.13)
∂ϕ

∂u
(·, ȳ, ū) ∈ C0,1(Ω̄).

Next we make use of the assumption (A8) and (5.1), i.e., ∂2ϕ
∂u2 ≥ m > 0. Invoking the

implicit function theorem again, we arrive at the Lipschitz continuity of ū.
Bilateral nonlinear mixed constraints. Finally, we consider the constraints

(5.3), where we need an additional separation assumption to prove the Lipschitz
continuity of ū. We assume the following.

(A9) The functions γi satisfy Assumption (A8) on the gi. Moreover ϕ satisfies
(A8), too, and there is a δ > 0 such that the sets

Mα
i,δ := {x : γi(x, ū(x), ȳ(x)) ≤ αi(x) + δ},

Mβ
i,δ := {x : βi(x) − δ ≤ γi(x, ū(x), ȳ(x))}

satisfy the condition

k⋃
i=1

Mα
i,δ ∩

k⋃
i=1

Mβ
i,δ = ∅.

Theorem 5.5. Consider the optimal control problem (2.1)–(2.3) for constraints
of the form (5.3), i.e., for

gi =

{
γi − βi, i ∈ {1, . . . , l},
αi−l − γi−l, i ∈ {l + 1, . . . , 2l}.

Suppose that ȳ ∈ H1(Ω)∩C(Ω̄) and ū ∈ L∞(Ω) satisfy together the first-order neces-
sary optimality conditions. Assume that (A9) is satisfied and that Γ is of class C1,1.
Then the functions

l∑
i=1

∂gi
∂u

(x, ȳ, ū)μi,

2l∑
i=l+1

∂gi
∂u

(x, ȳ, ū)μi
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and the optimal control ū are Lipschitz.
Proof. Let us recall first that we have assumed ∂γi/∂u ≥ m for all i ∈ {1, . . . , l}.

Therefore, in view of the definition of the gi, it holds that

∂gi
∂u

≥ m if 1 ≤ i ≤ l,
∂gi
∂u

≤ −m if l + 1 ≤ i ≤ 2l.

Now we proceed similarly to the proof of Theorem 5.4 and distinguish four cases with
respect to x ∈ Ω:

l∑
i=1

∂gi
∂u

μi > 0,

l∑
i=1

∂gi
∂u

μi = 0,

2l∑
i=l+1

∂gi
∂u

μi < 0,

2l∑
i=l+1

∂gi
∂u

μi = 0.

Here and in what follows we suppress the arguments (x, ȳ, ū) in ∂gi/∂u for conve-
nience. The first two cases concern the upper bounds; hence they are of the type
considered in Theorem 5.4. Let us therefore concentrate on the remaining two cases.

(i)
∑2l

i=l+1(
∂gi
∂u μi)(x) < 0. At least one of the multipliers μi, i ∈ {l + 1, . . . , 2l},

must be positive; thus one of the associated lower constraints is active. Hence, by the
separation assumption (A9), no one of the upper constraints can be almost active.
This implies that all multipliers μi with i ∈ {1, . . . , l} must vanish a.e. on this set,
i.e.,

l∑
i=1

(
∂gi
∂u

μi

)
(x) = 0.

Invoking the gradient equation (3.3), we find

0 < −
2l∑

i=l+1

(
∂gi
∂u

μi

)
(x) =

∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x)

and hence

−
2l∑

i=l+1

(
∂gi
∂u

μi

)
(x) = max

(
0,

∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x)

)
.

Moreover, we have in this case that

ū(x) = max
i∈{1,...,l}

φα
i (x, ȳ(x))

with Lipschitz functions φα
i , which are associated to the lower bounds and defined by

gi(x, y, u) = αi(x) ⇔ u = φα
i (x, y).

This follows by the arguments of Lemma 5.2. Consequently,

−
2l∑

i=l+1

(
∂gi
∂u

μi

)
(x) = max

(
0,

∂ϕ

∂u
(x, ȳ(x), max

i∈{1,...,l}
φα
i (x, ȳ(x))) + p(x)

)
holds on this set.
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(ii)
∑2l

i=l+1(
∂gi
∂u μi)(x) = 0. The gradient equation implies then

∂ϕ

∂u
+ p = −

l∑
i=1

(
∂gi
∂u

μi

)
(x) ≤ 0

and

ū(x) ≥ max
i∈{1,...,l}

φα
i (x, ȳ(x)).

In view of the monotonicity property (5.1), we obtain

∂ϕ

∂u
(x, ȳ(x), max

i∈{1,...,l}
φα
i (x, ȳ(x))) + p(x) ≤ ∂ϕ

∂u
(x, ȳ(x), ū(x)) + p(x) ≤ 0.

Obviously, it therefore holds that
(5.14)

0 = −
2l∑

i=l+1

(
∂gi
∂u

μi

)
(x) = max

(
0,

∂ϕ

∂u
(x, ȳ(x), max

i∈{1,...,l}
φα
i (x, ȳ(x))) + p(x)

)
,

so that (5.14) is satisfied a.e. on Ω. Invoking the same bootstrapping arguments as
in the proof of Theorem 5.4, we deduce the desired Lipschitz properties.

6. The parabolic case. It is fairly obvious that the method of the preceding
sections can be extended to problems with parabolic state equation. There are some
differences in the regularity results of the equation, but the main ideas are analogous.
Here, we briefly sketch the arguments to show Hölder regularity of the optimal control.

In [3], the L1-regularity of Lagrange multipliers has already been investigated for
parabolic equations. Therefore, we prove Hölder continuity on the assumption that
the Lagrange multipliers belong to L1. In [3], sufficient conditions can be found that
ensure this property.

We consider the following parabolic counterpart to the elliptic optimal control
problem (2.1)–(2.3):

(6.1) minJ(y, u) :=

∫
Ω

∫ T

0

ϕ(x, t, y, u) dxdt +

∫
Γ

∫ T

0

ψ(x, t, y) dsdt

subject to

(6.2)

∂y

∂t
+ Ay + d(x, t, y) = u in Q := Ω × (0, T ),

∂y

∂νA
+ b(x, t, y) = 0 in Σ := Γ × (0, T ),

y(·, 0) = y0(·) in Ω

and to

(6.3) gi(x, t, y(x, t), u(x, t)) ≤ 0 a.e. in Q, i = 1, . . . , k.

We rely on the following general assumptions:
(A10) The given data have to satisfy direct extensions of (A1)–(A5) to the parabolic

case that are obtained as follows: In (A1), we additionally assume that Γ is
of class C1,1. (A2) remains unchanged except that c0 is now a function of
L∞(Q) not restricted in sign. In (A3)–(A5), the sets Ω and Γ are replaced
by Q and Σ, respectively, and x̃ := (x, t) replaces x in these assumptions.
Moreover, we assume that y0 is Hölder continuous in Ω.
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In particular, d, b are monotone nondecreasing with respect to y and d(·, ·, 0), b(·, ·, 0)
belong to L∞(Q) and L∞(Σ), respectively.

Under these assumptions, for all u ∈ Lr(Q) with r > N/2 + 1, the parabolic
equation (6.2) has a unique solution y ∈ W (0, T ) ∩ C(Q̄); cf. Casas [6] or Raymond
and Zidani [15]. The space W (0, T ) is defined by

W (0, T ) =

{
y ∈ L2(0, T ;H1(Ω)) :

dy

dt
∈ L2(0, T ;H1(Ω)′)

}
.

For the remainder of this section, let ū ∈ L∞(Q) be (locally) optimal for (6.1)–
(6.3). We assume that nonnegative Lagrange multipliers μi ∈ L1(Q) and an adjoint
state p exist such that the following first-order necessary optimality conditions are
satisfied:

(6.4)

−∂p

∂t
+ A∗p +

∂d

∂y
(x, t, ȳ) p =

∂ϕ

∂y
(x, t, ȳ) +

k∑
i=1

∂gi
∂y

(x, t, ȳ, ū)μi in Q,

∂p

∂νA∗
+

∂b

∂y
(x, t, ȳ) p =

∂ψ

∂y
(x, t, ȳ) in Σ,

p(·, T ) = 0 in Ω,

∂ϕ

∂u
(x, t, ȳ, ū) + p +

k∑
i=1

∂gi
∂u

(x, t, ȳ, ū)μi = 0 a.e. in Q,(6.5) ∫∫
Q

gi(x, t, ȳ, ū)μi dxdt = 0 ∀i ∈ {1, . . . , k}.(6.6)

The adjoint state p is the weak solution of (6.4) and belongs to Lr̃(0, T,W 1,r(Ω)) for
all r̃ > 1, r > 1 satisfying

N

2
+

1

2
<

N

2r
+

1

r̃
;

cf. [14, Thm. 4.3]. Now we are going to show Hölder continuity of ū. To this end, we
additionally assume the following:
(A11) The function ϕ possesses the second-order derivative ∂2ϕ/∂u2(x, t, y, u) on

Q̄×R
2. All functions gi, i = 1, . . . , k, are defined on D×R

2, where D ⊂ R
N+1

is an open set containing Q̄. They satisfy (A3) on this extended set. There
is a constant m > 0 such that the monotonicity properties

∂2ϕ

∂u2
(x, t, y, u) ≥ m ∀(x, t) ∈ Q̄, ∀(y, u) ∈ R

2,(6.7)

∂gi
∂u

(x, t, y, u) ≥ m ∀(x, t) ∈ D, ∀(y, u) ∈ R
2(6.8)

are satisfied.
The assertions of the Lemmas 5.2 and 5.3 do not depend on the special structure

of the underlying PDE. Obviously, they can be directly transferred to the parabolic
case. Therefore, the following extension of (5.8) is satisfied a.e. in Q:
(6.9)

k∑
i=1

∂gi
∂u

(x, t, ȳ(x, t), ū(x, t))μi(x, t)

= max

(
0,−

(
∂ϕ

∂u

(
x, t, ȳ(x, t), min

i=1,...,k
φi(x, t, ȳ(x, t))

)
+ p(x, t)

))
.
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The functions φi are constructed again by the Robinson implicit function theorem
that ensures, in particular, an estimate of the type (5.7). Now, the functions gi in
this estimate are only locally Hölder continuous so that all φi(x, t, y) are locally Hölder
continuous: There is a constant λ ∈ (0, 1) and, for all M > 0, a constant H(M) > 0
depending on M such that

(6.10) |φi(x1, t1, y1) − φi(x2, t2, y2)| ≤ H(M)|(x1, t1, y1) − (x2, t2, y2)|λ

holds for all (xi, ti) ∈ Q̄ and for all yi ∈ [−M,M ].
Theorem 6.1. Suppose that (ȳ, ū) ∈ W (0, T ) ∩ C(Q̄) × L∞(Q) satisfy, together

with p ∈ Lr̃(0, T,W 1,r(Ω)) for all r̃ > 1, r > 1, and μ1, . . . , μk ∈ L1(Q), the optimality
conditions (6.4)–(6.6). If the assumptions (A10) and (A11) are satisfied, then all
multipliers μi, i = 1, . . . , k, belong to L∞(Q). Moreover, the optimal control ū and

the expression
∑k

i=1
∂gi
∂u (x, t, ȳ, ū)μi are Hölder continuous on Q̄.

Proof. We proceed by bootstrapping arguments following the proof of Theorem
5.4. By our assumptions, we know ū ∈ L∞(Q) and ȳ ∈ C(Q̄).

Consider now the adjoint equation (6.4). Thanks to Theorem 4.2, (i), in [14], the
right-hand sides of the adjoint equation in Ls(Q) are transformed into solutions in
Lα(Q) with α ≥ s, if

1

s

(
N

2
+ 1

)
<

1

α

(
N

2
+ 1

)
+ 1,

and hence the right-hand sides from Ls(Q) are transformed into Lα(Q) for all α ≥ 1
with

α <
s(N/2 + 1)

N/2 + 1 − s

provided that s < N/2 + 1. For s > N/2 + 1, the transformation is from Ls(Q) to
C(Q̄). The gain of smoothness α− s is

α− s =
s2

N/2 + 1 − s
− ε,

where ε > 0 can be taken arbitrarily small. Therefore, by s ≥ 1, at least the gain

α− s ≥ s2

N/2 + 1
≥ 1

N/2 + 1
=: σ

is obtained, and hence p ∈ Ls+σ(Q).
We start a bootstrapping procedure at s := 1. From the gradient equation (6.5),

we deduce

(6.11)
k∑

i=1

∂gi
∂u

(x, t, ȳ, ū)μi = −∂ϕ

∂u
(x, t, ȳ, ū) − p ∈ Ls+σ(Q).

Because of (6.8) and by the nonnegativity of the multipliers μi, this implies

μi ∈ Ls+σ(Q) ∀i ∈ {1, . . . , k}.

Inserting this into (6.4), the right-hand sides of the adjoint equation are seen to belong
to Ls+σ(Q). Therefore, we obtain by the same arguments as before

p ∈ Ls+2σ(Q).
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By (6.11) and the boundedness of the functions ∂gi/∂u(x, t, ȳ, ū), we find

k∑
i=1

∂gi
∂u

(x, t, ȳ, ū)μi ∈ Ls+2σ(Q).

Repeating this bootstrapping method, after finitely many steps, we arrive at the
situation that N/2 + 1 < 1 + (j + 1)σ while N/2 + 1 > 1 + jσ. In this case, it holds
that p ∈ C(Q̄), and (6.11) implies

μi ∈ L∞(Q) ∀i ∈ {1, . . . , k}.

We know that p is bounded on Q̄ and its terminal value is zero and hence Hölder
continuous on Ω̄. Therefore, Theorem 4 in Di Benedetto [7] yields Hölder continuity of
p. (For our case of variational boundary data, this theorem ensures Hölder continuity
of the solution on Ω̄ × [0, T − ε] for all ε > 0. Moreover, it states Hölder continuity
on Q̄ if the prescribed terminal data are Hölder.)

Now, we invoke formula (6.9). Since ȳ bounded and y0 is Hölder continuous, ȳ
exhibits this property, too. The same holds true for the function

min
i∈{1,...,k}

φi(x, t, ȳ(x, t)),

since, by (6.10), all φi are Hölder continuous. Thanks to this, the right-hand side of
(6.9) is Hölder continuous so that the left-hand side has this property, too.

From the gradient equation (6.11), we now obtain

(6.12)
∂ϕ

∂u
(·, ȳ, ū) ∈ C0,κ(Q̄)

with some κ ∈ (0, 1). Next we make use of the assumption (A11) and (6.7), i.e.,
∂2ϕ
∂u2 ≥ m > 0. Invoking the implicit function theorem again, we deduce the Hölder
continuity of ū.
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[21] F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-
state constraints, SIAM J. Optim., 15 (2005), pp. 616–634.

[22] W. F. Tyndall, A duality theorem for a class of continuous linear programming problems, J.
Soc. Indust. Appl. Math., 13 (1965), pp. 644–666.

[23] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952),
pp. 46–66.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 3, pp. 1116–1132

PATHWISE STOCHASTIC OPTIMAL CONTROL∗
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Abstract. This paper approaches optimal control problems for discrete-time controlled Markov
processes by representing the value of the problem in a dual Lagrangian form; the value is expressed
as an infimum over a family of Lagrangian martingales of an expectation of a pathwise supremum
of the objective adjusted by the Lagrangian martingale term. This representation opens up the
possibility of numerical methods based on Monte Carlo simulation, which may be advantageous in
high-dimensional problems or in problems with complicated constraints.
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1. Introduction. The title of this paper refers to this: we intend to show that
the solution of a stochastic optimal control problem can be characterized in terms of
a pathwise optimization. In simple terms, this means that we can repeatedly generate
sample paths, solving a deterministic optimization for each sample path separately,
to obtain an approximation to the solution of the problem.

This approach is in contrast to the more familiar method of trying to find the
value function of the problem, and the associated optimal control; the more familiar
approach requires consideration of all possible future evolutions of the process at each
time that a control choice is to be made. This method is well developed and generally
effective, but there are certainly problems (such as the optimal control of a diffusion
in high dimensions) where the approach is impractical.

The approach we follow is foreshadowed by various papers in the control litera-
ture, where the relationship between deterministic and stochastic optimal control is
explored. There is, for example, the paper of Davis and Burstein [4], where the theme
of optimal control of a diffusion process is considered. The tools applied, notably
the use of the stochastic flow of a “null” solution to the optimal control problem, are
strongly specific to that particular context, but the form of the solution, involving a
pathwise optimization of the original objective modified by a Lagrangian term, invites
extension. Other interesting papers around this theme are those of Rockafellar and
Wets [11] and Wets [13], and that of Back and Pliska [2], who present the maximiza-
tion of some concave path functional over a family of adapted processes in terms of
the maximization of the same functional modified by a linear (Lagrangian) functional
over the larger family of measurable processes. The linear functional is of course the
gradient of the objective at the optimum, in some suitable sense.

Contributions [11], [13], and [2] represent the Lagrangian form of the solution in
quite abstract terms. In contrast, the approach to be followed in this paper derives
simple and quite explicit representations which may be the basis for effective numer-
ical techniques. This approach does not require any convexity assumptions on the
objective, unlike [11], [13], [2], and the proofs are simple and completely elementary.
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Although our first result has the appearance of the “Lagrangian form” of the problem
studied in [11], [13], [2], the subsequent results do not.

The approach of this paper develops the recent result of Rogers [12], proved
independently by Haugh and Kogan [6], on Monte Carlo pricing of American options.1

This result states the following. Given an adapted process2 (Zt)0≤t≤T , the value Y ∗
0

at time 0 of the optimal stopping problem satisfies

Y ∗
0 ≡ sup

τ∈T
EZτ

= inf
M∈M0

E

[
sup

0≤t≤T
(Zt −Mt)

]
,(1)

where T is the family of stopping times, and M0 is the space of uniformly integrable
martingales started at 0. The importance of this result is that it gives a way to
find the value of an American option via Monte Carlo simulation; given the sample
path of Z − M , we simply stop at the best place without considering what might
be happening on any other path, and in particular without considering what the
value function might be at any time. The numerical methods presented in [12] are
crude but good enough to get upper and lower bounds in a number of interesting
examples which were different by about 0.5%–2%. Andersen and Broadie [1] present
a more systematic way to search out “good” martingales and achieve bounds that are
generally better. Jamshidian [7] proposes a “multiplicative” version of the result of
[12], [6].

Now the optimal stopping problem is a particularly simple class of optimal control
problems; could any variant of result (1) be used for more general stochastic control
problems? Passing to complete generality introduces a couple of major complications:
the first is that the space of possible controls is no longer a two-point set but can be
very large; and the second is that the choice of controls now affects the law of the
process, and there is no canonical choice. However, the main message of this paper
is that we can extend the dual methodology that worked so well for optimal stopping
problems; we present a number of different forms of the main idea. We present results
only in a discrete-time setting; there are doubtless continuous-time analogues, but we
prefer to present the main ideas in the technically simplest form. Our main focus is on
the development of Monte Carlo methodologies that use the main ideas of this paper
to solve optimal control problems. Existing techniques for solving Hamilton–Jacobi–
Bellman equations by PDE methods are reasonably satisfactory provided the problem
is not too involved, but it does not take much imagination to come up with examples
that are so complicated that only a simulation methodology could possibly work.
The different forms of the main result that we derive suggest different techniques
for approaching the problem of Monte Carlo approximation of the solution. There
are also links to the “occupation measure” approach to optimal control of a Markov
process (which Kurtz and Stockbridge [8] trace back to Manne [10]); this we discuss
in an appendix.

2. The problem and its solution. We shall consider the optimal control
of a discrete-time Markov process with a finite time horizon T . The Markov pro-
cess X takes values in some measurable space (X ,G), and the control process a ≡

1See Davis and Karatzas [5] for a weaker partial result.
2The process is also required to satisfy a mild integrability condition.
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(a0, a1, . . . , aT−1) belongs to the class A of adapted processes with values in some
measurable space (A,B) of permitted controls. The objective is

(2) E

⎡⎣ T−1∑
j=0

fj(Xj , aj) + F (XT )

⎤⎦ ,

which is to be maximized over a ∈ A. For simplicity, we shall assume that the
functions fj and F are bounded measurable to avoid having to worry over finiteness
of objectives and other such inessential issues; this restriction is made solely for ease
of exposition. We shall suppose that there is some reference measure m over (X ,G)
such that for each a ∈ A the transition under control a has density p(x, x′; a) with
respect to m, and that there is some reference Markovian transition density p∗(x, x′).
We write

ϕ(x, x′; a) =
p(x, x′; a)

p∗(x, x′)

for the controlled transition density with respect to the reference Markovian transition
p∗. We write Vj(x) for the value function of the problem starting from state x at time
j:

(3) Vj(x) = sup
a∈A

E

⎡⎣ T−1∑
r=j

fr(Xr, ar) + F (XT )

∣∣∣∣ Xj = x

⎤⎦ .

We may view the effect of control as being an alteration of the law of the underlying
process X. If we do this, then by introducing the notation (0 ≤ k ≤ t < T )

(4) Λk,t(a) ≡
t−1∏
r=k

ϕ(Xr, Xr+1; ar), Λt(a) ≡ Λ0,t(a),

we may recast the optimization problem in the form

(5) V0(X0) = sup
a∈A

E∗

⎡⎣ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )

⎤⎦ ,

where the expectation is now taken with respect to the fixed reference probability P ∗.
We shall need the following notation (for (bounded) measurable g, hj : X �→ R):

Pg(x, a) = E∗[ g(X1)ϕ(x,X1; a) | X0 = x], (x ∈ X , a ∈ A),(6)

(Lh)j(x) = sup
a

[
fj(x, a) + Phj+1(x, a)

]
, (x ∈ X , j = 0, . . . , T − 1).(7)

The first notation is just the expectation of g(X1) if at time 0 we are in state x and
use action a; the second defines the one-step Bellman operator.

The first result is the following.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PATHWISE STOCHASTIC OPTIMAL CONTROL 1119

Theorem 1.

V0(X0) = min
(hj)∈H

E∗

[
sup
a

{
T−1∑
j=0

Λj(a){fj(Xj , aj) + E∗
j (ηj+1) − ηj+1}(8)

+ ΛT (a)F (XT )

}]

= min
(hj)∈H

⎡⎣ h0(X0) +

T−1∑
j=0

E∗ sup
a

Λj(a) { (Lh)j(Xj) − hj(Xj) }+

⎤⎦ ,(9)

where the random variables ηj are defined in terms of the functions (hj) via

(10) ηj+1 ≡ hj+1(Xj+1)ϕ(Xj , Xj+1; aj),

and the set H is the set of sequences (hj)
T
j=0 of (bounded) measurable functions from

X to X , satisfying the terminal condition

hT = F.

Remarks. (i) To get from the form (5) to (8), we add a martingale-difference
sequence E∗

j (ηj+1) − ηj+1 to the objective, then do a pathwise optimization over the
controls, take expectations, and finally minimize over our choice of the martingale
difference sequence. This is formally similar to what we did in (1); as there, the
martingale-difference sequence can be interpreted as a Lagrangian process to account
for the adapted constraint on the controls a. Once we have included this term in the
objective, we optimize pathwise, allowing ourselves to see the entire path and pick
controls in an anticipative way. Notice that because of the form (10) of ηj+1, the
conditional expectation appearing in (8) can as well be expressed as

(11) E∗
j (ηj+1) = Phj+1(Xj , aj).

(ii) As we shall see, the minimum is attained when we take hj = Vj . This fact is
of little practical value, however, since we cannot assume that we know V —it is, after
all, the solution we seek! Nevertheless, the result allows us to obtain upper bounds
on the value function.

(iii) The choice of reference measure must be expected to be critical in practice.
We cannot expect a simulation method to work well if most of the paths simulated
are quite unlike the paths of the optimally controlled process.

(iv) The form (8) is well suited to Monte Carlo, since it involves an expectation
of a pathwise supremum. The second form (9) can be evaluated with no backward
recursion. It can be reworked in the situation where

(12) ψ(x) ≡
∫

sup
a∈A

p(x, x′; a) m(dx) < ∞

for all x. This allows us to define a new transition density

p̄(x, x′) =
supa∈A p(x, x′; a)

ψ(x)
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with a corresponding path probability P̄ . Writing Ψj ≡
∏j−1

i=0 ψ(Xi), the final form
(9) becomes simply

(13) min
(hj)

⎡⎣ h0(X0) +

T−1∑
j=0

ĒΨj{ (Lh)j(Xj) − hj(Xj) }+

⎤⎦ .

This is of interest because it expresses the solution in terms of a fixed measure, which
we could call the maximum-likelihood measure, together with a reweighting factor
which is independent of any choice of controls.

Proof. The problem is to find

V0(X0) = sup
a∈A

v0(X0;a),

where of course we define

v0(X0;a) ≡ E∗

⎡⎣ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )

⎤⎦ .

Now fixing a ∈ A, for any P ∗-martingale M ,

v0(X0;a) ≡ E∗

⎡⎣ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )

⎤⎦

= E∗

⎡⎣ T−1∑
j=0

Λj(a){fj(Xj , aj) + ΔMj+1} + ΛT (a)F (XT )

⎤⎦ ,

since for a ∈ A the process Λ(a) is adapted. We shall specialize the martingale slightly
by expressing the martingale-differences as

(14) ΔMj+1 = E∗
j (ηj+1) − ηj+1, ηj+1 ≡ hj+1(Xj+1)ϕ(Xj , Xj+1; aj).

Notice that

(15) Λj(a)ηj+1 = Λj+1(a)hj+1(Xj+1);

this fact is used in the following reworking. The first inequality comes by relaxing the
constraint that a ∈ A:

V0(X0) = sup
a∈A

v0(X0;a)

= sup
a∈A

E∗

⎡⎣ T−1∑
j=0

Λj(a){fj(Xj , aj) + E∗
j (ηj+1) − ηj+1} + ΛT (a)F (XT )

⎤⎦

= sup
a∈A

E∗

⎡⎣ T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − ηj+1} + ΛT (a)F (XT )

⎤⎦
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≤ E∗

[
sup
a

{
T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − ηj+1}

+ ΛT (a)F (XT )

} ]

= E∗

[
sup
a

{
T−1∑
j=0

{
Λj(a){fj(Xj , aj) + Phj+1(Xj , aj)} − Λj+1(a)hj+1(Xj+1)

}

+ ΛT (a)F (XT )

} ]

= E∗

⎡⎣ sup
a

⎧⎨⎩h0(X0) +

T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − hj(Xj)}

⎫⎬⎭
⎤⎦

≤ E∗

⎡⎣ h0(X0) +

T−1∑
j=0

sup
a

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − hj(Xj)}

⎤⎦
= h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj) − hj(Xj) }
]

≤ h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj) − hj(Xj) }+

]
.

Taking the infimum over the functions (hj) ∈ H, we get

V0(X0) ≤ inf
(hj)∈H

E∗

[
sup
a

{
T−1∑
j=0

Λj(a){fj(Xj , aj) − ηj+1 + E∗
j (ηj+1)}

+ ΛT (a)F (XT )

} ]

≤ inf
(hj)∈H

⎡⎣ h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj) − hj(Xj) }
] ⎤⎦

≤ inf
(hj)∈H

⎡⎣ h0(X0) +

T−1∑
j=0

E∗
[

sup
a

Λj(a){ (Lh)j(Xj) − hj(Xj) }+

] ⎤⎦ .(16)

In fact, there is equality throughout. To see this, we use the Bellman equation for the
value function

Vj = (LV )j ,

so if we take hj = Vj , the sum in (16) vanishes and leaves only h0(X0) = V0(X0).
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Remark. The proof also shows that

(17) V0(x0) = min
(hj)∈H

⎡⎣ h0(X0) +

T−1∑
j=0

E∗ sup
a

Λj(a) { (Lh)j(Xj) − hj(Xj) }

⎤⎦ ,

which is a fact that we will refer back to later.
Theorem 1 gives us a way to approach a stochastic optimal control problem by

Monte Carlo methods, by simulating paths repeatedly and computing the expressions
inside the expectations (8). However, it is important that this optimization, over the
sequence a, can be done efficiently; otherwise the method will be too slow. Fortu-
nately, it turns out that the optimization required may be performed recursively, so
we have a sequence of optimization problems over the choice of only one aj at a time.

To explain this in more detail, let us focus on the form (8). We can rewrite the
expression inside the expectation on the right-hand side as

T−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − ηj+1} + ΛT (a)F (XT )

=

m−1∑
j=0

Λj(a){fj(Xj , aj) + Phj+1(Xj , aj) − ηj+1} + Λm(a)Zm,

where

Zm ≡
T−1∑
j=m

Λm,j(a){fj(Xj , aj) + Phj+1(Xj , aj) − ηj+1} + Λm,T (a)F (XT )

contains all dependence on am, . . . , aT−1. Recursively,

Zm = fm(Xm, am) + Phm+1(Xm, am) − ηm+1 + Λm,m+1(a)Zm+1

= fm(Xm, am) + Phm+1(Xm, am) + ϕ(Xm, Xm+1; am)
[
Zm+1 − hm+1(Xm+1)

]
.

Assuming we already have the maximizing values of am+1, . . . , aT−1, this is a maxi-
mization over am only!

3. Towards an algorithm. It is clear from the statement of Theorem 1 that
the choice of the Lagrangian functions (hj) is critical. The following little result offers
a possible approach to finding good choices.

Proposition 1. Suppose that

B ≡ sup
a,x,x′

ϕ(x, x′; a) < ∞,

and suppose we are given a sequence (V
(0)
j )Tj=0 of functions from X to X , with V

(0)
T =

F . Define recursively the functions (V
(n)
k )Tk=0 for n = 1, 2, . . . by

V
(n+1)
k (x) = E∗

[
sup
a

{
T−1∑
j=k

Λk,j(a){fj(Xj , aj) − V
(n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj)

+ PV
(n)
j+1(Xj , aj)} + Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]
(18)
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for x ∈ X , k = 0, . . . , T . Defining

Δ
(n)
k ≡ sup

x
|V (n)

k (x) − V
(n−1)
k (x)|,

k = 0, . . . , T , n ≥ 1, we have

(19) Δ
(n)
k ≤ (1 + B)

T∑
r=k+1

Δ(n−1)
r .

Remarks. The impact of Proposition 1 lies in the fact that V
(n)
T = F for all n, so

Δ
(n)
T = 0 for all n. Hence from (19) we conclude that (provided that the Δ

(n−1)
k are

finite)

Δ
(n)
k = 0 ∀n ≥ T − k.

Thus by applying the recursive construction of Proposition 1 we compute the true
value function by going backwards step by step from the end. Now in one sense all
we have done is re-express the familiar backward recursion of the Bellman equation
in a more complicated form, but there is nevertheless something gained; if we are
not able to compute the recursive recipe (18) exactly (as would be the case were we
using Monte Carlo in a high-dimensional problem, for example), we can still use the
approximate output of the nth stage to begin on the (n + 1)th.

Proof. Clearly,

−V
(n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj) ≤ −V

(n−1)
j+1 (Xj+1)ϕ(Xj , Xj+1; aj)

+ Δ
(n)
j+1ϕ(Xj , Xj+1; aj)

≤ −V
(n−1)
j+1 (Xj+1)ϕ(Xj , Xj+1; aj) + BΔ

(n)
j+1

and

PV
(n)
j+1(Xj , aj) ≤ PV

(n−1)
j+1 (Xj , aj) + Δ

(n)
j+1,

so using this in (18) gives us

V
(n+1)
k (x) ≡ E∗

[
sup
a

{
T−1∑
j=k

Λk,j(a){fj(Xj , aj) − V
(n)
j+1(Xj+1)ϕ(Xj , Xj+1; aj)

+ PV
(n)
j+1(Xj , aj)} + Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]

≤ E∗

[
sup
a

{
T−1∑
j=k

Λk,j(a){fj(Xj , aj) − V
(n−1)
j+1 (Xj+1)ϕ(Xj , Xj+1; aj)

+ PV
(n−1)
j+1 (Xj , aj)} + Λk,T (a)F (XT )

} ∣∣∣∣ Xk = x

]

+ (1 + B)
T∑

r=k+1

Δ(n)
r

= V
(n)
k (x) + (1 + B)

T∑
r=k+1

Δ(n)
r .
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Thus

V
(n+1)
k (x) − V

(n)
k (x) ≤ (1 + B)

T∑
r=k+1

Δ(n)
r ,

and a similar bound on the other side establishes the result.

Discussion. For the purposes of this discussion, we assume for ease of exposition
that fj = f for all j, and that there exists a sequence of functions ψk such that
the integral Pψk(x, a) is known in closed form. The reason for this is to permit
approximation of the value function as linear combinations of the ψk; this is similar
to what Longstaff and Schwartz [9] do.

When might we use this approach? When the steps of the dynamic pro-
gramming algorithm are numerically intensive as, for example, in a situation where
X is very high dimensional and the required integrations are difficult to do, or when
the pointwise optimization over a ∈ A is hard, then the simulation-based approach of
Theorem 1 may be of value. One advantage of this approach is that it seeks only the
solution starting from a particular x0, whereas the dynamic programming approach
is calculating the solution from all starting points.

The first thing to do will be to simulate some paths of the process.

What law should we use for the initial simulation? Probably we should
not use the reference Markovian law P ∗, as the paths of X under P ∗ can’t be expected
to look very much like the paths of the optimally controlled process, and so we will
get little relevant information about the objective if we just simulate from P ∗. This
problem becomes more acute the larger T is, so it may be worth simulating initially
only out to some T1 < T , and gradually increasing T1 as the algorithm proceeds. Since
the intermediate rewards fj could all be zero (or very small), we should not forget
to include a term F (XT1) in the objective, as we will ultimately be steering towards
this. The maximum likelihood measure P̄ is also not a very promising candidate, as
the law does not depend in any way on fj , F , but it suggests something we might try
instead. Since the objective is

v0(X0;a) ≡ E∗

⎡⎣ T−1∑
j=0

Λj(a)f(Xj , aj) + ΛT (a)F (XT )

⎤⎦

= E∗

⎡⎣ ΛT (a)

⎧⎨⎩
T−1∑
j=0

f(Xj , aj) + F (XT )

⎫⎬⎭
⎤⎦


 ε−1E∗

⎡⎣ ΛT (a) exp

⎧⎨⎩ε

T−1∑
j=0

f(Xj , aj) + εF (XT )

⎫⎬⎭− 1

⎤⎦

= ε−1E∗

⎡⎣ T−1∏
j=0

ϕ(Xj , Xj+1; aj)e
εf(Xj ,aj) .eεF (XT ) − 1

⎤⎦ ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PATHWISE STOCHASTIC OPTIMAL CONTROL 1125

this suggests we might modify the definition of P̄ by defining

ψ(x) ≡
∫

sup
a∈A

p(x, x′; a)eεf(x,a) m(dx),

p̄(x, x′) =
supa∈A p(x, x′; a)eεf(x,a)

ψ(x)
.

The effect of this is to lead the process in directions where the running reward is
higher. The choice of ε will need to be tuned a bit.

How do we move from one simulation to the next? We suppose that our

current estimate V
(n)
t of the value is expressed as a linear combination of the ψk:

V
(n)
t =

∑
k

c
(n)
t,k ψk,

which allows us to write expressions for PV n
t (x, a). Once we have simulated sample

paths (X
(i)
0 , X

(i)
1 , . . . , X

(i)
T ) for i = 1, . . . , N , we perform the pathwise optimization

in (8) and then have some estimate of the value at the points X
(i)
t at time t. We

now regress these values onto the functions ψk to get the next approximation to
the value. The next simulation should follow according to what we now think is an
approximation to the optimal path law, and one way to achieve this would be as
follows. Suppose that at time t on the simulated path we have reached x; first choose

x′ ∈ {X(i)
t , i = 1, . . . , N} at random, points “nearer” to x being chosen with higher

probability, and jump to that point, x′ = X
(q)
t , say. Then make the move to y at

time t + 1 according to the density p(x′, ·; a(q)
t ), where a

(q)
t was the control optimally

chosen at X
(q)
t .

4. Variants of the main result.

4.1. Least-squares characterization. The study [12] of Monte Carlo valu-
ation of American options showed that the optimal policy was in some sense a
“minimum-variance” policy, and there is an analogue in this setting too. Writing

Y (X;h) ≡ sup
a

⎧⎨⎩
T−1∑
j=0

Λj(a){fj(Xj , aj) − ηj+1 + E∗
j (ηj+1)} + ΛT (a)F (XT )

⎫⎬⎭
(where the ηj are as in (10)), Theorem 1 says that V (X0) = inf(hj) E

∗[Y (X;h) ].
Moreover, the infimum is attained by taking hj = Vj , and in that case the proof of
Theorem 1 shows that the random variable Y (X;V ) is almost surely constant. We
therefore have the following alternative characterization of the optimal solution.

Corollary 1. Assuming that V0 is nonnegative,3 the problem

inf
(hj)∈H

E∗[Y (X;h)2 ]

is solved by taking hj = Vj.

3Nonnegativity is needed only because we use the reasoning E∗Y (X;h)2 = var(Y (X;h)) +
E∗(Y (X;h))2 ≥ E∗(Y (X;h))2 ≥ (minE∗Y (X;h))2, and the final step is not true unless we have
E∗Y (X;h) ≥ 0 for all h.
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4.2. Multiplicative form of the main result. As in the case of Jamshidian’s
version of the optimal stopping result, we have a multiplicative form of Theorem 1.

Theorem 2.

(20) V0(X0) ≤ inf
η>0

E∗

⎡⎣ sup
a

⎧⎨⎩
T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗
j [ηj+1]

+ ΛT (a)F (XT )

⎫⎬⎭
⎤⎦ ,

where the random variables ηj are positive. Provided

(21) g∗j (Xj , Xj+1, aj) ≡ Vj(Xj) − Vj+1(Xj+1)ϕ(Xj , Xj+1; a) > 0,

result (20) can be strengthened into the statement

(22) V0(X0) = min
η>0

E∗

⎡⎣ sup
a

⎧⎨⎩
T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗
j [ηj+1]

+ ΛT (a)F (XT )

⎫⎬⎭
⎤⎦ ,

with the minimizing choice of ηj+1 being ηj+1 = g∗j (Xj , Xj+1, aj).
Remark. Condition (21) could be weakened to nonnegativity; we simply need to

change fj to fj − j and apply the theorem to this modified problem (whose value is
T (T − 1)/2 less than the value of the original problem).

Proof. The proof follows similarly to the proof of Theorem 1. Fixing a ∈ A, and
letting η be any strictly positive adapted process, we have

v0(X0;a) = E∗

⎡⎣ T−1∑
j=0

Λj(a)fj(Xj , aj) + ΛT (a)F (XT )

⎤⎦

= E∗

⎡⎣ T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗
j [ηj+1]

+ ΛT (a)F (XT )

⎤⎦ .

Just as before,

V0(X0) = sup
a∈A

v0(X0; a)

= sup
a∈A

E∗

⎡⎣ T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗
j [ηj+1]

+ ΛT (a)F (XT )

⎤⎦

≤ E∗

⎡⎣ sup
a

⎧⎨⎩
T−1∑
j=0

Λj(a) fj(Xj , aj)
ηj+1

E∗
j [ηj+1]

+ ΛT (a)F (XT )

⎫⎬⎭
⎤⎦ .

Taking the infimum over all choices of η leads to the first statement, (20).
For the second statement, (22), we again use the Bellman equation; positivity of

g∗j allows us to conclude that

fj(Xj , aj)

E∗
j [ηj+1]

ηj+1 ≤ ηj+1,

and once again the sum telescopes to V0(X0).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PATHWISE STOCHASTIC OPTIMAL CONTROL 1127

4.3. “Strong” form of the main result. In Theorems 1 and 2, the effect of
the controls is to modify the measure; if we simulate paths according to the measure
P ∗, then the controls applied do not affect the path of X—they simply affect the
value assigned to the path. It may sometimes be more helpful to be able to allow
the controls to act on the path directly, for which we need to formulate the problem
slightly differently.

We shall suppose that if some control sequence (aj)
T−1
j=0 is chosen, and the initial

value X0 for the process is given, then the trajectory X is determined by the relations

(23) Xj+1 = ξ(j,Xj , aj , εj+1), (j = 0, . . . , T − 1),

where the εj are independent random variables with common distribution, which we
could take to be uniform on [0, 1] if we wish. The function ξ expresses the Markovian
evolution; from a theoretical point of view it may be a little unusual to specify a
Markov process in this way, rather than through the transition kernel, but from the
point of view of simulating the paths of the process, this is exactly the way we think
of the controlled Markov process! The difference is exactly the difference between a
strong solution of a stochastic differential equation, constructed over a given driving
process, and a weak solution, constructed in law on some probability space (as in
Theorems 1 and 2).

Given a sequence (hj) of functions of the Markovian state variable, we define

Phj+1(x, a) = E hj+1(ξ(j, x, a, εj+1)).

Then we have the following result.
Theorem 3.

V0(X0) = min
(hj)∈H

E

[
sup
a

{
T−1∑
j=0

(fj(Xj , aj) − hj+1(Xj+1)(24)

+ Phj+1(Xj , aj)) + F (XT )

} ]
,

where the Xj and aj are related through (23). The minimum is attained by taking
hj = Vj.

Remarks. The Monte Carlo approach to evaluating the right-hand side of (24)
would generate a sequence of ε values and then find the optimal controls. In effect,
what this means is that we have to solve a deterministic optimization problem along
each path, where the choice of control will now affect where the path goes, and doing
this is arguably no easier than solving the Bellman equation for the original stochastic
control problem. However, in situations where this deterministic control problem can
be dealt with more simply, there may be value in this result.

Proof. This closely follows along the lines of the proof of Theorem 1; we leave
this to the reader to check.

4.4. Infinite horizon. So far we have been considering only finite-horizon prob-
lems, but it is at least as important to develop methods for infinite-horizon discounted
problems, as these will generate time-independent strategies that are easier to inter-
pret and implement. Throughout this section, we will assume that f is uniformly
bounded, and that we aim to find the value function V : X → X solving

(25) V (x) = sup
a

E∗
[
f(x, a) + βϕ(x,X1; a)V (X1)

∣∣∣∣ X0 = x

]
.
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Under the assumptions that 0 < β < 1 and that f is uniformly bounded, it is well
known that the Bellman operator L : L∞(X ) → L∞(X ) defined by

(26) Lg(x) ≡ sup
a∈A

E∗
[
f(x, a) + βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]
is a monotone contraction whose unique fixed point is the value function V solving
(25).

To see where the dual method leads in this infinite-horizon setting, we need to
introduce for each h ∈ L∞(X ) the operator Lh : L∞(X ) → L∞(X ) defined by

Lhg(x) ≡ E∗
[
sup
a

{
f(x, a) + Ph(x, a) − h(X1)ϕ(x,X1; a)(27)

+ βϕ(x,X1; a)g(X1)
} ∣∣∣∣ X0 = x

]
.

Just as for L, the operator Lh is a monotone contraction with a unique fixed point,
which we denote by g∗h. The analogue of Theorem 1 for the infinite-horizon setting is
the following.

Theorem 4. Assuming that f is uniformly bounded, the value function V is
characterized as

(28) V = inf
h

g∗h = min
h

g∗h,

where the infimum is attained by taking h = βV .

Proof. Evidently, the supremum in the definition of Lhg will be reduced if we
insist that a must be a function of only X0 and not of X1; therefore

Lhg(x) ≥ sup
a

E∗
[
f(x, a) + Ph(x, a) − h(X1)ϕ(x,X1; a)

+ βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]

= sup
a

E∗
[
f(x, a) + βϕ(x,X1; a)g(X1)

∣∣∣∣ X0 = x

]
≡ Lg(x).

Since LV = V , we deduce immediately that whatever h is, we shall have LhV ≥ V ,
and by induction we conclude that for all n,

Ln
hV ≥ V.

By the contraction mapping principle, Ln
hV → g∗h as n → ∞, and so for any h we

have g∗h ≥ V , and hence V ≤ infh g
∗
h.

To conclude, we observe that taking h = βV gives for any x, a,

f(x, a) + Ph(x, a) ≤ sup
a′

{f(x, a′) + Ph(x, a′)} = V (x).
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Hence,

LhV (x) ≡ E∗
[
sup
a

{
f(x, a) − h(X1)ϕ(x,X1; a) + Ph(x, a)

+ βϕ(x,X1; a)V (X1)
} ∣∣∣∣ X0 = x

]

≤ V (x) + E∗
[
sup
a

{
−h(X1)ϕ(x,X1; a) + βϕ(x,X1; a)V (X1)

} ∣∣∣∣ X0 = x

]

= V (x).

By induction, Ln
hV ≤ V , and so taking the limit as n → ∞ leads to the conclusion

that g∗h ≤ V .

As in the finite-horizon case, we can ask about possible recursive methods for
generating a better approximation to the solution from an existing one. The following
result, proved only under rather restrictive conditions, shows that something can be
done.

Proposition 2. Suppose that f is uniformly bounded, that

B ≡ sup
x,x′,a

ϕ(x, x′; a) < ∞,

and that β is so small that

β(1 + B)

1 − βB
< 1.

Then the sequence (gn)∞n=0 generated by taking an arbitrary g0 ∈ L∞(X ) and letting
gn+1 be the unique fixed point of Lβgn converges to the value function.

Proof. The relation linking gn+1 and gn can be expressed as

gn+1(x) = E∗
[
sup
a

{
f(x, a) − βgn(X1)(X1)ϕ(x,X1; a) + βPgn(x, a)

+ βϕ(x,X1; a)gn+1(X1)
} ∣∣∣∣ X0 = x

]
.

If we set Δn ≡ supx |gn(x) − gn−1(x)|, then this leads to

gn+1(x) ≤ E∗
[
sup
a

{
f(x, a) − βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+ β(1 + B)Δn + βϕ(x,X1; a)gn+1(X1)
} ∣∣∣∣ X0 = x

]
,
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so if we set g̃n+1 ≡ gn+1 + A, we have

g̃n+1(x) + A ≤ E∗
[
sup
a

{
f(x, a) − βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+ β(1 + B)Δn + βϕ(x,X1; a)(g̃n+1(X1) + A)
} ∣∣∣∣ X0 = x

]

≤ E∗
[
sup
a

{
f(x, a) − βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+ β(1 + B)Δn + βBA + βϕ(x,X1; a)g̃n+1(X1)
} ∣∣∣∣ X0 = x

]
.

Taking

A ≡ β(1 + B)Δn

1 − βB

gives us

g̃n+1(x) ≤ E∗
[
sup
a

{
f(x, a) − βgn−1(X1)(X1)ϕ(x,X1; a) + βPgn−1(x, a)

+ βϕ(x,X1; a)g̃n+1(X1)
} ∣∣∣∣ X0 = x

]
,

from which we conclude that g̃n+1 ≡ gn+1−A ≤ gn. A similar argument for the lower
bound gives

Δn+1 ≤ β(1 + B)

1 − βB
Δn,

and the result follows.
Remarks. Proposition 2 shows how we may recursively construct approximations

to the solution using this methodology, provided the discount factor β is small enough.
The assumptions of Proposition 2 are unlikely to be satisfied in most applications, but
at least the methodology can be tried; the conditions are sufficient but not necessary!

5. Conclusions. This paper has presented a novel strategy for solving stochas-
tic optimal control problems by using duality ideas. This approach is completely
general, but is particularly well suited to problems where the state space is so large
that it is hard to determine where the value function should be closely approximated.
The methodology involves modifying the objective by adding in appropriate martin-
gale differences and then carrying out a pathwise optimization, an approach that is
well suited to Monte Carlo evaluation. We have shown that under suitable regular-
ity conditions, a recursive method for improving the martingale difference sequence
converges to the true solution.

Choosing the martingale difference sequence well is of course key to the success
of the method, but there remain important issues in performing the simulations and
related calculations in an efficient manner. The whole study of numerical implemen-
tation has barely begun.
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Appendix A. Links to the occupation measure approach. The approach
of Theorem 1 is in some sense a dual approach, but how is it related to another dual
approach, the occupation measure approach, as explained and studied in [10], [3], [8]?
In this approach, the original optimization problem is re-expressed as

(A1) sup
(μt),(κt)

T∑
t=0

∫
X
μt(dx)

∫
A

κt(x, da)ft(x, a)

subject to the constraints

μ0(dx) = δx0(dx),(A2)

μt+1(dx) =

∫
X
μt(dx

′)

∫
A

κt(x
′, da)p(x′, x; a)m(dx), (t = 0, . . . , T − 1),(A3)

where we write fT (x, a) ≡ F (x), and each of the measures μt is a probability measure,
and κt is a Markov kernel from X into A for each t.

The interpretation of this is that μt is the law of the controlled process at time t
under controls given by the Markov kernels κt; frequently, the Markov kernels will be
degenerate, in the sense that κt(x, da) = δα(t,x)(da) for all t, x, but this formulation
allows randomized decision rules also.

Introducing Lagrangian multiplier functions vt : X → R for each t = 0, . . . , T
changes the optimization problem into the Lagrangian form

sup
μt,κt≥0

[
v0(x0) +

T−1∑
t=0

∫
X
μt(dx)

{
− vt(x) +

∫
A

κt(x, da)ft(x, a)

+

∫
A

κt(x, da)Pvt+1(x, a)

}
+

∫
X
μT (dx)

∫
A

κT (x, da){F (x) − vT (x)}
]

= sup
μt,κt≥0

[
v0(x0) +

T−1∑
t=0

∫
X
μt(dx)

∫
A

κt(x, da)
{
−vt(x) + ft(x, a) + Pvt+1(x, a)

}

+

∫
X
μT (dx){F (x) − vT (x)}

]
.

We deduce the dual-feasibility conditions

vt(x) ≥ ft(x, a) + Pvt+1(x, a) (x ∈ X , a ∈ A, t = 0, . . . , T − 1),(A4)

vT (x) ≥ F (x),(A5)

and the dual problem is now to minimize v0(x0) subject to (A4), (A5). These condi-
tions are obviously equivalent to

vt(x) ≥ sup
a∈A

{
ft(x, a) + Pvt+1(x, a)

}
≡ (Lv)t(x) (x ∈ X , t = 0, . . . , T − 1),(A6)

vT (x) ≥ F (x),(A7)

which are solved by taking vT = F , and vt = (Lv)t for 0 ≤ t < T—the Bellman
equations. The value of the dual problem is also evidently equal to the value of the
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primal problem. However, it will often be the case that the operations involved in the
Bellman equations (taking expectations; pointwise maximization) will be hard to do
numerically, so casting the dual problem in Lagrangian form gives us

L({gt}) ≡ inf
(vt)

{
v0(x0) +

T−1∑
t=0

∫
gt(x){(Lv)t(x) − vt(x)} m(dx)

}

for nonnegative multiplier functions (gt). The dual form of this programming problem
is

sup
gt≥0

L({gt}) ≤ V0(x0),

and (9) is the same expression, for a particular choice of the multipliers (gt), attaining
the value.
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Abstract. The aim of this article is to present a refined convergence theory of the SQP-
method applied to optimal control problems for the nonstationary Navier–Stokes equations. We will
employ a second-order sufficient optimality condition, which requires that the second derivative of
the Lagrangian is positive definite on a subspace of inactive constraints. Therefore, we have to use
the Lp-theory of optimal controls of the nonstationary Navier–Stokes equations rather than Hilbert
space methods. Estimates of state and adjoint equations with respect to Lp-norms are provided.
Finally, the local convergence of the SQP-method is confirmed by numerical tests.
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1. Introduction. We are considering the optimal control of the nonstationary
Navier–Stokes equations. As a model problem we minimize the following quadratic
objective functional J :

(1.1) J(y, u) =
αT

2

∫
Ω

|y(x, T ) − yT (x)|2dx +
αQ

2

∫
Q

|y(x, t) − yQ(x, t)|2dxdt

+
αR

2

∫
Q

| curl y(x, t)|2dxdt +
γ

2

∫
Q

|u(x, t)|2dxdt

subject to the nonstationary Navier–Stokes equations

(1.2)

yt − νΔy + (y · ∇)y + ∇p = u in Q,

div y = 0 in Q,

y(0) = y0 in Ω,

and the control constraints u ∈ Uad with a set of admissible controls defined by

Uad = {u ∈ L2(Q)2 : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1, 2}.

Here, Ω is an open bounded subset of R
2 with a C3-boundary Γ such that Ω is

locally on one side of Γ, and Q is defined by Q = Ω × (0, T ). Further, functions
yT ∈ L2(Ω)2, yQ ∈ L2(Q)2, and y0 ∈ H ⊂ L2(Ω)2 are given. The parameters γ and
ν are positive real numbers. The bounds ua, ub are required to be in L2(Q)2 with
ua,i(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1, 2.

Control of the nonstationary Navier–Stokes flow has been studied very intensively
since the pioneering work [1]. Necessary as well as sufficient optimality conditions
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were established; cf. [8, 9, 16, 17, 27]. The optimality system can be used to derive
regularity properties of optimal controls. It was proved that under certain regularity
assumptions a locally optimal control of the problem (1.1) is a continuous function in
space and time; cf. [29].

The aim of this article is the presentation of a convergence theory of the SQP-
method to solve the optimization problem (1.1). This method is widely applied to
solve finite dimensional as well as function space optimization problems. If a stability
result is available, one can prove local convergence of the SQP-method using the con-
cept of strongly regular generalized equations [21]. The first convergence result in the
context of optimal control of partial differential equations was given in [26]. A conver-
gence proof for the SQP-method applied to constrained optimal control problems of
the Navier–Stokes equations was given in [13]. However, the convergence was proved
under a strong second-order sufficient optimality condition: the second derivative of
the Lagrangian was required to be coercive for all control test functions.

We will prove quadratic convergence of the SQP-method in an L∞-neighborhood
of a reference control, which has to fulfill a second-order sufficient optimality condition.
In contrast to the approaches in [13, 17], we require that the second derivative of the
Lagrangian is positive definite only on a subspace associated with inactive constraints.
Furthermore, we get convergence of the control iterates with respect to the L∞-norm,
whereas the convergence theory of [13, 17] gives convergence in weaker, say, Lq-norms,
with q < 7/2.

The semismooth Newton method is another method to tackle nonlinear opti-
mal control problems. It was applied to optimal control problems for nonstationary
Navier–Stokes equations in [28]. Under the assumption of a strong sufficient optimal-
ity condition, locally superlinear convergence was proved. Applying the regularity
results of our article, it is possible to prove convergence of that method under the
weaker coercivity assumptions involving strongly active constraints.

The outline of the paper is as follows. In section 2, we will introduce some notation
and state common results concerning solvability of the nonstationary Navier–Stokes
system (1.2). Sections 3 and 4 contain a brief overview of optimality conditions
including first-order necessary and second-order sufficient conditions. In section 5,
the SQP-method is considered. The main result of the article—local convergence
of SQP—is stated and proved in section 5.3. Numerical results confirming the con-
vergence theory are presented in section 6. The required regularity results for the
linearized Navier–Stokes equation and the adjoint equation can be found in sections
2.2 and 3.1. Throughout the article, we investigate the theory of optimal controls of
the nonstationary Navier–Stokes equations in the Lp-space context.

2. Notation and preliminary results. Here, we will restrict ourselves to the
two-dimensional case, n = 2. First, we introduce some notation and provide some
results that we will need later on.

To begin with, we define the spaces of solenoidal functions

Hp := {v ∈ Lp(Ω)2 : div v = 0}, Vp := {v ∈ W 1,p
0 (Ω)2 : div v = 0}.

Here, p denotes an arbitrary exponent p ≥ 2. These spaces are Banach spaces with
their norms denoted by | · |p and | · |1,p, respectively. For p = 2, we get the frequently
used solenoidal spaces H := H2 and V := V2, which are Hilbert spaces with scalar
products (·, ·)H and (·, ·)V , respectively. The dual of V with respect to the scalar
product of H is denoted by V ′ with the duality pairing 〈·, ·〉V ′,V .
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We shall work in the standard space of abstract functions from [0, T ] to a real
Banach space X, Lp(0, T ;X), endowed with its natural norm,

‖y‖Lp(X) := ‖y‖Lp(0,T ;X) =

(∫ T

0

|y(t)|pXdt

)1/p

, 1 ≤ p < ∞,

‖y‖L∞(X) := vrai max
t∈(0,T )

|y(t)|X .

In what follows, we will identify the spaces Lp(0, T ;Lp(Ω)2) and Lp(Q)2 for 1 <
p < ∞, and denote their norm by ‖u‖p := |u|Lp(Q)2 . We denote by (·, ·)Q the usual
L2(Q)2-scalar product to avoid ambiguity.

In all what follows, ‖ · ‖ stands for norms of abstract functions, while | · | denotes
norms of “stationary” spaces such as H and V .

To deal with the time derivative in (1.2), we introduce the common spaces of
functions y, whose time derivatives yt exist as abstract functions

Wα(0, T ;V ) := {y ∈ L2(0, T ;V ) : yt ∈ Lα(0, T ;V ′)}, W (0, T ) := W 2(0, T ;V ),

where 1 ≤ α ≤ 2. Endowed with the norm

‖y‖Wα := ‖y‖Wα(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lα(V ′),

these spaces are Banach spaces (respectively, Hilbert spaces) in the case of W (0, T ).
Every function of W (0, T ) is, up to changes on sets of zero measure, equivalent to
a function of C([0, T ], H), and the imbedding W (0, T ) ↪→ C([0, T ], H) is continuous;
cf. [2, 20].

Furthermore, we introduce the following space of abstract functions in the Lp-
context:

W 2,1
p := {y ∈ Lp(0, T ;W 2,p(Ω)2 ∩ Vp) : yt ∈ Lp(0, T ;Lp(Ω)2)},

which is continuously imbedded in C([0, T ],W
2−2/p, p
0 (Ω)2) (see [19]). Here, W

2−2/p, p
0

(Ω)2 denotes the space of solenoidal W 2−2/p, p-functions, where zero boundary values
are prescribed if p ≥ 4/3. We abbreviate H2,1 = W 2,1

2 for p = 2. Note that in this

case we have W
2−2/2, 2
0 (Ω)2 = V .

We define the trilinear form b : V × V × V → R by

b(y, v, w) = ((y · ∇)v, w)2 =

∫
Ω

2∑
i,j=1

yi
∂vj
∂xi

wj dx.

To specify the problem setting, we introduce a linear operator A : L2(0, T ;V ) →
L2(0, T ;V ′) by ∫ T

0

〈(Ay)(t), v(t)〉V ′,V dt :=

∫ T

0

(y(t), v(t))V dt,

and a nonlinear operator B by∫ T

0

〈(
B(y)

)
(t), v(t)

〉
V ′,V

dt :=

∫ T

0

b(y(t), y(t), v(t))dt.

B is continuous, for instance, as an operator from W (0, T ) to L2(0, T ;V ′). For con-
venience, we will use the notation

bQ(y, v, w) =

∫ T

0

b(y(t), v(t), w(t))dt.
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2.1. The state equation. We begin with the investigation of weak solutions
for the nonstationary Navier–Stokes equations (1.2) in the Hilbert space setting.

Definition 2.1 (weak solution). Let f ∈ L2(0, T ;V ′) and y0 ∈ H be given. A
function y ∈ L2(0, T ;V ) with yt ∈ L2(0, T ;V ′) is called a weak solution of (1.2) if

(2.1)
yt + νAy + B(y) = f,

y(0) = y0.

Results concerning the solvability of (2.1) are standard; cf. [24] for proofs and
further details.

Theorem 2.2 (existence and uniqueness of solutions). For every f ∈ L2(0, T ;V ′)
and y0 ∈ H, (2.1) has a unique solution y ∈ W (0, T ). Moreover, the mapping
(y0, f) → y is locally Lipschitz continuous from H × L2(0, T ;V ′) to W (0, T ).

For more regular data, one expects more regular solutions.

Theorem 2.3 (regularity). For the higher regularity of the weak solutions of
(2.1) the following holds. Let y0 ∈ V and f ∈ L2(Q)2 be given. Then the weak solution
of (2.1) fulfills y ∈ H2,1. The solution mapping (y0, f) → y is locally Lipschitz
continuous between L2(Q)2 × V and H2,1.

For the proof, we refer again to Temam [24]. However, the result was proved
there under the additional assumption f ∈ L2(0, T ;H). A closer inspection of the
proof shows that f ∈ L2(Q)2 suffices to get y ∈ L2(0, T ;H2(Ω)2) ∩ L∞(0, T ;V ) and
yt ∈ L2(Q)2. Then the regularity yt ∈ L2(0, T ;H) follows by density arguments.

Now, we want to specify the notation of a solution of (2.1) in the Lp-context.

Definition 2.4 (strong solution in Lp
). Let f ∈ Lp(Q)2 and y0 ∈ W

2−2/p, p
0 (Ω)2

be given. A function y ∈ W 2,1
p is called a strong solution to the exponent p > 2 of

(1.2) if there holds

(2.2) −
∫ T

0

(y, φ′)dt + ν

∫ T

0

(∇y,∇φ)dt +

∫ T

0

b(y, y, φ) =

∫ T

0

(f, φ)dt + (y0, φ(0))

for all test functions φ ∈ Lq(0, T ;Vq) with φt ∈ Lq(0, T ;Lq(Ω)2) and φ(T ) = 0, where
q is the dual exponent to p, 1/q + 1/p = 1.

Here the space W
2−2/p, p
0 (Ω)2 is the natural trace space. Every abstract function

of Lp(0, T ;W 2,p(Ω)2) with a time derivative in Lp(0, T ;Lp(Ω)2) is—after changes on
a zero measure set—continuous with values in this space [19]. Obviously, every strong
Lp-solution is a weak solution. For existence of Lp-solutions we have the following
theorem.

Theorem 2.5 (Lp-solutions). Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be given

with p ≥ 2. Then the weak solution y of (2.1) in the sense of Definition 2.1 is a
strong solution and satisfies y ∈ W 2,1

p . There exists a constant c > 0 such that

‖y‖W 2,1
p

≤ c {|y0|W 2−2/p, p + ‖f‖p} .

Moreover, the mapping (f, y0) → y is locally Lipschitz continuous, and hence the
strong solution y is unique.

If p = 2, this result reduces to Theorem 2.3. For the non-Hilbert space case
p > 2, existence and regularity was proved in [30]. Lipschitz continuity for this case
is a conclusion of the estimates in the next section.
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2.2. Linearized equation. In the course of the article, we will need a similar
existence and regularity result for the linearized Navier–Stokes equations. Let a func-

tion ȳ ∈ Lp(0, T ;W 2,p(Ω)2)∩L∞(0, T ;W
2−2/p, p
0 (Ω)2) be given. Then we are looking

for solutions of the linearized system

(2.3)
yt + νAy + B′(ȳ)y = f,

y(0) = y0.

We will show that this system admits a unique solution, which belongs to the space
W 2,1

p and depends continuously on the data.
To this end, we will rely on a regularity result for the nonstationary Stokes equa-

tions,

(2.4)
yt + νAy = f,

y(0) = y0.

Concerning Lp-solutions, the following result is due to Solonnikov [22] for the two-
and three-dimensional cases; in [30] it was generalized to arbitrary spatial dimensions.

Theorem 2.6. Let p > 1, p �= 3/2, y0 ∈ W
2−2/p, p
0 (Ω)2, f ∈ Lp(Q)2. Then

there exists a unique weak solution y of (2.4) satisfying y ∈ W 2,1
p . Furthermore, there

exists a constant c > 0 such that the estimate

‖yt‖p + ‖y‖Lp(W 2,p) ≤ c {‖f‖p + |y0|W 2−2/p, p}

is satisfied.
Now, we can prove the regularity result for the linearized system. A similar

result can be found in [23], where equations with the linear term (ȳ · ∇)y instead of
B′(ȳ)y = (ȳ · ∇)y + (y · ∇)ȳ are studied.

Theorem 2.7. Let ȳ ∈ Lp(0, T ;W 2,p(Ω)2) ∩ L∞(0, T ;W
2−2/p, p
0 (Ω)2), f ∈

Lp(Q)2, and y0 ∈ W
2−2/p, p
0 (Ω)2 be given with 2 ≤ p < ∞. Then the system (2.3) has

a unique solution y ∈ W 2,1
p . Moreover, there is a constant c > 0 independent of f and

y0 such that the following estimate holds:

(2.5) ‖y‖W 2,1
p

≤ c {‖f‖p + |y0|W 2−2/p, p} .

Proof. Step 1. p = 2. The existence of a unique weak solution together with
the estimate in the case p = 2 was proved in [17]. Let us write the system (2.3) in a
slightly modified form,

(2.6)
yt + νAy = f −B′(ȳ)y,

y(0) = y0,

to estimate y in terms of f , B′(ȳ)y, and y0. Here, we want to apply the regularity
result of Theorem 2.6. To this end, we have to estimate the Lp-norm of the right-hand
side of (2.6) for different values of p. The proof is then carried out using bootstrapping
arguments.

Step 2. 2 < p < 4. From the previous step, we know the existence of a unique
weak solution y ∈ W 2,1

2 of (2.3). Let us investigate B′(ȳ)y = (y · ∇)ȳ + (ȳ · ∇)y.

By assumption, we have ȳ ∈ L∞(0, T ;W
2−2/p, p
0 (Ω)2). The space W

2−2/p, p
0 (Ω)2

is continuously imbedded in W 1,q(Ω)2 for q = 2p
4−p , p < 4; cf. [2, 25]. Furthermore,
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the space V is continuously imbedded in Lq′(Ω)2 for q′ < ∞. Applying Hölder’s
inequality with 1

p = 1
q + 1

q′ , we obtain

(2.7) ‖(y · ∇)ȳ‖p ≤ c‖y‖L∞(Lq′ )‖ȳ‖L∞(W 1,q) ≤ c‖y‖L∞(V )‖ȳ‖L∞(W 2−2/p, p).

The estimation of the second addend of B′(ȳ)y needs a bit more effort. Using the
interpolation identity

[W 2,2(Ω)2,W 1,2(Ω)2]θ = W 2−2/p, 2(Ω)2, θ = 1 − 2/p,

and the imbedding W 2−2/p, 2(Ω)2 ↪→ W 1,p(Ω)2, we find a.e. on [0, T ]

|y(t)|pW 1,p ≤ c|y(t)|p
W 2−2/p, 2 ≤ c|y(t)|p−2

W 2,2 |y(t)|2W 1,2 .

Integrating with respect to the time variable yields

(2.8) ‖y‖pLp(W 1,p) ≤ c‖y‖p−2
Lp−2(W 2,2)‖y‖

2
L∞(V ) ≤ c‖y‖p−2

L2(W 2,2)‖y‖
2
L∞(V ) ≤ c‖y‖p

W 2,1
2

provided p ≤ 4. Also, we can derive

(2.9) ‖(ȳ · ∇)y‖p ≤ c‖ȳ‖∞‖y‖Lp(W 1,p).

Collecting (2.7)–(2.9), we find

‖B′(ȳ)y‖p ≤ c‖ȳ‖W 2,1
p

‖y‖W 2,1
2

≤ c‖ȳ‖W 2,1
p

{‖f‖2 + |y0|V } .

Now, we can utilize Theorem 2.6 to obtain the solution estimate

‖y‖W 2,1
p

≤ c {‖f‖p + |y0|W 2−2/p, p + ‖B′(ȳ)y‖p}
≤ c {‖f‖p + |y0|W 2−2/p, p} + c‖ȳ‖W 2,1

p
{‖f‖2 + |y0|V }

≤ c(1 + ‖ȳ‖W 2,1
p

) {‖f‖p + |y0|W 2−2/p, p} .

Thus, the (weak) solution y is of class W 2,1
p . Using density arguments, it is easy to

verify that y is also a strong solution. Since every strong solution is a weak solution,
and weak solutions are unique, it follows that y is the unique strong solution of the
linearized system. This completes the proof for exponents p ∈ (2, 4).

Step 3. 4 ≤ p < ∞. By Step 2, the solution y of (2.3) is in W 2,1
4−ε, 0 < ε ≤ 2.

It is—after changes on a set of zero measure—continuous with values in the space

W
2−2/(4−ε),4−ε
0 (Ω)2, which is itself continuously imbedded in L∞(Ω)2. Hence, the

imbedding of W 2,1
4−ε in L∞(Q)2 is continuous.

Again, we have to estimate the Lp-norm of B′(ȳ)y. We begin with its first addend,
which can be treated as

(2.10) ‖(y · ∇)ȳ‖p ≤ c‖y‖∞‖∇ȳ‖p ≤ c‖y‖W 2,1
4−ε

‖ȳ‖W 2,1
p

.

To estimate the second addend of B′(ȳ)y, we observe that for ε = 8
p+2 the imbed-

ding

W
2− 2

4−ε ,4−ε

0 (Ω)2 = W
3
2−

1
p ,

4p
p+2

0 (Ω)2 ↪→ W 1,p
0 (Ω)2

is continuous. Consequently, we obtain for this choice of ε,

y ∈ W 2,1
4−ε ↪→ L∞(0, T ;W 1,p

0 (Ω)2).
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Hence, we arrive at

(2.11) ‖(ȳ · ∇)y‖p ≤ c‖ȳ‖∞‖y‖L∞(W 1,p) ≤ c‖ȳ‖W 2,1
p

‖y‖W 2,1
4−ε

,

which allows us to conclude by Theorem 2.6,

‖y‖W 2,1
p

≤ c(1 + ‖ȳ‖W 2,1
p

) {‖f‖p + |y0|W 2−2/p, p} ,

and the claim is proved for all p in [2,∞).
Remark 2.8. The Lipschitz continuity of the solution mapping of the nonsta-

tionary Navier–Stokes equations can be proved using the previous lemma. Let data

fi ∈ Lp(Q)2 and y0,i ∈ W
2−2/p, p
0 (Ω)2 be given, with i = 1, 2. Denote the associated

strong solutions by yi, i = 1, 2. Then the difference d := y1 − y2 satisfies

dt + νAd + (y1 · ∇)d + (d · ∇)y2 = f1 − f2,

d(0) = y0,1 − y0,2.

With analogous arguments as above, one can verify

‖y1 − y2‖W 2,1
p

≤ c(1 + ‖y1‖W 2,1
p

+ ‖y2‖W 2,1
p

) {‖f1 − f2‖p + |y0,1 − y0,2|W 2−2/p, p} ,

which is the claimed Lipschitz continuity of the solution mapping associated with the
nonlinear system.

3. First-order necessary optimality conditions. Now let us return to our
optimal control problem. We briefly recall the necessary conditions for local optimal-
ity. For the proofs and further discussion see [1, 5, 9, 16, 27] and the references cited
therein.

Definition 3.1 (locally optimal control). A control ū ∈ Uad is said to be locally
optimal in L2(Q)2 if there exists a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yρ, uρ)

holds for all uρ ∈ Uad with ‖ū−uρ‖2 ≤ ρ. Here, ȳ and yρ denote the states associated
with ū and uρ, respectively.

In the following, we denote by B′(ȳ)∗ the adjoint of B′(ȳ), given by

[B′(ȳ)∗λ]v =

∫
Q

b(ȳ, v, λ) + b(v, ȳ, λ)dt.

Theorem 3.2 (necessary condition). Let ū be a locally optimal control with
associated state ȳ = y(ū). Then there exists a unique solution λ̄ ∈ W 4/3(0, T ;V ) of
the adjoint equation

−λ̄t + νAλ̄ + B′(ȳ)∗λ̄ = αQ(ȳ − yQ) + αR
�curl curl ȳ,

λ̄(T ) = αT (ȳ(T ) − yT ).
(3.1)

Moreover, the variational inequality

(3.2) (γū + λ̄, u− ū)L2(Q)2 ≥ 0 ∀u ∈ Uad

is satisfied.
Proofs can be found in [9, 10, 27]. The regularity of λ̄ is proved in [17].
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The variational inequality (3.2) can be reformulated equivalently in different ways.
First, let us introduce the normal cone NUad

(ū) of the set of admissible controls at a
given control ū, which is defined by

(3.3) NUad
(ū) =

{{
z ∈ L2(Q)2 : (z, u− ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad,

∅ otherwise.

Then the variational inequality (3.2) can be written equivalently as the inclusion

(3.4) γū + λ̄ + NUad
(ū) � 0.

This representation fits into the context of generalized equations (see, for instance,
[13, 29]), and will be utilized in the course of the article.

Second, the variational inequality

(γūi(x, t) + λ̄i(x, t)) · (u− ūi(x, t)) ≥ 0 ∀u ∈ [ua.i(x, t), ub.i(x, t)]

has to be fulfilled pointwise a.e. on Q for i = 1, 2. This is in turn equivalent to the
projection representation of the optimal control

(3.5) ūi(x, t) = Proj[ua,i(x,t),ub,i(x,t)]

(
− 1

γ
λ̄i(x, t)

)
a.e. on Q, i = 1, 2.

With this formula, one can see that a locally optimal control inherits some regularity
from the associated adjoint state. This form is also used in connection with Lipschitz
stability of optimal controls, see section 5.2 below.

3.1. Adjoint equation. The adjoint state λ is the solution of a linearized ad-
joint equation backward in time. So it is natural to look for its dependence on the
given data. The existence of Lp-solutions of the adjoint equation is the topic of the
next theorem.

Theorem 3.3. Let yQ ∈ Lp(Q)2 and yT ∈ W
2−2/p, p
0 (Ω)2 be given with p ≥ 2. If

ȳ ∈ Lp(0, T ;W 2,p(Ω)2)∩L∞(0, T ;W
2−2/p, p
0 (Ω)2), then the weak solution λ of (3.1) is

a strong solution and satisfies λ ∈ W 2,1
p . Moreover, the adjoint λ depends continuously

on the given data yQ, yT , ȳ.
Proof. The result in the case p = 2 was proved in [17, Prop. 2.4] for the homo-

geneous final value λ(T ) = 0. It can be extended to the inhomogeneous case using
known results for the nonstationary Stokes system.

Let us sketch the proof for the case p > 2. For simplicity, we define f := αQ(ȳ −
yQ)+αR

�curl curl ȳ and λT := αT (ȳ(T )−yT ). Under the assumptions of the theorem,

we know that f ∈ Lp(Q)2 and λT ∈ W
2−2/p, p
0 (Ω)2. Now, we will investigate the

system

(3.6)
−λt + νAλ + B′(ȳ)∗λ = f,

λ(T ) = λT .

Via the transformations w(t) = λ(T − t), ŷ(t) = ȳ(T − t), g(t) = f(T − t), w0 = λT ,
this system is carried over in the forward-in-time equation

(3.7)
wt + νAw + B′(ŷ)∗w = g,

w(0) = w0.
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Obviously, ŷ, g, w0 inherits their regularity from ȳ, f, λT . Hence, the adjoint state λ
has the same regularity as the auxiliary state w. The proof is finished if the next
lemma is verified.

Lemma 3.4. Let ŷ ∈ Lp(0, T ;W 2,p(Ω)2) ∩ L∞(0, T ;W
2−2/p, p
0 (Ω)2), g ∈ Lp(Q)2,

and w0 ∈ W
2−2/p, p
0 (Ω)2 be given with 2 ≤ p < ∞. Then the system (3.6) has a unique

solution w ∈ W 2,1
p . Moreover, there is a constant c > 0 independent of g and w0 such

that the following estimate is true:

‖w‖W 2,1
p

≤ c {‖g‖p + |w0|W 2−2/p, p} .

Proof. The proof is very similar to the proof of Theorem 2.7. Therefore, we
will briefly repeat its steps. First, let us investigate the action of B′(ŷ)∗w on a test
function v ∈ W (0, T ):

[B′(ŷ)∗w]v = bQ(ŷ, v, w) + bQ(v, ŷ, w) = −bQ(ŷ, w, v) + bQ(v, ŷ, w)

=

2∑
i,j=1

∫
Q

(
−ŷi(x, t)

∂wj(x, t)

∂xi
vj(x, t) + vi(x, t)

∂ŷj(x, t)

∂xi
wj(x, t)

)
dxdt

=

∫ T

0

[−(ŷ · ∇)w + (∇ŷ)Tw] · v dt.

Here, we used the identity bQ(y, v, w) = −bQ(y, w, v), which holds for functions
y, v, w ∈ L2(0, T ;V ) [24]. Consequently, we are allowed to identify the functional
B(ŷ)∗w with the function −(ŷ · ∇)w + (∇ŷ)Tw. For ŷ, w ∈ H2,1 we find −(ŷ · ∇)w +
(∇ŷ)Tw ∈ L2(Q)2.

Step 1. p = 2. The result for p = 2 was proved, for instance, in [17].
Step 2. 2 < p < 4. With the help of (2.7)–(2.9), we conclude that

‖B′(ŷ)∗w‖p ≤ c
(
‖ŷ‖∞‖w‖W 2,1

2
+ ‖ŷ‖L∞(W 2−2/p, p)‖w‖L∞(V )

)
.

Then Theorem 2.6 gives us the boundedness of the solution w in W 2,1
p .

Step 3. 4 ≤ p < ∞. Let w ∈ W 2,1
4−ε be the strong solution of Step 2, 0 < ε < 2.

Analogously as in (2.10) and (2.11), we find

‖B′(ŷ)∗w‖p ≤ c‖ŷ‖W 2,1
p

‖w‖W 2,1
4−ε

,

and the claim follows immediately.

3.2. Lagrange functional. Let us introduce the Lagrange function

L : W (0, T ) × L2(Q)2 ×W 4/3(0, T ) → R

for the optimal control problem as follows:

L(y, u, λ) = J(u, y) −
{
〈yt, λ〉L2(V ′),L2(V ) + ν(y, λ)L2(V ) + bQ(y, y, λ) − (u, λ)Q

}
.

This function is twice Fréchet-differentiable with respect to (y, u) ∈ W (0, T )×L2(Q)2;
cf. [27]. The reader can readily verify that the necessary conditions can be expressed
equivalently by

Ly(ȳ, ū, λ̄)h = 0 ∀h ∈ W (0, T ) with h(0) = 0,

Lu(ȳ, ū, λ̄)(u− ū) ≥ 0 ∀u ∈ Uad.
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Here, Ly, Lu denote the partial Fréchet-derivative of L with respect to y and u.
In what follows we denote the pair of state and control (y, u) by v for convenience.

The second derivative of the Lagrangian L at y ∈ W (0, T ) with associated adjoint
state λ in the directions v1 = (w1, h1), v2 = (w2, h2) ∈ W (0, T ) × L2(Q)2 is given by

(3.8) Lvv(y, u, λ)[v1, v2] = Lyy(y, u, λ)[w1, w2] + Luu(y, u, λ)[h1, h2]

with

Lyy(y, u, λ)[w1, w2] = αT (w1(T ), w2(T ))H + αQ(w1, w2)Q + αR(curlw1, curlw2)Q

− bQ(w1, w2, λ) − bQ(w2, w1, λ)

and

Luu(y, u, λ)[h1, h2] = γ(h1, h2)2.

It can be verified that it satisfies the estimate

(3.9) |Lyy(y, u, λ)[w1, w2]| ≤ c
(
1 + ‖λ‖L2(V )

)
‖w1‖W (0,T )‖w2‖W (0,T )

for all w1, w2 ∈ W (0, T ). To shorten notation, we abbreviate [v, v] by [v]2, i.e.,

Lvv(v̄, λ̄)[(w, h)]2 := Lvv(v̄, λ̄)[(w, h), (w, h)].

4. Second-order sufficient optimality condition. Let v̄ := (ȳ, ū) be an ad-
missible reference pair satisfying the first-order necessary optimality conditions.

Definition 4.1 (strongly active sets). Let ε > 0 and i ∈ {1, 2} be given. Define
sets Qε,i ⊆ Q = Ω × [0, T ] by

Qε,i = {(x, t) ∈ Q : |γūi(x, t) + λ̄i(x, t)| > ε}.

We assume further that the reference pair v̄ = (ȳ, ū) satisfies the following coer-
civity assumption on L′′(v̄, λ̄); in what follows, this is called the second-order sufficient
condition:

(SSC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist ε > 0 and δ > 0 such that

Lvv(v̄, λ̄)[(w, h)]2 ≥ δ ‖h‖2
2

holds for all pairs (w, h) ∈ W (0, T ) × L2(Q)2 with

h = u− ū, u ∈ Uad, hi = 0 on Qε,i for i = 1, 2,

and w ∈ W (0, T ) being the weak solution of the linearized equation

wt + Aw + B′(ȳ)w = h,

w(0) = 0.

The sufficiency of (SSC) was proved in [27]: An admissible control that satisfies the
first-order necessary conditions together with (SSC) is locally optimal in L∞(Q)2.
Observe that L′′ has to be positive definite only on the subspace of control variations
that are zero on the set of strongly active constraints. We will show that for a control ū
satisfying (SSC), the SQP-method started in a neighborhood of ū will indeed converge
to that local solution.
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5. SQP-method. In this section, we consider the SQP-method to compute a
local optimum of the control problem (1.2). It is a well-known method, applied very
often to optimal control problems of partial differential equations; see, e.g., [13, 26].
For the analysis of other local methods such as (quasi-) Newton and semismooth
Newton methods in connection with nonstationary Navier–Stokes equations, we refer
to [17, 28].

The SQP-method solves in every step a linear-quadratic optimal control problem
(Pn). Given starting values yn, un, λn, it computes the next iterates yn+1, un+1, λn+1

as the minimizers of

Jn(y, u) = J(yn, un)+∇J(yn, un)(y−yn, u−un)+
1

2
Lvv(yn, un, λn)[(y−yn, u−un)]2

subject to the linearized state equation

yt + νAy + B′(yn)(y − yn) = u−B(yn),

y(0) = y0,

and the control constraint u ∈ Uad. For convenience we write the functional as

Jn(y, u) =
αT

2

∫
Ω

|y(x, T ) − yT (x)|2dx +
αQ

2

∫
Q

|y(x, t) − yQ(x, t)|2dxdt

+
αR

2

∫
Q

| curl y(x, t)|2dxdt +
γ

2

∫
Q

|u(x, t)|2dxdt− bQ(y − yn, y − yn, λn).

In what follows, we investigate local convergence of this method. Here, the sufficient
condition (SSC) plays an essential role. As one expects, we get quadratic convergence
as soon as the iterates lie in a neighborhood of a local solution.

5.1. Generalized Newton method. The SQP-method can be interpreted as
a Newton method for a generalized equation of the form

(5.1) 0 ∈ F (x) + N(x),

where F is a C1,1-mapping between two Banach spaces X and Z, while N : X → 2Z is
a set-valued mapping with closed graph. One can write the Newton method formally
as follows: Given iterate xn, compute the next iterate xn+1 by solving

0 ∈ F (xn) + F ′(xn)(x− xn) + N(x).

Before we state an abstract result concerning the convergence of the generalized
Newton method, we will introduce the notation of strong regularity in the sense of
Robinson [21]. Let x̄ be a solution of (5.1). The generalized equation is said to be
strongly regular at the point x̄ if there are open balls BX(x̄, ρx) and BZ(0, ρz) such
that for all z ∈ BZ(0, ρz) the linearized and perturbed equation

z ∈ F (x̄) + F ′(x̄)(x− x̄) + N(x)

admits a unique solution x = x(z) in BX(x̄, ρx), and the mapping z → x is Lip-
schitz continuous BZ(0, ρz) from to BX(x̄, ρx). The following theorem [3, 7] gives the
mentioned convergence result.

Theorem 5.1. Let x̄ be a solution of (5.1) and assume that (5.1) is strongly
regular at x̄. Then there exists an open ball BX(x̄, ρ′x) such that for every starting



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1144 DANIEL WACHSMUTH

element x1 ∈ BX(x̄, ρ′x) the generalized Newton method generates a unique sequence
{xn}∞n=1. The iterates xn remain in BX(x̄, ρ′x), and it holds that

(5.2) ‖xn+1 − x̄‖X ≤ cN ‖xn − x̄‖2
X ∀n ∈ N,

where cN is independent of n.

5.2. Strong regularity: L∞-stability of optimal controls. Let (ȳ, ū, λ̄)
satisfy the first-order necessary optimality conditions (see Theorem 3.2), together
with the second-order sufficient optimality condition (SSC). The optimality system
consisting of state equation (1.2), adjoint equation (3.1), and the inclusion (3.4) can
be written in the condensed form

(5.3) F (ȳ, ū, λ̄) +
(
0, 0, 0, 0, NUad

(ū)
)T � 0,

where the function F ,

(5.4) F : W 2,1
p × L∞(Q)2 ×W 2,1

p →

Lp(Q)2 ×W
2−2/p, p
0 (Ω)2 × Lp(Q)2 ×W

2−2/p, p
0 (Ω)2 × L∞(Q)2,

is given by

(5.5) F (y, u, λ) =

⎛⎜⎜⎜⎜⎜⎜⎝
yt + νAy + B(y)

y(0)

−λt + νAλ + B′(y)∗λ

λ(T )

γu + λ

⎞⎟⎟⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎜⎝

u

y0

αQ(y − yQ) + αR
�curl curl y

αT (y(T ) − yT )

0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Further, we have to redefine the normal cone NUad
to be a subset of L∞(Q)2,

NUad
=

{{
z ∈ L∞(Q)2 : (z, u− ū)2 ≤ 0 ∀u ∈ Uad

}
if ū ∈ Uad,

∅ otherwise.

We will apply Theorem 5.1 to the generalized equation (5.3). To do so, we have to
show strong regularity of this equation at the reference triple (ȳ, ū, λ̄). To this end,
let us investigate the linearized and perturbed inclusion

(5.6) z ∈ F (ȳ, ū, λ̄) + F ′(ȳ, ū, λ̄)(y − ȳ, u− ū, λ− λ̄) +
(
0, 0, 0, 0, NUad

(ū)
)T

.

Here, the perturbation vector z = (zy, z0, zQ, zT , zu) is restricted to be in the space Z
given by

(5.7) Z := Lp(Q)2 ×W
2−2/p, p
0 (Ω)2 × Lp(Q)2 ×W

2−2/p, p
0 (Ω)2 × L∞(Q)2.

We equip Z with the natural norm

‖z‖Z = ‖(zy, z0, zQ, zT , zu)‖Z := ‖zy‖p + |z0|W 2−2/p, p +‖zQ‖p + |zT |W 2−2/p, p +‖zu‖∞.

To prove strong regularity of (5.3), we have to consider the linearized and perturbed
generalized equation (5.6). It represents a system that can be written in a more
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convenient way. The addends coming from the Navier–Stokes nonlinearity can be
equivalently transformed, due to its quadratic character, into

B(ȳ) + B′(ȳ)(y − ȳ) = B′(ȳ)y + B(ȳ) −B′(ȳ)ȳ = B′(ȳ)y −B(ȳ).

Then, (5.6) builds up the optimality system of the following perturbed linear-quadratic
optimization problem, henceforth called (Pz): Find the minimizer of J (z) given by

(5.8) J (z)(y, u) =
αR

2

∫
Q

| curl y|2 +
γ

2

∫
Q

|u|2

+
αT

2
|y(T ) − yd|2H +

αQ

2
‖y − yQ‖2

2 +
αR

2
‖ curl y‖2

2 +
γ

2
‖u‖2

2

+ (zQ, y)Q + (zT , y(T ))Ω − (zu, u)Q − bQ(y − ȳ, y − ȳ, λ̄)

subject to the linearized state equation

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy,(5.9)

y(0) = y0 + z0

and the control constraint u ∈ Uad. The adjoint equations associated with the
perturbed problem (Pz) are given by

−λt + νAλ + B′(ȳ)∗λ = −B′(y − ȳ)∗λ̄ + αQ(y − yQ) + αR
�curl curl y + zQ,(5.10)

λ(T ) = αT (y(T ) − yT ) + zT .

The existence of a unique optimal control of the problem (Pz) cannot be guar-
anteed by the coercivity assumption (SSC). There, positivity of Lvv was assumed
only for the subspace of directions, where the control ū is not strong active. Hence,
the optimization problem (Pz) is nonconvex in general. At this point, our method
of proof differs from that of [13]: There a stronger coercivity assumption was used,
which ensures the convexity of (Pz).

We will circumvent this difficulty in the following way: First, we show the exis-
tence of a unique solution if we substitute the control constraint by

(P̃z) u ∈ Ũad = {v ∈ Uad : vi(x, t) = ūi(x, t) iff (x, t) ∈ Qε,i}.

This solution also will be a solution to (Pz) provided the perturbations are small. In

what follows, we will denote by (P̃z) the linear-quadratic optimization problem (Pz)

with a changed set of admissible controls Ũad. For the solvability of (P̃z), we have
the following.

Theorem 5.2. Let (SSC) be satisfied for the reference solution v̄ = (ȳ, ū) with

adjoint state λ̄. Moreover, assume that the data satisfy y0, yT ∈ W
2−2/p, p
0 (Ω)2, yQ ∈

Lp(Q)2 with 2 < p < ∞, and that the bounds ua, ub are in L∞(Q)2.

Then problem (P̃z) admits a unique solution (yz, uz, λz). Moreover, the solution
mapping z → (yz, uz, λz) is Lipschitz continuous from Z to W 2,1

p × L∞(Q)2 ×W 2,1
p .

Proof. Let us denote the Lagrangian associated with (Pz) by L(z). Then it holds
for all y, u, λ that

(5.11) L(z)
vv (y, u, λ) = Lvv(ȳ, ū, λ̄).
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Now take two controls u1, u2 ∈ Ũad with associated solutions y1, y2 of (5.9). Then the
pair (y1 − y2, u1 − u2) fits into the assumption of (SSC), and we find

L(z)
vv (y, u, λ)[(y1 − y2, u1 − u2)]

2 = Lvv(ȳ, ū, λ̄)[(y1 − y2, u1 − u2)]
2 ≥ δ‖u1 − u2‖2

2.

Thus, the problem (P̃z) is convex on the space of admissible controls Ũad, which yields
the existence of a unique optimal control uz with state yz and adjoint λz.

Let be given two perturbation vectors z1, z2 ∈ Z. Denote by ui := uzi the optimal

control of the associated problems (P̃z) together with states yi := yzi and adjoints
λi := λzi for i = 1, 2.

Applying the convexity of the Lagrangian, the Lipschitz estimate

‖u1 − u2‖2 + ‖y1 − y2‖H2,1 + ‖λ1 − λ2‖H2,1 ≤ c‖z1 − z2‖Z

can be proved following the lines of similar proofs in [13, 29]. It remains to show
Lipschitz continuity of the solution mapping in stronger norms.

The space H2,1 is continuously imbedded in Lq(Q)2 for all q < ∞. Now, we get
Lipschitz continuity of the mapping z → uz using the projection formula (3.5). Since
the pointwise projection is Lipschitz continuous in Lp-spaces, we find

‖u1 − u2‖p =

∥∥∥∥Proj
Ũad

(
− 1

γ
λ1

)
− Proj

Ũad

(
− 1

γ
λ2

)∥∥∥∥
p

≤ 1

γ
‖λ1 − λ2‖p ≤ c‖λ1 − λ2‖H2,1 ≤ c‖z1 − z2‖Z .

The states yi are solutions of the linearized equation (5.9) with control ui and per-
turbed data zi. This equation is linearized around the state ȳ. The assumptions of
the regularity result of [29] are fulfilled, which gives us ȳ ∈ W 2,1

p . Thus, we can apply
Theorem 2.7 to obtain, for the difference y1 − y2,

‖y1 − y2‖W 2,1
p

≤ c (‖u1 − u2‖p + ‖z1 − z2‖Z) ≤ c‖z1 − z2‖Z .

Finally, we give a Lipschitz estimate for the adjoint states. These are solutions of the
adjoint system (5.10). Here, we make use of Theorem 3.3 to conclude

‖λ1 − λ2‖W 2,1
p

≤ c
(
‖y1 − y2‖W 2,1

p
+ ‖z1 − z2‖Z

)
≤ c‖z1 − z2‖Z .

After all, we proved the Lipschitz continuity of the solution mapping z → (yz, uz, λz)

associated with the optimal control problem (P̃z).
Note that by using Hilbert space methods it is not possible to derive such a result

for the constrained optimal control problem of nonstationary Navier–Stokes equations.
This is due to the following: Every regularity result for the nonstationary Navier–
Stokes system in Hilbert spaces that gives solutions in L∞(Q)2 or C(Q̄)2 requires a
certain regularity of derivatives of the control. But it is impossible to get Lipschitz
estimates of the control with respect to W 1,p-norms, because such an estimation has
to be based on the projection formula, which is not Lipschitz continuous between
W 1,p-spaces. This means that one cannot get L∞-Lipschitz estimates for the state
and the adjoint and consequently for the control using Hilbert space theory.

Now, we study the behavior of uz on the active set Qε. To this aim, we have to
rely on the L∞-stability result of the previous theorem.
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Corollary 5.3. Let the assumptions of Theorem 5.2 be fulfilled. Then there
exist ρz > 0 such that for all z ∈ Z with ‖z‖Z < ρz the optimal control of (P̃z), uz,
is strongly active a.e. on Qε,i; i.e., it holds that

|γuz,i(x, t) + λz,i(x, t) − zu,i(x, t)| >
ε

2
,

and the signs of (γūi(x, t) + λ̄i(x, t)) and (γuz,i(x, t) + λz,i(x, t) − zu,i(x, t)) coincide
a.e. on Qε,i for i = 1, 2.

Proof. By Theorem 5.2, the mapping z → (yz, uz, λz) is Lipschitz continuous from
Z to W 2,1

p ×L∞(Q)2×W 2,1
p . By imbedding arguments, we find that z → γuz+λz−zu

is Lipschitz as it maps Z to L∞(Q)2.
Let (x, t) ∈ Qε,i such that γūi(x, t) + λ̄i(x, t) > ε. Using this, we derive

ε < γūi(x, t) + λ̄i(x, t)

= γūi(x, t) + λ̄i(x, t) − (γuz,i(x, t) + λz,i(x, t) − zu,i(x, t))

+ (γuz,i(x, t) + λz,i(x, t) − zu,i(x, t))

≤ c‖z‖Z + γuz,i(x, t) + λz,i(x, t) − zu,i(x, t).

Therefore, the choice ρz := c−1ε/2 yields γuz,i(x, t) + λz,i(x, t) − zu,i(x, t) > ε/2.
Analogously, if for (x, t) ∈ Qε,i we have γūi(x, t) + λ̄i(x, t) < −ε, then the same

value of ρz gives γuz,i(x, t) + λz,i(x, t) − zu,i(x, t) < −ε/2.
Corollary 5.4. Let the assumptions of Theorem 5.2 be fulfilled. Then the

control uz associated with a perturbation z ∈ Z with ‖z‖Z < ρz, where ρz is given by
Corollary 5.3, fulfills the variational inequality

(5.12) (γuz + λz − zu, u− uz) ≥ 0 ∀u ∈ Uad;

i.e., it satisfies the first-order necessary optimality condition of (Pz).
Proof. Let u ∈ Uad be given. We begin with∫

Q

(γuz,i + λz,i − zu,i)(ui − uz,i) =

∫
Q\Qε,i

(γuz,i + λz,i − zu,i)(ui − uz,i)

+

∫
Qε,i

(γuz,i + λz,i − zu,i)(ui − ūi),

(5.13)

since uz ∈ Ũad means uz,i(x, t) = ūi(x, t) a.e. on Qε,i. The first integral is part of the

first-order necessary optimality conditions of (P̃z). Therefore, it is nonnegative.
By Corollary 5.3, (γūi(x, t) + λ̄i(x, t)) and (γuz,i(x, t) + λz,i(x, t) − zu,i(x, t))

have the same sign a.e. on Qε,i. Furthermore, ūi(x, t) is active on this set, so that
ui(x, t) − ūi(x, t) always has the same sign regardless of the choice of ui(x, t). Since
γū + λ̄ satisfies

∫
Qε,i

(γūi + λ̄i)(ui − ūi) ≥ 0, the same is true for γuz + λz − zu; i.e.,∫
Qε,i

(γuz,i + λz,i − zu,i)(ui − ūi) ≥ 0

is satisfied. So, we proved that both integrals in (5.13) are nonnegative. Adding them,
we derived the claim (5.12).

So far, we showed that (yz, uz, λz) fulfills the optimality system of the perturbed
problem (Pz), or equivalently, the linearized and perturbed generalized equation (5.6).
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We have to ask whether it might be a local minimizer of (Pz). With the previous corol-
laries and the identity (5.11) we have all ingredients at hand to prove that (yz, uz, λz)
satisfies a second-order sufficient optimality condition for the problem (Pz); i.e., it is
indeed a locally optimal solution.

Theorem 5.5. Let the assumptions of Theorem 5.2 be fulfilled. Then, there
are ρz, ρu > 0 such that the control uz associated with a perturbation z ∈ Z with
‖z‖Z < ρz is a locally optimal solution of (Pz), and it satisfies

J (z)(yz, uz) ≤ J (z)(y, u)

for all u ∈ Uad with ‖u − uz‖∞ ≤ ρu. Here yz and y are the solutions of (5.9)
associated with the controls uz and u.

Proof. Let u ∈ Uad with ui = ūi a.e. on Qε,i be given. Denote by y the associated
solution of (5.9). Set h = u − uz and w = y − yz. This implies h = 0 a.e. on
Qε,i. Therefore, h fits into the assumptions of (SSC). The triple (ȳ, ū, λ̄) satisfies the
second-order sufficient optimality condition (SSC), which means

(5.14) L(z)
vv (yz, uz, λz)[(w, h)]2 = Lvv(ȳ, ū, λ̄)[(w, h)]2 ≥ δ‖h‖2

2.

Corollaries 5.3 and 5.4 and the coercivity relation (5.14) build up the second-order
sufficient optimality condition connected with (Pz). Following the lines of [27], we
conclude that uz is locally optimal: There exists a constant ρu > 0 such that
J (z)(yz, uz) ≤ J (z)(y, u) holds for all u ∈ Uad with ‖u− uz‖∞ ≤ ρu.

Corollary 5.6. Let the assumptions of Theorem 5.2 be fulfilled. Then the
generalized equation (5.3) is strongly regular at (ȳ, ū, λ̄).

Proof. At first, the function F is a C1,1-mapping in the setting (5.4), because all
its components are linear with respect to the variables (y, u, λ) except the nonlinear
term in the state equation. The mapping y → B(y) is C1,1 from W 2,1

p to Lp(Q)2.
Theorem 5.5 states that the perturbed linearized optimization problem (Pz) has a

unique optimal solution in the ball BL∞(ū, ρu) for perturbations from BZ(0, ρz). By
Theorem 5.2, the associated state y lies in the ball BW 2,1

p
(ȳ, cyρz), whereas the adjoint

state λz is in BW 2,1
p

(λ̄, cλ ρz). Here, cy and cλ are the Lipschitz constants given by
Theorem 5.2. This altogether yields the unique solvability of the perturbed linearized
generalized equation (5.6) in BW 2,1

p
(ȳ, cy ρz)×BL∞(ū, ρu)×BW 2,1

p
(λ̄, cλ ρz) for pertur-

bations from BZ(0, ρz). As already mentioned, the solution mapping z → (yz, uz, λz)
is Lipschitz. Therefore, all requirements for strong regularity are fulfilled.

5.3. Local convergence of the SQP-type algorithm. With the help of the
previous section, we are in the situation to apply the abstract convergence result of
Theorem 5.1. However, we are not allowed to carry it over one-to-one. The SQP-
method as stated in the beginning of section 5 requires us to find the global minimizer
of the linear-quadratic subproblems (Pn). The analysis done so far guarantees only the
existence of a local solution of those subproblems in the neighborhood of the reference
control. Consequently, we have to modify the SQP-method to enforce the solutions
of the subproblems to remain near the reference solution in the following way.

Given iterates yn, un, λn, compute the next iterates yn+1, un+1, λn+1 as the solu-
tion of (Pn) subject to the control constraint

(5.15) u ∈ Uρ
ad := Uad ∩ {v ∈ L∞(Q)2 : ‖v − ū‖∞ ≤ ρ}.

See also [26], where those aspects are discussed in more detail.
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Then Theorem 5.1 yields quadratic convergence in a neighborhood of the solution.
Theorem 5.7. Let the assumptions of Theorem 5.2 be satisfied. Then there is

a constant ρs > 0, such that for every starting value (y1, u1, λ1) with u1 ∈ Uρs

ad the
SQP-method with control constraint (5.15) generates a uniquely determined sequence
(yn, un, λn) with un ∈ Uρs

ad , and it holds that

‖yn+1 − ȳ‖W 2,1
p

+ ‖un+1 − ū‖∞ + ‖λn+1 − λ̄‖W 2,1
p

≤ cs

(
‖yn − ȳ‖2

W 2,1
p

+ ‖un − ū‖2
∞ + ‖λn − λ̄‖2

W 2,1
p

)
with a constant cs independently of n. Here, yn and λn are the states and adjoints
associated with the control un.

The a priori unknown solution ū appears in the definition of Uρ
ad, which is neces-

sary to establish the convergence theory. To overcome this difficulty, one has to use
globalization techniques. For an application of a globalized SQP-method to compute
optimal controls of nonstationary Navier–Stokes equations, we refer to [12]. However,
in the numerical computations it was not necessary to enforce the method to stay in
a neighborhood of the last iterate.

6. Numerical results. Here, we provide a computational example that confirms
the convergence analysis of the SQP-method. The following control problem is given:
We want to reduce the recirculation bubble after the backward-facing step. We try
this by minimization of the objective functional

J(y, u) =
1

2

∫
Qc

|y(x, t) − yQ(x, t)|2dxdt +
γ

2

∫
Qc

|u(x, t)|2dxdt

with T = 1 and γ = 0.3. The control has to satisfy |ui(x, t)| ≤ 0.3 a.e. on Q, i = 1, 2.
The computational domain Ω is the backward-facing step. Here, observation and

control take place in the same part of the domain Qc = Ωc × (0, T ); cf. Figure 6.1.

0 2 4 6 8 10 12 14

−1

−0.5

0

0.5

1

Γin ΓoutΩc

Fig. 6.1. Flow configuration.

As desired flow yQ we chose the Stokes flow (see Figure 6.2), which is the solution
of the stationary Stokes equation with the same boundary conditions as used for the
nonstationary simulation.

At the inflow boundary Γin a parabolic velocity profile is prescribed, whereas
at the boundary Γout we use the “do-nothing” boundary condition (cf. [11]): ν ∂y

∂n −
pn = 0.

At the rest of the boundary we use homogeneous Dirichlet conditions. All compu-
tations were done with Reynolds number Re = 400, which yields a viscosity parameter
ν = 1/400. The initial velocity profile was chosen as the stationary limit of the un-
controlled Navier–Stokes equations; cf. Figure 6.3.

The continuous problem was discretized using Taylor–Hood finite elements with
different mesh sizes. Further, we use a semi-implicit Euler scheme for time integration
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Fig. 6.2. Desired profile is the Stokes flow.
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1

Fig. 6.3. Initial flow profile y0.

with an equidistant time discretization with different step lengths. The computations
are based on a finite element code of Hinze; see [16]. We computed solutions of the op-
timal control problem for different spatial and time discretizations. The discretization
parameters can be found in Table 6.1.

Table 6.1. Discretization parameters.

Triangles Velocity Pressure Mesh size Time step

nodes nodes h τ

Coarse 416 905 245 0.5 0.01

1664 3473 905 0.25 0.0025

Fine 6656 13601 3473 0.125 0.000625

On the finest discretization the number of unknown control variables is 1, 388, 800,
whereas the number of state and adjoint variables is each about 21 million. A further
uniform refinement will result in an optimization problem that is very expensive to
solve even on today’s computers.

The arising discrete control problems are solved by the SQP-method without
any globalization. The constrained SQP-subproblems (Pn) were solved by a primal-
dual active-set method (see, for instance, [13, 18]) using the method of conjugate
gradients (CGs) for the inner loop. Since those subproblems are linear-quadratic
optimization problems, this active-set strategy can be interpreted as a semismooth
Newton method [14] to solve the nonsmooth equation

u = ProjUad

(
− 1

γ
λ(u)

)
;

cf. (3.5). Here, λ(u) denotes the adjoint state for a given control u of the SQP-
subproblem (Pn). This method is known to converge locally with a superlinear con-
vergence rate [14] if the quadratic form L′′ is coercive. Under some strong assumptions
it converges even globally [18]. Moreover, the SQP-method, as well as the semismooth
Newton method, is known to exhibit a mesh-independence convergence; see [4, 15].

In all examples, the stopping criteria of the nested methods are balanced in the
following way as proposed in [13].
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The outer SQP-loop is terminated if two successive iterates are close enough:

‖yn − yn−1‖∞ + ‖un − un−1‖∞ + ‖λn − λn−1‖∞ ≤ εSQP .

The primal-dual active-set method is stopped if either the active sets of two successive
control iterates coincide or the error in the variational inequality given by

φ(u) =

∥∥∥∥u− ProjUad

(
− 1

γ
λ

)∥∥∥∥
2

is reduced by a factor of 0.1. The innermost iteration procedure—the CG method—
was stopped if the norm of the starting residual was reduced by a factor of 0.01. The
initial guesses u0 and y0 for control and state were set to zero in all computations.

The convergence behavior of the method for the three different discretizations is
listed in Table 6.2. We give an estimation of the convergence speed of the method
with respect to the L2- and L∞-norms by

qn2 =
‖un − un−1‖2

‖un−1 − un−2‖2
2

, qn∞ =
‖un − un−1‖∞

‖un−1 − un−2‖2
∞
.

Now, let us have a look on the convergence history of the SQP-method for the
three discretizations. It can be found in Table 6.2. The results for the two finest
discretizations are close, such that one can see a mesh-independence behavior. The
differences in the iterations on the coarse grid are due to the fact that the coarsest
spatial grid was too coarse, and the accuracy of solving the state equation was too
low. Mesh-independence results state that for discretizations that are sufficiently fine
the iteration rates do not depend on the mesh; see, e.g., [4, 15].

Table 6.2. Convergence history.

Grid Iteration ‖un − un−1‖∞ qn2 qn∞
Coarse 1 3.00 · 10−1

2 1.92 · 10−1 5.87 · 10−1 2.14 · 100

3 2.24 · 10−2 3.73 · 100 6.06 · 10−1

4 1.24 · 10−3 1.32 · 101 2.47 · 100

5 4.24 · 10−5 8.98 · 102 2.76 · 101

1 3.00 · 10−1

2 1.97 · 10−1 6.24 · 10−1 2.19 · 100

3 3.71 · 10−2 4.70 · 100 9.54 · 10−1

4 1.49 · 10−3 4.74 · 100 1.08 · 100

5 5.67 · 10−5 2.76 · 102 2.49 · 101

Fine 1 3.00 · 10−1

2 2.31 · 10−1 5.90 · 10−1 2.56 · 100

3 2.54 · 10−2 2.61 · 100 4.76 · 10−1

4 1.24 · 10−3 1.01 · 101 1.91 · 100

5 5.89 · 10−5 2.12 · 102 3.84 · 101

7. Conclusion. In this article, we investigated the SQP-method to solve opti-
mal control problems with control constraints for the nonstationary Navier–Stokes
equations. We were able to prove locally quadratic convergence of the SQP-method
by using a sufficient condition, which is weaker than required in other articles. The
control iterates will converge with respect to the L∞-norm. The method of proof re-
quires Lp-theory of the respective nonlinear and linearized state and adjoint equations,
which were provided in the course of the article.
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Abstract. In response to the increasing needs for control and optimization of hybrid systems,
this work is concerned with such asymptotic properties as recurrence (also known as weak stochastic
stability in the literature) and ergodicity of regime-switching diffusions. Using Liapunov functions,
necessary and sufficient conditions for positive recurrence are developed. Then, ergodicity of positive
recurrent regime-switching diffusions is obtained by constructing cycles using the associated discrete-
time Markov chains.
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1. Introduction.

1.1. Motivation. Owing to the increasing demands for modeling large-scale and
complex systems, designing optimal control, and conducting optimization tasks, hy-
brid systems are lately receiving growing attention. A distinctive feature of these
systems is the coexistence of continuous dynamics and discrete events. The collec-
tion of hybrid diffusion systems (also known as regime-switching diffusions) is such a
class. Recent research efforts in such systems to capture random evolutions stem from
emerging applications in financial engineering, wireless communications, manufactur-
ing systems, and other related fields. For instance, there have been resurgent interests
in using regime-switching diffusions to depict the financial market, where the switch-
ing or jump processes are used to describe stochastic volatility resulting from market
modes, interest rates, as well as other economic factors. Regime-switching diffusions
have also been used to enhance the versatility in risk management practice to better
understand ruin probability in insurance and to carry out dividend optimization.

Since the underlying systems in applications are often in operation for a relatively
long time, it is of foremost importance to understand the systems’ asymptotic behav-
ior. Considering average cost per unit time problems, we often wish to “replace” the
time-dependent instantaneous measure by a steady state (or ergodic) measure. Thus
we face the following questions. Do the systems possess ergodic property? Under
what conditions do the systems have the desired ergodicity? In accordance with [22],
a deterministic system ẋ = g(t, x), which satisfies appropriate conditions, is Lagrange
stable if the solutions are ultimately uniformly bounded. When stochastic systems
are considered, almost sure boundedness excludes many systems. Thus, in lieu of such
boundedness, one seeks stability in a certain weak sense [31]. One question of funda-
mental importance is, Under what conditions will the systems return to a prescribed
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compact region in finite time? In this paper, we focus on asymptotic behaviors and
address these issues. More specifically, we deal with such properties as recurrence,
positive recurrence, and ergodicity. One of the main features of our approach is the
use of appropriate Liapunov functions. We first develop Liapunov function–based
general criteria for positive recurrence, followed by a further study on ergodicity in
which we construct cycles using discrete-time Markov chains.

1.2. Formulation. Let (Ω,F , {Ft}t≥0 ,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual condition (i.e., it is right continuous and
F0 contains all P-null sets). Let x ∈ R

r, M = {1, . . . ,m0}, and Q(x) = (qij(x)) be
an m0 × m0 matrix depending on x and satisfying that for any x ∈ R

r, qij(x) ≥ 0
for i �= j and

∑m0

j=1 qij(x) = 0. For each i ∈ M, and for any twice continuously
differentiable function g(·, i), define L by

(1.1)

Lg(x, i) =
1

2

r∑
j,k=1

ajk(x, i)
∂2g(x, i)

∂xj∂xk
+

r∑
j=1

bj(x, i)
∂g(x, i)

∂xj
+ Q(x)g(x, ·)(i)

=
1

2
tr(a(x, i)∇2g(x, i)) +

〈
b(x, i),∇g(x, i)

〉
+ Q(x)g(x, ·)(i),

where ∇g(·, i) and ∇2g(·, i) denote the gradient and Hessian of g(·, i), respectively,
and

(1.2) Q(x)g(x, ·)(i) =

m0∑
j=1

qij(x)g(x, j) =
∑

j �=i,j∈M
qij(x)(g(x, j) − g(x, i)), i ∈ M.

Consider a Markov process Y (t) = (X(t), γ(t)), whose associated operator is given
by L; see [28] for further references. Note that Y (t) has two components, an r-
dimensional diffusion component X(t) and a jump component γ(t) taking value in
M = {1, . . . ,m0}.

The process Y (t) = (X(t), γ(t)) can be described by the following equations:

(1.3) dX(t) = b(X(t), γ(t))dt + σ(X(t), γ(t))dw(t), X(0) = x, γ(0) = γ,

and

(1.4) P{γ(t + Δt) = j|γ(t) = i,X(s), γ(s), s ≤ t} = qij(X(t))Δt + o(Δt), i �= j,

where w(t) is a d-dimensional standard Brownian motion, b(·, ·) : R
r × M �→ R

r,
and σ(·, ·) : R

r ×M �→ R
r×d satisfying σ(x, i)σ′(x, i) = a(x, i) (where z′ denotes the

transpose of z for z ∈ R
ι1×ι2 with ι1, ι2 ≥ 1). We refer the reader to [28] for related

stochastic differential equations involving Poisson measures describing the evolution
of the jump processes. In this paper, our study will mainly be concerned with the use
of the operator L given in (1.1). Throughout the paper, we assume that both b(·, i)
and σ(·, i) satisfy the usual local Lipschitz condition and linear growth condition for
each i ∈ M and that Q(·) is bounded and continuous. It is well known that under
these conditions, the system (1.3)–(1.4) has a unique strong solution; see [12] or [28]
for details. In what follows, denote the solution of (1.3)–(1.4) by (Xx,γ(t), γ(t)) if
the emphasis on the initial data is needed. To study recurrence and ergodicity of
the process Y (t) = (X(t), γ(t)), we further assume that the following condition (A)
holds throughout the paper. For convenience, we also collect the boundedness and
continuity of Q(·) in (A).
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(A) The operator L satisfies the following conditions:
(i) For each i ∈ M, a(x, i) = (ajk(x, i)) is symmetric and satisfies

(1.5) κ1|ξ|2 ≤
〈
a(x, i)ξ, ξ

〉
≤ κ−1

1 |ξ|2 for all ξ ∈ R
r,

with some constant κ1 ∈ (0, 1] for all x ∈ R
r.

(ii) For i �= j, qij(x) > 0. The matrix-valued function Q(·) is bounded and
continuous.

As mentioned earlier, the motivation of our study stems from recent interests in
regime-switching diffusion processes that include a random process with a finite-state
space in addition to the usual diffusion component. The finite-state process depicts
a random environment that has right-continuous sample paths and that cannot be
described by a diffusion. Consequently, both continuous dynamics (diffusions) and
discrete events (jumps) coexist and yield hybrid dynamic systems, which provide a
more realistic formulation for many applications.

Regime-switching diffusions lately have received much attention. For instance,
optimal controls of switching diffusions were studied in [4] using a martingale prob-
lem formulation; jump-linear systems were considered in [13]; stability of semilinear
stochastic differential equations with Markovian switching was considered in [2]; er-
godic control problems of switching diffusions were studied in [9]; stability of stochastic
differential equations with Markovian switching was treated in [23, 25, 33]; asymptotic
expansions for solutions of integrodifferential equations for transition densities of sin-
gularly perturbed switching-diffusion processes were developed in [11]; and switching
diffusions were used for stock liquidation models in [34]. For some recent applications
of hybrid systems in communication networks, air traffic management, and control
problems, etc., we refer the reader to [14, 15, 24, 26, 29] and references therein.

In [2, 23, 33, 34], Q(x) = Q, a constant matrix. In such cases, γ(·) is a continuous-
time Markov chain. Moreover, it is assumed that the Markov chain γ(·) is independent
of the Brownian motion. In our formulation, x-dependent Q(x) is considered, and as a
result, the transition rates of the discrete event γ(·) depend on the continuous dynamic
X(·), as depicted in (1.4). Although the pair (X(·), γ(·)) is a Markov process, for x-
dependent Q(x), only for each fixed x, the discrete-event process γ(·) is a Markov
chain. Such a formulation enables us to describe complex systems and their inherent
uncertainty and randomness in the environment. However, it adds much difficulty
to our analysis. Our formulation is motivated by the fact that in many applications,
the discrete event and continuous dynamic are intertwined, and the independence
assumption of the discrete-event process and the Brownian motion appears to be
restrictive.

One of the important problems concerning switching models is their longtime be-
havior. Despite the growing interests in treating regime-switching systems (see the
works mentioned in the previous paragraphs and references therein), the results re-
garding such issues as recurrence and positive recurrence (or weak stochastic stability
as termed in [31]) are still scarce. Furthermore, these are not simple extensions of
their diffusion counterparts. Due to the coupling and interactions, elliptic systems
instead of a single elliptic equation must be treated. Moreover, even though the clas-
sical approaches such as Liapunov function methods and Dynkin’s formula are still
applicable for switching diffusions, the analysis is much more delicate than the diffu-
sion counterparts. It requires careful handling of discrete-event component γ(·); see,
for example, the proofs of Lemma 3.7, Lemma 3.8, and Theorem 3.12.

In addition to recurrence, many applications in control and optimization require
minimizing an expected cost of a certain objective function. The computation is
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difficult and complicated. Significant effort has been devoted to approximating such
expected values by replacing the measures with stationary measures when the time
horizon is long enough. To justify such a replacement, ergodicity is needed. For
diffusion processes, much effort has been devoted to ergodicity; see, for example,
[3, 20], among others. For regime-switching diffusions, asymptotic stability for the
density of the so-called two-state diffusion process (X(t), γ(t)) was established in
[25]; asymptotic stability in distribution for the process (X(t), γ(t)) was obtained in
[33], where the jump component γ(·) is generated by some constant matrix Q and
is independent of the Brownian motion. In this work, we will address ergodicity for
(X(t), γ(t)) under different conditions than those in [25, 33]. Moreover, our work is
applicable to more general settings. The discrete component γ(·) has an x-dependent
generator Q(x) and takes value in a finite-state space M = {1, 2, . . . ,m0}. Another
highlight of this paper is that we obtain the explicit representation of the invariant
measure of the process (X(t), γ(t)) by considering certain cylinder sets and by defining
cycles appropriately. As a by-product, we demonstrate a strong law of large numbers
type of theorem for positive recurrent regime-switching diffusions.

Compared with the existing work in the literature, the novelty and contribution
of this paper are as follows. (a) By considering the x-dependent generator Q(x), our
model provides a more realistic formulation which allows the switching component
to depend on the continuous states. This, in turn, allows for the coupling and cor-
relation between X(t) and γ(t). (b) By appropriately defining cycles, we establish
the ergodicity of the underlying process. (c) Moreover, explicit representation of the
invariant measure for positive recurrent regime-switching diffusions is given.

The rest of the paper is arranged as follows. In section 2, in addition to intro-
ducing certain notation, we also provide definitions of regularity, recurrence, positive
recurrence, and null recurrence. Section 3 focuses on positive recurrence. We present
results of necessary and sufficient conditions for recurrence using Liapunov functions,
along with two examples as applications of the general results. Section 4 develops
ergodicity of switching-diffusion processes. Discussions and further remarks are made
in section 5. An appendix containing the proofs of several technical lemmas is placed
at the end of the paper to facilitate the reading.

2. Regularity, recurrence, positive recurrence, and null recurrence.
This section is devoted to the definitions of regularity, recurrence, positive recur-
rence, and null recurrence. For simplicity, we introduce some notation as follows. For
any U = D × J ⊂ R

r ×M, where D ⊂ R
r and J ⊂ M, denote

(2.1)
τU := inf{t ≥ 0 : (X(t), γ(t)) /∈ U},
σU := inf{t ≥ 0 : (X(t), γ(t)) ∈ U}.

In particular, if U = D ×M is a “cylinder,” we set

(2.2)
τD := inf{t ≥ 0 : X(t) /∈ D},
σD := inf{t ≥ 0 : X(t) ∈ D}.

Definition 2.1 (regularity). A Markov process (Xx,γ(t), γ(t)) is said to be reg-
ular, if for any 0 < T < ∞,

(2.3) P

{
sup

0≤t≤T
|Xx,γ(t)| = ∞

}
= 0.
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Remark 2.2. Let βn be the first exit time of the process (Xx,γ(t), γ(t)) from the
bounded set {x̃ : |x̃| < n} ×M, that is,

(2.4) βn = inf{t : |Xx,γ(t)| = n}.

Then, the sequence {βn} is monotonically increasing and hence has a (finite or infinite)
limit. It is not difficult to see that the process (Xx,γ(t), γ(t)) is regular if and only if

(2.5) βn → ∞ almost surely (a.s.) as n → ∞.

In what follows, we assume that the process (Xx,γ(t), γ(t)) is regular. Subsequently
we will use (2.5) often.

Definition 2.3. Recurrence, positive recurrence, and null recurrence are defined
as follows.

(i) Recurrence. For U := D × J , where J ⊂ M and D ⊂ R
r is an open

set with compact closure, let σx,γ
U = inf{t : (Xx,γ(t), γ(t)) ∈ U}. A regular process

(Xx,γ(·), γ(·)) is recurrent with respect to U if P{σx,γ
U < ∞} = 1 for any (x, γ) ∈

Dc ×M, where Dc denotes the complement of D.
(ii) Positive recurrence and null recurrence. A recurrent process with finite mean

recurrence time for some set U = D×J , where J ⊂ M and D ⊂ R
r is a bounded open

set with compact closure, is said to be positive recurrent with respect to U ; otherwise,
the process is null recurrent with respect to U .

3. Positive recurrence. This section takes up the positive recurrence issue. It
entails the use of appropriate Liapunov functions. We begin this section with certain
preparatory results, which indicate that the process Y (t) = (X(t), γ(t)) is recurrent
(resp., positive recurrent) with respect to some “cylinder” D × M if and only if it
is recurrent (resp., positive recurrent) with respect to D × {
}, where D ⊂ R

r is a
nonempty open set with compact closure and 
 ∈ M. We will also prove that the
properties of recurrence and positive recurrence do not depend on the choice of the
open set D ⊂ R

r or 
 ∈ M. After the preparatory results, two subsections follow. The
first presents Liapunov function–based criteria on positive recurrence. As applications
of the general results, a subsection containing two examples is provided. Note that
Example 3.16 is quite interesting because it shows that the combination of a transient
diffusion and a positive recurrent diffusion is a positive recurrent switching diffusion.

3.1. Preparatory results. We first prove the following theorem, which asserts
that under assumption (A), the process Y (t) = (X(t), γ(t)) will exit every bounded
“cylinder” with a finite mean exit time.

Theorem 3.1. Let D ⊂ R
r be a nonempty open set with compact closure D. Let

τD := inf{t ≥ 0 : X(t) /∈ D}. Then

(3.1) Ex,iτD < ∞ for any (x, i) ∈ D ×M.

Proof. First, note that from the uniform ellipticity condition (1.5), we have

(3.2) κ1 ≤ a11(x, i) ≤ κ−1 for any (x, i) ∈ D ×M.

For each i ∈ M, consider W (x, i) = k − (x1 + β)c, where the constants k, c (with
c ≥ 2), and β are to be specified, and x1 = e′1x is the first component of x, where
e1 = (1, 0, . . . , 0)′. Direct computation leads to

LW (x, i) = −c(x1 + β)c−2

[
b1(x, i)(x1 + β) +

c− 1

2
a11(x, i)

]
.
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Set

c =
2

κ1

(
sup

(x,i)∈D×M
|b1(x, i)(x1 + β)| + 1

)
+ 1.

Then we have from (3.2) that

c− 1

2
a11(x, i) + b1(x, i)(x1 + β) ≥ c− 1

2
κ1 − sup

(x,i)∈D×M
|b1(x, i)(x1 + β)| ≥ 1.

Meanwhile, since x ∈ D ⊂ D and D is compact, we can choose β such that
1 ≤ x1 + β ≤ M for all x ∈ D, where M is some positive constant. Thus we
have (x1 + β)c−2 ≥ 1c−2 = 1. Finally, we choose k large enough so that W (x, i) =
k − (x1 + β)c > 0 for all (x, i) ∈ D × M. Therefore, W (x, i), i ∈ M, are Liapunov
functions satisfying

(3.3) LW (x, i) ≤ −c for all (x, i) ∈ D ×M.

Now let τD(t) := min{t, τD}. Then we have from Dynkin’s formula and (3.3) that

Ex,iW (X(τD(t)), γ(τD(t))) −W (x, i)

= Ex,i

∫ τD(t)

0

LW (X(u), γ(u))du ≤ −cEx,iτD(t).

Since the function W (x, i) is nonnegative, we have

(3.4) Ex,iτD(t) ≤ 1

c
W (x, i).

Because

Ex,iτD(t) = Ex,iτDχ[τD≤t] + Ex,itχ[τD>t],

we have from (3.4) that tPx,i[τD > t] ≤ 1
cW (x, i). Letting t → ∞, we obtain

Px,i[τD = ∞] = 0 or Px,i[τD < ∞] = 1. This yields that τD(t) → τD a.s. Px,i

as t → ∞. Now applying Fatou’s lemma, as t → ∞, we obtain

Ex,iτD ≤ 1

c
W (x, i) < ∞,

as desired.
Remark 3.2. A closer examination of the proof shows that the conclusion of

Theorem 3.1 remains valid if we replace the uniform ellipticity condition (1.5) by a
weaker condition as follows: There exist some ι = 1, 2, . . . , r and positive constant κ
such that

(3.5) aιι(x, i) ≥ κ for any (x, i) ∈ D ×M.

To facilitate subsequent discussions, in what follows we present a twice contin-
uously differentiable (with respect to the variable x) function u(·, ·) : R

r × M �→ R

that is called L-harmonic in a domain U ⊂ R
r ×M if Lu(x, i) = 0 for all (x, i) ∈ U .

Following the well-known arguments in [8, Vol. II, Chapter 13], we obtain the follow-
ing two lemmas. (Note that Lemma 3.3 was also proved in [9, Lemma 4.3], and in [6]
for the case when the operator L is in divergence form.)
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Lemma 3.3. Let U = D × M ⊂ R
r × M, where D ⊂ R

r is a nonempty open
set. Assume that Px,i{τU < ∞} = 1 for any (x, i) ∈ D × M and that f(·, i) ∈
C2(D) ∩ C(D) for each i ∈ M. Then

(3.6) Lf(x, i) = 0 for any (x, i) ∈ D ×M

if and only if

f(x, i) = Ex,if(X(τU ), γ(τU )) =

m0∑
j=1

∫
∂D

Px,i {(X(τU ), γ(τU )) ∈ (dy × {j})} f(y, j).

Moreover, we further assume that ∂D is sufficiently smooth, D is compact, and ϕ(·, i)
is an arbitrary continuous function on ∂D for any i ∈ M. Then

(3.7) f(x, i) = Ex,iϕ(X(τU ), γ(τU ))

is the unique solution of the differential equation (3.6) with boundary condition

(3.8) lim
x→x0

f(x, i) = ϕ(x0, i) for any (x0, i) ∈ ∂D ×M.

Lemma 3.4. Let U = D ×M ⊂ R
r ×M, where D ⊂ R

r is a nonempty open set
with compact closure. Suppose g(·, i) ∈ Cb(D) and f(·, i) ∈ C2(D) for each i ∈ M.
Then f solves the boundary value problem{

Lf(x, i) = −g, (x, i) ∈ D ×M,

f(x, i) = 0, (x, i) ∈ ∂D ×M

if and only if

f(x, i) = Ex,i

∫ τU

0

g(X(t), γ(t))dt for all (x, i) ∈ D ×M.

Using Lemmas 3.3 and 3.4, we proceed to prove that if the process Y (t) =
(X(t), γ(t)) is recurrent (resp., positive recurrent) with respect to some “cylinder”
D×M ⊂ R

r ×M, then it is recurrent (resp., positive recurrent) with respect to any
“cylinder” E ×M ⊂ R

r ×M, where D is any nonempty domain in R
r with compact

closure. These results are proved in the following two lemmas. To preserve the flow
of presentation, the proofs are postponed to the appendix.

Lemma 3.5. Let D ⊂ R
r be a nonempty open set with compact closure. Suppose

that

(3.9) Px,i{σD < ∞} = 1 for any (x, i) ∈ Dc ×M.

Then for any nonempty open set E ⊂ R
r, we have

Px,i{σE < ∞} = 1 for any (x, i) ∈ Ec ×M.

Lemma 3.6. Let D ⊂ R
r be a nonempty open set with compact closure. Suppose

that

(3.10) Ex,iσD < ∞ for any (x, i) ∈ Dc ×M.
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Then for any nonempty open set E ⊂ R
r, we have

Ex,iσE < ∞ for any (x, i) ∈ Ec ×M.

The following lemma shows that if the process Y (t) = (X(t), γ(t)) reaches the
“cylinder” D ×M in finite time a.s. Px,i, then it will visit the set D × {
} in finite
time a.s. Px,i for any 
 ∈ M. Its proof, together with the proof of Lemma 3.8, is also
placed in the appendix.

Lemma 3.7. Let D ⊂ R
r be a nonempty open set with compact closure satisfying

(3.11) Py,j{σD < ∞} = 1 for any (y, j) ∈ Dc ×M.

Then for any (x, i) ∈ R
r ×M,

(3.12) Px,i{σD,� < ∞} = 1 for any 
 ∈ M.

With Lemma 3.7, we can now prove that if the process Y (t) = (X(t), γ(t)) is
positive recurrent with respect to some “cylinder” D×M, then it is positive recurrent
with respect to the set D × {
} ⊂ R

r ×M.

Lemma 3.8. Let D ⊂ R
r be a nonempty open set with compact closure satisfying

(3.13) Ey,jσD < ∞ for any (y, j) ∈ Dc ×M.

Then for any (x, i) ∈ R
r ×M,

(3.14) Ex,iσD,� < ∞ for any 
 ∈ M.

Remark 3.9. By virtue of Lemmas 3.5–3.8, under assumption (A), the process
Y (t) = (X(t), γ(t)) is recurrent (resp., positive recurrent) with respect to some “cylin-
der” D × M if and only if it is recurrent (resp., positive recurrent) with respect to
the product set D × {
} ⊂ R

r × M for any 
 ∈ M. Also we have proved that the
properties of recurrence and positive recurrence are independent of the choice of the
set D. We summarize these into the following theorem.

Theorem 3.10. Suppose that (A) holds. Then the following assertions hold:

(i) The process Y (t) = (X(t), γ(t)) is recurrent (resp., positive recurrent) with
respect to D ×M if and only if it is recurrent (resp., positive recurrent) with respect
to D × {
}, where D ⊂ R

r is a nonempty open set with compact closure and 
 ∈ M.
(ii) If the process Y (t) = (X(t), γ(t)) is recurrent (resp., positive recurrent) with

respect to some U = D × M, where D ⊂ R
r is a nonempty open set with compact

closure, then it is recurrent (resp., positive recurrent) with respect to any Ũ = D̃×M,

where D̃ ⊂ R
r is any nonempty open set.

Remark 3.11. In view of Theorem 3.10, we make the following remarks.

(i) A regular process Y (t) = (X(t), γ(t)) with the associated generator L satis-
fying (A) is said to be recurrent if it is recurrent with respect to some U = D × {
},
where D ⊂ R

r is a nonempty bounded open set and 
 ∈ M; otherwise it is said to be
transient.

(ii) Henceforth, we call a recurrent process Y (t) = (X(t), γ(t)) positive recurrent
if it is positive recurrent with respect to some bounded domain U = D×{
} ⊂ R

r×M;
otherwise, we have a null recurrent process.
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3.2. General criteria.
Theorem 3.12. A necessary and sufficient condition for positive recurrence

with respect to a domain U = D × {
} ⊂ R
r × M is that for each i ∈ M, there

exists a nonnegative function V (·, i) : Dc �→ R such that V (·, i) is twice continuously
differentiable and that

(3.15) LV (x, i) = −1, (x, i) ∈ Dc ×M.

Let u(x, i) = Ex,iσD. Then u(x, i) is the smallest positive solution of

(3.16)

{
Lu(x, i) = −1, (x, i) ∈ Dc ×M,

u(x, i) = 0, (x, i) ∈ ∂D ×M,

where ∂D denotes the boundary of D.
Proof. The proof is organized into three steps.
Step 1. Show that the process Y (t) = (X(t), γ(t)) is positive recurrent if there

exists a nonnegative function V (·, ·) satisfying the conditions of the theorem. Choose
n0 to be a positive integer sufficiently large so that D ⊂ {|x| < n0}. Fix any (x, i) ∈
Dc ×M. For any t > 0 and n ∈ N with n > n0, we define

σ
(n)
D (t) = min{σD, t, βn},

where βn is defined as in (2.4) and σD is the first entrance time to D. That is,
σD = inf{t : X(t) ∈ D}. Now Dynkin’s formula and (3.15) imply that

Ex,iV
(
X
(
σ

(n)
D (t)

)
, γ
(
σ

(n)
D (t)

))
− V (x, i)

= Ex,i

∫ σ
(n)
D (t)

0

LV (X(s), γ(s))ds = −Ex,iσ
(n)
D (t).

Note that the function V is nonnegative; hence we have Ex,iσ
(n)
D (t) ≤ V (x, i). Mean-

while, since the process Y (t) = (X(t), γ(t)) is regular, it follows from (2.5) that

σ
(n)
D (t) → σD(t) a.s. as n → ∞, where σD(t) = min{σD, t}. By virtue of Fatou’s

lemma, we obtain

(3.17) Ex,iσD(t) ≤ V (x, i).

Now the argument after (3.4) in the proof of Theorem 3.1 yields that Ex,iσD ≤
V (x, i) < ∞. Then Lemma 3.8 implies that Ex,iσU = Ex,iσD,� < ∞. Since (x, i) ∈
Dc ×M is arbitrary, we conclude that Y (t) is positive recurrent with respect to U .

Step 2. Show that u(x, i) := Ex,iσD is the smallest positive solution of (3.16). To
this end, let n0 be defined as before, that is, a positive integer sufficiently large so that

D ⊂ {|x| < n0}. For n ≥ n0, set σ
(n)
D = min{σD, βn}. Clearly, we have σ

(n)
D ≤ σ

(n+1)
D

for all n ≥ n0. Then the regularity of the process Y (t) implies that σ
(n)
D ↗ σD a.s.

as n → ∞. Hence the monotone convergence theorem implies that as n → ∞,

(3.18) Ex,iσ
(n)
D ↗ Ex,iσD.

Note that Ex,iσD < ∞ from Step 1. Meanwhile, Lemma 3.4 implies that the function

un(x, i) = Ex,iσ
(n)
D solves the boundary value problem

(3.19) Lun(x, i) = −1, un(x, i)|x∈∂D = 0, un(x, i)||x|=n = 0, i ∈ M.
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Thus the function vn(x, i) := un+1(x, i)−un(x, i) is L-harmonic in the domain (Dc ∩
{|x| < n})×M. Since σ

(n)
D ≤ σ

(n+1)
D , it follows that Ex,iσ

(n)
D ≤ Ex,iσ

(n+1)
D , and hence

vn(x, i) ≥ 0. Now (3.18) implies that

(3.20) u(x, i) = un0
(x, i) +

∞∑
k=n0

vk(x, i).

Using Harnack’s inequality for L-elliptic systems of equations (see [1, 7], and also [30]
for general references on elliptic systems), it can be shown by a slight modification of
the well-known arguments (see, for example, [10, pp. 21–22]) that the sum of a con-
vergent series of positive L-harmonic functions is also an L-harmonic function. Hence
we conclude that u(x, i) is twice continuously differentiable and satisfies (3.16). To
verify that u(x, i) is the smallest positive solution of (3.16), let w(x, i) be any positive

solution of (3.16). Note that un(x, i) = Ex,iσ
(n)
D satisfies the boundary conditions

un(x, i)|x∈∂D = 0, un(x, i)||x|=n = 0, i ∈ M.

Then the functions un(x, i) − w(x, i), i ∈ M, are L-harmonic and satisfy un(x, i) −
w(x, i) = 0 for (x, i) ∈ ∂D×M and un(x, i)−w(x, i) < 0 for (x, i) ∈ {|x| = n} ×M.
Hence it follows from the maximum principle for L-elliptic system of equations [27, p.
192] that un(x, i) ≤ w(x, i) in (Dc ∩ {|x| < n}) ×M for all n ≥ n0. Letting n → ∞,
we obtain u(x, i) ≤ w(x, i), as desired.

Step 3. Show that there exists a nonnegative function V satisfying the conditions
of the theorem if the process Y (t) = (X(t), γ(t)) is positive recurrent with respect to
the domain U = D×{
}. Then Ex,iσD < ∞ for all (x, i) ∈ Dc×M, and consequently
(3.20) and Harnack’s inequality for the L-elliptic system of equations [1, 7] imply that
the bounded monotone increasing sequence un(x, i) converges uniformly on every
compact subset of Dc×M. Moreover, its limit u(x, i) satisfies the equation Lu(x, i) =
−1 for every i ∈ M. Therefore the function V (x, i) := u(x, i) satisfies (3.15). This
completes the proof of the theorem.

Theorem 3.13. A necessary and sufficient condition for positive recurrence
with respect to a domain U = D × {
} ⊂ R

r × M is that for each i ∈ M, there
exists a nonnegative function V (·, i) : Dc �→ R such that V (·, i) is twice continuously
differentiable and that for some α > 0,

(3.21) LV (x, i) ≤ −α, (x, i) ∈ Dc ×M.

Proof. Necessity. This part follows immediately from the necessity of Theo-
rem 3.12 with α = −1.

Sufficiency. Suppose that there exists a nonnegative function V satisfying the

conditions of the theorem. Define the stopping time σ
(n)
D (t) = min{σD, t, βn} as in

the proof of Theorem 3.12. Now Dynkin’s formula and (3.21) imply that for any
(x, i) ∈ Dc ×M,

Ex,iV

(
X
(
σ

(n)
D (t)

)
, γ
(
σ

(n)
D (t)

))
− V (x, i)

= Ex,i

∫ σ
(n)
D (t)

0

LV (X(s), γ(s))ds ≤ −αEx,iσ
(n)
D (t).

Hence we have by the nonnegativity of the function V that Ex,iσ
(n)
D (t) ≤ 1

αV (x, i).

Meanwhile, the regularity of the process Y (t) = (X(t), γ(t)) implies that σ
(n)
D (t) →
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σD(t) a.s. as n → ∞, where σD(t) = min{σD, t}. Therefore Fatou’s lemma leads to
Ex,iσD(t) ≤ 1

αV (x, i). Moreover, from the proof of Theorem 3.12, σD(t) → σD a.s. as
t → ∞. Thus we obtain Ex,iσD ≤ 1

αV (x, i) by applying Fatou’s lemma again. Then
Lemma 3.8 implies that Ex,iσU = Ex,iσD,� < ∞. Since (x, i) ∈ Dc ×M is arbitrary,
we conclude that Y (t) is positive recurrent with respect to U . This completes the
proof of the theorem.

3.3. Examples. In this subsection, we provide two examples to illustrate The-
orems 3.12 and 3.13.

Example 3.14. Suppose that for each x ∈ R
r and each i ∈ M, there exist positive

constants c and α such that for all x with |x| ≥ c,

(3.22)

〈
b(x, i),

x

|x|

〉
< −α,

where |x| denotes the norm of x. Then the process Y (t) = (X(t), γ(t)) is positive
recurrent.

First note that (1.5) implies that for all x with |x| ≥ r
ακ1

, we have

tr(a(x, i)) =
r∑

j=1

〈
a(x, i)ej , ej

〉
≤

r∑
j=1

κ−1
1 ≤ α|x|.

Then by Theorem 3.10, it is enough to prove that the process Y (t) = (X(t), γ(t)) is
positive recurrent with respect to the domain U := {|x| < �} × {
} for some 
 ∈ M,
where � := max{c, r

ακ1
}. To this end, consider the function

V (x, i) =
1

2

〈
x, x

〉
for each i ∈ M and for all |x| ≥ �.

Then for each i ∈ M, ∇V (·, i) = x and ∇2V (·, i) = I, where I is the r × r identity
matrix. Thus by the definition of L, we have for all (x, i) ∈ {|x| ≥ �} ×M that

LV (x, i) =
1

2
tr(a(x, i)) +

〈
b(x, i),

x

|x|

〉
|x| < 1

2
α|x| − α|x| = −1

2
α|x| ≤ −1

2
α�.

Then the conclusion immediately follows from Theorem 3.13.
Remark 3.15. Suppose that the diffusion component X(t) of the process Y (t) =

(X(t), γ(t)) is one-dimensional and that there exist constants c0 > 0 and c1 > 0 such
that for each i ∈ M,

(3.23) b(x, i)

{
< −c1 for x > c0,
> c1 for x < −c0.

Then the process Y (t) = (X(t), γ(t)) is positive recurrent. In fact, the conclusion
follows immediately if we observe that (3.23) satisfies (3.22). Alternatively, we can
verify this directly by defining the Liapunov function V (x, i) = |x| for each i ∈ M.

Example 3.16. To illustrate the utility of Theorem 3.13, consider a real-valued
process

(3.24) dX(t) = b(X(t), γ(t))dt + σ(X(t), γ(t))dw(t),

where γ(t) is a two-state random jump process, with x-dependent generator

Q(x) =

(
− 1

3 − 1
4 cosx 1

3 + 1
4 cosx

7
3 + 1

2 sinx − 7
3 − 1

2 sinx

)
,
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and

b(x, 1) = −x, σ(x, 1) = 1, b(x, 2) = x, σ(x, 2) = 1.

Thus (3.24) can be regarded as the result of the following two diffusions:

dX(t) = −X(t)dt + dw(t),(3.25)

dX(t) = X(t)dt + dw(t),(3.26)

switching back and forth from one to the other according to the movement of γ(t).
Note that (3.25) is positive recurrent while (3.26) is a transient diffusion process.

But, the switching diffusion (3.24) is positive recurrent. We verify these as follows.
Consider the Liapunov function V (x, 1) = |x|. Let L1 be the operator associated with
(3.25). Then we have for all |x| ≥ 1, L1V (x, 1) = −x · signx = −|x| ≤ −1 < 0. Thus
it follows from [16, Theorem 3.7.3] that (3.25) is positive recurrent. Recall that the
real-valued diffusion process dX(t) = b(X(t))dt + σ(X(t))dw(t) with σ(x) �= 0 for all

x ∈ R is recurrent if and only if
∫ x

0
exp{−2

∫ u

0
b(z)
σ2(z)dz}du → ±∞ as x → ±∞; see

[16, p. 105]. Direct computation shows that (3.26) fails to satisfy this condition and
hence is transient.

Next, we use Theorem 3.13 to demonstrate that the switching diffusion (3.24) is
positive recurrent for appropriate Q. Consider Liapunov functions

V (x, 1) = |x|, V (x, 2) =
7

3
|x|.

Then we have

LV (x, 1) = −x · signx +

(
1

3
+

1

4
cosx

)(
7

3
− 1

)
|x| ≤ −2

9
|x| ≤ −2

9
,

LV (x, 2) = x · 7

3
signx +

(
7

3
+

1

2
sinx

)(
1 − 7

3

)
|x| ≤ −1

9
|x| ≤ −1

9

for all |x| ≥ 1. Then the switching diffusion (3.24) is positive recurrent by Theo-
rem 3.13.

4. Ergodicity. In this section, we study the ergodic properties of the process
Y (t) = (X(t), γ(t)) under the assumption that the process is positive recurrent with
respect to some bounded domain U = E × {
}, where E ⊂ R

r and 
 ∈ M are fixed
throughout this section. We also assume that the boundary ∂E of E is sufficiently
smooth. Let the operator L satisfy (A). Then it follows from Theorem 3.10 that the
process is positive recurrent with respect to any nonempty open set.

Let D ⊂ R
r be a bounded ball with sufficiently smooth boundary ∂D such that

E ∪ ∂E ⊂ D. Let ς0 = 0 and define the stopping times ς1, ς2, . . . inductively as
follows: ς2n+1 is the first time after ς2n at which the process Y (t) = (X(t), γ(t))
reaches the set ∂E × {
}, and ς2n+2 is the first time after ς2n+1 at which the path
reaches the set ∂D×{
}. Now we can divide an arbitrary sample path of the process
Y (t) = (X(t), γ(t)) into cycles:

(4.1) [ς0, ς2), [ς2, ς4), . . . , [ς2n, ς2n+2), . . . .

Figure 1 presents a demonstration of such cycles when the discrete component γ(·)
has three states.
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∂D ∂E

∂D ∂E

∂D ∂E

ED

ED

ED

State 1

State 2

State 3

�

ς0

�

ς1

�

�

�

�

ς2

�ς3

�

ς4

Fig. 1. A sample path of the process Y (t) = (X(t), γ(t)) when m0 = 3.

The process Y (t) = (X(t), γ(t)) is positive recurrent with respect to E ×{
} and
hence positive recurrent with respect to D × {
} by Theorem 3.10. It follows that
all the stopping times ς0 < ς1 < ς2 < ς3 < ς4 < · · · are finite a.s. Since the process
Y (t) = (X(t), γ(t)) is positive recurrent, we may assume without loss of generality
that Y (0) = (X(0), γ(0)) = (x, 
) ∈ ∂D × {
}. It follows from the strong Markov
property of the process Y (t) = (X(t), γ(t)) that the sequence {Yn} is a Markov chain

on ∂D × {
}, where Yn = Y (ς2n) = (Xn, 
), n = 0, 1, 2, . . . . Let P̃ (x,A) denote the
one-step transition probabilities of this Markov chain, that is,

P̃ (x,A) = P (Y1 ∈ (A× {
}) | Y0 = (x, 
)) ,

for any x ∈ ∂D and A ∈ B(∂D), where B(∂D) denotes the collection of Borel measur-
able sets on ∂D. Note that the process Y (t) = (X(t), γ(t)), starting from (x, 
), may
jump many times before it reaches the set (A, 
); see [28] for more details. Denote by

P̃ (n)(x,A) the n-step transition probability of the Markov chain for any n ≥ 1. For
any Borel measurable function f : R

r �→ R, set

(4.2) Exf(X1) := Ex,�f(X1) =

∫
∂D

f(y)P̃ (x, dy).

Throughout this section, for simplicity we write Ex for Ex,�. We will show that the
process Y (t) = (X(t), γ(t)) possesses a unique stationary distribution. To this end,
we need the following lemma.

Lemma 4.1. The Markov chain Yi = (Xi, 
) has a unique stationary distribution
m(·) such that

(4.3)
∣∣∣P̃ (n)(x,A) −m(A)

∣∣∣ < λn for any A ∈ B(∂D),

for some constant 0 < λ < 1.
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Proof. Note that

P̃ (x,A) = P {Y1 ∈ (A× {
})|Y0 = (x, 
)}

=

∫
∂E

Px,� {(X(ς1), γ(ς1)) ∈ (dy × {
})} · Py,� {(X(ς2), γ(ς2)) ∈ (A× {
})} .

Using the harmonic measure defined in and Lemmas 2.2 and 2.3 of [7], relating the ker-
nel and surface area (similar to the solution for the diffusion process without switching
in the form of double layer potential given in the first displayed equation in [16, p.
97]) and the harmonic measure, we can finish the proof of this lemma analogously to
that of [16, Lemma 4.4.1]. The details are omitted here.

Remark 4.2. Note that

(4.4) (Xs,X(s),γ(s)(t), γ(t)) = (X0,X(0),γ(0)(t + s), γ(t + s)),

where (X0,X(0),γ(0)(u), γ(u)) denotes the sample path of the process (X(·), γ(·)) with
initial point (X(0), γ(0)) at time t = 0, and note the similar definition for
(Xs,X(s),γ(s)(t), γ(t)). When no confusion arises, we simply write (X(u), γ(u)) =
(X0,X(0),γ(0)(u), γ(u)).

Let τ be an Ft stopping time with Ex,iτ < ∞ and let f : R
r×M �→ R be a Borel

measurable function. Then

(4.5) Ex,i

∫ τ

0

f(X(s + t), γ(s + t))ds = Ex,i

∫ τ

0

EX(s),γ(s)f(X(s + t), γ(s + t))ds.

Now we can explicitly construct the stationary distribution of the process Y (t) =
(X(t), γ(t)).

Theorem 4.3. The positive recurrent process Y (t) = (X(t), γ(t)) has a unique
stationary distribution ν̂(·, ·) = (ν̂(·, i) : i ∈ M).

Proof. Let A ∈ B(Rr) and i ∈ M. Denote by τA×{i} the time spent by the
path of Y (t) = (X(t), γ(t)) in the set (A×{i}) during the first cycle (the cycles were
defined in (4.1)). Set

(4.6) ν(A, i) :=

∫
∂D

m(dx)Exτ
A×{i},

where m(·) is the stationary distribution of Yi = (Xi, 
), whose existence is guaranteed
by Lemma 4.1. It is easy to verify that ν(·, ·) is a positive measure defined on B(Rr)×
M. Thus for any bounded Borel measurable function g(·) : R

r �→ R, it follows from
(4.2) and Fubini’s theorem that

(4.7)

∫
∂D

Exg(X1)m(dx) =

∫
∂D

m(dx)

∫
∂D

g(y)P̃ (x, dy) =

∫
∂D

g(y)m(dy).

Now we claim that for any bounded and continuous function f(·, ·),

(4.8)

m0∑
j=1

∫
Rr

f(y, j)ν(dy, j) =

∫
∂D

m(dx)Ex

∫ ς2

0

f(X(t), γ(t))dt

holds. In fact, if f(y, j) = χ[A×{i}](y, j) for some A ∈ B(Rr) and i ∈ M, then from
(4.6),

m0∑
j=1

∫
Rr

χ[A×{i}](y, j)ν(dy, j) = ν(A, i) =

∫
∂D

m(dx)Exτ
A×{i}

=

∫
∂D

m(dx)Ex

∫ ς2

0

χ[A×{i}](X(t), γ(t))dt.
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Similarly, we obtain that (4.8) holds for f being a simple function:

f(y, j) =
n∑

p=1

cpχUp(y, j), where Up ⊂ R
r ×M.

Finally, if f is a bounded and continuous function, (4.8) follows by approximating f
by simple functions. It follows from (4.8), (4.4), and (4.5) that

m0∑
i=1

∫
Rr

Ex,if(X(t), γ(t))ν(dx, i)

=

∫
∂D

m(dx)Ex

∫ ς2

0

EX(s),γ(s)f(X(t + s), γ(t + s))ds

=

∫
∂D

m(dx)Ex

∫ ς2

0

f(X(t + s), γ(t + s))ds

=

∫
∂D

m(dx)Ex

∫ ς2

0

f(X(u), γ(u))du

+

∫
∂D

m(dx)Ex

∫ t+ς2

ς2

f(X(u), γ(u))du−
∫
∂D

m(dx)Ex

∫ t

0

f(X(u), γ(u))du.

Now applying (4.7) with g(x) = Ex

∫ ς2+t

ς2
f(X(u), γ(u))du, we obtain∫

∂D

m(dx)Ex

∫ ς2+t

ς2

f(X(u), γ(u))du

=

∫
∂D

m(dx)ExEX1,�

∫ ς2+t

ς2

f(X(u + ς2), γ(u + ς2))du

=

∫
∂D

m(dx)Ex

∫ t

0

f(X(u), γ(u))du.

Note that in the above deduction, we used (4.4) again. Therefore, the above two
equations and (4.8) yield that

m0∑
i=1

∫
Rr

Ex,if(X(t), γ(t))ν(dx, i) =

m0∑
i=1

∫
Rr

f(x, i)ν(dx, i).

Thus, the normalized measure

(4.9) ν̂(A, i) =
ν(A, i)∑m0

j=1 ν(Rr, j)
, i ∈ M,

defines the desired stationary distribution. The theorem thus follows.
Theorem 4.4. Denote by μ(·, ·) the stationary density associated with the sta-

tionary distribution ν̂(·, ·) constructed in Theorem 4.3, and let f(·, ·) : R
r ×M �→ R

be a Borel measurable function such that

(4.10)

m0∑
i=1

∫
Rr

|f(x, i)|μ(x, i)dx < ∞.

Then

(4.11) Px,i

(
1

T

∫ T

0

f(X(t), γ(t))dt → f

)
= 1
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for any (x, i) ∈ R
r ×M, where

(4.12) f =

m0∑
i=1

∫
Rr

f(x, i)μ(x, i)dx.

Proof. We first prove (4.11) if the initial distribution is the stationary distribution
of the Markov chain Yi = (Xi, γi), that is,

(4.13) P{(X(0), γ(0)) ∈ (A× {
})} = m(A)

for any A ∈ B(∂D). Consider the sequence of random variables

(4.14) ηn =

∫ ς2n+2

ς2n

f(X(t), γ(t))dt.

Then it follows from (4.13) that {ηn} is a strictly stationary sequence. Also from (4.6)
and (4.8), we have

(4.15) Eηn =

m0∑
i=1

∫
Rr

f(x, i)ν(dx, i)

for all n = 0, 1, 2, . . . . Meanwhile, (4.3) implies that the sequence ηn is metrically
transitive. Let υ(T ) denote the number of cycles completed up to time T . That is,

υ(T ) := max

{
n ∈ N :

n∑
k=1

(ς2k − ς2k−2) ≤ T

}
.

Then we can decompose
∫ T

0
f(X(t), γ(t))dt into

(4.16)

∫ T

0

f(X(t), γ(t))dt =

υ(T )∑
n=0

ηn +

∫ T

ς2υ(T )

f(X(t), γ(t))dt,

with ηn as given in (4.14). We may assume without loss of generality that f(x, i) ≥ 0;
for the general case, we can write f(x, i) as a difference of two nonnegative functions.
Then it follows from (4.16) that

υ(T )∑
n=0

ηn ≤
∫ T

0

f(X(t), γ(t))dt ≤
υ(T )+1∑
n=0

ηn.

Since the sequence {ηn} is stationary and metrically transitive, the law of large num-
bers for such sequences implies that

(4.17) P

{
1

n

n∑
k=0

ηk
n→∞−→

m0∑
i=1

∫
Rr

f(x, i)ν(dx, i)

}
= 1.

In particular, if f(x, i) ≡ 1, then the above equation reduces to

(4.18) P

{
ς2n+2

n

n→∞−→
m0∑
i=1

ν(Rr, i)

}
= 1.
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Note that the positive recurrence of the process Y (t) = (X(t), γ(t)) implies that
υ(T ) → ∞ as T → ∞. Clearly, υ(T )/(υ(T ) + 1) → 1 a.s. as T → ∞. Thus, it follows
from (4.18) that as T → ∞,

(4.19)
ς2υ(T )

ς2υ(T )+2
=

ς2υ(T )

υ(T )
ς2υ(T )+2

υ(T )+1

υ(T )

υ(T ) + 1
→ 1 a.s.

Meanwhile, since ς2υ(T ) ≤ T ≤ ς2υ(T )+2, we have

ς2υ(T )

ς2υ(T )+2
≤

ς2υ(T )

T
≤

ς2υ(T )

ς2υ(T )
= 1.

Therefore, we have from (4.19) that

(4.20)
ς2υ(T )

T
→ 1 a.s. as T → ∞.

Moreover, (4.18) implies that

(4.21)
υ(T )

ς2υ(T )
→ 1∑m0

i=1 ν(Rr, i)
a.s. as T → ∞.

Now using (4.17), (4.20), and (4.21), we obtain

P

{
1

T

∫ T

0

f(X(t), γ(t))dt =

∫ T

0
f(X(t), γ(t))dt

υ(T )
· υ(T )

ς2υ(T )
·
ς2υ(T )

T

T→∞−→
m0∑
i=1

∫
Rr

f(x, i)ν̂(dx, i)

}
= 1.

Finally, we note that∫
Rr

f(x, i)ν̂(dx, i) =

∫
Rr

f(x, i)μ(x, i)dx

by the definition of μ(·, ·). Thus, (4.11) holds. This proves (4.11) if the initial distri-
bution is (4.13).

Now let (x, i) ∈ R
r×M. Since the process Y (t) = (X(t), γ(t)) is positive recurrent

with respect to the domain D × {
}, we have

Px,i

{
lim

T→∞

1

T

∫ T

0

f(X(t), γ(t))dt = a

}

= Px,i

{
lim

T→∞

1

T

∫ T

ς2

f(X(t), γ(t))dt = a

}

=

∫
∂D

Px,i{(X(ς2), γ(ς2)) ∈ (dy, 
)} · Py,�

{
lim

T→∞

1

T

∫ T

0

f(X(t), γ(t))dt = a

}

= Py,�

{
lim

T→∞

1

T

∫ T

0

f(X(t), γ(t))dt = a

}
.

Therefore, (4.11) holds for all (x, i) ∈ R
r × M. This completes the proof of the

theorem.
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As a consequence of Theorem 4.4, we obtain the following corollary.

Corollary 4.5. Let the assumptions of Theorem 4.4 be satisfied and let u(t, x, i)
be the solution of the Cauchy problem

(4.22)

⎧⎨⎩
∂u(t, x, i)

∂t
= Lu(x, i), i ∈ M,

u(0, x, i) = f(x, i).

Then as T → ∞,

(4.23)
1

T

∫ T

0

u(t, x, i)dt →
m0∑
i=1

∫
Rr

f(x, i)μ(x, i)dx.

Proof. The generalized Itô’s formula (see, for example, [5] or [28, Lemma 3, p.
104]) implies that u(t, x, i) = Ex,if(X(t), γ(t)). Thus we have

(4.24)
1

T

∫ T

0

u(t, x, i)dt = Ex,i

(
1

T

∫ T

0

f(X(t), γ(t))dt

)
.

Meanwhile (4.11) implies that

1

T

∫ T

0

f(X(t), γ(t))dt
T→∞−→

m0∑
i=1

∫
Rr

f(x, i)μ(x, i)dx a.s.

with respect to the probability Px,i. Then (4.23) follows from the dominated conver-
gence theorem.

5. Discussions and remarks.

5.1. Discussions. The recurrence and ergodicity obtained enable us to further
study asymptotic properties of hybrid diffusion systems and to carry out control and
optimization tasks. We outline several directions in what follows.

Easily verifiable conditions. In many applications, it is often more convenient
to analyze weak stability through conditions on the coefficients of the corresponding
stochastic differential equations. Assume for simplicity that X(·) is a real-valued
process; assume also that condition (A) holds. Motivated by Examples 3.14 and 3.16,
next we present easily verifiable conditions for positive recurrence when the coefficients
of the switching diffusions (1.3)–(1.4) are linearizable in an x-neighborhood of ∞.
Suppose that for each i ∈ M, there exists bi ∈ R such that

b(x, i)

x
= bi + o(1), and Q(x) → Q̃, as |x| → ∞,

where Q̃ = (q̃ij) is the generator of a continuous-time ergodic Markov chain γ̃(t) whose
stationary distribution is μ = (μ1, μ2, . . . , μm) ∈ R

1×m. Then using Theorems 3.10
and 3.13, we can prove that the process is positive recurrent if

∑m
i=1 μibi < 0. The

result can be strengthened if, in addition,

σ(x, i)

x
= σi + o(1) as |x| → ∞,
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where σ2
i > 0. Then in this case, the process is positive recurrent if

m∑
i=1

μi

(
bi −

σ2
i

2

)
< 0.

The details are omitted for brevity.

Path excursions. Applications of the positive recurrence criteria enable us to es-
tablish path excursions of the underlying processes. Suppose that Y (t) = (X(t), γ(t))
is positive recurrent. Suppose that the Liapunov functions V (x, i) (with i ∈ M)
are given as in Theorem 3.13, as is the set D. Let D0 be a bounded open set
with a compact closure satisfying D ⊂ D0, and τ be a random time such that
(X(τ), γ(τ)) ∈ Dc

0 × M, and τ1 = min{t > τ : (X(t), γ(t)) ∈ D0 × M}. We can
obtain

P

(
sup

τ≤t≤τ1

V (X(t), γ(t)) ≥ κ

)
≤ EV (X(τ), γ(τ))

κ
for κ > 0,

E(τ1 − τ) ≤ EV (X(τ), γ(τ))

α
,

where α is as given in Theorem 3.13.

Tightness. Under positive recurrence, we may obtain tightness (or bounded-
ness in the sense of probability) of the underlying process. Suppose that (X(t), γ(t))
is positive recurrent. It is then possible to prove that for any compact set D, the
set ∪x∈D{(X(t), γ(t)) : t ≥ 0, X(0) = x, γ(0) = γ} is tight (or bounded in probabil-
ity). For a study on the diffusion counterpart, we refer the reader to [19, p. 146].

Occupation measures. To illustrate the utility of Theorem 4.4, take f(x, i) =
χ[B×J](x, i), the indicator function of the set B×J , where B ⊂ R

r and J ⊂ M. Then
Theorem 4.4 becomes a result regarding an occupation measure. In fact, we have

1

T

∫ T

0

χ[B×J](X(t), γ(t))dt →
∑
i∈J

∫
B

μ(x, i)dx a.s. as T → ∞.

Stochastic approximation. Consider a parameter optimization problem. We
wish to find θ∗, a vector-valued parameter, so that the cost function

J(θ) = lim
T→∞

E
1

T

∫ T

0

Ĵ(θ, Y (t))dt

is minimized, where Y (t) is a positive recurrent switching diffusion as considered in

this paper and where, for each θ, Ĵ(θ, ·, ·) satisfies the conditions of Theorem 4.4. For

simplicity, we assume that the gradient of Ĵ(·, x, i) with respect to θ is available for
each x and each i ∈ M. Then we consider a constant stepsize recursive algorithm

θn+1 = θn − ε
1

T

∫ nT+T

nT

∇Ĵ(θn, Y (t))dt,

or a decreasing stepsize algorithm

θn+1 = θn − εn
1

T

∫ nT+T

nT

∇Ĵ(θn, Y (t))dt,
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where ε > 0, and εn → 0 as n → ∞ and
∑

n εn = ∞. Modifications and variants
are possible. For example, we may include additional measurement noise, and the
gradient of Ĵ(·) may be changed to its gradient estimates. The motivation for such
algorithms stems from optimization of average cost per unit time problems arising
from parameter estimations in switching systems of stochastic differential equations,
manufacturing systems, and queueing networks; see related work in [21, Chapter 9]
and [32]. The ergodicity of the switching diffusion is crucial in the study of the
asymptotic behavior of the algorithms.

5.2. Further remarks. This work developed asymptotic properties of positive
recurrent switching diffusions. Under general conditions, necessary and sufficient
conditions for positive recurrence were developed. Then ergodicity was established
for positive recurrent Markov processes with switching. Also provided were explicit
representations of the invariant measures. For new results on related problems of
stability for regime-switching diffusions, we refer the reader to our recent work [18].

A number of problems remains open. Obtaining large deviations type of bounds is
a worthwhile undertaking, which will have an important impact on studying the asso-
ciated control and optimization problems. Next, concerning null recurrent switching
diffusions (see [16, 17]), can we obtain necessary and sufficient conditions? It appears
that the desired criteria will be more difficult to obtain compared to a single diffusion
process since one needs to solve systems of boundary value problems.

Appendix. Proofs of the lemmas.
Proof of Lemma 3.5. It suffices to prove the lemma for the case when E∪∂E ⊂ D

and ∂E is sufficiently smooth. Fix any (x, i) ∈ Ec ×M. Let G ⊂ R
r be an open and

bounded set with a sufficiently smooth boundary such that D ∪ ∂D ⊂ G. Without
loss of generality, we may further assume that (x, i) ∈ G ×M. Define a sequence of
stopping times by

(A.1) ς1 := inf{t ≥ 0 : X(t) ∈ ∂G},

and for n = 1, 2, . . .,

(A.2)
ς2n := inf{t ≥ ς2n−1 : X(t) ∈ ∂D},
ς2n+1 := inf{t ≥ ς2n : X(t) ∈ ∂G}.

It follows from (3.9) and Theorem 3.1 that ςn < ∞ a.s. Px,i for n = 1, 2, . . . . Let
H := G − E and define u(x, i) := Px,i {X(τH) ∈ ∂E}. Note that u(x, j)|x∈∂E = 1
and u(x, j)|x∈∂G = 0 for all j ∈ M. Therefore, it follows that

u(x, i) =

m0∑
j=1

∫
∂E

Px,i {(X(τH), γ(τH)) ∈ (dy × {j})}u(y, j)

+

m0∑
j=1

∫
∂G

Px,i {(X(τH), γ(τH)) ∈ (dy × {j})}u(y, j)

= Ex,iu(X(τH), γ(τH)).

Thus u(x, i) ≥ 0 is L-harmonic in H×M by Lemma 3.3. Moreover, u is not identically
zero since u(x, i) = 1 for (x, i) ∈ ∂E ×M. Therefore the maximum principle for L-
harmonic functions [9] implies that

(A.3) inf
(x,i)∈K×M

u(x, i) ≥ δ1 > 0,
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where K is some compact subset of H containing x and ∂D. Define

(A.4) A0 := {X(t) ∈ ∂E for some t ∈ [0, ς1)},

and for n = 1, 2, . . .,

(A.5) An := {X(t) ∈ ∂E, for some t ∈ [ς2n, ς2n+1)}.

Note that the event Ac
0 implies that X(τH) = X(ς1) ∈ ∂G. Hence we have from (A.3)

that

Px,i(A
c
0) ≤ Px,i(X(τH) ∈ ∂G) = 1 − u(x, i) ≤ 1 − δ1.

Then it follows from the strong Markov property and (A.3) that

(A.6) Px,i

{
n⋂

k=0

Ac
k

}
≤ (1 − δ1)

n+1.

Thus, we have

Px,i{σE = ∞} = Px,i{X(t) /∈ ∂E for any t ≥ 0}

≤ lim
n→∞

Px,i

{
n⋂

k=0

Ac
k

}
≤ lim

n→∞
(1 − δ1)

n+1 = 0.

Hence it follows that Px,i{σE < ∞} = 1 as desired.

Proof of Lemma 3.6. As in Lemma 3.5, it is enough to prove the lemma for the
case when E ∪ ∂E ⊂ D and ∂E is sufficiently smooth. Fix any (x, i) ∈ Ec × M.
Let G ⊂ R

r be an open and bounded set with a sufficiently smooth boundary such
that D ∪ ∂D ⊂ G. As in the proof of Lemma 3.5, we may further assume that
(x, i) ∈ G × M. Define stopping times ς1, ς2, . . . and events A0, A1, A2, . . . as in
(A.1), (A.2), (A.4), and (A.5) in the proof of Lemma 3.5. It follows from (3.10) and
Lemma 3.5 that Px,i{σE < ∞} = 1. Note that if ς2n < σE < ς2n+1, then the event⋂n−1

k=0 A
c
k happens a.s. Hence, it follows from (A.6) that

Px,i{ς2n < σE < ς2n+1} ≤ Px,i

{
n−1⋂
k=0

Ac
k

}
≤ (1 − δ1)

n.

Therefore, we have

Ex,iτEc = Ex,iσEχ[0<σE<ς1] +

∞∑
n=1

Ex,iσEχ[ς2n<σE<ς2n+1]

≤ Px,i[0 < σE < ς1]Ex,iς1 +

∞∑
n=1

Px,i[ς2n < σE < ς2n+1]Ex,iς2n+1

≤
∞∑

n=0

(1 − δ1)
nEx,iς2n+1.
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In what follows, denote by Mi (i = 1, 2, 3) positive real numbers. Since (x, i) ∈ G×M,
it follows from Theorem 3.1 that Ex,iς1 = Ex,iτG ≤ M1 < ∞. Consequently, using
σD and τG defined in (2.1),

Ex,iς3 = Ex,iς1 + Ex,iEX(ς1),γ(ς1)(ς3 − ς1)

≤ M1 + sup
(y,j)∈∂G×M

Ey,jσD + sup
(z,k)∈∂D×M

Ez,kτG

≤ M1 + M2 + M3 ≤ 2M,

where M = max{M1,M2 + M3} < ∞. Note that in the above deductions, we used
(3.10) and Theorem 3.1. Likewise, in general, we have Ex,iς2n+1 ≤ (n + 1)M for any
n = 1, 2, . . . Therefore, it follows that

Ex,iσE ≤
∞∑

n=0

(1 − δ1)
n(n + 1)M < ∞.

This completes the proof of the lemma.
Proof of Lemma 3.7. Fix any 
 ∈ M. It suffices to prove (3.12) when (x, i) ∈

D × (M−{
}) since the process Y (t) = (X(t), γ(t)), starting from (y, j) ∈ Dc ×M,
will reach D ×M in finite time a.s. Py,j by (3.11). Choose ε > 0 sufficiently small
such that B ⊂ B ⊂ B1 ⊂ B1 ⊂ D, where

(A.7) B = B(x, ε) = {y ∈ R
r : |y − x| < ε} and B1 = B(x, 2ε).

Redefine

(A.8) ς1 := inf{t ≥ 0 : X(t) ∈ ∂B},

and for n = 1, 2, . . .,

(A.9)
ς2n := inf{t ≥ ς2n−1 : X(t) ∈ ∂B1},
ς2n+1 := inf{t ≥ ς2n : X(t) ∈ ∂B}.

Note that (3.11), Theorem 3.1, and Lemma 3.5 imply that ςn < ∞ a.s. Px,i. Set

u(x, i) := Px,i

{
σB×{�} < τB1

}
.

As in the proof of Lemma 3.5, we can verify that u(x, i) is L-harmonic in B1 ×M.
Moreover, u is not identically zero, since u(x, 
)|x∈∂B = 1. Therefore, the maximum
principle [9] implies that

(A.10) inf
(x,i)∈B×M

u(x, i) ≥ δ2 > 0.

Redefine

(A.11) A0 := {γ(t) = 
 for some t ∈ [0, ς2)},

and for n = 1, 2, . . .,

(A.12) An := {γ(t) = 
 for some t ∈ [ς2n+1, ς2n+2)}.
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Using almost the same argument as in the proof of Lemma 3.5, we obtain that

(A.13) Px,i(A
c
0) ≤ 1 − δ2 and Px,i

{
n⋂

k=0

Ac
k

}
≤ (1 − δ2)

n+1.

Thus, we have

Px,i {(X(t), γ(t)) /∈ D × {
} for any t ≥ 0}
≤ Px,i

{
(X(t), γ(t)) /∈ B1 × {
} for any t ≥ 0

}
≤ lim

n→∞
Px,i

{
n⋂

k=0

Ac
k

}
≤ lim

n→∞
(1 − δ2)

n+1 = 0.

As a result, Px,i{σD,� = ∞} = Px,i {(X(t), γ(t)) /∈ D × {
} for any t ≥ 0} = 0, or
Px,i{σD,� < ∞} = 1. This completes the proof of the lemma.

Proof of Lemma 3.8. Fix any 
 ∈ M. As in Lemma 3.7, it is enough to prove (3.14)
when (x, i) ∈ D × (M− {
}). Let the balls B and B1, stopping times ς1, ς2, . . ., and
events A0, A1, . . . as in (A.7)–(A.9), (A.11), and (A.12) in the proof of Lemma 3.7.
It follows from (3.13) and Lemma 3.7 that Px,i{σD,� < ∞} = 1. Observe that if

ς2n ≤ σD,� < ς2n+2, then the event
⋂n−1

k=0 A
c
k happens a.s. Hence we have from (A.13)

that

Px,i{ς2n ≤ σD,� < ς2n+2} ≤ Px,i

{
n−1⋂
k=0

Ac
k

}
≤ (1 − δ2)

n.

It follows that

Ex,iσD,� = Ex,iσD,�χ[0≤σD,�<ς2] +

∞∑
n=1

Ex,iσD,�χ[ς2n≤σD,�<ς2n+2]

≤ Px,i[0 ≤ σD.� < ς2]Ex,iς2 +

∞∑
n=1

Px,i[ς2n ≤ σD,� < ς2n+2]Ex,iς2n+2

≤
∞∑

n=0

(1 − δ2)
nEx,iς2n+2.

Following almost the same argument as that for the proof of Lemma 3.6, we can
show that Ex,iς2n ≤ nM for some positive constant M . Consequently, Ex,iσD,� ≤∑∞

n=0(1 − δ2)
n(n + 1)M < ∞. The proof of the lemma is thus completed.
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Abstract. We investigate, via the dynamic programming approach, a finite fuel nonlinear
singular stochastic control problem of Bolza type. We prove that the associated value function is
continuous and that its continuous extension to the closure of the domain coincides with the value
function of a nonsingular control problem, for which we prove the existence of an optimal control.
Moreover, such a continuous extension is characterized as the unique viscosity solution of a quasi-
variational inequality with suitable boundary conditions of mixed type.
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1. Introduction. We study a finite fuel stochastic control problem with finite
horizon via the dynamic programming approach. For any initial condition (t̄, k̄, x̄) ∈
[0, T [×[0,K] × R

n we consider the nonlinear stochastic differential equation

xt = x̄ +

∫ t

t̄

A(r, xr) dr +

∫ t

t̄

B(r, xr)ur dr +

∫ t

t̄

D(r, xr) dWr,(1)

where the functions A, B, and D are deterministic, {Wt} is a Brownian motion, and
{ut} is a control. All the processes are assumed to be defined on a probability space
(Ω,G, Q, {Gt}). Given a closed convex cone K ⊂ R

m, the class of admissible con-
trols, denoted by C(t̄, k̄, x̄), is given by the set of K-valued, {Gt}-predictable processes
verifying the constraint ∫ T

t̄

|ut| dt ≤ K − k̄.(2)

For any admissible control u we consider a cost of the form

J (t̄, k̄, x̄, u) = EQ

[∫ T

t̄

(l0(r, xr) + 〈l1(r, xr), ur〉) dr + g(xT )

]
,(3)

where l0, l1, and g are deterministic functions. The value function is defined as

V(t̄, k̄, x̄) = inf
u∈C(t̄,k̄,x̄)

J (t̄, k̄, x̄, u).(4)
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In this paper we prove the continuity of the value function, and, via a dynamic pro-
gramming principle, we show that the function V , which is the continuous extension
of V to [0, T ]× [0,K]×R

n, is a viscosity solution of the following generalized Cauchy
problem:

max
{
−∂v

∂t + F(t, x,Dv,D2v),− ∂v
∂k + H(t, x,Dv)

}
= 0

in ]0, T [×]0,K[×R
n,

(5)

max
{
−∂v

∂t + F(t, x,Dv,D2v),− ∂v
∂k + H(t, x,Dv)

}
≥ 0

on ]0, T [×{K} × R
n,

(6)

v ≤ g and max
{
−∂v

∂t + F(t, x,Dv,D2v),−∂v
∂k + H(t, x,Dv)

}
≥ 0 if v < g

on {T}×]0,K] × R
n,

(7)

where Dv and D2v denote the gradient and the matrix of the second derivatives of
the function v = v(t, k, x) with respect to the x variable,

F(t, x, p, S)
.
= −〈A(t, x), p〉 − l0(t, x) − 1

2
Tr{D̃(t, x)S},

where D̃(t, x)
.
= D(t, x)D(t, x)T , and

H(t, x, p)
.
= max

w∈K, |w|=1
{−〈B(t, x)w, p〉 − 〈l1(t, x), w〉}

for any (t, x, p, S) ∈ R+ ×R
n ×R

n ×M(n, n), where M(n, n) denotes the set of n×n
real matrices. A uniqueness theorem proven in [MS2] allows us to characterize V as
the unique viscosity solution to the above boundary value problem. V is in fact the
value function of a more regular problem for which we can also prove the existence of
an optimal control.

This paper presents some new results on the dynamic programming approach
of the theory of singular stochastic control problems as well as on its probabilistic
aspects.

From the probabilistic point of view, we consider a singular control problem with
a dynamic and a cost function in which the terms B and l1 depend explicitly on the
state variable x, an important difference with respect to previous works on singular
stochastic controls (see, e.g., [HS1], [BC], [CMR], [SS], and the many references in
[FS]). In order to deal with such general dynamics and cost, we introduce an extension
of our problem by considering a new set of controls, called auxiliary controls, justified
by the observation that optimal controls for the above problem may not exist and in
fact quasi-optimal controls may be as close as desired to a control of impulsive type
(see, e.g., [FS]), so that discontinuous trajectories should be allowed as solutions. It
is known that a measure approach works if the terms B in the dynamics and l1 in the
cost do not depend on the state variable x. Such a special class of state-independent
problems has been widely investigated in recent years and there are several results on
the existence of (generalized) optimal controls, on the regularity, and on the charac-
terization of V as the unique solution of a Cauchy problem for a suitable nonlinear
PDE (see [HS1], [HS2], [SS], [CMR], and the references therein). If, instead, B and
l1 depend on the state variable x, a good definition of the solution to (1) requires a
completely different approach in order to guarantee its robustness. In the determin-
istic context Bressan and Rampazzo [BR] introduced a definition of the generalized
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solution to (1) based on a time change of the completion of the graphs (t, xt) (see also
[Be], [Se]). Only recently has such a definition been extended to the study of some
stochastic control problems by Miller and Runggaldier [MiRu] in 1997, by Dorroh,
Ferreyra, and Sundar [DFS] in 1999, and by Miller and Dufour [DM] in 2002. In
particular, in [DM] the authors prove the existence of an auxiliary optimal control
for a Mayer problem assuming (2). Using their stochastic framework we study the
boundary value problem (5)–(7) associated to the minimization problem (1)–(4). In
addition, we prove the existence of an optimal control, consistently improving their
work since we avoid the convexity assumption, under which their main existence result
was proven, but which does not hold in many cases.

This paper is a starting point in the program of extending to stochastic control
problems, with nonlinear dynamics and nonlinear costs of the form considered here,
several results obtained in singular or coercive linear control problems (that is, with
B and l1 not depending on x) concerning, in particular, the existence of optimal
controls and the properties of the associated value functions. Besides the obvious
goal of considering nonlinear versions of classical applications such as the finite fuel
problem, introduced in [BC] to model an aircraft motion, the study of nonlinear
problems is also motivated by some applications to economics for which we refer the
interested reader to the recent works [A1], [A2].

From the PDE point of view, we are able to show that the value function is con-
tinuous and solves the quasi-variational inequality (5) which can be derived from the
dynamic programming principle, either heuristically (as usually done in the literature
on singular control), or from an equivalent formulation of the minimum problem that
uses compact valued controls (as we do). Here a key tool is the concept of control
rules together with the compactification method introduced by El Karoui, Ngoyen,
and Jeanblanc-Picqué in [EKNP]. In fact we use an abstract version of the dynamic
programming principle (DPP) introduced by Haussmann and Lepeltier [HL] and for-
mulated in terms of control rules, in which, among other things, the terminal time
is allowed to be an exit time or even a stopping time chosen by the controller, hard
constraints (i.e., state constraints that must be met almost surely) as well as soft
constraints (i.e., constraints that must be met in the mean) are considered, and very
mild regularity of the data is required.

Thus, the notion of auxiliary controls allows us to reduce the minimization prob-
lem to an equivalent one where the controls take values in a compact set. The dynamic
programming principle, given in terms of control rules, is the key point for proving
that the value function V defined in (4) is continuous. Both of the concepts are essen-
tial in order to write a Hamilton–Jacobi equation like (5) which, a priori, is not the
formal equation associated to the unbounded control problem, and to show that V
solves (5)–(7) in the viscosity sense. Indeed, the formal equation associated to (1)–(4)
involves a different Hamiltonian studied in section 6, which is obtained through a
maximization over the unbounded control set K.

A comment about the boundary conditions is in order since conditions (6) and
(7) seem original in the setting of singular stochastic control problems. First of all,
since we deal with problems of impulsive type, even when considering a finite horizon
problem, the limit limt̄→T− V(t̄, k̄, x̄) does not coincide in general with the final cost
g(x̄) and, therefore, at time t̄ = T , we impose (7), which is an alternative between
the quasi-variational inequality (5) and v = g. Such a generalized boundary condition
was introduced in order to characterize continuous value functions of Dirichlet prob-
lems in [I], but it also perfectly fits our Cauchy problem. At the boundary k̄ = K,
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instead, we introduce the supersolution condition (6) which replaces the Dirichlet
condition v(t̄, K, x̄) = J(t̄, K, x̄, 0), usually assumed in finite fuel control problems
(see, e.g., [BJM], [FS]). It has the advantage that it does not require the computation
of J(t̄, K, x̄, 0). Supersolution type conditions have been considered first by [So] for
problems with state constraints, and in fact by considering the fuel consumed at time
t as a new variable, in view of (2) such a variable turns out to be constrained in [0,K].
Boundary value problems similar to (5)–(7) for first order Hamiltonians were already
investigated by the authors in the context of impulsive deterministic control problems
when either a constraint on the L1 norm of the controls or a weak coercivity condition
on the Lagrangian is imposed (see, e.g., [MoRa] and [MS1]). In such a context, it is
worth mentioning that our approach leads to approximation schemes for the numer-
ical evaluation of the value functions for first order Hamilton–Jacobi equations (see,
e.g., [CF]), which for the second order case has not yet been done.

The paper is organized as follows. In section 2 we state the problem precisely
and, following [DM], we introduce an auxiliary control problem whose value function
V turns out to coincide with V, but with the essential property that the auxiliary
controls are compact-valued. In section 3 we introduce relaxed controls and control
rules and prove, thanks to some technical results contained in the appendix, that
there exists an auxiliary optimal control for our problem and that V is in fact the
minimum value over relaxed controls. In section 4, using the DPP, we obtain the
continuity of V (see Theorem 4.1). Section 5 is devoted to deducing the boundary
value problem (5)–(7) and to showing that V is a viscosity solution to it. Then
we apply a uniqueness theorem proven in [MS2] and prove in Theorem 5.3 that V
is in fact the only solution to (5)–(7) in the class of the bounded functions which
are continuous on ∂(]0, T [×]0,K[×R

n). Moreover, in section 6 we show that V also
turns out to represent a solution of a generalized Cauchy problem for a second order
semilinear degenerate parabolic PDE involving a noncoercive Hamiltonian defined via
maximization over an unbounded set.

Notation. Throughout this paper we shall adopt the following notation. The
symbol | · | denotes the norm of vectors and matrices and 〈·, ·〉 denotes the scalar
product for vectors. For any positive integer N and any r > 0, BN (r) = {v ∈
R

N : |v| < r} and BN (r) = {v ∈ R
N : |v| ≤ r}. R+ = [0,+∞[. For ar-

bitrary positive integers N , M , M(N,M) denotes the set of the N × M real ma-
trices. (T ) denotes the transposed operator. C2

b (RN ) is the set of the bounded
real maps which are continuous on R

N with their first and second partial deriva-
tives. Given a function v : E → R, E ⊂ R

N , the upper and lower semicontinu-
ous envelopes of v are defined by v∗(x)

.
= lims→0+ sup {v(y) : y ∈ E, |y − x| ≤ s} ,

v∗(x)
.
= lims→0+ inf {v(y) : y ∈ E, |y − x| ≤ s} for any x ∈ E. Of course, v∗ is

upper semicontinuous and v∗ is lower semicontinuous. Let (Ω,F , P ) be a probability
space. We will use EP [·] to denote the mathematical expectation on such a space.
Given two random variables X, Y , the notation X = Y , X ≤ Y means P (X = Y ) = 1,
P (X ≤ Y ) = 1, respectively, δ{w} denotes the Dirac measure at a fixed w ∈ K, and
T and K are fixed positive real numbers.

2. Statement of the problem. In this section we give the precise formulation
of the nonlinear singular stochastic control problem described in the introduction,
introduce the auxiliary control problem, and prove their equivalence.

2.1. The control problem. Throughout the paper we will use the following
hypotheses.
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(A0): There are some constants L1, L2 such that the deterministic functions
A : R+ × R

n → R
n, B : R+ × R

n → M(n,m), and D : R+ × R
n → M(n, p) verify for

all t, s ∈ R+ and x, y ∈ R
n,

|A(t, x)| + |B(t, x)| + |D(t, x)| ≤ L1(1 + |x|),
|A(t, x) −A(s, y)| + |B(t, x) −B(s, y)| + |D(t, x) −D(s, y)| ≤ L2(|t− s| + |x− y|).

(A1): There are some constants L, L3 such that the functions l0 : R+×R
n → R,

l1 : R+ × R
n → R

m, and g : R
n → R verify for all t, s ∈ R+ and x, y ∈ R

n,

|l0(t, x) − l0(s, y)| + |l1(t, x) − l1(s, y)| ≤ L(|t− s| + |x− y|),
|g(x) − g(y)| ≤ L|x− y|,

and

|l0(t, x)| + |l1(t, x)| + |g(x)| ≤ L3.(8)

Definition 2.1. Given an initial condition (t̄, k̄, x̄) ∈ [0, T [×[0,K] × R
n, a

control is a term

c = (Ω,G, Q, {Gt}, {ut}, {Wt}, {xt}),

where
• (Ω,G, Q) is a complete probability space with a right continuous complete

filtration {Gt},
• {ut} is a K-valued process (K a closed, convex cone of R

m) defined on [t̄, T ]×
Ω, which is {Gt}-predictable,

• {Wt} is a standard p-dimensional {Gt}-Brownian motion,
• {xt} is an R

n-valued process which is {Gt}-progressively measurable, with
continuous paths, such that

xt = x̄ +

∫ t

t̄

A(r, xr) dr +

∫ t

t̄

B(r, xr)ur dr +

∫ t

t̄

D(r, xr) dWr ∀t ∈ [t̄, T ].

A control c is admissible if ∫ T

t̄

|ut| dt ≤ K − k̄.(9)

The set of admissible controls will be denoted by C(t̄, k̄, x̄).
For any admissible control c we consider a cost of the form

J (t̄, k̄, x̄, c)
.
= EQ

[∫ T

t̄

(l0(r, xr) + 〈l1(r, xr), ur〉) dr + g(xT )

]
.(10)

The value function is defined for (t̄, k̄, x̄) ∈ [0, T [×[0,K] × R
n by

V(t̄, k̄, x̄)
.
= inf

c∈C(t̄,k̄,x̄)
J (t̄, k̄, x̄, c).(11)

Remark 2.1. If we replace the boundedness hypothesis (8) with

|l0(t, x)| + |l1(t, x)| + |g(x)| ≤ L3(1 + |x|) ∀t ∈ R+, x ∈ R
n,(12)

the main results of the paper remain true, except that, of course, the value function
V is bounded no more but turns out to verify |V(t, k, x)| ≤ C̄(1 + |x|) for some C̄ and
for all (t, k, x) ∈ [0, T [×[0,K]×R

n, as one can deduce from the proof of Theorem 4.1
(see also Corollary 4.2).
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2.2. The auxiliary control problem. In this section, following [DM], we in-
troduce an auxiliary control problem, equivalent to the original one, but with the key
property that the controls take values in a compact set.

Definition 2.2. For any (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n an auxiliary control is a

term

β = (Ω,F , P, {Fs}, {ws}, {(ts, ks, ξs)}, θ),

where the following (B1) and (B2) are assumed.
(B1) • (Ω,F , P ) is a complete probability space, with a right continuous complete

filtration {Fs},
• {ws} is a Bm(1)∩K-valued control defined on [0, T +K]×Ω which is {Fs}-

predictable,
• θ is an {Fs}-stopping time such that θ ≤ T + K,

and
(B2) {(ts, ks, ξs)} is an R

2+n-valued {Fs}-progressively measurable process with
continuous paths, such that, for 0 ≤ s ≤ T + K,⎧⎪⎪⎨⎪⎪⎩

ts = t̄ +
∫ s

0
w0σ dσ,

ks = k̄ +
∫ s

0
|wσ| dσ,

ξs = x̄ +
∫ s

0
(A(tσ, ξσ)w0σ + B(tσ, ξσ)wσ) dσ +

∫ s

0
D(tσ, ξσ)

√
w0σ dWσ,

where {Ws} is a standard p-dimensional {Fs}-Brownian motion defined on
[0, T +K]×Ω and where we set w0s(ω)

.
= 1 − |ws(ω)|∀(s, ω) just for the sake

of notation.
The cost corresponding to an auxiliary control β is of the form

J(t̄, k̄, x̄, β)
.
= EP

[∫ θ

0

(l0(tσ, ξσ)w0σ
+ 〈l1(tσ, ξσ), wσ〉) dσ + g(ξθ) + G(tθ, kθ)

]
,

where G(T, k) = 0 for all k ≤ K and G(t, k) = +∞ otherwise. We use Γ(t̄, k̄, x̄) to
denote the set of auxiliary controls, while

Γa(t̄, k̄, x̄)
.
=

{
β ∈ Γ(t̄, k̄, x̄) : J(t̄, k̄, x̄, β) < +∞

}
(13)

denotes the subset of admissible auxiliary controls. We define for every (t̄, k̄, x̄) ∈
[0, T ] × [0,K] × R

n the auxiliary value function as

V (t̄, k̄, x̄)
.
= inf

β∈Γa(t̄,k̄,x̄)
J(t̄, k̄, x̄, β).(14)

Remark 2.2. The definition of auxiliary controls given in [DM] is slightly different
from Definition 2.2. More precisely, fixing an initial condition (t̄, k̄, x̄), the natural ex-
tension of [DM], to our setting yields controls β = (Ω,F , P, {Fs}, {ws}, {(ts, ks, ξs)}, θ)
with stopping times θ verifying the constraint

θ ≤ (T − t̄) + (K − k̄),(15)

with the cost functional defined by

Ĵ(t̄, k̄, x̄, β) = EP

[∫ θ

0

(l0(tσ, ξσ)w0σ
+ 〈l1(tσ, ξσ), wσ〉) dσ + g(ξθ) + Ĝ(tθ)

]
,(16)
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where Ĝ(T ) = 0 and Ĝ(t) = +∞ for all t = T . Moreover, a control β is admissible
if Ĵ(t̄, k̄, x̄, β) < +∞. In fact, we will show, in the proof of Theorem 2.3 below,
that the two sets of admissible auxiliary controls coincide and therefore that the two
definitions are equivalent. The reason we choose a different formulation of our problem
is that Definition 2.2 is better suited to state a dynamic programming principle. It is
well known, indeed, that if (ts, ks, ξs) is a process starting from (t̄, k̄, x̄) at s = 0, in
order to apply the dynamic programming technique, one needs to consider any state
(ts, ks, ξs) for s > 0 as the initial condition, that is, to restate the problem with a
random variable in place of a deterministic point as initial datum. Following [DM],
therefore, one should deal with the hard constraint θ ≤ (T − ts) + (K − ks) coming
from condition (15).

The problems in Definitions 2.1 and 2.2 are equivalent in the following sense.
Theorem 2.3. Assume (A0), (A1). Then for any initial condition (t̄, k̄, x̄) ∈

[0, T [×[0,K] × R
n one has

(i) C(t̄, k̄, x̄) ↪→ Γa(t̄, k̄, x̄), that is, for every control c ∈ C(t̄, k̄, x̄) there ex-
ists an admissible auxiliary control β ∈ Γa(t̄, k̄, x̄) such that J(t̄, k̄, x̄, β) =
J (t̄, k̄, x̄, c);

(ii) for any admissible auxiliary control β ∈ Γa(t̄, k̄, x̄) there is a sequence of
controls cn ∈ C(t̄, k̄, x̄) such that limn J (t̄, k̄, x̄, cn) = J(t̄, k̄, x̄, β);

(iii)

V (t̄, k̄, x̄) = V(t̄, k̄, x̄).(17)

Proof. Since the proof is based on that given in [DM], we begin by proving that
the set Γa(t̄, k̄, x̄) coincides with the set of admissible auxiliary controls introduced in
[DM], that is, controls with stopping time θ verifying (15) and with a cost defined by
(16), which must be bounded. To prove this claim, let us fix an admissible auxiliary
control β in the sense considered in [DM]. First of all, let us notice that condition
(15) in fact plays the role of the integral constraint (9) of Definition 2.1, in that it
implies ∫ θ

0

|wσ| dσ ≤ K − k̄.

Indeed, from Ĵ(t̄, k̄, x̄, β) < +∞ it follows that EP [Ĝ(tθ)] = 0, that is, tθ = T .
Moreover, since the stopping time θ verifies (15), one has

kθ = k̄ +

∫ θ

0

|wσ| dσ = k̄ + θ − (tθ − t̄) ≤ k̄ + (K − k̄) + (T − t̄) − (T − t̄) = K.

Thus EP [G(tθ, kθ)] = 0, Ĵ(t̄, k̄, x̄, β) = J(t̄, k̄, x̄, β), and β turns out to belong to the
set Γa(t̄, k̄, x̄) defined in (13). On the contrary, given a control β ∈ Γa(t̄, k̄, x̄), from
J(t̄, k̄, x̄, β) < +∞ it follows that EP [G(tθ, kθ)] = 0, that is, tθ = T and kθ ≤ K.
Hence EP [Ĝ(tθ)] = 0, Ĵ(t̄, k̄, x̄, β) = J(t̄, k̄, x̄, β), and in order to show that β is an
admissible auxiliary control in the sense considered in [DM] it remains to prove that
θ verifies condition (15). Since by definition

ks + ts = k̄ + t̄ + s s ≥ 0,

one has that

θ = (kθ − k̄) + (tθ − t̄) ≤ (K − k̄) + (T − t̄),
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which concludes the proof of the claim.
If the Lagrangian function l = l0 + 〈l1, u〉 is identically zero, statements (i) and

(ii) have been proved by Dufour and Miller in Proposition 4.12, and in Proposition
4.8 and Theorem 4.15 of [DM], respectively. This yields the equality V = V in (iii)
for a problem of Mayer type. The extension of these results to a Bolza problem is
standard; therefore the proof is concluded.

In the deterministic case, following the method of the graphs completion, the
equivalence between an original singular control problem and a corresponding aux-
iliary control problem has been proven for several types of problems (see [MoRa],
[MS1], and the references therein).

The following simple example taken from [MoRa] shows that at the points of the
form (T, k̄, x̄), the value function V associated to the auxiliary control problem does
not coincide in general with the terminal cost g.

Example 2.1 (see [MoRa]). Let us consider the deterministic control problem

x(t) = x̄ +

∫ t

t̄

(c + u1(r) + x(r)u2(r)) dr ∀t ∈ [t̄, T ],

where x̄ ∈ R, c is a positive constant, the control (u1, u2) defined on [t̄, T ] assumes
values on the closed cone

K .
= {(w1, w2) ∈ R

2 : w1 ≤ 0, w2 ≥ 0},
and it verifies the constraint∫ T

t̄

|(u1(r), u2(r))| dr ≤ K − k̄,

where 0 ≤ k̄ ≤ K. Let us minimize the following payoff in Mayer form:

J (t̄, k̄, x̄, u) = arctan(x(T )).

For any (t̄, k̄, x̄) ∈ [0, T [×[0,K] × R, the maximum principle yields the existence of
an optimal auxiliary control whose corresponding trajectory has a terminal position
given by

ξ(T ) =

⎧⎨⎩
sinh(arcsinh(x̄) − (K − k̄)) + c(T − t̄), x̄ ≤ 0,
sinh(x̄− (K − k̄)) + c(T − t̄), 0 < x̄ < K − k̄,
x̄− (K − k̄) + c(T − t̄), x̄ ≥ K − k̄,

(18)

so that V(t̄, k̄, x̄) = V (t̄, k̄, x̄) = arctan(ξ(T )). At the points (T, k̄, x̄) ∈ {T}× [0,K]×
R

n, V is given again by arctan(ξ(T )) once we put t̄ = T and obviously it does not
coincide with g(x̄) = arctan(x̄) unless k̄ = K.

This is a general result: V coincides with the continuous extension to [0, T ] ×
[0,K]×R

n of the original value function V defined on the set [0, T [×[0,K]×R
n (see

Corollary 4.2 in section 4) and in general it does not coincide with g at t̄ = T. For
deterministic control problems, there are well known sufficient conditions under which
V (T, k̄, x̄) = g(x̄) ∀(T, k̄, x̄) ∈ {T} × [0,K] × R

n (see [RS] and also Notes on [CIL,
section 7]).

3. Relaxed controls and control rules. We devote this section to the defini-
tion of relaxed controls which are needed in order to introduce the concept of control
rules and the compactification method, key tools to prove a dynamic programming
principle. We follow here the presentation given by Haussman and Lepeltier in [HL],
where an earlier work by El Karoui, Ngoyen, and Jeanblanc-Picqué [EKNP] is gener-
alized to the case of unbounded data and controls and no fixed terminal time.
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3.1. The martingale model. We introduce the equivalent formulation of the
above auxiliary control problem as a martingale problem, where the ambiguous term
represented by the Brownian motion, unknown in advance, is removed (see, e.g., Ikeda
and Watanabe in[IW]). To this end, we introduce for all ϕ ∈ C2

b (R2+n), (t, k, x) ∈
R2+n, and w ∈ Bm(1) ∩ K the operator L defined by

Lϕ(t, k, x, w)
.
=[

1
2

∑
ij D̃ij(t, x) ∂2ϕ

∂xi∂xj
(t, k, x) +

∑
i Ai(t, x) ∂ϕ

∂xi
(t, k, x) + ∂ϕ

∂t (t, k, x)
]
w0

+
∑

i〈Bi(t, x), w〉 ∂ϕ
∂xi

(t, k, x) + ∂ϕ
∂k (t, k, x)|w|,

(19)

where w0
.
= 1 − |w|, D̃ij are the entries of D̃ = DDT , Ai are the components of A,

and Bi are the rows of B. Notice that in this formulation the diffusion coefficient D
disappears and is replaced by D̃, which, differently from D, is something intrinsic to
a process ξs as defined in (B2).

The following proposition establishes the correspondence between the martingale
model and the control problem with the Brownian motion.

Proposition 3.1 (see [HL, Proposition 3.1]). Let us assume (A0), (A1). Let us
fix (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R

n. A control β = (Ω,F , P, {Fs}, {ws}, {(ts, ks, ξs)}, θ)
such that
(B3) • (Ω,F , P ) is a probability space, with a filtration {Fs},

• {ws} is a Bm(1)∩K-valued control, defined on [0, T+K]×Ω, {Fs}-progressively
measurable,

• θ is an {Fs}-stopping time such that θ ≤ T + K
verifies (B2) if and only if it verifies
(B4) • {(ts, ks, ξs)} is a R

2+n-valued, {Fs}-progressively measurable process for s ∈
[0, T + K], with continuous paths, such that (ts, ks, ξs) = (t̄, k̄, x̄) for s = 0,
for any ϕ ∈ C2

b (R2+n), Ms(ϕ, β) is a (P, {Fs}) square integrable martingale
for s ∈ [0, T + K], where

Ms(ϕ, β)
.
= ϕ(ts, ks, ξs) −

∫ s

0

Lϕ(tσ, kσ, ξσ, wσ) dσ.

3.2. Relaxed controls. In a relaxed control, the Bm(1)∩K-valued process {ws}
is replaced by an M1(Bm(1) ∩ K)-valued process {μs}, where M1(Bm(1) ∩ K) is the
space of probability measures on Bm(1)∩K. We will extend any bounded measurable
map ψ : Bm(1) ∩ K → R to M1(Bm(1) ∩ K) by setting

ψ(μ) =

∫
Bm(1)∩K

ψ(w)μ(dw).

Definition 3.2. Given (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n we say that α̃ is a relaxed

control and write α̃ ∈ Γ̃(t̄, k̄, x̄) if

α̃ = (Ω,F , P, {Fs}, {μs}, {(ts, ks, ξs)}, θ),

where the following (B3′), (B4′) are assumed.
(B3′) • (Ω,F , P ) is a probability space with a filtration {Fs},

• {μs} is a M1(Bm(1) ∩ K)-valued process defined on [0, T + K] × Ω which is
{Fs}-progressively measurable,

• θ is an {Fs}-stopping time such that θ ≤ T + K,
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(B4′) • {(ts, ks, ξs)} is an R
2+n-valued {Fs}-progressively measurable process for s ∈

[0, T + K], with continuous paths, such that (ts, ks, ξs) = (t̄, k̄, x̄) for s = 0,
for any ϕ ∈ C2

b (R2+n), Ms(ϕ, α̃) is a (P, {Fs}) square integrable martingale
for s ∈ [0, T + K], where

Ms(ϕ, α̃)
.
= ϕ(ts, ks, ξs) −

∫ s

0

Lϕ(tσ, kσ, ξσ, μσ) dσ.

For any α̃ ∈ Γ̃(t̄, k̄, x̄) we define the cost

J(t̄, k̄, x̄, α̃) = EP

[∫ θ

0

(l0(tσ, ξσ)(1 − |μσ|) + 〈l1(tσ, ξσ), μσ〉) dσ + g(ξθ) + G(tθ, kθ)

]
.

(20)
We use Γ̃a(t̄, k̄, x̄) to denote the subset of admissible relaxed controls, that is,

Γ̃a(t̄, k̄, x̄)
.
=

{
α̃ ∈ Γ̃(t̄, k̄, x̄) : J(t̄, k̄, ξ̄, α̃) < +∞

}
.

Remark 3.1. Following [HL], the processes that appear in Definition 3.2 are pro-
gressively measurable and the probability space is arbitrary. The processes that ap-
pear in the auxiliary controls of Definition 2.2, instead, are predictable processes and
the probability space is complete and right continuous. Thus, it is not obvious a priori
that the control problem in Definition 3.2 is the relaxed version of our auxiliary control
problem. From Lemmatas A1–A3 in [DM], however, it follows that, given an initial
condition (t̄, k̄, x̄), for any control α = (Ω,F , P, {Fs}, {ws}, {(ts, ks, ξs)}, θ) verifying
(B3) and (B2) (or, equivalently, (B3) and (B4), in view of Proposition 3.1), there ex-

ists a new control α̂ = (Ω̂, F̂ , P̂ , {F̂s}, {ŵs}, {(t̂s, k̂s, ξ̂s)}, θ̂), where (Ω̂, F̂ , P̂ ) is a suit-

able modification of (Ω,F , P ), θ̂ = θ, the process {(t̂s, k̂s, ξ̂s)} is indistinguishable from
{(ts, ks, ξs)}, α̂ verifies (B1) and (B2), and, moreover, J(t̄, k̄, x̄, α̂) = J(t̄, k̄, x̄, α).
Therefore, if J(t̄, k̄, x̄, α) < +∞, then α̂ ∈ Γa(t̄, k̄, x̄).

The set Γa(t̄, k̄, x̄) can be naturally embedded in Γ̃a(t̄, k̄, x̄); therefore, the in-
equality

inf
α̃∈Γ̃a(t̄,k̄,x̄)

J(t̄, k̄, x̄, α̃) ≤ inf
α∈Γa(t̄,k̄,x̄)

J(t̄, k̄, x̄, α)

is trivially verified. In fact, the converse inequality also holds true.
Theorem 3.3. Assume (A0), (A1). Then for any (t̄, k̄, x̄) ∈ [0, T ]×[0,K]×R

n,

V (t̄, k̄, x̄) = inf
α∈Γa(t̄,k̄,x̄)

J(t̄, k̄, x̄, α) = inf
α̃∈Γ̃a(t̄,k̄,x̄)

J(t̄, k̄, x̄, α̃).

Moreover, the infimum over relaxed controls is attained and so is the infimum over
auxiliary controls.

Remark 3.2. Dufour and Miller proved in [DM] the existence of an optimal
control for the auxiliary problem in the case l = l0 + 〈l1, u〉 ≡ 0 and while under the
assumption that the set

M̃(t, x)
.
=

{
(A(t, x)(1 − |w|) + B(t, x)w, (1 − |w|)D(t, x)DT (t, x), |w|) :

w ∈ Bm(1) ∩ K
}

is convex ∀(t, x).
(21)

It is important to observe that the presence of the terms depending on |w| in (21)
implies that such a condition does not hold in most cases. Let us point out that in
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Theorem 3.3 the method of the graphs completion yields instead the existence of an
optimal control for the auxiliary control problem just under assumptions (A0), (A1),
without assumption (21).

Proof of Theorem 3.3. From [HL, Theorem 3.6] it follows straightforwardly that
for any initial condition (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×R

n there exists an optimal relaxed
control

α̃ = (Ω,F , P, {Fs}, {μs}, {(ts, ks, ξs)}, θ) ∈ Γ̃a(t̄, k̄, x̄).

Let us set μ0s(ω) = 1 − |μs(ω)| (pointwise) and let us define γ by

γ(s, ω) =
(
Aμ0s(ω) + Bμs(ω), μ0s

(ω)D̃, l0μ0s(ω) + 〈l1, μs(ω)〉, μ0s(ω)
)

(ts(ω), ξs(ω))

=
∫
Bm(1)∩K

(
Aw0 + Bw,w0D̃, l0w0 + 〈l1, w〉, w0

)
(ts(ω), ξs(ω))μs(ω, dw),

where w0 = 1 − |w| for w ∈ Bm(1) ∩ K. Since for every (t, x),{
(A(t, x)w0 + B(t, x)w,w0D̃(t, x), z, w0) :

z ≥ l0(t, x)w0 + 〈l1(t, x), w〉, (w0, w) ∈ R+ ×K, w0 + |w| = 1} ,
⊂

{
(A(t, x)w0 + B(t, x)w,w0D̃(t, x), z, w0) :

z ≥ l0(t, x)w0 + 〈l1(t, x), w〉, (w0, w) ∈ R+ ×K, w0 + |w| ≤ 1} ,

where the last set is a compact, convex subset of R
n × M(n, n) × R

2, arguing as in
the proof of Theorem 3.6 in [HL] (see also Theorem A9 in [HL]) one can show that
there exist

two Fs-progressively measurable processes {vs}, {(w0s
, ws)},

R+ and (R+ ×K) ∩ {(w0, w) : w0 + |w| ≤ 1}-valued, respectively,
(22)

such that one has

γ(s, ω) =
(
Aw0s(ω) + Bws(ω), w0s(ω)D̃, l0w0s

(ω) + 〈l1, ws(ω)〉, w0s
(ω)

)
(ts(ω), ξs(ω))

+(0, 0, vs(ω), 0) for almost all (s, ω).
(23)
Let us define the noncanonical control α by

α
.
= (Ω,F , P, {Fs}, {(w0s

, ws)}, {(ts, ks, ξs)}, θ),(24)

where {(w0s , ws)} is given in (22). In the rest of the proof, with a slight abuse of
notation, let us use again the symbols J and L to denote the cost and the operator in
(19) once the scalar process {w0s} in their definitions is not subjected to the constraint
w0s = 1 − |ws|, but is an independent process with values in [0, 1]. Then by (23) it
follows that for any ϕ ∈ C2

b (R2+n), Lϕ(ts, ks, ξs, μs) = Lϕ(ts, ks, ξs, (w0s , ws)) except
on a (s, ω) null set. Hence for all ϕ and all s ∈ [0, T + K],

Ms(ϕ, α̃) = Ms(ϕ, α).

Moreover, since

l0(ts, ξs)μ0s + 〈l1(ts, ξs), μs〉 = l0(ts, ξs)w0s + 〈l1(ts, ξs), ws〉 + vs
≥ l0(ts, ξs)w0s + 〈l1(ts, ξs), ws〉,
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and J(t̄, k̄, x̄, α̃) < +∞, then J(t̄, k̄, x̄, α) ≤ J(t̄, k̄, x̄, α̃) < +∞. The noncanonical
control α does not belong, however, to the set Γa(t̄, k̄, x̄) since it does not verify (B1)
and w0s = 1−|ws|. Therefore, in order to conclude the proof, it remains to prove the
following.

Claim. There exists a control α̌ = (Ω,F , P, {Fs}, {w̌s}, {(ťs, ǩs, ξ̌s)}, θ̌) verifying
(B3) and (B4) and such that J(t̄, k̄, x̄, α̌) = J(t̄, k̄, x̄, α).

In view of Remark 3.1, indeed, this is sufficient for the existence of a control
α̂ ∈ Γa(t̄, k̄, x̄) such that J(t̄, k̄, x̄, α̂) = J(t̄, k̄, x̄, α) and α̂ is the required optimal
auxiliary control. The claim will be proved in appendix (Remark 7.1 and Lemma
7.3).

Remark 3.3. In general, the original control problem described in Definition 2.1
does not have an optimal control while, by Theorem 3.3, the auxiliary control problem
does. Thanks to (ii) of Theorem 2.3, this yields a sequence of suboptimal controls
cn ∈ C(t̄, k̄, x̄) for the original problem for any (t̄, k̄, x̄) ∈ [0, T [×[0,K] × R

n.

3.3. Control rules. We are now going to recall very briefly the definition of
control rules (for a detailed description, see [HL]). In order to introduce a canonical
space for the problem, let us define the following spaces:

C2+n = {f : [0, T + K] → R
2+n, f continuous},

endowed with the topology of uniform convergence;

U .
= {ν : [0, T + K] → M1(Bm(1) ∩ K), ν Borel measurable},

endowed with the stable topology;

Z = {ζ : [0, T + K] → R, ζ = χs≥Δ, Δ ∈ [0,+∞]},(25)

endowed with the topology of weak convergence of the corresponding (point) proba-
bility measures. We denote the map ζ → Δ by Δ(·). Let C̃, Ũ , Z̃ denote their Borel σ-
fields, let C̃s, Ũs, Z̃s denote the σ-fields up to time s (e.g., Z̃s = σ{ζ(s′) : 0 ≤ s′ ≤ s}),
and let us introduce the canonical setting

Ω = C2+n × U × Z, F .
= C̃ × Ũ × Z̃, Fs

.
= C̃s × Ũs × Z̃s.(26)

Notice that Ω is metrizable and separable under the product topology.
Definition 3.4. Fix (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × Rn, and let Ω, F and {Fs} be

defined by (26). We say that R is a control rule and we write that R ∈ R(t̄, k̄, x̄) if R
is a probability measure on the canonical space (Ω,F), such that

α̃ = (Ω,F , R, {Fs}, {μs}, {(ts, ks, ξs)}, θ)

is a relaxed control (i.e., α̃ ∈ Γ̃(t̄, k̄, x̄)), where

(ts, ks, ξs)(ω) = fs, μs(ω) = νs, θ(ω) = Δ(ζ)

for ω = (f, ν, ζ) ∈ Ω. Finally, we define the cost associated to R as J(t̄, k̄, x̄, R)
.
=

J(t̄, k̄, x̄, α̃), where J(t̄, k̄, x̄, α̃) is given in (20). The subset Ra(t̄, k̄, x̄) of the admis-
sible control rules can be now defined as follows:

Ra(t̄, k̄, x̄)
.
=

{
R ∈ R(t̄, k̄, x̄) : J(t̄, k̄, ξ̄, R) < +∞

}
.
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Remark 3.4. For the sake of notation, in what follows a given element ω of the
canonical space C2+n × U × Z will be denoted by ω = ((t., k., ξ.), μ., θ).

By definition, R(t̄, k̄, x̄) ↪→ Γ̃(t̄, k̄, x̄). In fact, the inverse embedding is also valid.
In particular, one has the following proposition.

Proposition 3.5. Fix (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n and assume (A0), (A1).

Then

V (t̄, k̄, x̄) = inf
α̃∈Γ̃a(t̄,k̄,x̄)

J(t̄, k̄, x̄, α̃) = inf
R∈Ra(t̄,k̄,x̄)

J(t̄, k̄, x̄, R).(27)

Moreover, the infimum is attained in any one of Ra(t̄, k̄, x̄), Γ̃a(t̄, k̄, x̄), and Γa(t̄, k̄, x̄).

Proof. The first equality in (27) has been obtained in Theorem 3.3, while the
second one follows from Theorem 3.13 in [HL]. The minimum for the auxiliary (and
hence, for any other) control problem exists in view of Theorem 3.3.

Let us conclude this subsection by recalling a dynamic programming principle
established in [HL]. To this end, let us notice that the auxiliary control problem is
in fact an unconstrained stopping time control problem. Indeed, from Definition 2.2
it follows that for all (t̄, k̄, x̄) such that either t̄ > T or k̄ > K, the set of admissible
auxiliary controls Γa(t̄, k̄, x̄) is empty. Hence the auxiliary value function V might be
extended to the whole set [0,+∞[×[0,+∞[×R

n in a natural way by setting V = +∞
outside [0, T ] × [0,K] × R

n.
Proposition 3.6. Assume (A0), (A1). For any (t̄, k̄, x̄) ∈ [0, T ]× [0,K]× R

n,
one has

V (t̄, k̄, x̄) = inf

{
ER

[ ∫ ρ′

0

(l0(tσ, ξσ)(1−|μσ|)+ 〈l1(tσ, ξσ), μσ〉) dσ+V (tρ′ , kρ′ , ξρ′)

]}
,

(28)
where the infimum is taken over the set Ra(t̄, k̄, x̄) and ρ′ = ρ ∧ θ, ρ being any finite
stopping time such that 0 ≤ ρ ≤ θ.

4. Continuity of the value function.
Theorem 4.1. Let (A0), (A1) hold. Then the value function V is bounded

and continuous. More precisely, there exists some C̄ > 0 such that V satisfies the
following:

|V (t̄, k̄, x̄)| ≤ C̄ ∀(t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n;

|V (t̄1, k̄1, x̄1)−V (t̄2, k̄2, x̄2)| ≤ C̄
[
|x̄1 − x̄2| + (1 + |x̄1| ∨ |x̄2|)

(
|t̄1 − t̄2|1/2 + |k̄1 − k̄2|

)]
for all (t̄1, k̄1, x̄1), (t̄2, k̄2, x̄2) ∈ [0, T ] × [0,K] × R

n.
Proof (Boundedness). It is very easy to see that for any initial condition (t̄, k̄, x̄) ∈

[0, T ]× [0,K]×R
n the set of admissible control rules is nonempty. Since the stopping

time θ is bounded from above by T + K, the boundedness of V follows, therefore,
straightforwardly from the boundedness of both the process {ws} and the data l0, l1,
and g.

Lipschitz continuity in x. Fix (t̄, k̄, x̄1), (t̄, k̄, x̄2) ∈ [0, T ]× [0,K]×R
n and assume

that V (t̄, k̄, x̄1) ≥ V (t̄, k̄, x̄2). One has

0 ≤ V (t̄, k̄, x̄1) − V (t̄, k̄, x̄2) ≤ sup
P∈Ra(t̄,k̄,x̄2)

(
J(t̄, k̄, x̄1, Q) − J(t̄, k̄, x̄2, P )

)
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for every Q ∈ Ra(t̄, k̄, x̄1). Take P ∈ Ra(t̄, k̄, x̄2) arbitrary and let

(Ω,F , P, {Fs}, {μs}, {(ts, ks, ξ2s
)}, θ)

be the associated relaxed control. By the definition of control rules, there exists an
extension (Ω̃, F̃ , P̃ , {F̃s}) of (Ω,F , P, {Fs}), i.e., there exists another probability space
(Ω′,F ′,F ′

s, P
′) such that Ω̃ = Ω×Ω′, F̃ = F×F ′, F̃s = Fs×F ′

s, and P̃ = P ×P ′. We
can extend the process {((t., k., ξ.), μ., θ)} to Ω̃ by the following: for ω̃ = (ω, ω′) ∈ Ω̃,

(t., k., ξ.)(ω̃) = (t., k., ξ.)(ω), μ̃.(ω̃) = μ.(ω), θ(ω̃) = θ(ω).

On (Ω̃, F̃ , P̃ , F̃s) there exists a standard p-dimensional Brownian motion {Ws} such
that for s ∈ [0, T + K],

ts = t̄ +
∫ s

0
(1 − |μ|σ) dσ,

ks = k̄ +
∫ s

0
|μσ| dσ,

ξ2s = x̄2 +
∫ s

0
(A(tσ, ξ2σ)(1 − |μ|σ) + B(tσ, ξ2σ)μσ) dσ +

∫ s

0
D(tσ, ξ2σ)

√
1 − |μ|σ dWσ,

the control β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(ts, ks, ξ2s)}, θ) ∈ Γ̃a(t̄, k̄, x̄2), where, by the
definition of the set Z in (25), θ is the first time in which χs≥θ jumps from 0 to 1 and

J(t̄, k̄, x̄2, β̃) = J(t̄, k̄, x̄2, P̃ ) = J(t̄, k̄, x̄2, P ).
Consider the equations with the initial condition (t̄, k̄, x̄1), for s ∈ [0, T + K],

ts = t̄ +
∫ s

0
(1 − |μ|σ) dσ,

ks = k̄ +
∫ s

0
|μσ| dσ,

ξ1s = x̄1 +
∫ s

0
(A(tσ, ξ1σ)(1 − |μ|σ) + B(tσ, ξ1σ)μσ) dσ +

∫ s

0
D(tσ, ξ1σ)

√
1 − |μ|σ dWσ

(29)
on the stochastic basis (Ω̃, F̃ , P̃ , {F̃s}). Under assumptions (A0), (A1), the strong so-
lution to (29) exists and one can see that α̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(ts, ks, ξ1s)}, θ) ∈
Γ̃a(t̄, k̄, x̄1). Therefore, there exists a control rule Q ∈ Ra(t̄, k̄, x̄1) such that

J(t̄, k̄, x̄1, α̃) = J(t̄, k̄, x̄1, Q).

We have

J(t̄, k̄, x̄1, Q) − J(t̄, k̄, x̄2, P ) = J(t̄, k̄, x̄1, α̃) − J(t̄, k̄, x̄2, β̃)

≤ EP̃

[∫ θ

0
|l0(tσ, ξ1σ) − l0(tσ, ξ2σ)| |1 − |μσ|| dσ +

∫ θ

0
|l1(tσ, ξ1σ) − l1(tσ, ξ2σ)||μσ| dσ

+|g(ξ1θ) − g(ξ2θ)|
]
≤ LEP̃

[∫ θ

0
|ξ1σ − ξ2σ| dσ

]
+ LEP̃ [|ξ1θ − ξ2θ|],

where we have used the Lipschitz continuity of l0, l1, and g and L is the same as in
(A1). Let us define ξ̂is

.
= ξis∧θ

for all s ≥ 0 and i = 1, 2. By the Burkholder–Gundy
and Gronwall inequalities, we obtain that there exists a constant C, depending on the
Lipschitz constant L2 in (A0) and on T + K, such that, for all 0 ≤ σ ≤ T + K,

EP̃

[
sup
s≤σ

(|ξ̂1s − ξ̂2s|2)
]
≤ C|x̄1 − x̄2|2.

Since from the definitions of {ξ̂1s
} and {ξ̂2s} it follows that

EP̃

[∫ θ

0
|ξ1σ − ξ2σ| dσ

]
≤ EP̃

[∫ T+K

0
|ξ̂1σ − ξ̂2σ| dσ

]
≤

(∫ T+K

0
EP̃

[
sups≤σ(|ξ̂1s

− ξ̂2s|2)
]
dσ

)1/2

,

(30)
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in view of the arbitrariness of P ∈ Ra(t̄, k̄, x̄2), the previous estimates yield that

0 ≤ V (t̄, k̄, x̄1) − V (t̄, k̄, x̄2) ≤ C̄|x̄1 − x̄2|

for a suitable constant C̄, depending just on L, L2, and T + K.
Hölder continuity in t. Fix (t̄1, k̄, x̄), (t̄2, k̄, x̄) ∈ [0, T ] × [0,K] × R

n and assume
that V (t̄1, k̄, x̄) ≥ V (t̄2, k̄, x̄).

Case 1. t̄1 < t̄2. One has

0 ≤ V (t̄1, k̄, x̄) − V (t̄2, k̄, x̄) ≤ sup
P∈Ra(t̄2,k̄,x̄)

(
J(t̄1, k̄, x̄, Q) − J(t̄2, k̄, x̄, P )

)
for every Q ∈ Ra(t̄1, k̄, x̄). Take P ∈ Ra(t̄2, k̄, x̄) arbitrary and let

(Ω,F , P, {Fs}, {μs}, {(t2s , ks, ξ2s)}, θ2)

be the associated relaxed control. Now, as in the previous step, there exist an ex-
tension (Ω̃, F̃ , P̃ , {F̃s}) of (Ω,F , P, {Fs}) and a standard Brownian motion {Ws} on
(Ω̃, F̃ , P̃ , {F̃s}) such that, for s ∈ [0, T + K],

t2s = t̄2 +
∫ s

0
(1 − |μσ|) dσ,

ks = k̄ +
∫ s

0
|μσ| dσ,

ξ2s = x̄ +
∫ s

0
(A(t2σ , ξ2σ )(1 − |μσ|) + B(t2σ , ξ2σ )μσ) dσ +

∫ s

0
D(t2σ , ξ2σ )

√
1 − |μσ| dWσ,

the control β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(t2s , ks, ξ2s)}, θ2) ∈ Γ̃a(t̄2, k̄, x̄), and J(t̄2, k̄, x̄,
β̃) = J(t̄2, k̄, x̄, P ). Let us now consider the relaxed control that one obtains from
the definition of β̃ when μs is replaced by μsχ{s≤θ2} for s ≥ 0. It is easy to see that

this control is admissible, that is, it belongs to Γ̃a(t̄2, k̄, x̄) and the corresponding cost
coincides with J(t̄2, k̄, x̄, P ). With a small abuse of notation, from now on let us use
β̃ to denote such control.

Let us introduce the stopping time θ1
.
= θ2 + (t̄2 − t̄1) and let {(t1s

, ks, ξ1s
)} be

the strong solution to

t1s
= t̄1 +

∫ s

0
(1 − |μσ|) dσ,

ks = k̄ +
∫ s

0
|μσ| dσ,

ξ1s = x̄ +
∫ s

0
(A(t1σ , ξ1σ )(1 − |μσ|) + B(t1σ , ξ1σ )μσ) dσ +

∫ s

0
D(t1σ , ξ1σ )

√
1 − |μσ| dWσ

on the stochastic basis (Ω̃, F̃ , P̃ , {F̃s}) for s ∈ [0, T + K]. As claimed in Remark 2.2,
β̃ admissible implies that θ2 ≤ (T − t̄2) + (K − k̄), t2θ2

= T , and kθ2 ≤ K. Hence one
deduces that

θ1 ≤ (T − t̄2) + (K − k̄) + (t̄2 − t̄1) = (T − t̄1) + (K − k̄) ≤ T + K.

Moreover, since we identified μs with μsχ{s≤θ2} one has

t1θ1
= t2θ2

+ (θ1 − θ2) − (t̄2 − t̄1), kθ1 = kθ2 ≤ K.

Therefore, t1θ1
= T , kθ1 ≤ K, and the control α̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(t1s , ks, ξ1s)},

θ1) is in Γ̃a(t̄1, k̄, x̄). Thus there exists a control rule Q ∈ Ra(t̄1, k̄, x̄) such that
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J(t̄1, k̄, x̄, α̃) = J(t̄1, k̄, x̄, Q). We have

J(t̄1, k̄, x̄, Q) − J(t̄2, k̄, x̄, P ) = J(t̄1, k̄, x̄, α̃) − J(t̄2, k̄, x̄, β̃)

≤ EP̃

[
|g(ξ1θ1

) − g(ξ2θ2
)|
]
+ EP̃

[∫ θ2
0

|l0(t1σ , ξ1σ ) − l0(t2σ , ξ2σ )| |1 − |μσ|| dσ
]

+EP̃

[∫ θ2
0

|l1(t1σ , ξ1σ ) − l1(t2σ , ξ2σ )| |μσ| dσ
]

+EP̃

[∫ θ2+(t̄2−t̄1)

θ2
|l0(t1σ

, ξ1σ
)| |1 − |μσ|| dσ

]
≤ L

[
EP̃ [|ξ1θ1

− ξ2θ2
|2]

] 1
2 + LEP̃

[∫ θ2
0

(|t1σ
− t2σ

| + |ξ1σ
− ξ2σ

|) dσ
]

+ L3(t̄2 − t̄1),

where the constants L and L3 are the same as in (A1). In order to conclude the

proof, let us introduce for s ≥ 0 the processes ξ̂is
.
= ξis∧θi

, for i = 1, 2. Since

t1θ2
= t2θ2

− (t̄2 − t̄1),

by standard calculations (see, e.g., [F]) one can prove that

EP̃

[
sup
s≤σ

|ξ̂2s
− ξ̂1s

|2
]
≤ C2(1 + |x̄|)2|t̄2 − t̄1|,

for every 0 ≤ σ ≤ T + K, with C a suitable constant depending on L1, L2 in (A0)

and T + K. From the definitions of {ξ̂2s
} and {ξ̂1s

}, this yields

EP̃

[∣∣ξ2θ2
− ξ1θ1

∣∣2] = EP̃

[∣∣∣ξ̂2T+K
− ξ̂1T+K

∣∣∣2] ≤ C2(1 + |x̄|)2|t̄2 − t̄1|.

Therefore, by (30) we obtain

J(t̄1, k̄, x̄, Q) − J(t̄2, k̄, x̄, P ) ≤ C̄
[
(1 + |x̄|)|t̄1 − t̄2|

1
2 + |t̄1 − t̄2|

]
,

which, by the arbitrariness of P , yields

0 ≤ V (t̄2, k̄, x̄) − V (t̄1, k̄, x̄) ≤ C̄(1 + |x̄|)|t̄1 − t̄2|
1
2

for some constant C̄ depending on the constants L, L2, L3, and T +K in (A0), (A1).
Case 2. t̄1 > t̄2. Consider the dynamic programming principle (28) for V (t̄2, k̄, x̄),

V (t̄2, k̄, x̄) = inf
R∈Ra(t̄2,k̄,x̄)

{
ER

[ ∫ r∧θ

0

(l0(tσ, ξσ)(1 − |μσ|)(31)

+ 〈l1(tσ, ξσ), μσ〉) dσ + V (tr∧θ, kr∧θ, ξr∧θ)

]}
,

where we choose the (deterministic) time r = t̄1− t̄2. It is easy to see that there exists
an admissible control rule P ∈ Ra(t̄2, k̄, x̄) associated to a relaxed control

(Ω,F , P, {Fs}, {μs}, {(ts, ks, ξs)}, θ)

and such that

P (μs = δ{0} 0 ≤ s ≤ θ, θ = T − t̄2) = 1.
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Then P (θ ≥ r) = 1; by the boundedness of l0 one has

V (t̄2, k̄, x̄) ≤ EP

[∫ r

0

|l0(tσ, ξσ)| dσ + V (tr, kr, ξr)

]
≤ L3r + EP [V (tr, kr, ξr)],

and by the Lipschitz continuity of the value function in x,

V (tr, kr, ξr) ≤ V (tr, kr, x̄) + C|ξr − x̄|.

Hence

V (t̄2, k̄, x̄)−EP [V (tr, kr, x̄)] ≤ L3r+CEP [|ξr−x̄|] ≤ L3r+C(EP [|ξr−x̄|2]) 1
2 .

(32)
From the definition of control rules, we know that under P ,

tr = t̄2 + r = t̄1,
kr = k̄,
ξr = x̄ +

∫ r

0
A(tσ, ξσ) dσ + Mr,

(33)

where {Mr} is a continuous square integrable martingale with

〈M〉r =

∫ r

0

Tr{D̃(tσ, ξσ)} dσ.

Therefore, by the Burkholder–Davis–Gundy inequality there exists a constant C,
depending on L1 in (A0), such that

EP [|ξr − x̄|2] ≤ C2(1 + |x̄|)2(r2 + r).(34)

Therefore, (32), (33), and (34) yield

0 ≤ V (t̄2, k̄, x̄) − V (t̄1, k̄, x̄) ≤ C̄(1 + |x̄|)|t̄2 − t̄1|
1
2

for some constant C̄ depending on the constants introduced in (A0), (A1).
Lipschitz continuity in k. Fix (t̄, k̄1, x̄), (t̄, k̄2, x̄) ∈ [0, T ]×[0,K]×R

n, and assume
that V (t̄, k̄1, x̄) ≥ V (t̄, k̄2, x̄).

Case 1. k̄1 < k̄2. One has

0 ≤ V (t̄, k̄1, x̄) − V (t̄, k̄2, x̄) ≤ sup
P∈Ra(t̄,k̄2,x̄)

(
J(t̄, k̄1, x̄, Q) − J(t̄, k̄2, x̄, P )

)
for every Q ∈ Ra(t̄, k̄1, x̄). As in the previous step, take P ∈ Ra(t̄, k̄2, x̄) arbitrary
and let {Ws} be a standard Brownian motion on a suitable (Ω̃, F̃ , P̃ , {F̃s}) such that

β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(ts, k2s , ξs)}, θ2) ∈ Γ̃a(t̄, k̄2, x̄)

is a relaxed control, where, for s ∈ [0, T + K],

ts = t̄ +
∫ s

0
(1 − |μσ|) dσ,

k2s = k̄2 +
∫ s

0
|μσ| dσ,

ξs = x̄ +
∫ s

0
(A(tσ, ξσ)(1 − |μσ|) + B(tσ, ξσ)μσ) dσ +

∫ s

0
D(tσ, ξσ)

√
1 − |μσ| dWσ,

and J(t̄, k̄2, x̄, β̃) = J(t̄, k̄2, x̄, P ). Moreover, setting for s ≥ 0,

k1s

.
= k̄1 +

∫ s

0

|μσ| dσ = k2s − (k̄2 − k̄1),
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one easily sees that the control

α̃ = (Ω̃, F̃ , P̃ , {F̃s}, {μs}, {(ts, k1s , ξs)}, θ2)

is in Γ̃a(t̄, k̄1, x̄). As before, there exists a control rule Q ∈ Ra(t̄, k̄1, x̄) such that
J(t̄, k̄1, x̄, α̃) = J(t̄, k̄1, x̄, Q). Since the cost functional J and the state process {ξs}
do not depend explicitly on the k variable, one has that

J(t̄, k̄2, x̄, P ) = J(t̄, k̄2, x̄, β̃) = J(t̄, k̄1, x̄, α̃) = J(t̄, k̄1, x̄, Q).

As a consequence, in this case,

V (t̄, k̄1, x̄) = V (t̄, k̄2, x̄).

Case 2. k̄1 > k̄2. Consider the dynamic programming principle (28) for V (t̄, k̄2, x̄),

V (t̄, k̄2, x̄) = inf
R∈Ra(t̄,k̄2,x̄)

{
ER

[ ∫ r∧θ

0

(l0(tσ, ξσ)(1 − |μσ|)

+ 〈l1(tσ, ξσ), μσ〉) dσ + V (tr∧θ, kr∧θ, ξr∧θ)

]}
,

where we choose the (deterministic) time r = k̄1 − k̄2. Let us fix an arbitrary w ∈ K
with |w| = 1. Then there exists a control rule P ∈ Ra(t̄, k̄2, x̄) associated to a relaxed
control

β̃ = (Ω,F , P, {Fs}, {μs}, {(ts, ks, ξs)}, θ)

such that

P (μs = δ{w} 0 ≤ s ≤ θ, θ = K − k̄2) = 1,

and J(t̄, k̄2, x̄, β̃) = J(t̄, k̄2, x̄, P ). Then, arguing as in the case “t̄1 > t̄2” of the proof
of the continuity in t, we can deduce that an estimate analogous to (32) is still verified,
that is

V (t̄, k̄2, x̄)−EP [V (tr, kr, x̄)] ≤ L3r+CEP [|ξr − x̄|] ≤ L3r+C(EP [|ξr − x̄|2]) 1
2 .(35)

Now, under P we have

tr = t̄,
kr = k̄2 + r = k̄1,
ξr = x̄ +

∫ r

0
B(tσ, ξσ) dσ.

(36)

Therefore, since EP [|B(ts, ξs)|2] ≤ EP [[L1(1 + |ξs|)]2] ≤ C2(1 + |x̄|)2, we deduce that
for 0 ≤ r ≤ θ,

EP [|ξr − x̄|2] ≤ C2(1 + |x̄|)2r2.(37)

Then (35), (36), and (37) yield

0 ≤ V (t̄, k̄2, x̄) − V (t̄, k̄1, x̄) ≤ C̄(1 + |x̄|)|k̄2 − k̄1|.

The proof of Theorem 4.1 is thus concluded.
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By Theorem 2.3, as a straightforward consequence of Theorem 4.1 one has the
following corollary.

Corollary 4.2. Assume (A0), (A1). Then there exists a unique, bounded,
continuous extension of the value function V : [0, T [×[0,K] × R

n → R, still denoted
by V, to the closed set [0, T ] × [0,K] × R

n which coincides with the auxiliary value
function V . Hence there exists some C̄ > 0 such that

|V(t̄, k̄, x̄)| ≤ C̄ ∀(t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n,

|V(t̄1, k̄1, x̄1) − V(t̄2, k̄2, x̄2)| ≤ C̄[|x̄1 − x̄2| + (1 + |x̄1| ∨ |x̄2|)(|t̄1 − t̄2|1/2 + |k̄1 − k̄2|)]

for all (t̄1, k̄1, x̄1), (t̄2, k̄2, x̄2) ∈ [0, T ] × [0,K] × R
n.

Therefore, from now on V will denote the extension of V to [0, T ] × [0,K] × R
n,

which exists being equal to V .

5. Dynamic programming equation and boundary conditions. This sec-
tion is devoted to showing that the value function V is a viscosity solution of (5)–(7).
To this end, we will recall below the definition of viscosity sub- and supersolutions
with generalized boundary conditions (see, e.g., [CIL]). A formal derivation of the
boundary value problem described in the introduction is given in the following sub-
section.

5.1. Heuristic derivation of the quasi-variational inequality and of the
boundary conditions. It is quite easy to deduce heuristically the boundary value
problem (5)–(7) once we consider the value function V of the auxiliary optimization
control problem defined in Definition 2.2 to which our original control problem, in-
troduced in Definition 2.1, is equivalent. The auxiliary control problem is indeed
formulated as an unconstrained stopping time problem, with bounded controls and
discontinuous final cost given by

G̃(t, k, x)
.
= g(x) −G(t, k) ∀(t, k, x) ∈ R

2+n.

Therefore, assuming V of class C1,2, using Ito’s formula and arguing as usual (see, e.g.,
[FS]), we can deduce from the dynamic programming principle (28) that V verifies
the following equation:

F̃
(
x,DV,

∂V

∂t
,
∂V

∂k
,D2V

)
= 0 in ]0, T [×]0,K[×R

n,

where

F̃(x, px, pt, pk, S)
.
= max{(w0,w): w0≥0, w∈K, w0+|w|=1}{− 1

2w0Tr{D̃(t, x)S}
−〈A(t, x)w0 + B(t, x)w, px〉 − l0(t, x)w0 − 〈l1(t, x), w〉 − pt w0 − pk|w|},

which is, in turn, equivalent to the quasi-variational inequality (5), as shown in [MS2].
More precisely, one can show that the value function of an optimal stopping time

problem verifies

max

{
F̃
(
x,DV,

∂V

∂t
,
∂V

∂k
,D2V

)
;V − G̃

}
= 0 in R

2+n,(38)

due to the fact that the controller can decide to stop as soon as it is convenient (for
the derivation of (38) in a viscosity framework we refer to [BP] and [BCD]). Since
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V (t, k, x) = +∞ outside [0, T ] × [0,K] × R
n and the lower semicontinuous exit cost

G̃(t, k, x) is equal to g(x) for (t, x, k) ∈ {T} × [0,K] × R
n and to +∞ otherwise, by

(38) it follows easily that (7) holds for every (t, x, k) ∈ {T}× [0,K]×R
n and that (6)

holds for (t, x, k) ∈ [0, T [×[0,K] × R
n.

We underline that, as far as we know, there is not in the literature a dynamic
programming principle for the problem of Definition 2.1; hence, even assuming the
value function V to be regular enough, there is no way to deduce the equation and
the boundary conditions (5)–(7) directly for the original control problem.

5.2. Viscosity solution.
Definition 5.1. A locally bounded function v defined on [0, T ] × [0,K] × R

n is
a viscosity subsolution of (5)–(7) if for every point z̄ = (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R

n

and for every map φ ∈ C2
b ([0, T ]× [0,K]×R

n) such that v∗ −φ has a local maximum
at z̄ one has

max

{
−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)),−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄))

}
≤ 0

if z̄ ∈]0, T [×]0,K[×R
n, and

v∗(z̄) ≤ g(x̄)

if z̄ ∈ {T}×]0,K] × R
n.

A locally bounded function v defined on [0, T ] × [0,K] × R
n is a viscosity super-

solution of (5)–(7) if for every point z̄ = (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n and for every

map φ ∈ C2
b ([0, T ] × [0,K] × R

n) such that v∗ − φ has a local minimum at z̄ one has

max

{
−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)),−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄))

}
≥ 0

if z̄ ∈]0, T [×]0,K] × R
n, and

max

{
−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)),−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄))

}
≥ 0 or v∗(z̄) ≥ g(x̄)

if z̄ ∈ {T}×]0,K] × R
n.

A locally bounded function v defined on [0, T ] × [0,K] × R
n is called a viscosity

solution of (5)–(7) if it is both a viscosity sub- and supersolution of (5)–(7).
Example 5.1. Consider the control problem introduced in Example 2.1 and the

following boundary value problem:

max

{
−∂v

∂t
− cDv,−∂v

∂k
+ H(x,Dv)

}
= 0 in ]0, T [×]0,K[×R,(39)

max

{
−∂v

∂t
− cDv,−∂v

∂k
+ H(x,Dv)

}
≥ 0 on ]0, T [×{K} × R,(40)

v(T, k, x) ≤ arctan(x) and max
{
−∂v

∂t − cDv,− ∂v
∂k + H(x,Dv)

}
≥ 0

if v(T, k, x) < arctan(x) on {T}×]0,K] × R,
(41)

where

H(x, p) = max
(w1, w2) ∈ K, |(w1, w2)| = 1

{−(w1 + xw2)p} .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1200 MONICA MOTTA AND CATERINA SARTORI

It is not difficult to prove that the value function V is a classical solution of (39, while
we refer to [MoRa] to show that it satisfies (40)–(41) in the viscosity sense.

Theorem 5.2. Assume (A0), (A1). Then the value function V : [0, T ]×[0,K]×
R

n → R solves the boundary value problem (5)–(7) in the viscosity sense.
Proof. We postpone the proof of this theorem to the end of this section.
Theorem 5.3. Assume (A0), (A1). Then the value function V : [0, T ]×[0,K]×

R
n → R is the unique viscosity solution of (5)–(7) among the bounded functions defined

on [0, T ] × [0,K] × R
n which are continuous on ∂(]0, T [×]0,K[×R

n).
Proof. This result follows straightforwardly from Corollary 6.1 of Theorem 3.1 in

[MS2] in view of Theorem 5.2 and Corollary 4.2.
Remark 5.1. When the boundedness assumption (8) in (A1) is weakened in the

linear growth condition (12) introduced in Remark 2.1, in order to apply Corollary
6.1 in [MS2] we have to introduce the following stronger growth hypothesis on A, B,
and D̃:

(A2) for any ε > 0 there is a constant Cε > 0 for which

|A(t, x)| + |B(t, x)| ≤ Cε + ε|x|, |D̃(t, x)| ≤ Cε + ε|x|2 ∀(t, x) ∈ [0, T ] × R
n.

Then under hypotheses (A0), (A1) with (8) replaced by (12) and (A2), we obtain
the uniqueness for the viscosity solution to (5)–(7) among the functions v which are
continuous on ∂(]0, T [×]0,K] × R

n) and such that

sup
x∈Rn

|v(t, k, x)|
1 + |x| < +∞ uniformly for (t, k) ∈ [0, T ] × [0,K].

Proof of Theorem 5.2. Since V = V , let us prove the theorem for V . Owing
to Theorem 4.1, V is continuous, so that V ∗ = V∗ = V . In what follows, for any
z̄ = (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×R

n and any r′ > 0 let us set Θr′
.
= [0∨ (t̄− r′), T ∧ (t̄+

r′)[×[0 ∨ (k̄ − r′),K ∧ (k̄ + r′)[×Bn(r′).
Step 1. Let us start by showing that V is a viscosity subsolution of (5)–(7). Since

at any point of the form (T, k̄, x̄) (with k̄ < K and x̄ ∈ R
n) it is clear that there exists

a control rule P ∈ Ra(T, k̄, x̄) such that

P (θ = 0) = 1,

from the very definition of V it follows that V (T, k̄, x̄) ≤ g(x̄). Hence it remains to
prove that V is a viscosity subsolution of (5). We argue by contradiction. If this
fails to hold, then there is a point z̄ = (t̄, k̄, x̄) ∈]0, T [×]0,K[×R

n, a test function
φ ∈ C2

b ([0, T ] × [0,K] × R
n), and a constant r1 > 0 such that z̄ is a local maximum

point for V − φ, that is,

V (z) − φ(z) ≤ V (z̄) − φ(z̄) ∀z = (t, k, x) ∈ Θr1 ,

and

max

{
−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)),−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄))

}
> 0.

Here, either

−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)) > 0(42)
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or

−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄)) > 0(43)

is verified. Since t̄ < T and k̄ < K, in the definition of Θr1 , reducing r1 if necessary,
we can always assume that t̄ + r1 < T and k̄ + r1 < K. If (42) is true, from the
definition of F , from the regularity hypotheses in (A0), (A1) and from the fact that
φ ∈ C2, it then follows that there exists some positive constant r2 ≤ r1 such that

−∂φ

∂t
(t, k, x) − 〈A(t, x), Dφ(t, k, x)〉 − l0(t, x) − 1

2
Tr{D̃(t, x)D2φ(t, k, x)} > 0

for all z = (t, k, x) ∈ Θr2 , and t̄ + r2 < T , k̄ + r2 < K. Take a control rule P ∈
Ra(t̄, k̄, x̄) such that

P
(
μs = δ{0} 0 ≤ s ≤ θ, θ = T − t̄

)
= 1.

It is easy to see that such a control rule exists; that, setting

ρ
.
= inf {s ∈]0, T + K] : (ts, ks, ξs) /∈ Θr2} ,

by the continuity of the state process (ts, ks, ξs) one gets

P (T − t̄ > ρ) = 1, P (ρ > 0) = 1;

and that, for 0 ≤ s < ρ,

−∂φ

∂t
(ts, ks, ξs)−〈A(ts, ξs), Dφ(ts, ks, ξs)〉−

1

2
Tr{D̃(ts, ξs)D

2φ(ts, ks, ξs)}−l0(ts, ξs) > 0.

Since μs = δ{0}, this yields that

EP

[∫ ρ

0

(−Lφ(ts, ks, ξs, μs) − l0(ts, ξs)(1 − |μs|) − 〈l1(ts, ξs), μs〉) ds

]
> 0.(44)

By the definition of control rule one has

φ(tρ, kρ, ξρ) = φ(t̄, k̄, x̄) +

∫ ρ

0

Lφ(ts, ks, ξs, μs) ds + Mρφ,

where Mρφ is a continuous square-integrable martingale with respect to P . Hence,

EP

[
φ(tρ, kρ, ξρ) − φ(t̄, k̄, x̄)

]
= EP

[∫ ρ

0

Lφ(ts, ks, ξs, μs) ds

]
.

Since (tρ, kρ, ξρ) ∈ Θr2 , one has

EP

[
V (tρ, kρ, ξρ) − V (t̄, k̄, x̄)

]
≤ EP

[
φ(tρ, kρ, ξρ) − φ(t̄, k̄, x̄)

]
= EP

[∫ ρ

0
Lφ(ts, ks, ξs, μs) ds

]
< −EP

[∫ ρ

0
(l0(ts, ξs)(1 − |μs|) + 〈l1(ts, ξs), μs〉) ds

]
,

where the last inequality follows from (44). This can be rewritten as

V (t̄, k̄, x̄) > EP

[∫ ρ

0

(l0(ts, ξs)(1 − |μs|) + 〈l1(ts, ξs), μs〉) + V (tρ, kρ, ξρ)

]
,
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in contradiction with the dynamic programming principle (28).
If (43) is true, reasoning as before one can deduce that there exist some positive

constant r2 ≤ r1 and a vector w̄ ∈ K with |w̄| = 1 such that

−∂φ

∂k
(t, k, x) − 〈B(t, x)w̄, p〉 − 〈l1(t, x), w̄〉 > 0 ∀z = (t, k, x) ∈ Θr2 .

Then, let us introduce a control rule P ∈ Ra(t̄, k̄, x̄) such that

P
(
μs = δ{w̄} 0 ≤ s ≤ θ, θ = K − k̄

)
= 1.

From now on, the proof proceeds, with obvious changes, as in the previous case. The
proof that V is a viscosity subsolution of (5)–(7) is therefore concluded.

Step 2. Let us assume by contradiction that V fails to be a viscosity supersolution
of (5)–(7). Thus there is a point z̄ = (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R

n, a test function
φ ∈ C2

b ([0, T ] × [0,K] × R
n), and a constant r1 > 0 such that z̄ is a local minimum

point for V − φ, that is,

V (z) − φ(z) ≥ V (z̄) − φ(z̄) ∀z = (t, k, x) ∈ Θr1 ,

and either of the following cases hold.
Case 1. (t̄, k̄, x̄) is such that t̄ < T , k̄ ≤ K, and

−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)) < 0 and − ∂φ

∂k
(z̄) + H(z̄, Dφ(z̄)) < 0.

Case 2. (t̄, k̄, x̄) is such that t̄ = T , k̄ < K, and

max

{
−∂φ

∂t
(z̄) + F(z̄, Dφ(z̄), D2φ(z̄)),−∂φ

∂k
(z̄) + H(z̄, Dφ(z̄))

}
< 0 and V (z̄) < g(x̄).

Let us first consider Case 1. Since t̄ < T , in the definition of Θr1 , reducing r1 if
necessary, we can always assume that t̄ + r1 < T . From the regularity hypotheses in
(A0), (A1) and from the fact that φ ∈ C2, it follows that there exist some positive
constants r2 ≤ r1 and ε > 0 such that

−∂φ

∂t
(z) + F(z,Dφ(z), D2φ(z)) < −ε and − ∂φ

∂k
(z) + H(z,Dφ(z)) < −ε(45)

for all z = (t, k, x) ∈ Θr2 , and t̄ + r2 ≤ t̄ + r1 < T . Take an optimal control rule
P ∈ Ra(t̄, k̄, x̄). Such a control rule exists in view of Proposition 3.5. Let us notice
that at any point (t̄, k̄, x̄) with t̄ < T , every control rule Q ∈ Ra(t̄, k̄, x̄) verifies

Q (θ ≥ T − t̄ > 0) = 1.(46)

Moreover (see Remark 2.2), in both cases, k̄ < K and k̄ = K, one has

Q (ks ≤ K 0 ≤ s ≤ θ) = 1.(47)

Equations (46) and (47) hold, in particular, for Q = P . Let us define the exit time

ρ
.
= inf{s ∈]0, T + K] :

(ts, ks, ξs) /∈ [0 ∨ (t̄− r2), t̄ + r2[×[0 ∨ (k̄ − r2), k̄ + r2[×Bn(r2)}.
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Observe that, if k̄ < K, then it is not restrictive to assume that k̄+ r2 < K, so that ρ
coincides with the first exit time from the set Θr2 . In case k̄ = K, instead, k̄+r2 > K
and ρ may be greater than the first exit time from Θr2 . However, taking into account
(47), it is not difficult to see that in both cases k̄ < K and k̄ = K, one has

(ts, ks, ξs) ∈ Θr2 0 ≤ s ≤ ρ ∧ θ.

Now, from the continuity of the process (ts, ks, ξs) it follows that

P (ρ > 0) = 1,

which together with (46) yields that the stopping time ρ′
.
= ρ ∧ θ verifies

P (ρ′ > 0) = 1.

Therefore by (45) it follows that

EP

[∫ ρ′

0

(Lφ(ts, ks, ξs, μs) + l0(ts, ξs)(1 − |μs|) + 〈l1(ts, ξs), μs〉) ds

]
≥ εEP [ρ′].

Applying Ito’s formula, we have

EP [φ(tρ′ , kρ′ , ξρ′)] = φ(t̄, k̄, x̄) + EP

[∫ ρ′

0

Lφ(ts, ks, ξs, μs) ds

]

which yields

EP

[
φ(tρ′ , kρ′ , ξρ′) − φ(t̄, k̄, x̄)

]
= EP

[∫ ρ′

0
Lφ(ts, ks, ξs, μs) ds

]
≥ EP

[∫ ρ′

0
(−l0(ts, ξs)(1 − |μs|) − 〈l1(ts, ξs), μs〉) ds

]
+ εEP [ρ′].

Since (tρ′ , kρ′ , ξρ′) ∈ Θr2 and EP [ρ′] > 0, setting ε′
.
= εEP [ρ′], ε′ > 0 one has

EP

[
V (tρ′ , kρ′ , ξρ′) − V (t̄, k̄, x̄)

]
≥ EP

[
φ(tρ′ , kρ′ , ξρ′) − φ(t̄, k̄, x̄)

]
≥ EP

[∫ ρ′

0
(−l0(ts, ξs)(1 − |μs|) − 〈l1(ts, ξs), μs〉) ds

]
+ ε′,

which, rewritten as

V (t̄, k̄, x̄) ≤ EP

[∫ ρ′

0

(l0(ts, ξs)(1 − |μs|) + 〈l1(ts, ξs), μs〉) ds + V (tρ′ , kρ′ , ξρ′)

]
− ε′,

contradicts the dynamic programming principle (28).
Let (T, k̄, x̄) be some point satisfying the assumptions of Case 2. Since by defi-

nition V (T,K, x̄) = g(x̄) ∀x̄ ∈ R
n, it must be that k̄ < K. Hence in the definition

of Θr1 , reducing r1 if necessary, we can always assume that k̄ + r1 < K, r1 < T
(while (T +r1)∧T = T ), and from the regularity hypotheses in (A0), (A1) and from
φ ∈ C2, it follows that there exist some positive constants r2 ≤ r1 and ε > 0 such
that

−∂φ

∂t
(z)+F(z,Dφ(z), D2φ(z)) < −ε, −∂φ

∂k
(z)+H(z,Dφ(z)) < −ε, V (z) < g(x)−ε
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for all z = (t, k, x) ∈ Θr2 , where now Θr2 = [T − r2, T [×[0∨ (k̄− r2), k̄ + r2[×Bn(r2).
Let P ∈ Ra(T, k̄, x̄) be an optimal control rule, which exists in view of Proposition
3.5. It is not difficult to see that every control rule Q ∈ Ra(T, k̄, x̄) is such that

Q (ts = T, 0 ≤ s ≤ θ) = 1,(48)

and, if in addition J(T, k̄, x̄, Q) < g(x̄), then (k̄ < K and)

Q (θ > 0) = 1.(49)

Since V (T, k̄, x̄) < g(x̄) by hypothesis, (48) and (49) hold, in particular, for Q = P .
Let us define

ρ
.
= inf

{
s ∈]0, T + K] : (ts, ks, ξs) /∈ [T − r2, T + r2[×[0 ∨ (k̄ − r2), k̄ + r2[×Bn(r2)

}
.

The exit time ρ may be greater than the first exit time from Θr2 , but from (48) it
follows that

(ts, ks, ξs) ∈ Θr2 , 0 ≤ s ≤ ρ ∧ θ.

Now the continuity of the process (ts, ks, ξs) implies that

P (ρ > 0) = 1.

Owing to (49), this yields that the stopping time ρ′
.
= ρ ∧ θ verifies

P (ρ′ > 0) = 1.

From now on, the proof is analogous to the proof of Case 1, so we omit it. This proves
that V is a viscosity supersolution of (5)–(7).

The proof that V is a viscosity solution of (5)–(7) is therefore concluded.

6. Existence of solutions for generalized Cauchy problems with discon-
tinuous Hamiltonians. The results of the previous sections allow us to prove the
existence of a viscosity solution to a boundary value problem involving a second order
semilinear Hamilton–Jacobi–Bellman equation such as

−∂v

∂t
− 1

2
Tr{D̃(t, x)D2v} + H

(
t, x,

∂v

∂k
,Dv

)
= 0 on ]0, T [×]0,K[×R

n,(50)

and mixed boundary conditions such as

−∂v

∂t
− 1

2
Tr{D̃(t, x)D2v} + H

(
t, x,

∂v

∂k
,Dv

)
≥ 0 on ]0, T [×{K} × R

n,(51)

v ≤ g and − ∂v
∂t −

1
2Tr{D̃(t, x)D2v} + H(t, x, ∂v

∂k , Dv) ≥ 0 if v < g
on {T}×]0,K] × R

n,
(52)

for a (possibly discontinuous) Hamiltonian of the form

H(t, x, pk, p)
.
= supw∈K {−〈A(t, x) + B(t, x)w, p〉 − l0(t, x) − 〈l1(t, x), w〉 − pk|w|}

(53)
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∀(t, x, pk, p) ∈ [0, T ] × R
n × R × R

n. We will refer to such a problem as a generalized
Cauchy problem with discontinuous Hamiltonian.

We point out that the Hamiltonian H in (53), defined via a maximization over
the unbounded control set K, is the natural Hamiltonian related to the original min-
imization problem (4). In other words, at least formally, one expects that the value
function V is a viscosity solution to the generalized Cauchy problem (50)–(52) rather
than to (5)–(7). Such an observation motivates the study of such a boundary value
problem (also in more general form, as in [MS2]), mainly dealing with existence and
uniqueness of solutions.

Since H in (53) is in general discontinuous and equal to +∞ in many points,
we interpret solutions to (50)–(52) in the sense of the definition, due to Ishii [I], of
discontinuous viscosity solutions for discontinuous Hamiltonians which we recall in
the definition below.

Definition 6.1. A locally bounded function v defined on [0, T [×[0,K]×R
n is a

viscosity subsolution of (50)–(52) if for every point z̄ = (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×R
n

and for every map φ ∈ C2
b ([0, T ]× [0,K]×R

n) such that v∗ −φ has a local maximum
at z̄ one has

−∂φ

∂t
(z̄) − Tr{D̃(z̄)D2φ(z̄)} + H∗

(
z̄,

∂φ

∂k
(z̄), Dφ(z̄)

)
≤ 0

if z̄ ∈]0, T [×]0,K[×R
n, and

v∗(z̄) ≤ g(x̄)

if z̄ ∈ {T}×]0,K] × R
n.

A locally bounded function v defined on [0, T [×[0,K]×R
n is a viscosity superso-

lution of (50)–(52) if for every point z̄ = (t̄, k̄, x̄) ∈ [0, T ] × [0,K] × R
n and for every

map φ ∈ C2
b ([0, T ] × [0,K] × R

n) such that v∗ − φ has a local minimum at z̄ one has

−∂φ

∂t
(z̄) − Tr{D̃(z̄)D2φ(z̄)} + H∗

(
z̄,

∂φ

∂k
(z̄), Dφ(z̄)

)
≥ 0

if z̄ ∈]0, T [×]0,K] × R
n, and

−∂φ

∂t
(z̄) − Tr{D̃(z̄)D2φ(z̄)} + H∗

(
z̄,

∂φ

∂k
(z̄), Dφ(z̄)

)
≥ 0 or v∗(z̄) ≥ g(x̄)

if z̄ ∈ {T}×]0,K] × R
n.

A locally bounded function v defined on [0, T [×[0,K] × R
n is a called a viscosity

solution of (50)–(52) if it is both a viscosity sub- and supersolution of (50)–(52).
We can show that V is a viscosity solution to the generalized Cauchy problem

(50)–(52) since there exists a one-to-one correspondence among solutions to (50)–(52)
and solutions to (5)–(7), as specified by the following theorem.

Theorem 6.2 (see [MS2, Theorem 3.4]). Assume (A0), (A1). Let v (resp.,
v): [0, T ] × [0,K] × R

n → R be a upper (resp., lower) semicontinuous locally bounded
function. Then

(a) v is a viscosity subsolution to (50)–(52) if and only if it is a viscosity subso-
lution to (5)–(7),

(b) v is a viscosity supersolution to (50)–(52) if and only if it is a viscosity su-
persolution to (5)–(7).
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Therefore we can state the following existence (and uniqueness) theorem whose
proof is a consequence of Theorems 6.2 and 5.3.

Theorem 6.3. Assume (A0), (A1). Then the value function V solves the bound-
ary value problem (50)–(52) in the viscosity sense. Moreover, its continuous extension
to [0, T ]× [0,K]×R

n is the unique viscosity solution of (50)–(52) among the bounded
functions defined on [0, T ]×[0,K]×R

n which are continuous on ∂(]0, T [×]0,K[×R
n).

7. Appendix. Before proving Lemma 7.3 on the claim stated in Theorem 3.3,
we need to introduce some definitions and prove some technical results in Lemmas
7.1 and 7.2.

Let us consider the noncanonical control α = (Ω,F , P, {Fs}, {(w0s
, ws)}, {(ts, ks,

ξs)}, θ) given by (24), whose existence is proved in Theorem 3.3. Let us understand
that whenever the operators J and L have to be evaluated on such α, the constraint
w0s = 1 − |ws| in their definition must be dropped. Let us notice that since we
are only interested with the (random) time interval 0 ≤ s ≤ θ, with a small abuse
of notation, we will denote still by α the control in which (w0s

, ws) is replaced by
(w0s , ws)χ{s≤θ} + (1, 0)χ{s>θ}.

Remark 7.1. Given the control α = (Ω,F , P, {Fs}, {(w0s , ws)}, {(ts, ks, ξs)}, θ),
by (24), in Case 1 has ∫ θ

0

(w0s
+ |ws|) ds = 0

(such an eventuality can happen only if t̄ = T ), it is easy to check that any control
α̌, α̌ = (Ω, {F}, P, {Fs}, w̌s, (ťs, ǩs, ξ̌s), θ̌) ∈ Γa(t̄, k̄, x̄), such that

P
(
θ̌ = 0

)
= 1,

verifies the claim in Theorem 3.3 and J(t̄, k̄, x̄, α̌) = J(t̄, k̄, x̄, α).
Lemma 7.1. Assume (A0), (A1). Let us consider the noncanonical control

α = (Ω,F , P, {Fs}, {(w0s
, ws)}, {(ts, ks, ξs)}, θ), given by (24). Assume that

∫ θ

0
(w0s

+
|ws|) ds > 0. Let us define

Φs
.
=

∫ s

0

(w0r + |wr|) dr,

for 0 ≤ s ≤ T + K. Let us denote by {Ψσ} the right inverse of Φ:

Ψσ
.
= inf {s ≥ 0 : Φs > σ} ,

for 0 ≤ σ ≤ ΦT+K . Then ΦT+K > 0 and {Ψσ} is a right continuous time change
satisfying the following properties:

(i) ΨΦs ≥ s ∀s ≥ 0, ΦΨσ = σ ∀σ ≥ 0;
(ii) let

F̌σ
.
= FΨσ

∀σ > 0;(54)

then F̌σ is a filtration on the probability space (Ω,F , P );
(iii) Φθ is a F̌σ-stopping time such that Φθ ≤ T + K.
Proof. The proof follows from the definition of time change and right inverse and

from Proposition 1.1, Chapter V, in [RY]. Φθ ≤ T +K since w0s + |ws| ≤ 1 for s ≥ 0
by definition.
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Lemma 7.2. Assume (A0), (A1). Let us consider the noncanonical control

α = (Ω,F , P, {Fs}, {(w0s , ws)}, {(ts, ks, ξs)}, θ), given by (24). Assume that
∫ θ

0
(w0s +

|ws|) ds > 0. On the probability space (Ω,F , P ) let us consider the filtration F̌σ given
by (54). Let us define the processes

ťσ
.
= tΨσ , ǔσ

.
=

∫ Ψσ

0

wr dr, ǩσ
.
= kΨσ ,

for 0 ≤ σ ≤ ΦT+K . Then there exists a F̌σ-progressively measurable process {w̌σ},
Bm(1) ∩ K valued, such that, for 0 ≤ σ ≤ ΦT+K ,

ťσ = t̄ +
∫ σ

0
(1 − |w̌r|) dr

(
= t̄ +

∫ Ψσ

0
w0r

dr
)
,

ǔσ =
∫ σ

0
w̌r dr

(
=

∫ Ψσ

0
wr dr

)
,

ǩσ = k̄ +
∫ σ

0
|w̌r| dr

(
= k̄ +

∫ Ψσ

0
|wr| dr

)
.

(55)

Proof. Let {us} denote the (strong) solution to

us =

∫ s

0

wr dr.(56)

Since σ = Φs is the arclength parameter of both the processes (ts, us) and (ts, ks),
we know that (ťσ, ǔσ, ǩσ) is absolutely continuous for 0 ≤ σ ≤ ΦT+K . Consequently,
from Proposition 3.13, Chapter I, in [JS], it follows that there exists a F̌σ-progressively
measurable process (w̃0σ , w̃σ, zσ), R+ ×K×R+-valued, such that, for 0 ≤ σ ≤ ΦT+K ,

ťσ = t̄ +

∫ σ

0

w̃0r dr, ǔσ =

∫ σ

0

w̃r dr, ǩσ = k̄ +

∫ σ

0

zr dr.

Moreover, by the properties of the arclength parameter for almost all ω ∈ Ω there
exists a set of measure zero Nω such that ť′σ(ω) + |ǔ′

σ(ω)| = 1 and ť′σ(ω) + ǩ′σ(ω) = 1
for every σ /∈ Nω. This implies that w̃0σ

(ω) + |w̃σ(ω)| = 1 and zσ(ω) = |w̃σ(ω)| for
σ /∈ Nω. Let us define for every σ ≥ 0 and for i = 1, . . . ,m the process

w̌i
σ

.
= (−1 ∨ w̃i

σ) ∧ 1.

w̌ is F̌σ-progressively measurable, Bm(1) ∩ K-valued. Moreover, (ťσ, ǔσ, ǩσ) is indis-
tinguishable from (t̄ +

∫ σ

0
(1 − |w̌r|) dr,

∫ σ

0
w̌r dr, k̄ +

∫ σ

0
|w̌r| dr). Indeed for almost all

ω ∈ Ω we have, for 0 ≤ σ ≤ ΦT+K ,

ťσ(ω) = t̄ +
∫
[0,σ]

w̃0r (ω) dr = t̄ +
∫
[0,σ]\Nω

(1 − |w̃r(ω)|) dr = t̄ +
∫ σ

0
(1 − |w̌r(ω)|) dr,

ǔσ(ω) =
∫
[0,σ]

w̃r(ω) dr =
∫
[0,σ]\Nω

w̃r(ω) dr =
∫ σ

0
w̌r(ω) dr,

ǩσ(ω) = k̄ +
∫
[0,σ]

zr(ω) dr = k̄ +
∫
[0,σ]\Nω

zr(ω) dr = k̄ +
∫ σ

0
|w̌r(ω)| dr.

Lemma 7.3. Assume (A0), (A1). Let us consider the noncanonical control

α = (Ω,F , P, {Fs}, {(w0s , ws)}, {(ts, ks, ξs)}, θ), given by (24). Assume that
∫ θ

0
(w0s +

|ws|) ds > 0 and J(t̄, k̄, x̄, α) < +∞. Then the control

α̌
.
= (Ω,F , P, F̌σ, {w̌σ}, {(ťσ, ǩσ, ξ̌σ)}, θ̌),
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where θ̌
.
= Φθ, {w̌σ} is the process whose existence is proved in Lemma 7.2, {F̌σ} is

given by (54), {(ťσ, ǩσ)} are given by (55), ξ̌σ
.
= ξΨσ , for 0 ≤ σ ≤ ΦT+K , verifies

(B3), (B4), and is such that

J(t̄, k̄, x̄, α̌) = J(t̄, k̄, x̄, α).

Proof. We already proved that α̌ verifies (B3) in Lemmas 7.1 and 7.2; therefore, in
order to prove that condition (B4) holds, one has to show that for every ϕ ∈ C2

b (R2+n)
M̌σ(ϕ, α̌) is a (P, {F̌σ}) square integrable martingale for σ ∈ [0,ΦT+K ], where

M̌σ(ϕ, α̌)
.
= ϕ(ťσ, ǩσ, ξ̌σ) −

∫ σ

0

Lϕ(ťr, ǩr, ξ̌r, w̌r) dr.

To this end let us consider the square integrable martingale Ms(ϕ, α) associated to
the control α and let us notice that it is Ψ-continuous (that is, it is constant on each
stochastic interval where (w0s

, ws) = (0, 0); see Definition 1.3 Chapter V, [RY]) and
that by (56) and (55) one has

dts = w0s
ds, dtΨσ = dťσ = (1 − |w̌σ|)dσ,

dus = wsds, duψσ = w̌σdσ,

dks = |ws|ds, dkΨσ
= dǩσ = |w̌σ|dσ.

By Proposition 1.4, Chapter V of [RY], for every process H which is Fs-progressively
measurable, if we denote by Ȟσ

.
= Hψσ , since the process (ts, us, ks) is Ψ-continuous,

one has that∫ Ψσ

0
Hsw0sds =

∫ Ψσ

0
Hs dts =

∫ σ

0
Ȟσdťσ =

∫ σ

0
Ȟσ(1 − |w̌σ|)dσ,∫ Ψσ

0
Hswsds =

∫ Ψσ

0
Hs dus =

∫ σ

0
Ȟσdǔσ =

∫ σ

0
Ȟσw̌σ dσ,∫ Ψσ

0
Hs|ws|ds =

∫ Ψσ

0
Hs dks =

∫ σ

0
Ȟσdǩσ =

∫ σ

0
Ȟσ|w̌σ|dσ.

(57)

Therefore, for any ϕ ∈ C2
b (R2+n), by applying the first equation of (57) with Hs =

1
2

∑
ij D̃ij(ts, ξs)

∂2ϕ
∂xi∂xj

(ts, ks, ξs)+
∑

i Ai(ts, ξs)
∂ϕ
∂ξi

(ts, ks, ξs)+ ∂ϕ
∂t (ts, ks, ξs), the sec-

ond one with Hs = (B1(ts, ξs)
∂ϕ
∂x1

(ts, ks, ξs), . . . , Bn(ts, ξs)
∂ϕ
∂xn

(ts, ks, ξs))
T , the third

one with Hs = ∂ϕ
∂k (ts, ks, ξs), by Proposition 1.5, Chapter V of [RY] one concludes

that M̌σ(ϕ, α̌) is a martingale since it coincides with Mψσ
(ϕ, α). Finally, it is also

easy to see that α̌ is admissible. Indeed since J(t̄, k̄, x̄, α) < +∞, then tθ = T and
kθ ≤ K, which implies by Proposition 1.4, Chapter V of [RY] that

ťΦθ
= t̄ +

∫ Φθ

0

(1 − |w̌r|) dr = tθ = T and ǩΦθ
= k̄ +

∫ Φθ

0

|w̌r| dr = kθ ≤ K

and

J(t̄, k̄, k̄, α̌) = EP

[ ∫ Φθ

0

(l0(ťσ, ξ̌σ)(1 − |w̌σ|) + 〈l1(ťσ, ξ̌σ), w̌σ〉) dσ(58)

+ g(ξ̌Φθ
) + G(ťΦθ

, ǩΦθ
)

]
.

By the first and second equations in (57) with Hs = l0(ts, ξs) and Hs = l1(ts, ξs),
respectively, and by the fact that, by Proposition 3.1, ξ̌Φθ

= ξθ, one has J(t̄, k̄, k̄, α̌) =
J(t̄, k̄, x̄, α).
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ON THE UNIFORM CONTROLLABILITY OF THE
BURGERS EQUATION∗

O. GLASS† AND S. GUERRERO†

Abstract. In this paper, we deal with the viscous Burgers equation with a small dissipation
coefficient ν. We prove the (global) exact controllability property to nonzero constant states, that
is to say, the possibility of finding boundary values such that the solution of the associated Burgers
equation is driven to a constant state. The main objective of this paper is to do so with control
functions whose norms in an appropriate space are bounded independently of ν, which belongs to a
suitably small interval. This result is obtained for a sufficiently large time.
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1. Introduction.

1.1. Statement of the result and background. We are interested in the
controllability of the Burgers equation in a bounded interval:

(1) ut + uux − νuxx = 0 in (0, T ) × (0, 1),

where T is a positive real number. We complete this equation with the following: We
give an initial condition,

(2) u|t=0 = u0 in (0, 1),

and controlled boundary values,

(3) u|x=0 = v1(t) in (0, T ), u|x=1 = v2(t) in (0, T ).

Here, v1 and v2 stand for control functions, which translates into the possibility of
acting over the system through both endpoints of the boundary x = 0 and x = 1. Let
ū be a solution of (1) with Dirichlet boundary conditions (also called a trajectory).
The exact controllability to trajectories holds if we can find controls v1 and v2 such
that the associated solution coincides with ū at time t = T . In this paper, we are
interested in proving an exact controllability result uniformly with respect to the
viscosity coefficient ν in a sufficiently small range.

Let us be more specific on the problem under review. We consider the system
constituted by (1), (2), and (3). Let us fix the initial condition u0 in some Banach
space X and a constant M �= 0; then, our goal is to find two controls v1 and v2 such
that the associated solution u satisfies

(4) u|t=T = M in (0, 1).

Moreover, as we said above we are interested in finding controls whose norms in some
Banach space Y are uniformly bounded with respect to ν, whenever ν is sufficiently

∗Received by the editors July 10, 2006; accepted for publication (in revised form) February 8,
2007; published electronically September 12, 2007.
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small and T is sufficiently large. The main result of this paper is given in the following
theorem, where we prove the previous results for X = L∞(0, 1) and Y = L∞(0, T ).

Theorem 1. There is a constant α0 ≥ 1 such that for any M ∈ R \ {0} there
exists ν0 > 0 such that for any u0 ∈ L∞([0, 1]), any time T > α0/|M |, and any
ν ∈ (0, ν0) there exist controls vν1 and vν2 satisfying the following properties:

• ‖vν1‖∞ and ‖vν2‖∞ are uniformly bounded for ν ∈ (0, ν0); that is to say, there
exists a constant C(α0) > 0 such that

‖vν1‖∞ + ‖vν2‖∞ ≤ C(‖u0‖∞ + |M |).

• The solution u of (1), (2), (3) associated with v1 = vν1 and v2 = vν2 satisfies
(4).

The controllability of the Burgers equation for fixed ν has been studied by several
authors. In particular, two kinds of controllability properties have been studied:

• On the one hand, the local exact controllability to trajectories, which stands for
the concept of exact controllability with the additional assumption that the
initial state u0 is close to the initial state of the targeted trajectory ū|t=0; this
has been established for the Burgers equation in [8]. It is also proved in [8] that
the exact controllability does not hold when the control acts in a subinterval
(a, b) of (0, 1), which is equivalent to control at one endpoint. In the more
recent work [9], the authors prove that the global exact controllability for (1)
does not hold even if the control is acting on both sides of the domain.

• On the other hand, in [4] the author establishes a global result between 0 and
constant states; more precisely, the author proves that for u0 = 0 and for any
T > 0 one can drive the solution of (1) to any constant M satisfying that |M |
is sufficiently large with respect to T .

Here, as we are interested in the properties of uniform controllability as ν → 0+,
it seems natural to regard the inviscid framework (ν = 0). In this case, and in the
context of entropy solutions, the controllability of the equation

(5) ut + (u2/2)x = 0

was studied in [12], where some conditions are given on the final state in order to
ensure this property. More general convex scalar conservation laws

(6) ut + (f(u))x = 0

were considered in [1], for which the controllability problem is posed in the half line
with a null initial condition. The set of attainable states is completely described.

We recall that for conservation laws such as (5), solutions generally develop singu-
larities in finite time, regardless of the regularity of the initial condition. This leads to
considering distributional solutions, but in this setting, uniqueness is lost. From both
physical and mathematical standpoints, it is then natural to consider solutions that
fulfill entropy conditions in order to extract the physically relevant solution. These
conditions are the following: For any regular couple (η, q) defined on R and such that
η′f ′ = q′ and η is convex, the following stands in the sense of measures:

η(u)t + q(u)x ≤ 0.

We emphasize that entropy solutions are the ones which can be obtained by van-
ishing viscosity. One can summarize the situation by saying that the viscosity has
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disappeared from the equation and is effective only for the selection of admissible
discontinuities. Concerning the Cauchy problem, (1) was first approached by Hopf
in [11], where an explicit formula is given and the limit as ν → 0+ is considered.
The convergence of vanishing viscosity approximations to the entropy solutions of a
general scalar conservation law was studied in the celebrated work of Kružkov [13].
For a general reference to conservation laws, we refer to [6].

It is therefore very natural, when considering control problems for conservation
laws, to consider the cost of the viscosity, that is, to determine if known controllability
properties for the hyperbolic equation are still valid for the model with small viscosity,
and how the size of the control evolves as the viscosity approaches 0. Note that some
problems, such as the global approximate controllability of the Navier–Stokes equation
with Navier slip boundary conditions [3], are obtained through controllability results
for the inviscid equation (in this case, the Euler equation).

1.2. Some remarks. Let us make some remarks on the above theorem and state
a corollary which concerns the system with ν = 1.

Remark 1. In general, entropy solutions of (5) cannot reach a state M (starting,
for instance, from u0 = 0) in a time less than 1/|M |. In particular, the state 0 cannot
be reached unless one has u0 = 0. This is easily seen by considering generalized
backward characteristics (see [1]). Hence the time of control O(1/M) is not surprising.
Note that even in the case of a linear transport equation, the uniform controllability
results [5, 10] consider a time of control of the form C/|M |, C > 1.

Remark 2. Following the proof of Theorem 1, one can check that Theorem 1
holds for the choices α0 = 9 (or in fact, as obtained numerically, approximately 6.3)
and

(7) ν0 = ν1 min{1, |M |/| log(|M |)|},

where ν1 is a small enough constant independent of M but depending on α0.
Now we can present the following result as a consequence of Theorem 1.
Corollary 1. Consider for w0 ∈ L∞(0, 1) and T̃ > 0 the following control

problem:

(8)

⎧⎪⎪⎨⎪⎪⎩
wt + wwx − wxx = 0 in (0, T̃ ) × (0, 1),

w|x=0 = ṽ1(t), w|x=1 = ṽ2(t) in (0, T̃ ),

w|t=0 = w0 in (0, 1).

Assume that |M0| is large enough in order that

|M0|ν1 ≥ | log(|M0|ν1)|,

where ν1 is defined as in (7); then, for every T̃ > α0/|M0| (where α0 can be chosen
as 9), there exist controls ṽ1(t) and ṽ2(t) in L∞((0, T ),R) such that the solution of
(8) satisfies

(9) w|t=T̃ = M0.

Note in particular that Corollary 1 implies that the result of [4] is valid for any
u0 ∈ L∞(0, 1). Let us also emphasize that the time we use to control the system
depends only on the final state and is independent from the initial state.
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Proof. This is a simple scaling argument. Indeed, let us set{
u(t, x) = ν1w(ν1t, x), v1(t) = ν1ṽ1(ν1t), v2(t) = ν1ṽ2(ν1t), and u0(x) = ν1w0(x),

t ∈ (0, T ), x ∈ (0, 1),

where we have denoted T = T̃ /ν1. Then we have

(10)

⎧⎪⎪⎨⎪⎪⎩
ut + uux − ν1uxx = 0 in (0, T ) × (0, 1),

u|x=0 = v1(t), u|x=1 = v2(t) in (0, T ),

u|t=0 = w0 in (0, 1).

Let us set M := ν1M0. From Theorem 1 and since T > α0/|M | (thanks to the choice
of T̃ ) and ν1 ≤ ν1 min{1, |M |/| log |M ||} (thanks to the choice of M0), we know of
the existence of v1 and v2 such that the solution of (10) satisfies u|t=T = M in (0, 1).
Going back to w, this shows the existence of two controls ṽ1 and v2 such that the
associated solution of (8) satisfies w|t=T̃ = M0 in (0, 1), as we wanted to prove.

1.3. Structure of the paper. One of the main ingredients of the proof is the use
of the return method by J. M. Coron, which consists of finding a particular trajectory
of the system which moves far away from the initial state to get back to the final state
afterward. In the present situation we steer the system toward a large constant state
N , and then we get back to the constant state M .

Consequently, the proof of Theorem 1 is divided into two parts, which we sum-
marize in the following propositions.

Proposition 1. There are some constants α1 ≥ 1 and ν1 > 0 such that for any
u0 ∈ L∞([0, 1]), for any N ∈ R with |N | large enough (depending on ‖u0‖∞), and
for any ν ∈ (0, ν1) there are controls wν

1 and wν
2 in L∞(0, T1), where T1 = α1/|N |,

satisfying the following properties:
• ‖wν

1‖∞ and ‖wν
2‖∞ are uniformly bounded for ν ∈ [0, ν1].

• The associated solution u satisfies u|t=T1
= N in (0, 1).

Proposition 2. The conclusion of Theorem 1 is true when M > 0 and u0 is a
positive constant large enough with respect to M .

The plan of the paper is the following. Proposition 1 is established in section 2.
Section 3 is devoted to proving Proposition 2 and, finally, in section 4 we prove some
technical results we need for the previous propositions.

2. Proof of Proposition 1. Due to the invariance of the solutions of (1) by
the transformation u(t, x) ↔ −u(t, 1− x), we can assume that N > 0. Now the proof
of Proposition 1 is divided into two parts. First, we prove that we can reach a state
close to N in a time O(1/N) (which is a kind of global approximate controllability,
but where the target is a constant that depends on the initial state) and then we
prove that we can steer the latter state exactly toward N in a time O(1/N) (local
exact controllability).

2.1. Reaching N approximately. In the following proposition we prove that,
starting from an L∞ initial condition, we can construct a solution of (1)–(2) which is
close in the sense of the W 1,∞ norm to some large constant.

Proposition 3. Given u0 ∈ L∞([0, 1]), one can find N > 0 large enough such
that for any ν > 0, one can find controls v1 and v2 such that the solution of (1), (2),
(3) satisfies

(11) ‖u(t, ·) −N‖L∞([0,1]) ≤
(
‖u0‖∞ +

N

2

)
exp

{
−3N2

16ν

(
t− 8

N

)}
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for any t > 0 and

(12) ‖ux(t, ·)‖L∞([0,1]) ≤ C
N2

ν
exp

{
−3N2

16ν

(
t− 8

N

)}

for any t > (8/N) and some C > 0. Moreover, the controls satisfy, independently
from ν,

(13) max(‖v1‖L∞(0,T ), ‖v2‖L∞(0,T )) ≤ N.

Remark 3. All the above constants (such as 8 or 16) are not optimal (see the
proof below) but are sufficient for our purpose (because N is arbitrarily large).

Proof of Proposition 3. The proof of this proposition relies on the comparison
principle and on traveling waves for (1). Let us state precisely the comparison principle
for the reader’s convenience.

Lemma 1 (comparison principle). Consider u1 and u2 in L∞(R), and the cor-
responding solutions u1 and u2 of the Burgers equation on the whole real line with
initial conditions u1 and u2, respectively. Then, if

(14) u1 ≤ u2 in R,

we have

(15) u1(t, x) ≤ u2(t, x) in R
+ × R.

Proof. A simple way to prove Lemma 1 (although it could be proven in a far more
general setting) is to use Hopf’s formula for solutions of the viscous Burgers equation
[11]:

(16) ui(t, x) =

∫∞
−∞

x−y
t exp

{
− 1

2ν

(
(x−y)2

2t +
∫ y

0
ui(η)dη

)}
dy∫∞

−∞ exp
{
− 1

2ν

(
(x−y)2

2t +
∫ y

0
ui(η)dη

)}
dy

, i = 1, 2.

We consider the function

ρi(x, y) := exp

{
− 1

2ν

(
(x− y)2

2t
+

∫ y

0

ui(η)dη

)}
,

and dμi the probability measure (depending on x) given by

dμi :=
ρi(x, y)∫∞

−∞ ρi(x, ·)
dy.
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Now we have

u2(t, x) =

∫ +∞

−∞

x− y

t
dμ2

=

∫ +∞

−∞

x− y

t
exp

(
− 1

2ν

∫ y

0

(u2(η) − u1(η))dη
)
dμ1 ·

∫ +∞
−∞ ρ1(x, y)dy∫ +∞
−∞ ρ2(x, y)dy

≥
∫ +∞

−∞

x− y

t
dμ1.

∫ +∞

−∞
exp

(
− 1

2ν

∫ y

0

(u2(η) − u1(η))dη
)
dμ1

·
∫ +∞
−∞ ρ1(x, y)dy∫ +∞
−∞ ρ2(x, y)dy

=

∫ +∞

−∞

x− y

t
dμ1 = u1(t, x).

The inequality used above is Chebyshev’s inequality: for μ a probability measure on
R and two nondecreasing functions f and g, one has∫

R

fgdμ ≥
∫

R

fdμ×
∫

R

gdμ.

(This follows easily by considering
∫ ∫

(f(x) − f(y))(g(x) − g(y))dμ(x)dμ(y).)
Back to the proof of Proposition 3. We introduce traveling wave profiles for (1).

These are solutions of the viscous Burgers equations on the whole real line, of the
form

u(t, x) = U(x− ct) t ∈ R
+, x ∈ R,

with c a fixed real number, which will be chosen later on. Furthermore, u satisfies the
following asymptotic properties:

u(t, x) → U− as x → −∞, u(t, x) → U+ as x → +∞, ux(t, x) → 0 as x → ±∞,

where U− and U+ are constant states. Straightforward computations show that these
traveling waves are given by the following:

U− ≥ U+,(17)

c =
U− + U+

2
,(18)

U(y) =
U− + U+

2
− U− − U+

2
tanh

(U− − U+

2ν
(y − y0)

)
,(19)

where of course y0 is arbitrary (we will refer to y0 as the center of the wave).
Now let us go back to the proof of Proposition 3. Given u0, we choose N >

2‖u0‖∞; later we will also take N > L‖u0‖∞ for some L ≥ 2, and in section 3 we will
additionally require N > |M |.
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We introduce the following:
• u as the solution of the Burgers equation on R with initial value

(20) u(0, x) =

⎧⎪⎪⎨⎪⎪⎩
N for x < 0,

u0(x) for 0 ≤ x ≤ 1,

0 for x > 1.

• ǔ as the traveling wave solution of the Burgers equation with U− = N and
U+ = −2‖u0‖∞, initially centered at y0, if u0 �≡ 0. If u0 ≡ 0, then we take,
for instance, U+ := −N/4.

The goal is to prove that the restriction of u to [0, 1] is a suitable solution for Propo-
sition 3 (of course, v1 and v2 are defined as the traces of u at x = 0 and x = 1,
respectively). Now if y0 is such that

(21) ǔ(0, ·) ≤ u0(·) in (0, 1),

it follows from the comparison principle that

(22) ǔ(t, x) ≤ u(t, x) ≤ N in R
+ × R.

Let us make a choice of y0 so that (21) is satisfied. Indeed, if we take, in the case
u0 �≡ 0,

y0 = − 2ν

N + 2‖u0‖∞
arctanh

(
N

N + 2‖u0‖∞

)
,

one can easily check that

ǔ(0, x) ≤ −‖u0‖∞ ∀x ∈ [0, 1],

just taking into account that the maximum value of the function

x ∈ [0, 1] �−→ − tanh

(
U− − U+

2ν
(x− y0)

)
is reached at x = 0. The case u0 ≡ 0 is similar.

Clearly, for N large enough, one has

(23) y0 ≥ −1

and

(24) N − 2‖u0‖∞ ≥ N

2
.

Let us now prove that estimate (11) holds. We first recall the expression of ǔ: for
t ∈ R

+ and x ∈ R,

(25) ǔ(t, x) =
N

2
− ‖u0‖∞

− N + 2‖u0‖∞
2

tanh

(
N + 2‖u0‖∞

2ν

(
x− N − 2‖u0‖∞

2
t− y0

))
.
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From (23) and (24), we get for t ∈ R
+ and x ∈ [0, 1],

tanh

(
N + 2‖u0‖∞

2ν

(
x− N − 2‖u0‖∞

2
t− y0

))

≤ tanh

(
N + 2‖u0‖∞

2ν

(
−N

4
t + 2

))

≤ tanh

(
−3N2

16ν

(
t− 8

N

))
.

On the other hand, from the definition of the function tanh, we readily deduce that

tanh

(
−3N2

16ν

(
t− 8

N

))
≤ −1 + exp

{
−3N2

16ν

(
t− 8

N

)}
.

Going back to (25), we obtain

ǔ(t, x) −N ≥ −
(
N

2
+ ‖u0‖∞

)
exp

{
−3N2

16ν

(
t− 8

N

)}
.

Since ǔ(t, x) −N ≤ 0 already holds (see (22)), we deduce (11).
In order to prove (12) we begin by giving an explicit representation of the spatial

derivative of u in the following lemma.
Lemma 2. Let u be a solution of{

ut − νuxx + uux = 0, (t, x) ∈ R+ × R,

u|t=0 = u0, x ∈ R.

Then one has

(26) ∂xu(t, x) =

∫ +∞
−∞

y−x
t (u0(y) − u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

2ν
∫ +∞
−∞ exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

.

Proof. Let us define

f(t, x) :=

∫ +∞

−∞

x− y

t
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy

and

g(t, x) :=

∫ +∞

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy.

From Hopf’s formula (see (16)), we find

u(t, x) =
f(t, x)

g(t, x)
, (t, x) ∈ R+ × R.

We notice that ∂xg = − 1
2ν f and

∂xf(t, x) =
g

t
− 1

2νt

∫ +∞

−∞

(y − x)2

t
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy,
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so that

(27) ∂xu(t, x) =
1

t
− 1

2ν

⎡⎣∫ +∞
−∞

(y−x)2

t2 exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

g
− f2

g2

⎤⎦ .

Now let us consider the second term in the above right-hand side:

I :=

∫ +∞

−∞

(y − x)2

t2
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy

=

∫ +∞

−∞

y − x

t

(
y − x

t
+ u0(y)

)
exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}
dy

−
∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}
dy

=
2νg

t
−

∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}
dy.

In the last identity we have used the fact that

(28) − 2ν
d

dy
exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}

=

(
y − x

t
+ u0(y)

)
exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}
and we have integrated by parts. Injecting I into (27) yields

∂xu(t, x) = − 1

2νg

[
−

∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν

[
(y − x)2

2t
+

∫ y

0

u0(η)dη

]}
dy

− u(t, x)f(t, x)

]
,

which yields (26).
Back to the proof of (12). We consider x ∈ [0, 1] and use (26) to estimate ∂xu(t, x):

∂xu(t, x) =
1

2ν

∫ +∞
−∞

y−x
t (u0(y) −N) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

+
1

2ν

∫ +∞
−∞

y−x
t (N − u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

.

Let us denote by A and B, respectively, the first and second term of the above right-
hand side. Clearly,

B = − 1

2ν
(N − u(t, x))u(t, x),
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and this term is easily estimated using the L∞ estimate on N − u. Concerning A, we
first notice that, due to the initial condition of u (see (20)), one has

A =
1

2ν

∫ +∞
0

y−x
t (u0(y) −N) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

.

Note that simple computations yield

(29)

∫ b

a

exp

{
− 1

2ν

[
(x− y)

2

2t
+ α y

]}
dy = 2

√
νt exp

{
α(−2x + αt)

4ν

}∫ ξ+

ξ−

e−t2dt

with

ξ− :=
a− x + α t

2
√
νt

and ξ+ :=
b− x + α t

2
√
νt

,

and yield

(30)

∫ b

a

y exp

{
− 1

2ν

[
(x− y)

2

2t
+ α y

]}
dy

= 2
√
νt(x− αt) exp

{
α(−2x + αt)

4ν

}∫ ξ+

ξ−

e−t2dt

−2νt

{
exp

[
−b2 − 2bx + 2bαt + x2

4νt

]
− exp

[
−a2 − 2ax + 2aαt + x2

4νt

]}
.

Also, we note that for y > 0, one has

(31)

∫ +∞

y

e−s2ds ≤ e−y2

2y
.

We estimate from below the denominator of A in the following way:∫ +∞

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy

≥
∫ 0

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy

=

∫ 0

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+ Ny

]}
dy

≥
√
πνt exp

{
N

2ν

(
Nt

2
− x

)}
.

The numerator is bounded by∣∣∣∣∫ +∞

0

y − x

t
(u0(y) −N) exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

u0(η)dη

]}
dy

∣∣∣∣
≤

∫ +∞

0

y + 1

t
(‖u0‖∞ + N) exp

{
− 1

2ν

[
(x− y)2

2t
− ‖u0‖∞y

]}
dy

≤ 12νN exp

{
−x2

4νt

}
,
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where we used N > ‖u0‖∞ and Nt− 1 > 1 for the times under review.
Then (12) follows by taking N � ‖u0‖∞. Note that the estimate on the term A is

better than the estimate on the term B, which comes directly from the L∞ estimate.
Finally, estimate (13) comes directly from the maximum principle.
Remark 4. Taking N large enough (as we may), it is easy to see that we can

replace the properties (23)–(24) with the following ones:

y0 ≥ −δ,

N − 2‖u0‖∞ ≥ (1 − δ)N,

for some arbitrarily small parameter δ > 0. Then following the above computations
we obtain estimates of the form

‖u(t, ·) −N‖W 1,∞([0,1]) ≤
CN2

ν
exp

{
−K

ν

(
t− 2(1 + δ)

N(1 − δ)

)}
.

Hence the time of approximate controllability can be made close to 2/N for N large
enough (as ν → 0+). This is not surprising, since for the hyperbolic equation, the
solution of the Riemann problem (5) with initial condition

u|t=0 =

{
N on R

−,

M on R
+,

with N,M ∈ R, N > M , is given by a simple shock with speed (N + M)/2.

2.2. Reaching N exactly. Observe that from subsection 2.1, and after a time
t = α1/N has gone by (with, for instance, α1 = 8 or even α1 > 2, taking Remark 4
into account), we can assume that our new initial condition (which we also denote
u0) satisfies

(32) ‖u0 −N‖W 1,∞(0,1) ≤ e−CN/ν

for some C > 0, provided that ν ∈ (0, ν0).
Remark 5. As stated above, condition (32) trivially follows from Proposition 3,

since ν0 is small enough and N is large enough. In what follows we will prove that
condition (32) suffices to reach N exactly with uniform bounds on the controls, which
concludes the proof of Proposition 1.

In what concerns the proof of Proposition 2, at this stage of the analysis, we will
also have some initial state u0 satisfying

‖u0 −M‖W 1,∞(0,1) ≤ e−CM/ν ,

provided that ν < ν0, where ν0 is small enough (see Proposition 5 below). As a
consequence, arguing as in this subsection, we will be able to drive the solution exactly
to M as well (with uniform bounds on the controls).

In this subsection we prove that we have a local exact (uniform in ν) controllability
result for a time T = O(1/N). Precisely, we establish the next proposition.

Proposition 4. Assume that u0 ∈ W 1,∞(0, 1) and there exists K0 > 0 such that

(33) ‖u0 −N‖W 1,∞(0,1) ≤ e−K0N/ν .
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Then, one can find controls v1 and v2 such that the solution of (1), (2), (3) satisfies,
for T = α0−2

N ,

(34) u|t=T = N in (0, 1).

Moreover, the controls satisfy the following estimate, which is independent of ν ∈
(0, ν0) :

(35) max(‖v1‖W 1,∞(0,T ), ‖v2‖W 1,∞(0,T )) ≤ 2N.

Proof. First, we set y(t, x) = u(t, x) −N so that y fulfills

(36)

{
yt + yyx − νyxx + Nyx = 0 in (0, T ) × (0, 1),

y|t=0 = y0 := u0 −N in (0, 1).

Now, our objective is to find boundary controls y|x=0(t) = v1(t) −N and y|x=1(t) =
v2(t) −N such that

(37) y|t=T = 0 in (0, 1)

and

(38) ‖v1(t) −N‖W 1,∞(0,T ) + ‖v2(t) −N‖W 1,∞(0,T ) ≤ N.

We will prove this by means of a fixed point argument posed in a suitable Hilbert
space Z.

2.2.1. Uniform null controllability of the linearized Burgers equation.
In this subsection, we consider the following linearized Burgers equation:

(39)

⎧⎪⎪⎨⎪⎪⎩
yt − νyxx + ((N + z(t, x)/2)y)x = 0 in (0, T ) × (0, 1),

y|x=0 = ṽ1, y|x=1 = ṽ2 in (0, T ),

y|t=0 = y0 in (0, 1).

For this system, we prove the null controllability with controls bounded independently
of ν. Specifically, we have the next lemma.

Lemma 3. Let z be in L1(0, T ;W 1,∞(0, 1)) ∩ L∞((0, T ) × (0, 1)) with

(40) ‖zx‖L1
tL

∞
x

+ ‖z‖L∞
t L∞

x
≤ exp

(
−K0N

5ν

)
,

where K0 is as introduced in Proposition 4, and let us introduce the quantity

(41) D(T,N, z) :=
3e

−2‖zx‖L1
t (L∞

x )

4

(
2T (N − ‖z‖∞/2)

3
− 1

)2

− 6χ,

where χ is some positive constant defined in (84). Assume that the initial condition
y0 = u0 −N satisfies (33) and that the final time T satisfies

(42) (N − ‖z‖∞/2)2T/3 > 1.

Then, for any ν ∈ (0, ν0), there exist two controls ṽ1, ṽ2 ∈ W 1,∞(0, T ) such that the
associated solution to (39) satisfies

y|t=T = 0 in (0, 1)
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and

(43) ‖ṽ1‖W 1,∞(0,T ) + ‖ṽ2‖W 1,∞(0,T ) ≤ e−K0N/(3ν)
(
e−D(T∗,N,z)/(νT∗) + 1

)
,

where T ∗ := min{T, 3/(N − ‖z‖∞/2)}.
Remark 6. It will follow from Lemma 4 that one can take 6χ = 4 in (41). When

we follow Remark 7 below (as found numerically), we see that one can estimate 6χ
by 2.61.

Proof. First, choosing the controls ṽ1 and ṽ2 to be zero close to t = 0, and on
account of the regularizing effect of the heat equation, one can always suppose that
our initial condition y0 belongs to W 2,∞(0, 1), and thanks to (33), we can also assume
that

(44) ‖y0‖W 2,∞(0,1) ≤ e−K0N/(2ν).

Now, we introduce a function ỹ0 ∈ W 2,∞(−1, 2) such that ỹ0 = y0 in (0, 1) and

(45) ‖ỹ0‖W 2,∞(−1,2) ≤ C‖y0‖W 2,∞(0,1)

for some C > 0. Let us first suppose that we can find two controls ṽ3, ṽ4 ∈ L2(0, T )
satisfying

‖ṽ3‖L2(0,T∗) + ‖ṽ4‖L2(0,T∗) ≤ Ce−D(T∗,N,z)/(νT∗)‖ỹ0‖L2(−1,2)

≤ Ce−D(T∗,N,z)/(νT∗)e−K0N/(2ν)(46)

for some C > 0, such that the solution ỹ ∈ L2((0, T ) × (−1, 2)) of

(47)

⎧⎪⎪⎨⎪⎪⎩
ỹt − νỹxx + ((N + z(t, x)/2)ỹ)x = 0 in (0, T ∗) × (−1, 2),

ỹ|x=−1 = ṽ3, ỹ|x=2 = ṽ4 in (0, T ∗),

ỹ|t=0 = ỹ0 in (−1, 2)

satisfies

ỹ|t=T∗ = 0 in (−1, 2).

Then, the function y := ỹ|[0,1]1(0,T∗) fulfills system (39) with

(48) ṽ1(t) = ỹ|x=0(t)1(0,T∗) and ṽ2(t) = ỹ|x=1(t)1(0,T∗)

and satisfies

y|t=T = 0 in (0, 1)

(indeed, y ≡ 0 in (T ∗, T )).
In order to prove estimate (43), it suffices to use classical localization arguments

together with regularity estimates for the solution of (47). Precisely, for any δ > 0,
we can prove that there exists a positive constant C > 0 such that

‖ỹ‖W 1,∞(0,T ;H1(−1+δ,2−δ)) ≤ (C/ν)(‖ỹ0‖W 2,∞(−1,2) + ‖ṽ3‖L2(0,T∗) + ‖ṽ4‖L2(0,T∗)).

In particular, this implies that ỹ|x=0 and ỹ|x=1 belong to W 1,∞(0, T ∗), and thanks to
(46), (33), and ν ∈ (0, ν0), they satisfy estimate (43).
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Consequently, our task now will be to find ṽ3 and ṽ4 satisfying the above prop-
erties. We use the classical approach, consisting of obtaining a suitable observability
inequality for the adjoint system of (47). For simplicity, we will suppose that we are
working in the space interval (0, 1) instead of (−1, 2) (so, in particular, we will refer
to system (39) instead of (47)). Thus, let us introduce the adjoint problem associated
with (39):

(49)

⎧⎪⎪⎨⎪⎪⎩
−ϕt − νϕxx − (N + z(t, x)/2)ϕx = 0 in (0, T ∗) × (0, 1),

ϕ|x=0 = 0, ϕ|x=1 = 0 in (0, T ∗),

ϕ|t=T∗ = ϕ0 in (0, 1),

where ϕ0 ∈ H1
0 (0, 1) is the initial condition.

We prove the following observability inequality for the solutions of (49):

(50) ‖ϕ|t=0‖2
L2(0,1) ≤ K(T ∗, ν)

∫ T∗

0

(|ϕx|x=0|2 + |ϕx|x=1|2) dt

for some positive constant K(T ∗, ν). Then, it is not difficult to prove that the null
controllability of system (39) holds with controls ṽ1 and ṽ2, whose L2 norms are
bounded by K(T ∗, ν)/ν. We omit the proof of this fact for the sake of simplicity.

In order to prove estimate (50), we will follow the same ideas as in [5]. That is
to say, we will combine a suitable Carleman inequality with a dissipation result for
system (49).

Dissipation result. Let t0 ∈ (0, T ∗). Then, following the steps of the proof in [7],
one can prove
(51)⎧⎪⎪⎨⎪⎪⎩

‖ϕ|t=t0‖2
L2(0,1) ≤ exp

{
‖zx‖L1

t (L
∞
x )

8
− ((N − ‖z‖∞/2)t∗ − 1)2

2νt∗
e
−2‖zx‖L1

t (L∞
x )

}
×‖ϕ|t=t0+t∗‖2

L2(0,1)

for any t∗ ∈ (0, T ∗ − t0) such that

(52) (N − ‖z‖∞/2)t∗ > 1.

Carleman inequality. Let 0 < γ < 1/3 (one can take, for example, γ := 1/6). We
will prove that, if (40) and (42) hold, then we have the following inequality:

(53)

∫ 1

0

∫ (2+3γ)T∗/3

2T∗/3

|ϕ|2 dt dx

� Ce6χ/(νT∗)

(
ν2T ∗

N

∫ T∗

0

|ϕx(t, 0)|2 dt +
1

N

∫ 1

0

|ϕ(0, x)|2 dx
)
.

The proofs of these results are postponed to the last section of the paper.
Now we are in position to establish our central observability inequality (50).

We apply the dissipativity result (51) to ϕ (which is a solution of (49)) for each
t∗ ∈ (2T ∗/3, (2 + 3γ)T ∗/3). This is possible by (42). We obtain∫ 1

0

∫ (2+3γ)T∗/3

2T∗/3

|ϕ|2 dt dx ≥ C(ν,N, T ∗, z)

∫ 1

0

|ϕ(0, x)|2 dx,
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with

C(ν,N, T ∗, z) = exp

{
−
‖zx‖L1

t (L
∞
x )

8
+ 3e

−2‖zx‖L1
t (L∞

x )
( 2T∗

3 (N − ‖z‖∞
2 ) − 1)2

4νT ∗

}
.

Here, we have used the fact that

t∗ �−→ ((N − ‖z‖∞/2)t∗ − 1)2

4νt∗

is an increasing function as long as (52) is satisfied.
Finally, we obtain the observability inequality (50) with

K(T ∗, ν) = C exp

(
−D(T ∗, N, z)

νT ∗

)
,

for some C = C(T ∗, N); recall that D(T ∗, N, z) was introduced in (41). In particular,
estimate (46) holds.

This concludes the proof of Lemma 3.

2.2.2. Fixed point argument. In this subsection, we end the proof of the null
controllability of system (36) by performing a fixed point argument applied to the
following application: With each z ∈ W 1,∞((0, T ) × (0, 1)) such that (41) holds, we
associate a y solution of (39) given by Lemma 3. More precisely, let us first define the
set of controls:

(54) A(z) = {(ṽ1, ṽ2) ∈ W 1,∞(0, T )2 :

y solution of (39) satisfies y|t=T = 0 and ṽ1, ṽ2 satisfy (43)}.

Then, Λ(z) = y, where y fulfills system (39) for some controls (ṽ1, ṽ2) ∈ A(z).
Let us recall Kakutani’s fixed point theorem (see, for instance, [2]).
Theorem 2. Let Z be a Hilbert space and let Λ : Z �→ Z be a set-valued mapping

satisfying the following assumptions:
1. Λ(z) is a nonempty closed convex set of Z for every z ∈ Z.
2. There exists a nonempty convex compact set E ⊂ Z such that Λ(E) ⊂ E.
3. Λ is upper-hemicontinuous in Z; i.e., for each σ ∈ Z ′ the single-valued map-

ping

(55) z �→ sup
y∈Λ(z)

〈σ, y〉Z′,Z

is upper-semicontinuous.
Then Λ possesses a fixed point in the set E; i.e., there exists z ∈ E such that z ∈ Λ(z).

Let us check that Kakutani’s theorem can be applied to Λ and to

Z = H3/4(0, T ;L2(0, 1)) ∩ L2(0, T ;H7/4(0, 1)).

Observe that Z ⊂ L∞(Q) ∩ L2(0, T ;W 1,∞(0, 1)).
Let us check the three assumptions of Theorem 2 separately:
• The fact that Λ(z) is a nonempty closed convex set of Z for every z ∈ Z is very

easy to verify, so we leave it to the reader.
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• Let us prove that Λ maps a compact set into itself. For this, we consider the
Hilbert space

H = H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)).

Then we introduce the space

E = {w ∈ H : ‖w‖H ≤ e−K0N/(5ν)},

where K0 is the constant in (33). Observe in particular that if w ∈ E, then ‖w‖∞ ≤ N
as long as ν ∈ (0, ν0).

It is very easy to check that E is a compact set of Z. Moreover, since E ⊂
L2(0, T ;W 1,∞(0, 1)), one can prove that for each z ∈ E the solution y of (39) belongs
to H and there exists a constant C > 0 such that

(56) ‖y‖H ≤ C(‖ṽ1‖W 1,∞(0,T ) + ‖ṽ2‖W 1,∞(0,T ) + ‖y0‖W 1,p(0,1)).

Indeed, let us consider the following lifting of the boundary conditions:

V (t, x) = (1 − x)ṽ1(t) + xṽ2(t), t ∈ (0, T ), x ∈ (0, 1).

By introducing w := y − V , our problem (39) is transformed into

(57)

⎧⎪⎪⎨⎪⎪⎩
wt − νwxx + ((N + z(t, x)/2)w)x = f(t, x) in (0, T ) × (0, 1),

w|x=0 = 0, w|x=1 = 0 in (0, T ),

w|t=0 = y0 − (1 − x)ṽ1(0) + xṽ2(0) in (0, 1),

where

f(t, x) = (1 − x)ṽ1,t(t) + xṽ2,t(t) + (N/2 + z(t, x))(−ṽ1(t) + ṽ2(t)) + zx(t, x)V.

This is a linear parabolic equation with an L2
t (L

∞
x ) coefficient for the zero order term,

an L∞(Q) coefficient for the first order (in space) term, an L∞(Q) right-hand side,
and a W 1,∞(0, 1) initial condition. In this situation, it is not difficult to prove that
the solution of (57) belongs to H and (56) holds. (Observe that, thanks to (48), the
initial data in (57) satisfies the required compatibility condition.)

Now, looking at the definition of D given in (41), we see that as long as T >
(α0 − 2)/N (for some α0 < 9), we have

D(T,N, z) ≥ 0 ∀z ∈ E, ν ∈ (0, ν0).

Then, from (56) and taking into account estimates (33) and (43), we obtain for some
C > 0

‖y‖H ≤ C(e−K0/ν + e−K0/(3ν)) ≤ e−K0N/(5ν), ν ∈ (0, ν0),

and so y ∈ E.
• It remains to check that Λ is upper-hemicontinuous. Thus, assume that σ ∈ Z ′

and let a sequence {zn} be given, with zn → z strongly in Z. We must prove that

limn→+∞ sup
y∈Λ(zn)

〈σ, y〉Z′,Z ≤ sup
y∈Λ(z)

〈σ, y〉Z′,Z .
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Let {zn′} be a subsequence of {zn} such that

limn→+∞ sup
y∈Λ(zn)

〈σ, y〉Z′,Z = lim
n′→+∞

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z .

Since each Λ(zn′) is a compact set of Z, for every n′ we have

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z = 〈σ, yn′〉Z′,Z

for some yn′ ∈ Λ(zn′). On the other hand, since all the states yn′ belong to the same
compact set E, at least for a new subsequence (again indexed by n′), we must have
yn′ → y strongly in Z. We will now prove that y ∈ Λ(z). This will achieve the proof
of the upper-hemicontinuity of Λ.

Indeed, it can be assumed that the controls ṽ1,n′ and ṽ2,n′ converge to some func-
tions ṽ1 and ṽ2 weakly-∗ in W 1,∞(0, T ). Then y solves (39) and y|t=T = 0. Moreover,
since inequality (43) is independent of n, ṽ1 and ṽ2 also satisfy (43). Therefore,
(ṽ1, ṽ2) ∈ A(z). Consequently, it is immediate that y is the solution to (39) associated
with the controls ṽ1 and ṽ2.

This shows that y ∈ Λ(z) and, therefore, Λ is upper-hemicontinuous.
Consequently, Kakutani’s theorem applies and this implies that there exists y ∈

Λ(y); that is to say, we have found a function y solution of (36) such that (37) and
(38) (thanks to (43)) are satisfied. The proof of Proposition 4 is finished.

3. Proof of Proposition 2. Again relying on the invariance of the solutions of
(1) by the transformation u(t, x) ↔ −u(t, 1 − x), we can always assume that M > 0.
Now Proposition 2 is proved approximately as Proposition 1, but here a (viscous)
rarefaction wave is used in place of a traveling wave. More precisely, we start from
N , which can be chosen larger than M . First, we reach M approximately and then
reach M exactly by using the same argument as above.

3.1. Reaching M approximately. Let us prove the next proposition.
Proposition 5. One can find controls v1 and v2 such that the solution of (1)–(3)

with initial condition u|t=0 = N satisfies, for some constant C > 0 independent from
M , N , and ν,

(58) ‖u(t, ·) −M‖W 1,∞([0,1]) ≤ CM
√
νt exp

{
−M2

4ν

(
t− 2

M

)}
for any t > 2

M and, moreover, the controls satisfy, independently from ν,

(59) ‖v1‖L∞(0,T ) + ‖v2‖L∞(0,T ) ≤ N.

Proof of Proposition 5. In this situation, the solution u is obtained by taking the
restriction to [0, T ]× [0, 1] of the solution defined on the whole space domain R as the
unique solution with initial condition:

(60) u(0, x) := û0 =

{
M if x ≤ 0,

N if x > 0.

Then v1 and v2 are obtained by taking the traces of u along the lines (0, T )×{0} and
(0, T )×{1}. As before, (59) follows directly from the maximum principle, so we have
only to check (58).
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In a first step we consider only the L∞ norm. The solution u(t, x) has the following
explicit form:

u(t, x) =

∫ 0

−∞
x−y
t exp

{
− 1

2ν

(
(x−y)2

2t + My
)}

dy +
∫ +∞
0

x−y
t exp

{
− 1

2ν

(
(x−y)2

2t + Ny
)}

dy∫ 0

−∞ exp
{
− 1

2ν

(
(x−y)2

2t + My
)}

dy +
∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t + Ny
)}

dy
.

We note that∫ 0

−∞

x− y

t
exp

{
− 1

2ν

( (x− y)2

2t
+ My

)}
dy

= 2ν exp
(
− x2

4νt

)
+ M

∫ 0

−∞
exp

{
− 1

2ν

( (x− y)2

2t
+ My

)}
dy

(as seen by adding and subtracting M inside the integral). In the same way, we have

∫ +∞

0

x− y

t
exp

{
− 1

2ν

( (x− y)2

2t
+ Ny

)}
dy

= −2ν exp
(
− x2

4νt

)
+ N

∫ +∞

0

exp
{
− 1

2ν

( (x− y)2

2t
+ Ny

)}
dy.

Hence we get that

u(t, x) −M =

(N −M)
∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t + Ny
)}

dy∫ 0

−∞ exp
{
− 1

2ν

(
(x−y)2

2t + My
)}

dy +
∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t + Ny
)}

dy
.

Note that û0 is nondecreasing; hence u(t, ·) is also nondecreasing (as seen from
Lemma 1 and comparing the solutions corresponding to û0 and û0(· + h)). Using
the fact that û0 ≥ M , we deduce, together with the maximum principle, that u ≥ M .
Consequently, it is sufficient to have an upper estimate for u(t, 1) − M . Now from
(29) we have∫ 0

−∞
exp

{
− 1

2ν

(
(1 − y)2

2t
+ My

)}
dy =

√
4νt exp

(
M(Mt− 2)

4ν

)∫ ξM

−∞
e−s2ds,

∫ +∞

0

exp

{
− 1

2ν

(
(1 − y)2

2t
+ Ny

)}
dy =

√
4νt exp

(
N(Nt− 2)

4ν

)∫ +∞

ξN

e−s2ds,

with

ξM :=
Mt− 1

2
√
νt

and ξN :=
Nt− 1

2
√
νt

.
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We deduce

u(t, 1) −M ≤
(N −M)

∫ +∞
0

exp
{
− 1

2ν

(
(1−y)2

2t + Ny
)}

dy∫ 0

−∞ exp
{
− 1

2ν

(
(1−y)2

2t + My
)}

dy

≤
(N −M) exp

(M(Mt−2)
4ν

) ∫ ξM
−∞ e−s2ds

exp
(N(Nt−2)

4ν

) ∫ +∞
ξN

e−s2ds

≤
(N −M) exp

(M(Mt−2)
4ν

) ∫ ξM
−∞ e−s2ds

√
π/2

.

With (31), we get

u(t, 1) −M ≤ 2
√
νt√
π

N −M

Nt− 1
exp

{
−1

4νt

}
exp

{
−M2

4ν

(
t− 2

M

)}
,

and the result in the L∞ norm follows using t > (2/M).
The L∞ estimate on ∂xu is done approximately as in section 2.1 by using Lemma 2.

We fix x ∈ [0, 1]; we get

∂xu(t, x) =
1

2ν

∫ +∞
−∞

y−x
t (û0(y) −M) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy

+
1

2ν

∫ +∞
−∞

y−x
t (M − u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy

=: A + B.

Using again the fact that u(t, ·) is nondecreasing, we see that we have only to give an
upper bound for ∂xu. The second term B satisfies

B =
1

2ν
(M − u(t, x))u(t, x)

and thus is clearly nonpositive, as follows from the maximum principle. Therefore, it
remains to estimate the first term A. To this aim, we estimate the denominator from
below as follows:∫ +∞

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

û0(η)dη

]}
dy

≥
∫ 0

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

û0(η)dη

]}
dy

=

∫ 0

−∞
exp

{
− 1

2ν

[
(x− y)2

2t
+ My

]}
dy

≥
√
πνt exp

{
M

2ν

(
Mt

2
− x

)}
.
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For the numerator, thanks to (30), we have

N :=

∫ +∞

0

y − x

t
(û0(y) −M) exp

{
− 1

2ν

[
(x− y)2

2t
+

∫ y

0

û0(η)dη

]}
dy

≤
∫ +∞

0

y

t
(N −M) exp

{
− 1

2ν

[
(x− y)2

2t
+ Ny

]}
dy

≤ N −M

t

[
2
√
νt(x−Nt) exp

{
N(−2x + Nt)

4ν

}

×
∫ +∞

−x+Nt

2
√

νt

e−s2ds + 2νt exp

{
− x2

4νt

}]

=
N −M

t
exp

{
N(−2x + Nt)

4ν

}

×
[
2
√
νt(x−Nt)

∫ +∞

−x+Nt

2
√

νt

e−s2ds + 2νt exp

{
− (x−Nt)2

4νt

}]
.

Simple integrations by parts prove that

(61) −
∫ +∞

y

e−s2ds +
e−y2

2y
≤ e−y2

4y3
.

Plugging (61) with y = −x+Nt
2
√
νt

into the previous estimate of N and using Nt ≥ 1 ≥ x,

we deduce

N ≤ 4
N −M

(Nt− 1)2
ν2t exp

{
−x2

4νt

}
.

Using N > M , we finally obtain

N ≤ 4Mν2t,

which yields the result.

3.2. Reaching M exactly. Reaching M exactly is done identically to reaching
N exactly (see section 2.2). This is due to the fact that we did not use the size of N
in subsection 2.2. This ends the proof of section 2 and hence of Theorem 1.

4. Technical results.

4.1. Proof of the dissipation result. In this first part, we will prove the
estimate presented in (51):

(62) ‖ϕ|t=t0‖L2(0,1) ≤ exp

{‖zx‖L1
t (L

∞
x )

8
− ((N − ‖z‖∞/2)t∗ − 1)2

4νt∗
e
−2‖zx‖L1

t (L∞
x )

}
× ‖ϕ|t=t0+t∗‖L2(0,1),
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for any t0 ∈ (0, T ∗) and any t∗ ∈ (0, T ∗ − t0) such that (52) is satisfied. Here, ϕ
designs the solution of the system

(63)

⎧⎪⎪⎨⎪⎪⎩
−ϕt − νϕxx − (N + z(t, x)/2)ϕx = 0 in (0, T ∗) × (0, 1),

ϕ|x=0 = 0, ϕ|x=1 = 0 in (0, T ∗),

ϕ|t=T∗ = ϕ0 in (0, 1).

Let us first define a function Θ(t, x) = eθ(t,x), where θ ∈ L∞(0, T ∗;W 1,∞(0, 1)) is
chosen as follows: We set θ(t, x) := r0|ψ−1(t, x)|, with r0 > 0 a constant which will
be chosen later on, and where ψ is the backward flow associated with N + z(t, x)/2.
More precisely, ψ is given by⎧⎨⎩

dψ

dt
(t, x) = N +

z(t, ψ(t, x))

2
,

ψ|t=t0+t∗ = x.

Here, we have extended z(t, ·) by z(t, 0) on the left of 0 and by z(t, 1) on the right of
1. In particular, Θ is defined for x ∈ R and satisfies

(64) Θt + (N + z(t, x)/2)Θx = 0.

We regard the equation satisfied by Θϕ as the following (in fact, to be complete, we
should regularize Θ and z, establish estimates for regularized Θ and z, and then pass
to the limit):

(65) −(Θϕ)t − ν(Θϕ)xx − (N + z(t, x)/2)(Θϕ)x = −νϕΘxx − 2νϕxΘx.

We multiply by Θϕ and integrate on (0, 1). After integration by parts we obtain

(66)

−1

2

d

dt

∫ 1

0

|eθϕ|2 dx +
1

4

∫ 1

0

zx|eθϕ|2 dx + ν

∫ 1

0

|(eθϕ)x|2 dx

= ν

∫ 1

0

|Θθxϕ|2 dx ≤ ν‖θx‖2
∞

∫ 1

0

|eθϕ|2 dx.

After an application of Gronwall’s lemma in the time interval (t0, t0 + t∗), we find the
following from (66):

(67)

∫ 1

0

|eθϕ|2(t0) dx

≤ exp

{‖zx‖L1
t (L

∞
x )

4
+ 2νr2

0t
∗ exp

(
2‖zx‖L1

t (L
∞
x )

)}∫ 1

0

|eθϕ|2(t0 + t∗) dx.

Here, we have used the expression of θ together with the estimate

|ψ−1
x (t, x)|2 ≤ exp

{
2

∫ T∗

0

‖zx(s)‖∞ ds

}
, t ∈ (0, T ), x ∈ (0, 1).

Now, from the expression of ψ−1(t, x) we observe that

ψ−1(t0, x) ≤ 1 − (N − ‖z‖∞/2)t∗ for x ∈ (0, 1).
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Then from (67) we find that

(68)

∫ 1

0

|ϕ|2(t0) dx ≤ C(r0, t
∗)

∫ 1

0

|ϕ|2(t0 + t∗) dx,

with

C = exp

{‖zx‖L1
t (L

∞
x )

4
+ 2νr2

0t
∗ exp

(
2‖zx‖L1

t (L
∞
x )

)
+ 2r0(1 − (N − ‖z‖∞/2)t∗)

}
.

Finally, we choose

r0 =
e
−2‖zx‖L1

t (L∞
x )((N − ‖z‖∞/2)t∗ − 1)

2νt∗

and we find the desired inequality (62) squared.

4.2. Proof of the Carleman inequality. In this, the last section of the paper,
we will provide the proof of the Carleman inequality which was presented in (53). In
order to prove this estimate, we follow the steps of the proof in [5].

Hence, let us first perform a change of variables in order to restrict ourselves to
the case where ν = 1:

(69)

{
t̃ = νt,

x̃ = x.

In the new variables, we have, with ϕ̃(t̃, x̃) := ϕ(t, x) and z̃(t̃, x̃) = z(t, x),

(70)

⎧⎪⎪⎨⎪⎪⎩
ϕ̃t̃ + ϕ̃x̃x̃ + ν−1Nϕ̃x̃ = −ν−1(z̃(t̃, x̃)/2)ϕ̃x̃, (t̃, x̃) ∈ (0, νT ∗) × (0, 1),

ϕ̃(t̃, 0) = ϕ̃(t̃, 1) = 0, t̃ ∈ (0, νT ∗),

ϕ̃(νT ∗, x̃) = ϕ̃0(x̃), x̃ ∈ (0, 1).

Let

Ñ :=
N

ν
,(71)

T̃ := νT ∗.(72)

Then, condition (42) implies

(73) Ñ T̃ � (3/2).

Let us define a weight function, similar to the one introduced by Fursikov and Imanuvilov
in [8],

(74) α(t̃, x̃) :=
β(x̃)

T̃ − t̃
(t̃, x̃) ∈ (0, T̃ ) × (0, 1),

where 0 � β ∈ C2([0, 1]) will be chosen below. We also introduce the function

ψ := e−αϕ̃,
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which verifies

(75) P1ψ + P2ψ = P3ψ,

with

P1ψ := ψx̃x̃ + α2
x̃ψ + Ñαx̃ψ + αt̃ψ,

P2ψ := ψt̃ + 2αx̃ψx̃ + Ñψx̃,

P3ψ := −αx̃x̃ψ − ν−1(z̃(t̃, x̃)/2)(αx̃ψ + ψx̃).

We develop here the classical proof, consisting of taking the L2 norm in identity (75),
and then develop all the double products:

(76) ‖P1ψ‖2
L2(Q) + ‖P2ψ‖2

L2(Q) + 2(P1ψ, P2ψ)L2(Q) = ‖P3ψ‖2
L2(Q),

where Q stands for the open set (0, T̃ ) × (0, 1).
Let us compute 2(P1ψ, P2ψ)L2(Q). Let us first compute the terms concerning ψx̃x̃.

We have

(ψx̃x̃, ψt̃)L2(Q) =
1

2

∫ 1

0

|ψx̃(0, x̃)|2 dx̃.

Moreover,

(77) 2(ψx̃x̃, αx̃ψx̃)L2(Q)

=

∫ T̃

0

(αx̃(t̃, 1)|ψx̃(t̃, 1)|2 − αx̃(t̃, 0)|ψx̃(t̃, 0)|2) dt̃−
∫∫

Q

αx̃x̃|ψx̃|2 dx̃ dt̃.

Finally,

Ñ(ψx̃x̃, ψx̃)L2(Q) = (Ñ/2)

∫ T̃

0

(|ψx̃(t̃, 1)|2 − |ψx̃(t̃, 0)|2) dt̃.

As far as the term α2
x̃ψ is concerned, we first have

(α2
x̃ψ,ψt̃)L2(Q) = −

∫∫
Q

αx̃αx̃t̃|ψ|2 dx̃ dt̃−
1

2

∫ 1

0

α2
x̃(0, x̃)|ψ(0, x̃)|2 dx̃.

Next,

2(α2
x̃ψ, αx̃ψx̃)L2(Q) = −3

∫∫
Q

αx̃x̃α
2
x̃|ψ|2 dx̃ dt̃.

Finally,

Ñ(α2
x̃ψ,ψx̃)L2(Q) = −Ñ

∫∫
Q

αx̃x̃αx̃|ψ|2 dx̃ dt̃.

Let us next perform the terms concerning Ñαx̃ψ. First, we have

Ñ(αx̃ψ,ψt̃)L2(Q) = −(Ñ/2)

∫∫
Q

αx̃t̃|ψ|2 dx̃ dt̃− (Ñ/2)

∫ 1

0

αx̃(0, x̃)|ψ(0, x̃)|2 dx̃.
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Then, we find

2Ñ(αx̃ψ, αx̃ψx̃)L2(Q) = −2Ñ

∫∫
Q

αx̃αx̃x̃|ψ|2 dx̃ dt̃.

The last term provides

Ñ2(αx̃ψ,ψx̃)L2(Q) = −(Ñ2/2)

∫∫
Q

αx̃x̃|ψ|2 dx̃ dt̃.

Lastly, we deal with the computations of the term αt̃ψ. First, we obtain

(αt̃ψ,ψt̃)L2(Q) = −(1/2)

∫∫
Q

αt̃t̃|ψ|2 dx̃ dt̃− (1/2)

∫ 1

0

αt̃(0, x̃)|ψ(0, x̃)|2 dx̃.

Additionally, we find

(αt̃ψ, 2αx̃ψx̃)L2(Q) = −
∫∫

Q

(αt̃αx̃x̃ + αt̃x̃αx̃)|ψ|2 dx̃ dt̃.

Finally,

(αt̃ψ, Ñψx̃)L2(Q) = −(Ñ/2)

∫∫
Q

αt̃x̃|ψ|2 dx̃ dt̃.

Putting all these computations together, we conclude that the double product
term is

(78)

2(P1ψ, P2ψ)L2(Q) =

∫ 1

0

|ψx̃(0, x̃)|2 dx̃

+

∫ T̃

0

((2αx̃(t̃, 1) + Ñ)|ψx̃(t̃, 1)|2 − (2αx̃(t̃, 0) + Ñ)|ψx̃(t̃, 0)|2) dt̃

− 2

∫∫
Q

αx̃x̃|ψx̃|2 dx̃ dt̃− 4

∫∫
Q

αx̃αx̃t̃|ψ|2 dx̃ dt̃

−
∫ 1

0

α2
x̃(0, x̃)|ψ(0, x̃)|2 dx̃− 2

∫∫
Q

(3αx̃x̃α
2
x̃ + Ñαx̃t̃)|ψ|2 dx̃ dt̃

−Ñ

∫ 1

0

αx̃(0, x̃)|ψ(0, x̃)|2 dx̃− Ñ

∫∫
Q

(6αx̃αx̃x̃ + Ñαx̃x̃)|ψ|2 dx̃ dt̃

−
∫∫

Q

αt̃t̃|ψ|2 dx̃ dt̃−
∫ 1

0

αt̃(0, x̃)|ψ(0, x̃)|2 dx̃− 2

∫∫
Q

αt̃αx̃x̃|ψ|2 dx̃ dt̃.

On the other hand, we have the following for the right-hand side term:

(79) ‖P3ψ‖2
L2(Q) ≤

∫∫
Q

(2α2
x̃x̃|ψ|2 + ν−2|z̃(t̃, x̃)|2(α2

x̃|ψ|2 + |ψx̃|2)) dx̃ dt̃.
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Combining (78)–(79) with (76), we obtain∫ T̃

0

(2αx̃(t̃, 1) + Ñ)|ψx̃(t̃, 1)|2 dt̃− 2

∫∫
Q

αx̃x̃|ψx̃|2 dx̃ dt̃− 6

∫∫
Q

αx̃x̃α
2
x̃|ψ|2 dx̃ dt̃

− 2

∫∫
Q

αt̃αx̃x̃|ψ|2 dx̃ dt̃− 6Ñ

∫∫
Q

αx̃αx̃x̃|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

αx̃x̃|ψ|2 dx̃ dt̃

�
∫∫

Q

(2α2
x̃x̃|ψ|2 + ν−2|z̃(t̃, x̃)|2(α2

x̃|ψ|2 + |ψx̃|2)) dx̃ dt̃

+

∫ T̃

0

(2αx̃(t̃, 0) + Ñ)|ψx̃(t̃, 0)|2 dt̃ + 4

∫∫
Q

αx̃αx̃t̃|ψ|2 dx̃ dt̃

+ 2Ñ

∫∫
Q

αx̃t̃|ψ|2 dx̃ dt̃ +

∫∫
Q

αt̃t̃|ψ|2 dx̃ dt̃ +

∫ 1

0

α2
x̃(0, x̃)|ψ(0, x̃)|2 dx̃

+ Ñ

∫ 1

0

αx̃(0, x̃)|ψ(0, x̃)|2 dx̃ +

∫ 1

0

αt̃(0, x̃)|ψ(0, x̃)|2 dx̃.

From the definition of α (given in (74)), we find

(80)

∫ T̃

0

(
2
β′(1)

T̃ − t̃
+ Ñ

)
|ψx̃(t̃, 1)|2 dt̃− 2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψx̃|2 dx̃ dt̃

−6

∫∫
Q

β′′(x̃)(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃− 2

∫∫
Q

β(x̃)β′′(x̃)

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

−6Ñ

∫∫
Q

β′(x̃)β′′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃

� ‖z‖2
∞

ν2

∫∫
Q

|ψx̃|2 dx̃ dt̃ +

∫∫
Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+

∫ T̃

0

(
2
β′(0)

T̃ − t̃
+ Ñ

)
|ψx̃(t̃, 0)|2 dt̃ + 4

∫∫
Q

(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

+ 2

∫∫
Q

(
Ñβ′(x̃) +

β(x̃)

T̃ − t̃

)
|ψ|2

(T̃ − t̃)2
dx̃ dt̃ +

∫ 1

0

β′(x̃)2

T̃ 2
|ψ(0, x̃)|2 dx̃

+
Ñ

T̃

∫ 1

0

β′(x̃)|ψ(0, x̃)|2 dx̃ +
1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃.

Let us now define the function β : [0, 1] �→ R. We will take a function satisfying

(81) β′′(x̃) = − 1

1 − δ

2(β′(x̃))2 + β(x̃)

3(β′(x̃))2 + β(x̃)
, x̃ ∈ [0, 1],

together with the initial conditions

(82) β(0) = δ and β′(0) = λ,

where λ > 0 and δ ∈ (0, 1) are parameters to be determined.
Now we claim that for proper λ, the function β is well defined and satisfies

(83) β > 0, β′ > 0 and β′′ < 0 on [0, 1].
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Once such a function β is obtained, we consider χ a constant satisfying

(84) β(1) < χ.

In what follows, the smaller χ is, the better the estimates will be.
Remark 7. One can check, for instance with MATLAB, that, if δ > 0 is small

enough and if one fixes λ := 0.807, then the corresponding β is defined on [0, 1] and
satisfies (84) with χ = 0.435.

At the end of the paper, we will establish elementarily the following lemma.
Lemma 4. There are some values of λ > 0 and δ ∈ (0, 1) such that the unique

solution β of (81)–(82) is well defined in [0, 1] and satisfies

(85) β(1) < (2/3).

From now on, we suppose that we have such a β satisfying (81), (82), (83), and
(84). We remark that the first term in the left-hand side of (80) is nonnegative, and
we regroup the third and fourth terms of the left-hand side, together with the fourth
and sixth terms of the right-hand side. We deduce

(86)

−2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψx̃|2 dx̃ dt̃− 6δ

∫∫
Q

β′′(x̃)
β(x̃) + 3(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

−6Ñ

∫∫
Q

β′(x̃)β′′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃

� ‖z‖2
∞

ν2

∫∫
Q

|ψx̃|2 dx̃ dt̃ +

∫∫
Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+

∫ T̃

0

(
2
β′(0)

T̃ − t̃
+ Ñ

)
|ψx̃(t̃, 0)|2 dt̃ + 2Ñ

∫∫
Q

β′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+
1

T̃

∫ 1

0

(
β′(x̃)2

T̃
+ Ñβ′(x̃)

)
|ψ(0, x̃)|2 dx̃ +

1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃.

Additionally, using (40), the definition of T̃ = νT ∗ and the fact that β′′(x̃) �
−2/((1 − δ)3), we can absorb the first term in the right-hand side of (86) with

−2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψx̃|2 dx̃ dt̃

as long as ν is small enough. Furthermore, using β ≥ δ and −β′′ ≥ (2/3), the second
term in the left-hand side of (86) can be estimated in the following way:

−6δ

∫∫
Q

β′′(x̃)
β(x̃) + 3(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃ ≥ 4δ2

νT ∗

∫∫
Q

|ψ|2

(T̃ − t̃)2
dx̃ dt̃.

Then, thanks to (40) and taking ν ∈ (0, ν0), we have that

4δ2

νT ∗

∫∫
Q

|ψ|2

(T̃ − t̃)2
dx̃ dt̃ �

∫∫
Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2 + 2Ñβ′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃.
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From (83) and (86), we have

(87) − Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃ �

∫ T̃

0

(2
β′(0)

T̃ − t̃
+ Ñ)|ψx̃(t̃, 0)|2 dt̃

+
1

T̃

∫ 1

0

(
β′(x̃)2

T̃
+ Ñβ′(x̃)

)
|ψ(0, x̃)|2 dx̃ +

1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃.

Let us recall that ψ := e−αϕ̃. Then, from (73), (74), (83), and (87), we deduce that

(88) Ñ

∫∫
Q

1

T̃ − t̃
e−2α|ϕ̃|2 dx̃ dt̃ � C

(∫ T̃

0

|ϕ̃x̃(t̃, 0)|2 dt̃ +
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃
)
.

In (88) and what follows, C will stand for generic positive constants independent of
ν, N , T ∗, and ϕ0.

By (74) and (83), e−2α reaches its minimum in the region [2T̃ /3, (2 + 3γ)T̃ /3] ×
[0, 1] at (t̃, x̃) = (2T̃ /3, 1) (recall that 0 < γ < (1/3) was introduced right before (53)).
Hence

(89)

Ñ

T̃
e−2α(2T̃ /3,1)

∫ 1

0

∫ (2+3γ)T̃ /3

2T̃ /3

|ϕ̃|2 dt̃ dx̃

� C

(∫ T̃

0

|ϕ̃x̃(t̃, 0)|2 dt̃ +
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃
)
.

From (74), we deduce, with (84) that

exp{−2α(2T̃ /3, 1)} = exp{−6β(1)/T̃} > exp{−6χ/T̃}.(90)

Coming back to our original variables (see (69), (71), and (72)), we get from (89) and
(90) the desired inequality (53).

Proof of Lemma 4. First, we introduce the unique maximal solution β of

(91) β
′′

= −2β
′2

+ β

3β
′2

+ β
,

with initial conditions

(92) β(0) = 0 and β
′
(0) = 1.

Clearly, for a ∈ R and b ≥ 0, we have

(93)
2

3
≤ 2a2 + b

3a2 + b
≤ 1.

Hence a solution of (91) can be locally extended as long as, for instance, β(x) ≥ 0. It
straightforwardly follows that β is well defined on [0, 1] and, moreover, satisfies

β
′
> 0 on [0, 1), and hence β > 0 on (0, 1].

Now it follows that

β
′
< 1 − 2x

3
on (0, 1],
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which yields

β(1) <
2

3
.

Now, if we consider, instead of β, the solution βδ of (81)–(82) for λ = 1 and δ small
enough, it follows easily (for instance, using Gronwall’s lemma) that

βδ −→ β uniformly on [0, 1], as δ → 0+.

Hence for δ small enough, β := βδ satisfies (85).
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A CURSE-OF-DIMENSIONALITY-FREE NUMERICAL METHOD
FOR SOLUTION OF CERTAIN HJB PDES∗

WILLIAM M. McENEANEY†

Abstract. In previous works of the author and others, max-plus methods have been explored for
the solution of first-order, nonlinear Hamilton–Jacobi–Bellman partial differential equations (HJB
PDEs) and corresponding nonlinear control problems. These methods exploit the max-plus linearity
of the associated semigroups. In particular, although the problems are nonlinear, the semigroups
are linear in the max-plus sense. These methods have been used successfully to compute solutions.
Although they provide certain computational-speed advantages, they still generally suffer from the
curse of dimensionality. Here we consider HJB PDEs in which the Hamiltonian takes the form
of a (pointwise) maximum of linear/quadratic forms. The approach to the solution will be rather
general, but in order to ground the work, we consider only constituent Hamiltonians corresponding
to long-run average-cost-per-unit-time optimal control problems for the development. We obtain a
numerical method not subject to the curse of dimensionality. The method is based on construction of
the dual-space semigroup corresponding to the HJB PDE. This dual-space semigroup is constructed
from the dual-space semigroups corresponding to the constituent linear/quadratic Hamiltonians. The
dual-space semigroup is particularly useful due to its form as a max-plus integral operator with a
kernel obtained from the originating semigroup. One considers repeated application of the dual-space
semigroup to obtain the solution.

Key words. partial differential equations, curse of dimensionality, dynamic programming,
max-plus algebra, Legendre transform, Fenchel transform, semiconvexity, Hamilton–Jacobi–Bellman
equations, idempotent analysis

AMS subject classifications. 49LXX, 93C10, 35B37, 35F20, 65N99, 47D99

DOI. 10.1137/040610830

1. Introduction. One approach to nonlinear control is through dynamic pro-
gramming (DP). With DP, the solution of the control problem “reduces” to the so-
lution of the corresponding partial differential equation (PDE). In the case of de-
terministic optimal control or deterministic games, where one player’s feedback is
prespecified, the PDE is a Hamilton–Jacobi–Bellman (HJB) PDE. If one can solve
the HJB PDE, then this approach is ideal in that one obtains the optimal control for
the given criterion as opposed to a control meeting only some weaker goal such as
stability. The problem is that one must solve the HJB PDE! We should remark that
such HJB PDEs also arise in robust/H∞ nonlinear filtering and robust/H∞ control
under partial information.

Various approaches have been taken for solution of the HJB PDE. First, note
that it is a fully nonlinear, first-order PDE. Consequently, the solutions are generally
nonsmooth (with the exception of the linear/quadratic case, of course), and one must
use the theory of viscosity solutions [3], [10], [11], [12], [20]. One approach to the
solution is through generalized characteristics (cf. [36], [37], as well as [15], [23] for
classical treatments). This approach can obtain the solution very quickly at a single
point if the solution is smooth. However, the nonsmoothness introduces tremendous
difficulties, which appear, to the author, to be difficult to handle in an automated
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approach. In particular, the projections of the characteristics into the state space
may cross and/or may not cover the entire state space (in analogy with shocks and
rarefaction waves).

The most common methods by far fall into the class of grid-based methods (cf. [3],
[4], [14], [20], [25] among many others). These require that one generate a grid over
some bounded region of the state space. In this general class of methods, we include
finite-difference methods, finite element methods, and those DP-based methods which
map the continuum problem onto some discrete space. Although higher-order grid-
based methods are being explored (cf. [6], [41], [16]), there are still hard lower limits
to the computational growth as a function of the space dimension. In particular,
suppose the region over which one constructs the grid is rectangular, say square, for
simplicity. Further, suppose one uses 100 grid points per dimension. (Clearly 50 would
be the minimum acceptable, and 100 could be a bit sparse.) If the state dimension
is n, then one has 100n grid points. Thus the computations grow exponentially in
state-space dimension n. If the computations per grid point grew with a state-space
dimension such as 2n, then the computations would grow at a rate of (200C)n for
some constant, C. For concreteness, we discuss only the steady-state PDE case here.
If the state-space dimension is 3, it is feasible to solve these problems on current
generation machinery. However, the computations will grow by more than 8 × 106

when going from a dimension 3 problem to a dimension 6 problem. Parallel algorithms
can alleviate this problem to some extent (cf. [5]). However, there can be only rather
limited improvement in the dimension of problems which can be handled by such
techniques.

In recent years, an entirely new class of numerical methods for HJB PDEs has
emerged [19], [34], [1], [22], [32], [31], [33], [30], [28]. These methods exploit the
max-plus (or min-plus [9], [32]) linearity of the associated semigroup. They employ a
max-plus basis function expansion of the solution, and the numerical methods obtain
the coefficients in the basis expansion. We will refer to these methods as max-plus
basis methods. Much of the previous work has concentrated on the (harder) steady-
state HJB PDE class, where (for both max-plus basis and grid-based methods), one
propagates forward in “time” to obtain the steady-state limit solution. With the
max-plus basis methods, the number of basis functions required still typically grows
exponentially with space dimension. For instance, one might use 25 basis functions
per space dimension. Consequently, one still has the curse of dimensionality. With
the max-plus basis methods, the “time-step” tends to be much larger than what can
be used in grid-based methods (since it encapsulates the action of the semigroup
propagation on each basis function), and so these methods can be quite fast on small
problems. Even with a max-plus basis approach, the curse of dimensionality growth is
so fast that one cannot expect to solve general problems of more than, say, dimension
5, on current machinery, and again, the computing machinery speed increases that
are expected in the foreseeable future cannot do much to raise this.

Many researchers have noticed that the introduction of even a single, simple
nonlinearity into an otherwise linear control problem of high dimensionality, say n,
has disastrous computational repercussions. Specifically, one goes from solution of an
n-dimensional Riccati equation to solution of a grid-based or max-plus basis method
over a space of dimension n. While the Riccati equation may be “relatively” easily
solved for large n, the max-plus and grid-based methods have no hope of obtaining
solutions on general problems of dimension, say, n ≥ 6. This has been a frustrating,
counter-intuitive situation for decades.
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This paper discusses an approach to certain nonlinear HJB PDEs which is not sub-
ject to the curse of dimensionality. Although this approach also utilizes the max-plus
algebra, the method is largely unrelated to the max-plus basis approaches discussed
above. In fact, for this new method, the computational growth in the state-space
dimension is on the order of n3. There is of course no “free lunch,” and there is
exponential computational growth in a certain measure of complexity of the Hamilto-
nian. Under this measure, the minimal complexity Hamiltonian is the linear/quadratic
Hamiltonian—corresponding to a solution by a Riccati equation. If the Hamiltonian
is given as a pointwise maximum or minimum of M linear/quadratic Hamiltonians,
then one could say the complexity of the Hamiltonian is M . One could also apply
this approach to a wider class of HJB PDEs with semiconvex Hamiltonians (by ap-
proximation of the Hamiltonian by a finite number of quadratic forms), but that is
certainly beyond the scope of this paper.

The approach has been applied on some simple nonlinear problems. A steady-
state HJB PDE comprised of 2 linear/quadratic components was solved in dimensions
2 and 3 in under 10 seconds on a standard PC, and in 20 seconds over R4. A few
simple examples comprised of 3 linear/quadratic components were solved in 10–20
seconds over R3 and 10–45 seconds over R4. For these particular problems, the
solution was obtained over the entire space (as opposed to a rectangular region)
with the resulting errors in the gradients growing linearly in |x|. (See section 7 for
more information on specific examples.) These speeds are of course unprecedented
in standard general approaches to nonlinear PDEs. This code was not optimized,
and there are many computational cost reduction methods that one could employ to
further reduce computational growth. Further, the computational growth in going
from n = 4 up to, say, n = 6 would be on the order of 63/43 � 4 as opposed to, say,
more than 104 for a grid-based method.

We will be concerned here with HJB PDEs of the form 0 = H̃(x, gradV ), where
the Hamiltonians are given or approximated as

H̃(x, gradV ) = max
m∈{1,2,...,M}

{Hm(x, gradV )}.

In order to make the problem tractable, we will concentrate on a single class of HJB
PDEs: those for long-run average-cost-per-unit-time problems. However, the theory
obviously can be expanded to a much larger class.

Since the development of the proposed method in the following sections takes
quite a few pages, we briefly outline the main points here. First, recall that the
solution of the above PDE is the eigenfunction of the corresponding semigroup, that
is,

0 ⊗ V = V = S̃τ [V ],

where ⊕,⊗ denote max-plus addition and multiplication, and we note that S̃τ is max-
plus linear (cf. [19], [27], [32]). The Legendre–Fenchel transform maps this into the
dual-space eigenfunction problem

0 ⊗ e = B̃τ � e,

where we use the � notation to indicate B̃τ � e
.
=

∫ ⊕
Rn B̃τ (x, y) ⊗ e(y) dy, where∫ ⊕

denotes max-plus integration (maximization). Then one approximates B̃τ �⊕
m∈M Bm

τ , where M .
= {1, 2, . . . ,M} and the Bm

τ correspond to the Hm. The
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max-plus power method [13], [24], [32] suggests that the solution is approximated by
the form

e � lim
N→∞

[ ⊕
m∈M

Bm
τ

]N

� 0 = lim
N→∞

⎡⎣ ⊕
{mi}N

i=1

Bm1
τ ⊗ Bm2

τ ⊗ · · · BmN
τ

⎤⎦� 0,

where the N superscript denotes the � operation N times, and 0 represents the zero-
function. Given linear/quadratic forms for each of the Hm, the Bm

τ are obtained by
Riccati equations. Let eN

.
= [

⊕
m∈M Bm

τ ]N � 0. Then eN → e. The convergence
rate does not depend on the space dimension, but on the dynamics of the problem.
There is no curse of dimensionality. The exponential growth is in M = #M. Given
the solution of the Riccati equations for the Hm, the computation of each product,
Bm1
τ ⊗ Bm2

τ ⊗ · · · BmN
τ , is analytical, modulo n × n matrix inversions (and hence the

n3 computational growth rate).
In section 2, the class of control problems and HJB PDEs which we will use to

demonstrate the theory will be given. We will also review the existing theory relevant
to our problem there. In section 3 the relation between solution of the HJB PDEs
and their corresponding semiconvex dual problems will be discussed. In section 4,
a discrete-time approximation of the semigroup for the problem of interest will be
introduced, and convergence of the solutions of the approximate problems to the
original problem will be obtained. The algorithm itself will be developed in section 5.
The basic algorithm is not subject to the curse of dimensionality. However, practical
implementation requires some additional work; some initial remarks on this appear
in section 6. The algorithm is applied to some simple examples in section 7. Finally,
section 8 sketches some future directions.

2. Sample problem class and review of theory. There are certain conditions
which must be satisfied for solutions to exist and the method to apply. In order that
the assumptions are not completely abstract, we will work with a specific problem
class: the infinite time-horizon H∞ problem with fixed feedback. This class consists
of long-term average-cost-per-unit-time problems. Moreover, it is a problem class in
which there already exists a good deal of results, and so less analysis will be required
for application of the new method.

As indicated above, we suppose the individual Hm are linear/quadratic Hamilto-
nians. Consequently, consider a finite set of linear systems

ξ̇m = Amξm + σmw, ξm0 = x ∈ R
n.(1)

Let w ∈ W .
= Lloc

2 ([0,∞); Rm), where we recall that Lloc
2 ([0,∞); Rm) = {w : [0,∞) →

R
m :

∫ T

0
|wt|2 dt < ∞ for all T < ∞}. Let the cost functionals be

Jm(x, T ;w)
.
=

∫ T

0

1

2
ξmt Dmξmt − γ2

2
|wt|2 dt,(2)

and let the value function (also known as the available storage in this context) be

V m(x) = sup
w∈W

sup
T<∞

Jm(x, T ;w) = lim
T→∞

sup
w∈W

Jm(x, T ;w).(3)

We remark that a generalization of the second term in the integrand of the cost
functional to 1

2w
TCmw with Cm symmetric and positive definite is not needed since
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this is equivalent to a change in σm in the dynamics (1). Obviously Jm and V m

require some assumptions in order to guarantee their existence. The assumptions will
hold throughout the paper. Since these assumptions only appear together, we will
refer to this entire set of assumptions as assumption block (A.m), and these are as
follows:

(A.m)

Assume that there exists cA ∈ (0,∞) such that

xTAmx ≤ −cA|x|2 ∀x ∈ R
n, m ∈ M.

Assume that all Dm are positive definite and symmetric, and let cD be
such that

xTDmx ≤ cD|x|2 ∀x ∈ R
n, m ∈ M

(which is obviously equivalent to all eigenvalues of the Dm being no
greater than cD). Lastly, assume that γ2/c2σ > cD/c2A, where cσ ≥ σm.

Note that these assumptions guarantee the existence of the V m as locally bounded
functions which are zero at the origin (cf. [35]). (These assumptions could be weak-
ened by using the specific linear/quadratic structure, but that would distract from
the goal of this paper.) The corresponding HJB PDEs are

0 = −Hm(x, gradV )(4)

= −
{

1

2
xTDmx + (Amx)T gradV + max

w∈Rm

[
(σmw)T gradV − γ2

2
|w|2

]}
= −

{
1

2
xTDmx + (Amx)T gradV +

1

2
gradV TΣm gradV

}
V (0) = 0,

where Σm .
= 1

γ2σ
m(σm)T . Let R

− .
= R∪{−∞}. Recall that a function, φ : R

n → R
−

is semiconvex if given any R ∈ (0,∞) there exists kR ∈ R such that φ(x) + kR

2 |x|2
is convex over BR(0) = {x ∈ R

n : |x| ≤ R}. For a fixed choice of cA, cσ, γ > 0
satisfying the above assumptions, and for any δ ∈ (0, γ), we define

Gδ =

{
V : R

n → [0,∞)

∣∣∣∣V is semiconvex and V (x) ≤ cA(γ − δ)2

c2σ
|x|2 ∀x ∈ R

n

}
.

From [35] (undoubtedly among many others), each value function (3) is the unique
viscosity solution of its corresponding HJB PDE (4) in the class Gδ for sufficiently
small δ > 0.

From the structure of the running cost and dynamics, it is easy to see (cf. [42],
[35]) that each V m satisfies

V m(x) = sup
T<∞

sup
w∈W

Jm(x, T ;w) = lim
T→∞

sup
w∈W

Jm(x, T ;w)
.
= lim

T→∞
V m,f (x, T ),(5)

and that each V m,f is the unique continuous viscosity solution of (cf. [3], [20])

0 = VT −Hm(x, gradV ), V (0, x) = 0.(6)

It is easy to see that these solutions have the form V m,f (x, t) = 1
2x

TPm,f
t x, where

each Pm,f satisfies the differential Riccati equation

Ṗm,f = (Am)TPm,f + Pm,fAm + Dm + Pm,fΣmPm,f , Pm,f
0 = 0.(7)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1244 WILLIAM M. McENEANEY

By (5) and (7), the V m take the form V (x) = 1
2x

TPmx, where Pm = limt→∞ Pm,f
t .

With this form and (4) (or (7)), we see that the Pm satisfy the algebraic Riccati
equations

0 = (Am)TPm + PmAm + Dm + PmΣmPm.(8)

Combining this with the above, one has the following.
Theorem 2.1. Each value function (3) is the unique classical solution of its

corresponding HJB PDE (4) in the class Gδ for sufficiently small δ > 0. Further,
V m(x) = 1

2x
TPmx, where Pm is the smallest symmetric, positive definite solution of

(8).
The duality between viscosity (and/or classical) solutions of the HJB PDEs and

the corresponding value functions is certainly very important. However, the method
we will use to obtain these value functions/HJB PDE solutions will be through the
associated semigroups. These semigroups are equivalent to dynamic programming
principles (DPPs). Consequently, for each m we define the semigroup

Sm
T [φ]

.
= sup

w∈W

[∫ T

0

1

2
(ξmt )TDmξmt − γ2

2
|wt|2 dt + φ(ξmT )

]
,(9)

where ξm satisfies (1). By [35], the domain of Sm
T includes Gδ for all δ > 0. The

following result is similar to that in [32]; the only significant difference is that, in this
case, V m(x) = 1

2x
TPmx is smooth.

Theorem 2.2. Fix any T > 0. Each value function, V m, is the unique smooth
solution of V = Sm

T [V ] in the class Gδ for sufficiently small δ > 0. Further, given any
V ∈ Gδ, limT→∞ Sm

T [V ](x) = V m(x) for all x ∈ R
n (uniformly on compact sets).

Recall that the HJB PDE problem of interest is

0 = −H̃(x, gradV )
.
= − max

m∈M
Hm(x, gradV ), V (0) = 0.(10)

The corresponding value function is

Ṽ (x) = sup
w∈W

sup
μ∈D∞

J̃(x,w, μ)
.
= sup

w∈W
sup

μ∈D∞

sup
T<∞

∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt,(11)

where lμt(x) = 1
2x

TDμtx, D∞ = {μ : [0,∞) → M : measurable }, and ξ satisfies

ξ̇ = Aμtξ + σμtwt, ξ0 = x.(12)

Theorem 2.3. Value function Ṽ is the unique viscosity solution of (10) in the
class Gδ for sufficiently small δ > 0.

Remark 2.4. The proof of Theorem 2.3 is nearly identical to the proofs of The-
orems 2.5 and 2.6 from [35], with only trivial changes, and so is not included. In
particular, rather than choosing any w ∈ W, one chooses both any w ∈ W and any
μ ∈ D∞.

Define the semigroup

S̃T [φ] = sup
w∈W

sup
μ∈DT

[∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt + φ(ξT )

]
,(13)

where DT = {μ : [0, T ) → M : measurable }. In analogy with Theorem 2.2, one has
the following.
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Theorem 2.5. Fix any T > 0. Value function Ṽ is the unique continuous
solution of V = S̃T [V ] in the class Gδ for sufficiently small δ > 0. Further, given any

V ∈ Gδ, limT→∞ S̃T [V ](x) = Ṽ (x) for all x ∈ R
n (uniformly on compact sets).

The proof is nearly identical to the proof of a similar result in [32] and so is not
included. In particular, the only change is the addition of the supremum over DT—
which makes no substantial change in the proof. More important, we also have the
following.

Theorem 2.6. There exists cV > 0 such that Ṽ (x) − 1
2cV |x|2 is strictly convex.

Proof. Fix any x, ν ∈ R
n with |ν| = 1 and any δ > 0. Let ε > 0. Given x, let

wε ∈ W, με ∈ D∞ be ε-optimal for Ṽ (x). Then

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν)

≥ J̃(x− δν, wε, με) − 2J̃(x,wε, με) + J̃(x + δν, wε, με) − 2ε.(14)

Let ξδ, ξ0, ξ−δ be solutions of dynamics (12), but with initial conditions ξδ0 = x + δν,
ξ0
0 = x, and ξ−δ

0 = x− δν, respectively, where the inputs are wε and με for all three
processes. Then

ξ̇δ − ξ̇0 = Aμε
t [ξδ − ξ0] and ξ̇0 − ξ̇−δ = Aμε

t [ξ0 − ξ−δ].(15)

Letting Δ+
t

.
= ξδt − ξ0

t , one also has ξ0
t − ξ−δ

t = Δ+
t , and by linearity one finds

Δ̇+ = Aμε
t Δ+. Also, using (14) and (11), we have

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν) ≥
∫ ∞

0

(Δ+)TDμε
t Δ+ dt− 2ε.(16)

Also, by the finiteness of M, there exists K < ∞ such that

d

dt
|Δ+|2 = 2(Δ+)TAμε

t Δ+ ≥ −K|Δ+|2,

which implies

|Δ+|2 ≥ e−Ktδ2 ∀ t ≥ 0.(17)

Let λD
.
= min{λ ∈ R : λ is an eigenvalue of a Dm}. By the positive definiteness

of the Dm and finiteness of M, λD > 0. Consequently, by (16), and then (17),

Ṽ (x− δν) − 2Ṽ (x) + Ṽ (x + δν) ≥
∫ ∞

0

λD|Δ+|2 dt− 2ε ≥ λD

K
δ2 − 2ε.(18)

Since ε > 0 and |ν| = 1 were arbitrary, one obtains the result.

3. Max-plus spaces and dual operators. Again, recall that a function φ :
R

n → R
− is semiconvex if, given any R ∈ (0,∞), there exists βR ∈ R such that

φ(x) + βR

2 |x|2 is convex over BR(0) = {x ∈ R
n : |x| ≤ R}. We will modify this

definition by allowing the βR to be n×n, symmetric, and positive or negative definite
matrices. We will denote the set of such matrices as Dn. We say φ is uniformly
semiconvex with (symmetric, definite matrix) constant β ∈ Dn if φ(x) + 1

2x
Tβx is

convex over R
n. Let Sβ = Sβ(Rn) be the set of functions mapping R

n into R
− which

are uniformly semiconvex with (symmetric, definite matrix) constant β. (A negative
definite semiconvexity constant corresponds to functions which are still convex after
subtracting a convex quadratic.) Also note that Sβ is a max-plus vector space (also
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known as a moduloid) [19], [32], [2], [8], [26]. For instance, α1 ⊗ φ1 ⊕ α2 ⊗ φ2 ∈ Sβ

for all α1, α2 ∈ R
− and all φ1, φ2 ∈ Sβ . Combining Theorems 2.1 and 2.6, we have

the following.
Theorem 3.1. There exists β ∈ Dn such that given any β such that β − β > 0

(i.e., β−β positive definite), Ṽ ∈ Sβ and V m ∈ Sβ for all m ∈ M. Further, one may

take β negative definite (i.e., Ṽ , V m are convex).
We henceforth assume we have chosen β such that β − β > 0.
Throughout the remainder, we will employ certain transform kernel functions,

ψ : R
n × R

n → R, which take the form

ψ(x, z) = 1
2 (x− z)TC(x− z)

with nonsingular, symmetric C satisfying C+β < 0 (i.e., C+β negative definite). The
following semiconvex duality result [19], [31], [32] requires only a small modification
of convex duality and Legendre–Fenchel transform results [38], [39].

Theorem 3.2. Let φ ∈ Sβ. Let C and ψ be as above. Then, for all x ∈ R
n,

φ(x) = max
z∈Rn

[ψ(x, z) + a(z)](19)

=

∫ ⊕

Rn

ψ(x, z) ⊗ a(z) dz = ψ(x, ·) � a(·),(20)

where for all z ∈ R
n,

a(z) = − max
x∈Rn

[ψ(x, z) − φ(x)](21)

= −
∫ ⊕

Rn

ψ(x, z) ⊗ [−φ(x)] dx = −{ψ(·, z) � [−φ(·)]} ,(22)

which, using the notation of [8],

=
{
ψ(·, z) � [φ−(·)]

}−
.(23)

We will refer to a as the semiconvex dual of φ (with respect to ψ).
Remark 3.3. We note that φ ∈ Sβ implies that φ is locally Lipschitz (cf. [18]).

We also note that if φ ∈ Sβ and if there is any x ∈ R
n such that φ(x) = −∞, then

φ ≡ −∞. Henceforth, we will ignore the special case of φ ≡ −∞ and assume that all
functions are real-valued.

Semiconcavity is the obvious analogue of semiconvexity. In particular, a function,
φ : R

n → R∪{+∞}, is uniformly semiconcave with constant β ∈ Dn if φ(x)− 1
2x

Tβx

is concave over R
n. Let S−

β be the set of functions mapping R
n into R∪{+∞} which

are uniformly semiconcave with constant β.
Lemma 3.4. Let φ ∈ Sβ (still with C + β < 0), and let a be the semiconvex dual

of φ. Then a ∈ S−
d for some d ∈ Dn such that C + d < 0.

Proof. A proof only in the case φ ∈ C2 is provided; in the more general case, a
mollification argument can be employed.

Noting that φ ∈ Sβ and −C − β > 0, there exists a unique minimizer,

x(z) = argmin
x∈R

[φ(x) − ψ(x, z)],

and one has

a(z) = φ(x(z)) − ψ(x(z), z).(24)
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Fix any z, ν ∈ R
n with |ν| = 1. Define as : R → R and xs : R → R

n by

as(δ)
.
= a(z + δν) and xs(δ) = x(z + δν).(25)

We will obtain a lower bound on the second derivative of as, and this will prove the
result. Differentiating as, one has

das

dδ

∣∣∣∣∣
δ=0

=
d

dδ
[φ(x(z + δν)) − ψ(x(z + δν), z + δν)]

= gradx φ(x(z)) · dx
s

dδ
− gradx ψ(x(z), z) · dx

s

dδ
− gradz ψ(x(z), z) · ν,

which, using the fact that gradx φ(x(z)) − gradx ψ(x(z), z) = 0,

= − gradz ψ(x(z), z) · ν.

Differentiating again, one finds

d2as

dδ2

∣∣∣∣∣
δ=0

= −
n∑

i=1

⎧⎨⎩
n∑

j=1

ψzixj
(x(z), z)

dxs
j

dδ
νi +

n∑
k=1

ψzizk(x(z), z)νkνi

⎫⎬⎭(26)

= −νTCν + νTC
dxs

dδ

∣∣∣∣∣
δ=0

.(27)

Now, differentiating both sides of gradx φ(x(z + δν))− gradx ψ(x(z + δν), z + δν) = 0
yields

n∑
j=1

φxixj

dxs
j

dδ
−

n∑
k=1

ψxixk

dxs
k

dδ
−

n∑
l=1

ψxizlνl = 0 ∀ i,

which yields

dxs

dδ
= − [φxx(x(z), z) − C]

−1
Cν.(28)

Substituting (28) into (27), one obtains

d2as

dδ2
= νT

{
−C + C [C − φxx(x(z), z)]

−1
C
}
ν.(29)

Now, φ ∈ Sβ implies −φxx(x(z)) − β < 0, which implies that there exists k0 > 0
such that

νT [−β − φxx(x(z))] ν < −k0|ν|2 ∀ ν.

Combining this with the fact that C + β < 0 implies that

νT [C − φxx(x(z))]ν < −k0|ν|2 ∀ ν.

Now, C − φxx(x(z)) being symmetric, negative definite implies that C − φxx(x(z)) =
UΛUT for some diagonal Λ (with all diagonal entries negative, of course) and some
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real, unitary U . Consequently, [C − φxx(x(z))]−1 = UΛ−1UT < 0, which is negative
definite. Then, since ζT [C − φxx(x(z))]−1ζ < 0 for all ζ ∈ R

n, ζ �= 0, one sees that

νTC[C − φxx(x(z))]−1Cν < 0

for all ν ∈ R
n, ν �= 0, and so

C[C − φxx(x(z))]−1C < 0.(30)

Let d
.
= −C+ 1

2C[C−φxx(x(z))]−1C. Then, by (30), C+d = 1
2C[C−φxx(x(z))]−1C <

0. (Note that if d is not definite, then by addition of εI for arbitrarily small ε, one
can make d definite without violating the inequalities.) Further, by (29) and (30),

d2as

dδ2

∣∣∣∣∣
δ=0

= νT
[
d +

1

2
C[C − φxx(x(z))]−1C

]
ν < νT dν,

which yields the result.

Remark 3.5. Fix any δ > 0 such that Ṽ ∈ Gδ, and let Kδ = 2 cA(γ−δ)2

c2σ
so

that 0 ≤ Ṽ (x) ≤ Kδ

2 |x|2. Then, using Lemma 3.4 and the monotonicity of the dual

operations, the semiconvex dual, ã, of Ṽ is in S−
d ∩ G−

δ for some d ∈ Dn such that
C + d < 0, where G−

δ is the space of semiconcave functions satisfying

0 ≤ ã(z) ≤ 1
2z

TQ−
δ z,

where Q−
δ

.
= C(C −KδI)

−1Kδ(C −KδI)
−1C −K2

δ (C −KδI)
−1C(C −KδI)

−1, and
where the last term on the right is the dual of Kδ

2 |x|2. Further, by the monotonicity

of the dual operations, any a ∈ G−
δ has dual V ∈ Gδ.

Lemma 3.6. Let φ ∈ Sβ with semiconvex dual a. Suppose b ∈ S−
d with C + d < 0

is such that φ = ψ(x, ·) � b(·). Then b = a.
Proof. Note that −b ∈ Sd. Therefore, for all y ∈ R

n, we have −b(y) =
maxζ∈Rn [ψ(y, ζ) + α(ζ)], or equivalently,

b(y)= −max
ζ∈Rn

[ψ(y, ζ) + α(ζ)],(31)

where for all ζ ∈ R
n,

α(ζ)= − max
y∈Rn

[ψ(y, ζ) + b(y)],

which by assumption

= −φ(ζ).(32)

Combining (31) and (32), and then using (21), one obtains

b(y) = −max
ζ∈Rn

[ψ(y, ζ) − φ(ζ)] = a(y) ∀ y ∈ R
n.

We will hereafter refer to the uniqueness of the semiconvex dual in the sense of
Lemma 3.6 simply as the uniqueness of the semiconvex dual. It will be critical to the
method that the functions obtained by application of the semigroups to the ψ(·, z) be
semiconvex with less concavity than the ψ(·, z) themselves. In other words, we will

want, for instance, S̃τ [ψ(·, z)] ∈ S−(c+εI) for some ε > 0. This is the subject of the
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next theorem. Also, in order to keep the theorem statement clean, we will first state
some definitions. Define

λD
.
= min{λ ∈ R : λ is an eigenvalue of Dm, m ∈ M}.

Note that the finiteness of M and positive definiteness of the Dm imply that λD > 0.
Let

IC
.
=

{
C ∈ Dn

∣∣∣∣ min
|ν|=1

min
m∈M

νT
[
AmTC + CAm

]
ν ≥ −λD/4

}
.

Theorem 3.7. Let C ∈ IC . Then there exists τ > 0 and η > 0 such that for all
τ ∈ [0, τ ],

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(C+ηIτ).

Remark 3.8. If we restrict our attention to C = cI for some c ∈ R, then C ∈ IC
if one takes |c| ≤ λD/[8 maxm∈M |Am|], c �= 0, and so the theorem condition can be
satisfied.

Proof. We prove the result only for S̃τ . The proof for Sm
τ is nearly identical and

slightly simpler.
The first portion of the proof is similar to the proof of Theorem 2.6. Again, fix any

x, ν ∈ R
n with |ν| = 1 and any δ > 0. Fix τ > 0 (to be specified below), and let ε >

0. Let wε, με be ε-optimal for S̃τ [ψ(·, z)](x). Specifically, suppose Îψ(x, τ, wε, με) ≥
S̃τ [ψ(·, z)](x) − ε, where

Îψ(x, τ, w, μ)
.
=

∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z)(33)

and ξt satisfies (12). For simplicity of notation, let V̂ τ,ψ = S̃τ [ψ(·, z)]. Then

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥ Îψ(x− δν, τ, wε, με) − 2Îψ(x, τ, wε, με) + Îψ(x + δν, τ, wε, με) − 2ε.(34)

Let ξδ, ξ0, ξ−δ,Δ+ be as given in the proof of Theorem 2.6. Note that

ψ(ξδτ , z) − 2ψ(ξ0
τ , z) + ψ(ξ−δ

τ , z) = (Δ+
τ )TCΔ+

τ .(35)

Note also that as in the proof of Theorem 2.6,

1

2

[
ξδtD

με
t ξδt − 2ξ0

tD
με
t ξ0

t + ξ−δ
t Dμε

t ξ−δ
t

]
= (Δ+

t )TDμε
t Δ+

t .(36)

Combining (33), (34), (35), and (36), one obtains

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥
∫ τ

0

(Δ+
t )TDμε

t Δ+
t dt + (Δ+

τ )TCΔ+
τ − 2ε.(37)

Further, noting as before that Δ̇+ = Aμε
t Δ+, one has

Δ+
t = exp

{∫ t

0

Aμε
r dr

}
δν

.
= Λε

tδν.(38)
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Combining (37) and (38), one has

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν)

≥ δ2

{∫ τ

0

νT (Λε
t )

TDμε
t Λε

tν dt + νT (Λε
τ )

TCΛε
τν

}
− 2ε.

However, since λD > 0 and Λε
0 = I, there exists τ̄ > 0 such that for all τ ∈ (0, τ̄),

≥ δ2

[
λD

2
τ + νTCν

]
+ δ2

[
νT (Λε

τ )
TCΛε

τν − νTCν
]
− 2ε.(39)

Now define gνt
.
= νT (Λε

t )
TCΛε

tν − νTCν. Noting that d
dt [Λ

ε
t ] = Aμε

t Λε
t , one

obviously has

dgν

dt
= νT

[
(Λε

t )
T (Aμε

t )TCΛε
t + (Λε

t )
TCAμε

t Λε
t

]
ν,

and consequently,

gνt =

∫ t

0

νT
[
(Λε

r)
T (Aμε

r )TCΛε
r + (Λε

r)
TCAμε

rΛε
r

]
ν dr.(40)

Also, define

ḡνt
.
=

∫ t

0

νT
[
(Aμε

r )TC + CAμε
r

]
ν dr.

Noting that Λε
t is continuous, and that Λε

0 = I, one sees that there exist δ̂ > 0 and
τ̂ > 0 such that for all τ ∈ (0, τ̂),

|gνt − ḡνt | ≤
δ̂

2
t2 ∀ t ∈ (0, τ̂).(41)

Let τ̃ = min{τ̄ , τ̂ , λD

4δ̂
}. By (39) and the definition of gν ,

V̂ τ,ψ(x− δν)−2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν) ≥ δ2νTCν + δ2

[
λD

2
τ + ḡντ − |gντ − ḡντ |

]
− 2ε,

which, by the definition of ḡν and (41)

≥ δ2νTCν + δ2

[
λD

2
τ +

∫ τ

0

νT
[
(Aμε

r )TC + CAμε
r

]
ν dr − δ̂

2
τ2

]
− 2ε,

which, by the definition of τ̃ and the assumption that C ∈ IC ,

≥ δ2νTCν + δ2λDτ

8
− 2ε ∀ τ ∈ (0, τ̃).

Since this is true for all ε > 0, letting η = λD/8, one has

V̂ τ,ψ(x− δν) − 2V̂ τ,ψ(x) + V̂ τ,ψ(x + δν) ≥ δ2νT [C + ηIτ ]ν ∀ τ ∈ (0, τ̃).

Corollary 3.9. We may choose C ∈ Dn such that Ṽ , V m ∈ S−C , and such that
with ψ, τ , η as in the statement of Theorem 3.7,

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(C+ηIτ) ∀ τ ∈ [0, τ ].
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Henceforth, we suppose C chosen so that the results of Corollary 3.9 hold. We
also suppose τ, η chosen according to the corollary as well.

Now for each z ∈ R
n, S̃τ [ψ(·, z)] ∈ S−(C+ηIτ). Therefore, by Theorem 3.2,

S̃τ [ψ(·, z)](x) =

∫ ⊕

Rn

ψ(x, y) ⊗ B̃τ (y, z) dy = ψ(x, ·) � B̃τ (·, z),(42)

where for all y ∈ R
n,

B̃τ (y, z) = −
∫ ⊕

Rn

ψ(x, y)⊗
{
−S̃τ [ψ(·, z)](x)

}
dx =

{
ψ(·, y)�[S̃τ [ψ(·, z)](·)]−

}−
.(43)

It is handy to define the max-plus linear operator with “kernel” B̃τ (where we do

not rigorously define the term kernel, as it will not be needed here) as
̂̃Bτ [α](z)

.
=

B̃τ (z, ·) � α(·) for all α ∈ S−C .
Proposition 3.10. Let φ ∈ S−C with the semiconvex dual denoted by a. Define

φ1 = S̃τ [φ]. Then φ1 ∈ S−(C+ηIτ), and

φ1(x) = ψ(x, ·) � a1(·),
where

a1(x) = B̃τ (x, ·) � a(·).

Proof. The proof that φ1 ∈ S−(C+ηIτ) is similar to the proof of Theorem 3.7.
Consequently, we prove only the second assertion:

φ1(x)= sup
w∈W

sup
μ∈D∞

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + φ(ξτ )

]
= sup

w∈W
sup

μ∈D∞

max
z∈Rn

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z) + a(z)

]
= max

z∈Rn

{
S̃τ [ψ(·, z)](x) + a(z)

}
,

which by (42),

= max
z∈Rn

max
y∈Rn

{
ψ(x, y) + B̃τ (y, z) + a(z)

}
=

∫ ⊕

y∈Rn

∫ ⊕

z∈Rn

B̃τ (y, z) ⊗ a(z) dz ⊗ ψ(x, y) dy

=

∫ ⊕

y∈Rn

a1(x) ⊗ ψ(x, y) dy.

Theorem 3.11. Let V ∈ S−C , let a be its semiconvex dual (with respect to ψ),

and suppose B̃τ (z, ·) � a(·) ∈ S−
d with C + d < 0. Then V = S̃τ [V ] if and only if

a(z)= max
y∈Rn

[
B̃τ (z, y) + a(y)

]
,

which of course

=

∫ ⊕

Rn

B̃τ (z, y) ⊗ a(y) dy = B̃τ (z, ·) � a(·) =
̂̃Bτ [a](z) ∀ z ∈ R

n.
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Proof. Since a is the semiconvex dual of V , for all x ∈ R
n,

ψ(x, ·) � a(·)= V (x) = S̃τ [V ](x)

= S̃τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]

(x)

= sup
w∈W

sup
μ∈D∞

[∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + max

z∈Rn
{ψ(ξτ , z) + a(z)}

]
= max

z∈Rn

[
a(z) + sup

w∈W
sup

μ∈D∞

{∫ τ

0

lμt(ξt) −
γ2

2
|wt|2 dt + ψ(ξτ , z)

}]
= max

z∈Rn

{
a(z) + S̃τ [ψ(·, z)](x)

}
=

∫ ⊕

Rn

a(z) ⊗ S̃τ [ψ(·, z)](x) dz,

which by (42)

=

∫ ⊕

Rn

a(z) ⊗
∫ ⊕

Rn

B̃τ (y, z) ⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

∫ ⊕

Rn

B̃τ (y, z) ⊗ a(z) ⊗ ψ(x, y) dy dz

=

∫ ⊕

Rn

[∫ ⊕

Rn

B̃τ (y, z) ⊗ a(z) dz

]
⊗ ψ(x, y) dy

=

[∫ ⊕

Rn

B̃τ (·, z) ⊗ a(z) dz

]
� ψ(x, ·),

where by Proposition 3.10, the first term is in S−(C+ηIτ). Combining this with Lemma
3.6, one has

a(y) =

∫ ⊕

Rn

B̃τ (·, z) ⊗ a(z) dz = B̃τ (y, ·) � a(·) ∀ y ∈ R
n.

The reverse implication follows by supposing a(·) = B̃τ (y, ·)� a(·) and reordering the
above argument.

Corollary 3.12. Value function Ṽ is given by Ṽ (x) = ψ(x, ·)� ã(·), where ã is
the unique solution of

ã(y) = B̃τ (y, ·) � ã(·) ∀ y ∈= R
n,

or equivalently, ã =
̂̃Bτ [ã].

Proof. Combining Theorems 2.5 and 3.11 yields the assertion that Ṽ has this
representation. The uniqueness follows from the uniqueness assertion of Theorem 2.5
and Lemma 3.6.

Similarly, for each m ∈ M and z ∈ R
n, we have Sm

τ [ψ(·, z)] ∈ S−(C+ηIτ) and

Sm
τ [ψ(·, z)](x) = ψ(x, ·) � Bm

τ (·, z) ∀x ∈ R
n,

where

Bm
τ (y, z) =

{
ψ(·, y) �

[
Sm
τ [ψ(·, z)]

]−
(·)

}−
∀ y ∈ R

n.

As before, it will be handy to define the max-plus linear operator with “kernel” Bm
τ

as B̂m
τ [a](z)

.
= Bm

τ (z, ·) � a(·) for all a ∈ S−C . Further, one also obtains analogous
results (by similar proofs). In particular, one has the following.
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Theorem 3.13. Let V ∈ S−C , and let a be its semiconvex dual (with respect to
ψ). Then V = Sm

τ [V ] if and only if

a(z)= Bm
τ (z, ·) � a(·) ∀ z ∈ R

n.

Corollary 3.14. Each value function V m is given by V m(x) = ψ(x, ·)� am(·),
where each am is the unique solution of the problem am(y) = Bm

τ (y, ·) � am(·) for all
y ∈ R

n.

4. Discrete-time approximation. The method developed here will not involve
any discretization over space. Of course this is obvious since otherwise one could
not avoid the curse of dimensionality. The discretization will be over time where
approximate μ processes will be constant over the length of each time-step.

We define the operator S̄τ on Gδ by

S̄τ [φ](x)= sup
w∈W

max
m∈M

[∫ τ

0

lm(ξmt ) − γ2

2
|wt|2 dt + φ(ξmτ )

]
(x)

= max
m∈M

Sm
τ [φ](x),

where ξm satisfies (1). Let

Bτ (y, z)
.
= max

m∈M
Bm
τ (y, z) =

⊕
m∈M

Bm
τ (y, z) ∀ y, z ∈ R

n.

The corresponding max-plus linear operator is

B̂τ =
⊕
m∈M

B̂m
τ .

Lemma 4.1. For all z ∈ R
n, we have S̄τ [ψ(·, z)] ∈ S−(C+ηIτ). Further,

S̄τ [ψ(·, z)](x) = ψ(x, ·) � Bτ (·, z) ∀x ∈ R
n.(44)

Proof. We provide the proof of the last statement as follows:

S̄τ [ψ(·, z)](x)= max
m∈M

Sm
τ [ψ(·, z)](x) = max

m∈M
ψ(x, ·) � Bm

τ (·, z)

= max
m∈M

max
y∈Rn

[ψ(x, y) + Bm
τ (y, z)] = max

y∈Rn

[
ψ(x, y) + max

m∈M
Bm
τ (y, z)

]
= ψ(x, ·) �

[
max
m∈M

Bm
τ (·, z)

]
.

We remark that, parameterized by τ , the operators S̄τ do not necessarily form a
semigroup, although they do form a sub-semigroup (i.e., S̄τ1+τ2 [φ](x) ≤ S̄τ1 S̄τ2 [φ](x)

for all x ∈ R
n and all φ ∈ S−C). In spite of this, one does have Sm

τ ≤ S̄τ ≤ S̃τ for all
m ∈ M.

With τ acting as a time-discretization step size, let

Dτ
∞ =

{
μ : [0,∞) → M| for each n ∈ N ∪ {0}, there exists mn ∈ M

such that μ(t) = mn ∀ t ∈ [nτ, (n + 1)τ)
}
,
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and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with domain [0, T ) rather than

[0,∞). Let Mn̄ denote the outer product of M, n̄ times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}n̄−1

k=0∈Mn̄

{
n̄−1∏
k=0

Smk
τ

}
[φ](x) = (S̄τ )

n̄[φ](0),

where the Π notation indicates operator composition, and the superscript in the last
expression indicates repeated application of S̄τ , n̄ times.

We will approximate Ṽ by solving V = S̄τ [V ] via its dual problem a = B̂τ [a] for
small τ . Consequently, we will need to show that there exists a solution to V = S̄τ [V ],
that the solution is unique, and that it can be found by solving the dual problem. We
begin with existence.

Theorem 4.2. Let

V (x)
.
= lim

N→∞
¯̄S
τ

Nτ [0](x)(45)

for all x ∈ R
n, where 0 here represents the zero-function. Then, V satisfies

V = S̄τ [V ], V (0) = 0.(46)

Further, 0 ≤ V m ≤ V ≤ Ṽ for all m ∈ M, and consequently, V ∈ Gδ.
Proof. Note that

V m(x)= lim
N→∞

Sm
Nτ [0](x) ≤ lim sup

N→∞
¯̄S
τ

Nτ [0]

≤ lim
N→∞

S̃Nτ [0](x) = Ṽ (x) ∀x ∈ R
n.(47)

Also,

¯̄S
τ

(N+1)τ [0](x)= ¯̄S
τ

Nτ [S̄τ [0](·)](x)(48)

= sup
ŵ∈W

sup
μ̂∈DNτ

∫ Nτ

0

lμ̂t(ξt) −
γ2

2
|ŵt|2 dt

+ sup
w∈W

max
m∈M

∫ (N+1)τ

Nτ

lm(ξt) −
γ2

2
|wt|2 dt,

which by taking w ≡ 0

≥ sup
ŵ∈W

sup
μ̂∈DNτ

∫ Nτ

0

lμ̂t(ξt) −
γ2

2
|ŵt|2 dt = ¯̄S

τ

Nτ [0](x),(49)

which implies that ¯̄S
τ

Nτ [0](x) is a monotonically increasing function of N . Since it is
also bounded from above (by (47)), one finds

V m(x) ≤ lim
N→∞

¯̄S
τ

Nτ [0](x) ≤ Ṽ (x) ∀x ∈ R
n,(50)

which also justifies the use of the limit definition of V in the statement of the theorem.
In particular, one has 0 ≤ V m ≤ V ≤ Ṽ , and so V ∈ Gδ.

Fix any x ∈ R
n, and suppose there exists δ > 0 such that

V (x) ≤ S̄τ [V ](x) − δ.(51)
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However, by the definition of V , given any y ∈ R
n, there exists Nδ < ∞ such that for

all N ≥ Nδ,

V (y) ≤ ¯̄S
τ

Nδτ
[0](y) + δ/4.(52)

Combining (51) and (52), one finds after a small bit of work that

V (x)≤ S̄τ

[ ¯̄Sτ

Nδτ
[0] + δ/2

]
(x) − δ,

which, using the max-plus linearity of S̄τ ,

= ¯̄S
τ

(Nδ+1)τ [0](x) − δ/2

for all N ≥ Nδ. Consequently, V (x) ≤ limN→∞
¯̄S
τ

Nτ [0](x) − δ/2, which is a contra-
diction. Therefore, V (x) ≥ S̄τ [V ](x) for all x ∈ R

n. The reverse inequality follows in
a similar way. Specifically, fix x ∈ R

n and suppose there exists δ > 0 such that

V (x) ≥ S̄τ [V ](x) + δ.(53)

By the monotonicity of ¯̄S
τ

Nτ with respect to N , for any N < ∞,

V (x) ≥ ¯̄S
τ

Nτ [0](x) ∀x ∈ R
n.

By the monotonicity of S̄τ with respect to its argument (i.e., φ1(x) ≤ φ2(x) for all x
implying S̄τ [φ1](x) ≤ S̄τ [φ2](x) for all x), this implies

S̄τ [V ] ≥ ¯̄S
τ

(N+1)τ [0] ∀x ∈ R
n.(54)

Combining (53) and (54) yields

V (x) ≥ ¯̄S
τ

(N+1)τ [0](x) + δ.

Letting N → ∞ yields a contradiction, and so V ≤ S̄τ [V ].
The following result is immediate.
Theorem 4.3.

V (x) = sup
μ∈Dτ

∞

sup
w∈W

sup
T∈[0,∞)

[∫ T

0

lμt(ξt) −
γ2

2
|wt|2 dt

]
,

where ξt satisfies (12).
Theorem 4.4. V (x) − 1

2cV |x|2 is strictly convex.
Proof. The proof is identical to the proof of Theorem 2.6 with the exception that

με is chosen from Dτ
∞ instead of D∞.

Remark 4.5. From the choice of β in section 3, this immediately implies that
V ∈ Sβ , and of course since C + β < 0, that V ∈ S−C .

We now address the uniqueness issue. Similar techniques to those used for V m

and Ṽ will prove uniqueness for (46) within Gδ. A slightly weaker type of result under
weaker assumptions will be obtained first; this result is similar in form to that of [40].

Suppose V
′ �= V , V

′ ∈ Gδ satisfies (46). This implies that for all x ∈ R
n and all

N < ∞
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V
′
(x)= ¯̄S

τ

Nτ [V
′
](x)

= sup
w∈W

sup
μ∈Dτ

∞

{∫ Nτ

0

lμt(ξt) −
γ2

2
|wt|2 dt + V

′
(ξNτ )

}
,

which, by taking w0 ≡ 0 (with corresponding trajectory denoted by ξ0),

≥ V
′
(ξ0

Nτ ).(55)

However, by (12), one has ξ̇0 = Aμtξ0, and so |ξ0
t | ≤ e−cAt|x| for all t ≥ 0, which

implies that |ξ0
Nτ | → 0 as N → ∞. Consequently

lim
N→∞

V
′
(ξ0

Nτ ) = 0.(56)

Combining (55) and (56), one has

V
′
(x) ≥ 0 ∀x ∈ R

n.(57)

Also, by (46)

V
′
(x)= lim

N→∞
¯̄S
τ

Nτ [V
′
](x) ∀x ∈ R

n.

By (57) and the monotonicity of ¯̄S
τ

Nτ with respect to its argument, this is
(58)

≥ lim
N→∞

¯̄S
τ

Nτ [0](x) = V (x).

By (57) and (59), one has the uniqueness result analogous to [40], which is as follows.
Theorem 4.6. V is the unique minimal, nonnegative solution to (46).
The stronger uniqueness statement (making use of the quadratic bound on lμt(x))

is as follows. As with V m, Ṽ , the proof is similar to that in [35]. However in this case,
there is a small difference in the proof, and this difference requires another lemma.
Due to this difference in the case of V , we include a sketch of the proof (but with the
new lemma in full) in Appendix A.

Theorem 4.7. V is the unique solution of (46) within the class Gδ for sufficiently

small δ > 0. Further, given any V ∈ Gδ, we have limN→∞
¯̄S
τ

Nτ [V ](x) = V (x) for all
x ∈ R

n (uniformly on compact sets).

Henceforth, we let δ > 0 be sufficiently small such that V m, Ṽ , V ∈ Gδ for all
m ∈ M.

Theorem 4.8. Let V ∈ S−C , and let a be its semiconvex dual. Then, if Bτ (y, ·)�
a(·) ∈ S−

d , V = S̄τ [V ] if and only if a(y) = Bτ (y, ·) � a(·) for all y ∈ R
n.

Proof. By the semiconvex duality,

ψ(x, ·) � a(·)= V (x) = S̄τ [V ](x)(59)

= S̄τ

[
max
z∈Rn

{ψ(·, z) + a(z)}
]
(x),

which, as in the first part of the proof of Theorem 3.11,

=

∫ ⊕

Rn

a(z) ⊗ S̄τ [ψ(·, z)](x) dz,

which, by Lemma 4.1,
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=

∫ ⊕

Rn

a(z) ⊗
∫ ⊕

Rn

ψ(x, y) ⊗ Bτ (y, z) dy dz,

which, as in the latter part of the proof of Theorem 3.11,

=

[∫ ⊕

Rn

Bτ (·, z) ⊗ a(z) dz

]
� ψ(x, ·).(60)

By Lemmas 3.4 and 3.6, this implies

a(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n.

Alternatively, if a(y) = Bτ (y, ·) � a(·) for all y, then

V (x) = ψ(x, ·) � a(·) =

[∫ ⊕

Rn

Bτ (·, z) ⊗ a(z) dz

]
� ψ(x, ·) ∀x ∈ R

n,

which by (59)–(60) yields V = S̄τ [V ].
Corollary 4.9. Value function V given by (45) is in Sβ ⊂ S−C and has repre-

sentation V (x) = ψ(x, ·) � a(·), where a is the unique solution in S−
d ∩ G−

δ of

a(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n,(61)

or equivalently, a = B̂τ [a].
Proof. The fact that V ∈ Sβ follows from Theorem 4.4 and the choice of β. By

Theorem 4.7, V ∈ Gδ and is the unique solution of (46) in Gδ.
By Theorem 4.8, its semiconvex dual, a, satisfies (61), and by Lemma 3.4, a ∈ S−

d

for some d ∈ Dn such that C + d < 0. Suppose there is â ∈ S−
d ∩G−

δ for some d̂ ∈ Dn

such that C + d̂ < 0, and that â satisfies (61). Then, by Theorem 4.8 and Remark

3.5, its dual, V̂ , is in Gδ and V̂ = S̄τ [V̂ ], V̂ (0) = 0. By Theorem 4.7 then, V̂ = V . By
Lemma 3.6, this implies that â = a.

The following result on propagation of the semiconvex dual will also come in
handy.

Proposition 4.10. Let φ ∈ Sβ ⊂ S−C with the semiconvex dual denoted by a.
Define φ1 = S̄τ [φ]. Then φ1 ∈ S−(C+ηIτ), and

φ1(x) = ψ(x, ·) � a1(·),
where

a1(y) = Bτ (y, ·) � a(·) ∀ y ∈ R
n.

Proof. The proof is similar to the proof of Proposition 3.10, and consequently
some details are not included. To begin, as in the proof of Proposition 3.10, we note
that the proof that φ1 ∈ S−(C+ηIτ) is nearly identical to the proof of Theorem 3.7. In
particular, fix any x, ν ∈ R

n with |ν| = 1 and any δ > 0. Let m ∈ M be optimal, and

wε be ε-optimal, for S̄τ [φ](x). That is, suppose Iφ
(x, τ, wε,m) ≥ S̄τ [φ](x)− ε, where

Iφ
(x, τ, w,m)

.
=

∫ τ

0

lm(ξt) −
γ2

2
|wt|2 dt + φ(ξτ )

and ξ satisfies (1). Then

S̄τ [φ](x− δν) − 2S̄τ [φ](x) + S̄τ [φ](x + δν)

≥ Iφ
(x− δν, τ, wε,m) − 2Iφ

(x, τ, wε,m) + Iφ
(x + δν, τ, wε,m) − 2ε.
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Let ξδ, ξ0, ξ−δ satisfy the dynamics of (1) with inputs wε and m, and with initial
conditions ξδ0 = x+ δν, ξ0

0 = x, and ξ−δ
0 = x− δν, respectively. Letting Δ+

t
.
= ξδt − ξ0

t ,
one finds

φ(ξδτ ) − 2φ(ξ0
τ ) + φ(ξ−δ

τ ) ≥ (Δ+
τ )TCΔ+

τ

because φ ∈ S−C . One then continues as in the proof of Theorem 3.7, but with Dm

and Am replacing Dμε
t and Aμε

t , respectively. In particular, one has Λε
t = exp{Amt}.

More important, one may use the same values of η and τ which were fixed in section 3.
Now we turn to the second assertion of the proposition. This follows exactly as

in the proof of Proposition 3.10 with two minor exceptions: First, the supremum over
μ ∈ D∞ is replaced by a maximum over m ∈ M. Second, the use of (42) is replaced
by the invocation of (44).

We now show that one may approximate Ṽ , the solution of V = S̃τ [V ], to as
accurate a level as one desires by solving V = S̄τ [V ] for sufficiently small τ . Recall

that if V = S̄τ [V ], then it satisfies V = ¯̄S
τ

Nτ [V ] for all N > 0 (while Ṽ satisfies

V = S̃Nτ [V ]), and so this is essentially equivalent to introducing a discrete-time

μ ∈ Dτ
Nτ approximation to the μ process in S̃Nτ . The result will follow easily from

the following technical lemma. The lemma uses the particular structure of our example
class of problems as given by assumption block (A.m). As the proof of the lemma is
technical and long, it is delayed to Appendix B.

Lemma 4.11. Given ε̂ ∈ (0, 1], T < ∞, there exist T ∈ [T/2, T ] and τ > 0 such
that

S̃T [V m](x) − ¯̄S
τ

T [V m](x) ≤ ε̂(1 + |x|2) ∀x ∈ R
n, ∀m ∈ M.

We now obtain the main approximation result.
Theorem 4.12. Given ε > 0 and R < ∞, there exists τ > 0 such that

Ṽ (x) − ε ≤ V (x) ≤ Ṽ (x) ∀x ∈ BR(0).

Proof. From Theorem 4.2, we have

0 ≤ V m(x) ≤ V (x) ≤ Ṽ (x) ≤ cA(γ − δ)2

c2σ
|x|2 ∀x ∈ R

n.(62)

Also, with T = Nτ for any positive integer N ,

¯̄S
τ

Nτ [φ] ≤ S̃T [φ] ∀φ ∈ Gδ.(63)

Further, by Theorem 2.5, given ε > 0 and R < ∞, there exists T̂ < ∞ such that for
all T > T̂ and all m ∈ M,

S̃T [Ṽ ](x) − ε/2 ≤ S̃T [V m](x) ∀x ∈ BR(0).(64)

By (64) and Lemma 4.11, given ε > 0 and R < ∞, there exists T ∈ [0,∞), τ ∈ [0, T ],
where T = Nτ for some integer N such that for all |x| ≤ R,

Ṽ (x) − ε= S̃T [Ṽ ](x) − ε

≤ S̃T [V m](x) − ε/2

≤ ¯̄S
τ

T [V m](x),

where ε̂(1 + R2) = ε/2, and which, by (62) and the monotonicity of ¯̄S
τ

T [·],
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≤ ¯̄S
τ

T [V ](x),

which, by (63),

≤ S̃T [V ](x),

which, by the monotonicity of S̃T [·],

≤ S̃T [Ṽ ](x) = Ṽ (x).

Noting (from Theorem 4.7) that V = ¯̄S
τ

T [V ] completes the proof.
Remark 4.13. For this class of systems (defined by assumption block (A.m)), we

expect this result could be sharpened to

Ṽ (x) ≤ −ε̂(1 + |x|2) ≤ V (x) ≤ Ṽ (x) ∀x ∈ R
n

by sharpening Theorem 2.5. However, this type of result might be valid only for
limited classes of systems, and so we have not pursued it here.

5. The algorithm. We now begin discussion of the actual algorithm.

Let C ∈ IC such that C − cV I < 0, and initialize with V
0
(x)

.
= cV

2 |x|2. From

Theorem 4.2, V = limN→∞
¯̄S
τ

Nτ [V
0
]. Given V

k
, let

V
k+1 .

= S̄τ [V
k
]

so that V
k

= ¯̄S
τ

kτ [V
0
] for all k ≥ 1.

Let ak be the semiconvex dual of V
k

for all k. Since V
0

= cV
2 |x|2, one easily finds

the quadratic a0(·). Note also that by Proposition 4.10,

ak+1 = Bτ (x, ·) � ak(·) = B̂τ [a
k]

for all n ≥ 0.
Recall that

Bτ (x, ·) � ak(·)=
∫ ⊕

Rn

Bτ (x, y) ⊗ ak(y) dy =

∫ ⊕

Rn

⊕
m∈M

Bm
τ (x, y) ⊗ ak(y) dy

=
⊕
m∈M

∫ ⊕

Rn

Bm
τ (x, y) ⊗ ak(y) dy =

⊕
m∈M

[
Bm
τ (x, ·) � ak(·)

]
.(65)

By (65),

a1(x) =
⊕
m∈M

â1
m(x), where(66)

â1
m(x)

.
= Bm

τ (x, ·) � a0(·) ∀m.

By (65) and (66),

a2(x)=
⊕

m2∈M

∫ ⊕

Rn

Bm2
τ (x, y) ⊗

[ ⊕
m1∈M

â1
m1

(y)

]
dy

=
⊕

{m1,m2}∈M×M

∫ ⊕

Rn

Bm2
τ (x, y) ⊗ â1

m1
(y) dy.
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Consequently,

a2(x) =
⊕

{m1,m2}∈M2

â2
{m1,m2}(x), where

â2
{m1,m2}(x)

.
= Bm2

τ (x, ·) � â1
m1

(·) ∀m1,m2(67)

and M2 represents the outer product M×M. Proceeding with this, one finds that
in general,

ak(x) =
⊕

{mi}k
i=1∈Mk

âk{mi}k
i=1

(x), where(68)

âk{mi}k
i=1

(x)
.
= Bmk

τ (x, ·) � âk−1

{mi}k−1
i=1

(·) ∀ {mi}ki=1 ∈ Mk.

Of course one can obtain V
k

from its dual as

V
k
(x)= max

y∈Rn
[ψ(x, y) + ak(y)]

= max
y∈Rn

[
ψ(x, y) + max

{mi}k
i=1∈Mk

âk{mi}k
i=1

(y)

]
= max

{mi}k
i=1∈Mk

{
max
y∈Rn

[ψ(x, y) + âk{mi}k
i=1

(y)]

}
.
= max

{mi}k
i=1∈Mk

V̂ k
{mi}k

i=1
(x),(69)

where

V̂ k
{mi}k

i=1
= max

y∈Rn
[ψ(x, y) + âk{mi}k

i=1
(y)] =

∫ ⊕

Rn

ψ(x, y) ⊗ âk{mi}k
i=1

(y) dy.(70)

The algorithm will consist of the forward propagation of the âk{mi}k
i=1

(according to

(68)) from k = 0 to some termination step k = N , followed by construction of the

value as V̂ k
{mi}k

i=1
(according to (70)).

It is important to note that the computation of each âk{mi}k
i=1

is analytical. We

will indicate the actual analytical computations.
By the linear/quadratic nature of the m-indexed systems, we find that the Sm

τ [ψ(·, z)]
take the form

Sm
τ [ψ(·, z)](x) = 1

2 (x− Λm
τ z)TPm

τ (x− Λm
τ ) + 1

2z
TRm

τ z,

where the time-dependent n×n matrices Pm
t , Λm

t , and Rm
t satisfy Pm

0 = C, Λm
0 = I,

Rm
0 = 0:

Ṗm = (Am)TPm + PmAm + Dm + PmΣmPm,(71)

Λ̇m =
[
(Pm)−1Dm −Am

]
Λm,

Ṙm = (Λm)TDmΛm.

We note that each of the Pm
τ ,Λm

τ , Rm
τ need only be computed once.

Next, one computes each quadratic function Bm
τ (x, z) (one time only) as follows.

One has

Bm
τ = − max

y∈Rn
{ψ(y, x) − Sm

τ [ψ(·, z)](y)} ,

which, by the above,
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(72)

= min
y∈Rn

{
1
2 (y − x)TC(y − x) + 1

2 (y − Λm
τ z)TPm

τ (y − Λm
τ z) + 1

2z
TRm

τ z
}
.

Recall that by Theorem 3.7, this has a finite minimum (Pm − (C + ηIτ) positive
definite). Taking the minimum in (73), one has

Bm
τ (x, z) = 1

2

[
xTMm

1,1x + xTMm
1,2z + zT (Mm

1,2)
Tx + zTMm

2,2z
]
,

where, with shorthand notation Dτ
.
= (Pm

τ − C)−1,

(73)

Mm
1,1 =

[
CD−1

τ Pm
τ D−1

τ C − (D−1
τ C + I)TC(D−1

τ C + I)
]
,

Mm
1,2 =

[
(D−1

τ C + I)TCD−1
τ Pm

τ − CD−1
τ Pm

τ (D−1
τ Pm

τ − I)
]
Λm
τ ,(74)

Mm
2,2 = (Λm

τ )T
[
(D−1

τ Pm
τ − I)TPm

τ (D−1
τ Pm

τ − I) − Pm
τ D−1

τ CD−1
τ Pm

τ

]
Λm
τ + Rm

τ .(75)

Note that given the Pm
τ ,Λm

τ , Rm
τ , the Bm

τ are quadratic functions with analytical
expressions for their coefficients. Also note that all the matrices in the definition of
Bm
τ may be precomputed.

Now let us write the (quadratic) âk{mi}k
i=1

in the form

âk{mi}k
i=1

(x) = 1
2

(
x− ẑk{mi}k

i=1

)T

Q̂k
{mi}k

i=1

(
x− ẑk{mi}k

i=1

)
+ r̂k{mi}k

i=1
.

Then, for each mk+1,

âk+1

{mi}k+1
i=1

= max
z∈Rn

{
Bmk+1
τ (x, z) + âk{mi}k

i=1
(z)

}
= max

z∈Rn

{
1
2

[
xTMm

1,1x + xTMm
1,2z + zT (Mm

1,2)
Tx + zTMm

2,2z
]

+ 1
2

(
x− ẑk{mi}k

i=1

)T

Q̂k
{mi}k

i=1

(
x− ẑk{mi}k

i=1

)
+ r̂k{mi}k

i=1

}
= 1

2

(
x− ẑk+1

{mi}k+1
i=1

)T

Q̂k+1

{mi}k+1
i=1

(
x− ẑk+1

{mi}k+1
i=1

)
+ r̂k+1

{mi}k+1
i=1

,(76)

where
(77)

Q̂k+1

{mi}k+1
i=1

= M
mk+1

1,1 −M
mk+1

1,2 D̂
(
M

mk+1

1,2

)T
,

ẑk+1

{mi}k+1
i=1

= −
(
Q̂k+1

{mi}k+1
i=1

)−1

M
mk+1

1,2 Ê,

r̂k+1

{mi}k+1
i=1

= r̂k{mi}k
i=1

+ 1
2 Ê

TMm
2,2ẑ

k
{mi}k

i=1
− 1

2

(
ẑk+1

{mi}k+1
i=1

)T

Q̂k+1

{mi}k+1
i=1

ẑk+1

{mi}k+1
i=1

,

D̂=
(
M

mk+1

2,2 + Q̂k
{mi}k

i=1

)−1

,

Ê= D̂Q̂k
{mi}k

i=1
ẑk{mi}k

i=1
.

Thus we have the analytical expression for the propagation of each (quadratic) âk{mi}k
i=1

function. Specifically, we see that the propagation of each âk{mi}k
i=1

amounts to a set

of matrix multiplications (and an inverse). Note that for the purely quadratic con-
stituent Hamiltonians considered here (without terms that are linear or constant in
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the state and gradient variables), one will have ẑk{mi}k
i=1

= 0 and r̂k{mi}k
i=1

= 0, and so

computation of these terms is not necessary (unless one adds linear and/or constant
terms).

At each step k, the semiconvex dual ak of V
k

is represented as the finite set of
functions

Âk
.
=

{
âk{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
,

where this is equivalently represented as the set of triples

Q̂k
.
=

{(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
.

At any desired stopping time, one can recover a representation of V
k

as

V̂k
.
=

{
V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
,

where these V̂ k
{mi}k

i=1
are also quadratics. In fact, recall

V
k
(x)= max

z∈Rn
[ak(z) + ψ(x, z)]

= max
{mi}k

i=1

max
z∈Rn

[
1
2 (z − ẑk{mi}k

i=1
)T Q̂k

{mi}k
i=1

(z − ẑk{mi}k
i=1

) + r̂k{mi}k
i=1

+ c
2 |x− z|2

]
.
= max

{mi}k
i=1

1
2 (x− x̂k

{mi}k
i=1

)T P̂ k
{mi}k

i=1
(x− x̂k

{mi}k
i=1

) + ρ̂k{mi}k
i=1

.
=

⊕
{mi}k

i=1

V̂ k
{mi}k

i=1
(x),

where with C
.
= cI,

(78)

P̂ k
{mi}k

i=1
= CF̂ Q̂k

{mi}k
i=1

F̂C + (F̂C − I)TC(F̂C − I),

x̂k
{mi}k

i=1
= −

(
P̂ k
{mi}k

i=1

)−1 [
CF̂ Q̂k

{mi}k
i=1

Ĝ + (F̂C − I)TCF̂ Q̂k
{mi}k

i=1

]
ẑk{mi}k

i=1
,

ρ̂k{mi}k
i=1

= r̂k{mi}k
i=1

+ 1
2

(̂
zk{mi}k

i=1

)T [
ĜT Q̂k

{mi}k
i=1

Ĝ + Q̂k
{mi}k

i=1
F̂CF̂ Q̂k

{mi}k
i=1

]
ẑk{mi}k

i=1
,

F̂
.
= (Q̂k

{mi}k
i=1

+ C)−1,

and
Ĝ

.
= (F̂ Q̂k

{mi}k
i=1

− I).

Thus, V
k

has the representation as the set of triples

Pk
.
=

{(
P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k{mi}k
i=1

)
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
.(79)

We note that the triples which comprise Pk are obtained from the triples(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
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by matrix multiplications and an inverse. The transference from triples(
Q̂k

{mi}k
i=1

, ẑk{mi}k
i=1

, r̂k{mi}k
i=1

)
to triples (P̂ k

{mi}k
i=1

, x̂k
{mi}k

i=1
, ρ̂k{mi}k

i=1
) need only be done once, which is at the termi-

nation of the algorithm propagation. Again, in the purely quadratic class of problems
addressed here, and with the pure quadratic initialization, the x̂k

{mi}k
i=1

and ρ̂k{mi}k
i=1

terms will be zero. We note that (79) is our approximate solution of the original
control problem/HJB PDE.

The errors are due to our approximation of Ṽ by V (see Theorem 4.12 and Remark

4.13) and to the approximation of V by the prelimit V
N

for stopping time k = N .

Neither of these errors is related to the space dimension. The errors in |Ṽ − V | are

dependent on the step size τ . The errors in |V N − V | = | ¯̄Sτ

Nτ [0] − V | are due to

premature termination in the limit V = limN→∞
¯̄S
τ

Nτ [0]. The computation of each

triple (P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k{mi}k
i=1

) grows as the cube of the space dimension (due to

the matrix operations). Thus one avoids the curse of dimensionality. Of course if one

then chooses to compute V
N

(x) for all x on some grid over, say, a rectangular region
in R

n, then by definition one has exponential growth in this computation as the space

dimension increases. We stress that one does not need to compute V
N � Ṽ at each

such point.
However, the curse of dimensionality is replaced by another type of rapid compu-

tational cost growth. Here, we refer to this as the curse of complexity. If #M = 1,
then all the computations of our algorithm (excepting the solution of the Riccati
equation) are unnecessary, and we informally refer to this as complexity one. When

there are M = #M such quadratics in the Hamiltonian, H̃, we say it has complexity
M . Note that

#
{
V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
∼ MN .

For large N , this is indeed a large number. (We very briefly discuss means for reducing
this in the next section.) Nevertheless, for small values of M , we obtain a very
rapid solution of such nonlinear HJB PDEs, as will be indicated in the examples to
follow. Further, the computational cost growth in space dimension n is limited to
cubic growth. We emphasize that the existence of an algorithm avoiding the curse of
dimensionality is significant regardless of the practical issues.

6. Practical issues. The bulk of this paper develops an algorithm which avoids
the curse of dimensionality. However, the curse of complexity is also a formidable
barrier. The purpose of the paper is to bring to light the existence of this class
of algorithms. Considering the long development of finite element methods, it is
clear that the development of highly efficient methods from this new class could be a
further substantial achievement. (Nevertheless, some impressive computational times
are indicated in the next section.) In this section, we briefly indicate some practical
heuristics that have been helpful and outline the actual steps in an implementation
of the basic algorithm.

6.1. Pruning. The number of quadratics in Qk grows exponentially in k. How-
ever, in practice (for the cases we have tried) we have found that relatively few of

these actually contribute to V
k
. Thus it would be very useful to prune the set.
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Note that if

âk{m̂i}k
i=1

(x) ≤
⊕

{mi}k
i=1 	={m̂i}k

i=1

âk{mi}k
i=1

(x) ∀x ∈ R
n,(80)

then

∫ ⊕

Rn

Bτ (x, z) ⊗ ak(z) dz ≤
∫ ⊕

Rn

Bτ (x, z) ⊗

⎡⎣ ⊕
{mi}k

i=1 	={m̂i}k
i=1

âk{mi}k
i=1

(z)

⎤⎦ dz.

Consequently âk{m̂i}k
i=1

will play no role whatsoever in the computation of V
k
. Further,

it is easy to show that the progeny of âk{m̂i}k
i=1

(i.e., those âk+j

{mi}k+j
i=1

for which {mi}ki=1 =

{m̂i}ki=1) never contribute either. Thus, one may prune such âk{m̂i}k
i=1

without any

loss of accuracy. This shrinks not only the current Qk, but also the growth of the
future Qk+j .

In the examples to follow, we pruned âk{m̂i}k
i=1

if there existed a single sequence

{m̃i}ki=1 such that âk{m̂i}k
i=1

(x) ≤ âk{m̃i}k
i=1

(x) for all x. This significantly reduced

the growth in the size of Qk. However, it clearly failed to prune anywhere near the
number of elements that could be pruned according to condition (80), and thus much
greater computational reduction might be possible. This would require an ability
to determine when a quadratic was dominated by the maximum of a set of other
quadratic functions.

Also in the examples to follow, an additional heuristic pruning technique was
applied for a number of iterations to delay hitting the curse of complexity growth
rate. A function âk{mi}k

i=1
was pruned if it did not dominate at least one of the corners

of the unit cube. Specifically, let C = {xj} be the corners of the unit cube. The set
of functions was pruned down to a subset of L ≤ 2n functions, {âk{m̂l

i}k
i=1

| l ≤ L},
such that ak(xj) = maxl≤L âk{m̂l

i}k
i=1

(xj) for all xj ∈ C. This introduces a component

of the calculations which is subject to curse of dimensionality growth, but in the
examples run so far it reduced the computations over what they were needed without
the heuristic. (Also, the curse of dimensionality growth due to this heuristic is 2n

rather than on the order of 200n, as in the discussion of other methods in section 1.)

6.2. Initialization. It is also easy to see that one may initialize with an arbitrary
quadratic function less than an ak(x) rather than with a0 ≡ 0. Significant savings
were obtained by initializing with a set of M = #M quadratics, {am(x)} where the
am were the convex duals of the V m (which were each obtained by the solution of the
corresponding Riccati equation). With a0(z)

.
=

⊕
m∈M am(z), one starts much closer

to the final solution, and so the number of steps where one is encountering the curse
of complexity is greatly reduced.

6.3. Pseudocode for the algorithm. In this short section, we briefly indicate
the actual steps that one would code in an instantiation of the algorithm.

1. Choose a time-step size, τ , and number of steps, K. (We do not address error
analysis and stopping-time criteria in this paper.)

2. For each m ∈ M, compute Pm
τ from (71). Next, for each m ∈ M, compute

Mm
1,1, M

m
1,2, and Mm

2,2 from (73), (74), and (75), respectively. These are used
in each iteration update below.
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3. Initialize the iteration. One may initialize with a0(x)
.
= 0, which is Q̂0 = {Q̂0

1}
with Q̂0

1 = 0 (the n × n matrix of zeros). Note that in this pseudocode,

we will index the Q̂k by a generic subscript rather than by the sequences
{mi}ki=1, as this is more convenient in software. Although this is a simple
initialization, the computational time is hugely improved through the use of
the initialization described in section 6.2. In this latter case, we first compute
(approximately) the Pm

∞
.
= limt→∞ Pm

t from (71). The initialization is then

Q̂0 = {Q̂0
j}Mj=1, where each Q̂0

j is obtained from the corresponding P j
∞, by

the dual operation, and in particular is given by

Q̂0
j = C(C − P j

∞)−1P j
∞(C − P j

∞)−1C − P j
∞(C − P j

∞)−1C(C − P j
∞)−1P j

∞.

4. Perform the basic iteration step. That is, given Q̂k = {Q̂k
j }Jk

j=1, compute

Q̂k+1 as follows:
(a) Start with j = 1 and m = 1. Let � = 1.

(b) (iteration-subloop): Obtain Q̂k+1
� from update equation (78), that is,

Q̂k+1
� = Mm

1,1 −Mm
1,2

(
Mm

2,2 + Q̂k
j

)−1 (
Mm

1,2

)T
.

(c) Let � = �+1. If m < M , set m = m+1, and go to step 4(b). If m = M
and j < Jk, set m = 1, j = j + 1, and go to step 4(b). If m = M and
j = Jk, set JK+1 = �− 1; we are done with the iteration step.

5. Repeat step 4 K times.
6. Recover the solution approximation from the dual matrices. That is, given

Q̂K = {Q̂K
j }JK

j=1, compute Pk = {P̂ k
j }JK

j=1 from (78). The solution approxi-

mation is the pointwise maximum V (x) = maxj≤JK

1
2x

T P̂K
j x.

Remark 6.1. We emphasize that pruning techniques, such as those of section 6.1
are critical to rapid computational rates, but this is still an open area of research, and
we leave instantiation of such to the intrepid researcher.

7. Examples. A number of examples have so far been tested. In these tests,
the computational speeds were very great. This is due to the fact that M = #M
was small. The algorithm as described above was coded in MATLAB. This includes
the very simple pruning technique and initialization discussed in the previous section.
The quoted computational times were obtained with a standard 2001 PC. The times
correspond to the times to compute VN or, equivalently, PN . The plots below require
one to compute the value function and/or gradients pointwise on planes in the state
space. These plotting computations are not included in the quoted computational
times.

We will briefly indicate the results of three similar examples with state-space
dimensions of 2, 3, and 4. The number of constituent linear/quadratic Hamiltonians
for each of them is 3. The structures of the dynamics are similar for each of them so
as to focus on the change in dimension.

Example 1. The first case has constituent Hamiltonians with the Am given by

A1 =

[
−1.0 0.5
0.1 −1.0

]
, A2 = (A1)T , A3 =

[
−1.0 0.5
0.5 −1.9

]
.

The Dm and Σm are simply

D1 = D2 = D3 =

[
1.5 0.2
0.2 1.5

]
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and

Σ1 = Σ2 = Σ3 =

[
0.27 −0.01
−0.01 0.27

]
.

Figure 1 depicts the value function and first partial derivative (computed by a
simple first-difference on the grid points) over the region [−1, 1] × [−1, 1]. Note the
discontinuity in the first partial along one of the diagonals. Figure 2 depicts the
second partial and a backsubstitution error over the same region. The second partial
also has a discontinuity along the same diagonal as the first. The error plot has been
rotated for better viewing due to the high error along the discontinuity in the gradient.
The backsubstitution error is computed by taking these approximate partials and
substituting them back into the original HJB PDE. Consequently, the depicted errors
contain components due to the approximate gradient dotted with the dynamics, and
the term with the square in the gradient in the Hamiltonian. Perhaps it should be
noted that the solutions of such problems cannot be obtained by patching together the
quadratic functions corresponding to solutions of the corresponding algebraic Riccati
equations. The computations required slightly less than 10 seconds.
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Fig. 1. Value function and first partial (two-dimensional case).
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Fig. 2. Second partial and backsubstitution error (two-dimensional case).
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Fig. 3. Value function and first partial (three-dimensional case).

Example 2. We now consider a case where the Am are given by

A1 =

⎡⎣−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤⎦ , A2 = (A1)T , A3 =

⎡⎣−1.0 0.5 0.0
0.1 −1.0 0.2
0.2 0.0 −1.5

⎤⎦ ,

the Dm are

D1 =

⎡⎣ 1.5 0.2 0.1
0.2 1.5 0.0
0.1 0.0 1.5

⎤⎦ , D2 =

⎡⎣ 1.6 0.2 0.1
0.2 1.6 0.0
0.1 0.0 1.6

⎤⎦ , D3 = D1,

and the Σm are

Σ1 =

⎡⎣ 0.2 −0.01 0.02
−0.01 0.2 0.0
0.02 0.0 0.25

⎤⎦ , Σ2 =

⎡⎣ 0.16 −0.005 0.015
−0.005 0.16 0.0
0.015 0.0 0.2

⎤⎦ , Σ3 = Σ1.

The results of this three-dimensional example appear in Figures 3–5. In this case,
the results have been plotted over the region of the affine plane x3 = 3 given by
x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution error has been scaled by
dividing by |x|2 + 10−5. Note that the scaled backsubstitution errors (away from the
discontinuity in the gradient) grow only slowly or are possibly bounded with increasing
|x|. (Recall that the approximate solution is obtained over the whole space.) Since
the gradient errors are multiplied by the nominal dynamics in one component of
this term (as well as being squared in another), this indicates that the errors in the
gradient itself likely grow only linearly (or nearly linearly) with increasing |x|. The
computations required approximately 13 seconds.

Example 3. The four-dimensional example has constituent Hamiltonians with the
Am, Dm, and Σm given by

A1 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.5 0.1
0.0 −0.1 0.0 −1.5

⎤⎥⎦ , A2 = (A1)T ,
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Fig. 4. Second and third partials (three-dimensional case).

−10
−5

0
5

10 −10

−5

0

5

10
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Fig. 5. Scaled backsubstitution error (three-dimensional case).

A3 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.6 −0.1
0.0 −0.05 0.1 −1.5

⎤⎥⎦ ,

D1 = D2 = D3 =

⎡⎢⎣
1.5 0.2 0.1 0.0
0.2 1.5 0.0 0.1
0.1 0.0 1.5 0.0
0.0 0.1 0.0 1.5

⎤⎥⎦ ,

and

Σ1 = Σ2 = Σ3 =

⎡⎢⎣
0.2 −0.01 0.02 0.01

−0.01 0.2 0.0 0.0
0.02 0.0 0.25 0.0
0.01 0.0 0.0 0.25

⎤⎥⎦ .

The results for this example appear in Figures 6–8. In this case, the results
have been plotted over the region of the affine plane x3 = 3, x4 = −0.5 given by
x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution error has again been scaled
by dividing by |x|2 + 10−5. The computations required approximately 40 seconds.
We remark that one cannot change dimension independent of dynamics (except in
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the trivial case, where each component of the system has exactly the same dynamics
of the other components with no interdependence), and so one cannot directly compare
the computation times of these three examples. However, it is easy to see that the
computation time increases are on the order of square to cubic in space dimension,
rather than being subject to curse-of-dimensionality-type growth.
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Fig. 6. Value function and first partial (four-dimensional case).

−10

−5

0

5

10

−10

−5

0

5

10
−20

−15

−10

−5

0

5

10

15

20

−10

−5

0

5

10

−10

−5

0

5

10
−2

−1

0

1

2

3

4

5

Fig. 7. Second and third partials (four-dimensional case).

8. Future directions.

Pruning. In order to make these methods more practical, algorithms need to be
developed for determining when a quadratic function is dominated by the function,
which is the pointwise maximum of a set of quadratic functions. This has the potential
for greatly reducing the effects of the curse of complexity, and consequently greatly
decreasing computational times.

Constant/linear terms. An instantiation of this class of methods was devel-

oped here for a very particular type of Hamiltonian, H̃(x, p) = maxm{Hm(x, p)},
where the Hm corresponded to a very specific type of linear/quadratic problem. One



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1270 WILLIAM M. McENEANEY

−10

−5

0

5

10

−10

−5

0

5

10
−1.5

−1

−0.5

0

0.5

−10
−5

0
5

10 −10
−5

0
5

10
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Fig. 8. Fourth partial and scaled backsubstitution error (four-dimensional case).

would like to generalize the Hm to, say,

Hm(x, p) = 1
2x

TDmx + 1
2p

TΣmp + (Amx)T p + (lm1 )Tx + (lm2 )T p + αm.

Clearly certain conditions on H̃(x, p) = maxm{Hm(x, p)} would be necessary. It is
not obvious that these conditions would need to apply to each of the constituent Hm

individually. In the work here, the Hm corresponded to linear/quadratic problems
with maximizing controllers/disturbances. It is not clear that the constituent lin-
ear/quadratic problems need to be constricted in this way either. For instance, could
some or all of the Hm correspond to, say, game problems?

Convergence/error analysis. Only convergence of the approximation to the
solution was obtained here. Estimates of error size and convergence rate need to be
determined. For instance, it was hypothesized (and observed in the examples) that
one obtains the solution over the whole state space with linear growth rate in the
errors in the gradient. Is this true in any generality?

Nonergodic problem. The algorithm was developed for an infinite time-horizon
problem, where the dynamics were stable to the origin. One expects the approach
would also be applicable to discounted cost problems and exit problems. One would
also expect that a similar theory could be developed for finite time-horizon problems
such as robust filtering. Max-plus methods have also been discussed for problems
corresponding to variational inequalities [30]. The analysis and algorithm necessary
for a variational inequality would be of interest.

Other nonlinearities. This work concentrated only on the case of a nonlinearity
due to taking the maximum of a set of Hamiltonians for linear/quadratic problems.
An obvious question is how well this approach might work for other classes of nonlin-
earities. What classes of nonlinear HJB PDEs could be best approximated by maxima
over reasonably small numbers of linear/quadratic HJB PDEs? Perhaps a single non-
linearity in only one variable (possibly appearing in multiple places) would be the
most tractable?
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Appendix A. Sketch of proof of Theorem 4.7. Fix δ > 0 (used in the

definition of Gδ). Suppose V
′ ∈ Gδ satisfies (46). Then,

V
′
(x)= ¯̄S

τ

Nτ [V
′
](x)

= sup
w∈W

sup
μ∈Dτ

∞

{∫ Nτ

0

lμt(ξt) −
γ2

2
|wt|2 dt + V

′
(ξNτ )

}
∀x ∈ R

n,

where ξ satisfies (12). Fix x ∈ R
n, and let με ∈ Dτ

∞, wε ∈ W be ε-optimal , i.e.,

V
′
(x) ≤

∫ Nτ

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V
′
(ξεNτ ) + ε,

where ξε satisfies (12) with inputs με, wε.
Following the same steps as in [35], one obtains the same lemmas.

Lemma A.1. For any N < ∞, ‖wε‖2
L2(0,Nτ) ≤ ε

δ + 1
δ

[
cAγ2

c2σ
e−cANτ + cD

cA

]
|x|2.

Lemma A.2. For any N < ∞,∫ Nτ

0

|ξεt |2 dt ≤
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2.

Lemma A.3. If wε, με are ε-optimal over [0, Nτ), then they are also ε-optimal
over [0, nτ) for all n ≤ N , i.e.,∫ nτ

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V
′
(ξεnτ ) ≥ V

′
(x) − ε.

The independence of the above bounds with respect to N is important. Specifi-
cally, since there is a finite bound on the energy (the bound on wε) coming into the
trajectories, roughly speaking the ξε “tend” toward the origin.

Now we need a lemma which will replace equation (20) in [35].
Lemma A.4. For any N < ∞,

N∑
n=1

|ξεnτ |2 ≤ 1

1 − e−cAτ

[
|x|2 +

(
cσ
c2A

)
‖wε‖2

L2(0,Nτ)

]
.

Proof. Note that d
dt |ξε|2 ≤ −cA|ξε| + d̂|wε|2 with d̂ = c2σ/cA. Solving this on

intervals of the form [nτ, (n + 1)τ), one finds

|ξετ |2 ≤ |x|2e−cAτ + d̂‖wε‖2
L2(0,τ),

|ξε2τ |2 ≤ |ξετ |2e−cAτ + d̂‖wε‖2
L2(τ,2τ),

and so on. Continuing this process, and combining the inequalities, yields

N∑
n=1

|ξεnτ |2 ≤
(

N∑
n=1

e−ncAτ

)
|x|2 + d̂

N∑
n=1

⎡⎣⎛⎝N−n∑
j=0

e−jcAτ

⎞⎠ ‖wε‖2
L2((n−1)τ,nτ)

⎤⎦ .

Using the standard geometric series limit yields the result.
Combining Lemmas A.2 and A.4, one obtains a bound on

∑N
n=1 |ξεnτ |2 which is

independent of N . Consequently, at least some of the |ξεnτ | can be guaranteed to
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be arbitrarily small for large N . The remainder of the proof (of Theorem 4.7) then
follows as in equations (24)–(28) in [35], but with Nτ replacing T , and nτ replacing
τ . This completes the sketch of the proof.

Appendix B. Sketch of proof of Lemma 4.11. Fix δ > 0 (used in the
definition of Gδ). Fix m ∈ M. Fix any T < ∞ and x ∈ R

n. Let ε = (ε̂/2)(1 + |x|2).
Let wε ∈ W, με ∈ D∞ be ε-optimal for S̃T [V m](x), i.e.,

S̃T [V m](x) −
[∫ T

0

lμ
ε
t (ξεt) −

γ2

2
|wε

t |2 dt + V m(ξεT )

]
≤ ε =

ε̂

2
(1 + |x|2),(81)

where ξε satisfies (12) with inputs wε, με.
We will let ξ

ε
satisfy (12) with inputs wε and a με ∈ Dτ

∞ (where τ has yet to be
chosen). Solving (12), one has

ξεt = exp

[∫ t

0

Aμε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aμε
ρ dρ

]
σμε

rwε
r dr,

ξ
ε

t= exp

[∫ t

0

Aμε
r dr

]
x +

∫ t

0

exp

[∫ t

r

Aμε
ρ dρ

]
σμε

rwε
r dr.

Consequently,

|ξεt − ξ
ε

t | ≤
∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ |x|
+

{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

‖wε‖L2(0,t).(82)

We now simply show that this can be made arbitrarily small by taking τ small. We
will use the boundedness of ‖wε‖ and ‖ξε‖ which are independent of t for this class
of systems [35].

Consider the first term on the right in (82). Note that∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣(83)

=

∣∣∣∣exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ∣∣∣∣1 − exp

[∫ t

0

Aμε
r dr −

∫ t

0

Aμε
r dr

]∣∣∣∣ .
Fix τ > 0. For any subset of R, I, let L(I) be the Lebesgue measure of I. Let

N be the largest integer such that Nτ ≤ t. Given m ∈ M, let

Im = {r ∈ [0, Nτ) |Aμε
r = Am} and λm = L(Im).

Let n0 = 0. For 1 ≤ k < M = #M, let nk be the largest integer such that nkτ ≤
λk + nk−1τ . For m < M , let

με
r = m ∀ t ∈ [nm−1τ, nmτ).

Let με
r = M for all t ∈ [nM−1τ, t) = [nM−1τ,Nτ) ∪ [Nτ, t). With this choice of με,

one finds ∣∣∣∣1 − exp

[∫ t

0

Aμε
r dr −

∫ t

0

Aμε
r dr

]∣∣∣∣ < β1
τ ,(84)
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where β1
τ → 0 as τ → 0 independent of t. We skip the details.

Let y ∈ R
n. Define Ft = exp

[∫ t

0
Aμε

r dr
]
. Then, using assumption block (A.m),

d

dt

[
yTFT

t Fty
]
= yT

[
FT
t Ḟt + ḞT

t Ft

]
y = 2yT

[
FT
t Aμε

tFt

]
y

= 2(Fty)
TAμε

t (Fty) ≤ −2cA|Fty|2 = −2cA
[
yTFT

t Fty
]
.

Solving this ordinary differential inequality, one finds [yTFT
t Fty

]
≤ |y|2e−2cAt. Since

this is true for all y ∈ R
n, we have∣∣∣∣exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ≤ e−cAt ∀ t ≥ 0.(85)

By (83), (84), and (85),∣∣∣∣exp

[∫ t

0

Aμε
r dr

]
− exp

[∫ t

0

Aμε
r dr

]∣∣∣∣ ≤ β1
τe

−cAt ∀ t ≥ 0.(86)

We now turn to the second term on the right-hand side of (82). Note that{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

≤
{

2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]∣∣∣∣2 ∣∣∣σμε
r − σμε

r

∣∣∣2 dr

+2

∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
− exp

[∫ t

r

Aμε
ρ dρ

]∣∣∣∣2 ∣∣∣σμε
r

∣∣∣2 dr

}1/2

,

and proceeding as above,

≤
{

2

∫ t

0

e−2cA(t−r)
∣∣∣σμε

r − σμε
r

∣∣∣2 dr + 2β1
τ

∫ t

0

e−2cA(t−r)
∣∣∣σμε

r

∣∣∣2 dr

}1/2

≤
{

2

[∫ t

0

e−4cA(t−r) dr

]1/2 [∫ t

0

∣∣∣σμε
r − σμε

r

∣∣∣4 dr

]1/2

+ 2β1
τ c

2
σ

∫ t

0

e−2cA(t−r) dr

}1/2

.

Further, there exists β2
τ such that [

∫ t

0
|σμε

r −σμε
r |4 dr]1/2 ≤ β2

τ , where β2
τ → 0 as τ → 0,

and we skip the obvious, but technical, proof. Consequently,{∫ t

0

∣∣∣∣exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r − exp

[∫ t

r

Aμε
ρ dρ

]
σμε

r

∣∣∣∣2 dr

}1/2

≤
{

2β2
τ (4cA)−1/2 + 2β1

τ c
2
σ(2cA)−1

}1/2

≤ β3
τ ,(87)

where β3
τ → 0 as τ → 0 (independent of t).

Combining (82), (86), and (87), one has

|ξεt − ξ
ε

t | ≤ β1
τe

−cAt|x| + β3
τ‖wε‖L2(0,t).(88)

Now, by the system structure given by assumption block (A.m) and by the fact
that the V m are in Gδ, one obtains the following lemmas exactly as in [35]. These are
also analogous to their counterparts in Appendix A.
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Lemma B.1. For any t < ∞, ‖wε‖2
L2(0,t)

≤ ε
δ + 1

δ

[
cAγ2

c2σ
e−cANτ + cD

cA

]
|x|2.

Lemma B.2. For any t < ∞,∫ t

0

|ξεr |2 dt ≤
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2.

Let c1
.
= ε

δ and c2
.
= 1

δ [ cAγ2

c2σ
e−cANτ + cD

cA
]. By Lemma B.1 and (88), for all t < ∞

one has

|ξεt − ξ
ε

t |≤ β1
τe

−cAt|x| + β3
τ (c1 + c2|x|2)1/2,

and by proper choice of β4
τ ,

≤ β4
τ (1 + |x|),(89)

where β4
τ → 0 as τ → 0 (independent of t > 0).

Now,∫ T

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V m(ξεT ) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )

=

∫ T

0

ξεtD
με
t ξεt − ξ

ε

tD
με
t ξ

ε

t dt + (ξεT )TPmξεT − (ξ
ε

T )TPmξ
ε

T .(90)

Note that the integral term on the right-hand side in (90) is∫ T

0

(ξεt )
TDμε

t (ξεt − ξ
ε

t ) + (ξεt )
T
(
Dμε

t −Dμε
t

)
ξ
ε

t + (ξεt − ξ
ε

t )
TDμε

t ξ
ε

t dt

≤ β4
τ (1 + |x|)

∫ T

0

(
|Dμε

t | |ξεt | + |Dμε
t | |ξεt |

)
dt + β5

τ

∫ T

0

|ξεt | |ξ
ε

t | dt

for appropriate β5
τ → 0 as τ → 0, which, after some work,

≤ β6
τ (1 + |x|2)(1 +

√
T )(91)

for an appropriate choice of β6
τ → 0 as τ → 0 (independent of T ).

Similarly, the last two terms on the right-hand side in (90) are

ξεT
TPmξεT − ξ

ε

T

T
Pmξ

ε

T= (ξεT + ξ
ε

T )TPm(ξεT − ξ
ε

T )

≤ |Pm|
[
|ξεT − ξ

ε

T |2 + 2|ξεT | |ξεT − ξ
ε

T |
]
,

which, by (89),

≤ β7
τ (1 + |x|2) + β8

τ |ξεT |(1 + |x|),(92)

where β7
τ , β

8
τ → 0 as τ → 0.

We also need the following lemma which is obtained in [35].
Lemma B.3. Given T < ∞, there exist T ∈ [T/2, T ] and ε-optimal wε ∈ W,

με ∈ D∞ for S̃T [V m] such that

|ξεT |2 ≤ 1

T

{
ε

δ

c2σ
cA

+
c2σ
δ

[(
cD
c2A

+
γ2

c2σ

)
+

1

cA

]
|x|2

}
.
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Combining (92) and Lemma B.3, one finds that there exist c3, c4 < ∞ such that

ξεT
TPmξεT − ξ

ε

T

T
Pmξ

ε

T ≤ β9
τ (1 + |x|2),(93)

where β9
τ → 0 as τ → 0 (independent of T ).

Combining (90), (91), and (93),∫ T

0

lμ
ε
t (ξεt ) −

γ2

2
|wε

t |2 dt + V m(ξεT ) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )

≤ β10
τ (1 + |x|2)(1 +

√
T ),(94)

where β10
τ → 0 as τ → 0 (independent of T ).

Combining (81) and (94), one has

S̃T [V m](x) −
∫ T

0

lμ
ε
t (ξ

ε

t ) −
γ2

2
|wε

t |2 dt + V m(ξ
ε

T )≤ ε

2
(1 + |x|2) + β10

τ (1 + |x|2)(1 +
√
T ),

which, for τ sufficiently small (depending on T now),
≤ ε(1 + |x|2).

This completes the proof of Lemma 4.11.
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Abstract. An optimal feedback control has been obtained for linear-quadratic optimal control
problems with constraints described by differential-algebraic equations (DAEs). For that purpose, a
new implicit Riccati equation (Riccati differential-algebraic system) is provided, and its solvability is
investigated. It is shown that one can do without the strong consistency conditions as used in several
previous papers. Furthermore, the solvability of the resulting closed loop system is considered and
the relations between Riccati equations and Hamiltonian systems are elucidated.
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1. Introduction. Feedback solutions via Riccati differential equations are a
known and proven tool for solving linear-quadratic optimal control problems given
by the cost

(1.1) J(u, x) :=
1

2
〈x(T ), V x(T )〉 +

1

2

∫ T

0

〈[
x(t)
u(t)

]
,

[
W (t) S(t)
S(t)∗ R(t)

] [
x(t)
u(t)

]〉
dt

and the side conditions

x′(t) = C(t)x(t) + D(t)u(t), t ∈ [0, T ],(1.2)

x(0) = z0.(1.3)

The superscript * denotes the transpose.

Let all coefficients be continuous and certain standard conditions be fulfilled (cf.
section 2). In the following, the argument t is dropped almost everywhere, and the
given relations are meant pointwise for all t ∈ [0, T ].

The terminal value problem for the relevant Riccati matrix differential equation
with the symmetric solution Y is (see, e.g., [20] for S = 0)

(1.4) Y ′ = −Y C − C∗Y + (S + Y D)R−1(S∗ + D∗Y ) −W,

(1.5) Y (T ) = V.
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If the explicit ordinary differential equation (ODE) in (1.2) is replaced by a
differential-algebraic equation (DAE)

(1.6) Ex′ = Cx + Du,

with E being a singular constant square matrix, the situation becomes much more
complex, and several different generalizations of the Riccati-ansatz are possible. For
this, quite a lot of references are available (in particular for the case of constant
coefficients); however, we can mention here only part of them. We refer to [5], [18],
and [14] for further sources.

In [5] it was first noted that the modification

(1.7) E∗Y ′E = −E∗Y C − C∗Y E + (S + E∗Y D)R−1(S∗ + D∗Y E) −W,

which is considered to be obvious, leads to unacceptable solvability conditions. Con-
sequently, more specific Riccati approaches that skillfully make use of the inher-
ent structures find favor with [5]. Starting from a singular value decomposition
UEV = diag(Σ, 0) and certain rank conditions, lower dimensional Riccati equations
of the form ΣY ′Σ = . . . are introduced. From the point of view of DAE theory the
rank conditions used in [5] imply that the related Hamilton–Lagrange system is a
regular DAE with tractability index one (cf. [3]).

In [15], [16], [17] (in a more general Hilbert space setting, with S = 0) a different
ansatz was followed with Riccati equations of the form

(1.8) E∗Y ′ = −Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W.

The solutions of the terminal value problem for (1.8) with the condition

(1.9) E∗Y (T ) = V

have the symmetry property E∗Y = Y ∗E. Like (1.7), (1.8) also is primarily a matrix-
DAE; however, (1.8) has much better solvability properties than (1.7). In [15], [16],
a decoupling into characteristic components is not used for the ansatz of the Riccati
equation itself, as was done in [5], but for proving the solvability of the Riccati terminal
value problem (1.8), (1.9).

Kunkel and Mehrmann [14] consider the Riccati DAE

(1.10) (E∗Y E)′ = −E∗Y C − C∗Y E + (S + E∗Y D)R−1(S∗ + D∗Y E) −W,

which generalizes (1.7) to allow for time-dependent coefficients E. However, this
equation is as unsuitable as its time-invariant version (1.7), and the authors have
to admit that, unfortunately, this approach can be used only in very special cases
since, for E(t) singular, the solutions of (1.10) and the Euler–Lagrange equation are
not related via u = −R−1(S + D∗Y E)x, as in the case of nonsingular E(t). The
difficulties with (1.10) are illustrated in [14] by means of a small academic problem.
Below we shall resume this special problem to show that things work well when using
more appropriate Riccati DAE systems.

If, in (1.6), there is no constant matrix E in front of the derivative but a time-
dependent matrix, it makes sense to change to a DAE with a properly formulated
leading term, i.e., instead of (1.6), using

(1.11) A(Bx)′ = Cx + Du,
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with well-matched A and B (cf. [4]). The corresponding initial condition is

(1.12) A(0)B(0)x(0) = z0

with z0 ∈ im(A(0)B(0)). For arguments that state the leading term in this way we
refer to [4], [22]. Notice that, in particular, such equations arise in circuit simulation
via modified nodal analysis (see, e.g., [9], [11]).

Under the assumption that B is continuously differentiable, the terminal problem
for the Riccati equation

(1.13)
(B∗A∗Y )′ = −Y ∗(C −AB′) − (C∗ −B∗′A∗)Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W,

B(T )∗A(T )∗Y (T ) = V,

with the symmetry property B∗A∗Y = Y ∗AB, is proved to be relevant in [12] (in a
more general Hilbert space setting).

The Riccati DAE

(1.14) B∗(A∗Y )′B = −B∗Y ∗C − C∗Y B + (S + B∗Y ∗D)R−1(S∗ + D∗Y B) −W,

with B being just continuous, is investigated in [8]. This equation is, however, also a
sort of generalization of (1.7) and adopts the bad solvability properties of (1.7). Under
the condition that kerB∗ = 0, if there exists a solution Y of (1.14) that satisfies the
terminal condition B(T )∗A(T )∗Y (T )B(T ) = V , then this solution has the symmetry
property A∗Y = Y ∗A, and the ansatz u = −R−1(S∗ + D∗Y B)x actually leads to an
optimal feedback control.

In this paper we work with the Riccati DAE

(1.15) B∗(A∗Y B−)′B = −Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W

and the terminal value condition

(1.16) A(T )∗Y (T )B(T )− = B(T )−∗V B(T )−,

where B is assumed to be just continuous. Here, the solutions meet the symmetry
condition A∗Y B− = B−∗Y ∗A (B− is a special, generalized inverse).

While, e.g., in [5], [8] the Riccati-type DAEs are constructed to solve a linear
boundary value problem serving as an extremal condition for the linear-quadratic
optimal control problem, we justify the Riccati DAE (1.15) by a direct optimality
proof (Theorem 2.5).

Notice that (1.11) is no longer necessarily square but may contain k equations,
while x(t) has m components.

In section 2 it is shown that, for the linear-quadratic optimal control problem
(1.1), (1.11), (1.12), analogously to the classical case (1.1)–(1.5), optimal feedback
controls can be established from the solutions of (1.15), (1.16). The main result in
this respect is Theorem 2.5.

Section 3 investigates the solvability of the Riccati equation (1.15), generalizing
the positive results from [16], [17]. The new solvability statements are provided in
Theorem 3.4.

In section 4 we show that the solvability assumptions from Theorem 3.4 simulta-
neously imply the solvability of the closed loop initial value problems (IVPs).
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In section 5 we work the same example as discussed in [14]. This example was used
in [14] merely to demonstrate drawbacks with (1.10). In the present paper, we use this
task to confirm the better solvability properties of the new Riccati equation (1.15).

Finally, section 6 elucidates the relation between solutions of the Riccati equation
(1.15) and solutions of the corresponding implicit Hamiltonian system.

2. Optimal feedback control. We deal with the quadratic cost functional

J(u, x) :=
1

2
〈x(T ), V x(T )〉

+
1

2

∫ T

0

{〈x(t),W (t)x(t)〉 + 2〈x(t), S(t)u(t)〉 + 〈u(t), R(t)u(t)〉}dt
(2.1)

to be minimized on pairs (u, x) ∈ C × C1
B satisfying the IVP

(2.2) A(t)(B(t)x(t))′ = C(t)x(t) + D(t)u(t), t ∈ [0, T ],

(2.3) A(0)B(0)x(0) = z0.

The coefficients in (2.1), (2.2) are matrices W (t) ∈ L(Rm,Rm), R(t) ∈ L(Rl,Rl),
S(t) ∈ L(Rl,Rm), A(t) ∈ L(Rn,Rk), B(t) ∈ L(Rm,Rn), C(t) ∈ L(Rm,Rk), D(t) ∈
L(Rl,Rk), t ∈ [0, T ], which depend continuously on t, and V ∈ L(Rm,Rm).

The value z0 ∈ im(A(0)B(0)) is given. The leading term of the DAE (2.2) is
assumed to be properly stated in the sense that the decomposition

(2.4) kerA(t) ⊕ imB(t) = R
n, t ∈ [0, T ],

holds true, and both subspaces forming this direct sum have constant dimensions and
are spanned by continuously differentiable on [0, T ] functions (cf. [4]).

We use the symbols C and C1 for continuous and continuously differentiable func-
tion spaces, respectively (functions defined on [0, T ], with values in R

l,Rm,Rk, or R
n

as given by the context), and

C1
B := {x ∈ C : Bx ∈ C1}, C1

A∗ := {ψ ∈ C : A∗ψ ∈ C1}.

The coefficients determining the cost (2.1) satisfy the following standard assump-

tions: W (t), R(t), and V are symmetric, R(t) is positive definite, and
[
W (t) S(t)
S(t)∗ R(t)

]
is

positive semidefinite, t ∈ [0, T ].
A pair (u, x) ∈ C × C1

B satisfying the IVP (2.2), (2.3) is said to be admissible.
Let K(t) ∈ L(Rn,Rn) denote the projector that realizes decomposition (2.4),

kerK(t) = kerA(t), imK(t) = imB(t), t ∈ [0, T ]. Since these subspaces are continu-
ously differentiable, so is the projector function K : [0, T ] → L(Rn,Rn).

In addition to K(t) we introduce Q(t) ∈ L(Rm,Rm), Q∗(t) ∈ L(Rk,Rk), which
are the orthoprojectors onto ker(A(t)B(t)) and ker(B(t)∗A(t)∗) = im(A(t)B(t))⊥,
respectively; furthermore, P (t) := I − Q(t), P∗(t) := I − Q∗(t), t ∈ [0, T ]. The
projector functions Q,P,Q∗, and P∗ are continuous.

It is natural to assume that V = V P (T ) (see, e.g., [13]).
Having the projectors K,P , and P∗, we introduce the generalized inverses B− of

B and A∗− of A∗ by

B−BB− = B−,

A∗−A∗A∗− = A∗−,

BB−B = B,

A∗A∗−A∗ = A∗,

BB− = K,

A∗A∗− = K∗,

B−B = P,

A∗−A∗ = P∗.
(2.5)
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Notice that B− and A∗− are uniquely determined by (2.5) and continuous on [0, T ].
It holds further that

(2.6) B−K = B−, A = AK, A∗ = K∗A∗, B−∗ = K∗B−∗.

Next we consider the terminal value problem

(2.7) B∗(A∗Y B−)′B = −Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W,

(2.8) A(T )∗Y (T )B(T )− = B(T )−∗V B(T )−.

Equation (2.7) generalizes the (well-known for A = I, B = I) Riccati differential
equation and may be understood as a Riccati DAE.

Lemma 2.1. If Y : [0, T ] → L(Rm,Rk) is continuous with a continuously differ-
entiable part A∗Y B−, and if it satisfies the terminal value problem (2.7), (2.8), then
the symmetry relation

(2.9) A∗Y B− = B−∗Y ∗A

becomes true.
Proof. Multiplying (2.7) by B−∗ from the left, and by B− from the right, leads

to

K∗(A∗Y B−)′K = B−∗{−Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W}B− =: A,

where A = A∗, and, further (cf. (2.6)),

(A∗Y B−)′ = A + K∗′
A∗Y B− + A∗Y B−K ′.

It becomes clear that U := A∗Y B− satisfies the ODE U ′ = A + K∗′
U + UK ′ as well

as the condition U(T ) = B(T )−∗V B(T )−. Obviously, U∗ is a further solution of the
same final value problem; i.e., U = U∗ must be true.

Remark 2.2. If Y solves (2.7), (2.8) and if, additionally, the condition A∗Y Q = 0
is given, then it follows that

(2.10) B∗A∗Y = Y ∗AB

must hold. Conversely, relation (2.10) implies A∗Y Q = 0.
Remark 2.3. If one has, instead of the continuous coefficient B considered here,

a B that is continuously differentiable, one can consider

(2.11) (B∗A∗Y )′ = B∗′A∗Y +Y ∗AB′−Y ∗C−C∗Y +(S+Y ∗D)R−1(S∗+D∗Y )−W,

(2.12) B(T )∗A(T )∗Y (T ) = P (T )V P (T ) = V

instead of (2.7), (2.8). All solutions of (2.11), (2.12) have the symmetry property
(2.10). At the same time they are solutions of (2.7), (2.8) and satisfy the additional
condition A∗Y Q = 0. Observe that (2.11), (2.12) coincide with (1.13). At first glance
this shows that, considering the Riccati DAE (2.7), we may expect positive solvability
results as in [12] for (1.13).
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Remark 2.4. Equation (2.11) was first considered in [12]. Special cases (resp.,
slight modifications of (2.11)) were discussed in [19] (where A or B is absent) and in
[15], [16] (where A is absent, B is constant, and S = 0).

Theorem 2.5. Let Y be a solution of the terminal value problem (2.7), (2.8), and
let the condition A∗Y Q = 0 be fulfilled. Let x∗ ∈ C1

B be a solution of the IVP

(2.13) A(Bx)′ = Cx−DR−1(S∗ + D∗Y )x, A(0)B(0)x(0) = z0,

and let

(2.14) u∗ := −R−1(S∗ + D∗Y )x∗.

Then it holds for each admissible pair (u, x) ∈ C × C1
B that

J(u, x) ≥ J(u∗, x∗) =
1

2
〈z0, A(0)∗−B(0)−∗Y (0)∗z0〉;

i.e., (u∗, x∗) is an optimal pair and (2.14) describes the optimal feedback.
Proof. It holds that A∗Y = A∗Y P = A∗Y B−B, and that B−∗Y ∗AB = A∗Y .

Given an admissible pair (u, x), we derive

d

dt
〈Bx,A∗Y x〉 = 〈(Bx)′, A∗Y x〉 + 〈Bx, (A∗Y B−Bx)′〉

= 〈(Bx)′, A∗Y x〉 + 〈Bx, (A∗Y B−)′Bx〉 + 〈Bx,A∗Y B−(Bx)′〉

= 〈(Bx)′, A∗Y x〉 + 〈Bx, (A∗Y B−)′Bx〉 + 〈A∗Y x, (Bx)′〉

= 2〈(Bx)′, A∗Y x〉 + 〈x,B∗(A∗Y B−)′Bx〉

= 2〈A(Bx)′, Y x〉 + 〈x,B∗(A∗Y B−)′Bx〉.

Taking into account (2.2) and (2.7) we obtain the expression

d

dt
〈Bx,A∗Y x〉 = −{〈Wx, x〉 + 2〈Su, x〉 + 〈Ru, u〉}

+ 〈R(u + R−1(S∗x + D∗Y x)), u + R−1(S∗x + D∗Y x)〉.

By this we find

J(u, x) =
1

2
〈x(T ), V x(T )〉 − 1

2

∫ T

0

d

dt
〈B(t)x(t), A(t)∗Y (t)x(t)〉dt + B(u, x),

B(u, x) =
1

2

∫ T

0

〈R(t)(u(t) + R(t)−1(S(t)∗ + D(t)∗Y (t))x(t)), u(t)

+R(t)−1(S(t)∗ + D(t)∗Y (t))x(t)〉dt.

From the positive definiteness of R(t) it follows that B(u, x) ≥ 0.
Notice that B(u∗, x∗) = 0.
Compute further

J(u, x) =
1

2
〈x(T ), V x(T )〉 − 1

2
〈B(T )x(T ), A(T )∗Y (T )x(T )〉

+
1

2
〈B(0)x(0), A(0)∗Y (0)x(0)〉 + B(u, x).
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Using the conditions (2.3) and (2.8) as well as the relations V = V P (T ), A∗Y =
A∗Y B−B, and (2.10) we arrive at

J(u, x) =
1

2
〈z0, A(0)∗−B(0)−∗Y (0)∗z0〉 + B(u, x).

Since the first term is independent of the admissible pair (u, x), we conclude that

J(u, x) ≥ 1

2
〈z0, A(0)∗−B(0)−∗Y (0)∗z0〉 = J(u∗, x∗).

The linear-quadratic optimal control problem (2.1)–(2.3) is closely related to the
boundary value problem (BVP)

(2.15)

[
A 0
0 −B∗

]
d

dt

([
B 0
0 A∗

] [
x
ψ

])
=

[
C −DR−1S∗ −DR−1D∗

W − SR−1S∗ C∗ − SR−1D∗

] [
x
ψ

]
,

(2.16) A(0)B(0)x(0) = z0,

(2.17) B(T )∗A(T )∗ψ(T ) = V x(T ).

If this BVP has a solution pair x∗, ψ∗, then u∗ := −R−1(S∗x∗ +D∗ψ∗) is an optimal
control. This can be realized by slightly modifying Proposition 3.2 in [7] or Lemma 2.2
in [13] . Conversely, if u∗, x∗ is an optimal pair, and if the composed matrix function
[AB − CQ,D] has on [0, T ] full row rank, then there exists an adjoint function ψ∗
such that x∗, ψ∗ solve the BVP (2.15)–(2.17) (see [2]). If A and B are nonsingular,
then the full rank condition is always given. For singular A and B, if the full rank
condition fails to be valid, then it may happen (see [2]) that there is an optimal pair
u∗, x∗, but an adjoint function to solve the BVP does not exist. Assuming the rank
condition to be satisfied, we can use the BVP (2.15)–(2.17) as a sufficient and necessary
optimality condition. For a further discussion of recent developments concerning
extremal conditions for optimization problems involving linear and nonlinear DAEs
we refer to [2].

In the case when A = B = I, system (2.15) is nothing else than the Hamiltonian
ODE associated with the standard linear-quadratic optimal control problem (1.1)–
(1.3). For singular A and B, (2.15) is a DAE with a properly stated leading term.
We adopt the notion Hamiltonian system for this DAE. This is justified, since under
certain conditions (cf. Remark 6.4) the dynamic part inherent in (2.15) actually shows
a Hamiltonian flow (see [3]).

While, e.g., in [5], [8] the Riccati-type DAEs are constructed to solve the Hamil-
tonian system, here a direct optimality proof is applied to Theorem 2.5 and, at the
same time, our new Riccati DAE system is justified. In section 6 we will elucidate
relations between solutions of the Riccati DAE and solutions of the corresponding
Hamiltonian system.

Remark 2.6. In [13] we dealt with linear-quadratic optimal control problems in
a more general Hilbert space setting, where R is not necessarily invertible and the
side conditions are given as (Bx)′ = Cx + Du , B(0)x(0) = z0. Sufficient solvability
conditions are derived by investigating the structure as well as the inherent flow of a
linear (abstract) descriptor system associated with a sufficient extremal condition.
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3. Solvability of the Riccati DAE system. In this section we consider solu-
tions of the system

B∗(A∗Y B−)′B = −Y ∗C − C∗Y + (S + Y ∗D)R−1(S∗ + D∗Y ) −W,(3.1)

P∗Y Q = 0,(3.2)

which satisfy the terminal condition

(3.3) A(T )∗Y (T )B(T )− = Ṽ := B(T )−∗V B(T )−.

Each solution Y that must be continuous with a continuously differentiable part
A∗Y B− can be decomposed as

Y = P∗Y P + Q∗Y P + Q∗Y Q

= A∗−A∗Y B−B + Q∗Y P + Q∗Y Q.

We are going to show that the components

(3.4) U :=A∗Y B−∈C1, V :=Q∗Y P, Z :=Q∗Y Q = Y Q∈C

satisfy a standard Riccati differential equation, a linear equation, and an algebraic
Riccati equation, respectively.

Multiplying (3.1) by Q from the left and right, then by Q from the left and P
from the right, and also by B−∗ from the left and B− from the right, we obtain the
system

0 = −(Y Q)∗CQ−QC∗Y Q + (QS + (Y Q)∗D)R−1(S∗Q + D∗Y Q) −QWQ,(3.5)

0 = −(Y Q)∗CP −QC∗Y P + (QS + (Y Q)∗D)R−1(S∗P + D∗Y P ) −QWP,(3.6)

K∗(A∗Y B−)′K = −(Y B−)∗CB− −B−∗C∗Y B−(3.7)

+ (B−∗S + (Y B−)∗D)R−1(S∗B− + D∗Y B−) −B−∗WB−.

Since multiplication of (3.1) by P from the left and Q from the right yields (3.6)
once more, we know (3.1) to be equivalent to (3.5)–(3.7). Obviously, the component
Z = Q∗Y Q = Y Q satisfies (cf. (3.5)) the algebraic Riccati equation

(3.8) 0 = −Z∗Q∗CQ−QC∗Q∗Z + (QS + Z∗Q∗D)R−1(S∗Q + D∗Q∗Z) −QWQ

and the trivial conditions P∗Z = 0, ZP = 0.
Next, from (3.6) we obtain a linear relation for the components Z,U , and V,

namely,

MQ∗V + MP∗A
∗−UB = −Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P −QWP,

where

(3.9) M := QC∗ − (QS + Z∗Q∗D)R−1D∗, M = QM.

Notice that, if the conditions

(3.10) imMQ∗ = imQ, kerM ∩ imQ∗ = 0
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are fulfilled, we also have kerMQ∗ = kerQ∗; further

(3.11) (MQ∗)
+MQ∗ = Q∗, MQ∗(MQ∗)

+ = Q,

and the resulting linear equation

(3.12) MQ∗V = −Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P −QWP −MP∗A
∗−UB

determines V uniquely, depending on Z and U . Let us then write

(3.13) V = C1 + C2A
∗−UB,

with

C1 := (MQ∗)
+{−Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P −QWP},

C2 := −(MQ∗)
+MP∗.

Notice that (MQ∗)
+ is continuous. It holds that C1 = Q∗C1 = C1P, C2Q∗C2 =

C2P∗.
Finally, we turn to (3.7). Since K is continuously differentiable and UK = U ,

K∗U = U hold true, we may write

K∗(A∗Y B−)′K = K∗U ′K = U ′ −K∗′U − UK ′.

Recall that U is symmetric due to Lemma 2.1. Using (3.13) we derive

Y P = Q∗Y P + P∗Y P = V + A∗−UB

= C1 + C2A
∗−UB + A∗−UB,

that is,

(3.14) Y P = C1 + C3A
∗−UB, C3 := C2 + P∗.

Thus we obtain, from (3.7), the following differential equation for U :

U ′ = K∗′U + U∗K ′ −B−∗WB− −B−∗(C1 + C3A
∗−UB)∗CB−

−B−∗C∗(C1 + C3A
∗−UB)B−

+B−∗(S + (C1 + C3A
∗−UB)∗D)R−1(S∗ + D∗(C1 + C3A

∗−UB))B−,

that is, considering that U is symmetric,

(3.15) U ′ = −W̃ − C̃∗U − UC̃ + UD̃R−1D̃∗U,

where

C̃∗ := −K∗′ + B−∗C∗C3A
∗− −B−∗(S + C∗

1D)R−1D∗C3A
∗−,

D̃∗ := D∗C3A
∗−,

W̃ := B−∗{PWP + PC∗
1CP + PC∗C1P

−P (S + C∗
1D)R−1(S∗ + D∗C1)P}B− = W̃ ∗.
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Lemma 3.1. Let condition (3.10) be given, and additionally,

(3.16) imZ = imQ∗, kerZ = kerQ.

Then, (3.15) represents a standard Riccati differential equation with a symmetric,

positive semidefinite coefficient W̃ .

Proof. Condition (3.16) leads to ZZ+ = Q∗, Z
+Z = Q, and Z+ is continuous.

By construction of C2, C1 it holds that

MQ∗C2 = −QMP∗ = −MP∗,

MP∗A
∗−UB = −MQ∗C2A

∗−UB = −MQ∗(V − C1) = MQ∗C1 −MQ∗V.

Taking this into account, from (3.12) we obtain the relation

(3.17) 0 = −QWP − Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P −MQ∗C1.

Next we turn to

MQ∗ = QC∗Q∗ − (QS + Z∗Q∗D)R−1D∗Q∗.

From (3.8) we derive the expression

(QS + Z∗Q∗D)R−1D∗Q∗ = QWQZ+ + Z∗Q∗CQZ+ + QC∗Q∗

−(QS + Z∗Q∗D)R−1S∗QZ+

and put it into the formula for MQ∗, that is,

MQ∗ = −QWQZ+ − Z∗Q∗CQZ+ + (QS + Z∗Q∗D)R−1S∗QZ+.

By this, (3.17) becomes

0 = −QWP − Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P

+ QWQZ+C1 + Z∗Q∗CQZ+C1 − (QS + Z∗Q∗D)R−1S∗QZ+C1,

and hence, by multiplication from the left by C∗
1Z

+∗,

0 = − C∗
1Z

+∗QWP − C∗
1Q∗CP + C∗

1Z
+∗(QS + Z∗Q∗D)R−1S∗(P −QZ+C1)

+C∗
1Z

+∗QWQZ+C1 + C∗
1Q∗CQZ+C1.

This yields the expressions

C∗
1CP = C∗

1Q∗CP = −C∗
1Z

+∗QWP + C∗
1Q∗CQZ+C1

+C∗
1Z

+∗QWQZ+C1 + C∗
1Z

+∗(QS + Z∗Q∗D)R−1S∗(P −QZ+C1),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEEDBACK SOLUTIONS 1287

and, using properties of C1,

B∗W̃B = PWP + PC∗
1CP + PC∗C1P − P (S + C∗

1D)R−1(S∗ + D∗C1)P

= PWP + C∗
1Q∗CP + PC∗Q∗C1 − (PS + C∗

1D)R−1(S∗P + D∗C1)

= PWP − PSR−1S∗P − PSR−1D∗C1 − C∗
1DR−1S∗P − C∗

1DR−1D∗C1

−C∗
1Z

+∗QWP + C∗
1Q∗CQZ+C1 + C∗

1Z
+∗QWQZ+C1

+C∗
1Z

+∗QSR−1S∗P − C∗
1Z

+∗QSR−1S∗QZ+C1

+C∗
1Q∗DR−1S∗P − C∗

1Q∗DR−1S∗QZ+C1

−PWQZ+C1 + C∗
1Z

+∗QC∗Q∗C1 + C∗
1Z

+∗QWQZ+C1

+PSR−1S∗QZ+C1 − C∗
1Z

+∗QSR−1S∗QZ+C1

+PSR−1D∗Q∗C1 − C∗
1Z

+∗QSR−1D∗Q∗C1

= (P − C∗
1Z

+∗Q)(W − SR−1S∗)(P −QZ+C1) + B,

B := −C∗
1DR−1D∗C1 + C∗

1Q∗CQZ+C1 + C∗
1Z

+∗QWQZ+C1

−C∗
1Q∗DR−1S∗QZ+C1 + C∗

1Z
+∗QC∗Q∗C1

−C∗
1Z

+∗QSR−1S∗QZ+C1 − C∗
1Z

+∗QSR−1D∗Q∗C1.

Taking into account that (cf. (3.8))

C∗
1Z

+∗QWQZ+C1 + C∗
1Q∗CQZ+C1 + C∗

1Z
+∗QC∗Q∗C1

= C∗
1Z

+∗(QS + Z∗Q∗D)R−1(S∗Q + D∗Q∗Z)Z+C1

we find

B := −C∗
1DR−1D∗C1 − C∗

1Q∗DR−1S∗QZ+C1 − C∗
1Z

+∗QSR−1S∗QZ+C1

−C∗
1Z

+∗QSR−1D∗Q∗C1

+C∗
1Z

+∗QSR−1S∗QZ+C1 + C∗
1Z

+∗QSR−1D∗Q∗C1

+C∗
1Q∗DR−1S∗QZ+C1 + C∗

1Q∗DR−1D∗Q∗C1 = 0.

It results that

(3.18) W̃ = B−∗(P − C∗
1Z

+∗Q)(W − SR−1S∗)(P −QZ+C1)B
−.

For t ∈ [0, T ] and all x ∈ R
m it holds that

〈(W (t) − S(t)R(t)−1S(t)∗)x, x〉

=

〈[
W (t) S(t)
S(t)∗ R(t)

] [
x
−R(t)−1S(t)∗x

]
,

[
x
−R(t)−1S(t)∗x

]〉
≥ 0,

i.e., W (t) − S(t)R(t)−1S(t)∗ is positive semidefinite, and so is W̃ (t).
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The following assertion reflects what we have derived.
Theorem 3.2. If Y is a solution of the Riccati-type terminal value problem (3.1),

(3.2), (3.3), and if the conditions (3.10) and (3.16) are fulfilled, then the component
Z = Q∗Y Q is a solution of the algebraic Riccati equation (3.8), U = A∗Y B− is a
solution of the standard Riccati differential equation (3.15), and V = Q∗Y P satisfies
(3.12).

Conversely, considering now the following decoupled system for the unknown
functions Z,U,V to be given (cf. (3.8), (3.2), (3.15), (2.8), (3.12)) as

0 = −Z∗Q∗CQ−QC∗Q∗Z + (QS + Z∗Q∗D)R−1(S∗Q + D∗Q∗Z) −QWQ,(3.19)

P∗Z = 0,(3.20)

ZP = 0,(3.21)

U ′ = −W̃ − C̃∗U − U∗C̃ + U∗D̃R−1D̃∗U,(3.22)

U(T ) = Ṽ := B(T )−∗V B(T )−,(3.23)

MQ∗V = −MP∗A
∗−UB −QWP − Z∗Q∗CP + (QS + Z∗Q∗D)R−1S∗P,(3.24)

we may try to compose a solution Y of the original Riccati system (3.1)–(3.3) from

the solutions Z,U,V. Let us recall that the coefficients C̃, D̃, and M as defined above
depend on Z.

If Z is a solution of the algebraic equation (3.19), then Z + P∗Z̃, where Z̃ is an
arbitrary k ×m matrix function, is also a solution of (3.19). By means of (3.20), the
arbitrary solution part belonging to imP∗ is fixed as zero.

By multiplication of (3.19) from both sides by Q we realize that, if Z solves (3.19),
then ZQ also does. By means of condition (3.21) we pick up solutions with Z = ZQ.
From (3.20), (3.21) we have Z = Q∗ZQ.

Obviously, (3.19) itself is symmetric, but Z is not so necessarily. Notice that Z
has k rows and m columns. If m = k and Q∗ = Q (i.e., kerAB = ker(AB)∗), then Z
can be expected to be symmetric.

What we need is a continuous solution Z that satisfies the conditions

imZ = imQ∗, kerZ = kerQ,(3.25)

imMQ∗ = imQ, kerMQ∗ = kerQ∗,(3.26)

with M = QC∗ − (QS + Z∗Q∗D)R−1D∗.

These requirements ensure that the coefficients W̃, C̃, and D̃ in (3.22) are well

defined and continuous. Additionally, W̃ is symmetric and positive semidefinite. It
turns out that (3.22) is a standard Riccati differential equation, and the solution U
of the terminal value problem (3.22), (3.23) is symmetric, U = U∗.

Lemma 3.3. We are given a continuous solution Z of (3.19)–(3.21) such that the
conditions (3.25), (3.26) are fulfilled. Then, for the unique solution U of the resulting
standard Riccati differential equation (3.22), which satisfies the terminal condition
(3.23), the relations

(3.27) U = U∗, U = UK, U = K∗UK

hold true.
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Proof. Let U be a solution of (3.22), (3.23). It remains to verify that U = K∗UK.

Inspecting the coefficients we find that W̃ (I − K) = 0, D̃ = KD̃, C̃ = −K ′ +

KC̃K must hold. Multiplying (3.22) by (I −K) from the right-hand side, we derive

U ′(I −K) = −C̃∗U(I −K) − U∗(−K ′ + KC̃K)(I −K) + U∗KD̃R−1D̃∗U(I −K),

and hence, denoting U(I−K) =: Ũ , UK =: UK and taking into account that U = U∗,

Ũ ′ − U(I −K)′ = −C̃∗Ũ + UK ′(I −K) + UKD̃R−1D̃∗Ũ ,

i.e.,

Ũ ′ = U(I −K)′ − UK(I −K)′ + (UKD̃R−1D̃∗ − C̃∗)Ũ

= Ũ(I −K)′ + FŨ,

F := UKD̃R−1D̃∗ − C̃∗.

It becomes clear that the function Ũ = U(I −K) is the solution of the homogeneous

linear terminal value problem Ũ ′ = −ŨK ′ + FŨ, Ũ(T ) = 0, but then Ũ vanishes

identically. Ũ = 0 means U = UK; further, U = U∗ = K∗U = K∗UK.
Having the matrix functions U and Z, we compose

(3.28) V := (MQ∗)
+{−MP∗A

∗−UB+(QS+Z∗Q∗D)R−1S∗P −QWP −Z∗Q∗CP}

to satisfy (3.24) and, finally,

(3.29) Y := A∗−UB + Z + V.

Under the assumptions of Lemma 3.3, both V and Y are continuous. It holds that

(3.30) Q∗Y P = Q∗VP = V, Q∗Y Q = Q∗ZQ = Z, A∗Y B− = K∗UK = U.

The component A∗Y B− of Y is continuously differentiable and symmetric. Straight-
forward calculations in the direction opposite to that which we realized provided
system (3.19)–(3.24) will show Y to be a solution of our system (3.1)–(3.3). By this,
the following assertion providing the solution Y for Theorem 2.5 is proved.

Theorem 3.4. Let the algebraic Riccati system (3.19)–(3.21) have a continuous
solution Z that satisfies the conditions (3.25) and (3.26).

Then, the original Riccati DAE system (3.1)–(3.3) has a continuous solution Y
whose component A∗Y B− is continuously differentiableand symmetric. Additionally,
it holds that A∗Y Q = 0.

Remark 3.5. For special solvability assertions concerning algebraic Riccati equa-
tions as well as standard Riccati differential equations, we refer to [1].

Remark 3.6. As far as the practical potential of the new Riccati-type terminal
value problem (3.1)–(3.3) is concerned, we believe that Theorem 3.2 and Lemma 3.1
offer good chances for effective use. The inherent dynamic part within the Riccati
DAE system (3.1), (3.2) is just the standard Riccati matrix differential equation

(3.15) that has a positive semidefinite coefficient W̃ . We expect this strong structural
knowledge to be very helpful in view of applications and further research.

Remark 3.7. What concerns the numerical treatment of the terminal value prob-
lem (3.1)–(3.3) we recall that, in this work, is that the weight R is positive definite.
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If R becomes singular, additional difficulties will arise. Further, we stress once more
that the dynamic part contained in the Riccati DAE system (3.1), (3.2) is the stan-
dard Riccati matrix differential equation (3.15). It seems to be possible to figure out
so-called numerically qualified versions (see, e.g., [11]) of the Riccati DAE system (in
vectorized form). For this, following along the lines of [8] and [10] (resp., [11]), fur-
ther careful investigations are to be carried out. To speculate upon this might lead to
numerically qualified index-one DAEs. Since for those DAEs, discretization (by stiffly
accurate Runge–Kutta methods and backward differentiation formulas) and theoret-
ical structural decoupling commute, the integration should be as safe as for standard
Riccati ODEs. Due to the index-one property and stability preservation (see [11]), it
seems that difficulties as reported, for instance, in the earlier work [6], will be avoided.
This is a topic of further research.

4. Solvability of the closed loop problem. To confirm the existence of an
optimal control u∗ with the minimal cost J(u∗, x∗) from Theorem 2.5, in addition
to the existence of a Riccati DAE solution Y, one necessarily needs to confirm the
existence of a solution of the resulting closed loop DAE, that is (cf. (2.13)),

(4.1) A(Bx)′ = Cx−DR−1(S∗ + D∗Y )x,

which satisfies the initial condition

(4.2) A(0)B(0)x(0) = z0,

where z0 ∈ im(A(0)B(0)) is fixed but chosen arbitrarily.
Clearly, if A and B are nonsingular, then the IVP (4.1), (4.2) always has a uniquely

determined solution for each arbitrary z0. In the case of singular A and B the situation
is different, and so for time-invariant descriptor systems (see, e.g., [5]) one takes care
to obtain a closed loop system that has no so-called impulsive behavior for any z0.
Within the scope of DAE theory, this means that one should have closed loop systems
(4.1) that are regular with tractability index one.

Below we shall provide conditions ensuring the index-one property for the DAE
(4.1). To this end, we recall some basic information on the tractability index.

The tractability index generalizes the Kronecker index of matrix pencils to time-
varying DAEs. The basic tools in this concept are special decoupling projectors
computed from the coefficients of the given DAE and certain characteristic subspaces.
Any regular linear DAE with a properly stated leading term (see [22]) can be decoupled
into characteristic parts analogously to the decoupling of a regular matrix pencil into
dynamic, nondynamic, and impulsive parts (see [23]). Since no so-called derivative
arrays are used, the concept applies to continuous coefficient equations.

The tractability index is defined for linear DAEs with a time-varying constant-
rank matrix E(t) in front of the derivative (cf. (1.6)), e.g., as in [21], and for DAEs
with a properly stated leading term as in [4], [22]. A brief description is given in
[3, pp. 293–296]. Notice that, for nonlinear DAEs, the tractability index works with
linearizations (see, e.g., [24]).

Consider the DAE

(4.3) A(t)(B(t)x(t))′ = H(t)x(t) + q(t), t ∈ [0, T ],

with k equations and the unknown function x(.) with values in R
m. Let (4.3) have a

properly stated leading term as described in section 2. Introduce G0(t) := A(t)B(t),
the nullspace N0(t) := kerG0(t), and the subspace S0(t) := {z ∈ R

m : H(t)z ∈
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imG0(t)}. Let Q0(t) := Q(t) be the orthoprojector onto kerG0(t). Further, denote
G1(t) := G0(t) − H(t)Q0(t), N1(t) := kerG1(t), and S1(t) := {z ∈ R

m : H(t)z ∈
imG1(t)}, r0 := rankG0(t), ν0(t) := dim(N0(t) ∩ S0(t)). By construction, P0(t) has
constant rank r0, and Q0(t) has rank m− r0.

In this paper, we deal with DAEs up to index two only, and we quote just this
definition from [4]. Note that a regular DAE with tractability index μ also has per-
turbation index μ.

Definition 4.1. Let the subspaces BN1 and BS1 be spanned by continuously
differentiable basis functions. The DAE (4.3) is said to be regular with tractability
index one, if m = k and, for t ∈ [0, T ], it holds that N0(t) ∩ S0(t) = 0. The DAE
is regular with tractability index two if m = k, and if the last intersection has a
constant positive dimension on [0, T ], but the intersection N1(t) ∩ S1(t) is trivial for
all t ∈ [0, T ].

It turns out (see [4]) that a regular DAE (4.3) with tractability index one has the
solutions

x = (I + Q0G
−1
1 H)B−u + Q0G

−1
1 q,

where u = Bx is a solution of the explicit ODE (the so-called inherent explicit ODE)

u′ = K ′u + BG−1
1 HB−u + BG−1

1 q,

the coefficients of which are uniquely determined by the coefficients A,B,H. This
corresponds to the decoupling of the DAE (4.3) into two portions by using the de-
composition I = P0 +Q0 and premultiplication by G−1

1 . The P0-portion leads to the
inherent ODE, which has dimension r0, and the Q0-portion is the algebraic constraint
or nondynamic part with dimension m− r0. With Bx = BB−u = u, we realize that
any IVP for (4.3) with continuous q(.), and the initial condition

A(0)B(0)x(0) = z0, z0 ∈ im(A(0)B(0)),

has exactly one solution belonging to the function space C1
B .

A regular DAE with tractability index two is different. It decouples into three
parts: the inherent explicit ODE that has the lower dimension r0 − ν0, the algebraic
part with dimension m − r0, and an extra part containing a differentiation (an im-
pulsive part in descriptor systems) which is associated with the intersection N0 ∩ S0

and has dimension ν0. By means of the further projectors Q1 onto N1 along S1,
P1 := I − Q1 we describe the initial conditions appropriate for unique solvability as
[4]

A(0)B(0)P1(0)x(0) = z0, z0 ∈ im(A(0)B(0)P1(0)).

IVPs with z0 not belonging to im(A(0)B(0)P1(0)), in particular, those with q = 0 or
smooth q, are no longer solvable in C1

B .
Let us now turn back to the closed loop DAE (4.1).
Theorem 4.2. Let the conditions of Theorem 3.4 be given, m = k, and Y be a

solution of the Riccati DAE system (3.1)–(3.3). Then the DAE (4.1) is regular with
tractability index one, and there is exactly one solution x∗ ∈ C1

B of the IVP (4.1),
(4.2).

Proof. As it is shown, e.g., in [4], the IVP-solvability is a consequence of the
index-one property. Notice that a linear DAE with a properly stated leading term is
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regular with index one if its adjoint equation is, and vice versa (see, e.g., [4]). The
adjoint equation to (4.1) reads

(4.4) −B∗(A∗λ)′ = C∗λ− (Y ∗D + S)R−1D∗λ.

The DAE (4.4) is regular with index one if the subspaces kerB∗A∗ = imQ∗ and
kerQ{C∗ − (Y ∗D + S)R−1D∗} =: S∗ intersect trivially (see, e.g., [4]). Because of
QY ∗ = (Y Q)∗ = (ZQ)∗ = QZ∗ we have S∗ = ker{QC∗ − (QZ∗D + QS)R−1D∗} =
kerM . This means the DAE (4.4) is regular with index one if kerM and imQ∗ intersect
trivially, but this in turn is a consequence of condition (3.26).

Theorem 4.3. Let the conditions of Theorem 3.4 be given, m > k, and Y be a
solution of the Riccati DAE system (3.1)–(3.3). Then there are solutions x∗ ∈ C1

B of
the IVP (4.1), (4.2).

Proof. Compute G1 := AB − {C − DR−1(S∗ + D∗Y )}Q and ask whether
this matrix function has full row rank k. Obviously, this is in fact the case if
Q∗{CQ − DR−1(S∗Q + D∗ZQ)} = Q∗M

∗ = (MQ∗)
∗ has the same range as Q∗,

i.e., if im(MQ∗)
∗ = imQ∗. However, this is ensured by (3.26).

Denote F := C −DR−1(S∗ + D∗Y ).
In [7, Proof of Proposition 3.2], a coordinate transform x = Hx̄ is applied to the

DAE A(Bx)′ = Fx with full row rank G1 = AB − FQ such that the transformed
variable has the structure

x̄ =

(
z
v

)
}k
}m− k

and the transformed IVP is of the form

(4.5) A(B̃z)′ = F̃1z + F̃2v, A(0)B̃(0)z(0) = z0,

while (4.5), with any given v, represents a regular index-one DAE for z.
Remark 4.4. By fixing v in (4.5), the resulting IVP for z is uniquely solvable.

How to choose the mentioned transformation H in practice is discussed in [7].

5. A case study. Here we deal with the very special case of k = m = 2, n = 1,
l = 1, T = 1,

(5.1) J(u, x) =
1

2

∫ 1

0

(αx1(t)
2 + βx2(t)

2 + u(t)2)dt,

where α ≥ 0, β ≥ 0, W =
(
α 0
0 β

)
, R = 1, V = 0, S = 0, and the DAE describing the

side condition is

(5.2)
x′

1(t) = c12(t)x2(t),

0 = c21(t)x1(t) + c22(t)x2(t) + u(t),

i.e.,

A =

[
1
0

]
, B = [1 0], B− =

[
1
0

]
, K = 1, D =

[
0
1

]
, C =

[
0 c12
c21 c22

]
.

The initial condition for (5.2) reads

(5.3) x1(0) = x10.
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We have taken this problem from [14] and will discuss the same three cases as con-
sidered there. In the first two cases, optimal controls exist, and we obtain them via
our Riccati DAE system, while the Riccati DAE system used in [14] has no solutions.
In the third case, if x10 	= 0, there is no optimal control, which is reflected by the fail-
ure of our conditions (3.25) and (3.26). Notice that just in this case the Riccati DAE
in [14] may have solutions. We should like also to point out that this little academic
problem (namely, special cases and infinite-horizon modifications) was already used
earlier in the literature for illustrative purposes (see, e.g., [5]).

Consider the Riccati DAE system (3.1)–(3.3) for the 2 × 2 matrix function Y =[
Y11 Y12

Y21 Y22

]
. We describe (3.1) by means of the following three equations (cf. (3.5), (3.6),

(3.7)), taking into account that we have here Q = Q∗ = [ 0 0
0 1 ] , P = P∗ = [ 1 0

0 0 ], and
dropping the equations “0 = 0,”

0 = −β − (Y12c12 + Y22c22) − (c12Y12 + c22Y22) + Y 2
22,(5.4)

0 = −c21Y22 − (c12Y11 + c22Y21) + Y22Y21,(5.5)

Y ′
11 = −α− c21Y21 − c21Y21 + Y 2

21.(5.6)

The terminal value condition (3.3) is

(5.7) Y11(1) = 0,

and condition (3.2) here means that

(5.8) Y12 = 0.

Applying (5.8), (5.4) simplifies to

(5.9) 0 = −β + (Y22 − c22)
2 − c222.

This algebraic equation has the solutions

(5.10) Y22 = c22 ±
√
β + c222,

and the resulting matrix functions Z = Q∗Y Q and MQ∗ (cf. (3.9)) are

Z =

[
0 0
0 Y22

]
, MQ∗ =

[
0 0
0 c22 − Y22

]
.

In this case the conditions (3.25) and (3.26) are equivalent to the conditions that

(5.11) Y22(t) has no zeros

and

(5.12) Y22(t) − c22(t) = ±
√
β + c22(t)2 has no zeros, respectively.

Case I. c12 and c21 vanish identically, and β > 0.
Here, both Y22 and Y22 − c22 do not have zeros; i.e., the conditions (3.25) and

(3.26) are fulfilled. Equation (5.5) is simply 0 = (Y22−c22)Y21, which leads to Y21 = 0.
Equation (5.6) yields Y ′

11 = −α. Hence, in this case

Y (t) =

[
−α(t− 1) 0

0 c22(t) ±
√
β + c22(t)2

]
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solves the system. The feedback optimal control is given by u = −(c22±
√
β + c222)x2.

The optimal trajectory, i.e., the solution of the IVP (4.1), (4.2) (cf. (2.13)) is x∗(t) ≡(
x10

0

)
the optimal control is u∗ = 0, and the optimal cost is J(u∗, x∗) = 1

2αx
2
10.

Case II. c22 vanishes identically, c12 and c21 have no zeros, and β > 0. Again,
both Y22 = ±

√
β and Y22 − c22 = Y22 have no zeros, and the conditions (3.25) and

(3.26) are fulfilled. This time, (5.5) leads to

(5.13) Y21 = c21 ±
1√
β
c12Y11.

From (5.6) and (5.13) we derive the ODE

Y ′
11 = −α− 2c21

(
c21 ±

1√
β
c12Y11

)
+

(
c21 ±

1√
β
c12Y11

)2

.

For example, for c12 = c21 = 1, x10 = 1, the result is that

Y ′
11 = −(α + 1) +

1√
β
Y 2

11,

Y11(t) = βγ
1 − e2γ(t−1)

1 + e2γ(t−1)
with γ =

√
1 + α

β
.

Then, u = (∓ 1√
β
Y11 − 1)x1 ∓

√
βx2 is an optimal feedback control. The DAE (4.1) is

of the form

x′
1 = x2, 0 =

1√
β
Y11x1 +

√
βx2,

and the optimal pair (u∗, x∗) consists of

u∗(t) = −x∗1(t), x∗1(t) =
eγt + eγ(2−t)

1 + e2γ
, x∗2(t) = − 1

β
Y11(t)x∗1(t).

The minimal cost is

J(u∗, x∗) =
βγ

2
· 1 − e−2γ

1 + e−2γ
.

Case III. β = 0, c22 vanishes identically, and c12, c21 have no zeros. Here, (5.9) implies
Y22 = 0, and hence, Z = 0, MQ∗ = 0, and the conditions (3.25) and (3.26) fail to be
valid. Equation (5.5) simplifies to c12Y11 = 0, and hence Y11 = 0 must be true. By
(5.6) we find Y21 = c21 ±

√
α + c221. Therefore, the matrix function

Y =

[
0 0

c21 ±
√
α + c221 0

]
solves the system (3.1)–(3.3); however, the conditions (3.25) and (3.26) no longer hold.
The resulting closed loop DAE (4.1) is now x′

1 = c12x2, 0 =
√

α + c221x1, and it has
only the trivial solution. Consequently, for x10 	= 0, there is no solution of the IVP
(4.1), (4.2). If x10 = 0, then the trivial pair u∗ = 0, x∗ = 0 is optimal in accordance
with Theorem 2.5. If x10 	= 0, then the linear-quadratic optimal control problem has
no solution at all.
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The Hamiltonian system (2.15) corresponding to the special problem (5.1)–(5.3)
is the following:

(5.14)

x′
1 = c12x2,

0 = c21x1 + c22x2 − ψ2,

−ψ′
1 = αx1 + c21ψ2,

0 = βx2 + c12ψ1 + c22ψ2.

For this system, the initial and terminal conditions

(5.15) x1(0) = x10, ψ1(1) = 0

have to be taken into account. This linear DAE with respect to x, ψ is regular with
index one exactly if β + c222 	= 0. This index-one condition is valid in Cases I and II.

In Case III, the BVP (5.14), (5.15) has no solution for x10 	= 0. For x10 = 0 it
has the trivial solution. It may be checked that this DAE has index two.

Notice that, for the solvability of the corresponding Riccati DAE (1.10) treated
in [14], it is necessary that β = 0 be given; i.e., unfortunately, this Riccati DAE
is no longer solvable in the unproblematic cases I and II. In Case III the terminal
value problem for the Riccati DAE (1.10) may or may not have solutions. From this
point of view, the Riccati DAEs (1.7) or (1.10) seem not to be appropriate tools
for constructing optimal feedback solutions, whereas the Riccati DAE (1.15) and the
versions in [15], [16], [17], [12] are useful for this purpose.

6. Riccati equations and Hamiltonian systems.
Theorem 6.1. Given a solution Y of (2.7), (2.8) with A∗Y Q = 0, if the contin-

uous matrix function X : [0, T ] → L(Rp,Rm), with a continuously differentiable part
BX, satisfies the equation

(6.1) A(BX)′ = (C −DR−1S∗ −DR−1D∗Y )X,

then the pair X,Ψ := Y X forms a solution of the Hamiltonian system

(6.2) A(BX)′ = (C −DR−1S∗)X −DR−1D∗Ψ,

(6.3) −B∗(A∗Ψ)′ = (W − SR−1S∗)X + (C∗ − SR−1D∗)Ψ.

Ψ is continuous with A∗Ψ being continuously differentiable.
Proof. Equation (6.2) is a trivial consequence of (6.1).
Due to A∗Ψ = A∗Y X = A∗Y B−BX, A∗Ψ is continuously differentiable. We

derive

B∗(A∗Ψ)′ = B∗(A∗Y B−)′BX + B∗A∗Y B−(BX)′

= B∗(A∗Y B−)′BX + Y ∗A(BX)′

= −(W − SR−1S∗)X − (C∗ − SR−1D∗)Ψ,

and we are done.
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The above pair X,Ψ combines p columns of solutions of the differential-algebraic
Hamiltonian system (cf. (2.15))

(6.4)

[
A 0
0 −B∗

]
d

dt

([
B 0
0 A∗

] [
x
ψ

])
=

[
C −DR−1S∗ −DR−1D∗

W − SR−1S∗ C∗ − SR−1D∗

] [
x
ψ

]
.

If one tries to solve the system (6.2), (6.3), one is confronted by the index of the
DAE (6.4). Equation (6.4) has a properly stated leading term since (2.2) has one.
Equation (6.4) is a square system having m+k equations and m+k unknown functions,
respectively.

Theorem 6.2. If A and B remain nonsingular, (6.4) represents an implicit
regular ODE (regular DAE with tractability index zero). Otherwise, for the DAE
(6.4) to be regular with tractability index one, it is necessary and sufficient that the
following two conditions are satisfied:

[AB − CQ, D] has full row rank k,(6.5)

im[Q(C∗ − SR−1D∗)Q∗, Q(W − SR−1S∗)Q] = imQ.(6.6)

Proof. In the case of nonsingular A and B, the assertion is obvious. Let A, B be
singular. In [3], the pair of conditions

(6.7) [AB − CQ, D] has full row rank k,

and

(6.8)

[
B∗A∗ − C∗Q∗ WQ S

−D∗Q∗ S∗Q R

]
has full row rank m + l

was shown to be necessary and sufficient for the DAE

(6.9)

⎡⎣A 0
0 −B∗

0 0

⎤⎦ d

dt

⎛⎝[
B 0 0
0 A∗ 0

]⎡⎣xψ
u

⎤⎦⎞⎠ =

⎡⎣C 0 D
W C∗ S
S∗ D∗ R

⎤⎦⎡⎣xψ
u

⎤⎦
to be regular with tractability index one. Clearly, (6.9) is regular with index one if
(6.4) is, and vice versa. Hence, the above two conditions are valid for (6.4), too. The
condition (6.7) coincides with (6.5). Taking into account the invertibility of R, the
second condition (6.8) is equivalent to the injectivity of⎡⎣ AB

Q∗(C −DR−1S∗)
Q(W − SR−1S∗)

⎤⎦ ,

but this is equivalent to (6.6). (Notice that in [3] slightly more general problems with
R positive semidefinite are considered.)

Remark 6.3. In [5], descriptor systems (1.6) in an SVD coordinate system play a
special role, and, in particular, the invertibility of a certain matrix R̄ (cf. [5]) is a basic
property assumed to be given in all four versions of the Riccati differential equations
studied in [BeLa, section IV]. From the viewpoint of DAE theory, for those very
special systems (6.9), the invertibility of R̄ exactly means regularity with tractability
index one (cf. [3]).
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Remark 6.4. Recall from [3] that, if the system (6.9) is regular with tractability
index one, and, additionally, kerB∗ = 0, then the so-called inherent regular ODEs
of (6.9), and of (6.2), (6.3), actually have a Hamiltonian structure—a property that
should be useful concerning the solvability of BVPs for the Hamiltonian system (6.2),
(6.3). However, notice that in general it may happen that the so-called Hamiltonian
system (6.2), (6.3) may lose the inherent Hamiltonian structure (cf. [3]).

We end up with an assertion saying that if the Hamiltonian system (6.2), (6.3)
somehow has good solvability, then the Riccati DAE system (3.1), (3.2) is solvable at
the same time.

Theorem 6.5. Let X(t) ∈ L(Rm,Rm),Ψ(t) ∈ L(Rm,Rk) be continuous on [0,T],
and such that their m columns belong to C1

B and C1
A∗ , respectively, and

A(BX)′ = (C −DR−1S∗)X −DR−1D∗Ψ,(6.10)

−B∗(A∗Ψ)′ = (W − SR−1S∗)X + (C∗ − SR−1D∗)Ψ(6.11)

is satisfied.

Let X be nonsingular and let X−1B− belong to C1. Let Y := ΨX−1 be such that

P∗Y Q = 0, A∗Y B− = B−∗Y ∗A.

Then, Y is continuous with a continuously differentiable part A∗Y B− and satisfies
the Riccati DAE system (3.1), (3.2).

Proof. Here condition (3.2) is given, and A∗Y B− = A∗Y XX−1B− = A∗ΨX−1B−

belongs to C1. Derive from (6.11) that

B∗(A∗Y X)′X−1 = −(W − SR−1S∗) − (C∗ − SR−1D∗)Y.

By means of B∗(A∗Y X)′X−1 = B∗(A∗Y B−BX)′X−1 = B∗(A∗Y B−)′B + B∗A∗

Y B−(BX)′X−1 = B∗(A∗Y B−)′B + Y ∗A(BX)′X−1 and taking into account (6.10),
(6.11), we obtain (3.1).

If X,Ψ in Theorem 6.5 are chosen to meet the terminal conditions B(T )∗A(T )∗

Ψ(T ) = V , A(T )B(T )X(T ) = A(T )B(T ), then it follows that A(T )∗Y (T )B(T )− =
B(T )−∗V B(T )−; that is, the terminal condition (3.3) is satisfied.

7. Final remark. We have shown that optimal feedback controls of linear-
quadratic optimal control problems with constraints described by general linear DAEs
with variable coefficients can be obtained by suitably formulating a Riccati DAE sys-
tem, similarly to the classical example in which the constraints are described by
explicit ODEs. Compared to earlier papers and some less suitable Riccati DAEs, we
could do without several restrictive assumptions.

Furthermore, we would like to stress that it is not necessary and probably not
even reasonable to transform the DAE describing the constraints (descriptor system)
or the DAE describing the Hamiltonian system with great expense into a special
canonical form.

What is on the agenda is the development of feasible solution methods for the
Riccati DAE (3.1), (3.2).
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REFERENCES

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control
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Abstract. This paper investigates the problems of passivity analysis and passification for
network-based linear control systems. A new sampled-data model is first formulated based on the
updating instants of the ZOH (zeroth order hold), where the physical plant and the controller are,
respectively, in continuous time and discrete time. In this model, network-induced delays, data
packet dropouts, and signal measurement quantization have been taken into account. The measure-
ment quantizer is assumed to be logarithmic, and the network-induced delays are assumed to have
both a lower bound and an upper bound, which is more general than those assumptions used in
the literature. The key idea is to transform the sampled-data model into a linear system with two
successive delay components in the state. Then, by using a Lyapunov–Krasovskii approach plus the
free weighting matrix technique, a passivity performance condition is formulated in the form of linear
matrix inequalities (LMIs). Based on this condition, two procedures are proposed for designing passi-
fication controllers, which guarantee that the closed-loop networked control system (NCS) is passive.
Finally, two illustrative examples are presented: one shows the advantage of introducing the lower
bound of transmission delays and shows how much the quantization behavior affects the passivity
performance; the other illustrates the applicability and effectiveness of the proposed passification
results.
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1. Introduction. It is well known that in many practical systems, the physical
plant, controller, sensor, and actuator are difficult to locate in the same place, and
thus signals are required to be transmitted from one place to another. In modern
industrial systems, these components are often connected over network media (typi-
cally digital band-limited serial communication channels), giving rise to the so-called
networked control systems (NCSs). Compared with traditional feedback control sys-
tems, where these components are usually connected via point-to-point cables, the
introduction of communication network media brings great advantages, such as low
cost, reduced weight and power requirements, simple installation and maintenance,
and high reliability [21]. Therefore, NCSs have received more and more attention and
have become more and more popular in many practical applications in recent years.
Modeling, analysis, and synthesis of network-based feedback systems with limited
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communication capability has emerged as a topic of significant interest in the control
community, a topic which is highlighted in the recent special issue edited by Antsak-
lis and Baillieul [2]. From among the reported results on NCSs, we mention a few:
the stability issue is investigated in [29, 36, 48], stabilizing controllers are designed
in [43, 44, 47, 49], performance preserved control is studied in [23, 28, 33, 45], and
moving horizon control is proposed in [17].

What makes an NCS distinct from traditional feedback control systems? To an-
swer this question, we need to look at a few phenomena that typically exist for a
network-based control system. Probably the most significant are the network-induced
delays, which are usually caused by the limited bit rate of the communication channels,
by a node waiting to send out a packet via a busy channel, or by signal processing
and propagation. The existence of time delays generally brings negative effects on
the stability and performance of NCSs. The time delays in a typical NCS usually
take the forms of input delay and output delay, which are essentially different from
the state-delayed models, for which a great number of results have been reported re-
cently [18, 19]. The second interesting problem in an NCS is the packet dropout (or
data missing [37, 38]) phenomenon, which is usually caused by unavoidable errors or
losses in the transmitted packet. Though many NCSs employ automatic repeat re-
quest mechanisms, packet dropout phenomenon is still unavoidable. Moreover, packet
dropouts may occur if one packet sampled at the sensor node reaches the destination
later than its successors. In this situation, it is natural to use the most updated packet
by dropping out the old ones, giving rise to packet dropout phenomenon. Another
important issue in NCSs is the quantization effect. In NCSs, the measurement and
command signals are usually quantized before being communicated, and the number of
quantization levels is closely related to the information flow between the components
of the control system and thus to the capacity required to transmit the information.
The classical control theory, which is based on the standard assumption that data
transmission required by the system can be performed with infinite precision, may
not be valid in the presence of signal quantization or capacity-limited feedback, and
therefore there is a need for developing tools for analysis and design of quantized
feedback systems. Many important results on quantized control have been reported;
see, for instance, [3, 6, 11, 12, 21, 22, 24, 25, 32, 34] and the references therein.

On the other hand, the notion of passivity plays an important role in the analysis
and design of linear and nonlinear systems. In the first place, many systems need to
be passive in order to attenuate noises effectively. In the second place, the robustness
measure (such as robust stability or robust performance) of a system often reduces to
a subsystem or a modified system that is passive. Passivity analysis is a major tool for
studying stability of uncertain or nonlinear systems, especially for high-order systems,
and thus the passivity analysis approach has been used in control problems for a
long time to deal with robust stability problems for complex uncertain systems (see
[5, 8, 27, 30, 35, 40] and the references therein). Apart from its direct applications, the
notion of passivity is closely related to bounded realness, which is an equally important
notion in control. In fact, it is well known that there is a one-to-one relationship
between bounded realness and passivity [1]. Consequently, bounded realness analysis
can be converted into passivity analysis and vice versa. Very recently, the passivity-
based control has been investigated for a few classes of complex systems, including
time-delay systems [31, 42], two-dimensional systems [41], fuzzy systems [7], and
signal processing systems [39]. To the best of our knowledge, however, the problems
of passivity analysis and passification for NCSs have not been investigated and still
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remain challenging, which motivates the present study.
In this paper, we investigate the problems of passivity analysis and passification

for network-based linear control systems. A new sampled-data model is first for-
mulated based on the updating instants of the ZOH (zeroth order hold) (instead of
the sampling instants), where the physical plant and the controller are, respectively,
in continuous time and discrete time. In this model, network-induced delays, data
packet dropouts, and signal measurement quantization have been taken into account.
The measurement quantizer is assumed to be logarithmic, and the network-induced
delays are assumed to have both a lower bound and an upper bound, which is more
general than those assumptions used in the literature. The key idea is to transform
the sampled-data model into a linear system with two successive delay components
in the state. Then, by using a Lyapunov–Krasovskii approach plus the free weighting
matrix technique, a passivity performance condition is formulated in the form of lin-
ear matrix inequalities (LMIs). Based on this condition, two procedures are proposed
for designing passification controllers, which guarantee that the closed-loop NCS is
passive. Finally, two illustrative examples are presented: one shows the advantage of
introducing the lower bound of transmission delays, and how much the quantization
behavior affects the passivity performance; the other illustrates the applicability and
effectiveness of the proposed passification results.

The remainder of this paper is organized as follows. The problems of passivity
analysis and passification for network-based linear control systems are formulated
in section 2. Sections 3 and 4 present the main results on passivity analysis and
passification, respectively. Section 5 gives two illustrative examples, and we conclude
the paper in section 6.

Notation. The notation used throughout the paper is fairly standard. The su-
perscript T stands for matrix transposition, R

n denotes the n-dimensional Euclidean
space, and P > 0 (≥ 0) means that P is real symmetric and positive definite (semidef-
inite). In symmetric block matrices or complex matrix expressions, we use an asterisk
(∗) to represent a term that is induced by symmetry, and diag{. . .} stands for a block-
diagonal matrix. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible with algebraic operations.

2. Problem formulation. Consider a typical NCS, shown in Figure 1. Suppose
the physical plant is given by the following linear system:

ẋ (t) = Ax (t) + Bu (t) ,

z (t) = Cx (t) + Du (t) .(1)

Here x (t) ∈ R
n is the state vector; u (t) ∈ R

p is the input; z (t) ∈ R
q is the output;

and A,B,C,D are system matrices with appropriate dimensions.
In Figure 1, it is assumed that the sampler is clock-driven, while the quantizer,

controller, and actuator are event-driven. The sampling period is assumed to be
h, where h is a positive real constant, and we denote the sampling instant of the
sampler as sk, k = 1, . . . ,∞. In addition, it is assumed that the state variable
x (t) is online measurable, and the measurements of x (t) are first quantized via a
quantizer and then transmitted with a single packet. The quantizer is denoted as

f(·) =
[
f1(·) f2(·) · · · fn(·)

]T
, which is assumed to be symmetric, that is,

fj(−v) = −fj(v), j = 1, . . . , n. In this paper, we are interested in the logarithmic
static and time-invariant quantizer. For each fj(·), the set of quantized levels is
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Fig. 1. An NCS.

described by

(2) Uj =
{
±u

(j)
i , i = 0,±1,±2, . . .

}
∪ {0} .

According to [10, 13], a quantizer is called logarithmic if the set of quantized levels is
characterized by

(3)

Uj =
{
±u

(j)
i , u

(j)
i = ρiju

(j)
0 , i = ±1,±2, . . .

}
∪
{
±u

(j)
0

}
∪{0} , 0 < ρj < 1, u

(j)
0 > 0.

Each of the quantization levels u
(j)
i corresponds to a segment such that the quantizer

maps the whole segment to this quantization level. In addition, these segments form a
partition of R; that is, they are disjoint and their union equals R. For the logarithmic
quantizer, the associated quantizer fj(·) is defined as follows:

(4) fj(v) =

⎧⎨⎩
u

(j)
i if 1

1+σj
u

(j)
i < v ≤ 1

1−σj
u

(j)
i , v > 0,

0 if v = 0,
−fj(−v) if v < 0,

where

(5) σj =
1 − ρj
1 + ρj

.

Then, at the sampling instant sk, we have

x̄ (sk) = f (x (sk)) =
[
f1(x1 (sk)) f2(x2 (sk)) · · · fn (xn (sk))

]T
.
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Now denote the updating instant of the ZOH as tk, k = 1, . . . ,∞, and suppose
that the updating signal (the successfully transmitted signal from the sampler to the
controller and to the ZOH) at the instant tk has experienced signal transmission delays
ηk (ηk = τk + dk, where τk is the delay from the quantizer to the controller and dk is
the delay from the controller to the ZOH. It is assumed that there is no delay between
the sensor and quantizer). Therefore, the state-feedback controller takes the following
form:

(6) u′ (tk) = Kf (x (tk − ηk)) ,

where K is the state-feedback control gain. Thus, considering the behavior of the
ZOH, we have

(7) u (t) = Kf (x (tk − ηk)) + w(t), tk ≤ t < tk+1,

with tk+1 being the next updating instant of the ZOH after tk, and w(t) ∈ R
p being

the external input.
A natural assumption on the network-induced delays ηk can be made as follows:

(8) ηm ≤ ηk ≤ ηM ,

where ηm and ηM denote the minimum and the maximum delays, respectively. In
addition, at the updating instant tk the number of accumulated data packet dropouts
since the last updating instant tk−1 is denoted as δk. We assume that the maximum
number of data packet dropouts is δ̄, that is,

(9) δk ≤ δ̄.

Then, it can be seen from (8) and (9) that

(10) tk+1 − tk = (δk + 1)h + ηk+1 − ηk.

Remark 1. It is worth noting that the assumption on the network-induced delays
ηk made in (8) is more general than those assumptions in [43, 44, 45]. The main
difference lies in the lower bound we introduced. By assuming ηm = 0, we see that
(8) is the same as those assumptions in [43, 44, 45]. The introduction of the lower
bound ηm will be shown later, via a numerical example, and will be advantageous for
reducing conservativeness.

Therefore, from (1)–(7) we obtain the following closed-loop system:

ẋ (t) = Ax (t) + BKf (x (tk − ηk)) + Bw (t) ,

z (t) = Cx (t) + DKf (x (tk − ηk)) + Dw (t) ,

tk ≤ t < tk+1.(11)

Remark 2. It is important to note that in (7), tk refers to the updating instant of
the ZOH. While in [43], the controller is expressed as

(12) u (t) = Fx̄(tk), tk ≤ t < tk+1,

with tk standing for the sampling instant. It should be noted that when the con-
troller and actuator are event-driven, we cannot use the sampling instant to model
the behavior of the ZOH. The reason is that the signal transmission delays may not
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necessarily be integer multiples of the sampling period, and thus the ZOH may be
updated between sampling instants. By using the updating instant in this paper, we
do not need to synchronize the ZOH and the sampler, and thus the networked control
model formulated here is essentially different from that in [43] and is more general,
though they appear to be similar.

Before proceeding further, we introduce the following definition [26].
Definition 1. The closed-loop NCS in (11) is said to be passive if there exists a

scalar γ > 0 such that

(13) 2

∫ T

0

wT (t)z(t)dt ≥ −γ

∫ T

0

wT (t)w(t)dt

for all T > 0 under zero initial conditions.
Then, the problems to be addressed in this paper are expressed as follows.
Problem 1 (passivity analysis). Consider the NCS in Figure 1. Given the

system matrices A,B,C,D in (1) and the controller gain matrix K in (6), determine
under what condition the closed-loop networked control system in (11) is passive in
the sense of Definition 1.

Problem 2 (passification). Consider the NCS in Figure 1. Given the system
matrices A,B,C,D in (1), determine the controller gain matrix K in (6) such that
the closed-loop NCS in (11) is passive in the sense of Definition 1.

3. Passivity analysis. This section is concerned with the problem of passivity
analysis. More specifically, assuming that the matrices A,B,C,D in (1) and the
controller gain matrix K in (6) are known, we shall study the conditions under which
the closed-loop NCS in (11) is passive in the sense of Definition 1. The following
theorem shows that the closed-loop passivity can be guaranteed if there exist some
matrices satisfying certain LMIs. This theorem will play an instrumental role in the
problem of passification for NCSs (the proof is given in the appendix).

Theorem 1. Consider the NCS in Figure 1. Given the matrices A,B,C,D, the
controller gain matrix K, and a positive constant γ, the closed-loop system in (11) is
passive in the sense of Definition 1 if there exist matrices P > 0; Q > 0; Mi > 0,
i = 1, 2; Ui, Vi, i = 1, . . . , 4; and a diagonal matrix R > 0 satisfying

(14)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 Γ14 U1 V1 ATM1 ATM2 PBK
∗ Γ22 Γ23 Γ24 U2 V2 0 0 0
∗ ∗ Γ33 + Λ2R Γ34 U3 V3 KTBTM1 KTBTM2 0
∗ ∗ ∗ Γ44 U4 V4 BTM1 BTM2 −DK
∗ ∗ ∗ ∗ −η−1

m M1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −κ−1M2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −η−1

m M1 0 M1BK
∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M2 M2BK
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where

(15)

Γ11 = PA + ATP + Q + U1 + UT
1 , Γ12 = −U1 + UT

2 + V1,
Γ22 = −Q− U2 − UT

2 + V2 + V T
2 , Γ13 = UT

3 − V1 + PBK,
Γ23 = −UT

3 − V2 + V T
3 , Γ33 = −V3 − V T

3 ,
Γ14 = PB + UT

4 − CT , Γ24 = −UT
4 + V T

4 ,
Γ34 = −V T

4 −KTDT , Γ44 = −γI −D −DT ,
κ = ηM − ηm +

(
δ̄ + 1

)
h, Λ = diag{σ1, . . . , σn}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PASSIVITY AND PASSIFICATION FOR NCSs 1305

Theorem 1 deserves some remarks.
Remark 3. The basic idea behind Theorem 1 is to transform the sampled-data

system in (11) into the state-delay system in (40). The passivity of the transformed
time-delay system is then analyzed by defining a new Lyapunov–Krasovskii functional
plus free weighting matrix techniques. The most significant feature is that no model
transformation has been performed to the delay system in (40), which is essentially
different from the results obtained in [43] based on a descriptor model transformation.
This helps us avoid using a bounding technique for seeking upper bounds of the inner
product between two vectors. Similar ideas appear in [19, 20], whose techniques have
been shown to be potentially less conservative than those using model transformation
methods.

Remark 4. It is worth noting that if the closed-loop NCS in (11) is passive accord-
ing to Theorem 1, the asymptotic stability of (11) with w (t) = 0 is also guaranteed.
This is shown as follows: First, define the Lyapunov–Krasovskii functional in (44).
Then, by following along lines similar to the proof Theorem 1, we see that the time
derivative of V (t) along the solution of (41) with w (t) = 0 is given by

V̇ (t) ≤ ζ̄
T

(t)
(
Γ̄ + ηmŪM−1

1 ŪT + κV̄ M−1
2 V̄ T

)
ζ̄ (t)

−
∫ t

t−ηm

[
ζ̄
T

(t) Ū + ẋT (α)M1

]
M−1

1

[
ŪT ζ̄ (t) + M1ẋ (α)

]
dα

−
∫ t−ηm

t−ηm−η(t)

[
ζ̄
T

(t) V̄ + ẋT (α)M2

]
M−1

2

[
V̄ T ζ̄ (t) + M2ẋ (α)

]
dα,

where

ζ̄ (t) =

⎡⎣ x (t)
x (t− ηm)

x (t− ηm − η (t))

⎤⎦ , Ū =

⎡⎣ U1

U2

U3

⎤⎦ ,

V̄ =

⎡⎣ V1

V2

V3

⎤⎦ , Γ̄ =

⎡⎣ Γ̄11 Γ12 Γ̄13

∗ Γ22 Γ23

∗ ∗ Γ̄33

⎤⎦ .

By following along lines similar to the proof of Theorem 1, we see that (14) guarantees
Γ̄ + ηmŪM−1

1 ŪT + κV̄ M−1
2 V̄ T < 0, and the asymptotic stability is established.

Remark 5. If there is no quantizer in the NCS shown in Figure 1, then (40) in
the above proof reads

ẋ (t) = Ax (t) + BKx (t− ηm − η(t)) + Bw (t) ,

z (t) = Cx (t) + DKx (t− ηm − η(t)) + Dw (t) .(16)

Then, we have the following corollary, which can be proved by following arguments
similar to the proof of Theorem 1.

Corollary 1. Consider the NCS in Figure 1, but without the quantizer. Given
the matrices A,B,C,D, the controller gain matrix K and a positive constant γ, the
closed-loop system in (16) is passive in the sense of Definition 1 if there exist matrices
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P > 0; Q > 0; Mi > 0, i = 1, 2; Ui, Vi, i = 1, . . . , 4, satisfying⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 Γ14 U1 V1 ATM1 ATM2

∗ Γ22 Γ23 Γ24 U2 V2 0 0
∗ ∗ Γ33 Γ34 U3 V3 KTBTM1 KTBTM2

∗ ∗ ∗ Γ44 U4 V4 BTM1 BTM2

∗ ∗ ∗ ∗ −η−1
m M1 0 0 0

∗ ∗ ∗ ∗ ∗ −κ−1M2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −η−1

m M1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where Γij is given in (15).
Remark 6. It is worth noting that in the proof of Theorem 1, the transformed

system in (40) contains two successive delay components ηm and η(t), where ηm is
a constant delay, and η(t) is a nondifferentiable time-varying delay with bound κ. If
the lower bound of the network-induced delays is assumed to be zero, that is, ηm = 0,
(40) takes the following form:

ẋ (t) = Ax (t) + BKf (x (t− η(t))) + Bw (t) ,

z (t) = Cx (t) + DKf (x (t− η(t))) + Bw (t) ,(17)

with

(18) 0 ≤ η(t) ≤ κ̄,

where

(19) κ̄ = ηM +
(
δ̄ + 1

)
h.

Compared with (39), the upper bound of η(t) in (18) is increased by ηm. In other
words, without taking the lower bound of the transmission delays into consideration,
ηm will be treated as a nondifferentiable time-varying delay instead of a constant one
when it is nonzero. Therefore, the introduction of the lower bound ηm will naturally
reduce conservativeness, which will be showed via a numerical example later. However,
the existing results on NCSs, such as [43, 44, 45], did not offer to take the lower bound
ηm into consideration. The following corollary gives a passivity analysis result for the
case when ηm = 0.

Corollary 2. Consider the NCS in Figure 1, and suppose the network-induced
delays satisfy 0 ≤ ηk ≤ ηM . Given the matrices A,B,C,D, the controller gain matrix
K and a positive constant γ, the closed-loop system in (17) is passive in the sense
of Definition 1 if there exist matrices P > 0; M > 0; Ui, i = 1, 2, 3; and a diagonal
matrix R > 0 satisfying

(20)

⎡⎢⎢⎢⎢⎢⎢⎣
Π11 Π12 Π13 U1 ATM PBK
∗ Π22 + Λ2R Π23 U2 KTBTM 0
∗ ∗ Π33 U3 BTM −DK
∗ ∗ ∗ −κ̄−1M 0 0
∗ ∗ ∗ ∗ −κ̄−1M MBK
∗ ∗ ∗ ∗ ∗ −R

⎤⎥⎥⎥⎥⎥⎥⎦ < 0,

where κ̄ is as given in (19), Λ is as given in (15), and

Π11 = PA + ATP + U1 + UT
1 , Π12 = PBK − U1 + UT

2 ,
Π22 = −U2 − UT

2 , Π13 = PB − CT + UT
3 ,

Π23 = −KTDT − UT
3 , Π33 = −DT −D − γI.
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Proof. The proof follows along lines similar to the proof of Theorem 1 and thus is
outlined briefly. First, by considering the quantization behavior, the closed-loop NCS
in (17) can be transformed into

ẋ (t) = Ax (t) + BK (I + Λ (t)) (x (t− η(t))) + Bw (t) ,

z (t) = Cx (t) + DK (I + Λ (t)) (x (t− η(t))) + Dw (t)(21)

with Λ (t) as given in (42). Define the following Lyapunov–Krasovskii functional:

(22) V (t) = xT (t)Px (t) +

∫ 0

−κ̄

∫ t

t+β

ẋT (α)Mẋ(α)dαdβ,

where P > 0 and M > 0 are matrices to be determined. Then, the corollary can be
proved by following along lines similar to the proof of Theorem 1.

4. Passification. This section is devoted to solving the problem of passification
for NCSs.

Proposition 1. Consider the NCS in Figure 1. Given a positive constant γ,
there exists a state-feedback controller in the form of (6) such that the closed-loop
system in (11) is passive in the sense of Definition 1 if there exist matrices P̄ > 0;
Q̄ > 0; M̄i > 0, i = 1, 2; Ūi, V̄i, i = 1, . . . , 4; K̄; and a diagonal matrix R̄ > 0
satisfying

(23)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 Ω14 Ū1 V̄1 P̄AT P̄AT BK̄ 0

∗ Ω22 Ω23 Ω24 Ū2 V̄2 0 0 0 0

∗ ∗ Ω33 Ω34 Ū3 V̄3 K̄TBT K̄TBT 0 P̄

∗ ∗ ∗ Ω44 Ū4 V̄4 BT BT −DK̄ 0

∗ ∗ ∗ ∗ −η−1
m P̄ M̄−1

1 P̄ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −κ−1P̄ M̄−1
2 P̄ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −η−1
m M̄1 0 BK̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M̄2 BK̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P̄ R̄−1P̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Λ−2R̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where κ and Λ are given in (15) and

(24)

Ω11 = AP̄ + P̄AT + Q̄ + Ū1 + ŪT
1 , Ω12 = −Ū1 + ŪT

2 + V̄1,
Ω22 = −Q̄− Ū2 − ŪT

2 + V̄2 + V̄ T
2 , Ω13 = ŪT

3 − V̄1 + BK̄,
Ω23 = −ŪT

3 − V̄2 + V̄ T
3 , Ω33 = −V̄3 − V̄ T

3 ,
Ω14 = B + ŪT

4 − P̄CT , Ω24 = −ŪT
4 + V̄ T

4 ,
Ω34 = −V̄ T

4 − K̄TDT , Ω44 = −γI −D −DT .

Moreover, if the above condition is feasible, the gain matrix of a desired controller in
the form of (6) is given by

(25) K = K̄P̄−1.

Proof. From Theorem 1, we know that there exists a state-feedback controller
in the form of (6) such that the closed-loop NCS in (11) is passive in the sense
of Definition 1 if there exist matrices P > 0; Q > 0; Mi > 0, i = 1, 2; Ui, Vi,
i = 1, . . . , 4; and a diagonal matrix R > 0 satisfying (14). Performing a congruence
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transformation to (14) by diag
{
P−1, P−1, P−1, I, P−1, P−1,M−1

1 ,M−1
2 , P−1

}
, and a

Schur complement operation to the term Λ2P−1RP−1 in the (3,3) block, together
with the change of matrix variables defined by

P̄ = P−1, M̄i = M−1
i , R̄ = R−1, K̄ = KP−1, Q̄ = P−1QP−1,

Ū =

⎡⎢⎢⎣
Ū1

Ū2

Ū3

Ū4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
P−1 0 0 0
∗ P−1 0 0
∗ ∗ P−1 0
∗ ∗ ∗ I

⎤⎥⎥⎦
⎡⎢⎢⎣

U1

U2

U3

U4

⎤⎥⎥⎦P−1,

V̄ =

⎡⎢⎢⎣
V̄1

V̄2

V̄3

V̄4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
P−1 0 0 0
∗ P−1 0 0
∗ ∗ P−1 0
∗ ∗ ∗ I

⎤⎥⎥⎦
⎡⎢⎢⎣

V1

V2

V3

V4

⎤⎥⎥⎦P−1,

we obtain (23), and the proposition is proved.
The condition in Proposition 1 still cannot be implemented by using standard nu-

merical software due to the existence of the terms P̄ M̄−1
i P̄ and P̄ R̄−1P̄ . By noticing

M̄i > 0 and R̄ > 0, we have(
M̄i − P̄

)
M̄−1

i

(
M̄i − P̄

)
≥ 0,

(
R̄− P̄

)
R̄−1

(
R̄− P̄

)
≥ 0,

which is equivalent to

(26) −P̄ M̄−1
i P̄ ≤ M̄i − 2P̄ , −P̄ R̄−1P̄ ≤ R̄− 2P̄ .

By combining (23) and (26), we readily obtain the following theorem.
Theorem 2. Consider the NCS in Figure 1. Given a positive constant γ, there

exists a state-feedback controller in the form of (6) such that the closed-loop system
in (11) is passive in the sense of Definition 1 if there exist matrices P̄ > 0; Q̄ > 0;
M̄i > 0, i = 1, 2; Ūi, V̄i, i = 1, . . . , 4; K̄; and a diagonal matrix R̄ > 0 satisfying

(27)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12Ω13 Ω14 Ū1 V̄1 P̄AT P̄AT BK̄ 0

∗ Ω22Ω23 Ω24 Ū2 V̄2 0 0 0 0

∗ ∗ Ω33 Ω34 Ū3 V̄3 K̄TBT K̄TBT 0 P̄

∗ ∗ ∗ Ω44 Ū4 V̄4 BT BT −DK̄ 0

∗ ∗ ∗ ∗ η−1
m

(
M̄1 − 2P̄

)
0 0 0 0 0

∗ ∗ ∗ ∗ ∗ κ−1
(
M̄2 − 2P̄

)
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −η−1
m M̄1 0 BK̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M̄2 BK̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ R̄− 2P̄ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Λ−2R̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where Ωii is as given in (24). Moreover, if the above condition is feasible, the gain
matrix of a desired controller in the form of (6) is given by (25).

Remark 7. Note that (27) is an LMI not only over the matrix variables, but also
over the scalar γ. This implies that the scalar γ can be included as an optimization
variable to obtain a reduction of the passivity performance bound. Then, the mini-
mum (in terms of the feasibility of (27)) passivity performance bound with admissible
controllers can be readily found by solving the following convex optimization problem
using the LMI toolbox in MATLAB:

Minimize γ subject to (27) over P̄ > 0; Q̄ > 0; M̄i > 0, i = 1, 2;

Ūi, V̄i, i = 1, . . . , 4; K̄; and diagonal R̄ > 0.
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Theorem 2 presents an LMI condition for the existence of desired state-feedback
controllers based on the inequalities in (26). In the following, we present another
approach to solving the condition in Proposition 1.

Now introduce additional matrix variables N̄i > 0 and S̄ > 0, and replace (23)
with⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12Ω13 Ω14 Ū1 V̄1 P̄AT P̄AT BK̄ 0
∗ Ω22Ω23 Ω24 Ū2 V̄2 0 0 0 0
∗ ∗ Ω33 Ω34 Ū3 V̄3 K̄TBT K̄TBT 0 P̄
∗ ∗ ∗ Ω44 Ū4 V̄4 BT BT −DK̄ 0
∗ ∗ ∗ ∗ −η−1

m N̄1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −κ−1N̄2 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −η−1

m M̄1 0 BK̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M̄2 BK̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Λ−2R̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,(28)

N̄i − P̄ M̄−1
i P̄ ≤ 0, i = 1, 2,(29)

S̄ − P̄ R̄−1P̄ ≤ 0.(30)

By the Schur complement, (29) and (30) are equivalent to[
−N̄−1

i P̄−1

∗ −M̄−1
i

]
≤ 0, i = 1, 2,(31) [

−S̄−1 P̄−1

∗ −R̄−1

]
≤ 0.(32)

Then, we readily obtain the following theorem.
Theorem 3. Consider the NCS in Figure 1. Given a positive constant γ, there

exists a state-feedback controller in the form of (6) such that the closed-loop system
in (11) is passive in the sense of Definition 1 if there exist matrices P̄ > 0; P > 0;
S̄ > 0; S > 0; Q̄ > 0; N̄i > 0; Ni > 0; M̄i > 0; Mi > 0, i = 1, 2; Ūi, V̄i, i = 1, . . . , 4;
K̄; and diagonal matrices R̄ > 0, R > 0 satisfying (28) and[

−S P
∗ −R

]
≤ 0,

[
−Ni P
∗ −Mi

]
≤ 0, i = 1, 2,(33)

P̄P = I, R̄R = I, M̄iMi = I, N̄iNi = I, i = 1, 2.(34)

Moreover, if the above condition is feasible, the gain matrix of a desired controller in
the form of (6) is given by (25).

The condition presented in Theorem 3 is equivalent to that in Proposition 1. It
is noted that this condition is not a convex set due to the matrix equality constraints
in (34). Several approaches have been proposed to solve such nonconvex feasibility
problems, among which the cone complementarity linearization (CCL) method [9] is
the most commonly used (for instance, the CCL algorithm has been used for solving
the controller design problems as well as model reduction problems [15, 16, 46]). The
basic idea in CCL algorithm is that if the LMI [ P I

I L ] ≥ 0 is feasible in the n × n
matrix variables L > 0 and P > 0, then tr(PL) ≥ n, and tr(PL) = n if and only if
PL = I.

Now using a cone complementarity approach [9], we suggest the following nonlin-
ear minimization problem involving LMI conditions instead of the original nonconvex
feasibility problem formulated in Theorem 3.
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Problem PCD (passification controller design).

min tr

(
P̄P + R̄R +

2∑
i=1

(
M̄iMi + N̄iNi

))
subject to (28), (33) and[

P̄ I
I P

]
≥ 0,

[
R̄ I
I R

]
≥ 0,

[
M̄i I
I Mi

]
≥ 0,

[
N̄i I
I Ni

]
≥ 0, i = 1, 2.

According to [9], if the solution of the above minimization problem is 6n, that is,

min tr

(
P̄P + R̄R +

2∑
i=1

(
M̄iMi + N̄iNi

))
= 6n,

then the conditions in Theorem 3 are solvable. Algorithm 1 in [9] can be easily adapted
to solve Problem PCD.

5. Illustrative example. In this section, two examples are provided to illus-
trate the results developed above. We first use a numerical example to show the
advantage of introducing the lower bound of transmission delays, and to show how
much the quantization behavior affects the passivity performance. The second exam-
ple shows the applicability of the passification results.

Example 1. Suppose the system of matrices A,B,C,D in (1) and the controller
gain K in (6) are given by

A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, C =

[
1 0

]
, D = 0.3 , K =

[
−1 1

]
.

The parameters for the quantizer f(·) are given by ρ1 = 0.8 and ρ2 = 0.9; thus
according to (4) we have σ1 = 0.1111 and σ2 = 0.0526. It is assumed that the
network-induced delays ηk satisfy ηm ≤ ηk ≤ 0.4 s, the maximum number of data
packet dropouts is 2, and the sampling period is 10 ms. Our purpose is to determine
the minimum guaranteed passivity performances for different values of the lower delay
bound ηm.

When we do not consider the lower bound of the network-induced delays, that
is, ηm = 0, by using Corollary 2 and Theorem 1 (assuming ηm is sufficiently small),
the minimum guaranteed passivity performance obtained is γmin = 5.4425. However,
if we assume ηm = 0.1 s, the minimum guaranteed passivity performance obtained
is γmin = 0.9578. A more detailed comparison for different values of ηm is provided
in Table 1, which shows that considering the lower bound of the signal transmission
delay gives rise to less conservative results.

Table 1

Comparison for different values of ηm.

ηm (s) 0 0.05 0.1 0.15 0.2
Guaranteed passivity performance γmin 5.4425 1.7528 0.9578 0.6019 0.3958

The second task in this example is to show how much the quantization behavior
affects the guaranteed passivity performance. Now we assume ηm = 0.15, and other
parameters, except that related to the quantizer f(·), are the same as above. When
ρ1 = 0.8 and ρ2 = 0.9 (corresponding to σ1 = 0.1111 and σ2 = 0.0526), by Theorem
1, the minimum guaranteed passivity performance obtained is γmin = 0.6019. When
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ρ1 = 0.7 and ρ2 = 0.8 (corresponding to σ1 = 0.1765 and σ2 = 0.1111), the minimum
guaranteed passivity performance obtained is γmin = 2.8398. This shows that for a
coarser quantizer (corresponding to smaller ρj or larger σj), the obtained minimum
guaranteed passivity performance is usually larger. A more detailed comparison for
different values of ρj is provided in Table 2. To facilitate the presentation, we assume
ρ1 = ρ2 = ρ (corresponding to σ1 = σ2 = σ) in the comparison.

Table 2

Comparison for different quantizer parameters.

ρ 0.9 0.85 0.8 0.75
σ 0.0526 0.0811 0.1111 0.1429

Guaranteed passivity performance γmin 0.3704 0.6652 1.2815 3.3814

Example 2. Suppose the physical plant in Figure 1 is a satellite system, which
appears in [4, 14]. The satellite system consists of two rigid bodies joined by a flexible
link. This link is modeled as a spring with torque constant k and viscous damping f .
Denoting the yaw angles for the two bodies (the main body and the instrumentation
module) by θ1 and θ2, the control torque by u(t), and the moments of inertia of the
two bodies by J1 and J2, we see that the dynamic equations are given by

J1θ̈1(t) + f(θ̇1(t) − θ̇2(t)) + k((θ1(t) − θ2(t))) = u(t),

J2θ̈2(t) + f(θ̇1(t) − θ̇2(t)) + k((θ1(t) − θ2(t))) = 0.

Assume the output is the angular positions θ2(t). Thus, the state-space representation
of the above equation is given by⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2

⎤⎥⎥⎦
⎡⎢⎢⎣

θ̇1(t)

θ̇2(t)

θ̈1(t)

θ̈2(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
−k k −f f
k −k f −f

⎤⎥⎥⎦
⎡⎢⎢⎣

θ1(t)
θ2(t)

θ̇1(t)

θ̇2(t)

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦u(t),

y(t) =
[

0 1 0 0
] ⎡⎢⎢⎣

θ1(t)
θ2(t)

θ̇1(t)

θ̇2(t)

⎤⎥⎥⎦ .(35)

Here we choose J1 = J2 = 1, k = 0.09, and f = 0.04 (the values of k and f are
chosen within their respective ranges). Then, the corresponding matrices described
in section 2 are given by

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1

−0.3 0.3 −0.004 0.004
0.3 −0.3 0.004 −0.004

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ ,

C =
[

0 1 0 0
]
, D = 0.

It is assumed that the sampling period h = 10 ms; the network-induced delay bound
in (8) are given by ηm = 10 ms and ηM = 20 ms; and the maximum number of data
packet dropouts δ̄ = 2. In addition, the parameters for the quantizer f(·) are assumed
to be ρ1 = ρ2 = ρ3 = ρ4 = 0.9.

The eigenvalues of A are −0.04 + 0.4224j, −0.0400 − 0.4224j, 0, 0, and thus the
above system is not stable. Our purpose is to design a state-feedback controller in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1312 HUIJUN GAO, TONGWEN CHEN, AND TIANYOU CHAI

the form of (6) such that the closed-loop system is passive in the sense of Definition
1. By using Theorem 2 (minimizing γ in (27)), we obtain the following matrices (for
space consideration we do not list all the obtained matrices here):

P̄ =

⎡⎢⎢⎣
3.8994 0.4268 −0.4130 −0.4647
0.4268 0.7929 0.5678 −0.2679
−0.4130 0.5678 2.0103 −0.2784
−0.4647 −0.2679 −0.2784 0.1820

⎤⎥⎥⎦ ,

K̄ =
[

−1.4010 −0.0335 −1.9367 0.0873
]
,

R̄ = diag {0.0874, 0.2912, 0.0598, 0.0052} .

Thus, according to (25), the gain matrix for the state-feedback controller in (6) is
given by

K =
[

−1.2647 0.2377 −2.0589 −5.5490
]
,

and the obtained minimum guaranteed passivity performance in terms of the feasibil-
ity of (27) is γ∗ = 1.1736.

We first show that the closed-loop system is asymptotically stable. The initial
condition is assumed to be

[
−0.5 0.2 0.3 −0.3

]T
.

The state responses are depicted in Figure 2, from which we can see that all four states
converge to zero. In the simulation, the network-induced delays and the data packet
dropouts are generated randomly (meanly distributed within their ranges) according
to the above assumption and are shown in Figures 3 and 4. The computed control
inputs arriving at the ZOH are shown in Figure 5 (with zoomed area given in Figure
6), where we can see the discontinuous holding behavior of the control inputs.

Now, we will show the passivity of the closed-loop system. To this end, let us
assume zero initial conditions and select a set of input signals as follows:

(36) w(t) =

{
sin t, 5 ≤ t ≤ 15s,

0 otherwise.

Figures 7 and 8 depict the state responses and the control input, respectively. Now
denote

L(t) � 2

∫ t

0

wT (s)z(s)ds, R(t) � −γ

∫ t

0

wT (s)w(s)ds,

which correspond to the left-hand and right-hand sides of (13), respectively. L(t) and
R(t) are depicted in Figure 9, which shows that L(t) ≥ R(t) for all t ≥ 0, and thus
(13) is guaranteed and the effectiveness of the passification design is clear.
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Fig. 2. State response.

0 5 10 15 20 25 30
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Time (s)

N
et

w
or

k 
in

du
ce

d 
de

la
ys

 (
s)

Fig. 3. Networked-induced delays.

6. Conclusions. The problems of passivity analysis and passification for network-
based linear control systems have been investigated. The physical plant is in contin-
uous time, and the controller is in discrete time. The problems are solved by using
a sampled-data approach, which has taken the network-induced delays, data packet
dropouts, and measurement quantization into consideration. The measurement quan-
tizer is assumed to be logarithmic, and the network-induced delays are assumed to
have both a lower bound and an upper bound, which is more general than those as-
sumptions used in the literature. A new model based on the updating instants of the
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ZOH (instead of the sampling instants) has been formulated, and a passivity analy-
sis performance condition has been proposed in the form of an LMI. Based on this
condition, a controller design procedure has been developed, which guarantees that
the closed-loop NCS is passive. The results developed here can be further extended
to linear systems with parameter uncertainties, represented in either norm-bounded
or polytopic frameworks. Two illustrative examples have been provided to show the
usefulness and effectiveness of the proposed theoretical results. It is worth noting that
in this paper, only one side of the quantization effect (from sampler to controller) has
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Fig. 7. State response under (36).

been taken into consideration. A more challenging problem is to consider the case
where quantization effects appear in both sides (from sampler to controller and from
controller to ZOH). Moreover, future research effort could be directed towards solving
the passification problem via output-feedback controllers, which is useful when the
state variables are not measurable.
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Appendix A. Proof of Theorem 1. First, let us represent tk − ηk in (11) as

(37) tk − ηk = t− ηm − η(t),

where

(38) η(t) = t− tk + (ηk − ηm).

Then, from (10) we have

(39) 0 ≤ η(t) ≤ κ,

where κ is as given in (15). By substituting (37) into (11), we obtain

ẋ (t) = Ax (t) + BKf (x (t− ηm − η(t))) + Bw (t) ,

z (t) = Cx (t) + DKf (x (t− ηm − η(t))) + Dw (t) .(40)

In addition, considering the quantization behavior shown in (2)–(5), and according to
[10, 13], (40) can be expressed as

ẋ (t) = Ax (t) + BK (I + Λ (t)) (x (t− ηm − η(t))) + Bw (t) ,

z (t) = Cx (t) + DK (I + Λ (t)) (x (t− ηm − η(t))) + Dw (t) ,(41)

where

(42) Λ (t) = diag {Λ1 (t) ,Λ2 (t) , . . . ,Λn (t)} ,

with

(43) Λj (t) ∈ [−σj , σj ] , j = 1, . . . , n.

Choose the following Lyapunov–Krasovskii functional:

V (t) = xT (t)Px (t) +

∫ t

t−ηm

xT (α)Qx (α) dα

+

∫ 0

−ηm

∫ t

t+β

ẋT (α)M1ẋ(α)dαdβ +

∫ −ηm

−ηm−κ

∫ t

t+β

ẋT (α)M2ẋ(α)dαdβ,(44)

where P > 0, Q > 0, Mi > 0 are matrices to be determined. Then, along the solution
of system (41), the time derivative of V (t) is given by

V̇ (t) = 2xT (t)Pẋ (t) + xT (t)Qx (t) − xT (t− ηm)Qx (t− ηm)

+ ηmẋT (t)M1ẋ(t) −
∫ t

t−ηm

ẋT (α)M1ẋ(α)dα

+κẋT (t)M2ẋ (t) −
∫ t−ηm

t−ηm−κ

ẋT (α)M2ẋ (α) dα

≤ 2xT (t)Pẋ (t) + xT (t)Qx (t) − xT (t− ηm)Qx (t− ηm)

+ ẋT (t)Ψẋ(t) −
∫ t

t−ηm

ẋT (α)M1ẋ(α)dα−
∫ t−ηm

t−ηm−η(t)

ẋT (α)M2ẋ (α) dα,(45)
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where Ψ = ηmM1 + κM2. By the Newton–Leibniz formula, we have

∫ t

t−ηm

ẋ (α) dα = x (t) − x (t− ηm) ,(46) ∫ t−ηm

t−ηm−η(t)

ẋ(α)dα = x (t− ηm) − x (t− ηm − η (t)) .(47)

Then, for any matrices

U =
[
UT

1 UT
2 UT

3 UT
4

]T
and V =

[
V T

1 V T
2 V T

3 V T
4

]T
,

we have

2ζT (t)U

[
x (t) − x (t− ηm) −

∫ t

t−ηm

ẋ (α) dα

]
= 0,(48)

2ζT (t)U

[
x (t− ηm) − x (t− ηm − η (t)) −

∫ t−ηm

t−ηm−η(t)

ẋ(α)dα

]
= 0,(49)

where

ζ (t) =
[
xT (t) xT (t− ηm) xT (t− ηm − η (t)) wT (t)

]T
.

Then, from (41), (45), (48), (49), we obtain

(50)

V̇ (t) − 2wT (t)z(t) − γwT (t)w(t)

≤ 2xT (t)Pẋ (t) + xT (t)Qx (t) − xT (t− ηm)Qx (t− ηm)

+ẋT (t)Ψẋ(t) −
∫ t

t−ηm

ẋT (α)M1ẋ(α)dα−
∫ t−ηm

t−ηm−η(t)

ẋT (α)M2ẋ (α) dα

−2wT (t)z(t) − γwT (t)w(t) + 2ζT (t)U

[
x (t) − x (t− ηm) −

∫ t

t−ηm

ẋ (α) dα

]

+2ζT (t)V

[
x (t− ηm) − x (t− ηm − η (t)) −

∫ t−ηm

t−ηm−η(t)

ẋ(α)dα

]
≤ ζT (t)

(
Γ + ηmUM−1

1 UT + κVM−1
2 V T

)
ζ (t)

−
∫ t

t−ηm

[
ζT (t)U + ẋT (α)M1

]
M−1

1

[
UT ζ (t) + M1ẋ (α)

]
dα

−
∫ t−ηm

t−ηm−η(t)

[
ζT (t)V + ẋT (α)M2

]
M−1

2

[
V T ζ (t) + M2ẋ (α)

]
dα,
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where

Γ =

⎡⎢⎢⎣
Γ̄11 Γ12 Γ̄13 Γ̄14

∗ Γ22 Γ23 Γ24

∗ ∗ Γ̄33 Γ̄34

∗ ∗ ∗ Γ̄44

⎤⎥⎥⎦ ,

Γ̄11 = Γ11 + ATΨA, Γ̄14 = Γ14 + ATΨB,

Γ̄13 = Γ13 + PBKΛ (t) + ATΨBK (I + Λ (t)) ,

Γ̄33 = Γ33 + (I + Λ (t))KTBTΨBK (I + Λ (t)) ,

Γ̄34 = Γ34 + (I + Λ (t))KTBTΨB − Λ (t)KTDT ,

Γ̄44 = Γ44 + BTΨB.

In the following, we will show that (14) guarantees that V̇ (t)−2wT (t)z(t)−γwT (t)w(t) ≤
0. Notice that M1 > 0 and M2 > 0; then we have

[
ζT (t)U + ẋT (α)M1

]
M−1

1

[
UT ζ (t) + M1ẋ (α)

]
≥ 0,[

ζT (t)V + ẋT (α)M2

]
M−1

2

[
V T ζ (t) + M2ẋ (α)

]
≥ 0.

Therefore, from (51) we know that V̇ (t) − 2wT (t)z(t) − γwT (t)w(t) ≤ 0 if

Γ + ηmUM−1
1 UT + κVM−1

2 V T < 0,

which, by the Schur complement, is equivalent to

(51)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12Γ̃13 Γ14 U1 V1 ATM1 ATM2

∗ Γ22Γ23 Γ24 U2 V2 0 0

∗ ∗ Γ33 Γ̃34 U3 V3 (I + Λ (t))KTBTM1 (I + Λ (t))KTBTM2

∗ ∗ ∗ Γ44 U4 V4 BTM1 BTM2

∗ ∗ ∗ ∗ −η−1
m M1 0 0 0

∗ ∗ ∗ ∗ ∗ −κ−1M2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −η−1

m M1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

where Γ̃13 = Γ13 +PBKΛ (t) and Γ̃34 = Γ34 −Λ (t)KTDT . Rewrite (51) in the form
of

(52) Σ1 + Σ3Σ2 + ΣT
2 ΣT

3 < 0
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with

Σ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 Γ12 Γ13 Γ14 U1 V1 ATM1 ATM2

∗ Γ22 Γ23 Γ24 U2 V2 0 0

∗ ∗ Γ33 Γ34 U3 V3 KTBTM1 KTBTM2

∗ ∗ ∗ Γ44 U4 V4 BTM1 BTM2

∗ ∗ ∗ ∗ −η−1
m M1 0 0 0

∗ ∗ ∗ ∗ ∗ −κ−1M2 0 0

∗ ∗ ∗ ∗ ∗ ∗ −η−1
m M1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ2 =
[

0 0 Λ (t) 0 0 0 0 0
]
,

Σ3 =
[
KTBTP 0 0 −KTDT 0 0 KTBTM1 KTBTM2

]T
.

It is noted that for some matrix R > 0 we have(
Σ3R

− 1
2 + ΣT

2 R
1
2

)(
Σ3R

− 1
2 + ΣT

2 R
1
2

)T

≥ 0,

which gives rise to Σ3Σ2 + ΣT
2 ΣT

3 ≤ Σ3R
−1ΣT

3 + ΣT
2 RΣ2. Therefore, (52) holds if for

some matrix R > 0,

(53) Σ1 + Σ3R
−1ΣT

3 + ΣT
2 RΣ2 < 0.

Note that R is required to be diagonal positive definite. Then, by using a Schur
complement operation and by considering (43), (14) guarantees (51), and thus we
have V̇ (t) − 2wT (t)z(t) − γwT (t)w(t) ≤ 0. Integrating both sides with respect to t
over the time period [0, T ], we have

(54) V (T ) − V (0) − 2

∫ T

0

wT (t)z(t)dt− γ

∫ T

0

wT (t)w(t)dt ≤ 0.

Under the zero initial conditions, we have V (0) = 0 and V (T ) ≥ 0; thus (54) guaran-
tees (13), and the proof is completed.
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Abstract. The paper addresses both detection and stabilization problems involving communi-
cation errors and capacity constraints. Discrete-time partially observed linear systems are studied.
Unlike the classic theory, the sensor signals are transmitted to the estimator/controller over a noisy
digital communication link modeled as a stochastic stationary discrete memoryless channel. It is
shown that for noise-free plants, the Shannon capacity of the channel constitutes the border separat-
ing the cases where stabilization and reliable detection (asymptotic state estimation) with arbitrarily
large probability are and are not possible, respectively.

Key words. control over communications channels, communication constraints, Shannon infor-
mation theory, stabilization, networked control systems
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1. Introduction. The standard assumption in the classical control theory is
that data transmission required by the algorithm can be performed with infinite pre-
cision. However, due to the growth in communication technology, it is becoming more
common to employ digital finite capacity networks for the exchange of information
between plant components. Examples concern complex dynamical processes such as
advanced aircraft, spacecraft, automotive, industrial and defense systems, arrays of
microactuators, and power control in mobile communication. Bandwidth communi-
cation constraints are often major obstacles to control system design by means of the
classical theory. For instance, as was shown in [58], the design of control systems
for platoons of underwater vehicles strongly highlights the need for control strategies
that explicitly address the bandwidth limitation on communication between vehicles,
which is severely restricted underwater. All these emerging applications motivate the
development of a new chapter of control theory that deals with networked systems and
combines the control and communication issues, taking into account all the limitations
on communication between sensors, controllers, and actuators.

Recently there was a good deal of research activity in this field; e.g., see [2, 5, 7,
12, 13, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 47, 50, 51, 52, 53, 57, 59, 60, 61, 62, 63] and the references therein. In particular,
optimization problems for perfect (memoryless and noise-free) finite alphabet chan-
nels and noisy Gaussian channels with power constraints were studied in [61, 62, 63];
such problems for discrete perfect channels were also examined in [5, 36, 52]. The
related problem of the design of optimal sequential quantization schemes for uncon-
trolled Markov processes was addressed in [6, 62]. Various schemes for stabilization
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and observation of unstable linear plants via limited capacity channels were proposed
and analyzed in, e.g., [2, 3, 7, 12, 19, 23, 29, 30, 31, 41, 44, 45, 47, 57, 59, 60, 62]. The
smallest data rate above which stabilization/observation of a linear plant is possible
was derived in [2, 19, 41, 43, 44, 45, 60, 62] in various settings, including both stochas-
tic [41, 43, 44, 45] and deterministic [2, 19, 52, 60, 62] ones. The focus in these works
was on the channel quantization effects and perfect finite alphabet channels. This is a
natural necessary step in developing the theory. At the same time, this is in contrast
with the classic communication theory, where limited capacity channels are modeled in
terms of not only quantization effects but also channel errors and time delays. More-
over, many of the major results in this theory are grown on the ground of noisy channel
models. So incorporating noisy discrete channels into control problem models seems
to be an unavoidable step in the synthesis of the control and communication theories.

To our knowledge, observability/stabilizability of unstable linear plants over noisy
discrete channels was addressed in [24, 29, 30, 31, 50, 51, 57, 59]. In [24, 50, 51, 57], the
focus was on scalar linear systems with additive disturbances and mth moment observ-
ability/stabilizability. It was shown in [50, 51] that, in general, the Shannon concept
of capacity cannot serve as the proper figure-of-merit for erroneous channels in control
feedback loops. Both sufficient and necessary criteria for observability/stabilizability
were given in [50, 51] in terms of a new parametric notion of the channel capacity
(called anytime capacity) introduced in [50]. An encoder-decoder pair for estimating
the state of a scalar noisy linear system via a noisy binary symmetric channel was
proposed in [24]. It was shown by simulation that the estimation error is bounded.
Another such pair was constructed in [57] for such a channel with a perfect feedback
link. Conditions ensuring that the mathematical expectation of the estimation error is
bounded were obtained. In [67], the focus is on stabilizability by means of memoryless
controllers in the case where the channels transmitting both observations and controls
are noisy and discrete, and the plant is scalar, linear, and stochastic. The works [29,
30, 31] deal with the moment stabilizability of uncertain linear systems with additive
disturbances over truncation channels. Such a channel transmits binary code words
by dropping a random number of concluding bits. This generalization of the classic
erasure channel is motivated by certain wireless communication applications in [29].
Constructive conditions for the robust moment stabilizability are obtained, and a
stabilizing controller of a limited computation complexity is explicitly constructed.

It should be remarked that the moment observability/stability formally permits
the error at a given time to be large and ensures only that large errors occur with
a small probability. Modulo the strong law of large numbers, this guarantees only
that along almost any trajectory, the frequency of large errors is small. The natural
stronger control objective is to exclude large errors altogether. For stochastic models,
this takes the form of almost sure observability/stabilizability. Such an observabil-
ity/stabilizability via noisy communication links was addressed in [34, 35, 59] for
noise-free linear time-invariant (LTI) plants. A necessary condition was established
for general erroneous channels in [59]. This condition is that the Shannon capacity
c of the channel [56] is greater than or equal to the sum η of the logarithms of the
absolute values of the system unstable eigenvalues. The sufficiency of this condition
(with the strict inequality sign) was justified for only a particular channel model,
i.e., the erasure channel with a perfect feedback. Such a channel either transmits the
message correctly or loses it. In the latter case, the transmitter becomes aware of the
failure via the feedback communication link. It was shown that whenever c > η and
there are no plant disturbances, the system is almost surely asymptotically observable
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and stabilizable over the erasure channel. A similar stabilizability result is obtained
in [27] under a stronger assumption about the erasure channel.1

This paper considers observability/stabilizability almost surely and with as large
a probability as desired for general noisy discrete memoryless channels (DMC). We
study how both quantization effects and channel errors limit the capability for reliable
detection or stabilization. In doing so, we look for criteria that are “almost” exhaus-
tive: they are necessary and “almost” sufficient. Furthermore, we examine both cases
where the feedback communication link is and is not available, respectively. The ob-
jective is to provide a theoretical benchmark by discovering the role of the fundamental
concept introduced by Shannon: the capacity of the erroneous channel [54].

We show that for general DMC, this capacity c constitutes the border between
the cases, where the noiseless LTI partially observed plant is and is not, respectively,
almost surely asymptotically observable/stabilizable. More precisely, for such an ob-
servability/stabilizability to hold, the inequality c ≥ η is necessary and c > η is
sufficient. (We recall that η is the sum of the logarithms of the absolute values of the
system unstable eigenvalues.) In its necessity part, this fact was previously established
in [59] for more general (not necessarily discrete and memoryless) channels. We sup-
plement this result from [59] by showing that the inequality c ≥ η remains necessary
not only for almost sure but also certain weaker forms of observability/stabilizability.
For example, it holds whenever some observer/controller keeps the time-average es-
timation/stabilization error bounded with a nonzero probability. We also specify the
necessity of the above bound c by showing that whenever it is trespassed η > c, any es-
timation/stabilization algorithm almost surely exponentially diverges. The sufficiency
part of our result deals with arbitrary DMC and thus extends the corresponding re-
sults from [27, 59], which concern only the erasure channels. This part of our work
can be viewed as completing the research [59] in the important case of DMC. We also
show that the inequality c > η is sufficient irrespective of availability of the feedback
communication link.

More specifically, we show that in the absence of such a link, the estimation error
can be made decaying to zero with as large a probability as desired by a proper design
of the observer. However, this is achieved at the expense of using code words whose
lengths grow as the estimation process progresses. It should be stressed that despite
this, the observer produces an asymptotically exact state estimate online. In other
words, the estimate of the state at time t is generated at time t, i.e., with no delay.
At the same time, the increasing code word lengths require that the memory used
by the estimator should increase accordingly.2 This disadvantage can be discarded
if a perfect feedback communication link is available: the result of any transmission
across the (feedforward) channel becomes known to the transmitter by the time of
the next transmission. This makes it possible to establish a complete synchronization
of the encoder and decoder, within which the encoder duplicates the state estimate
generated by the decoder. Our main result concerning the detection problem asserts
that whenever c > η, the above feedback enables one to design an observer on the basis
of fixed length code words for which the estimation error decays to zero almost surely.

A realistic converging observer is explicitly constructed. However, the scheme
for the transmission of information across the channel is not described in detail. The
point is that the observer employs block codes transmitting data at a given rate below

1This is the assumption on p. 736 about the uniform convergence of the average dropout rate to
the limit, which makes the model from [27] a particular case of that from [37].

2The same feature is characteristic of the anytime coding-decoding schemes considered in [50, 51].
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the channel capacity c with a given probability of error. Classic information theory
guarantees the existence of such a code. Moreover, the invention of such codes is the
standard long-standing task in information sciences. It is supposed that a relevant
solution should be employed to construct the observer. Thus it is shown that whenever
the observability condition c > η is satisfied and a perfect feedback link is available,
almost sure detection can be ensured by a realistic observer with bounded (as time
progresses) algebraic complexity and memory consumption per step, which is based
on classic block coding-decoding schemes of communication.

Our results on stabilizability are similar to those concerning observability. How-
ever, there is a strong distinction. Specifically, we show that unlike detection, stabi-
lization needs far less feedback communication. As a preliminary fact, we first show
that to make the stabilization error decaying to zero almost surely by using fixed
length code words, a feedback communication of arbitrarily small rate is sufficient.
Second, we demonstrate that in fact such a communication requires no special means
(such as a special feedback link), since it can be implemented by means of control.
This can be arranged thanks to the fact that, on the one hand, the decoder-controller
influences the motion of the system and, on the other hand, the sensor observes this
motion and feeds the coder by the observation. So the controller is able to encode a
message by imparting the motion a certain specific feature. The coder can receive the
message by observing the motion and detecting this feature.

Apparently, control should be employed for information transmission with cau-
tion, since this potentially contradicts the main control objective [59]. For example,
the best result of stabilization would be to keep the state exactly at the required
position. However, the information transmission along the above lines requires us
to deviate the state from this position. Thus a certain trade-off between the major
control objective and communicating information by means of control should be es-
tablished. Our first stabilization result serves this trade-off by showing that as little
information as desired may be transmitted by means of control to achieve stability.

The focus on noise-free plants is motivated by the objective of the paper: to high-
light the role of the Shannon (ordinary) capacity. The point is that in the presence
of additive bounded disturbances, the border between the cases where the plant can
and cannot, respectively, be observed/stabilized with an almost sure bounded error is
constituted not by the ordinary c but the zero error capacity c0 of the channel, another
fundamental characteristic introduced by Shannon [55]. In particular, if c0 < η, the
system affected by uniformly and arbitrarily small external disturbances can never be
observed/stabilized: the error is unbounded almost surely, irrespective of which causal
algorithm of observation/stabilization is employed. These facts were established for
erasure infinite alphabet channels in [32] and general DMC in [39]. A result similar
in spirit is obtained in [30, 31] for truncation channels and noise-free LTI plants. It
is shown that for such a plant to be uniformly stabilizable (i.e., with an error uni-
formly bounded over the initial states from the unit ball) over such a channel, it is
necessary that a certain number rmin of bits is not lost under any circumstances (i.e.,
with probability 1), and this number rmin exceeds the above quantity η. Since rmin

equals the zero-error capacity of the channel at hand, this claim is in harmony with
the results of [39]. It should be remarked that c0 ≤ c, in general, and 0 = c0 < c

for many particular communication channels [25, 65]. It follows that an asymptot-
ically unstable (η > 0) plant can never be observed/stabilized with an almost sure
bounded error over such channels in the presence of disturbances, whereas almost
sure observation/stabilization is possible, provided the disturbance is zero and η < c.
A problem of stabilization via noisy channels in probability was considered for linear
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plants with bounded disturbances in [38, 51], and necessary and sufficient conditions
were presented. Furthermore, detailed discussions of these topics can be found in the
research monograph [33].

The observers/controllers considered in this paper employ quantizers with ad-
justed sensitivity [7, 62] in the multirate fashion [47]. Such a quantizer can be viewed
as a cascade of a multiplier by an adjustable factor and an analog-to-digital converter.
To be transmitted across the channel, the outputs of this converter are encoded by
means of low-error block codes. This is in the vein of the classic source-channel sep-
aration principle [4, 17, 18]. (For the state estimation problem, a similar approach
was earlier considered in [50] in the form of the following separation of the source
and channel. At first, a coder-decoder pair is designed under the assumption that
the channel is perfect. Then another coder-decoder pair is constructed to carry the
outputs of the first coder reliably across the channel.) For the stabilization problem,
the above scheme is considered in connection with a limited communication feedback
of arbitrarily small capacity. This feedback is used to put the values of only one
scalar variable computed by both the coder and decoder in harmony. This variable
is the above adjustable factor. The synchronization is delayed and, as a result, not
complete: the values become coherent only if the current feedforward transmission
across the channel is errorless. However, we show that this is enough to make the
stabilization error almost surely decaying to zero.

The view of the control loop as a link transmitting information is not new. A pos-
teriori, this means that the control loop does transmit information, though its contents
may not be clearly specified a priori [11]. The “constructive” part of the same view
is the idea that the control signals can be employed as carriers of a priori prespecified
information from the decoder-controller to the coder. For various settings, various
schemes of such a transmission were considered in, e.g., [34, 38, 51, 59].

The paper is organized as follows. Sections 2 and 3 contain the statements of the
detection and stabilization problems. The main results are formulated in section 5,
which is prefaced by the list of basic notations and assumptions in section 4. The
necessary conditions for observability and stabilizability are justified in sections 6
and 7, respectively. Sections 8 and 9 are focused on the respective sufficient conditions.
There also is an appendix containing the proof of a technical result.

2. Detection problem. We consider unstable discrete-time invariant linear
plants of the form

(2.1) x(t + 1) = Ax(t); x(0) = x0, y(t) = Cx(t).

Here x ∈ R
n is the state and y ∈ R

ny is the measured output. The instability means
that there is an eigenvalue λ of the matrix A with |λ| ≥ 1. The initial state x0 is a
random vector. The objective is to estimate the current state on the basis of the prior
measurements.

We consider the case where this estimate is required at a remote location. The
only way to communicate information from the sensor to this location is via a given
random noisy discrete channel. So to be transmitted, measurements must first be
translated into a sequence of symbols e from the finite input alphabet E of the channel.
This is done by a special system’s component, referred to as the coder. Its outputs
e are then transmitted over the channel and transformed by some sort of random
disturbance or noise into a sequence of channel’s outputs s from a finite output alphabet
S. By employing the prior outputs s, the decoder(-estimator) produces an estimate
x̂ of the current state x. In this situation illustrated in Figure 1, the observer is
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State estimate

Plant

Decoder -
estimator

Discrete

Channel
Coder

Sensor

Feedback communication link

Fig. 1. Estimation via a limited capacity communication channel.

constituted by the coder-decoder pair.
The decoder is defined by an equation of the form

(2.2) x̂(t) = X [t, s(0), s(1), . . . , s(t)] .

We consider two classes of coders, each giving rise to a particular problem setup. The
first class is related to feedback communication channels [55]: the transmission result
s(t) becomes known at the coder site by time t + 1 of the next transmission. The
second class corresponds to the channels with no feedback. The coders from these
classes are said to be with and without a feedback and are given by the following
equations, respectively:

e(t) = E[t, y(0), . . . , y(t), s(0), . . . , s(t− 1)] ∈ E,(2.3)

e(t) = E[t, y(0), . . . , y(t)] ∈ E.(2.4)

The communication feedback enables the coder (2.3) to be aware of the actions of
the decoder via duplicating the computations in accordance with (2.2). This gives the
coder the ground to try to compensate for the previous channel errors. However, it
should be noted that this feedback does not increase the rate at which the information
can be transmitted across the channel with as small a probability of error as desired
[10, 54]. At the same time, it may increase the rate at which information can be
transmitted with the zero probability of error [55]. The feedback may also increase
the reliability function [68] and simplify coding and decoding operations [65]. For
further discussion of this issue and a detailed survey, we refer the reader to [65].
The role of communication feedback in control and state estimation was discussed in
[59, 60, 62, 63, 66].

The information received by the decoder is limited to a finite number of bits at
any time. So the decoder is hardly able to restore the state with the infinite exactness
x̂(t) = x(t) for a finite time. In this paper, we pursue a more realistic objective of
detecting the unstable modes of the system and accept that an observer succeeds if

(2.5) |x(t) − x̂(t)| → 0 as t → ∞.

Definition 2.1. The coder-decoder pair is said to detect or track the state when-
ever (2.5) is true and to keep the estimation error (or time-average error) bounded if
the following much weaker properties hold, respectively:

(2.6) lim
t→∞

|x(t) − x̂(t)| < ∞, lim
t→∞

1

t

t−1∑
θ=0

|x(θ) − x̂(θ)| < ∞.
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Fig. 2. Stabilization via a limited capacity communication channel.

The main question to be discussed is how low the data rate of the channel can
be made before the construction of a coder-decoder pair detecting the state becomes
impossible. In this paper, we focus on the cases where “detecting” means either
“detecting with arbitrarily large probability” p < 1 or “detecting almost surely.”

3. Stabilization problem. Now we consider the controlled version of the un-
stable plant (2.1):

(3.1) x(t + 1) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t),

where u ∈ R
nu is the control. The objective is to construct a controller that asymp-

totically stabilizes the system: x(t) → 0 and u(t) → 0 as t → ∞.
We examine a remote control setup. Based on the prior observations, the coder

emits a message e ∈ E into the channel. This message may be corrupted during the

transmission e
channel noise−−−−−−−−→ s ∈ S. Proceeding from the messages s received over the

channel up to the current time t, the decoder(-controller) selects a control u(t):

(3.2) u(t) = U [t, s(0), s(1), . . . , s(t)] .

In this situation, depicted in Figure 2, the controller is assembled of the coder and
decoder.

We still consider two classes of coders given by (2.3) and (2.4), respectively.
The first of them is associated with the case where there is a perfect feedback in
communication between the coder and decoder (see Figure 3). The second class deals
with the situation where no such a feedback is available.

Definition 3.1. A coder-decoder pair is said to stabilize the system if

(3.3) |x(t)| → 0 and |u(t)| → 0 as t → ∞

and to keep the stabilization error (or time-average error) bounded if the much weaker
properties hold, respectively:

(3.4) lim
t→∞

|x(t)| < ∞, lim
t→∞

1

t

t−1∑
θ=0

|x(θ)| < ∞.

What is the bound on the data rate of the channel above which there exists a
stabilizing coder-decoder pair? Here “stabilizing” means either “stabilizing almost
surely” or “stabilizing with as large a probability as desired.”

4. Notations and assumptions. The symbols P and E stand for probability
and expectation, respectively. For a random variable A ∈ A = {a}, the conditional
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Fig. 3. Stabilization under a communication feedback.

probability given A = a is denoted by P (·|A = a) or P (·|a), and P (a) := P (A = a).
For two such variables A and B ∈ B = {b}, the symbol I(A,B) stands for the mutual
information:

(4.1) I(A,B) =

∫
P (da, db) log2

P (da, db)

P (da) ⊗ P (db)
= E log2

P (da, db)

P (da) ⊗ P (db)

if the joint distribution P (da, db) of A and B has the density P (da,db)
P (da)⊗P (db) with respect

to the probability measure P (da) ⊗ P (db), and I(A,B) = ∞ otherwise [48]. (Here
and throughout, log2 0 := −∞, ±∞ · 0 := 0.) If the sets A,B are finite, then

I(A,B) = H(B) −H(B|A) = H(A) −H(A|B) =
∑

a∈A,b∈B

P (a, b) log2

P (a, b)

P (a)P (b)
,

where the symbols H(B), Ha(B) = HA=a(B), and H(B|A) denote the entropy, the
conditional entropy given A = a, and the averaged conditional entropy, respectively,
i.e.,

(4.2) H(B) := −
∑
b∈B

P (b) log2 P (b), Ha(B) = −
∑
b∈B

P (b|a) log2 P (b|a),

H(B|A) = EHA(B) =
∑
a∈A

P (a)Ha(B).

The probability density of a random vector V ∈ R
s is denoted by pV (·) and that given

A = a by pV (·|A = a) = pV (·|a). The differential entropy of V is the quantity

(4.3) h(V ) := −E log2 pV (V ) = −
∫

Rs

pV (v) log2 pV (v) dv.

This entropy can be viewed as a measure of information required to describe the
random vector to a particular accuracy. Approximately h(V ) + sb + log2 mesB1

0

bits suffice to describe V ∈ R
s to b-bit accuracy. (Here B1

0 is the unit ball in R
s

and mes is the Lebesgue measure.) The differential entropy can take negative and
infinite values. The symbol hB=b(V ) stands for the conditional differential entropy
given B = b.

The following assumptions are adopted throughout the paper.
Assumption 4.1. The coder sends signals to the decoder over a given stationary

discrete noisy memoryless channel [14, 18]. In other words, given a current channel in-
put e(t), the current output s(t) is statistically independent of all other inputs and out-
puts e(j), s(j), j �= t, and the conditional probability W (s|e) := P [s(t) = s|e(t) = e],
s ∈ S, e ∈ E, does not depend on time t.
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Note that this model incorporates the effect of message loss by including a special
“void” symbol ∅ in the output alphabet S. Then s(t) = ∅ means that the message
e(t) is lost by the channel.

Assumption 4.2. The plant does not affect the operation of the channel: given
an input e(t), the output s(t) is statistically independent of the initial state x0.

Assumption 4.3. The initial state x0 has a probability density p0(x).
Assumption 4.4. The pair (A,C) is detectable.
When dealing with the stabilization problem, we impose one more assumption.
Assumption 4.5. The pair (A,B) is stabilizable.
To state the results of the paper, we need the notion of the Shannon capacity of

the stationary discrete memoryless channel. This is the maximum mutual information
between the input and output of the channel [14]:

(4.4) c = max
P E

I(e, s).

Here the maximum is over all probability distributions PE on the input channel
alphabet E = {e}. Whereas PE is interpreted as the probability distribution of e,
the joint distribution of the channel input e and output s is taken to be that of (e, s)
when s results from sending e over the channel: PE,S(e, s) := W (s|e)PE(e).

5. The domains of observability and stabilizability are determined by
the Shannon channel capacity.

5.1. Detection problem.
Theorem 5.1. Suppose that Assumptions 4.1–4.4 hold. Denote by λ1, . . . , λn the

eigenvalues of the system (2.1) repeating in accordance with their algebraic multiplic-
ities and by c the capacity (4.4) of the communication channel. Then the following
implications are true:

c > η(A) :=
∑

λj :|λj |≥1

log2 |λj |

⇓ ⇓
(a) There exists a coder-decoder pair

with a feedback (2.2), (2.3) that
detects the state (i.e., (2.5) holds)

almost surely.

(b) For arbitrary probability value
p ∈ (0, 1), there exists a

coder-decoder pair without a
feedback (2.2), (2.4) that detects the
state with the probability p or better.

⇓ ⇓
(c) For any probability value p ∈ (0, 1), there exists a coder-decoder pair with a

feedback (2.2), (2.3) that keeps the estimation error bounded with the probability p
or better.

⇓
(d) There exists a coder-decoder pair with a feedback (2.2), (2.3) that keeps the

estimation time-average error bounded with a nonzero probability.

⇓
c ≥ η(A)

The proof of this theorem will be given in sections 6 and 8. The explicit construc-
tions of tracking coder-decoder pairs will be presented in subsections 8.3 and 8.5.
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5.2. Stabilization problem. Similar results are valid for the stabilization prob-
lem.

Theorem 5.2. Suppose that Assumptions 4.1–4.5 hold, and adopt the notations
c and η(A) from Theorem 5.1. Then the following implications are true:

c > η(A)

⇓
(a) There exists a coder without a communication feedback (2.4) and a decoder

(3.2) that stabilize the system almost surely.

⇓
(b) There exists a coder with a communication feedback (2.3) and a decoder (3.2)

that stabilize the system almost surely.

⇓
(c) For arbitrarily probability value p ∈ (0, 1), there exists a coder with a

communication feedback (2.3) and a decoder (3.2) that stabilize the system with
the probability p or better.

⇓
(d) There exists a coder with a communication feedback (2.3) and a decoder (3.2)
that keep the time-average stabilization error bounded with a nonzero probability.

⇓
c ≥ η(A)

The proof of this theorem will be given in sections 7 and 9. The explicit construc-
tion of a stabilizing coder-decoder pair will be offered in subsections 9.1 and 9.2.

5.3. Comments. The implications (a) ⇒ c ≥ η(A) and (b) ⇒ c ≥ η(A) con-
tained in Theorems 5.1 and 5.2, respectively, were proved in [59] for general noisy
channels (not necessarily discrete and memoryless). The implications c > η(A) ⇒ (a)
and c > η(A) ⇒ (b) from Theorems 5.1 and 5.2, respectively, were justified in [59]
for a particular DMC: the erasure channel with arbitrary finite alphabet. The im-
plications (a) ∨ (b) ⇒ (c) ⇒ (d) from Theorem 5.1 and (a) ⇒ (b) ⇒ (c) ⇒ (d)
from Theorem 5.2 are evident. They are mentioned to stress that the claims (a), (b),
(c), and (d) are included in the chains of implications with approximately identical
extreme terms. Thus these statements are “almost equivalent,” and the inequality
c > η(A) is sufficient and “almost necessary” for the systems (2.1) and (3.1) to be
detectable and stabilizable, respectively, via the noisy communication channel.

In spirit, Theorem 5.1 resembles the celebrated Shannon channel coding theorem
[14, 18, 54]. Indeed, the latter states that whenever the source produces information
at the rate R < c bits per unit time, the success, i.e., errorless transmission, can be
ensured with as large a probability as desired. If, conversely, R > c, this is impossible.
Here the means to ensure success are the rules to encode and decode information before
and after transmission, respectively. Theorem 5.1 asserts just the same, provided the
“success” is understood as asymptotic tracking (2.5) of the state, the “means” are the
coder and decoder-estimator, and R is replaced by η(A). This analogy is enhanced by
the similarity between the quantities R and η(A). Each of them can be interpreted
as the unit-time increment of the number of bits required to describe the entity that
the receiver wants to know.
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Indeed, in the case of the Shannon theorem, this entity is abstract information
generated by a source at the rate R, and the interpretation is apparent. In the case
considered in this paper, this entity is the “unstable” part x+ of the state x (since
asymptotic tracking (2.5) does not concern the “stable” x− one).

Explanation 5.1. Here and throughout the paper, x± ∈ L±, where L+ and L−
are the invariant subspaces of A related to the unstable {λj : |λj | ≥ 1} and stable
{λj : |λj | < 1} parts of its spectrum, and A± denotes the operator A acting on its
invariant subspace L±.

With regard to the relation x+(t + 1) = A+x+(t), simple calculus (see, e.g., [45]
or (6.6)) shows that the entropy (4.3) of x+(t) evolves as follows:

h[x+(t + 1)] = h[x+(t)] + log2 |detA+|,

where det is the determinant. Thus the number of bits required to describe x+(t) to
any given accuracy b increases by log2 |detA+| per unit time. It remains to note that
log2 |detA+| = η(A).

The above remark on the similarity between the channel coding theorem and
Theorem 5.1 clearly extends on Theorem 5.2. Another point of similarity between
Theorem 5.2 and the classic information theory concerns the communication feedback.
Whereas the classic theory states that this feedback does not increase the rate at which
data can be reliably transmitted across the noisy channel [10, 54], Theorem 5.2 shows
that the feedback does not visibly extend the class of stabilizable noise-free plants.

Equations (2.2)–(2.4), (3.2) impose no restrictions on the memories of the coder
and decoder. At the same time, the observer reliably tracking the state in the presence
of the communication feedback and the stabilizing controller that will be explicitly
constructed further consume limited (as time progresses) memories.

In the case of the perfect channel (E = S and W (e|e) = 1), Theorems 5.1 and 5.2
come to results from [41, 42, 43, 44, 45, 47, 53, 60, 62], and the strict inequality
c > η(A) is necessary for the existence of both the tracking observer and the stabilizing
controller.

5.4. Complements to the necessary conditions. The last implication (d) ⇒
c ≥ η(A) from both Theorems 5.1 and 5.2 can be complemented and enhanced by the
following facts.

Proposition 5.3. Suppose that c < η(A). Then the state can never be observed
and the plant can never be stabilized with a bounded error:

lim
t→∞

|x(t) − x̂(t)| = ∞
lim
t→∞

|x(t)| = ∞

}
a.s. for the plant

{
(2.1)
(3.1)

}
, any coder,(5.1)

and

{
decoder-estimator
decoder-controller

.

This divergence is as fast as exponential. Specifically, pick α > 1 so that log2 α <
η(A)−c

dim x . Then

lim
t→∞

α−t|x(t) − x̂(t)| = ∞
lim
t→∞

α−t|x(t)| = ∞

}
a.s. for the plant

{
(2.1)
(3.1)

}
, any coder,(5.2)

and

{
decoder-estimator
decoder-controller

.
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Remark 5.1. Proposition 5.3 entails that (d) ⇒ c ≥ η(A) in the context of both
Theorems 5.1 and 5.2.

Indeed, consider the context of Theorem 5.1 for the definiteness. Suppose that
c < η(A). Then by (5.2), there exist random times 0 < τ1 < τ2 < · · · such that almost
surely |x(τi) − x̂(τi)| ≥ ατi for all i. Then

1

τi + 1

τi∑
θ=0

|x(θ) − x̂(θ)| ≥ |x(τi) − x̂(τi)|
τi + 1

≥ ατi

τi + 1
→ ∞ as i → ∞ a.s.

in violation of (d). Hence (d) ⇒ c ≥ η(A).
The probability of large observation and stabilization errors is estimated in the

following proposition.
Proposition 5.4. Suppose that the system has no stable modes, η(A) > c, and

the initial state x0 is almost surely bounded and has a finite differential entropy. Then

lim
t→∞

P
[
|x(t) − x̂(t)| ≥ b(t)

]
lim
t→∞

P
[
|x(t)| ≥ b(t)

]
⎫⎪⎬⎪⎭ ≥ 1 − c

η(A)
for the plant

{
(2.1)
(3.1)

}
, any coder,

and

{
decoder-estimator
decoder-controller

.

Here b(t) > 0, t = 0, 1, . . . , is any sequence such that log2 b(t)
t → 0 as t → ∞.

Remark 5.2. This proposition implies that c ≥ η(A) whenever there exist a
coder and decoder that keep the mathematical expectation of the error ε(t) (or at least

the time average 1
t

∑t−1
θ=0 Eε(θ)) bounded.

The proofs of Propositions 5.3 and 5.4 will be given in sections 6 and 7 (where
the detection and stabilization problems will be addressed, respectively).

6. Proofs of Propositions 5.3 and 5.4 for the state estimation problem
and the (d) ⇒ c ≥ η(A) part of Theorem 5.1. In this section, the focus is
on the proof of Proposition 5.3. Proposition 5.4 will be justified within this proof,
whereas the above part of Theorem 5.1 follows from Proposition 5.3 by Remark 5.1.

We start with a simple observation. So far as the asymptotic tracking does not
concern the stable modes, it seems more or less clear that the proof can be confined
to systems with only unstable ones. This is ensured by the following lemma, which
employs the notations from Explanation 5.1.

Lemma 6.1. Suppose that some coder-decoder pair keeps the estimation error
bounded with the probability better than p for the primal system (2.1). Then such a
pair can also be constructed for the system

(6.1) x+(t + 1) = A+x+(t), x+(t) ∈ L+, x+(0) = x+
0 , y(t) = Cx+(t)

with some initial random vector x+
0 that satisfies Assumptions 4.2 and 4.3, is almost

surely bounded, and has a finite entropy.
It should be remarked that generally speaking, the system (6.1) is considered on

a new underlying probability space. However, Assumptions 4.1–4.4 are still true and
the channel parameters W (s|e) remain unchanged.

It is easy to see that equations (6.1) describe the processes in the primal system
(2.1) starting at x(0) = x+

0 ∈ L+. A certain technical nontriviality of Lemma 6.1
comes from the fact that due to Assumption 4.3, the probability to start at x(0) ∈ L+
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is zero (if L+ �= R
n). At the same time, the assumptions of the lemma allow the initial

coder-decoder pair to produce asymptotically infinite estimation errors not only with
zero but a positive probability. To keep the estimation error bounded for the processes
(6.1), this pair should be modified in general.

The proof of Lemma 6.1 is placed in the appendix.
To prove Proposition 5.3, we also need the concept of the joint entropy of a vector

and a discrete quantity [48]. Let a random vector V ∈ R
s have a probability density

and a random quantity B take values in a finite set B with elements b. We denote
by |M | the size of the set M , and by db the counting measure, i.e., the function
B′ → |B′| of the set B′ ⊂ B. The random quantity B has a probability density
pB(b) := P (B = b) with respect to the measure db, and the definition of the entropy
H(B) from (4.2) takes the form similar to (4.3): H(B) = −

∫
B
pB(b) log2 pB(b) db.

The joint entropy of (V,B) ∈ R
s × B is introduced by continuing this analogy. We

note that (V,B) has a probability density pV,B(v, b) := pV (v|B = b)P (B = b) with
respect to the measure dx⊗ db, and we set

H(V,B) := −E log2 pV,B(V,B) = −
∫

Rs×B

pV,B(v, b) log2 pV,B(v, b) dvdb.

This entropy inherits many properties of (4.2) and (4.3). Now we list some of them.
In doing so, we assume that Bi are random quantities taking finitely many values,

either V̂ := V or V̂ := (V,B1), Ψ is a deterministic function, and h(V ) ∈ R. The

conditional entropy HB=b(V̂ ) = Hb(V̂ ) =: H(b) is the entropy of V̂ with respect to the

probability given B = b, and H(V̂ |B) = EH(B) is the averaged conditional entropy.

(If V̂ = V , we use h instead of H here.) The following properties hold:

h(V ) ∈ R ⇒ −∞ < H(V̂ |B) ≤ H(V̂ ) < +∞, I(V,B) = h(V ) − h(V |B),(6.2)

H(V,B1|B) = h(V |B1, B) + H(B1|B) ≥ h(V |B),(6.3)

h(V )
[9]

≤ s

2
log2

(
2πeE|V |2

)
, h(V |B) = h(V − Ψ(B)|B).(6.4)

The next preliminary fact is an estimate of uncertainty about the current state
x(t) given the output of the decoder. Further, the symbols S and E stand for sequences
{s(t)}∞t=0 and {e(t)}∞t=0. Whenever 0 ≤ m− ≤ m+, we put S

m+
m− := {s(j)}m+

j=m−
and

define E
m+
m− similarly.

Lemma 6.2. Suppose that detA �= 0, h(x0) ∈ R, and c is the capacity (4.4) of
the channel. Then for any coder-decoder pair with a feedback (2.2), (2.3), the entropy
h
[
x(t)|St

0

]
is finite and

(6.5) h
[
x(t)|St

0

]
≥ h
[
x0

]
+ t
(
log2 |detA| − c

)
− c.

Proof. Note first that by (2.1), the probability densities of x(t) given Sθ
0 evolve

as follows: pj(x) = |detA|−j × p0(A
−jx), where pj(·) := px(j)(·|Sθ

0) for all j and θ is
a fixed time. By (4.3), this implies

(6.6) h
[
x(t)
∣∣Sθ

0

]
= h
[
x0

∣∣Sθ
0

]
+ t log2 |detA|.

By the standard arguments [10, 17, 48, 54], I
[
x0, S

t
0

]
≤ c(t + 1). It remains to note

that I
[
x0, S

t
0

]
= h[x0] − h

[
x0

∣∣St
0

]
and to employ (6.6) with θ := t.
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Lemma 6.3. Suppose that |detA| > 1, h(x0) ∈ R, and |x0| < b0 almost surely.
Then, for any coder-decoder pair,

P
[
|x(t) − x̂(t)| ≤ b

]
≤ c

log2 |detA| +
1

t
(6.7)

×
1 − h(x0) + c + n

2 log2

(
2πemax{b2, b20}

)
log2 |detA| ∀b > 0, t ≥ 1.

A similar inequality can be obtained from Lemma 3.2 in [59].
Remark 6.1. Lemma 6.3 evidently justifies Proposition 5.4 for the detection

problem.
Proof of Lemma 6.3. Pick t and denote by B the random event {|x(t) − x̂(t)| ≤

b} and by I its indicator: I = 1 if B holds and I = 0 otherwise. We also put
η := log2 |detA| and p := P

[
B
]
. Then

(6.8) H
[
x(t), I

∣∣St
0

] (6.3)

≥ h
[
x(t)
∣∣St

0

] (6.5)

≥ h[x0] − c + t
[
η − c

]
.

The random variable I takes only two values. So its entropy (given any event) does
not exceed 1. Hence

H
[
x(t), I

∣∣St
0

] (6.3)
=== h

[
x(t)
∣∣I, St

0

]
+ H

[
I
∣∣St

0

]
≤ 1 +

∑
σ=0,1

P (I = σ)hI=σ

[
x(t)
∣∣St

0

]
.

Repeating the arguments underlying (6.6) shows that hI=0

[
x(t)
∣∣St

0

]
= hI=0

[
x0

∣∣St
0

]
+

tη. Hence

H
[
x(t), I

∣∣St
0

]
≤ 1 + (1 − p)hI=0

[
x0

∣∣St
0

]
+ (1 − p)tη + phI=1

[
x(t)
∣∣St

0

]
(6.2)

≤ 1 + (1 − p)hI=0

[
x0

]
+ (1 − p)tη + phI=1

[
x(t)
∣∣St

0

]
.

Here |x0| ≤ b0 almost surely, and so hI=0[x0]
(6.4)

≤ n
2 log2[2πeE(|x0|2|J = 0)] ≤

n
2 log2[2πeb

2
0]. Furthermore,

hI=1

[
x(t)
∣∣St

0

] (2.2),(6.4)
==== hI=1

[
x(t) − x̂(t)

∣∣St
0

] (6.2)

≤ hI=1

[
x(t) − x̂(t)

]
(6.4)

≤ n

2
log2

[
2πeE

(
|x(t) − x̂(t)|2︸ ︷︷ ︸

≤b2 whenever B holds

∣∣B)] ≤ n

2
log2

[
2πeb2

]
.

Thus we see that

H
[
x(t), I

∣∣St
0

]
≤ 1 + (1 − p)tη +

n

2

[
(1 − p) log2

(
2πeb20

)
+ p log2

(
2πeb2

)]
≤ 1 + (1 − p)tη +

n

2
log2

(
2πemax{b20, b2}

)
.

By combining this with (6.8), we get the following formula, which clearly implies (6.7):

t
{[

1 − (1 − p)
]
η − c

}
≤ 1 +

n

2
log2

(
2πemax{b20, b2}

)
− h(x0) + c .

Proof of Proposition 5.3 for the state estimation problem. Evidently, it suffices
to consider the system with the full observation y = x, C = I in (2.1). Suppose that
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(5.1) fails to be true for the detection problem; i.e., there exists a coder-decoder pair
that keeps the estimation error bounded with a positive probability. By Lemma 6.1,
such a pair also exists for the auxiliary system (6.1). Since η(A) = η(A+), this system
can be put in place of (2.1) in the proof. In other words, one can assume in the proof
that h(x0) ∈ R, |x0| ≤ b0 < ∞ almost surely, and the system (2.1) at hand has no
stable modes, and so η(A) = log2 |detA|.

By sacrificing a small probability, the error boundedness can be made uniform:
there exist b > 0 such that

(6.9) P
[∣∣x(t) − x̂(t)

∣∣ ≤ b ∀t
]
> 0.

At the same time, Lemma 6.3 ensures that for any ρ > c

η(A) , there exists a

nonrandom time τ1 > 0 such that

P
[∣∣x(t) − x̂(t)

∣∣ ≤ b
]
≤ ρ ∀t ≥ τ1.

Since η(A) > c by the hypotheses of Proposition 5.3, one may pick ρ < 1 here.
Now we consider the tail of the process x(t), x̂(t), e(t), s(t), t ≥ τ1 + 1, in the

conditional probability space given that |x(τ1) − x̂(τ1)| ≤ b and Sτ1
0 = S. Here we

employ an S ∈ Sτ1+1 such that

P
[
B

1
S

]
> 0, where B

1
S :=

{
|x(τ1) − x̂(τ1)| ≤ b ∧ Sτ1

0 = S
}
.

The initial state x(τ1 +1) = Aτ1+1x0 of this tail is almost surely bounded and h(x0) ∈
R

(6.2),(6.6)
====⇒ h

[
x(τ1 + 1)|B1

S

]
∈ R. At the same time, the above conditioning does not

alter the channel (considered for t > τ1) due to Assumptions 4.1 and 4.2. The signals
x̂(t), e(t), s(t), t ≥ τ1 +1, are still generated by (2.2) and (2.3) (or (2.4)), where S and
A−τ1−1x(τ1+1), A−τ1x(τ1+1), . . . , A−1x(τ1+1) are substituted for s(0), . . . , s(τ1) and
y(0), . . . , y(τ1), respectively. Thus Lemma 6.3 can be applied once more. It follows
that P [|x(t) − x̂(t)|B1

S | ≤ b] ≤ ρ for all t ≥ τ2(S). For τ2 := maxS τ2(S), we have

P
[∣∣x(τ2) − x̂(τ2)

∣∣ ≤ b
∣∣∣|x(τ1) − x̂(τ1)| ≤ b

]
=
∑
S

P
[
Sτ1 = S

∣∣∣|x(τ1) − x̂(τ1)| ≤ b
]

× P
[∣∣x(τ2) − x̂(τ2)

∣∣ ≤ b
∣∣∣B1

S

]
≤ ρ
∑
S

P
[
Sτ1 = S

∣∣∣|x(τ1) − x̂(τ1)| ≤ b
]

= ρ.

Now we repeat the above arguments with respect to the tail on t > τ2 and
conditioning given that |x(τ1)−x̂(τ1)| ≤ b, |x(τ2)−x̂(τ2)| ≤ b, Sτ2

0 = S. By continuing
likewise, we get a sequence 0 < τ1 < τ2 < · · · such that

pi+1|1,...,i := P
[∣∣x(τi+1) − x̂(τi+1)

∣∣ ≤ b
∣∣∣|x(τ1) − x̂(τ1)| ≤ b, . . . , |x(τi) − x̂(τi)| ≤ b

]
≤ ρ ∀i.

Hence

P
[∣∣x(t) − x̂(t)

∣∣ ≤ b ∀t
]
≤ P

[∣∣x(τi) − x̂(τi)
∣∣ ≤ b ∀i

]
= lim

k→∞
P
[∣∣x(τi) − x̂(τi)

∣∣ ≤ b ∀i = 1, . . . , k
]

= lim
k→∞

P
[∣∣x(τ1) − x̂(τ1)

∣∣ ≤ b
]
×

k∏
i=2

pi|1,...,i−1 ≤ lim
k→∞

k∏
i=1

ρ
ρ<1
== 0
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in violation of (6.9). The contradiction obtained proves (5.1) for the detection prob-
lem.

To prove (5.2), we apply (5.1) to the process x∗(t) := α−tx(t), x̂∗(t) := α−tx̂(t),
e(t), s(t). This is possible, since it is generated by (2.1), (2.2), and (2.3) (or (2.4)),
where A := α−1A, X∗[t, ·] := α−tX[t, ·], and [y(0), . . . , y(t)] is replaced by x∗(0),
αx∗(1), . . . , αtx∗(t). The condition η(α−1A) > c holds, since

η(α−1A) =
∑
λj

max{log2(α
−1|λj |), 0} =

∑
λj

[
max{log2 |λj |, log2 α} − log2 α

]
≥
∑
λj

max{log2 |λj |, 0} − n log2 α = η(A) − n log2 α > c,

where n = dimx and the last inequality follows from the assumption log2 α < η(A)−c

n
of Proposition 5.3.

Proof of the (d) ⇒ c ≥ η(A) part of Theorem 5.1. As was pointed out, this part
of Theorem 5.1 follows from Proposition 5.3 by Remark 5.1.

7. Proofs of Propositions 5.3 and 5.4 for the stabilization problem and
the (d) ⇒ c ≥ η(A) part of Theorem 5.2. These proofs result from the argu-
ments from the previous section, along with the following simple observation, which
is close to similar facts from [50, 59, 60, 62].

Lemma 7.1. Consider a coder (2.3) and decoder (3.2). Then there exist other
coders and decoder-estimator

e(t) = Eun[t, yun(0), . . . , yun(t), s(0), . . . , s(t−1)], x̂un(t) = X [t, s(0), s(1), . . . , s(t)]

that generate an estimate x̂un(t) of the state of the uncontrolled system (2.1)

xun(t + 1) = Axun(t), xun(0) = x0, yun(t) = Cxun(t)

and produce the estimation error identical to the stabilization error of the original
coder-decoder pair:

(7.1) |xun(t) − x̂un(t)| = |x(t)|.

Proof. Let the new decoder generate the estimate via the recursion

x̂un(t + 1) = Ax̂un(t) −Bu(t), u(t) := U [t, s(0), s(1), . . . , s(t)] , x̂un(0) = 0,

where U(·) is taken from (3.2), and let the new coder be defined by the formula

e(t) := E[t, yun(0) − Cx̂un(0), . . . , yun(t) − Cx̂un(t), s(0), . . . , s(t− 1)],

where E(·) is taken from (2.3). This formula presupposes that the coder also computes
the estimate x̂un(t).

Now we consider the process {x(t), u(t)}∞t=0 generated in the system (3.1) by the
original coder and decoder. Arguing by induction on t, it is easy to see that, first,
both coder-decoder pairs give rise to common sequences {e(t)}, {s(t)}, {u(t)}, and,
second, y(t) = yun(t) − Cx̂un(t) and (7.1) does hold.

Modulo Lemma 7.1, Propositions 5.3 and 5.4 for the stabilization problem are
immediate from the same propositions concerning the detection problem, whereas the
(d) ⇒ c ≥ η(A) part of Theorem 5.2 follows from the matching part of Theorem 5.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN ANALOGUE OF SHANNON INFORMATION THEORY 1339

8. Proof of Theorem 5.1. The necessity part of this theorem was justified in
section 6. In this section, the focus is on proving that the inequality c > η(A) is
sufficient for almost sure observability.

From now until subsection 8.6, we consider the plants (2.1) with no stable modes.
In this case, η(A) = log2 |detA|. We start with some preliminaries.

8.1. Error exponents for discrete memoryless channels. We shall use the
convenient notations � and ≈ for inequality and equality up to a polynomial factor.
In other words, ϕ(m) � ψ(m) ⇔ ϕ(m) ≤ ψ(m)g(m) for all m = 1, 2, . . . , where g(m)
is a polynomial in m, and ϕ(m) ≈ ψ(m) ⇔ ϕ(m) � ψ(m) & ψ(m) � ϕ(m). When
ϕ(m) and ψ(m) depend on some other variables, the polynomial is assumed to be
independent of them. The symbols Em = {e} and Sm = {s} stand for the sets of all m-
words over the input and output channel alphabets, respectively: e = (e0, . . . , em−1),
s = (s0, . . . , sm−1). The following result is straightforward from Lemma IV.1 and
Theorem IV.1 in [8] (see also [14, 16]). We recall that c is the capacity (4.4) of the
channel.

Theorem 8.1. For any 0 < R < c and m = 1, 2, . . . , there exist N ≈ 2mR input
code words e[1], . . . ,e[N ] ∈ Em and a decoding rule Dm : Sm → {1, 2, . . . , N} such that
the maximum probability of error obeys the bound

(8.1) max
i=1,...,N

fi � 2−mF (R,W ).

Here F (R,W ) > 0 does not depend on m (but depends on the rate R and the channel
W ) and

fi = P
[
Dm(s) �= i

∣∣∣e[i]
]

:=
∑

s:Dm(s) �=i

m−1∏
j=0

W (sj |e[i]
j ), e[i] = (e

[i]
0 , . . . , e

[i]
m−1),

is the probability of incorrect decoding, provided that the code word e[i] was sent over
the channel.

8.2. Contracted quantizers and detection in the case of errorless trans-
mission. The facts presented in this subsection are mainly based on the ideas and
results from [7, 40, 42, 53, 60, 62].

An N -level quantizer Q in R
n is a partition of the unit ball B1

0 with respect to
some norm | · | in R

n into N disjoint sets Q1, . . . , QN ⊂ R
n, each equipped with a

point qi ∈ Qi called the centroid of Qi. Such a quantizer associates any vector x ∈ Qi

with its quantized value qi and any vector outside B1
0 with an alarm symbol �.

Definition 8.2. The quantizer Q is said to be m-contracted (m = 1, 2, . . . ) for
the system (2.1) if

(8.2) Am (Qi − qi) ⊂ ρQB1
0 ∀i = 1, . . . , N,

where ρQ ∈ (0, 1) is called the contraction rate.
The role of such quantizers in the solution of the estimation problem is revealed

by the following lemma.
Lemma 8.3. Suppose that the following statements hold:
(i) at a time instant t = t∗, an estimate x̂(t) and its exactness δ = δ(t) ≥

|x̂(t) − x(t)| are known at both the coder and decoder sites;
(ii) an N -level m-contracted quantizer is given;
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(iii) there exist ways to both encode N distinct messages for transmission over
the channel within the subsequent time interval of duration m and decode the
received data by time t∗ + m so that the overall transmission is errorless.

Then the estimate x̂(t) for t = t∗, . . . , t∗ + m can be constructed so that

|x̂(t) − x(t)| ≤ ρQδ for t = t∗ + m(8.3)

and |x̂(t) − x(t)| ≤ ‖A‖t−t∗δ for t = t∗, . . . , t∗ + m− 1.

Proof. We apply the quantizer to the scaled error δ−1[x(t) − x̂(t)] and, by em-
ploying (iii), make the decoder aware of the corresponding quantized value qi by time
t∗ + m. The estimate is defined by

x̂(t) := At−t∗ x̂(t∗) for t = t∗, . . . , t∗ + m− 1 and x̂(t∗ + m) := Am[x̂(t∗) + δqi].

Then for t = t∗, . . . , t∗ + m− 1, it follows from (2.1) that

|x̂(t) − x(t)| = |At−t∗ x̂(t∗) −At−t∗x(t∗)| ≤ ‖A‖t−t∗ |x̂(t∗) − x(t∗)| ≤ ‖A‖t−t∗δ;

i.e. the second relation from (8.3) holds. Furthermore,

|x̂(t∗ + m) − x(t∗ + m)| =
∣∣Am[x̂(t∗) + δqi] −Amx(t∗)

∣∣
= δ
∣∣∣Am

⎧⎪⎨⎪⎩δ−1[x(t∗) − x̂(t∗)]︸ ︷︷ ︸
∈Qi

−qi

⎫⎪⎬⎪⎭
(8.2)

≤ ρQδ.

A coder-decoder pair tracking the state in the case of errorless trans-
mission. Let (iii) be true at any time t = t∗. Then the scheme from the above proof
can be successively repeated. In doing so, we put δ(t∗ +m) := ρQδ(t∗) in accordance
with (8.3). (We assume that computations of x̂(t) and δ(t) are performed by both
the decoder and the coder. So (i) holds for t = t∗ +m whenever it is true for t = t∗.)
This ensures tracking, since (8.3) ⇒ (2.5).

This conclusion tacitly assumes that (i) does hold for some t∗. To ensure this,
suppose that (iii) is true not only at any time but also with an increased number of
messages N := N + 1. (One message is reserved to carry the alarm signal �.) Let
the coder and decoder be given common initial estimate x̂(0) and its exactness δ(0).
Whenever Δ(t∗) := |x(t∗)− x̂(t∗)| ≤ δ(t∗), the above algorithm is applied. Otherwise,
the signal � is sent over the channel. On its decoding at time t∗ + m, the value of δ
is increased, δ(t∗ + m) := γδ(t∗), where γ > 1 is a given coefficient. In this case, the
estimate is defined by x̂(t+ 1) := Ax̂(t) for t = t∗ +m− 1. Then we put t∗ := t∗ +m
and repeat the described operations. Note that

Δ(t∗) > δ(t∗) ⇒ Δ(t∗ + m) = |Am[x̂(t∗) − x(t∗)]|
≤ ‖A‖mΔ(t∗) and δ(t∗ + m) = γδ(t∗).

So until (i) holds, the error Δ(jm) increases no faster than ‖A‖jm, whereas
δ(jm) = γjδ(0). Now pick γ > ‖A‖m. Then necessarily Δ(jm) ≤ δ(jm) for large j;
i.e., (i) does hold sooner or later.

Thus a contracted quantizer is a gate to an observer successfully tracking the
state.

A problem with the construction of such an observer along the above lines is that
assumptions (ii) and (iii) imply converse requirements to the parameters N and m.
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Indeed, (iii) presupposes that the number N cannot be large given m. (In the case
of the perfect channel, N ≤ |E|m.) On contrary, (ii) means that the number N of
quantizer levels must be large enough: N > 2mη(A). (Indeed, let mes denote the
Lebesgue measure. Then (8.2) implies |detA|m mes (Qi) ≤ ρnQ mesB1

0 . Summing
over i gives |detA|m mesB1

0 ≤ NρnQ mesB1
0 ⇒ N > 2mη(A).)

To look for a trade-off between the above converse requirements, it is important
to know whether the bound N > 2mη(A) is tight. In other words, is it sufficient for
the existence of a contracted quantizer? The next theorem shows that the answer is
in a sense affirmative.

Theorem 8.4. For any square matrix A with no stable modes and m = 1, 2, . . . ,
there exists an m-contracted quantizer with N ≈ 2mη(A) levels.

Sketch of proof. We restrict ourselves to only a sketch, since the claim can be
derived from the arguments scattered over [7, 40, 42, 53, 60, 62]. Note first that
whenever the statement is true for two matrices A1 and A2, it is also true for the
block matrix

(
A1 0
0 A2

)
. By employing the canonical Jordan form of A as in [60, 62],

this reduces the proof to the case where the matrix is a real Jordan block. Let s
denote its size, λ its eigenvalue, and ω := |λ|. As follows from, e.g., [64, Lemma 3.1,
p. 64], Ξ(m) := ω−mg(m)−1Am → 0 as m → ∞ for some polynomial g(·). So
‖Ξ(m)‖ < ρ < 1 for m ≈ ∞. Here ‖ · ‖ is the operator norm associated with the
norm |z| := maxi |zi| in R

s = {z = (z1, . . . , zs)}. Multiplying the polynomial g(m)
by a sufficiently large scalar factor makes the inequality ‖Ξ(m)‖ < ρ true for all m.
Now consider the uniform quantizer Q partitioning the unit ball B1

0 into N := ks

balls Qi of radius 1
k . Here k := �ωmg(m)� and �d� is the minimum integer exceeding

d. The centroid qi is the center of the ball Qi. Then ‖Ξ(m)‖ < ρ ⇒ Ξ(m)[Qi − qi] ⊂
ρ[Qi − qi] = ρ

kB
1
0 ⇒ Am[Qi − qi] ⊂ ρωmg(m)

k B1
0 ⊂ ρB1

0 . Thus the quantizer is

m-contracted. It remains to note that N = ks ≈ ωsm = |detA|m = 2mη(A).
The contraction rate ρ of the proposed quantizer does not depend on m. However,

this rate can be made geometrically decreasing in m, provided the number of levels
N is slightly increased.

Lemma 8.5. Suppose that a square matrix A with no stable modes and η > η(A)
are given. Then for any m = 1, 2, . . . , there exists an m-contracted quantizer with the
contraction rate κ

2m and N � 2mη levels, where κ = κη,A ∈ (0, 1) does not depend
on m.

Sketch of proof. In the above sketched proof of Theorem 8.4, one must alter the
choice of k by k := �αmωmg(m)�. Here α > 1 is a parameter to be adjusted. This
evidently provides the rate of contraction ρQ ≤ ρα−m ≤ α−m and gives rise to a
quantizer with N ≈ αsmωsm = 2m[η(A)+s log2 α] levels. Then the statement of the
lemma results from properly adjusting the value of α > 1.

8.3. A coder-decoder pair without a feedback for a noisy channel. In
this subsection, we assume that c > η(A). The observer to be constructed resembles
that from the previous subsection. The difference is that now employed are code
words and quantizers with increasing length mi and number of levels, respectively. So
the observer operation is composed of time cycles [τi : τi+1] of increasing durations
τi+1 − τi = mi.

To construct an observer, we pick
1. two numbers η and R such that η(A) < η < R < c; and then for any

m = 1, 2, . . . , we choose
2. a set E[m] ⊂ Em of N = N ′

m ≈ 2mR input code words, each of length m, and
a decoding rule Dm with the properties described in Theorem 8.1; and
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3. an m-contracted quantizer Qm described in Lemma 8.5.
Remark 8.1. The quantizer outputs including the alarm signal � can be encoded

by the code words from the set E[m], provided that m is large enough.
Indeed, let N ′′

m denote the number of the quantizer levels. Then

N ′
m ≈ 2mR and N′′

m � 2mη and η < R ⇒ N′′
m + 1 ≤ N′′

m ∀m ≥ m∗,

where m∗ is large enough.
Finally, we pick γ > ‖A‖ and consider the sequence of integers

(8.4) mi := i + m0, i = 0, 1, . . . ,

where m0 ≥ n,m∗ is an integer parameter of the observer.

Operation of the observer. Both the coder and the decoder compute their own
estimates x̂c(t), x̂d(t) and bounds for the estimate exactness δc(t), δd(t), respectively.
Initially, they are given common and arbitrarily chosen values of x̂c(0) = x̂d(0) = x̂0

and δc(0) = δd(0) = δ0 > 0. (The inequality δ0 ≥ |x̂0 − x(0)| may be violated.)
At any time t, both the coder and the decoder compute the next estimates and

the bounds by the formulas
(8.5)
x̂c(t+1) := Ax̂c(t), x̂d(t+1) := Ax̂d(t), δc(t+1) := δc(t), δd(t+1) := δd(t).

However, at times t = τi, where

(8.6) τi := m0 + · · · + mi−1 = i ·m0 +
i(i− 1)

2
,

they preface these computations by the following operations.
The coder (at times t = τi, i = 1, 2, . . . ) does the following:
c.1. proceeding from the previous measurements calculates the current state x(τi);
c.2. employs the quantizer Qmi

and computes the quantized value qc(τi) of the
current scaled estimation error

(8.7) ε(τi) :=
[
δc(τi)

]−1[
x(τi) − x̂c(τi)

]
(we recall that the quantized value of any vector outside the unit ball is the
alarm symbol qc(τi) = �);

c.3. encodes the quantized value qc(τi) by means of the code book E[mi], and thus
obtained code word of length mi is transmitted over the channel during the
next operation cycle [τi : τi+1);

c.4. corrects the estimate and then the exactness bound

(8.8)

x̂c(τi) := x̂c(τi)+δc(τi)


qc (τi), δc(τi) := δc(τi)×

(
〈qc(τi)〉κ,γ

)mi

, where



q:=

{
q if q �= �,

0 otherwise,
〈q〉

κ,γ :=

{
κ if q �= �,

γ otherwise,

and κ ∈ (0, 1) is the parameter from Lemma 8.5.
Only after this does the coder perform the computations in accordance with (8.5).
Note that step c.1 is possible, since the system (2.1) (with no stable modes) is ob-
servable thanks to Assumption 4.4.

The decoder (at times t = τi, i = 2, 3, . . . ) does the following:
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d.1. applies the decoding rule Dmi−1
to the data received within the previous

operation cycle [τi−1 : τi) and thus computes the decoded value qd(τi) of the
quantized and scaled estimation error qc(τi−1) (this value may be incorrect
due to transmission errors);

d.2. corrects successively the estimate and the exactness bound
(8.9)

x̂d(τi) := x̂d(τi) + δd(τi)A
mi−1



qd (τi), δd(τi) := δd(τi)×

(
〈qd(τi)〉κ,γ

)mi−1

.

Only after this does it perform the computations from (8.5).
The coder can alter instantaneous multiplication of δc(τi) by κ

mi or γmi at the
time τi with keeping δc(t) constant during the next operation cycle [τi : τi+1) by
multiplying by κ or γ, respectively, at each step of this cycle. Likewise, computing the
large power Ami−1 employed in (8.9) can be distributed over the cycle [τi−1 : τi]. This
hint cannot be directly applied to computing δd(t), since the decoder becomes aware of
the multiplier (κ or γ) only at the end of the current cycle [τi−1 : τi]. However, one can
perform both the computations and then choose the correct quantity (δd(τi−1)κ

mi−1

or δd(τi−1)γ
mi−1) at the end τi of the cycle.

8.4. Tracking with arbitrarily large probability. Now we show that the
coder-decoder pair constructed in the previous subsection tracks the state (2.5) with
as large a probability as desired. More precisely, it does so, provided the parameter
m0 from (8.4) is chosen properly. (This choice depends on the desired probability.)

The values of the quantities x̂d, x̂c, δc, δd before and after the update at time τi
are marked by − and +, respectively . We start with the following key fact.

Lemma 8.6. In any event where the decoder always decodes the data correctly
qd(τi) = qc(τi−1) for all i ≥ 2, the coder-decoder pair ensures asymptotic tracking
(2.5). Furthermore,

(8.10)
∣∣x(τi) − x̂−

c (τi)
∣∣ ≤ kκ

τi , i = 1, 2, . . . ,

where the constant k does not depend on i (but may depend on the event).
Proof. We start with showing that there exists an index i = 1, 2, . . . for which

(8.11) |ε(τi)| ≤ 1,

where the scaled error ε(τi) is defined in (8.7). Indeed, otherwise, qc(τi) = �,
δ−c (τi+1) = δ−c (τi)γ

mi for all i ≥ 1 and x̂c(t + 1) = Ax̂c(t) for all t. So for i ≥ 2, we
have

|ε(τi)| =
[
γ
∑i−1

j=1 mjδ0

]−1∣∣∣Aτi
[
x0 − x̂0

]∣∣∣ (8.6)
===

γm0

δ0
γ−τi

∣∣∣Aτi
[
x0 − x̂0

]∣∣∣
≤
(
‖A‖
γ

)τi

γm0
|x0 − x̂0|

δ0

γ>‖A‖−−−−→ 0

as i → ∞ in violation of the hypothesis ε(τi) > 1 for all i. Thus (8.11) does hold for
some i.

Now consider an index i such that (8.11) holds. Then (8.11) is still true for
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i := i + 1. Indeed,

|ε(τi+1)|
(8.7)
===

[
δ−c (τi+1)

]−1∣∣x(τi+1) − x̂−
c (τi+1)

∣∣ (2.1),(8.6),(8.8)
======= κ

−mi
[
δ−c (τi)

]−1

×
∣∣∣Amix(τi) −Ami

[
x̂−
c (τi) + δ−c (τi)qc(τi)

]∣∣∣
= κ

−mi

∣∣∣Ami

{
δ−c (τi)

]−1[
x(τi) − x̂−

c (τi)
]︸ ︷︷ ︸

v

−qc(τi)
}∣∣∣.

Here qc(τi) is the quantized value of the vector v, and an mi-contracted quantizer
with the contraction rate ρQ = κ

2mi is applied. So (8.2) yields

(8.12) |ε(τi+1)| ≤ κ
mi < 1;

i.e., (8.11) does hold for i := i + 1.
It follows that (8.11) is true for all i ≥ i, where i is large enough. Hence (8.8)

yields

δ−c (τi) = δ−c (τi)κ
∑i−1

j=i
mj .

We proceed by taking into account (8.7) and (8.11):∣∣x(τi) − x̂−
c (τi)

∣∣ ≤ δ−c (τi) = δκ
∑i−1

j=0 mj
(8.6)
== δκτi , where δ := δc(τi)κ

−
∑i−1

j=0 mj .

This evidently implies (8.10) and shows that the coder tracks the state. As for the
decoder, note that

(8.13) x̂+
d (τi) = x̂−

c (τi), i = 1, 2, . . . .

Indeed, for i = 1, this relation is evident. Suppose that this relation is true for some
i ≥ 1. Due to the absence of transmission errors, δ±d (τj) = δ±c (τj−1), j = 2, 3, . . . . So

x̂+
d (τi+1)

(8.9)
=== x̂−

d (τi+1)+δ−d (τi+1)A
mi



qd (τi+1)

(8.5)
=== Ami x̂+

d (τi)+δ−c (τi)A
mi



qc (τi)

(8.13)
=== Ami

[
x̂−
c (τi) + δ−c (τi)



qc (τi)

]
(8.8)
=== Ami x̂+

c (τi)
(8.5)
=== x̂−

c (τi+1);

i.e., (8.13) holds for i := i + 1. Thus this relation is true for all i ≥ 1.
Whenever τi < t ≤ τi+1, we have by (8.5)

(8.14)
∣∣x(t) − x̂d(t)

∣∣ = ∣∣∣At−τi
[
x(τi) − x̂+

d (τi)
]∣∣∣ (8.13)

≤ ‖A‖t−τi
∣∣x(τi) − x̂−

c (τi)
∣∣,

max
τi<t≤τi+1

∣∣x(t) − x̂d(t)
∣∣ (8.10)

≤ k‖A‖miκ
τi = k2mi log2 ‖A‖+log2 κτi

(8.4),(8.6)
===== k2(i+m0) log2 ‖A‖+

[
i·m0+

i(i−1)
2

]
log2 κ.

So far as log2 κ < 0, this maximum converges to 0 as i → ∞; i.e., (2.5) does hold
with x̂(t) := x̂d(t).

Now we show that the assumption of Lemma 8.6 holds with large probability,
provided that the parameter m0 in (8.4) is chosen large.
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Lemma 8.7. The probability perr that the decoder decodes at least one message
incorrectly does not exceed

perr ≤ KR,W,F 2−m0F .

Here the constant KR,W,F does not depend on m0, and the inequality holds with any
F ∈ (0, F (R,W )), where F (R,W ) is taken from (8.1).

Proof. Denote by e(i) and s(i) the messages of length mi−1 formed by the coder
at time τi−1 and received by the decoder at time τi, respectively. For simplicity of

notation, we assume that the map Dm from Theorem 8.1 takes values in the set E[m]

of input code words. The symbol perr(i) stands for the probability that the decoding
of s(i) is wrong: perr(i) = P

{
Dmj [s(j)] �= e(j)

}
. Since the estimate (8.1) implies

maxi fi ≤ cR,W,F q
−mF , we have

perr(i) =
∑

e∈E[mi−1]

P
[
e(i) = e

]
P
{

Dmi−1 [s(i)] �= e(i)
∣∣∣e(i) = e

}
≤ cR,W,F

∑
e∈E[mi−1]

P
[
e(i) = e

]
2−mi−1F (8.4)

=== cR,W,F 2−(i−1+m0)F ;

perr ≤
∞∑
i=1

perr(i + 1) ≤ cR,W,F

∞∑
i=1

2−(i+m0)F =
cR,W,F

2F − 1
2−m0F .

As was shown in [50], the probability of error cannot be made small when sta-
tionary fixed length block coding-decoding schemes are employed.

By combining Lemmas 8.6 and 8.7, we arrive at the following conclusion.
Corollary 8.8. Suppose that the system (2.1) has no stable modes and η(A) < c.

Then statement (b) from Theorem 5.1 holds.

8.5. Tracking almost surely by means of fixed length code words. The
observer from the previous subsection employs code words whose lengths increase
as the estimation process progresses. So the memories of the coder and decoder
should increase accordingly.3 In this subsection, we show that almost sure asymptotic
state tracking can be achieved on the basis of fixed length code words whenever a
communication feedback is available. In doing so, we still consider the system (2.1)
with no stable modes. Extensions on systems with both stable and unstable modes
will be given in subsection 8.6.

The almost sure tracking coder-decoder pair is that from subsection 8.3 modified
as follows:

(i) The operation cycles are of equal and fixed duration m0, i.e., (8.4) and (8.6)
are replaced by mi = m0 and τi := im0, respectively.

(ii) Instead of forming its own sequences of state estimates {x̂c(t)} and exactness
bounds {δc(t)}, the coder duplicates those generated by the decoder.

To accomplish (ii), the coder must be aware of the results s(i) of the transmissions
across the channel. This becomes possible thanks to the communication feedback.
Specifically, now the coder operates as follows.

At times t = τi, i = 1, 2, . . . , the coder prefaces (8.5) by the following actions:
• It carries out step c.1 of the previous coder (see subsection 8.3). Then it in

fact duplicates steps d.1 and d.2 of the decoder, i.e., for t = τi, i = 2, 3, . . . .

3The same feature is characteristic of the anytime coding-decoding schemes considered in [50].
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• The coder applies the decoding rule Dm0
to the data received by the decoder

within the previous operation cycle [τi−1 : τi) and thus gets qd(τi).
• It corrects x̂c(τi) and δc(τi) in accordance with the formulas

(8.15)

x̂c(τi) := x̂c(τi) + δc(τi)A
m0



qd (τi), δc(τi) := δc(τi)

(
〈qd(τi)〉κ,γ

)m0

.

• After this steps c.2 and c.3 of the previous coder are performed if i = 1, 2, . . . .
For technical convenience, we put qc(τ0) := qd(τ1) := � and suppose that at times

t = τ0, τ1 the coder and decoder act accordingly. By comparing (8.9) and (8.15), we
see that x̂±

c (τi) = x̂±
d (τi) and δ±c (τi) = δ±d (τi).

The main result of this subsection is as follows.
Proposition 8.9. Suppose that Assumptions 4.1–4.4 hold, the system (2.1) has

no stable modes, and c > η(A), where c and η(A) are taken from Theorem 5.1. Then
the modified coder-decoder pair detects the state (i.e., (2.5) holds) almost surely, pro-
vided the duration of the operation cycle is large enough: m0 ≥ M(A,B,κ, γ,W,R).

An explicit formula for M(A,B,κ, γ,W,R) can be derived from the proof of this
proposition.

Corollary 8.10. Suppose that the system (2.1) has no stable modes and η(A) <
c. Then statement (a) from Theorem 5.1 holds.

In the remainder of the subsection, we prove Proposition 8.9; so its hypotheses are
assumed to hold. At first, we informally discuss the idea of the proof. The operation
cycle [τi−1 : τi) is said to be regular if during it a message different from the alarm
one is correctly transmitted from the coder to the decoder qd(τi) = qc(τi−1) �= � and
δ+
d (τi−1) is a true bound for the estimation error: δ+

d (τi−1) ≥ |x(τi−1) − x̂+
d (τi−1)|.

Then the update (8.9) at time t = τi improves the error bound via multiplying by
κ

m0 < 1, while keeping it correct for the updated estimate, which can be proved
similarly to (8.12). However, a cycle is not necessarily regular. First, the initial
bound δ0 may be incorrect. This is a weak reason, since the algorithm would make
the bound correct for a finite time in the absence of decoding errors at step d.1 (see
the proof of Lemma 8.6). Second, the cycle may be irregular due to such errors.
Any of them may make not only the current cycle irregular but also launch a whole
“tail” of irregular cycles even if the messages transmitted across the channel during
the subsequent cycles were decoded correctly. This holds if the transmission error
makes the upper bound δ incorrect. During this tail, the error bound would increase
via multiplying by γm0 > 1 in order to become correct once more. So any error
has an aftereffect, which evidently remains true in the real circumstances where the
subsequent cycles are not necessarily “errorless.” A priori, it is not even clear that the
chain of consecutive irregular cycles will be terminated and a regular one will occur.

The proof is based on the fact that the probability of the decoding errors can be
made as small as desired by properly picking m0. By the strong law of large numbers,
this entails that the average frequency of the decoding errors is small almost surely.
In other words, the errors are rarely encountered. The next step is to evaluate the
duration of the aftereffect of each such error and to show that the average frequency
ωirr of the irregular cycles does not exceed the average frequency of the above errors
multiplied by a fixed factor. So ωirr is also small. Hence not only do regular cycles
follow any irregular one but also the average frequency of regular cycles ωreg � ωirr.
By taking into account that at any irregular cycle the bound δd is increased at most by
multiplying by γm0 , we conclude that (approximately) δ−d (τi) ≤ δ0κ

im0ωregγim0ωirr →
0 as i → ∞. This convergence is extended on the estimation error on the ground that
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δ−d (τi) is the correct bound for this error for most of the i’s.
To carry out the first step of this plan, we need the following variant of the strong

law of large numbers [28, sect. 32, p. 53] (see also [46, 49]).
Theorem 8.11. Suppose that Fi is a flow of nondecreasing σ-algebras in a

probability space, the random variable ξi is Fi-measurable, and bi ↑ ∞, bi > 0, i =
1, 2, . . . . Suppose also that E

∣∣ξi −E(ξi|Fi−1)
∣∣ < ∞ and

(8.16)
∞∑
i=1

1

b2i
E
{[

ξi −E(ξi|Fi−1)
]2}

< ∞.

Then with probability 1,

(8.17)
1

br

r∑
i=1

[
ξi −E(ξi|Fi−1)

]
→ 0 as r → ∞.

Now we consider the stochastic process generated by the coder-decoder pair from
Proposition 8.9. The symbols e(i) and s(i) stand for the messages formed by the
coder at time τi−1 and received by the decoder at time τi, respectively. We also
introduce the error indicator function:

(8.18) Ierr(i) := 1 if Dm0 [s(i)] �= e(i), i ≥ 2, and Ierr(i) := 0 otherwise.

Lemma 8.12. We pick 0 < F < F (R,W ), where F (R,W ) is taken from (8.1).
Then the following relation holds almost surely, provided that m0 is sufficiently large:

(8.19) lim
r→∞

1

r

r∑
i=1

Ierr(i) ≤ 2−Fm0 .

Proof. We are going to apply Theorem 8.11 to ξi := Ierr(i) and b(i) := i. The
σ-algebra Fi is taken to be that generated by the random quantities x0, s(0), . . . , s(i).
Due to the construction of the coder, e(i) = E∗[i, x0, s(0), . . . , s(i − 1)], where E∗(·)
is a deterministic function. It follows that Ierr(i) is Fi-measurable. Furthermore,
0 ≤ Ierr(i) ≤ 1 ⇒ 0 ≤ E[Ierr(i)|Fi−1] ≤ 1 almost surely, which implies (8.16). So by
Theorem 8.11,

(8.20)
1

r

r∑
i=1

{
Ierr(i) −E[Ierr(i)|Fi−1]

}
= 0 a.s.

Now we are going to estimate E[Ierr(i)|Fi−1]. By invoking Assumptions 4.1, 4.2,
and that e(i) = E∗[i, x0, s(0), . . . , s(i− 1)], we get

E[Ierr(i)|Fi−1] = E
{
Ierr(i)

∣∣x0, s(0), . . . , s(i− 1), e(i)
}

= P
[
Dm0 [s(i)] �= e(i)

∣∣x0, s(0), . . . , s(i− 1), e(i)
]

=
∑

ε

P
[
Dm0 [s(i)] �= ε

∣∣e(i) = ε
]
Ie(i)=ε

(8.1)

� 2−m0F (R,W ).

Since F < F (R,W ), this implies

(8.21) E[Ierr(i)|Fi−1] ≤ 2−Fm0 ∀i for m0 ≈ ∞.
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So by invoking (8.20), we see that almost surely

lim
r→∞

1

r

r∑
i=1

Ierr(i) = lim
r→∞

1

r

r∑
i=1

E[Ierr(i)|Fi−1]

+ lim
r→∞

1

r

r∑
i=1

{
Ierr(i) −E[Ierr(i)|Fi−1]

}
≤ 2−Fm0 .

Now we start to analyze the influence of the channel noise on the estimation
errors. To this end, introduce the indicator functions of the following events:

(8.22)

I0(i) ←→ qd(τi) = qc(τi−1) �= �,
I�(i) ←→ qd(τi) = qc(τi−1) = �,
Ierr
c�(i) ←→ qd(τi) �= qc(τi−1) = �,
Ierr
d�(i) ←→ � = qd(τi) �= qc(τi−1),
Ierr
0 (i) ←→ � �= qd(τi) �= qc(τi−1) �= �.

Note that Ierr
c�(i) + Ierr

d�(i) + Ierr
0 (i) = Ierr(i) and I0(i) + I�(i) = 1 − Ierr(i). We first

study the evolution of

(8.23) δi := δ+
c (τi) and zi := |x̂+

c (τi) − x(τi)|.

Lemma 8.13. The following relations hold for any i ≥ 1:

δi = δi−1

{
κ

m0
[
I0(i) + Ierr

0 (i) + Ierr
c� (i)

]
+ γm0

[
I�(i) + Ierr

d� (i)
]}

,(8.24)

zi ≤ zi−1‖A‖m0
[
I�(i) + Ierr

d� (i)
]

+ δi−1κ
2m0I0(i) + ‖A‖m0(zi−1 + δi−1)

[
Ierr
0 (i) + Ierr

c� (i)
]
.(8.25)

Here κ ∈ (0, 1) is taken from Lemma 8.5, and γ > ‖A‖ is the parameter of the
estimator.

Proof. To prove (8.24), we note that

δi
(8.23)
== δ+

c (τi)
(8.15)
== δ−c (τi)

(
〈qd(τi)〉κ,γ

)m0 (8.23)
== δi−1

(
〈qd(τi)〉κ,γ

)m0

.

So (8.24) is immediate from (8.22) and the definition of 〈·〉
κ,γ from (8.8). To justify

(8.25), we observe that

zi
(8.23)
== |x̂+

c (τi) − x(τi)|
(8.15)
== |x̂−

c (τi) + δ−c (τi)A
m0



qd (τi) − x(τi)|

(2.1),(8.5)
====

∣∣∣Am0

[
x̂+
c (τi−1) + δ+

c (τi−1)


qd (τi) − x(τi−1)

]∣∣∣
(8.23)
==

∣∣∣Am0

[
x̂+
c (τi−1) − x(τi−1) + δi−1



qd (τi)

]∣∣∣ .
If I�(i)+Ierr

d�(i) = 1, then qd(τi) = � and


qd (τi) = 0 by (8.8). So zi ≤ ‖A‖m0 |x̂+

c (τi−1)

− x(τi−1)|
(8.23)
== ‖A‖m0zi−1. If I0(i) = 1, then � �= qc(τi−1) = qd(τi) =



qd (τi). So

zi = δi−1 |Am0 [ε(τi−1) − qc(τi−1)]| due to (8.7), where qc(τi−1) is the quantized value
of ε(τi−1). Hence by invoking (8.2), where ρQ = κ

2m0 thanks to Lemma 8.5, we get

zi ≤ κ
2m0δi−1. Finally, suppose that Ierr

0 (i) + Ierr
c�(i) = 1. Then |



qd (τi)| ≤ 1, and
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so zi ≤ ‖A‖m0 (|x̂+
c (τi−1) − x(τi−1)| + δi−1)

(8.23)
== ‖A‖m0 (zi−1 + δi−1). Summarizing,

we arrive at (8.25).
Lemma 8.13 entails an important conclusion about the evolution of the ratio

ξi := zi/δi, which determines whether the alarm symbol � is sent over the channel:

(8.26) qc(τi) = � ⇔ ξi = zi/δi > 1.

Corollary 8.14. For i ≥ 1, the following inequality holds:

(8.27) ξi ≤
{

ρξi−1 if ξi−1 > 1
κ

m0 if ξi−1 ≤ 1

}[
1 − Ierr(i)

]
+ b/2

[
ξi−1 + 1

]
Ierr(i),

where Ierr(i) is the error indicator function (8.18), and

(8.28) ρ :=

(
‖A‖
γ

)m0

, b := 2

(
‖A‖
κ

)m0

.

The proof of this claim is by merely checking (8.27) on the basis of (8.24) and
(8.25).

Now we are going to study how often the alarm symbol � is sent or, in other
words, the frequency of the event ξi > 1. The following lemma reveals a relationship
between this event and the channel errors.

Lemma 8.15. Whenever ξi > 1 for i = i + 1, . . . , i + r, the number l of channel
errors within the interval [i + 1 : i + r] obeys the lower bound
(8.29)

l :=
∣∣j = i + 1, . . . , i + r : Ierr(j) = 1

∣∣ ≥ r
log2[ρ

−1]

log2 b + log2[ρ
−1]

−
log2 max{ξi,

ξi+1
2 }

log2 b + log2[ρ
−1]

.

Proof. If ξi ≤ 1 and Ierr(i + 1) = 0, then (8.27) implies ξi+1 = κ
m0 < 1 in

violation of the hypotheses of the lemma. Thus ξi ≤ 1 ⇒ Ierr(i+1) = 1. By invoking
(8.27) once more, we get, for i = i + 1, . . . , i + r,

ξi ≤ ρξi−1[1 − Ierr(i)] + bξi−1I
err(i) +

b

2
[1 − ξi−1]I

err(i)

≤ ξi−1

{
ρ[1 − Ierr(i)] + bIerr(i)

}
+

b

2
max{1 − ξi−1, 0}Ierr(i).

The last summand does not vanish only if i = i+1 and Ierr(i+1) = 1. It follows that

1 < ξi+r ≤ ξiρ
r−lbl +

b

2
max{1 − ξi, 0}ρr−lbl−1 = ρr−lbl max

{
ξi,

ξi + 1

2

}
,

0 < (l − r) log2[ρ
−1] + l log2 b + log2 max

{
ξi,

ξi + 1

2

} ∣∣∣ ⇒ (8.29).

Now we are in a position to estimate the frequency of sending the alarm signal �.
Corollary 8.16. For the indicator function Iξ>1(i) ←→ ξi > 1, the following

relation holds almost surely:
(8.30)

lim
r→∞

1

r

r∑
i=1

Iξ>1(i−1) ≤ β := μ−1 lim
r→∞

1

r

r∑
i=1

Ierr(i), where μ :=
log2[ρ

−1]

log2 b + log2[ρ
−1]

.
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Proof. If β ≥ 1, the claim is obvious. Suppose that β < 1. Then ξi ≤ 1 for some
i = i∗. Indeed, otherwise, Lemma 8.15 with i := 0 and arbitrary r yields

lim
r→∞

1

r

r∑
i=1

Ierr(i) ≥ μ + lim
r→∞

−1

r

log2 max{ξ0, ξ0+1
2 }

log2 b + log2[ρ
−1]

= μ,

which implies β ≥ 1 in violation of the hypothesis. For r > i∗, the set {i∗ ≤ i ≤ r :
Iξ>1(i) = 1} disintegrates into several intervals of durations r1, . . . , rs, respectively,
not containing i∗ and separated by intervals where ξi ≤ 1. Now we apply Lemma 8.15
to the jth interval, picking i to be the integer preceding its left end. Then ξi ≤ 1, the
second ratio in (8.29) is nonpositive, and so the number lj of errors contained by the
interval at hand is no less than rjμ. Hence

lim
r→∞

1

r

r∑
i=1

Ierr(i) ≥ lim
r→∞

1

r

s∑
i=j

lj ≥ μ lim
r→∞

1

r

s∑
i=j

rj

= μ lim
r→∞

1

r

r∑
i=i∗

Iξ>1(i) = μ lim
r→∞

1

r

r∑
i=1

Iξ>1(i− 1)
∣∣∣ ⇒ (8.30).

Corollary 8.17. The indicator function I(i) ←→ Ierr(i) = 1 ∨ Iξ>1(i− 1) = 1
almost surely obeys the inequality

lim
r→∞

1

r

r∑
i=1

I(i) ≤
{

2 +
log2 b

log2[ρ
−1]

}
(8.31)

× lim
r→∞

1

r

r∑
i=1

Ierr(i)
(8.19)

≤ p := 2−Fm0

{
2 +

log2 b

log2[ρ
−1]

}
.

Indeed, this is immediate from Corollary 8.16 and the apparent inequality I(i) ≤
Ierr(i) + Iξ>1(i− 1).

Observation 8.1. It is easy to see that the first inequality in (8.31) is a direct
consequence of (8.27). In other words, it holds for any nonnegative solution ξi of the
recursive inequalities (8.27) with i = 1, 2, . . . , where {Ierr(i)} is an arbitrary sequence
of reals Ierr(i) = 0, 1 and ρ,κ ∈ (0, 1), b > 1 are arbitrary numbers.

Lemma 8.18. The coder-decoder pair considered in Proposition 8.9 tracks the
state almost surely if
(8.32)
ω := log2[κ

−1] − p
{
log2 γ + log2[κ

−1]
}
> 0 and χ := ω(1 − p) − p log2 ‖A‖ > 0.

Proof. The symbol c (with a possible index) will be used to denote random
constants independent of i and r. For any α > 0, (8.31) implies S(r) :=

∑r
i=1 I(i) ≤

r(p + α) for r ≈ ∞. Since κ < 1 < γ, (8.22) and (8.24) yield

δi ≤ δi−1

{
κ

m0 [1 − I(i)] + γm0I(i)

}
∀i ≥ 1 ⇒ δr

≤ δ0κ
rm0

r∏
i=1

( γ
κ

)m0I(i)

= δ0κ
rm0

( γ
κ

)m0S(r)

r≈∞
≤ δ0κ

rm0

( γ
κ

)rm0(p+α)

= δ02
−rm0ωα ,

where ωα := log2[κ
−1] − [p + α]

{
log2 γ + log2[κ

−1]
} α→0−−−→ ω > 0.
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Thus for α ≈ 0, we have ωα > 0 and

(8.33) δi ≤ c′2−im0ωα → 0 as i → ∞.

Now we note that due to (8.25),

zi ≤ δi−1κ
2m0
[
1 − I(i)

]
+ ‖A‖m0(zi−1 + δi−1)I(i) ≤ ‖A‖m0zi−1I(i) + c2−im0ωα ,

zr ≤ z0

r∏
i=1

[
‖A‖m0I(i)

]
+ c

r∑
i=1

2−im0ωα

r∏
j=i+1

[
‖A‖m0I(j)

]
.

The first relation from (8.32) implies p < 1. So {i ≥ 1 : I(i) = 1} �= {i = 1, 2, . . . }
due to (8.31). It follows that for r ≈ ∞, the first summand vanishes and

zr ≤ c

r∑
i=r−l

2−im0ωα‖A‖m0(r−i),

where {r− l+1, . . . , r} is the largest subinterval of the set Ir := {1 ≤ i ≤ r : I(i) = 1}
containing r. (If r �∈ Ir, then l := 0.) We proceed by taking into account the inequality
l ≤
∑r

i=1 I(i) = S(r) ≤ r(p + α) for all r ≈ ∞:

zr ≤ c2−rm0ωα

r∑
i=r−l

2(r−i)m0ωα‖A‖m0(r−i) = c2−rm0ωα

l∑
i=0

(
2ωα‖A‖

)m0i

≤ c
2−rm0ωα

(
2ωα‖A‖

)m0l

1 −
(
2ωα‖A‖

)−m0

r≈∞
≤ c

2−rm0ωα
(
2ωα‖A‖

)m0r(p+α)

1 −
(
2ωα‖A‖

)−m0
=

c

1 −
(
2ωα‖A‖

)−m0
2−rm0χα ,

where χα := ωα[1 − (p + α)] − (p + α) log2 ‖A‖ (8.32)−−−−→
α→0

χ > 0.

Thus χα > 0 for α ≈ 0. So zr
(8.23)
== |x̂+

c (τr) − x(τr)| → 0 as r → ∞. Here
x̂+
c (τr) = x̂+

d (τr) thanks to (8.9) and (8.15). It remains to note that for τr < t ≤
τr+1 = τi + m0,

|x̂d(t) − x(t)| (2.1),(8.5)
====

∣∣At−τr [x̂+
d (τr) − x(τr)]

∣∣ ≤ ‖A‖m0 |x̂+
d (τr) − x(τr)|

t→∞−−−→ 0,

since r → ∞ as t → ∞.
Proof of Proposition 8.9. By Lemma 8.18, it suffices to show that (8.32) does

hold whenever m0 is large enough. In turn, this is true if p → 0 as m0 → ∞. The
required property is established as follows:

p
(8.31)
== 2−Fm0

{
2 +

log2 b

log2[ρ
−1]

}
(8.28)
== 2−Fm0

{
2 +

1 + m0[log2 ‖A‖ + log2 κ
−1]

m0 log2 γ − log2 ‖A‖

}
→ 0

as m0 → ∞.

8.6. Completing the proof of Theorem 5.1. The implication c > η(A) ⇒ (a)
and (b) has already been justified for systems with no stable modes. Now we consider
the general case. Suppose that c > η(A). Since η(A) = η(A+), claims (a) and (b)
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are true for the system (6.1) with x+
0 := π+x0 by Corollary 8.8 and Proposition 8.9.

We apply the corresponding coder-decoder pair to the primal system (2.1). In doing
so, we also alter the coder’s step c.1, where it identifies the current state x+(τi) of
(6.1). Formerly this was done on the basis of the past measurements from (6.1).
Now we employ the observations from (2.1). Then thanks to Assumption 4.4, it is
possible to compute π+x(τi), provided m0 ≥ n in (8.4). Here π+ is the projector
onto L+ parallel to L−, and the notations L± were introduced in Explanation 5.1.
Since evidently x+(t) := π+x(t), this does not alter the operation of the observer. It
remains to note that so far as x−(t) := x(t) − x+(t) → 0 as t → ∞, this observer
tracks that state of (2.1)

|x(t) − x̂+(t)| = |x−(t) + x+(t) − x̂+(t)| ≤ |x−(t)| + |x+(t) − x̂+(t)| → 0

whenever it detects the state of (6.1): |x+(t) − x̂+(t)| → 0.
The implications (a) ∨ (b) ⇒ (c) ⇒ (d) are apparent, whereas (d) ⇒ c ≥ η(A)

was justified in section 6.

9. Proof of Theorem 5.2. The necessity part of this theorem was justified in
section 7. In this section, the focus is on proving that the inequality c > η(A) is
sufficient for almost sure stabilizability.

The section is organized as follows. Subsection 9.1 describes a stabilizing coder-
decoder pair. Its convergence is proved in subsection 9.3. In subsection 9.2, we show
in which way communication feedback required for the almost sure stabilization can
be arranged by means of control. In these subsections, we consider the plant (3.1)
with no stable modes. In subsection 9.4, all arguments are consolidated, and the proof
of Theorem 5.2 is completed.

9.1. Coder-decoder pair stabilizing the plant almost surely by means of
fixed length code words. We present it assuming that the stabilizability condition
c > η(A) holds and the plant (3.1) has no stable modes. Then

(9.1) η(A) = log2 |detA|,

and the system is controllable and observable thanks to Assumptions 4.4 and 4.5. In
the general case, a stabilizing controller can be obtained by applying that presented
below to the unstable part of the system (see subsection 9.4).

Though a stabilizing controller can be constructed along the lines of subsec-
tion 8.3, we omit this and focus on stabilization by means of fixed length code words.
In doing so, we show that much less communication feedback is required for stabiliza-
tion than for detection. In fact, a feedback with arbitrarily small rate is sufficient.

As in subsection 8.3, we start with introducing basic components of which the
coder and decoder will be assembled. To this end, we first pick two numbers η and R
such that

(9.2) η(A) < η < R < c.

Then for any m = 1, 2, . . . , we choose
• a set E[m] ⊂ Em of N = N ′

m ≈ 2mR input code words Dm with the properties
described in Theorem 8.1,

• an m-contracted quantizer Qm described in Lemma 8.5.
We recall that such a quantizer partitions the unit ball B1

0 with respect to some
norm | · | in R

n into a collection of disjoint sets Q1, . . . , QN , each equipped with a
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centroid qi ∈ Qi, and associates any vector x ∈ Qi with its quantized value qi and
any vector outside the ball B1

0 with an alarm symbol �. Furthermore,

(9.3) Am (Qi − qi) ⊂ ρmB1
0 ∀i = 1, . . . , N, where ρm := κ

2m.

Deadbeat stabilizer. We also pick a deadbeat stabilizer, i.e., a linear transfor-
mation of an initial state

(9.4) x(0) = x
S−→ [u(0), u(1), . . . , u(n− 1), 0, 0, . . . ]

into a sequence of controls driving the state to zero: x(n) = 0. Since the system
(3.1) is controllable, such a stabilizer exists [1, p. 253]. We also define S(�) := u�
by picking an alarm control sequence u� = [u0, . . . , us−1, 0, 0, . . . ], which drives the
system from x(0) = 0 to x(s) = 0. This sequence will be specified further, and its
role will be explained in subsection 9.2. The number L(S) := max{n, s} is called the
length of the stabilizer.

Operation cycles and parameters. The controller operation consists of time
cycles [τi : τi+1],

(9.5) τi := im0,

of equal duration m0. A fixed and independent of the cycle sequence of operations
is executed within any cycle. The integer parameter m0 of the controller, along with
one more parameter γ, is chosen so that

(9.6) m0 ≥ n + L(S), γ > ‖A‖,

and for all m ≥ m0, the outputs of the quantizer Qm including the alarm signal �,
can be encoded by the code words from the set E[m]. (This is possible by Remark 8.1.)
Encoding will be carried out at the beginning τi of each operation cycle, and then the
code word thus obtained will be transmitted to the decoder during this cycle.

We also suppose that a limited feedback communication is available.
Assumption 9.1. By the end τi+1 of the current operation cycle, the coder almost

surely becomes aware whether or not the message received by the decoder at the
beginning τi of this cycle was the alarm one �.

Thus the required feedback concerns only one message � and has the size of one
bit per operation cycle. By increasing the cycle duration m0, the average amount
of information transmitted across the feedback link can be made arbitrarily small.
Assumption 9.1 may also be true due not to the feedback link but the fact that the
alarm signal is transmitted over an especially reliable subchannel.

Remark 9.1. In subsection 9.2, we shall show that Assumption 9.1 can always
be ensured by means of control via a special choice of the alarm control sequence.

A stabilizing coder-decoder pair operates as follows. Both coder and decoder
compute controls uc(t), ud(t) and upper bounds for the state norm δc(t), δd(t), re-
spectively. Actually acting upon the plant is the control ud(t). The initial bound is
common: δc(0) = δd(0) = δ0. (The inequality δ0 ≥ |x(0)| may be violated.) Within
any operation cycle [τi : τi+1), the coder successively sends over the channel the sym-
bols of the code word of length m0 formed at time τi, and the decoder carries out
the control program ud(τi), ud(τi + 1), . . . , ud(τi+1 − 1) generated at time τi. These
actions are prefaced at times t = τi by the following operations.

The coder (at times t = τi, i = 1, 2, . . . ) does the following:
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c.1. proceeding from the previous measurements calculates the current state x(τi);
c.2. computes the prognosis of the state at time t = τi+1:

(9.7) x̂c(t) := Am0x(τi) +

t−1∑
j=τi

At−1−jBuc(j);

c.3. if i = 3, 4, . . . corrects the state norm upper bound:

δc(τi) := δc(τi)
〈qd(τi−1)〉m0

κ,γ

〈qc(τi−2)〉m0

κ,γ

(9.8)

= δc(τi) ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
γ
κ

)m0
if qd(τi−1) = � and qc(τi−2) �= �,(

κ

γ

)m0

if qd(τi−1) �= � and qc(τi−2) = �,

1 if
qd(τi−1) = � and qc(τi−2) = �

or
qd(τi−1) �= � and qc(τi−2) �= �;

here κ and γ are taken from (9.3) and (9.6), respectively, and

(9.9) 〈q〉
κ,γ :=

{
κ if q �= �,
γ otherwise;

c.4. employs the quantizer Qm0
and computes the quantized value qc(τi) of the

scaled state at time τi+1:

(9.10) ε(τi) :=
[
δc(τi)

]−1
x̂c(τi+1), qc(τi) := Qm0

[
ε(τi)

]
;

c.5. encodes this quantized value qc(τi) by means of the code book E[m0] and thus
obtains the code word to be transmitted over the channel during the next
operation cycle [τi : τi+1);

c.6. computes the control program uc
i+1 =

[
uc(τi+1), . . . , uc(τi+2 − 1)] for not the

next but the overtaking operation cycle [τi+1, τi+2 − 1) and then corrects the
state upper bound:

(9.11) uc
i+1 := δc(τi)S

[
qc(τi)

]
, δc(τi) := δc(τi) × 〈qc(τi)〉m0

κ,γ ,

where 〈q〉
κ,γ is given by (9.9) and S is the deadbeat stabilizer.

The decoder (at the times t = τi, i = 2, 3, . . . ) does the following:
d.1. applies the decoding rule Dm0 to the data received within the previous oper-

ation cycle [τi−1 : τi] and thus acquires the decoded value qd(τi) of qc(τi−1)
(which may be incorrect due to the channel errors);

d.2. computes the control program ud
i =

[
ud(τi), . . . , ud(τi+1 − 1)] for the next

operation cycle [τi : τi+1) and corrects the state upper bound:

(9.12) ud
i := δd(τi)S

[
qd(τi)

]
, δd(τi) := δd(τi) × 〈qd(τi)〉m0

κ,γ .

For the definiteness, the initial control programs uc
0,u

d
0,u

c
1,u

d
1 are taken to be the

alarm ones.
Note that step c.1 is possible. Indeed, due to (9.4), (9.5), (9.12), and the first

relation from (9.6), the dynamics of the closed-loop system (3.1) is free, u(t) = 0,
for at least n time steps before τi. Since the system (3.1) is observable, this makes
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it possible to identify the state x(τi) proceeding from the measurements even if the
coder is unaware of the entire sequence of controls ud actually acting upon the plant.

Step c.3 is possible by Assumption 9.1. The role of this step is to make the
bounds δc and δd identical whenever the transmission across the channel is errorless.
To specify this claim, we mark the values of δc and δd after and just before the
updates in accordance with (9.11), (9.12) with the + and − indices, respectively. So
the value δ−c (τi) is taken after the correction (9.8). For consistency, we also assume
that qc(τ0) := qd(τ1) := �.

Lemma 9.1. Step c.3 ensures that whenever the current transmission is errorless,
the next state norm upper bounds used by the coder and decoder, respectively, are
identical:

(9.13) qc(τi−1) = qd(τi) =⇒ δ−c (τi) = δ−d (τi+1), i = 1, 2, . . . .

Proof. It suffices to show that for i = 1, 2, . . .

(9.14) δ−c (τi) = δ−d (τi+1)

[
〈qc(τi−1)〉κ,γ

〈qd(τi)〉κ,γ

]m0

.

The proof will be by induction on i. For i = 1, the claim is evident. Suppose that
(9.14) holds for some i ≥ 1. Then

δ−c (τi+1)
(9.8)
== δ+

c (τi)
〈qd(τi)〉m0

κ,γ

〈qc(τi−1)〉m0

κ,γ

(9.11)
== δ−c (τi) 〈qc(τi)〉m0

κ,γ

〈qd(τi)〉m0

κ,γ

〈qc(τi−1)〉m0

κ,γ

(9.14)
== δ−d (τi+1) 〈qc(τi)〉m0

κ,γ

(9.12)
== δ−d (τi+2)

〈qc(τi)〉m0

κ,γ

〈qd(τi+1)〉m0

κ,γ

;

i.e., (9.14) with i := i + 1 does hold.
The main property of the proposed coder-decoder pair is given by the following

proposition.
Proposition 9.2. Suppose that Assumptions 4.1–4.5, Assumption 9.1, and

relations (9.6) hold, c < η(A), and the system (3.1) has no stable modes. Then
the coder-decoder pair introduced in this subsection stabilizes the system almost surely
if m0 is large enough: m0 ≥ M(A,B,κ, γ,W,R).

An explicit expression for the bound M(A,B,κ, γ,W,R) can be derived from the
proof of this proposition, which is given in subsection 9.3. The proof resembles that
of Proposition 8.9. However, there are important differences. They mainly proceed
from the fact that now the coder and decoder are not completely synchronized via
the communication feedback, contrary to the situation from Proposition 8.9. More
precisely, the coder and decoder from Proposition 8.9 produce common error upper
bounds δc, δd and state estimates x̂c, x̂d. Now only the bounds δc, δd are synchronized
in a weaker sense: they are not always common but only when the previous transmis-
sion across the “feedforward” channel is errorless (see Lemma 9.1). At the same time,
the feedback link is not used to put the controls produced by the coder in harmony
with those generated by the decoder. In fact, the goal of the proof is to demonstrate
that being properly adjusted to the current circumstances, the arguments from the
proof of Proposition 8.9 (see subsection 8.5) are not destroyed by this difference.

We also stress that Proposition 9.2 holds for any choice of the alarm control
sequence.
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9.2. Communication feedback by means of control. Now we show that no
special means are required to ensure Assumption 9.1. The point is that the decoder
may notify the coder about receiving the alarm signal by means of the alarm control
sequence. The idea is roughly as follows. Whenever qd(τi) �= �, the control pro-
gram ud

i = [ud(τi), . . . , ud(τi+1 − 1)] acting upon the plant is a linear function of the
quantized state thanks to (9.12). Since the latter is n-dimensional, this program lies
in a certain n-dimensional linear space. During the time interval [τi : τi+1 − 1], the
coder observes the sequence of measurements yi := [y(τi), . . . , y(τi+1 − 1)], which is a
linear transformation of both this program and the n-dimensional initial state x(τi).
So the sequence lies in a 2n-dimensional linear subspace L. However, the space of all
observation sequences yi may be of larger dimension for large m0 = τi+1 − τi. This
makes it possible to pick the alarm control sequence so that it generates the sequence
of observations not in L. Then the coder may recognize the event qd(τi) = � by
checking the relation yi �∈ L.

To be specific, now we consider a particular example of this scheme.

Alarm control sequence u�. We first pick a control u∗ and a sequence u− :=
[u−

0 , . . . , u
−
n−1] such that Bu∗ �= 0 and the sequence u− drives the system from the

state x(0) = AnBu∗ to x(n) = 0. Then we put

(9.15) u� :=
[
0, . . . , 0︸ ︷︷ ︸

2n

, u∗, 0, . . . , 0︸ ︷︷ ︸
n

, u−
0 , . . . , u

−
n−1

]
.

It is easy to see that this sequence drives the system from x(0) = 0 to x(4n+ 1) = 0,
as required. To recognize the event qd(τi) = � by the end of the current operation
cycle [τi : τi+1], the coder prefaces step c.3 with the following two steps and then
proceeds by executing steps c.3–c.6:

c.3�1 proceeding from the previous measurements, the coder computes the states
x(τi + 2n) and x(τi + 3n + 1);

c.3�2 the coder decides that qd(τi) = � if and only if x(τi+3n+1) �= An+1x(τi+2n).
Step c.3�1 is possible, since the dynamics of the system is free, u(t) = 0, for at

least n time steps before times τi + 2n and τi + 3n+ 1. So the coder can identify the
required states on the basis of the measurements.

Steps c.3�1 and c.3�2 ensure correct recognition of the event qd(τi) = �. Indeed,
it suffices to note that x(τi + 3n + 1) −An+1x(τi + 2n) amounts to δd(τi)A

nBu∗ �= 0
if qd(τi) = �, and 0 otherwise.

9.3. Proof of Proposition 9.2. The assumptions of this proposition are sup-
posed to hold throughout the subsection. To start with, we rewrite the state prognosis
(9.7) in a more convenient form.

Lemma 9.3. The state prognosis (9.7) is given by the formula
(9.16)

x̂c(τi+1) = δ−c (τi−1)A
m0
[
ε(τi−1)−



qc (τi−1)

]
+ Am0

τi−1∑
j=τi−1

Aτi−1−jB
[
ud(j) − uc(j)

]
.

Here


q:= 0 if q = � and



q:= q otherwise, qc(τ0) := �, and ε(τi−1) is defined by

(9.10), where δc(τi) = δ−c (τi).
Proof. Suppose first that qc(τi−1) �= �. Due to the first formula from (9.11)

with i := i− 1 and the definition of the deadbeat stabilizer, the sequence of controls
uc(τi), . . . , uc(τi+1 − 1) drives the system from the state δ−c (τi−1)qc(τi−1) at time τi
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to the state 0 at time τi + n. Since uc(t) = 0 for t = τi + n, . . . , τi+1 − 1, the state 0
is kept until time τi+1 = τi + m0. Hence

(9.17) δ−c (τi−1)A
m0



qc (τi−1) +

τi+1−1∑
j=τi

Aτi+1−1−jBuc(j) = 0.

This is still true if qc(τi−1) = �. Indeed, then


qc (τi−1) = 0 and uc(j), τi ≤ j ≤ τi+1−1

is the alarm control sequence, which drives the system from the state x(τi) = 0 to
x(τi+1) = 0. Subtracting (9.7) and (9.17) yields

x̂c(τi+1) = Am0
[
x(τi) − δ−c (τi−1)



qc (τi−1)

]
= δ−c (τi−1)A

m0
[
δ−c (τi−1)

−1x̂c(τi)−


qc (τi−1)

]
+ Am0

[
x(τi) − x̂c(τi)

]
.

Here by (9.7) with i := i− 1 and (3.1),

x̂c(τi) = Am0x(τi−1) +

τi−1∑
j=τi−1

Aτi−1−jBuc(j),

x(τi) = Am0x(τi−1) +

τi−1∑
j=τi−1

Aτi−1−jBud(j).

As a result, we arrive at (9.16) by taking into account (9.10).
Now we consider the stochastic process generated by the coder and decoder. The

symbols e(i) and s(i) stand for the messages formed by the coder at time τi−1 and
received by the decoder at time τi, respectively. We also introduce the error indicator
function

Ierr(i) := 1 if Dm0 [s(i)] �= e(i), i ≥ 2, and Ierr(i) := 0 otherwise,

and pick 0 < F < F (R,W ), where F (R,W ) is taken from (8.1). By retracing the
arguments from the proof of Lemma 8.12, it is easy to see that the following relation
holds almost surely for all sufficiently large m0:

(9.18) lim
r→∞

1

r

r∑
i=1

Ierr(i) ≤ 2−Fm0 .

Corollary 9.4. For the indicator function Îerr(i) ↔ Ierr(i) = 1 ∨ Ierr(i− 1) =
1 ∨ Ierr(i− 2) = 1, we have

(9.19) lim
r→∞

1

r

r∑
i=1

Îerr(i) ≤ 3 · 2−Fm0 .

Indeed, this is immediate from (9.18) and the inequality Îerr(i) ≤ Ierr(i) +
Ierr(i− 1) + Ierr(i− 2).

Now we start to analyze the influence of the channel errors on the evolution of
the closed-loop system. To this end, we introduce the following linear operators by
employing the deadbeat stabilizer (9.4) and its length L(S):

C[u0, . . . , uL(S)−1] :=

L(S)−1∑
j=0

A−1−jBuj ,(9.20)

x ∈ R
n S−→

[
u(0), . . . , u(n− 1), 0, 0, . . .

] C−→ B(x).
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We also put τ−1 := −1, qc(τl) := qd(τj) := �, l = −1, 0, j = 0, 1, and for i ≥ 0, we
consider the indicator functions (8.22). We first study the evolution of

(9.21) δi := δ−c (τi) and zi := |x̂c(τi+1)|.

Lemma 9.5. The following relations hold for j ≥ 1 and i ≥ 2:

δj = δj−1

{
κ

m0
[
I0(j) + Ierr

0 (j) + Ierr
d� (j)

]
+ γm0

[
I�(j) + Ierr

c� (j)
]}

(9.22)

×
{( γ

κ

)m0

Ierr
d� (j − 1) +

(
κ

γ

)m0

Ierr
c� (j − 1) + [1 − Ierr

d� (j − 1)

− Ierr
c� (j − 1)]

}
,

zi ≤ zi−1‖A‖m0
[
I�(i) + Ierr

c� (i)
]

+ δi−1κ
2m0
[
I0(i) + Ierr

0 (i) + Ierr
d� (i)

]
+ δi−2d(m0)Î

err(i).(9.23)

Here κ ∈ (0, 1), γ > ‖A‖, and Îerr(i) are taken from (9.3), (9.6), and Corollary 9.4,
respectively, and

(9.24) d(m) := ‖A‖2m
[
1 +
( γ

κ

)m]
max

{
‖B‖, |Cu�|

}
,

where u� is the alarm control sequence.
Proof. We start with proving (9.22):

δj
(9.21)
== δ−c (τj)

(9.8)
== δ+

c (τj−1)
〈qd(τj−1)〉m0

κ,γ

〈qc(τj−2)〉m0

κ,γ

(9.11),(9.21)
====== δj−1 〈qc(τj−1)〉m0

κ,γ

〈qd(τj−1)〉m0

κ,γ

〈qc(τj−2)〉m0

κ,γ

.

It remains to note that due to (9.9) and (8.22), the second multiplier and the ratio
in the last expression equal the first and second expressions in the curly brackets { }
from (9.22), respectively. To justify (9.23), we denote by s′ and s′′ the first and second
summands from (9.16), respectively. Since in (9.16), qc(τi−1) is the quantized value
of ε(τi−1) by means of the quantizer Qm0 , relation (9.3) yields

|s′| ≤ δi−1 ×
{

κ
2m0 if qc(τi−1) �= �

‖A‖m0 |ε(τi−1)| if qc(τi−1) = �

}
(8.22)
=== δi−1κ

2m0
[
I0(i) + Ierr

0 (i) + Ierr
d�(i)

]
+ δ−c (τi−1)|ε(τi−1)|‖A‖m0

[
I�(i) + Ierr

c�(i)
]
.

Here δ−c (τi−1)|ε(τi−1)| = |x̂c(τi)| = zi−1 by (9.10) and (9.21). As a result, we see that
|s′| does not exceed the sum of the first two summands from (9.23).

The second summand s′′ from (9.16) can be rewritten in the following form due
to (9.11), (9.12), and (9.20):

s′′ = A2m0

{
δ−d (τi−1)β

[
qd(τi−1)

]
− δ−c (τi−2)β

[
qc(τi−2)

]}
, where

β(q) :=

{
B(q) if q �= �,
Cu� otherwise,

s′′
(9.14),(9.21)
===== δi−2A

2m0

{
〈qd(τi−2)〉m0

κ,γ

〈qc(τi−3)〉m0

κ,γ

β
[
qd(τi−1)

]
− β
[
qc(τi−2)

]}
.
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Whenever Îerr(i) = 0, we have qd(τi−1) = qc(τi−2), qd(τi−2) = qc(τi−3), and so the
last expression in the brackets {} vanishes. In any case, |β(q)| ≤ max{‖B‖, |Cu�|}
for q := qd(τi−1), qc(τi−2), since q �= � ⇒ |q| ≤ 1 ⇒ |β(q)| ≤ ‖B‖. At the same time,
〈qd(τi−2)〉κ,γ

〈qc(τi−3)〉κ,γ
≤ γ/κ due to (9.8). As a result, we see that |s′′| does not exceed the last

summand from (9.23), which completes the proof.
Now we focus on the evolution of the ratio ξi := zi/δi determining whether � is

sent over the channel.
Lemma 9.6. For i ≥ 2, inequality (8.27) holds with Ierr(i) := Îerr(i), where the

indicator function Îerr(i) was introduced in Corollary 9.4, and

(9.25) ρ :=

(
‖A‖
γ

)m0

, b := 2
( γ

κ2

)2m0 [
1 + d(m0)

]
.

Proof. Thanks to (9.22), (9.23), and (9.25)

ξi ≤
{
ξi−1ρ

[
I�(i) + Ierr

c�(i)
]
+ κ

m0
[
I0(i) + Ierr

0 (i) + Ierr
d�(i)

]}
×
{(

κ

γ

)m0

Ierr
d�(i− 1) +

( γ
κ

)m0

Ierr
c�(i− 1) + [1 − Ierr

d�(i− 1) − Ierr
c�(i− 1)]

}
︸ ︷︷ ︸

λ

+
δi−2

δi
d(m0)Î

err(i).

By (9.22),
δj−1

δj
≤ γm0κ

−2m0 ⇒ δi−2

δi
≤ γ2m0κ

−4m0 . Due to the definition of Îerr(i)

from Corollary 9.4,

λ ≤
( γ

κ

)m0

Îerr(i) + 1 − Îerr(i), I(i)[1 − Îerr(i)] = 0,

for I := Ierr
0 , Ierr

d�, Ierr
c� . Hence

ξi ≤
[
ξi−1ρI�(i) + κ

m0I0(i)
][

1 − Îerr(i)
]

+
[
ξi−1ρ

{
I�(i) + Ierr

c�(i)
}

+ κ
m0
{
Ierr
0 (i) + Ierr

d�(i) + I0(i)
}]

×
( γ

κ

)m0

Îerr(i) + γ2m0κ
−4m0d(m0)Î

err(i)

≤
[
ξi−1ρI�(i) + κ

m0I0(i)
][

1 − Îerr(i)
]

+
{[

ξi−1ρ + κ
m0
}]

×
( γ

κ

)m0

+ γ2m0κ
−4m0d(m0)

}
Îerr(i).

Here ρ < 1 by (9.6) and (9.25), and κ < 1. So the factor multiplying Îerr(i) in the
last summand does not exceed

(ξi−1+1)
( γ

κ

)m0

+
( γ

κ2

)2m0

d(m0) ≤
( γ

κ2

)2m0

[1+d(m0)](ξi−1+1)
(9.25)
== b/2(ξi−1+1).

Summarizing, we arrive at (8.27) with Ierr(i) := Îerr(i).

Corollary 9.7. The indicator function I(i) ←→ Îerr(i) = 1 ∨ Iξ>1(i − 1) = 1
almost surely obeys the inequality

(9.26) lim
r→∞

1

r

r∑
i=1

I(i) ≤ p := 3 · 2−Fm0

{
2 +

log b

log[ρ−1]

}
.
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Indeed, thanks to Lemma 9.6 and Observation 8.1,

lim
r→∞

1

r

r∑
i=1

I(i) ≤
{

2 +
log b

log[ρ−1]

}
× lim

r→∞

1

r

r∑
i=1

Îerr(i)
(9.19)
=⇒ (9.26).

Lemma 9.8. Under the assumptions of Proposition 9.2, the coder and decoder
stabilize the system almost surely if
(9.27)
ω := log2[κ

−1] − 2p
{
log2 γ + log2[κ

−1]
}
> 0 and χ := ω(1 − p) − p log2 ‖A‖ > 0.

Proof. The symbol c (with a possible index) will be used to denote random
constants independent of i and r. For any α > 0, (9.26) implies S(r) :=

∑r
i=1 I(i) ≤

r(p + α) for r ≈ ∞. Since κ < 1 < γ, (8.22) and (9.22) yield

δi ≤ δi−1

{
κ

m0 [1 − I(i)] +

(
γ2

κ

)m0

I(i)

}
∀i ≥ 1 ⇒ δr

≤ δ0κ
rm0

r∏
i=1

( γ
κ

)2m0I(i)

= δ0κ
rm0

( γ
κ

)2m0S(r)

r≈∞
≤ δ0κ

rm0

( γ
κ

)2rm0(p+α)

=δ02
−rm0ωα ,

where ωα := log2[κ
−1] − 2[p + α]

{
log2 γ + log2[κ

−1]
} α→0−−−→ ω > 0.

Thus for α ≈ 0, we have ωα > 0 and

(9.28) δi ≤ c′2−im0ωα → 0 as i → ∞.

This, along with (9.11), (9.12), (9.14), and (9.21), implies

(9.29) uc(t) → 0, u(t) = ud(t) → 0 as t → ∞.

In particular, the second relation from (3.3) holds. To prove the first one, we note
that due to (9.23) and (9.28)

zi ≤ zi−1‖A‖m0I(i) + c′′[δi−1 + δi−2] ≤ zi−1‖A‖m0I(i) + c2−im0ωα ∀i ≥ 2;

zr ≤ z1

r∏
i=2

[
‖A‖m0I(i)

]
+ c

r∑
i=2

2−im0ωα

r∏
j=i+1

[
‖A‖m0I(j)

]
.

The first relation from (9.27) implies p < 1. So {i ≥ 2 : I(i) = 1} �= {i = 2, 3, . . . }
due to (9.26). It follows that for r ≈ ∞, the first summand vanishes and

zr ≤ c

r∑
i=r−l

2−im0ωα‖A‖m0(r−i),

where {r− l+1, . . . , r} is the largest subinterval of the set Ir := {2 ≤ i ≤ r : I(i) = 1}
containing r. (If r �∈ Ir, then l := 0.) We proceed by taking into account the inequality
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l ≤
∑r

i=1 I(i) = S(r) ≤ r(p + α) for all r ≈ ∞:

zr ≤ c2−rm0ωα

r∑
i=r−l

2(r−i)m0ωα‖A‖m0(r−i) = c2−rm0ωα

l∑
i=0

(
2ωα‖A‖

)m0i

≤ c
2−rm0ωα

(
2ωα‖A‖

)m0l

1 −
(
2ωα‖A‖

)−m0

r≈∞
≤ c

2−rm0ωα
(
2ωα‖A‖

)m0r(p+α)

1 −
(
2ωα‖A‖

)−m0
=

c

1 −
(
2ωα‖A‖

)−m0
2−rm0χα ,

where χα := ωα[1 − (p + α)] − (p + α) log2 ‖A‖ (9.27)−−−−→
α→0

χ > 0.

Thus χα > 0 for α ≈ 0. So zr
(9.21)
== |x̂c(τr+1)| → 0 as r → ∞. This and (9.7), (9.29)

yield Am0x(τr) → 0 as r → ∞. Since the matrix A has no stable modes, the matrix
A−m0 is well defined, and so x(τr) → 0 as r → ∞. To obtain the first relation from
(3.3), it remains to note that for τr ≤ t < τr+1 = τi + m0,

|x(t)| =

∣∣∣∣∣∣At−τrx(τr) +

t−j∑
j=τr

At−1−jBud(j)

∣∣∣∣∣∣ ≤ ‖A‖m0

⎛⎝|x(τr)| + ‖B‖
τi+1−1∑
j=τi

|ud(j)|

⎞⎠
and to invoke (9.29).

Completing the proof of Proposition 9.2. By Lemma 9.8, it suffices to show that
(9.27) holds whenever m0 is large enough. Owing to (9.24) and (9.25),

1

m0
log2[1 + d(m0)] =

1

m0

(
log2 d(m0) + log2[1 + d(m0)

−1]
)

= 2 log2 ‖A‖ + log2 γ + log2 κ
−1 +

1

m0
log2

[
1 +

(
κ

γ

)m0
]

+
1

m0
log2 max{‖B‖, |Cu�|} +

1

m0
log2[1 + d(m0)

−1]

m0→∞−−−−−→ Δ∞ := 2 log2 ‖A‖ + log2 γ + log2 κ
−1,

log2 b

log2[ρ
−1]

=
1 + 2m0[log2 γ + 2 log2 κ

−1] + log2[1 + d(m0)]

m0[log2 γ − log2 ‖A‖]
m0→∞−−−−−→ 2[log2 γ + 2 log2 κ

−1] + Δ∞
log2 γ − log2 ‖A‖ .

This and (9.26) yield p → 0 as m0 → ∞, and we see that (9.27) does hold for
m0 ≈ ∞.

9.4. Completing the proof of Theorem 5.2. The arguments from subsec-
tion 9.2 and Proposition 9.2 ensure that c > η(A) ⇒ (a) for systems with no stable
modes. Now we consider the general case. Suppose that c > η(A) and invoke the
notations from Explanation 5.1. Since η(A) = η(A+), claim (a) is true for the system

(9.30) x+(t + 1) = A+x+(t) + π+Bu(t), x+(0) := π+x0, y+(t) = Cx+(t),

where π+ and π− are the projectors onto L+ parallel to L− and vice versa, respectively.
While picking the parameter m0 in (9.6) and the alarm control sequence (9.15) for
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the coder and decoder stabilizing the system (9.30), we employ the dimension n of the
state of the original system. Now we apply this coder and this decoder to the primal
system (3.1). In doing so, we alter the coder’s steps c.1 and c.3�1, where it identifies
the state x+(τ) for τ = τi, τi + 2n, τi + 3n + 1. Formerly this was done on the basis
of the past measurements from (9.30). Now we employ the observations from (3.1).
Then thanks to Assumption 4.4, it is possible to compute π+x(τ) = x+(τ) because
the dynamics of the system (3.1) is free, u(t) = 0, at least n time steps before τ . It
follows that

(9.31) |π+x(t)| → 0 and |u(t)| → 0 as t → ∞ a.s.

So to complete the proof, it suffices to show that x−(t) := π−x(t) → 0 whenever
(9.31) holds. To this end, we note that

x−(t + 1) = A−x−(t) + π−Bu(t), ‖Am
−‖ ≤ cρm, m = 0, 1, 2, . . . ,

for some ρ ∈ (0, 1). Hence for any given t∗ and t > t∗, we have

|x−(t)| =
∣∣∣At

−x−(0) +

t−1∑
j=0

At−1−j
− π−Bu(j)

∣∣∣
≤ cρt|x−(0)| + c‖B‖‖π−‖

[ t∗∑
j=0

ρt−1−j |u(j)| +
t−1∑
j=t∗

ρt−1−j |u(j)|
]
,

lim
t→∞

|x−(t)| = c‖B‖‖π−‖ lim
t→∞

t−1∑
j=t∗

ρt−1−j |u(j)|

≤ c‖B‖‖π−‖
1 − ρ

sup
t≥t∗

|u(t)| → 0 as t∗ → ∞,

where the last relation follows from (9.31). Thus (a) does hold.
The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are apparent, whereas (d) ⇒ c ≥ η(A)

holds due to Remark 5.1.

Appendix: Proof of Lemma 6.1. The proof is prefaced by two technical facts.
Lemma A.1. Suppose that Assumptions 4.1 and 4.2 hold and a decoder (2.2)

and a feedback coder (2.3) are taken. Then the joint distribution of the variables x0,
Et

0 = {ej}tj=0, S
t
0 = {sj}tj=0 is given by

P [dx, dSt
0, dE

t
0] =

t∏
j=0

W (sj |ej)δ
[
ej ,Ex

(
j, x, Sj−1

0

)]
dsjdejP 0(dx), where(A.1)

Ex[t, x0, S
t−1
0 ] := E[t, Cx0, . . . , CAtx0, S

t−1
0 ]

(2.1),(2.3)
==== e(t).(A.2)

Here P 0(dx) is the probability distribution of x0, and δ(e, e′) := 1 if e = e′ and
δ(e, e′) := 0 otherwise.

Proof. The proof will be by induction on t. For t = 0,

P [dx, dSt
0, dE

t
0] = P [dx, ds0, de0]

= P [dx, ds0|e0]P (de0)
Assumptions 4.1, 4.2

========= P [dx|e0]P [ds0|e0]P (de0)
Assumption 4.1,

====== W (s0|e0)P [dx, de0]ds0
(A.2)
== W (s0|e0)δ

[
e0,Ex(0, x)

]
ds0de0P 0(dx);
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i.e., (A.1) does hold for t = 0. Suppose that it holds for some t = 0, 1, . . . . Then

P
[
dx, dSt+1

0 , dEt+1
0

]
= P

[
dx, dSt

0, dst+1, dE
t
0, det+1

]
= P

[
dx, dSt

0, dst+1, dE
t
0|et+1

]
P
[
det+1

]
Assumptions 4.1, 4.2

========= P
[
dx, dSt

0, dE
t
0|et+1

]
P
[
dst+1|et+1

]
P
[
det+1

]
= W (st+1|et+1)P

[
dx, dSt

0, dE
t
0, det+1

]
dst+1

(A.2)
=== W (st+1|et+1)δ

[
et+1,Ex(t + 1, x, St

0)
]
P
[
dx, dSt

0, dE
t
0,
]
dst+1det+1.

This and the induction hypothesis show that (A.1) does hold for t = t + 1.
Corollary A.2. Given a coder and decoder-estimator, we denote by B the

random event of keeping the error bounded (2.6). The conditional probability of this
event given x(0) = x can be chosen so that it does not depend on the distribution
of the initial state x(0), provided Assumption 4.2 holds. This is true irrespective of
whether or not this distribution has a probability density.

Indeed, thanks to Lemma A.1, the conditional distribution

P
[
dSt

0|x(0) = x
]

=
∑
Et

0

t∏
j=0

dsjW (sj |ej)δ
[
ej ,Ex(j, x, Sj−1

0 )
]

=

t∏
j=0

dsjW
[
sj |Ex(j, x, Sj−1

0 )
]

does not depend on the distribution of the initial state. It remains to note that

P (B|x) = lim
k→∞

lim
l→∞

∫{
Sl

0:|Atx−X(t,St
0)|<k ∀t=0,...,l

}P [dSl
0|x(0) = x

]
.

Proof of Lemma 6.1. Consider a coder (2.3) and decoder (2.2) that keep the
estimation error bounded with the probability better than p for the primal system
(2.1). By invoking the notation p0(·) from Assumption 4.3 and putting Q>p :=
{x ∈ R

n : P (B|x) > p}, we get

p < P (B) =

∫
Rn

P (B|x)p0(x) dx ⇒
∫
Q>p

p0(x) dx

= P (x0 ∈ Q>p) > 0 ⇒ ∃c > 0 : P (x0 ∈ Q) > 0,

where Q := {x ∈ Q>p : p0(x) ≤ c}. Then there exists a compact subset
◦
Q⊂ Q such

that P [x0 ∈
◦
Q] =

∫
◦
Q
p0(x) dx > 0 [15, sect. 134Fb]. Now we pass to the probability

space related to the probability given x0 ∈
◦
Q. This evidently keeps Assumptions

4.1–4.3 true and the channel parameters W (s|e) unchanged. We assume that all
random variables inherit their initial notations. Note also that in the new probability
space, the initial vector x0 is almost surely bounded and has a bounded density. Hence
h(x0) ∈ R.

Now we introduce the projector π+ onto L+ parallel to L− and the compact set

Q+ := π+

◦
Q⊂ L+, and we define the initial vector in (6.1) to be x+

0 := π+x0. This
vector evidently has a bounded probability density,

(A.3) x+
0 ∈ Q+ a.s.,
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and so the second moment of x0 is finite. It follows that h(x+
0 ) ∈ R.

The multivalued function x+ ∈ Q+ → V(x+) := {x− ∈ L− : x+ + x− ∈
◦
Q} has

a closed graph
◦
Q and so is upper-hemicontinuous. Thus there exists a single-valued

measurable selector x+ ∈ Q+ → χ−(x+) ∈ V(x+). By extending it as a measurable
function on L+ and putting χ(x+) := x+ + χ−(x+), we get

(A.4) x+ ∈ Q+ ⇒ χ(x+) ∈
◦
Q⊂ Q ⇒ P

[
B|χ(x+)

]
> p.

Now we are in a position to transform the original coder-decoder pair (2.3), (2.2)
serving the primal system into that keeping the estimation error bounded for the
auxiliary system (6.1). We note first that the system (6.1) is observable thanks to As-
sumption 4.4. So for any t ≥ n−1, there exists a dead-beat observer, i.e., a linear trans-

formation y(0), . . . , y(t)
St→ x+(0), where y(i) are taken from (6.1). We define a new

coder and decoder as follows. For t = 0, . . . , n− 1, they in fact do nothing. However,
for the sake of definiteness, we pick e∗ ∈ E and put E+[t, y(0), . . . , y(t), St−1

0 ] := e∗,
X+[t, St

0] := 0. For t ≥ n, the new coder and decoder act as follows:

ω =
[
y(0), . . . , y(t), St−1

0

] St→ x+(0), St−1
0 → E+[t, ω]

:= E
{
t− n,Cχ[x+(0)], . . . , CAt−nχ[x+(0)], St−1

n

}
,

x̂+(t) := X+

[
t, St

0

]
:= π+A

n
X
[
t− n, St

n

]
.

Now consider the process ξ(t) = [x(t), y(t), e(t), s(t), x̂(t)], t = 0, 1, . . . , generated
by the original coder-decoder pair in the system (2.1) when started with the initial
random state χ[x+

0 ]. It is easy to see that π+x(t), Cπ+x(t), e(t − n), s(t − n),
π+A

nx̂(t − n) is a process generated by the new coder and decoder in the auxiliary
system (6.1). Here x̂(t) := 0, e(t) := e∗ for t < 0, and s(−n), . . . , s(−1) are mutually
independent and independent of ξ(t), t = 0, 1, . . . random quantities, each with the
distribution W (s|e∗). Hence for t ≥ n,

|x+(t) − x̂+(t)| = |π+x(t) − π+A
nx̂(t− n)| ≤ ‖π+‖|x(t) −Anx̂(t− n)|

= ‖π+‖|Anx(t− n) −Anx̂(t− n)| ≤ ‖π+‖‖An‖|x(t− n) − x̂(t− n)|.

So for the new coder-decoder pair and the system (6.1), the probability of keeping
the estimation error bounded is no less than that for the process ξ(t), t = 0, 1, . . . .
It remains to note that the latter amounts to EP [B|χ(x+

0 )] and is greater than p by
(A.3) and (A.4).
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[67] S. Yüksel and T. Başar, Coding and control over discrete noisy forward and feedback chan-

nels, in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain,
2005, pp. 2517–2522.

[68] K. S. Zigangirov, Upper bounds on the error probability for channels with feedback, Problems
Inform. Transmission, 6 (1970), pp. 87–92.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 4, pp. 1368–1397

OPTIMAL VORTEX REDUCTION FOR INSTATIONARY FLOWS
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Abstract. We consider the problem of an appropriate choice of a cost functional for vortex
reduction for unsteady flows described by the Navier–Stokes equations. This choice is directly re-
lated to a physically correct definition of a vortex. Therefore, we discuss different possibilities for
the cost functional and analyze the resulting optimal control problems. Moreover, we present an
efficient numerical realization of this concept based on space-time finite element discretization and
demonstrate its behavior in some numerical experiments. It is demonstrated that the choice of cost
functionals has a significant effect on the reduction of vortices.
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1. Introduction. This work focuses on the choice of proper cost functionals
in optimal control formulations for vortex reduction in incompressible fluids. The
formalization of vorticity is still a major challenge and a subject of intense research
within fluid mechanics research itself. In the context of optimal control the quan-
tification must satisfy the additional requirement that it allows the description of
vorticity as a scalar-valued functional in terms of observables of the fluid. More-
over, the mathematical properties of the functional have significant consequences for
mathematical programming considerations and for the numerical realization of the
resulting optimization problems.

Let us first summarize some of the cost functionals that were already used in
the optimal control literature to formulate vortex reduction problems. We denote by
y(t, x) the velocity vector and by p(t, x) the pressure of an incompressible fluid which
extends over the time horizon [0, T ] and the spatial domain Ω. Further, let Ω̃ be the
subset of Ω over which vortex reduction is desired.

An intensively studied cost functional in the context of optimal control of vortex
reduction is given by

(1.1)

∫ T

0

∫
Ω̃

|curl y(t, x)|2 dx dt;

see, e.g., [AT, G]. One of the objections against this functional is that it is not
Galilean invariant; i.e., it is not invariant under transformations of the form Qx+ d t
of the flow field y, where Q is a time-independent matrix and d is a constant vector.
Another frequently used functional is of the form

(1.2)

∫ T

0

∫
Ω̃

|y(t, x) − ydes(t, x)|2 dx dt,
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where ydes stands for a given desired flow field which contains some of the expected
features of the controlled flow field without the undesired vortices. Typically ydes is
chosen as the solution to the Stokes problem on the same flow geometry and with the
same boundary conditions as those which are involved for the characterization of y.
This functional is referred to as a tracking-type functional. Just like the functional in
(1.1), the tracking-type functional is not Galilean invariant. From the mathematical
programming point of view the functionals in (1.1), (1.2) behave quite differently,
however. To explain this fact let us consider the following prototype boundary optimal
control problem:

(1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ(y) + G(u)

subject to

yt − νΔy + y · ∇y + ∇p = f in (0, T ] × Ω,

−div y = 0 in (0, T ] × Ω,

y(0, ·) = y0 on Ω,

y = u on (0, T ] × Γc, y = 0 on (0, T ] × (∂Ω \ Γc),

where ν > 0, f and y0 are given, and u denotes the control variable acting on (0, T ]×Γc

and satisfying
∫
Γc

u(t)ndx = 0, with n denoting the outer normal to ∂Ω. Further J
and G are real-valued functionals penalizing vorticity and control-action, respectively,
with J as in (1.1) or (1.2), and G(u) = 1

2 |u|2, where | · | denotes an appropriate norm
on the control space. If u is an optimal solution to (1.3), then u, together with the
associated velocity y and pressure p, satisfies the primal equations, which are the
equations in (1.3), the adjoint equation

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λt − νΔλ + (∇y)tλ− (y · ∇)λ + ∇π = J ′(y) in (0, T ] × Ω,

−div λ = 0 in (0, T ] × Ω,

λ(T, ·) = 0 on Ω,

λ = 0 on (0, T ] × ∂Ω,

with adjoint velocity λ and adjoint pressure π, and satisfies as well the so-called
optimality condition formally given by

(1.5) ν
∂λ

∂n
+ G′(u) − πn = 0 on Γc.

We refer to [FGH] and [HK], for example, for rigorous frameworks for boundary
control of the Navier–Stokes equations. Note that the adjoint equations related to
(1.1) and (1.2) differ significantly with respect to the regularity of the right-hand
sides: in the former case the right-hand side involves second order derivatives of the
velocity field, whereas for the tracking-type cost functional only y without derivatives
appears in (1.4). Moreover, in the case when the residue between ydes and y at the
optimal control is sufficiently small, a second order optimality condition for (1.3)
with J as in (1.2) holds [HK]. It appears to be difficult to obtain conditions which
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lend themselves to an intuitive interpretation and which imply second order sufficient
optimality for optimal control problems involving (1.1). For second order sufficient
optimality conditions related to optimal control of the Navier–Stokes equations, we
also refer to [TW].

To discuss candidates for Galilean invariant measures we decompose the velocity
gradient tensor ∇y as

∇y = S + Ω,

where S = 1
2 (∇y + (∇y)t) is the rate of strain tensor and Ω = 1

2 (∇y − (∇y)t) is
the vorticity tensor. The fact that Ω is used for both the spatial domain and the
antisymmetric part of ∇y should not create confusion. We use this notation for both
since they are quite standard in the literature.

The Δ-criterion (see [CPC] and [BMC]) is based on a local phase plane analysis
of

(1.6) ξ̇ = Aξ

with A = ∇y(t, x). For two-dimensional systems the geometry of the trajectories in
terms of the eigenvalues of A can be found in many textbooks. For the case when A
is a 3 × 3 matrix, a detailed analysis is given in [CPC], for example. In particular, if

(1.7) Δ =
1

2

(
Q

3

)3

+

(
det∇y

2

)2

> 0,

where

(1.8) Q =
1

2
(|Ω|2 − |S|2),

then the characteristic equation associated with A has one real and two complex
eigenvalues. Thus, the regions in (0, T ) × Ω, where Δ is positive, are candidates for
local instantaneous stirring. In (1.8) we denote |Ω|2 =

∑
i,j Ω2

ij and similarly for |S|.
For incompressible fluids we have

Q = −1

2
trace(A2).

The research in [JH] contains an interesting discussion of some of the shortcomings of
earlier characterizations of vortices, including (1.7), and it proposes to define vortices
as regions where the second eigenvalue of the symmetric matrix S2 + Ω2 satisfies

λ2(S
2 + Ω2) < 0.

Under appropriate conditions this criterion guarantees an instantaneous local pressure
minimum in a two-dimensional plane in a three-dimensional flow.

In the case when spatial domain Ω is two-dimensional, it can be easily verified by
direct computation that the following criteria are equivalent:

(i) The smaller eigenvalue of S2 − Ω2 is negative;
(ii) ∇y has complex eigenvalues;
(iii) Q > 0;
(iv) det∇y > 0.
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These considerations suggest the use of

(1.9)

∫ T

0

∫
Ω̃

max(0,det∇y(t, x)) dx dt

as a cost functional in vortex-reduction formulations. Note that due to the max-
operation the cost functional in (1.9) is nondifferentiable and therefore, for numerical
optimization routines, regularization of the max-operator may be necessary. This cost
functional was used for optimal vortex reduction in a driven-cavity problem in [HKSV].

Let us return to the cost functional (1.1) involving the curl-operator and note
that it can be equivalently expressed as∫ T

0

∫
Ω̃

|Ω(t, x)|2 dx dt.

Vorticity, together with thresholding, has been widely used for representing vortices;
see [JH] and the references given there. However, it is now well accepted as an
inadequate vorticity measure, for example, in the context of boundary layers. In
particular, it was shown in [Lu] that maxima and minima of |Ω| in planar wall-
bounded flows occur only at the wall.

A well-known Galilean invariant measure defines the vorticity region as the do-
main where the vorticity tensor dominates the rate of strain tensor, i.e.,

Q =
1

2
(|Ω|2 − |S|2) = −1

2
(λ1 + λ2 + λ3) > 0,

where λi are the eigenvalues of S2 + Ω2.
This criterion was originally proposed in [O] and [W] for two-dimensional domains

and investigated in [HWM] for three-dimesional domains. It is referred to as the
Okubo–Weiss criterion, or Q-criterion, and readily lends itself to being used in a cost
functional of the form∫ T

0

∫
Ω̃

max(0, |Ω(t, x)|2 − |S(t, x)|2) dx dt.

As mentioned above, the Okubo–Weiss criterion coincides with the det∇y > 0 crite-
rion in two dimensions.

Galilean invariant vortex criteria allow a classification which is invariant under
frame changes that move at a constant speed relative to each other. In a variety
of different theoretical and example-driven approaches (see, e.g., [H1], [H2], [LHK],
[LKH], [TK]), it was established that Galilean invariance is not sufficient for reliable
vortex identification. Rather, criteria must be invariant also under coordinate trans-
formations of the form Q(t)x + d(t), where Q is a time-dependent orthogonal matrix
and d a time-dependent velocity vector. Such transformations are called objective in
continuum mechanics and, in particular, they allow time-dependent rotations. An
alternative way to point out the deficiencies of Galilean invariant criteria is based on
taking the point of view of tracer dynamics. The gradient of the tracer q satisfies

D∇q

Dt
= −(∇y)t∇q,

where D
Dt is the material derivative and (∇y)t denotes the transpose of the velocity

gradient tensor. Studies have shown that the acceleration gradient tensor or second
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derivatives of the pressure must be considered as well; see [LKH, LHK] and the ref-
erences given there. In [LKH] an objective criterion is obtained in two dimensions
which defines a rotation dominated region by means of

(1.10) |r(y, p)| > 1,

where

(1.11) r(y, p) =
ω

σ
− σs(px1x1 − px2x2) − 2σnpx1x2

σ
3
2

,

and ω = (y2)x1 − (y1)x2
, σs = (y2)x1

+(y1)x2
, σn = (y1)x1

− (y2)x2
, σ = (σ2

s +σ2
n)1/2.

It can readily be used for vortex-reduction by introducing the cost functional

(1.12)

∫ T

0

∫
Ω̃

max(r(t, x)2 − 1, 0) dx dt,

for example.
In [TK] the Okubo–Weiss criterion is reconsidered through study of the stability

of fluid particles in the eigenbasis of the rate of strain tensor S. This results in the
modified criterion

(1.13) Qs =
1

2
(|Ω − ΩS |2 − |S|2) > 0,

where ΩS is the matrix containing the time derivatives of the unit eigenvectors of S
in the Lagrangian frame. This criterion is well defined and objective regardless of the
spatial dimension; however, as noted in [TK], the physical principles used in deriving
(1.13) are restricted to two dimensions. In the appendix of [TK] it is verified that in
two dimensions the criteria (1.10) and (1.13) coincide.

An interesting new vorticity criterion [H1, H2] again departs from a stability
consideration of ξ = 0 in (1.7). It utilizes the Lyapunov functional

V (t, ξ) =
1

2

d

dt
|ξ|2 = ξtS(t, x(t))ξ.

By incompressibility of the velocity field, it can be argued that Z = Z(t) = {ξ :
V (t, ξ) = 0} defines a cone in R

3(R2) separating regions with different qualitative
properties of the flow of (1.6) depending on the signs of the real eigenvalues of
∇y(t, x(t)). To analyze the qualitative behavior of the flow, the strain acceleration
tensor M = St +(∇S)y+S∇y+(∇y)tS is defined and its restriction MZ to Z is con-
sidered. The elliptic region is defined as the set in (t, x) space, where MZ is indefinite
or S(t, x) vanishes on Z. A vortex is a bounded connected set of fluid trajectories
that remain in the elliptic region. This is an objective criterion valid for two and
three dimensions. It appears that further considerations are necessary regarding how
to design a practical cost functional based on this vortex definition which can be used
in optimal control formulations.

In this paper we shall show the practical efficiency of the objective functional
(1.12) for vortex reduction. We shall further conduct a comparison among the four
functionals (1.1), (1.2), (1.9), and (1.12). Optimal control problems based on these
four functionals can give surprisingly different results. A comparison among different
cost functionals is, at first, impeded by the following difficulty: As indicated in the
prototype problem (1.3), usually a term G(u) representing control costs is utilized.
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Mathematically it guarantees a priori bounds on minimizing sequences for (1.3) and,
subsequently, existence of a minimizer for the optimal control problem (1.3). The
optimal solution depends on G and therefore, if J is taken as one of the four functionals
(1.1), (1.2), (1.9), (1.12), the question must be addressed of how to eliminate the
effect of the control-cost term on the solutions of these optimal control problems.
Here we take the approach of eliminating G altogether. As a consequence, we have to
consider atypical existence problems for optimal control problems with the Navier–
Stokes equations as constraints. In fact, there are no obvious a priori bounds for the
control. We can only hope for a priori bounds for y due to J . Assuming that such
bounds can be obtained it is, however, unfeasible to assume that boundedness of y
implies boundedness of u for most practical norms for y and u, where y and u are linked
through the Navier–Stokes equations. For this reason we consider finite dimensional
control spaces only. This still leaves us with interesting existence problems for optimal
control problems without control costs in the functional to be minimized.

We should also note the fact that some arbitrariness remains due to the fact that
vorticity criteria of the type c(t, x) > 0 pointwise in the space-time cylinder must be
converted to scalar-valued functionals; compare (1.10) and (1.12), for example.

Let us briefly outline the following sections. Section 2 is devoted to existence
results for optimal control problems with the Navier–Stokes equations as constraints.
Specifically we also consider the situation without control costs, where a priori bounds
on the controls can result only from the differential equation which appears as a con-
straint. In section 3 we discuss optimality systems for the optimal control problems
under consideration. Section 4 is devoted to algorithmic aspects concerning the opti-
mization algorithm and the space-time finite element discretization. Numerical exam-
ples for a channel flow with an obstacle are given in section 5. In section 6 (appendix)
the proofs for the theorems and propositions of sections 2 and 3 are provided.

2. Optimal control problem. In this section we formulate optimal control
problems for vortex reduction and discuss the existence of solutions in some proto-
typical cases. In order to compare different vortex descriptions leading to different
cost functionals, we choose a formulation where the control variable does not ex-
plicitly enter the cost functional; i.e., we consider optimal control problems without
control costs. In general, existence of a solution for such problems cannot be guaran-
teed. Therefore we restrict ourselves to the consideration of finite dimensional control
spaces. Even then, due to nonlinearity of the state equation and possible nonconvex-
ity of the cost functional, existence of optimal controls does not follow from standard
arguments. These arguments can be employed if the cost functional is radially un-
bounded with respect to the control, but this is not the case in our work; see, e.g.,
[AT, Li]. In practice, as well, the control variables are often restricted to a finite
dimensional setting.

Throughout this section we consider the optimal control problem of vortex re-
duction on the spacial domain Ω ⊂ R

2, with boundary ∂Ω of C1-class, in the time
interval I = (0, T ). The space-time cylinder is denoted by Q = (0, T ) × Ω.

In order to formulate the optimal control problem we introduce the following
spaces:

V =
{
v ∈ H1(Ω)2 : div v = 0

}
, V0 =

{
v ∈ H1

0 (Ω)2 : div v = 0
}
,

H =
{
v ∈ L2(Ω)2 : div v = 0

}
, H =

{
v ∈ H1

0 (Ω)2 : div v = 0
}−L2(Ω)2 ,

where −L2(Ω)2 denotes the closure in L2(Ω)2, and V∗ is the dual space to V. These
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spaces build a Gelfand triple V ↪→ H ↪→ V∗; i.e., the imbeddings V ↪→ H and H ↪→ V∗

are continuous and V is dense in H.
For an arbitrary space Y we use the abbreviations Lp(Y ) = Lp(0, T ;Y ), for

1 ≤ p < ∞, and C(Y ) = C([0, T ];Y ). We further set

W =
{
w ∈ L2(V) : wt ∈ L2(V∗

0 )
}
, W0 = W ∩ L2(V0),(2.1)

L2(Ω)/R =

{
v ∈ L2(Ω) :

∫
Ω

v dx = 0

}
.

The space WΣ of admissible functions appearing in the Dirichlet boundary con-
ditions is chosen as

WΣ = {ĝ = τg : g ∈ W} ,

where τ : W → L2(H1/2(∂Ω)2) is the trace operator onto the lateral boundary (0, T )×
∂Ω of the cylinder Q; see [HK].

As motivated in the introduction, we choose a finite dimensional control space
U ∼= R

n (n ∈ N) and consider a control operator B̂ ∈ L(U,WΣ). Then B̂ can be
expressed as

B̂u =

n∑
i=1

uiψ̂i, ψ̂i = τψi, with ψi ∈ W .

Throughout we assume the operator B̂ to be injective, i.e., the functions {ψ̂i} are
linearly independent, and that

ψi(0) ∈ H, i = 1, 2, . . . , n.

The latter condition implies that ψi(0) ·n = 0 on ∂Ω and also will be required for the
initial condition y0 below. Our results can easily be generalized to just requiring the
compatibility condition (

(B̂u)(0) − y0|∂Ω

)
· n = 0 .

For later use, we introduce a prolongation operator B ∈ L(U,W ) of the control
operator B̂ with the property

τ(Bu) = B̂u for all u ∈ U .

This prolongation may be defined by Bu =
∑

i uiψi or as in Lemma 6.2, but each
prolongation satisfying the above condition is admissible.

The state equation for the velocity field y = y(t, x) and pressure p = p(t, x) is
formulated as follows:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt − νΔy + y · ∇y + ∇p = f in (0, T ] × Ω,

−div y = 0 in (0, T ] × Ω,

y(0, ·) = y0 on Ω,

y = B̂u on (0, T ] × ∂Ω.
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The data are assumed to satisfy ν > 0, f ∈ L2(H−1(Ω)2), and y0 ∈ H, where
H−1(Ω) is the dual space of H1

0 (Ω). The state equation (2.2) is understood in the
distributional sense, allowing for a variational formulation for the velocity component
y. The introduction of the pressure component and its regularity is discussed below
in Proposition 2.1.

To introduce the weak formulation for the velocity component we define a semi-
linear form ā : W ×W0 → R by

ā(y, ψ) =

∫ T

0

{(yt, ψ) + ν(∇y,∇ψ) + (y∇y, ψ) − (f, ψ)} dt + (y(0) − y0, ψ(0)).

The velocity component y is called the variational solution of (2.2) if y ∈ W
satisfies

(2.3) y ∈ Bu + W0 : ā(y)(ψ) = 0 for all ψ ∈ L2(V0).

For the state equation formulated in this setting we have the following existence
result.

Proposition 2.1. For every u ∈ U there exists a unique variational solution
y ∈ W of the state equation (2.3) defining a continuous solution operator S : U → W .
Moreover, there exists a distribution p fulfilling (2.2) such that p = ∂tP with some
P ∈ C(L2(Ω)/R). The mapping u 
→ P is continuous from U to C(L2(Ω)/R).

The proof of this proposition is given in section 6 (appendix), where it is shown
that the pair (y, P ) satisfies

y(t) − y(0) − ν

∫ t

0

Δy(s) ds +

∫ t

0

(y(s) · ∇)y(s) ds + ∇P (t) =

∫ t

0

f(s) ds

in C(H−1(Ω)2).

The space of all pairs x = (y, p) satisfying y ∈ W and p = ∂tP (as distribution)
with some P ∈ C(L2(Ω)/R) is denoted by X, i.e.,

X =
{
(y, p) : y ∈ W and p = ∂tP, P ∈ C(L2(Ω)/R)

}
.

In the following proposition a regularity result for the solution x = (y, p) of (2.2)
is given. It will be shown that x lies in the space

X = L2(H2(Ω)2) ∩H1(L2(Ω)2) × L2(H1(Ω)) ,

provided that additional assumptions are satisfied. This regularity in particular allows
us to interpret the pressure component p as an almost everywhere defined function
rather than as only a distribution.

Proposition 2.2. If ∂Ω is of C2-class, f ∈ L2(L2(Ω)2), y0 ∈ V0, ψi ∈ W ∩
L2(H2(Ω)2) ∩H1(L2(Ω)2), and ψi(0) ∈ V0, then x ∈ X .

The proof of this proposition is given in section 6 (appendix).

Under the assumptions of Proposition 2.2 a variational formulation incorporating
the pressure component can be stated. To this end we introduce the space X0 by

X0 = {(y, p) ∈ X : τy = 0}
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and define for x = (y, p) ∈ X and ζ = (ψ, ξ) ∈ X0 the semilinear form a : X ×X0 → R

by

a(x)(ζ) =

∫ T

0

{(yt, ψ) + ν(∇y,∇ψ) + (y∇y, ψ) − (p,div ψ) − (f, ψ) + (div y, ξ)} dt

+ (y(0) − y0, ψ(0)).

We introduce a prolongation B ∈ L(U,X ) by Bu = (Bu, 0) and state the corre-
sponding variational formulation as follows:

(2.4) x ∈ Bu + X0 : a(x, ζ) = 0 for all ζ ∈ X0 .

Under the assumptions of Proposition 2.2 the solution x satisfies the variational prob-
lem (2.4).

We are now prepared to introduce the optimization problems which will further
be investigated. In the following section we shall derive optimality systems under the
mild regularity requirements of Proposition 2.1 as well as under the stronger ones of
Proposition 2.2. The corresponding variational formulations are given in (2.3) and
(2.4), respectively.

The optimization problems are of the form

(2.5) minimize J(x) subject to (2.2), x ∈ X, u ∈ U,

where J : X → R and the solutions to (2.2) are understood in the sense of Proposi-
tion 2.1.

We stress that due to the absence of a control cost term, one cannot use standard
techniques to ensure the existence of a solution of (2.5). In the following, we first
provide the existence of solutions for two choices of the functional J :

J1(y) =

∫ T

0

∫
Ω

|y(t, x) − ydes(t, x)|2 dx dt,(2.6)

J2(y) =

∫ T

0

∫
Ω

|curl y(t, x)|2 dx dt,(2.7)

where ydes ∈ L2(L2(Ω)) is a given desired velocity field.
Theorem 2.3. There exists a solution for the optimal control problem (2.5) for

both choices of the cost functional J = J1 and J = J2.
The proof of this theorem is given in section 6 (appendix).
As discussed in the previous section, the cost functionals J1 and J2 defined in

(2.6) and (2.7) are not based on Galilean invariant or objective vortex definitions.
Therefore we additionally consider the functional obtained from the Q-criterion:

(2.8) J3(y) =

∫ T

0

∫
Ω

g3(det∇y) dx dt,

which is Galilean invariant, and the functional based on the vortex criterion from
[LKH]:

(2.9) J4(y, p) =

∫ T

0

∫
Ω

g4(r(y, p)) dx dt,
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which is even objective. Here, r(y, p) is defined as in (1.11) and the functions g3, g4 ∈
C2(R) are chosen as follows:

g3(t) =

{
0, t ≤ 0,

l(t), t > 0,
g4(t) =

⎧⎪⎨⎪⎩
l(−t− 1), t < −1,

0, −1 ≤ t ≤ 1

l(t− 1), t > 1,

, l(t) =
t3

t2 + 1
.

The techniques presented in section 6 for ensuring the existence of optimal solu-
tions for optimal control problem (2.5) with J = J1 and J = J2 (without the control
cost term) cannot be directly applied for the cost functionals J3 and J4. For J3 we
obtain the following result.

Theorem 2.4. The optimal control problem (2.5) with J = J3 and additional
control constraints ua ≤ u ≤ ub (ua, ub ∈ U) possesses an optimal solution.

The proof of this theorem is given in section 6 (appendix).
Remark 2.1. The discussion of the case J = J4 requires more regularity of the

state variable for this cost functional to be well defined. For the required regularity,
including p ∈ L2(0, T ;H2(Ω)), strong compatibility assumptions on the data are
necessary; see, e.g., [T]. A detailed analysis for existence and optimality conditions is
not within the scope of this paper.

3. Optimality system. In this section we discuss necessary optimality condi-
tions for (2.5). The derivation is rigorous for J1, J2, J3, but only formal for J4.

In order to set up the optimality system, we introduce the adjoint equation for
z = (λ, π):

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λt − νΔλ + (∇y)tλ− (y · ∇)λ + ∇π = J ′
y(y, p) in (0, T ] × Ω,

−div λ = J ′
p(y, p) in (0, T ] × Ω,

λ(T, ·) = 0 on Ω,

λ = 0 on (0, T ] × ∂Ω .

This equation is understood in the distributional sense, allowing for a variational
formulation for the velocity component λ. The adjoint pressure π is introduced in
Theorem 3.1 similarly to how the primal pressure p was introduced in Proposition 2.1.

We note that for J = J1, J2, J3 the term J ′
p vanishes and the adjoint velocity field

λ is divergence-free. This is not the case for the choice J = J4. For J4, moreover,
regularity beyond x ∈ X is required to make J ′

4,y rigorous; see Remark 2.1 above. In
fact, the derivatives J ′

4,y and J ′
4,p are given by

J ′
4,y(x)(δy) =

∫ T

0

∫
Ω

g′4(r(y, p))r
′
y(y, p)(δy) dx dt,

J ′
4,p(x)(δy) =

∫ T

0

∫
Ω

g′4(r(y, p))r
′
p(y, p)(δp) dx dt,

where r′y(y, p)(δy) and r′p(y, p)(δp) are directional derivatives of r(y, p) defined in (1.11).
The following theorem ensures the existence of the solution for this adjoint equa-

tion for the choices J = J1, J2, J3, where the velocity component λ of the adjoint state
z is given in the following variational sense:

(3.2) λ ∈ L2(V0) : ā′(y)(ψ, λ) = J ′(y)(ψ) for all ψ ∈ W0 .
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Theorem 3.1. The functionals J = J1, J2, J3 are Gateaux differentiable on
L2(H1(Ω)2), and for every x = (y, p) ∈ X there exists a unique distributional solution
z = (λ, π) of the adjoint equation (3.1) with λ ∈ L2(V0), λt ∈ L4/3(V∗

0 ), and π = ∂tΠ
with Π ∈ C(L2(Ω)/R). If, in addition, the assumptions of Proposition 2.2 are fulfilled,
then z ∈ X0.

The proof is given in section 6 (appendix). It implies that the solution of Theo-
rem 3.1 satisfies

λ(t) − ν

∫ T

t

Δλ ds +

∫ T

t

(
(∇y)tλ− (y · ∇)λ

)
ds + ∇Π(t) =

∫ T

t

J ′
y(y) ds.

The existence of the adjoint state allows the formulation of first order optimality
conditions for the problem (2.5). Due to the fact that the functionals Ji (i = 1, 2, 3)
do not depend on p, we can formulate the optimality system using only the velocity
components y of x and λ of z, respectively:

y ∈ Bu + W0 : ā(y)(ψ) = 0 for all ψ ∈ L2(V0),(3.3)

λ ∈ L2(V0) : ā′(y)(ψ, λ) = J ′(y)(ψ) for all ψ ∈ W0,(3.4)

u ∈ Uad : J ′(y)(B(v − u)) − ā′(y)(B(v − u), λ) ≥ 0 for all v ∈ Uad,(3.5)

where Uad = U in the case when J = J1 or J = J2, and Uad = {u ∈ U : ua ≤ u ≤ ub}
in the case when J = J3.

Theorem 3.2. Let (u, x) ∈ U ×X be a local solution of the optimal control prob-
lem (2.5) for the choices J = J1, J2, J3. Then the triple (u, x, z) fulfills the optimality
system (3.3)–(3.5), where z = (λ, π) is the adjoint state. In the case when U = Uad

the inequality (3.5) can be replaced by an equality.
The proof is given in section 6 (appendix).
If the assumptions of Proposition 2.2 are fulfilled, then we have x, z ∈ X . In this

case the optimality system can be equivalently rewritten using the semilinear form
a(·)(·) involving pressure components:

x ∈ Bu + X0 : a(x)(ζ) = 0 for all ζ ∈ X0,(3.6)

z = (λ, π) ∈ X0 : a′(x)(ζ, z) = J ′(x)(ζ) for all ζ ∈ X0,(3.7)

u ∈ Uad : J ′(x)(B(v − u)) − a′(x)(B(v − u), z) ≥ 0 for all v ∈ Uad .(3.8)

Moreover, integration by parts, Green’s formula, and the fact that Bv ∈ W for all
v ∈ U imply that

(3.9) J ′(x)(B(v − u)) − a′(x)(B(v − u), z) =

∫ T

0

∫
∂Ω

(ν∇λ · n) · B̂(v − u) ds dt .

Here, the trace ν∇λ · n in (3.9) can be understood in a usual L2(L2(∂Ω)) sense.
Remark 3.1. On the discrete level the equality (3.9) does not hold anymore due

to the lack of the appropriate formulas for integration by parts of the discretized
solutions. As suggested in [V], we use the integrated residual (3.8) of the adjoint
equation on the discrete level, which allows a higher order of convergence, with respect
to the maximal cell-size h, than the discretization based on the boundary integral of
the flux ν∇λ·n. A similar technique for the approximation of boundary integrals using
a representation as volume integrals in the context of finite element discretization is
discussed, e.g., in [GLLS].
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4. Algorithmic aspects. In this section we describe a solution algorithm for
optimal control problems of vortex reduction. The problem is reformulated as an
unconstrained optimization problem by eliminating the state equation. Based on
this formulation we describe the Newton method for solving this problem on the
continuous level. Subsequently the optimization problem is discretized by space-time
finite element methods. This allows a natural translation of the optimality conditions
from the continuous to the discrete level due to the fact that the approaches optimize-
then-discretize and discretize-then-optimize coincide for Galerkin-type discretizations.
For more details of the finite element discretization of nonstationary optimal control
problems we refer to [BMV].

4.1. Optimization algorithm. Before describing the discretization, we discuss
the solution algorithm based on Newton’s method on the continuous level. Since a
finite element discretization is used, the continuous algorithm can then be simply
translated into a discrete one by projection. Throughout this section, we require the
assumptions of Proposition 2.2, which ensures the existence of a solution operator
S : U → X for the state equation in formulation (2.4) such that

S(u) ∈ Bu + X0 : a(S(u))(ζ) = 0 for all ζ ∈ X0 for all u ∈ U.

This gives rise to the introduction of a reduced cost functional j : U → R by

(4.1) j(u) = J(S(u)),

and allows us to reformulate the optimization problem (2.5) as an unconstrained
problem

(4.2) minimize j(u), u ∈ U.

For J3 and J4 we should, in principle, replace U by Uad. Since, for the numerical
examples we consider, the inequality constraints did not become active, we do not
consider Uad here.

For the application of Newton’s method to this optimization problem, we have
to compute the derivatives of the reduced cost functional j. This is addressed in the
following proposition.

Proposition 4.1. Let j be the reduced cost functional defined in (4.1). Its
derivatives can be expressed as follows:

(a) For an arbitrary direction δu ∈ U we have

j′(u)(δu) = J ′(x)(Bδu) − a′(x)(Bδu, z),

where x = S(u) is the solution of the state equation (2.4) and z ∈ X0 is the
solution of the adjoint equation (3.7).

(b) For arbitrary directions δu, τu ∈ U we have

j′′(u)(δu, τu) = J ′′(x)(δx,Bτu) − a′′(x)(δx,Bτu, z) − a′(x)(Bτu, δz),

where z ∈ X0 is the solution of the adjoint equation (3.7), δx ∈ X is deter-
mined by the tangent equation

(4.3) δx ∈ Bδu + X0 : a′(x)(δx, ζ) = 0 for all ζ ∈ X0,

and δz ∈ X0 is the solution of the dual Hessian equation

(4.4) δz ∈ X0 : a′(x)(ζ, δz) = J ′′(x)(δx, ζ)−a′′(x)(δx, ζ, z) for all ζ ∈ X0.
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The proof is similar to [HK] and [BMV].
In the following we describe the solution of the optimization problem (4.2) by

Newton’s method on the continuous level. Starting with an initial guess u0 ∈ U , the
next iterate un+1 is computed by an update step

un+1 = un + δun,

where δun solves

(4.5) j′′(un)(δun, v) = −j′(un)(v) for all v ∈ U.

To solve (4.5) we use the conjugate gradient (cg) method, which requires only the
evaluation of the right-hand side and of matrix-vector products. Thus we have to
evaluate j′(un)(v) and j′′(un)(δun, v) for fixed v. This can be done efficiently based on
Proposition 4.1. Note that the second derivative a′′(x) involved in the representation
of j′′(u) does not depend on the state x due to the quadratic structure of the Navier–
Stokes equations.

Remark 4.1. For one step of the cg method, we have to solve one tangent equa-
tion (4.3) and one dual-Hessian equation (4.4). In some cases, if the dimension of U
is small, it might be more efficient to build up the Hessian ∇2j(un); see [BMV] for a
detailed discussion and a comparison.

4.2. Finite element discretization. In order to apply Newton’s method de-
scribed before, we consider a space-time finite element discretization of the optimal
control problem under consideration. For the time discretization we use the dG (dis-
continuous Galerkin) or the cG (continuous Galerkin) method; see, e.g., [EJT].

For the time grid

0 = t0 < · · · < tl < · · · < tM = T, kl = tl − tl−1,

and a space mesh Th consisting of quadrilaterals, we consider a space of spatially
continuous and cellwise bilinear (biquadratic) and discontinuous in time piecewise
polynomial functions of order r, Xr

hk. A similar space with continuous and piecewise
polynomial functions in time of order s is denoted by Y s

hk. The Galerkin method using
Xr

kh as the trial and the test spaces leads to dG discretization. If the continuous
in time space Y s

hk is used as a trial space, this results in a cG discretization. For
the detailed description of discrete equations to be solved within one step of the
Newton method we refer to [BMV]. In our practical realization we use the dG(0)
method, which results in a variant of the backward Euler and the cG(1) method,
which is very similar to the Crank–Nicolson method. We emphasize that the space-
time finite element discretization leads to the exact representation of the first and
second derivatives of the discrete reduced cost functional, which is important for the
convergence of the optimization algorithms. The derivation of these representations
follows along the same lines as in the continuous case; cf. Proposition 4.1. The first
directional derivatives of the reduced cost functional are given by

j′kh(u)(δu) = J ′(xkh)(Bhδu) − a′k(x)(Bhδu, zkh),

where xkh and zkh are the solutions of the discretized state and adjoint equations,
respectively, and ak(·, ·)(·) is the discrete analogue of the semilinear form a(·, ·)(·).
The operator Bh is the extension of the control operator B̂ in the discrete state
space, with the property that (Bhδu)(t, xi) = 0 for all interior nodes xi of the mesh
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Th. This choice leads to the fact that the integration in the above representation
is done only over the cells adjacent to the boundary. We refer to [KV] for a more
detailed discussion of this construction.

Remark 4.2. The use of (at least) quadratic elements for the pressure is essential
for the practical realization for J = J4. This is due to the fact that the second
derivatives of the pressure are involved in the definition of J4 and they must be
accurately approximated by the numerical scheme in order to reliably compare the
results of the four cost functionals.

Remark 4.3. The solution of the underlying state equation is required in the
whole time interval for the computation of the dual, tangent, and dual-Hessian equa-
tions. If all data are stored, the storage grows linearly with respect to the number
of time intervals in the time grid and also linearly with respect to the number of de-
grees of freedom in the space discretization. This makes the optimization procedure
prohibitive for fine discretizations. This difficulty can be overcome by using stor-
age reduction techniques known as “check-pointing” or “windowing”; see, e.g., [Gr],
[BGL], and [BMV] for an application to optimization problems governed by parabolic
equations.

Remark 4.4. For the examples that will be presented in the following section
we use isoparametric biquadratic finite elements for the space discretization of both
pressure and velocities. We add further terms to the semilinear form a in order to
obtain a stable formulation with respect to both the pressure-velocity coupling and
convection dominated flows. This type of stabilization technique is based on local
projections of the pressure gradients (LPS method) first introduced in [BB]. In the
context of optimal control problems this type of stabilization is analyzed in [RV, BV].

5. Numerical examples. In this section we discuss some numerical examples
illustrating the effect of different choices of the cost functional in the context of op-
timal vortex reduction. For these examples we chose the dG(0) method for time and
biquadratic elements for space discretization, as described in the previous section. In
the context of the optimization, we use trust region techniques for globalization of the
convergence; see, e.g., [NW]. The use of such techniques in the examples described
below is necessary, particularly for the optimization of the cost functional J4.

We use two different configurations, both based on the computational domain Ω;
see Figure 5.1.

Fig. 5.1. Computational domain.
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In both configurations we start with the following uncontrolled situation: We have
constant parabolic inflow on Γin, “no-slip” boundary conditions on ∂Ω \ (Γin ∪Γout),
and “do nothing” boundary conditions on Γout (see [HRT]), i.e.,

ν∇y · n− p · n = 0 on Γout.

The flow with Reynolds number Re ≈ 103 is considered on the time horizon (0, T )
with T = 3. The initial velocity field y0 is chosen as the solution of the nonstationary
Stokes equation on the same configuration after several time steps.

The solution of the uncontrolled state equation for t = 2.4 is shown in Figure 5.2.
In this figure we observe two primary “vortex regions.”

Fig. 5.2. Uncontrolled flow, t = 2.4.

In our first test we consider Dirichlet control on the part of boundary Γ1 given
as follows: y = uŷ1 on Γ1, with a parabolic profile ŷ1. The control space U is one-
dimensional here, i.e., U = R. In the following, we study the dependency of four
different cost functionals J1, J2, J3, and J4 on u ∈ [−8; 8] with observation region Ω̃
(see Figure 5.1) and the whole Ω (see Figures 5.3–5.6).

Figure 5.9 We conclude that for the present situation the vortex reduction with
the help of these four cost functions leads to very different results. The reduced cost
functional seems to be convex for J1 and J3 and to have several local extrema for the
functional J4. In our second configuration we compare the optimal solutions in more
detail.

For the second configuration we set the following Dirichlet boundary conditions:

y = 0 on ∂Ω \ (Γin ∪ Γout),

y = g(u) ŷin on Γin,

where ŷin is a fixed parabolic profile and

g(u)(t) = (c0/T ) +

n∑
k=1

(
u2k−1 sin(2πkt/T ) + u2k cos(2πkt/T )

)
.

The control variable u is searched for in the space U = R
2n. For this setting we have

for all u ∈ U ∫ T

0

∫
Γin

y · nds dt = c0

∫
Γin

ŷin · nds
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Fig. 5.3. Cost functional J1 (tracking) for u ∈ [−8, 8], observation domain Ω̃ (left) and Ω (right).
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Fig. 5.4. Cost functional J2 (curl) for u ∈ [−8, 8], observation domain Ω̃ (left) and Ω (right).
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Fig. 5.5. Cost functional J3 (det) for u ∈ [−8, 8], observation domain Ω̃ (left) and Ω (right).
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Fig. 5.7. Stokes flow, used as the desired state for the tracking-type functional.

Fig. 5.8. Optimal controls g(u)(t) for four different cost functionals.

independently of u. This condition has the following physical interpretation: The
total flux through the inflow boundary in the time horizon (0, T ) does not depend on
the control action. Thus we aim for the vortex reduction under the constraint that
the total flux remains unchanged.

In Figures 5.8 and 5.9 we collect the results for the four cost functionals in the
specified configuration. For the tracking-type functional we use the solution of the
Stokes equation (see Figure 5.7) as the desired state ydes. In Figure 5.8 we show
the optimal trajectories g(u)(t) of the controls for the four cost functionals under
consideration. In Figure 5.9 we collect the solutions of the state equation for the
optimal control u with respect to the four different cost functionals J1, J2, J3, J4. It
can be noted that from the point of view of graphical vortex representation there is a
significant reduction of “vorticity” as we move from J1 to J4.
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Fig. 5.9. Optimal flow with respect to four different cost functionals (from top to bottom): J1

(tracking), J2 (curl), J3 (det), J4 (LKH).
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Table 5.1

Values of the four cost functionals for no control (u0) and optimal control uI , uII , uIII , and uIV .

J1 J2 J3 J4

u0 0.29608 5.60368 1.76442 0.525471
uI 0.14346 3.72201 0.77298 0.350834
uII 0.17125 3.52171 0.65593 0.390835
uIII 0.35245 3.79186 0.46048 0.422569
uIV 0.18587 4.41063 0.93945 0.181102

In the first configuration, we have observed that the cost functionals J2, J3, J4 may
have local minima. Although it is impossible to check numerically, if the computed
local minimum is a global one, we can provide the following results confirming our
belief that we have found global minima. We denote by uI , uII , uIII , and uIV the
optimal solutions for the optimal control problems with the functionals J1, J2, J3, and
J4, respectively. Moreover, we denote by u0 = 0 the control which corresponds to the
uncontrolled situation. In Table 5.1 we present the values of the four cost functionals
J1, J2, J3, and J4 for these controls. As expected the smallest value in the first column
corresponds to the optimal solution with the cost functional J1, i.e., uI , etc.

6. Appendix.
Proof of Proposition 2.1. We abbreviate ‖·‖ = ‖·‖L2(Ω)2 , (·, ·) = (·, ·)L2(L2(Ω)),

and 〈·, ·〉 = 〈·, ·〉L2(V∗
0 ),L2(V0). We shall use the trilinear form

c(u, v, w) =
2∑

i,j=1

∫
Ω

uj
∂ui

∂xj
widx for u, v, w ∈ H1(Ω)2,

and the following properties of c:
(i) c(u, v, w) = −c(u,w, v) for all u ∈ V0, v, w ∈ H1(Ω)2;
(ii) c(u, v, w) = −c(u,w, v) for all u ∈ V, v ∈ H1(Ω)2, w ∈ H1

0 (Ω)2;
(iii) |c(u, v, w)| ≤

√
2‖u‖1/2‖∇u‖1/2 ‖∇v‖ ‖w‖1/2 ‖∇w‖1/2 for all u, v, w ∈ H1(Ω);

see, e.g., [T].
First, we recall that H1

0 (Ω)2 can be expressed as

H1
0 (Ω)2 = V0 ⊕ V⊥

0 ,

where

V⊥
0 =

{
(−Δ0)

−1∇q : q ∈ L2(Ω)/R
}
,

and Δ0 denotes the Laplacian with homogeneous Dirichlet boundary conditions; see
[GR]. The forcing function f ∈ L2(H−1(Ω)2) can therefore be decomposed as f =
(f1, f2) ∈ L2(V∗

0 ) × L2((V⊥
0 )∗), and there exists qf ∈ L2(L2(Ω)/R) such that

f2(v) = 〈∇qf , v〉L2(H−1(Ω)2),L2(H1
0 (Ω)2) for all v ∈ L2(V⊥

0 ) .

We abbreviate ĝ = B̂u and note that ĝ(0) ∈ H since ψi(0) ∈ H for i = 1, . . . , n.
The results in [HK], specifically Theorems 1.1 and 2.1, imply the existence of a unique
velocity component y ∈ W of (2.2) in the form

y = yL + yN ,
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where

(6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈yL,t, v〉 + ν (∇yL,∇v) = 〈f1, v〉 for all v ∈ L2(V0) ,

τyL = ĝ in WΣ ,

yL(0) = y0 in H,

and

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈yN,t, v〉 + ν (∇yN ,∇v) +

∫ T

0

c(yN + yL, yN + yL, v)dt = 0

for all v ∈ L2(V0),

τyN = 0 in WΣ ,

yN (0, ·) = 0 in H.

Moreover, there exists a constant K1, and a continuous function K2 : R
3 → R

+, both
independent of y0, f1, and ĝ, such that

(6.3) ‖yL‖L2(V) + ‖yL,t‖L2(V∗
0 ) + ‖yL‖C(H) ≤ K1

(
‖y0‖H + ‖f1‖L2(V∗

0 ) + ‖ĝ‖WΣ

)
and

(6.4) ‖y‖L2(V) + ‖yt‖L2(V∗
0 ) + ‖y‖C(H) ≤ K2

(
‖y0‖H , ‖f1‖L2(V∗

0 ), ‖ĝ‖WΣ

)
.

The results in [HK] are for f = 0 but can easily be extended to an arbitrary f ∈
L2(H−1(Ω)2).

To argue continuity of ĝ 
→ y(ĝ) from WΣ to W , let ĝn → ĝ in WΣ. Then {ĝn}∞n=1

is bounded in WΣ, and by (6.2) there exists a constant K3 such that

(6.5) ‖y(ĝn)‖W + ‖y(ĝn)‖C(H) ≤ K3 for all n = 1, 2, . . . ,

and this estimate holds for y(ĝn) replaced by y = y(ĝ) as well. Let us henceforth
denote yn = y(ĝn) with decomposition according to (6.1) and (6.2) as yn = ynL + ynN .
Further we write y = yL + yN for y = y(ĝ). From (6.3) we have

(6.6) ‖ynL − yL‖L2(V) + ‖ynL,t − yL,t‖L2(V∗
0 ) + ‖ynL − yL‖C(H) ≤ K1 ‖ĝn − ĝ‖WΣ .

For ynN − yN we have the equation

(6.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ynN,t − yN,t, v〉 + ν (∇(ynN − yN ),∇v)

+

∫ T

0

(
c(ynN + ynL, y

n
N + ynL, v) − c(yN + yL, yN + yL, v)

)
dt = 0 for all v ∈ L2(V0) ,

τ(ynN − yN ) = 0 ,

ynN (0) − yN (0) = 0.
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Abbreviating w = ynN − yN ∈ W0 and setting v = wχ(0,t), where χ(0,t) : (0, T ) → R

denotes the characteristic function of (0, t) for t > 0, using w(0) = 0 we find

∫ t

0

(
1

2

d

ds
‖w(s)‖2 + ν ‖∇w‖2 + c(ynN + ynL, y

n
N − yN , w) + c(ynN + ynL, y

n
L − yL, w)

+ c(ynN − yN , yN + yL, w) + c(ynL − yL, yN + yL, w)

)
ds = 0 .

By (ii) this implies that∫ t

0

(
1

2

d

ds
‖w(s)‖2 + ν ‖∇w‖2 + c(yn, ynL − yL, w) + c(w, y, w) + c(ynL − yL, y, w)

)
ds = 0,

and hence by (i),

1

2
‖w(t)‖2 +ν

∫ t

0

‖∇w‖2 ≤
∫ t

0

(
|c(yn, w, ynL−yL)|+ |c(w, y, w)|+ |c(ynL−yL, w, y)|

)
ds.

By (iii), (6.5), and (6.6) there exists a constant K4 independent of n such that

1

2
‖w(t)‖2 + ν

∫ t

0

‖∇w(s)‖2 ds

≤
√

2

∫ t

0

(
‖∇w(s)‖ ‖∇(ynL(s) − yL(s))‖ 1

2 ‖ynL(s) − yL(s)‖ 1
2

(
‖yn(s)‖ 1

2 ‖∇yn(s)‖ 1
2

+ ‖y(s)‖ 1
2 ‖∇y(s)‖ 1

2

)
+ ‖∇w(s)‖ ‖w(s)‖ ‖∇y(s)‖

)
ds

≤ K4

∫ t

0

(
‖∇w(s)‖ ‖∇(ynL(s) − yL(s))‖ 1

2

(
‖∇yn(s)‖ 1

2 + ‖∇y(s)‖ 1
2

)
+ ‖∇w(s)‖ ‖w(s)‖ ‖∇y(s)‖

)
ds .

Using Young’s inequality and absorbing terms we obtain

(6.8)

‖w(t)‖2 + ν

∫ t

0

‖∇w(s)‖2 ≤ 4K2
4

ν

∫ t

0

‖∇(ynL(s) − yL(s))‖
(
‖∇yn(s)‖ + ‖∇y(s)‖

)
ds

+
2K2

4

ν

∫ t

0

‖w(s)‖2 ‖∇y(s)‖2ds ≤ 8K2
4K3

ν
‖ynL − yL‖L2(V)

+
2K2

4

ν

∫ t

0

‖w(s)‖2 ‖∇y(s)‖2ds .

By Gronwall’s inequality we have with K5 =
8K2

4K3

ν

(6.9) ‖w(t)‖2 ≤ K5 exp

(
2K2

4

ν
‖y‖2

L2(V)

)
‖ynL − yL‖L2(V).
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By (6.6) the right-hand side of (6.9) converges to 0 as n → ∞ and from (6.8) we
deduce that w = ynN − yN → 0 in W0 as n → ∞. Together with (6.6) this implies
that yn → y in W which establishes the desired continuity of g 
→ y(g) from WΣ to
W . Consequently u → y(B̂u) is continuous from U to W as well.

So far we worked in solenoidal spaces. To introduce the pressure component we
first set

Y (t) =

∫ t

0

y(s) ds, b̂(t) = y0 − y(t) −
∫ t

0

(
(y(s) · ∇)y(s) − f1(s)

)
ds .

We have, using (iii), that Y ∈ H1(H1(Ω)2) ↪→ C(H1(Ω)2) and b̂ ∈ C(H−1(Ω)2), and

ν(∇Y (t),∇v) − 〈b̂(t), v〉H−1(Ω)2,H1
0 (Ω)2 = 0 for all v ∈ V0 and each t ∈ (0, T ) .

Then by de Rham’s theorem there exists a unique P̂ (t) ∈ L2(Ω)/R such that

ν(∇Y (t),∇v) − 〈∇P̂ (t) − b̂(t), v〉H−1(Ω)2,H1
0 (Ω)2 = 0

for all v ∈ H1
0 (Ω)2 and each t ∈ (0, T );

see, e.g., [DL, T]. Since the gradient operator is an isomorphism from L2(Ω)/R into

H−1(Ω)2 and b̂(t) + νΔY (t) ∈ H−1(Ω)2 we conclude that P̂ ∈ C(L2(Ω)/R).

Now we insert the f2 component of f and define

b(t) = y0 − y(t) −
∫ t

0

(
(y(s) · ∇)y(s) − f(s)

)
ds and P (t) = P̂ (t) + qf (t) .

Then P ∈ C(L2(Ω/R)) and

ν(∇Y (t),∇v) − 〈∇P (t) − b(t), v〉H−1(Ω)2,H1
0 (Ω)2 = 0

for all v ∈ H1
0 (Ω)2 and each t ∈ (0, T ),

which is equivalent to the following equality in H−1(Ω)2:

(6.10) y(t) − y(0) − ν

∫ t

0

Δy(s) ds +

∫ t

0

(y(s) · ∇)y(s) ds + ∇P (t) =

∫ t

0

f(s) ds .

This allows us to introduce pressure p as the (distributional) derivative p = ∂tP .

To argue continuity of ĝ 
→ P (ĝ) from WΣ to C(L2(Ω/R)), we again consider a
sequence ĝn → ĝ, Pn = P (ĝn), yn = y(ĝn), and P = P (ĝ), y = y(ĝ). For a constant
K6 independent of t and n we have from (6.10)

‖∇Pn(t) −∇P (t)‖ ≤ K6

(
‖yn − y‖C(H) + ‖yn − y‖L2(V)

+ sup
‖v‖

L2(H1
0(Ω)2)

=1

∫ T

0

|c(yn(t), yn(t), v(t)) − c(y(t), y(t), v(t))| dt
)
.
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For the last term we have, using (ii) and (iii) and the fact that the sequence {‖yn‖L2(H)}
is bounded, for a constant K7 independent of n,∫ T

0

|c(yn(t), yn(t), v(t)) − c(y(t), y(t), v(t))| dt

≤
∫ T

0

(
|c(y(t), v(t), y(t) − yn(t))| + |c(y(t) − yn(t), v, yn(t))|

)
dt

≤ K7

∫ T

0

‖∇(y(t) − yn(t))‖ 1
2 ‖∇v(t)‖

(
‖∇y(t)‖ 1

2 + ‖∇yn(t)‖ 1
2

)
dt

≤
√

2K7

(∫ T

0

‖∇(y(t) − yn(t))‖ (‖∇y(t)‖ + ‖∇yn(t)‖) dt

) 1
2

≤
√

2K7‖y − yn‖
1
2

L2(V)

(
‖y‖

1
2

L2(V) + ‖yn‖
1
2

L2(V)

)
→ 0 for n → ∞ .

This proves that ∇Pn(t) → ∇P (t) in H−1(Ω)2 uniformly in t ∈ [0, T ], and therefore
Pn → P in C(L2(Ω)/R).

Proof of Proposition 2.2. We recall the following two additional properties of
c(·, ·, ·).

(iv) For all u ∈ H1(Ω)2, v ∈ H2(Ω)2, w ∈ L2(Ω)2 there holds

|c(u, v, w)| ≤ c4 ‖u‖
1
2 ‖u‖

1
2

H1(Ω)2 ‖v‖
1
2

H1(Ω)2 ‖v‖
1
2

H2(Ω)2 ‖w‖.

(v) For all u ∈ H2(Ω)2, v ∈ H1(Ω)2, w ∈ L2(Ω)2,

|c(u, v, w)| ≤ c5 ‖u‖
1
2 ‖u‖

1
2

H2(Ω)2 ‖v‖H1(Ω)2 ‖w‖;

see, e.g., [T].
We recall the decomposition

L2(Ω)2 = H ⊕H⊥, H⊥ = {∇q : q ∈ H1(Ω)};

see, e.g., [GR]. The forcing function f ∈ L2(L2(Ω)2) can therefore be decomposed as
f = (f1, f2) ∈ L2(H) × L2(H⊥).

We consider the decomposition y = yL + yN , where yL fulfills (6.1) and yN
fulfills (6.2), respectively. Due to the fact that ψi(0) ∈ V0 and ψi ∈ W ∩L2(H2(Ω)2)∩
H1(L2(Ω)2) for all i, we have

ĝ = τg, with g ∈ W ∩ L2(H2(Ω)2) ∩H1(L2(Ω)2), g(0) ∈ V .

We consider w = yL − g fulfilling⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈wt, v〉 + ν (∇w,∇v) = 〈f1, v〉 + 〈gt, v〉 + ν (∇g,∇v) for all v ∈ L2(V0) ,

τw = 0 in WΣ ,

w(0) = y0 − g(0) in H .

Using the regularity of g we obtain that

〈f1, v〉 + 〈gt, v〉 + ν (∇g,∇v)
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is a linear continuous functional on L2(L2(Ω)2) and w(0) ∈ V0. Therefore using a
regularity result for Stokes equations with homogeneous Dirichlet boundary conditions
(see, e.g., [DL]), we conclude w ∈ L2(H2(Ω)2) ∩ H1(L2(Ω)2) ∩ C(H1(Ω)2), yL ∈
L2(H2(Ω)2) ∩H1(L2(Ω)2) ∩ C(H1(Ω)2), and

(6.11) ‖yL‖L2(H2(Ω)2) + ‖yL‖H1(L2(Ω)2) + ‖yL‖C(H1(Ω)2) ≤ C1

(
‖f1‖L2(L2(Ω)2)

+ ‖g‖H1(L2(Ω)2) + ‖g‖L2(H2(Ω)2)

)
,

with a constant C1 dependent on f and g. To argue the corresponding result for
yN , we derive an a priori estimate for yN in L2(H2(Ω)2) ∩H1(L2(Ω)2) ∩ C(H1(Ω)2)
using the fact that yL satisfies (6.11). Then, the existence of a solution with asserted
regularity can be obtained using a standard Galerkin procedure; see, e.g., [T].

We use v = χ(0,t) ΔyN as a test function in (6.2), where χ(0,t) is the characteristic
function of (0, t), for t > 0, and obtain

1

2
‖∇yN (t)‖2 + ν

∫ t

0

‖ΔyN (s)‖2 ds

≤
∫ t

0

(
|c(yN (s), yN (s),ΔyN (s))| + |c(y(s), yL(s),ΔyN (s))|

+ |c(yL(s), yN (s),ΔyN (s))|
)
ds.

For the first term we obtain, using (ii) and (iv),

∫ t

0

|c(yN (s), yN (s),ΔyN (s))| ds ≤ c4

∫ t

0

‖yN (s)‖ 1
2 ‖∇yN (s)‖ ‖ΔyN (s)‖ 3

2 ds

≤ 27c44
4ν3

∫ t

0

‖yN (s)‖2 ‖∇yN (s)‖4 ds +
ν

4

∫ t

0

‖ΔyN (s)‖2 ds

≤ C2

∫ t

0

‖∇yN (s)‖2 ‖∇yN (s)‖2 ds +
ν

4

∫ t

0

‖ΔyN (s)‖2 ds

for a constant C2, where we used the fact that ‖yN‖C(H) is bounded according
to (6.4). For the second and third terms we have, using (iv), (v), and (6.11),

∫ t

0

(
|c(y(s), yL(s),ΔyN (s))| + |c(yL(s), yN (s),ΔyN (s))|

)
ds

≤ C3

∫ t

0

(
‖y(s)‖ 1

2 ‖y(s)‖
1
2

V ‖yL(s)‖
1
2

V + ‖yL(s)‖ 1
2 ‖∇yN (s)‖

)

× ‖yL(s)‖
1
2

H2(Ω)2‖ΔyN (s)‖ ds ≤ C4

∫ t

0

‖y(s)‖V‖yL(s)‖H2(Ω)2ds

+ C4

∫ t

0

‖yL(s)‖H2(Ω)2‖∇yN (s)‖2ds +
ν

4

∫ t

0

‖ΔyN (s)‖2ds,
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with some constants C3, C4. Absorbing terms we obtain

‖∇yN (t)‖2 + ν

∫ t

0

‖ΔyN (s)‖2 ds ≤ 2C4‖y‖L2(V ) ‖yL‖L2(H2(Ω)2)

+

∫ t

0

(
2C2‖∇yN (s)‖2 + 2C4‖yL‖L2(H2(Ω)2)

)
‖∇yN (s)‖2 ds .

Using Gronwall’s inequality we first infer that yN is bounded in C(H1(Ω)2) ∩ L2(H2

(Ω)2). The boundedness of yN,t in L2(L2(Ω)2) is then obtained using (6.2). Using
arguments similar to those for the introduction of the pressure in the proof of Proposi-
tion 2.1, we obtain p ∈ L2(H1(Ω)). In fact ∇ : H1(Ω)/R → H⊥ is a homeomorphism,

t 
→ yt − νΔy + (y · ∇)y − f1 ∈ L2(L2(Ω)),

and (
yt(t) − νΔy(t) + (y·)y(t) − f1(t), v

)
= 0 for all v ∈ H and a.e. t ∈ (0, T ).

Hence, there is p1 ∈ L2(H1(Ω)/R) fulfilling the following equality in L2(Ω)2:

yt(t) − νΔy(t) + (y·)y(t) + ∇p1 = f1 .

The second component of the pressure is given through the definition of H⊥, i.e.,
p = p1 + p2, ∇p2 = f2. This completes the proof.

In order to prove Theorem 2.3, we start with a regularity result for the Stokes
equation that we need in what follows.

Lemma 6.1. Let (v, s) ∈ X be the solution of the Stokes equation:

(6.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt − νΔv + ∇s = f in (0, T ] × Ω,

−div v = 0 in (0, T ] × Ω,

v(0, ·) = 0 on Ω,

v = 0 on (0, T ] × ∂Ω,

with f ∈ Lq(Q), q > d + 2. Then the following estimate holds:

‖∇v‖L∞(Q) + ‖v(T )‖L2(Ω) ≤ c ‖f‖Lq(Q)

with a constant c independent of f ∈ Lq(Q).
Proof. For the proof we introduce the Sobolev space W k,l

q (Q) consisting of func-
tions whose derivatives of order ≤ k with respect to x and of order ≤ l with respect
to t are in Lq(Q). From [S2] we have the following result:

‖v‖W 2,1
q (Q) ≤ c ‖f‖Lq(Q);

see also [DL]. Using an embedding theorem from [S1] we obtain for q > d + 2,

‖∇v‖L∞(Q) ≤ c ‖v‖W 2,1
q (Q).

Moreover, the following estimate is well known (see, e.g., [DL]):

‖v(T )‖L2(Ω) ≤ c ‖v‖W ≤ c ‖v‖W 2,1
2 (Q).
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This completes the proof.
In the following, we formulate two core lemmas for functionals J1 and J2 that

will be used for proving the existence of solutions to (2.5).
Lemma 6.2. For a sequence {uk} ⊂ U , let (yk, pk) ∈ X denote the solutions of

the state equation (2.2), and assume that J1(yk) ≤ C for a constant C > 0. Then the
sequence {uk} is bounded in U .

Proof. We introduce prolongation ψi ∈ W of the functions ψ̂i ∈ WΣ, which define
B̂, by means of the Stokes equations:

(6.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ψi)t − νΔψi + ∇ζi = 0 in (0, T ] × Ω,

−div ψi = 0 in (0, T ] × Ω,

ψi(0, ·) = 0 on Ω,

ψi = ψ̂i on (0, T ] × ∂Ω.

This allows us to define a prolongation B : U → W of the control operator B̂ by means
of

Bu =
n∑

i=1

uiψi

and the corresponding operator for the pressure R : U → L2(L2(Ω)/R) by

Ru =
n∑

i=1

uiζi.

Note that the family {ψi} is linearly independent in W . Next, we set

zk = yk −Buk, rk = pk −Ruk.

These variables satisfy the following equations:

(6.14)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(zk)t − νΔzk + ∇rk = f − yk · ∇yk in (0, T ] × Ω,

−div zk = 0 in (0, T ] × Ω,

zk(0, ·) = y0 on Ω,

zk = 0 on (0, T ] × ∂Ω.

We proceed by showing that {zk} is bounded in Lq′(Q), where

1

q′
+

1

q
= 1, q > d + 2.

For this purpose we consider the following “dual” equation for an arbitrary function
ξ ∈ Lq(Q): Find (v, s) ∈ X such that

(6.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−vt − νΔv −∇s = ξ in (0, T ] × Ω,

−div v = 0 in [0, T ) × Ω,

v(T, ·) = 0 on Ω,

v = 0 on [0, T ) × ∂Ω.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1394 K. KUNISCH AND B. VEXLER

From Lemma 6.1 we obtain

(6.16) ‖∇v‖L∞(Q) + ‖v(0)‖L2(Ω) ≤ c ‖ξ‖Lq(Q) .

Using (6.14) for zk and (6.15) for v we obtain

∫ T

0

(zk, ξ) dt =

∫ T

0

{(−vt, zk) + ν(∇v,∇zk)} dt

=

∫ T

0

{(v, (zk)t) + ν(∇v,∇zk)} dt + (v(0), zk(0)) − (v(T ), zk(T ))

=

∫ T

0

(f, v) dt−
∫ T

0

(yk · ∇yk, v) dt + (v(0), y0).

For the second term in the last expression we have⏐⏐⏐−
∫ T

0

(yk · ∇yk, v) dt
⏐⏐⏐ =

⏐⏐⏐∫ T

0

(yk · ∇v, yk)
⏐⏐⏐ ≤ ‖∇v‖L∞(Q) ‖yk‖2

L2(Q).

Using (6.16) we obtain⏐⏐⏐∫ T

0

(zk, ξ) dt
⏐⏐⏐ ≤ c

(
‖f‖L2(V ∗) + ‖yk‖2

L2(Q) + ‖y0‖L2(Ω)

)
‖ξ‖Lq(Q) .

Due to the fact that J1(yk) is bounded, we have

‖zk‖Lq′ (Q) = sup
ξ∈Lq(Q)

∫ T

0
(zk, ξ) dt

‖ξ‖Lq(Q)
≤ C,

with a generic positive constant C. Due to 1 < q′ < 2, this implies that

‖Buk‖Lq′ (Q) ≤ ‖zk‖Lq′ (Q) + ‖yk‖Lq′ (Q) ≤ C + ‖yk‖L2(Q) ≤ C.

Since B is an injective mapping to Lq′(Q), it follows that {uk} is bounded in U . This
completes the proof.

Lemma 6.3. For a sequence {uk} ⊂ U , let (yk, pk) ∈ X denote the solutions of
the state equation (2.2), and assume that J2(yk) ≤ C, with a constant C ∈ R+. Then
the sequence {uk} is bounded in U .

The proof uses the same techniques as those for Lemma 6.2.
Using Proposition 2.1, Lemma 6.2, and Lemma 6.3 we are now able to prove

Theorem 2.3.
Proof of Theorem 2.3. Let A ⊂ X × U be a set of admissible pairs:

A = {((y, p), u) ∈ X × U : (y, p) ∈ X fulfills the state equation (2.2)} .

From Proposition 2.1 we have that A is not empty, and due to boundedness from below
the functionals J1 and J2, we obtain in both cases the existence of a nonnegative real
number J∗ with

J∗ = inf
((y,p),u)∈A

J(y)
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and a sequence {((yk, pk), uk)} ⊂ A with

lim
k→∞

J(yk) = J∗.

Therefore J(yk) is bounded, and using Lemma 6.2 (respectively, Lemma 6.3) we obtain
that {uk} is bounded as well. Choosing a subsequence ukl

we have

ukl
→ u∗ ∈ U.

We set (y∗, p∗) = S(u∗), and due to Proposition 2.1 we obtain

J∗ = lim
l→∞

J(ykl
) = J(y∗).

This completes the proof.
Proof of Theorem 2.4. The functional J3 is well defined and continuous on L2(V).

The reduced cost functional j3 : U → R is defined as j3(u) = J3(S(u)), where S is the
(continuous) solution operator of the state equation (2.2); see Proposition 2.1. Thus,
j3 is continuous as well.

Let {un} ⊂ U be a minimizing sequence, i.e.,

J∗ = inf
u∈U, ua≤u≤ub

j3(u), j3(un) → J∗.

Due to the facts that {un} is bounded and U is finite dimensional, there exists a
subsequence converging to u∗ ∈ U . Continuity of j3 completes the proof.

Proof of Theorem 3.1. The functionals Ji : L
2(H1(Ω)2) → R (i = 1, 2, 3) are

continuous. Moreover, for any y ∈ L2(H1(Ω)2) and ψ ∈ L2(H1(Ω)2), there exist the
directional derivatives J ′

i(y)(ψ) given by

J ′
1(y)(ψ) = 2

∫ T

0

∫
Ω

(y − ydes)ψ dx dt,

J ′
2(y)(ψ) = 2

∫ T

0

∫
Ω

curl y · curlψ dx dt,

J ′
3(y)(ψ) =

∫ T

0

∫
Ω

g′3(det(∇y)) ·
(
y1
x1
ψ2
x2

+ ψ1
x1
y2
x2

− y2
x1
ψ1
x2

− ψ2
x1
y1
x2

)
dx dt.

Due to the fact that g′3(t) ∈ [0, 3] for all t ∈ R, we obtain that g′3(det(∇y)) ∈ L∞(Q)
and that

J ′
i(y) ∈ L2(H−1(Ω)2), i = 1, 2, 3.

The existence of the adjoint velocity λ ∈ L2(V0) with λt ∈ L4/3(V∗
0 ) follows,

e.g., from [HK]. The introduction of dual pressure π can be done as in the proof of
Proposition 2.1. Under the assumptions from Proposition 2.2 additional regularity
z ∈ X0 can be argued as in [HK].

Proof of Theorem 3.2. The reduced cost functional j : U → R is defined as j(u) =
J(S(u)), where S : U → W is the (continuous) solution operator for the velocity
component of the state equation (2.2); see Proposition 2.1. The solution operator S
is directionally differentiable, and the directional derivative δy = S′(u)(δu) fulfills the
following linearized equation (see, e.g., [HK]):

δy ∈ Bδu + W0 : ā′(y)(δy, ψ) = 0 for all ψ ∈ L2(V0).
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In the proof of Theorem 3.1 it is shown that the functionals J = J1, J2, and J3 are
directionally differentiable. Therefore, the reduced cost functional j is directionally
differentiable too. A necessary optimality condition for the reduced cost functional is
given by

j′(u)(δu− u) ≥ 0 for all δu ∈ Uad.

To complete the proof it remains to show the representation of the directional deriva-
tive of j. For this purpose we recall the definition of the adjoint equation, and using
the fact that δy −Bδu ∈ W0 we find

j′(u)(δu) = J ′(y)(δy) = J ′(y)(δy −Bδu) + J ′(y)(Bδu)

= ā′(y)(δy −Bδu, λ) + J ′(y)(Bδu)

= −ā′(y)(Bδu, λ) + J ′(y)(Bδu).
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WELL-POSEDNESS OF THE SHOOTING ALGORITHM FOR STATE
CONSTRAINED OPTIMAL CONTROL PROBLEMS WITH A

SINGLE CONSTRAINT AND CONTROL∗
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Abstract. This paper deals with the shooting algorithm for optimal control problems with
a scalar control and a regular scalar state constraint. Additional conditions are displayed, under
which the so-called alternative formulation is equivalent to Pontryagin’s minimum principle. The
shooting algorithm appears to be well-posed (invertible Jacobian) iff (i) the no-gap second-order
sufficient optimality condition holds, and (ii) when the constraint is of order q ≥ 3, there is no
boundary arc. Stability and sensitivity results without strict complementarity at touch points are
derived using Robinson’s strong regularity theory, under a minimal second-order sufficient condition.
The directional derivatives of the control and state are obtained as solutions of a linear quadratic
problem.

Key words. optimal control, Pontryagin’s principle, state constraints, junction conditions,
shooting algorithm, no-gap second-order optimality conditions, strong regularity, sensitivity analysis,
directional derivatives
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1. Introduction. For optimal control problems satisfying the strengthened
Legendre–Clebsch condition, Pontryagin’s principle allows us to express the control
as a function of the state and the costate. For unconstrained problems, the resulting
two-point boundary value problem reduces to a finite-dimensional “shooting” equa-
tion whose unknown is the initial costate (see, e.g., [29]). The extension to control
constrained problems is relatively easy, assuming nontangentiality conditions when a
constraint becomes active or inactive. This approach allows us to compute accurate
solutions at low cost, once the structure of active constraints is known, and reason-
able initial values of unknowns can be guessed. For state constrained optimal control
problems, a reformulation of the optimality conditions is needed, and the shooting
equations take into account only some of the optimality conditions. Therefore, check-
ing that the shooting equations are well-posed under minimal hypotheses becomes
challenging.

An alternative formulation, suitable for the shooting algorithm in the presence of
state constraints, was first introduced by Bryson, Denham, and Dreyfus [8] (see also
[9]) in a heuristic manner. Some additional conditions (necessary for optimality) were
missing, as shown in Jacobson, Lele, and Speyer [18], where the first results on the
regularity of the multiplier and on junction conditions are stated. A significant clar-
ification of their work can be found in the unpublished paper by Maurer [25], where
the link between the results of [18] and the alternative formulation of [8, 9] is estab-
lished. Numerous different versions of Pontryagin’s principle with state constraints
were given in the literature; see the survey by Hartl, Sethi, and Vickson [16].

Stability results for first-order state constraints and directional differentiability of
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solutions in L2 were first obtained by Malanowski [21] using an infinite-dimensional
implicit function theorem and differentiation of the projection on a convex set [15].
The (strong) second-order sufficient condition used in the analysis was later weakened
by Malanowski [22], taking into account the strictly active constraints. These results
require no assumptions on the structure of the trajectory. However, no extensions
of this method for higher-order state constraints are known. Dontchev and Hager
[12] derived, still for first-order constraints, L∞ stability results under an additional
assumption on the structure of the contact set. Malanowski and Maurer obtain sensi-
tivity results in [23] (first order) and [24] (higher order), when there are finitely many
nontangential junction points and strict complementarity holds, by application of the
implicit function theorem to the shooting mapping. They obtain derivatives as the
solution of an equality constrained linear quadratic problem, but when the order of
the constraint is q ≥ 2, the data of the latter depend on the (precomputed) variation
of entry times. Numerical applications of the shooting algorithm to state constrained
problems in the aerospace field are presented, e.g., in [10, 3] and in [26], where the role
of additional conditions appears crucial to eliminate nonoptimal solutions; numerical
examples of sensitivity analysis are given in [2]. Discretization errors are studied in,
e.g., [13].

This paper handles the case of a scalar control and a regular scalar state con-
straint, for which regularity and junction conditions results are known. We assume
that the Hamiltonian is uniformly strongly convex w.r.t. the control variable, that
there are finitely many nontangential junction times, and that strict complementarity
on boundary arcs holds.

We express the additional conditions under which the alternative formulation
is equivalent to Pontryagin’s principle. When strict complementarity holds at touch
points as well, we prove that the shooting algorithm is well-posed (invertible Jacobian)
iff (i) the no-gap second-order sufficient condition in [5] holds, and (ii) when the
constraint is of order q ≥ 3, there is no boundary arc. Then stability and sensitivity
results, removing the strict complementarity hypothesis at touch points, are derived,
applying Robinson’s strong regularity theory [28] to the shooting mapping. We give
a necessary and sufficient second-order condition characterizing the strong regularity
property. The directional derivatives of the control and state are obtained as solutions
of an inequality constrained linear quadratic problem, independent of the variations
of junction times.

The paper is organized as follow. In section 2, we give the characterization of
Pontryagin extremals as solutions of the shooting equations under some minimal addi-
tional conditions. Then, in section 3, we give the characterization of the well-posedness
of the shooting algorithm and its relation to the no-gap second-order optimality condi-
tions obtained in [5, 6]. Finally, in section 4, we give stability and sensitivity analysis
results.

The results of sections 2 and 3 of this paper are extended to the case of vector-
valued state constraints and control in the report [4]. The main difficulty is the
extension of the junction conditions result of Jacobson, Lele, and Speyer [18] (Propo-
sition 2.5 below). The latter plays a crucial role in the proof of the necessity of the
condition claimed in this paper as necessary and sufficient for the well-posedness of
the shooting algorithm (see Theorem 3.3).

2. Junction conditions. The section is organized as follows. After introducing
notation, definitions, assumptions, and basic results needed in the paper, we recall in
subsection 2.1 an alternative formulation for optimality conditions (Definition 2.7),
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which is useful for the shooting algorithm. This is one of the various formulations ex-
isting in the literature (see, e.g., the survey [16]). Therefore, one of the main concerns
of this paper is to investigate, in subsection 2.2, the equivalence with Pontryagin’s
minimum principle (Proposition 2.10). Finally, in subsection 2.3, we formulate the
shooting algorithm and show that some of the additional conditions are automatically
satisfied by a solution of the shooting equations (Proposition 2.15).

Denote by L∞(0, T ) the Banach space of measurable and essentially bounded
functions and by W 1,∞(0, T ) the Sobolev space of functions having a weak derivative
in L∞(0, T ). Let the control and state spaces be, respectively, U := L∞(0, T ) and
Y := W 1,∞(0, T ; Rn). We consider the following optimal control problem with a
scalar state constraint and a scalar control:

(P) min
(u,y)∈U×Y

∫ T

0

�(u(t), y(t))dt + φ(y(T ))(2.1)

subject to ẏ(t) = f(u(t), y(t)) a.e. t ∈ [0, T ]; y(0) = y0,(2.2)

g(y(t)) ≤ 0 for all t ∈ [0, T ].(2.3)

The data of the problem are the distributed cost � : R×R
n → R, final cost φ : R

n → R,
dynamics f : R×R

n → R
n, state constraint g : R

n → R, final time T > 0, and initial
condition y0 ∈ R

n.
We assume throughout the paper that the following hold:

(A0) The mappings �, φ, f , and g are k-times continuously differentiable (Ck) with
k ≥ 2 and have locally Lipschitz continuous second-order derivatives when
k = 2. The dynamics f is Lipschitz continuous.

(A1) The initial condition satisfies g(y0) < 0.
The space of row vectors is denoted by R

n∗. The space of continuous functions
over [0, T ] is denoted by C[0, T ]. The dual space of Radon measures, denoted by
M[0, T ], is identified with the space of functions of bounded variation BV (0, T ) van-
ishing at zero. The transposition operator in R

n is denoted by a star ∗. Fréchet
derivatives of f , �, etc., w.r.t. arguments u ∈ R, y ∈ R

n, are denoted by a subscript,
for instance fu(u, y) = Duf(u, y), fuu(u, y) = D2

uuf(u, y). One exception to this
rule, which should not be a source of confusion, is that we denote by yu the (unique)
solution in W of the state equation (2.2) associated with the control u ∈ U . Total

derivation w.r.t. time is denoted by a dot, i.e., ẏ(t) = dy(t)
dt .

A trajectory is an element (u, y) of U × Y satisfying the state equation (2.2). A
trajectory (u, y) is said to be feasible if it satisfies the state constraint (2.3). Define
the classical (resp., generalized) Hamiltonian functions of (P), H : R×R

n×R
n∗ → R

(resp., H : R × R × R
n × R

n∗ → R) by

H(u, y, p) := �(u, y) + pf(u, y); H(p0, u, y, p) := p0�(u, y) + pf(u, y).(2.4)

First-order necessary optimality conditions for (P) are given by Pontryagin’s mini-
mum principle.

Definition 2.1. A trajectory (u, y) is a Pontryagin extremal if there exists
p0 ∈ R

+, p ∈ BV ([0, T ]; Rn∗), and η ∈ M[0, T ], with (p0,dη) �= 0, such that

ẏ(t) = Hp(p0, u(t), y(t), p(t)) a.e. t ∈ [0, T ]; y(0) = y0,(2.5)

−dp(t) = Hy(p0, u(t), y(t), p(t))dt + gy(y(t))dη(t) in M([0, T ]; Rn∗),(2.6)

p(T ) = p0φy(y(T )),(2.7)

u(t) ∈ argminw∈R
H(p0, w, y(t), p(t)) a.e. t ∈ [0, T ],(2.8)
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g(y(t)) ≤ 0 for all t ∈ [0, T ]; dη ≥ 0;

∫ T

0

g(y(t))dη(t) = 0.(2.9)

By dη ≥ 0, we mean that
∫ T

0
ϕ(t)dη(t) ≥ 0 for all nonnegative continuous func-

tions ϕ ∈ C[0, T ], or equivalently, that η is nondecreasing. The costate equation (2.6)
with final condition (2.7) is equivalent to

p(t) =

∫ T

t

Hy(p0, u(s), y(s), p(s))ds +

∫ T

t

gy(y(s))dη(s) + p0φy(y(T )).

The next theorem is well known (see [11, 14] for nondifferentiable versions).
Theorem 2.2. A trajectory (u, y) solution of (P) is a Pontryagin extremal.
A trajectory (ū, ȳ) is a local solution of (P) if it minimizes (2.1) subject to (2.2)–

(2.3) and ‖u − ū‖∞ ≤ ρ for some ρ > 0. We say that (u, y) ∈ U × Y is a stationary
point of (P) if there exists a nonzero (p0, p, η) ∈ R

+ ×BV (0, T ; Rn∗) ×M(0, T ) such
that (2.5)–(2.7), (2.9) are satisfied and

Hu(p0, u(t), y(t), p(t)) = 0 for a.a. t ∈ [0, T ].

It is well known that a local solution of (P) is a stationary point. Obviously a
Pontryagin extremal is a stationary point, but the converse is in general false. An
exception is when the (generalized) Hamiltonian is convex w.r.t. the control variable
along the trajectory (see also our assumption (A2) below). Whenever this holds,
definitions of both Pontryagin extremals and stationary points are equivalent.

Definitions. A boundary (resp., interior) arc is a maximal interval of positive
measure I ⊂ [0, T ] such that g(y(t)) = 0 (resp., g(y(t)) < 0) for all t ∈ I. If [τen, τex]
is a boundary arc, τen and τex are called an entry and an exit point, respectively.
Entry and exit points are said to be regular if they are endpoints of an interior arc. A
touch point τ in (0, T ) is an isolated contact point (an endpoint of two interior arcs).
Entry, exit, and touch points are called junction points (or times). We say that the
junctions are regular when the entry/exit points are regular.

The first-order time derivative of the state constraint along a trajectory (u, y), i.e.,
g(1)(u, y) = d

dtg(y(t)) = gy(y)f(u, y), is denoted by g(1)(y) if the function R×R
n → R,

(u, y) 	→ gy(y)f(u, y) does not depend on u (that is, the function (u, y) 	→ g
(1)
u (u, y) is

identically zero). If f and g are Cq, we may define similarly g(2), . . . , g(q) if g
(j)
u ≡ 0

for all j = 1, . . . , q − 1, and we have g(j)(u, y) = g
(j−1)
y (y)f(u, y) for j = 1, . . . , q.

Let q ≥ 1 be the smallest number of time derivations of the state constraint so

that a dependence w.r.t. u appears, i.e., g
(q)
u �≡ 0. If q is finite, we say that q is the

order of the state constraint (see, e.g., [8]). A state constraint of order q is said to be
regular along the trajectory (u, y) if the condition below holds:

∃ γ > 0, |g(q)
u (û, y(t))| ≥ γ for all t ∈ [0, T ] and all û ∈ R.(2.10)

Note that the set of generalized multipliers (p0, p, η) is a cone. When p0 = 0, we
say that the multiplier is singular; otherwise it is regular. Dividing then (p, η) by p0,
we obtain the qualified version of Pontryagin’s principle, substituting the generalized
Hamiltonian with the classical Hamiltonian. It is easily seen that a Pontryagin ex-
tremal satisfying (2.10) (and (A1)) has no singular multiplier, and that the multiplier
(p, η) in the qualified version of Pontryagin’s principle (p0 = 1) is unique. The same
is true for a stationary solution.
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Being of bounded variation, p has at most countably many discontinuity times
and has everywhere on [0, T ] left and right limits, denoted by p(t±) = limt′→t± p(t′).
The jump at τ ∈ (0, T ) is denoted by [p(τ)] = p(τ+) − p(τ−). Similar observations
hold for η.

Assumptions. We say that (u, y) is a regular Pontryagin extremal if it satisfies
Definition 2.1 with p0 = 1, with costate p and multiplier η, and if assumptions (A2)–
(A4) below are satisfied.

(A2) The Hamiltonian is strongly convex w.r.t. the control variable, uniformly
w.r.t. t ∈ [0, T ]:

∃ α > 0, Huu(û, y(t), p(t±)) ≥ α for all t ∈ [0, T ] and all û ∈ R.(2.11)

(A3) The data of the problem are C2q, i.e., k ≥ 2q in (A0), and the state constraint
is of order q and regular, i.e., (2.10) holds.

(A4) The trajectory (u, y) has a finite set of junction times that will be denoted by
T =: Ten ∪Tex ∪Tto, with Ten, Tex, and Tto the disjoint (and possibly empty) subsets
of, respectively, entry, exit, and touch points, and we assume that g(y(T )) < 0.

Hypothesis (A4) implies that all entry and exit points are regular. In what follows,
we denote by Ib the union of boundary arcs, i.e., Ib := ∪Nb

i=1[τ
i
en, τ

i
ex] for Ten := {τ1

en <
· · · < τNb

en } and Tex := {τ1
ex < · · · < τNb

ex }.
Remark 2.3. Throughout the paper, (A3) can be weakened, replacing (2.10) by

∃ γ, ε > 0, |g(q)
u (û, y(t))| ≥ γ for all t, dist(t, Ib ∪ Tto) < ε, and all û ∈ R.(2.12)

Notation. Given a finite subset S of (0, T ), we denote by PCk
S [0, T ] the set of

functions over [0, T ] that are of class Ck outside S (PC stands for piecewise continu-
ous) and have, as well as their first k derivatives, a left and right limit over S and a
right (resp., left) limit at 0 (resp., T ).

Let ϕ be a real-valued function over [0, T ]. Assuming w.l.o.g. the elements of
S in increasing order, we may define ϕ(S) := (ϕ(τ))τ∈S ∈ R

CardS . We adopt a
similar convention for vectors, νS := (ντ )τ∈S ∈ R

CardS , and will also use the following
notation:

ν1:q
S :=

⎛⎜⎝ ν1
S
...
νqS

⎞⎟⎠ ∈ R
q CardS ; g(0:q−1)(y(S)) :=

⎛⎜⎝ g(y(S))
...

g(q−1)(y(S))

⎞⎟⎠ ∈ R
q CardS .

2.1. Alternative formulation of optimality conditions. Under assumption
(A4) we have a finite number of arcs and we can show, with regularity assumptions
(A2)–(A3), that the multiplier η is differentiable on the interior of each arc [18, 25].
An analysis of the optimality system on interiors of arcs shows then that a regular
Pontryagin extremal satisfies the conditions stated in Proposition 2.4 below. An anal-
ysis at junction times leads afterwards to the junction conditions given in Proposition
2.5.

Proposition 2.4. Let (u, y) be a regular Pontryagin extremal satisfying (A2)–
(A4). Then we have u ∈ PCq

T [0, T ], y ∈ PCq+1
T ([0, T ]; Rn) and there exists p ∈

PC1
T ([0, T ]; Rn∗), η0 ∈ PC0

T [0, T ], and jump parameters νT , such that the following
optimality system is satisfied:

ẏ(t) = Hp(u(t), y(t), p(t)) = f(u(t), y(t)) on [0, T ]; y(0) = y0,(2.13)

−ṗ(t) = Hy(u(t), y(t), p(t)) + gy(y(t))η0(t) on [0, T ] \ T ,(2.14)
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p(T ) = φy(y(T )),(2.15)

0 = Hu(u(t), y(t), p(t)) on [0, T ] \ T ,(2.16)

g(y(t)) = 0 on Ib; η0(t) = 0 on [0, T ] \ Ib,(2.17)

g(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto); η0(t) ≥ 0 on int Ib,(2.18)

g(y(τ)) = 0 for all τ ∈ Tto,(2.19)

[p(τ)] = −ντgy(y(τ)); ντ ≥ 0 for all τ ∈ T .(2.20)

We denote by int Ib the interior of Ib. A touch point τ ∈ Tto is said to be essential
if ντ > 0 in (2.20); otherwise it is nonessential. We denote by T ess

to the set of essential
touch points. Hypotheses (A2)–(A4) also imply the continuity of the control variable
and of some of its time derivatives at junction points. The next proposition is due to
Jacobson, Lele, and Speyer [18].

Proposition 2.5. Let (u, y) be a regular Pontryagin extremal satisfying (A2)–
(A4). Then

(i) for all entry or exit points τ ∈ Ten ∪ Tex,
(a) if q is odd, u and its q−1 first derivatives are continuous at τ , ντ = 0

and p is continuous at τ ;
(b) if q is even, u and its q − 2 first derivatives are continuous at τ .

(ii) for all touch points τ ∈ Tto,
(a) u and its q − 2 first derivatives are continuous at τ ;
(b) if τ is nonessential (i.e., ντ = 0), u and its q first derivatives and p

are continuous at τ ;
(c) if q = 1, then τ is a nonessential touch point.

Remark 2.6. If (u, y) satisfies (A2)–(A4) and (2.13)–(2.20), the multiplier η ∈
M[0, T ] such that (u, y) satisfies Definition 2.1 is given by

dη(t) =
∑
τ∈T

ντδτ + η0(t)dt,(2.21)

where δτ denotes the Dirac measure at time τ , ντ = [η(τ)] is the nonnegative jump
at τ ∈ T , and the density η0 ∈ PC0

T [0, T ] equals dη
dt on [0, T ] \ T .

We now present the alternative formulation that will be used in the shooting algo-
rithm. First introduced heuristically in [8], it is based on the use of the mixed explicit
constraint g(q)(u(t), y(t)) = 0 on boundary arcs. Let the augmented Hamiltonian
H̃ : R × R

n × R
n∗ × R → R be defined by

H̃(u, y, pq, ηq) = H(u, y, pq) + ηqg
(q)(u, y),(2.22)

where q denotes the order of the state constraint and H is the classical Hamiltonian
(2.4).

Definition 2.7. We say that a trajectory (u, y) in PCq
T [0, T ]×PCq+1

T ([0, T ]; Rn)
satisfying (A3)–(A4) is a solution of the alternative formulation if there exist pq ∈
PCq+1

T ([0, T ]; Rn∗), ηq ∈ PCq
T [0, T ], alternative jump parameters νjTen

, j = 1, . . . , q,
and νTto such that the following relations are satisfied (we omit dependence in time):

ẏ = H̃p(u, y, pq, ηq) = f(u, y) on [0, T ]; y(0) = y0,(2.23)

−ṗq = H̃y(u, y, pq, ηq) = Hy(u, y, pq) + ηqg
(q)
y (u, y) on [0, T ] \ T ,(2.24)

pq(T ) = φy(y(T )),(2.25)

0 = H̃u(u, y, pq, ηq) = Hu(u, y, pq) + ηqg
(q)
u (u, y) on [0, T ] \ T ,(2.26)
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g(j)(y(τ)) = 0 for j = 0, 1, . . . , q − 1; τ ∈ Ten,(2.27)

g(q)(u, y) = 0 on Ib,(2.28)

g(y(τ)) = 0 for all τ ∈ Tto,(2.29)

ηq(t) = 0 on [0, T ] \ Ib,(2.30)

[pq(τ)] = −
q∑

j=1

νjτg
(j−1)
y (y(τ)) for all τ ∈ Ten,(2.31)

[pq(τ)] = 0 for all τ ∈ Tex,(2.32)

[pq(τ)] = −ντgy(y(τ)) for all τ ∈ Tto.(2.33)

In the heuristic formulation of [8], (2.23)–(2.33) are interpreted as necessary op-
timality conditions for the problem of minimizing (2.1) subject to (2.2) and equality
constraints (2.27)–(2.29) for a fixed set of junction times T . Alternative jump param-
eters ν1:q

τen appearing in (2.31) are seen as multipliers associated with the q interior
point constraints in (2.27) at a regular entry time τen.

The assumption equivalent to (A2) for the alternative formulation is the following;
see Remark 2.11(ii):

(A2q) ∃ α > 0, H̃uu(û, y(t), pq(t
±), ηq(t

±)) ≥ α for all t ∈ [0, T ] and all û ∈ R.

In what follows, we will write (A2)–(A4) (resp., (A2q)–(A4)) to denote the as-
sumptions (A2) (resp., (A2q)), (A3), and (A4).

2.2. Additional conditions. Relations (2.23)–(2.33) due to [8] are necessary,
but not sufficient, conditions for regular Pontryagin extremals. This was underlined
in [18], where some additional necessary conditions were provided that allowed the
authors to show that a trajectory (with a fourth-order state constraint) was not
a Pontryagin extremal. We state in Proposition 2.10 the characterization of regular
Pontryagin extremals based on the alternative formulation. We need some preliminary
lemmas.

Lemma 2.8. Let (u, y) be a trajectory, and let (pq, ηq) ∈ PC1
T ([0, T ]; Rn∗) ×

PC0
T [0, T ] satisfying (A2q)–(A4) and (2.23)–(2.24), (2.26), (2.28). Then (u, y, pq, ηq)

belongs to the set PCq
T [0, T ] × PCq+1

T ([0, T ]; Rn) × PCq+1
T ([0, T ]; Rn∗) × PCq

T [0, T ].
Proof. By the implicit function theorem, applied to (2.26) on interior arcs, and to

(2.26) and (2.28) on boundary arcs, the algebraic variables (u, ηq) can be expressed,
on the interior of each arc, as Cq functions of (y, pq). The result follows.

Lemma 2.9. If constraint regularity (A3) holds along a trajectory (u, y), and if

u ∈ PCq
T [0, T ], then, for all t ∈ [0, T ], vectors (gy(y(t)), . . . , g

(q−1)
y (y(t))) are linearly

independent (and hence, q ≤ n).
Proof. Since u ∈ PCq

T [0, T ], the mappings (Al)0≤l≤q : [0, T ] \ T → R
n defined

inductively by{
A0(t) := fu(u(t), y(t)),

Al(t) := fy(u(t), y(t))Al−1(t) − Ȧl−1(t), l = 1, . . . , q,
(2.34)

are well defined, and Al ∈ PCq−l
T ([0, T ]; Rn) for l = 0, . . . , q. It has been shown in

[25] that the following relations hold for all t ∈ [0, T ]:{
g
(j)
y (y(t))Al(t

±) = 0 for j = 0, . . . , q − 2; l = 0, . . . , q − 2 − j,

g
(q)
u (u(t±), y(t)) = g

(q−l−1)
y (y(t))Al(t

±) for l = 0, . . . , q − 1,
(2.35)
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where t± denotes, on both sides of the equality, either t− or t+. Denote by C the n×q

matrix (gy(y(t))
∗, . . . , g

(q−1)
y (y(t))∗). The above relations imply that the q× q matrix

D := C	(Aq−1(t
±), . . . , A0(t

±)) is lower triangular with nonzero diagonal elements

equal to g
(q)
u (u(t±), y(t)) and hence has rank q. Therefore C has rank at least q. The

conclusion follows.

Proposition 2.10. Let (u, y) be a trajectory satisfying (A2q)–(A4) and the alter-
native formulation (2.23)–(2.33). Define the functions ηj, 0 ≤ j ≤ q − 1, the costate
p, and the jump parameters νTen and νTex by

ηj(t) = (−1)q−j dq−j

dtq−j
ηq(t) for j = 0, . . . , q − 1; t ∈ [0, T ] \ T ,(2.36)

p(t) = pq(t) +

q∑
j=1

ηj(t)g
(j−1)
y (y(t)), t ∈ [0, T ] \ T ,(2.37)

ντen = ν1
τen − η1(τ

+
en) for all τen ∈ Ten; ντex = η1(τ

−
ex) for all τex ∈ Tex.(2.38)

Then (u, y) is a regular Pontryagin extremal that satisfies (2.13)–(2.20) iff all the
following additional conditions are satisfied:

g(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto),(2.39)

η0(t) = (−1)q
dq

dtq
ηq(t) ≥ 0 on int Ib.(2.40)

At all entry times τen,{
ν1
τen = η1(τ

+
en) if q is odd;

ν1
τen ≥ η1(τ

+
en) if q is even;

νjτen = ηj(τ
+
en); j = 2, . . . , q.(2.41)

At all exit times τex,{
η1(τ

−
ex) = 0 if q is odd;

η1(τ
−
ex) ≥ 0 if q is even;

ηj(τ
−
ex) = 0; j = 2, . . . , q.(2.42)

At all touch times τto,

ντto ≥ 0.(2.43)

Remark 2.11.

(i) If (u, y) is a regular Pontryagin extremal solution of (2.13)–(2.20), the func-
tions ηj , 1 ≤ j ≤ q, costate pq, and alternative jump parameters ν1:q

Ten
, such

that (u, y) satisfies the alternative formulation (2.23)–(2.33) and additional
conditions (2.39)–(2.43), can be recovered from p, η0, and νT as follows. The
functions ηj are given by (2.36) by successive integrations of η0 over boundary
arcs, with integration constants determined by the exit time conditions (2.38)
for j = 1 and (2.42) for j = 2, . . . , q. Costate pq follows then from (2.37), and
jump parameters at entry times νjτen are given by (2.38) for j = 1 and (2.41)
for j = 2, . . . , q. Jump parameters νTto associated with touch points are the
same in both formulations.

(ii) Assumptions (A2) and (A2q) are equivalent, when (2.36)–(2.37) hold, since
the constraints are of order q, and hence we have
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H̃uu(u, y, pq, ηq) = Huu(u, y, p) −
q∑

j=1

ηj(t)g
(j−1)
y (y)fuu(u, y) + ηqg

(q)
uu (u, y)

= Huu(u, y, p) −
q−1∑
j=1

ηj(t)g
(j)
uu (y)(u, y) = Huu(u, y, p).

Proof of Proposition 2.10. Since ηq is piecewise Cq by Lemma 2.8, the functions
ηj , 0 ≤ j ≤ q − 1, are well defined. We show the equivalence between (2.13)–(2.20)
and (2.23)–(2.33) augmented with (2.39)–(2.43).

Equivalence between state equations (2.13) and (2.23); final costate conditions
(2.15) and (2.25); state constraint equations (2.17) and (2.27), (2.28), (2.30) on bound-
ary arcs; and (2.19) and (2.29) at touch points is obvious. Equivalence between costate
equations (2.14) and (2.24), and between control equations (2.16) and (2.26), follows
from calculation, using the relations between the functions ηj , p, and pq and the fact
that the state constraint is of order q (see, e.g., [25]).

Additional conditions are necessary to ensure equivalence between complemen-
tarity and junction conditions. Obviously, (2.39)–(2.40) are equivalent to (2.18); as
well, (2.33) and (2.43) are equivalent to (2.20) for touch points. It remains to check
that (2.20) is also equivalent to (2.31)–(2.32) and (2.41)–(2.42) at entry/exit points.
Let τen ∈ Ten. Expressing [pq(τen)], using on the one hand the relationship (2.37)
between p and pq, as well as (2.20), and using on the other hand jump condition
(2.31), we obtain

[pq(τen)] = −ντengy(y(τen)) −
q∑

j=1

ηj(τ
+
en)g(j−1)

y (y(τen)),(2.44)

[pq(τen)] = −
q∑

j=1

νjτeng
(j−1)
y (y(τen)).(2.45)

By Lemma 2.9 at t = τen, the right-hand sides of (2.44) and (2.45) are equal iff the

coefficients of g
(j−1)
y (y(τen)) for j = 1, . . . , q are equal. Eliminating ντen , which must

be nonnegative (and equals zero for odd-order state constraints by Proposition 2.5(i)),
we deduce (2.41). Proceeding similarly at exit points, (2.42) follows.

Remark 2.12. Proposition 2.10 slightly improves section 5 of [25], in the sense
that we give the complete set of additional conditions for which equivalence between
regular Pontryagin extremals and the alternative formulation holds.

Remark 2.13. The sign condition of η
(q)
q on boundary arcs (2.40) and exit point

conditions (2.42) implies that the necessary condition

(−1)q−j dq−j

dtq−j
ηq(t) = ηj(t) ≥ 0 on Ib for j = 1, . . . , q(2.46)

holds as a consequence of (2.40) and (2.42). It is easily seen by induction, since
η̇j = −ηj−1 ≤ 0 on Ib and ηj(τ

−
ex) ≥ 0 for all τex ∈ Tex. By (2.41), we deduce also

that νjτen ≥ 0 for all τ ∈ Ten and j = 1, . . . , q.

2.3. The shooting algorithm. The shooting algorithm extracts from the nec-
essary optimality conditions a finite-dimensional set of equations (the shooting equa-
tions). If its Jacobian is invertible, we obtain a locally convergent algorithm by solving
the shooting equations using, say, Newton’s method.
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In the unconstrained case, the initial value of the costate p0 is mapped into the fi-
nal condition (2.25). To handle alternative formulation of Definition 2.7, jump param-
eters and junction times are introduced as shooting parameters. A given set of shooting
parameters determines a unique trajectory and multipliers (u, y, pq, ηq) solution of the
coupled state–costate system (2.23)–(2.24) with initial condition pq(0) = p0; algebraic
equations (2.26), (2.28), and (2.30) that give u and ηq as implicit functions of (y, pq)
by (A2)–(A3); and jump conditions (2.31)–(2.33).

We use the shooting formulation of Malanowski and Maurer [23, 24]. Jump pa-
rameters ν1:q

τen at an entry time τen are associated with the q interior points conditions
(2.27). Necessary optimality conditions for entry and exit points τen and τex and
touch points τto (when q ≥ 2) are as follows:

g(q)(u(τ−en), y(τen)) = 0; g(q)(u(τ+
ex), y(τex)) = 0,(2.47)

g(1)(y(τto)) = 0.(2.48)

By Proposition 2.5, the control is continuous along a regular Pontryagin extremal so
that (2.47) is a necessary optimality condition for entry/exit times. For a first-order
state constraint, we assume in what follows that Tto = ∅ (see Remark 2.19 below).
Since a touch point τto is a local maximum of g(y) when q ≥ 2, (2.48) is a necessary
optimality condition. Therefore, (2.48) together with the interior point constraint
(2.29) provide two conditions associated with τto and its jump parameter ντto for each
τto ∈ Tto.

Definition 2.14. A trajectory (u, y) is a shooting extremal if it satisfies both
the alternative formulation (Definition 2.7) and conditions (2.47)–(2.48).

Let us show how (2.47) relates to the additional conditions of Proposition 2.10.
Proposition 2.15. Let (u, y) be a trajectory solution of the alternative formula-

tion (2.23)–(2.33) and satisfying (A2q)–(A4). Then the following two conditions are
equivalent:

(i) The control u is continuous at entry/exit times τen, τex (i.e., (2.47) holds).
(ii) Those additional conditions in (2.41)–(2.42) involving ηq are satisfied, i.e.,

ηq(τ
+
en) − νqτen = 0; ηq(τ

−
ex) = 0.(2.49)

Proof. Let τen ∈ Ten. By (A3), the function û 	→ g(q)(û, y(τen)) is one-to-one.
Since g(q)(u(τ+

en), y(τen)) = 0, we have that g(q)(u(τ−en), y(τen)) = 0 iff the control is
continuous at time τen; the same type of argument holds for exit points. It follows
that (2.47) is equivalent to the continuity of the control at entry/exit points.

By (2.26), we have

H̃u(u(τ−en), y(τen), pq(τ
−
en), 0) = 0 = H̃u(u(τ+

en), y(τen), pq(τ
+
en), ηq(τ

+
en)).

We abbreviate u(τ−en) to u− and so on. Using the jump condition of the costate (2.31),
it follows that

H̃u(u+, y, p+
q , η

+
q ) = Hu(u+, y, p−q ) −

q∑
j=1

νjτeng
(j−1)
y (y)fu(u+, y) + η+

q g
(q)
u (u+, y).

The state constraint being of order q, we have g
(j−1)
y (y)fu(u, y) = g

(j)
u (y) = 0 for

j = 1, . . . , q − 1, and hence, we obtain

0 = Hu(u+, y, p−q ) + (η+
q − νqτen)g(q)

u (u+, y).
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Since g
(q)
u (u+, y) �= 0 by (A3), it follows that Hu(u+, y, p−q ) = 0 iff η+

q = νqτen . Since
by (A2q) Hu(u+, y, p−q ) = 0 iff u+ = u−, we deduce that u is continuous at time τen
iff η+

q = νqτen . Similar arguments hold for exit points. The conclusion follows.
Remark 2.16. We can also check that if (u, y) is a shooting extremal satisfying

(A2q)–(A4), then u is continuous at touch points τ ∈ Tto if q ≥ 2. Indeed, (2.26),
(2.30), and (2.33) lead to

Hu(u−, y, p−q ) = 0 = Hu(u+, y, p+
q ) = Hu(u+, y, p−q ) − ντgy(y)fu(y, u+).

Since gyfu = g
(1)
u ≡ 0, and Hu(·, y, p−q ) is one-to-one by (A2q), we obtain u+ = u−.

It follows that if (u, y) is a shooting extremal satisfying (A2q)–(A4), then u is
continuous on [0, T ], provided that we still assume that Tto = ∅ if q = 1 (see Remark
2.19).

The structure of a feasible trajectory is defined as the (finite) number of boundary
arcs and touch points of the trajectory, and the order in which they occur w.r.t. time.
Assuming the structure of the optimal trajectory is known, we define the shooting
mapping as follows. Denote by Nb and Nto the number of boundary arcs and touch
points of the trajectory, respectively. The space of shooting parameters is

Θ := R
n × R

qNb × R
Nto × R

Nb × R
Nb × R

Nto .

With the above notation, and for a given order of boundary arcs and touch points,
the shooting mapping F is defined, over a neighborhood in Θ of shooting parameters
associated with a regular Pontryagin extremal, into Θ, by

θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p∗0
ν1:q
Ten

νTto

Ten
Tex
Tto

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
	→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

pq(T )∗ − φy(y(T ))∗

g(0:q−1)(y(Ten))

g(y(Tto))
g(q)(u(T −

en), y(Ten))

g(q)(u(T +
ex), y(Tex))

g(1)(y(Tto))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(2.50)

By construction, a zero of the shooting mapping F provides a trajectory (u, y) that
is a shooting extremal. In view of Propositions 2.10 and 2.15, the following holds.

Corollary 2.17. A shooting extremal satisfying (A2q)–(A4) is a regular Pon-
tryagin extremal iff it satisfies the following minimal additional conditions: (2.39) on
interior arcs, (2.40) on boundary arcs, (2.43) at touch points, and for all entry points
τen ∈ Ten and exit points τex ∈ Tex,

if q ≥ 2 is even; ν1
τen − (−1)q−1η(q−1)

q (τ+
en) ≥ 0; (−1)q−1η(q−1)

q (τ−ex) ≥ 0;(2.51) {
if q ≥ 3 is odd, j = 1, . . . , q − 1, and if q ≥ 4 is even, j = 2, . . . , q − 1;

νjτen − (−1)q−jη
(q−j)
q (τ+

en) = 0; (−1)q−jη
(q−j)
q (τ−ex) = 0.

(2.52)

Note that (2.51)–(2.52) is only a reformulation of (2.41)–(2.42), from which we
removed the condition corresponding to j = q, namely (2.49), since the latter is
automatically satisfied by Proposition 2.15. Consequently, when q = 1, there remain
no additional conditions at entry/exit points for shooting extremals.

Remark 2.18. It follows that for first- and second-order state constraints, and
for constraints of order q > 2 having no boundary arcs (see Remark 4.11 concern-
ing existence of boundary arcs for state constraints of order q ≥ 3), the additional
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conditions reduce to the inequalities (2.39), (2.40), (2.43), and (2.51) when q = 2 at
entry/exit points.

Remark 2.19. For a first-order state constraint, jump parameters νTto associated
with touch points are equal to zero along a regular Pontryagin extremal by Proposition
2.5. For this reason, we assume in this paper that Tto = ∅ if q = 1.

Remark 2.20. The nonlocal hypotheses (A2) (or (A2q)) as well as (2.10) (or
(2.12)) are essential in order to prove that the control is continuous. Some of our
results remain valid, substituting everywhere stationary point for (regular) Pontryagin
extremal, when the assumptions (A2) and (2.10) in (A3) are replaced by the weaker
assumptions that u is continuous over [0, T ] and that there exists α, γ > 0 such that

Huu(u(t), y(t), p(t)) ≥ α and |g(q)
u (u(t), y(t))| ≥ γ for all t ∈ [0, T ].(2.53)

This holds in particular for Propositions 2.4, 2.5, 2.10, 2.15, Remark 2.16, and Corol-
lary 2.17. The same remark applies for the other results of this paper, i.e., Theorems
3.2, 3.3, 4.3; Corollary 4.10; and Lemmas A.1 and A.2 in the appendix.

3. Well-posedness of the shooting algorithm. We say that the shooting al-
gorithm is locally well-posed if the Jacobian of the shooting mapping (2.50) is invert-
ible at some local solution of (P). This allows us to apply locally a Newton method in
order to find a shooting extremal; the additional conditions for a Pontryagin extremal
have to be checked afterwards.

Let us first give some definitions. Given u ∈ U , recall that we denote by yu the
(unique) solution in Y of the state equation (2.2). This well-defined mapping is of
class Ck under assumption (A0). Let the cost function be

J(u) =

∫ T

0

�(u(t), yu(t))dt + φ(yu(T )).(3.1)

We say that a feasible trajectory (u, y = yu) is a local solution of (P) satisfying the
quadratic growth condition if there exists c, r > 0 such that

J(ũ) ≥ J(u) + c ‖ũ− u‖2
2 for all ũ ∈ B∞(u, r); g(yũ(t)) ≤ 0 on [0, T ],(3.2)

where B∞ denotes the open ball in L∞(0, T ) with center u and radius r. This condi-
tion involves two norms, L∞(0, T ) for the neighborhood and L2(0, T ) for the growth
condition.

Let (u, y) be a regular Pontryagin extremal. We make the following strict comple-
mentarity assumption (compare to (2.40), (2.51), and (2.43), where large inequalities
are replaced by strict inequalities):

(A5) (i) For all boundary arcs [τen, τex],

(−1)q
dq

dtq
ηq(t) > 0 a.e. on (τen, τex).(3.3)

If q is odd,
dq

dtq
ηq(τ

+
en) < 0;

dq

dtq
ηq(τ

−
ex) < 0.(3.4)

If q is even, ν1
τen +

dq−1

dtq−1
ηq(τ

+
en) > 0;

dq−1

dtq−1
ηq(τ

−
ex) < 0.(3.5)

(ii) For all touch points τto ∈ Tto,

ντto > 0.(3.6)
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Recall that (−1)q dq

dtq ηq(t) equals η0, the density of η (see Proposition 2.10). Let
q̂ := 2q − 1 if q is odd and q̂ := 2q − 2 if q is even. By Proposition 2.5, q̂ + 1 is the
smallest possible order for which the corresponding time derivative of g(y(t)) may be
discontinuous at an entry/exit point. Note that q̂ = q for q = 1, 2.

Lemma 3.1. Let (u, y) be a regular Pontryagin extremal satisfying (A2)–(A4).
For odd (resp., even) q, assumption (3.4) (resp., (3.5)) holds iff the following non-
tangentiality condition at order q̂+ 1 holds: For all entry times τen ∈ Ten and all exit
times τex ∈ Tex,

(−1)q̂+1 dq̂+1

dtq̂+1
g(y(t))|t=τ−

en
< 0;

dq̂+1

dtq̂+1
g(y(t))|t=τ+

ex
< 0.(3.7)

Proof. By Proposition 2.10 (see (2.38)), (3.5) is equivalent (when q is even) to
the strict positivity of ντ > 0 at entry/exit points τ ∈ Ten ∪ Tex. The conclusion is
then a consequence of Proposition 2.10 and of Lemma A.2, whose (technical) proof is
given in the appendix.

Assumption (A5)(ii) implies that if q = 1, then Tto = ∅ by Proposition 2.5(ii).
When q ≥ 2, we assume that all touch points of (u, y) are reducible in the following
sense:

(A6) For all touch points τto ∈ Tto,

d2

dt2
g(y(t))|t=τto < 0.(3.8)

This makes sense, since when q ≥ 2, we have d2

dt2 g(y(t)) = g(2)(u, y) and u is continu-
ous by Proposition 2.5.

3.1. Statement of main results. Define the quadratic cost function

Jq(v, z) :=

∫ T

0

H̃(u,y),(u,y)(u, y, pq, ηq)((v, z), (v, z))dt

+ z(T )∗φyy(y(T ))z(T ) +
∑

τ∈Ten

q∑
j=1

νjτz(τ)∗g(j−1)
yy (y(τ))z(τ)

+
∑
τ∈Tto

ντ

(
z(τ)∗gyy(y(τ))z(τ) − (g

(1)
y (y(τ))z(τ))2

d
dtg

(1)(y(t))|t=τ

)
,

(3.9)

where H̃ is the augmented Hamiltonian (2.22) and the set of constraints

ż = fy(u, y)z + fu(u, y)v on [0, T ]; z(0) = 0,(3.10)

g(j)
y (y(τ))z(τ) = 0 for j = 0, . . . , q − 1; τ ∈ Ten,(3.11)

g
(q)
(u,y)(u(t), y(t))(v(t), z(t)) = 0, t ∈ Ib,(3.12)

gy(y(τ))z(τ) = 0, τ ∈ Tto.(3.13)

Since the state equation and constraints are linear, the cost function is quadratic,
and all have bounded coefficients, we may take as linearized control and state spaces
V := L2(0, T ) and Z := H1(0, T ; Rn), where H1(0, T ) is the Sobolev space of functions
in L2(0, T ) with a weak derivative in L2(0, T ). Let the linear quadratic problem (PQq)
be defined by

(PQq) min
(v,z)∈V×Z

1

2
Jq(v, z) subject to (3.10)–(3.13).(3.14)
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Consider the following second-order conditions:

(v, z) = 0 is a solution of (PQq).(3.15)

(v, z) = 0 is the unique solution of (PQq).(3.16)

Theorem 3.2 (no-gap second-order optimality conditions). (i) Let (u, y) be a
local solution of (P) satisfying (A2)–(A6). Then its associated multipliers in the al-
ternative formulation are such that the second-order necessary condition (3.15) holds.

(ii) Let (u, y) be a Pontryagin extremal satisfying (A2)–(A6). Then the second-
order sufficient condition (3.16) holds iff (u, y) is a local solution of (P) satisfying the
quadratic growth condition (3.2).

Theorem 3.3 (well-posedness of the shooting algorithm). Let (u, y) be a local
solution of (P) satisfying (A2)–(A6). Then the shooting algorithm is locally well-posed
(invertible Jacobian) iff the following two conditions hold: (i) If q ≥ 3, the trajectory
(u, y) does not have boundary arcs. (ii) The second-order sufficient condition (3.16)
holds.

In general, even for unconstrained problems, the invertibility of the Jacobian of
the shooting mapping at a Pontryagin extremal does not imply that the second-order
sufficient condition (3.16) holds. We comment on the ill-posedness of the shooting
algorithm along boundary arc of order q ≥ 3 in Remark 4.11.

Combining Theorems 3.2(ii) and 3.3, we obtain that if (u, y) is a local solution
of (P) satisfying (A2)–(A6) and condition (i) of Theorem 3.3, then the shooting
algorithm is well-posed iff (u, y) satisfies the quadratic growth condition.

3.2. Proof of the no-gap second-order optimality conditions (Theorem
3.2). We use the no-gap second-order optimality conditions established in [6, 5]. Let
(u, y) be a regular Pontryagin extremal, with the multiplier η ∈ M[0, T ] given by
(2.21). Consider the quadratic cost function

J (v, z) :=

∫ T

0

H(u,y),(u,y)(u, y, p)((v, z), (v, z))dt + z(T )∗φyy(y(T ))z(T )

+

∫ T

0

(z∗gyy(y)z) dη −
∑
τ∈Tto

ντ
(g

(1)
y (y(τ))z(τ))2

d
dtg

(1)(y(t))|t=τ

,
(3.17)

where H is the classical Hamiltonian (2.4), and consider the constraint

gy(y(t))z(t) = 0 on Ib ∪ Tto.(3.18)

The quadratic problem used in the formulation of the second-order optimality condi-
tion in [5] is the following:

(PQ) min
(v,z)∈V×Z

1

2
J (v, z) subject to (3.10) and (3.18).(3.19)

Theorem 3.4. (i) If (u, y) is a local solution of (P) such that (A2)–(A6) hold,
then (v, z) = 0 is solution of problem (3.19).

(ii) If (u, y) is a Pontryagin extremal such that (A2)–(A6) hold, it is a local
solution of (P) satisfying the quadratic growth condition (3.2) iff problem (3.19) has
zero for a unique solution.

Proof. See Corollary 15 and Theorems 18 and 27 in [5], or Theorem 0.1 in [6]. For
the sake of completeness, let us recall the main ideas. The proof of the second-order
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necessary condition is based on the computation of the curvature term obtained by
Kawasaki [19, 20] in an abstract optimization framework. With the junction condi-
tions results of Proposition 2.5 and (A5)(i), we can show that boundary arcs have no
zero contribution to the curvature term. For the second-order sufficient condition, a
reduction method is used around the finitely many reducible touch points. In fact,
the proof of the sufficient condition is very similar to the proof of Lemma 4.9 in the
stability analysis below.

We establish the link between Theorem 3.4 and the second-order conditions
(3.15)–(3.16) derived from the alternative formulation. In the end of this section
we often omit the time argument when there is no ambiguity. The proof of the next
lemma is easy and therefore omitted.

Lemma 3.5. Assume that the state constraint is of order q. Then for every
trajectory (u, y) and every linearized trajectory (v, z) ∈ V × Z satisfying (3.10), the
following holds:

dj

dtj
gy(y(t))z(t) = g(j)

y (u, y)z, j = 1, . . . , q − 1,(3.20)

dq

dtq
gy(y(t))z(t) = g(q)

y (u, y)z + g(q)
u (u, y)v.(3.21)

Lemma 3.6. Let (u, y) be a regular Pontryagin extremal satisfying (A2)–(A4),
with classical and alternative multipliers (p, η) and (pq, ηq, ν

1:q
Ten

, νTto), respectively,
related to each other by (2.36)–(2.38), (2.41), and (2.21). Then the quadratic cost
functions J and Jq, defined, respectively, in (3.17) and (3.9), are equal to each other
over the space of linearized trajectories (v, z) ∈ V × Z satisfying (3.10).

Proof. Let (v, z) ∈ V ×Z satisfy (3.10) and set ΔPQ := J (v, z)−Jq(v, z). Using
(2.21), it is easily seen that the terms corresponding to the touch points and to the
final time vanish, and hence we get

ΔPQ =

∫ T

0

(p− pq)D
2f(u, y)((v, z), (v, z))dt +

∫ T

0

gyy(y)(z, z)η0(t)dt

−
∫ T

0

D2g(q)(u, y)((v, z), (v, z))ηq(t)dt +
∑

τ∈Tex

ντgyy(y)(z, z)(τ)

+
∑

τ∈Ten

⎛⎝ντgyy(y)(z, z)(τ) −
q∑

j=1

νjτg
(j−1)
yy (y)(z, z)(τ)

⎞⎠ .

In what follows we abbreviate the notation ((v, z), (v, z)) as ((v, z))2. Relations (2.36)–
(2.37) between p and pq lead to

ΔPQ =

q∑
j=1

∫ T

0

g(j−1)
y (y)D2f(u, y)((v, z))2ηj(t)dt +

∫ T

0

gyy(y)(z, z)η0(t)dt

−
∫ T

0

D2g(q)(u, y)((v, z))2ηq(t)dt +
∑

τ∈Tex

ντgyy(y)(z, z)(τ)(3.22)

+
∑

τ∈Ten

⎛⎝ντgyy(y)(z, z)(τ) −
q∑

j=1

νjτg
(j−1)
yy (y)(z, z)(τ)

⎞⎠ .
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The constraint being of order q, we have g(j)(u, y) = g
(j−1)
y (y)f(u, y) for j = 0 to

q − 1. It follows that

D2g(j)(u, y)((v, z))2 = g
(j−1)
yyy (f(u, y), z, z) + 2g

(j−1)
yy (z,Df(u, y)(v, z))

+ g
(j−1)
y D2f(u, y)((v, z))2.

(3.23)

In addition, by the linearized state equation (3.10), we have, for all j = 1, . . . , q,

d

dt

[
g(j−1)
yy (y(t))(z(t), z(t))

]
=g(j−1)

yyy (y)(f(u, y), z, z) + 2g(j−1)
yy (y)(z,Df(u, y)(v, z)),

which gives, by (3.23), for j = 1, . . . , q,

(3.24)

d

dt

[
g(j−1)
yy (y(t))(z(t), z(t))

]
= D2g(j)(u, y)((v, z))2 − g(j−1)

y (y)D2f(u, y)((v, z))2.

Since g
(j−1)
u (u, y) ≡ 0 for j = 1, . . . , q, we have g

(j−1)
yy (y)(z, z) = D2g(j−1)(u, y)((v, z))2

for j = 1, . . . , q. Multiplying (3.24) by ηj , integrating over [0, T ], and integrating by
parts on the left-hand side (recall that η̇j = −ηj−1), we obtain, for j = 1, . . . , q,∫ T

0

D2g(j−1)(u, y)((v, z))2ηj−1(t)dt +
∑
τ∈τex

g(j−1)
yy (y)(z, z)ηj(τ

−)

−
∑

τ∈τen

g(j−1)
yy (y)(z, z)ηj(τ

+)

=

∫ T

0

D2g(j)(u, y)((v, z))2ηj(t)dt−
∫ T

0

g(j−1)
y D2f(u, y)((v, z))2ηj(t)dt.

Adding the above equalities for j = 1, . . . , q, we get, after simplification by the terms∫ T

0
D2g(j)(u, y)((v, z))2ηj for j = 1, . . . , q − 1, that∫ T

0

gyy(y)(z, z)η0(t)dt +

q∑
j=1

∑
τ∈τex

g(j−1)
yy (y)(z, z)ηj(τ

−)

−
q∑

j=1

∑
τ∈τen

g(j−1)
yy (y)(z, z)ηj(τ

+)

=

∫ T

0

D2g(q)(u, y)((v, z))2ηq(t)dt−
q∑

j=1

∫ T

0

g(j−1)
y D2f(u, y)((v, z))2ηj(t)dt.

Substituting into (3.22) gives

ΔPQ =
∑
τ∈τex

⎛⎝ντgyy(y)(z, z)(τ) −
q∑

j=1

g(j−1)
yy (y)(z, z)ηj(τ

−)

⎞⎠
+

∑
τ∈τen

⎛⎝ντgyy(y)(z, z)(τ) +

q∑
j=1

(
ηj(τ

+) − νjτ
)
g(j−1)
yy (y)(z, z)(τ)

⎞⎠ .

Using (2.38) and additional conditions at entry and exit points (2.41)–(2.42), we
obtain that ΔPQ = 0. Thus, the cost functions of the two quadratic problems coincide
on the feasible set.
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Proof of Theorem 3.2. The state constraint being of order q, it follows from (3.20)–
(3.21) that (3.11)–(3.13) and (3.18) are equivalent. By Lemma 3.6, problems (PQq)
and (3.19) have the same feasible set and the same cost function on that feasible set,
and hence they also have the same value and the same set of optimal solutions. The
conclusion follows then from Theorem 3.4.

3.3. Proof of the well-posedness (Theorem 3.3). We give a sequence of
lemmas; some of them will also be used in section 4.

We denote, e.g., by g
(j)
y (y(Ten))z(Ten), g

(q)
(u,y)(u(Ten), y(Ten))(v(T −

en), z(Ten)), the

vectors in R
Nb of components g

(j)
y (y(τ))z(τ), g

(q)
(u,y)(u(τ), y(τ))(v(τ−), z(τ)), respec-

tively, for τ ∈ Ten. By g
(0:q−1)
y (y(Ten))z(Ten) we denote the vector in R

qNb of compo-

nent g
(j)
y (y(τ))z(τ), 0 ≤ j ≤ q − 1, τ ∈ Ten.

Lemma 3.7. Let (u, y) be a shooting extremal satisfying (A2q)–(A4), with the set

of shooting parameters θ0 = (p∗0, ν
1:q
Ten

, νTto , Ten, Tex, Tto) ∈ Θ, such that F(θ0) = 0 with

the shooting mapping F defined in (2.50). Then F is of class C1 on a neighborhood
Θ0 of θ0, and at the direction

ω := (π∗
0 , γ

1:q
Ten

, γTto
, σTen , σTex , σTto) ∈ Θ,(3.25)

the vector M := DF(θ0)ω can be split into M = (M∗
Q,M∗

T )∗ given by

MQ :=

⎛⎜⎝ π(T )∗ − φyy(y(T ))z(T )

g
(0:q−1)
y (y(Ten))z(Ten)

gy(y(Tto))z(Tto)

⎞⎟⎠ ,(3.26)

MT :=

⎛⎜⎜⎜⎜⎜⎝
g
(q)
(u,y)(u(Ten), y(Ten))(v(T −

en), z(Ten)) + σTen

d

dt
g(q)(u, y)|t=T −

en

g
(q)
(u,y)(u(Tex), y(Tex))(v(T +

ex), z(Tex)) + σTex

d

dt
g(q)(u, y)|t=T +

ex

g(1)
y (y(Tto))z(Tto) + σTto

d

dt
g(1)(y)|t=Tto

⎞⎟⎟⎟⎟⎟⎠ ,(3.27)

where (v, z, π, ζ), the linearized control, state, costate, and state constraint multipliers,
are the solutions of (omitting arguments (u, y, pq, ηq) and t)

ż = fyz + fuv on [0, T ]; z(0) = 0,(3.28)

−π̇ = H̃yyz + H̃yuv + πfy + ζg(q)
y on [0, T ] \ T ,(3.29)

0 = H̃uyz + H̃uuv + πfu + ζg(q)
u a.e. on [0, T ],(3.30)

0 = g(q)
y z + g(q)

u v a.e. on Ib,(3.31)

0 = ζ on [0, T ] \ Ib,(3.32)

with initial conditions of π given by π(0) = π0 and jump conditions of π given by

[π(τ)] = −
q∑

j=1

νjτz(τ)∗g(j−1)
yy (y(τ)) −

q∑
j=1

γj
τg

(j−1)
y (y(τ))

− στ

q−1∑
j=1

νjτg
(j)
y (y(τ)); τ ∈ Ten,

(3.33)

[π(τ)] = 0; τ ∈ Tex,(3.34)

[π(τ)] = −ντz(τ)∗gyy(y(τ)) − γτgy(y(τ)) − στντg
(1)
y (y(τ)); τ ∈ Tto.(3.35)
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Proof. We detail only how we obtain the jump conditions of the linearized costate
π at entry times; the other equations are obvious. In view of (2.31), it is easy to check
that the jump of π at τ ∈ Ten is given by

[π(τ)] = −
q∑

j=1

νjτz(τ)∗g(j−1)
yy (y(τ)) −

q∑
j=1

γj
τg

(j−1)
y (y(τ)) + στΔτ ,

where the vector of sensitivity coefficients Δτ on junction time is given by

Δτ = −
q∑

j=1

νjτg
(j−1)
yy (y(τ))f(u(τ−), y(τ)) + [H̃y(u(τ), y(τ), pq(τ), ηq(τ))].

By continuity of u at junction times (Proposition 2.15) and by (2.31) we have (omitting
argument τ and setting η+

q = ηq(τ
+))

Δτ = −
q∑

j=1

νjτg
(j−1)
yy (y)f(u, y) −

q∑
j=1

νjτg
(j−1)
y (y)fy(u, y) + η+

q g
(q)
y (u, y).

Since g
(j)
y (u, y) = g

(j−1)
yy (y)f(u, y) + g

(j−1)
y (y)fy(u, y) for j = 1, . . . , q, and since by

Proposition 2.15 we have ηq(τ
+) = νqτ , we obtain (3.33).

We recall that a continuous quadratic form defined over a Hilbert space is a
Legendre form (see, e.g., [17, 7]) if it is weakly lower semicontinuous and satisfies the
following property: For all weakly convergent subsequences (vn) ⊂ L2(0, T ), vn ⇀ v,
we have that vn → v strongly if Q(vn) → Q(v).

Lemma 3.8. Let (u, y) be a shooting extremal satisfying (A2q)–(A4). For all
v ∈ V, define zv as the (unique) solution in Z of the linearized state equation (3.10),
and define the operator A : V → W := L2(Ib) × R

qNb × R
Nto by

Av =

⎛⎜⎝ (g
(q)
y (u(·), y(·))zv(·) + g

(q)
u (u(·), y(·))v(·))|Ib

g
(0:q−1)
y (y(Ten))zv(Ten)
gy(y(Tto))zv(Tto)

⎞⎟⎠ .(3.36)

Then (i) the continuous linear operator A is onto, and (ii) if in addition the second-
order sufficient condition (3.16) holds, then there exists α > 0 such that

Q(v) := Jq(v, zv) ≥ α‖v‖2
2, for all v ∈ KerA.(3.37)

By ϕ|Ib
, we denote the restriction to Ib of function ϕ defined over [0, T ].

Proof. The continuity of A follows from that of V → Z, v 	→ zv. By (2.10)
and Lemma 3.5, the range of the mapping V → Z, v 	→ gy(y(·))zv(·) is the subspace
denoted by Hq

0 of functions ϕ ∈ Hq(0, T ) = W q,2(0, T ) satisfying ϕ(j)(0) = 0 for all
j = 0, . . . , q − 1. Point (i) follows since, by (A4), for all (ψ(·), b1:qTen

, bTto) ∈ W , there

exists ϕ ∈ Hq
0 such that ϕ(q)(t) = ψ(t) a.e. on Ib, ϕ(j−1)(Ten) = bjTen

, j = 1, . . . , q,
and ϕ(Tto) = bTto .

By (A2q), we can show that Q(v) is a Legendre form over L2(0, T ) (the proof is
similar to that of Lemma 21 in [5]). By (3.16), we have Q(v) > 0 for all v ∈ KerA\{0},
which implies (3.37) by Lemma B.1.

Proposition 3.9. Let (u, y) be a shooting extremal satisfying (A2q)–(A4) and
denote by θ0 ∈ Θ its set of shooting parameters. Assume that (i) the second-order
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sufficient condition (3.16) is satisfied, and (ii) the following holds at junction times:

d

dt
g(q)(u, y)|t=τ− �= 0 for all τ ∈ Ten;

d

dt
g(q)(u, y)|t=τ+ �= 0 for all τ ∈ Tex,(3.38)

d

dt
g(1)(y)|t=τ �= 0 for all τ ∈ Tto.(3.39)

Then the Jacobian DF(θ0) of the shooting mapping is invertible, and for all δ =
(aT , b

1:q
Ten

, bTto
, cTen

, cTex
, cTto

) ∈ Θ, the (unique) solution ω ∈ Θ of DF(θ0)ω = δ, with
ω given by (3.25), is as follows. With the notation of Lemma 3.8, denote by (vδ, wδ)
with wδ = (ζδ, λ

1:q
δ,Ten

, λδ,Tto) the unique solution in L2(0, T ) × W of the first-order
optimality system of the problem

(Pδ) min
v∈V

1

2
Jq(v, zv) + a∗T zv(T ) +

∑
τ∈Tto

cτντ
g
(1)
y (y(τ))zv(τ)
d
dtg

(1)(y)|t=τ

,

subject to Av = (0L2(Ib), b
1:q
Ten

, bTto)
∗.

(3.40)

Then π0 = πδ(0), where πδ is the solution on [0, T ]\T of (3.29) with (vδ, ζδ, zδ := zvδ
),

with final and jump conditions of πδ being given by

πδ(T ) = zδ(T )∗φyy(y(T )) + a∗T ,(3.41)

− [πδ(τ)] =

q∑
j=1

νjτzδ(τ)∗g(j−1)
yy (y(τ)) +

q∑
j=1

λj
δ,τg

(j−1)
y (y(τ)), τ ∈ Ten,(3.42)

− [πδ(τ)] = 0, τ ∈ Tex,(3.43)

− [πδ(τ)] = ντzδ(τ)∗gyy(y(τ)) + λδ,τgy(y(τ))

− ντzδ(τ)∗
g
(1)
y (y(τ))∗g

(1)
y (y(τ))

d
dtg

(1)(y)|t=τ

+ cτντ
g
(1)
y (y(τ))

d
dtg

(1)(y)|t=τ

, τ ∈ Tto,(3.44)

and we have γTto = λδ,Tto ,

στ =
cτ − g

(1)
y (y(τ))zδ(τ)

d
dtg

(1)(y)|t=τ

, τ ∈ Tto,(3.45)

στ =
cτ − g

(q)
(u,y)(u(τ), y(τ))(vδ(τ

+), zδ(τ))

d
dtg

(q)(u, y)|t=τ+

, τ ∈ Tex,(3.46)

στ =
cτ − g

(q)
(u,y)(u(τ), y(τ))(vδ(τ

−), zδ(τ))

d
dtg

(q)(u, y)|t=τ−
, τ ∈ Ten,(3.47)

γ1
τ = λ1

δ,τ , γj
τ = λj

δ,τ − νj−1
τ στ , j = 2, . . . , q, τ ∈ Ten.(3.48)

Note that (vδ, ζδ, zδ, πδ) satisfies (3.28)–(3.32). It follows by (A2q) and (2.10)
that vδ, ζδ ∈ PCq

T [0, T ], and hence vδ has limits when t → τ− and t → τ+ for τ in,
respectively, Ten and Tex, so (3.46)–(3.47) make sense.

Remark 3.10. Note that (3.38) is equivalent to the discontinuity of u̇ at en-
try/exit points and that, when q = 1, 2, (3.7) implies (3.38) since q̂ = q.

Remark 3.11. The above proposition is an explicit elimination property, valid for
any order q ≥ 1, that enables us to express the solution ω of DF(θ0)ω = δ as a function
of the optimal solution and multipliers of the quadratic problem (Pδ), independent
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of the variations of junction times. In the case q = 1, the term in the factor of the
variation of entry time στ in (3.33) is zero so that Lemma 3.9 is nothing but the block
decoupling property of the Jacobian already established in [23]. In the case q ≥ 2, our
result differs from the one in [24] since its authors use a quadratic problem depending
on the variation of the entry point, leading to an additional assumption, (A.11).

Proof. Let δ ∈ Θ. By (i) and Lemma 3.8, Lemma B.2 (with r = 0) implies that
the first-order optimality system of (Pδ) has a unique solution and multipliers. One
can easily check that (3.28)–(3.32) and (3.42)–(3.44), together with (3.41) and

g(0:q−1)
y (y(Ten))zδ(Ten) = b1:qTen

, gy(y(Tto))zδ(Tto) = bTto
,(3.49)

constitute the first-order optimality system of (Pδ), with λ1:q
δ,Ten

and λδ,Tto
the multipli-

ers associated with (3.49), and thus have a unique solution (vδ, zδ, πδ, ζδ, λ
1:q
δ,Ten

, λδ,Tto
).

By (ii), define now σT by (3.45)–(3.47), and let γ1:q
Ten

and γTto be related to

λ1:q
δ,Ten

and λδ,Tto by the invertible relations (3.48) and γTto = λδ,Tto
. Using (3.45)

and (3.48) in, respectively, (3.44) and (3.42), it follows that the system of equations
(3.28)–(3.32), (3.33)–(3.35), (3.41), (3.49), and (3.45)–(3.47) has a unique solution
(vδ, zδ, πδ, ζδ, γ

1:q
Ten

, γTto
, σT ). With Lemma 3.7, this implies that DF(θ0)ω = δ iff π0 =

πδ(0), and the remaining variables of ω are determined by (3.45)–(3.48). Lipschitz
continuity of ω w.r.t. δ is obtained as an easy consequence of Lemma B.2 and the
above relations.

Proof of Theorem 3.3. The proof is organized as follows. We first show the suffi-
ciency of the conditions (i) and (ii) for the well-posedness of the shooting algorithm,
which is an easy consequence of the above lemmas. After that we show that (i), and
then (ii), is also necessary.

Since (A5)(i) implies, by Lemma 3.1, that (3.7) holds, (3.38) is satisfied when
q = 1, 2 (see Remark 3.10) or trivially when the trajectory (u, y) has no boundary
arc, i.e., Ten = Tex = ∅. With (A6) and the second-order sufficient condition (3.16),
the invertibility of the Jacobian of the shooting mapping follows from Proposition 3.9.

Let us now show the converse. Assume first that (i) does not hold; i.e., q ≥ 3 and
(u, y) has a boundary arc. By Proposition 2.5(i), u̇ is continuous at junction times
τen and τex. Therefore, the function d

dtg
(q)(u(t), y(t)) depending on (y, u, u̇) is also

continuous at entry and exit times and vanishes on the boundary arc, so that (3.38)
does not hold at any of the regular entry/exit times. Then it is easily seen by Lemma
3.7 that we can find some nonzero ω̃ ∈ Θ such that DF(θ0)ω̃ = 0. Indeed, take, e.g.,
σ̃τ �= 0 for τ ∈ Tex, and all other components of ω̃ equal to zero. It follows that the
Jacobian of the shooting mapping is singular.

Assume now that (i) is satisfied but (ii) is not. Since (u, y) is a local solution of
(P), by Theorem 3.2 the second-order necessary condition (3.15) is satisfied. This says
that (v, z) = 0 is a solution of problem (PQq); therefore the value of (PQq) is zero,
the infimum is attained, and solutions of this problem do exist. If (v, z) = 0 is not the
unique solution, that is, if the second-order sufficient condition (3.16) does not hold,
this means that there exists another optimal solution (ṽ0, z̃0) �= 0 of (PQq), and hence
a nonzero solution of its first-order optimality conditions (3.10)–(3.13), (3.28)–(3.32),
with final and jump conditions of the associated costate π̃0 given by (3.41)–(3.44)
with aT = 0 and cTto = 0, and multipliers (λ̃1:q

Ten
, λ̃Tto) associated, respectively, with

(3.11) and (3.13).
Setting π̃0 := π̃0(0), we claim that (π̃0, λ̃

1:q
Ten

, λ̃Tto) �= 0. Indeed, suppose that all of
them were zero. Eliminating v by (3.30) as a linear function of (z, π), and integrating
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from (z(0), π(0)) = 0 over the first arc the linear differential equations (3.28)–(3.29),
we would have (z, π, v, ζ) = 0, until the first junction time. If all the jump parameters
λ̃j
Ten

and λ̃Tto are equal to zero, and (v, ζ) is given by (3.30)–(3.31) on boundary arcs,

we obtain (z̃0, π̃0, ṽ0, ζ̃0) = 0 over [0, T ], which leads to a contradiction.
Now let γ̃Tto = λ̃Tto and (σ̃T , γ̃

1:q
Ten

) be solution of (3.45)–(3.48) with cT = 0.

We have ω̃ := (π̃0, γ̃
1:q
Ten

, γ̃Tto
, σ̃Ten

, σ̃Tex
, σ̃Tto

) �= 0, and by Lemma 3.7, DF(θ0)ω̃ =
0. Therefore, the Jacobian of the shooting mapping is singular, which achieves the
proof.

4. Sensitivity analysis without strict complementarity at touch points.
In this section, we show how to conduct a sensitivity analysis, removing the strict
complementarity hypothesis for touch points.

Let us first note that our framework allows us to deal with nonautonomous prob-
lems (i.e., when the data f , �, g depend on t) as well, by introducing an additional
state variable equal to the time, provided that the data are sufficiently smooth w.r.t. t.
When the original problem (2.1)–(2.3) is autonomous, we still can add the time as
a state variable. This transformation affects neither the assumptions nor the first-
and second-order optimality conditions in sections 2 and 3 and the condition (ii) of
Theorem 4.3. Therefore, we will assume w.l.o.g. throughout this section that the
problem (P) is written such that the last component of the state variable yn satisfies

ẏn(t) = 1 for all t ∈ [0, T ]; yn(0) = 0

(i.e., yn(t) = t, for all t). The reason for doing so is to consider in our stability analysis
a wide class of perturbations, including nonautonomous perturbations (and possibly a
nonautonomous original problem). Allowing nonautonomous perturbations is indeed
needed to obtain the equivalence in Theorem 4.3, even when the original problem is
autonomous. We shall not repeat this assumption, which intervenes only in the proof
of (i) ⇒ (ii) in Theorem 4.3.

Let M0 be an open subset of a Banach space M (the perturbation space). Con-
sider, for μ ∈ M0, the family of perturbed optimal control problems,

(Pμ) min
(u,y)∈U×Y

∫ T

0

�̃(u(t), y(t), μ)dt + φ̃(y(T ), μ) subject to

ẏ = f̃(u(t), y(t), μ), a.e. t ∈ [0, T ]; y(0) = ỹ0(μ),

g̃(y(t), μ) ≤ 0 for all t ∈ [0, T ],

where �̃ : R × R
n × M0 → R, φ̃ : R

n × M0 → R, f̃ : R × R
n × M0 → R

n, g̃ :
R

n ×M0 → R, and ỹ0 : M0 → R
n are at least C2 mappings. We denote yμ0 := ỹ0(μ),

�μ(u, y) := �̃(u, y, μ), etc., and identify (�μ, φμ, fμ, gμ, yμ0 ) with problem (Pμ).
We say that (Pμ) is a q-stable extension of (P) if (i) there exists μ0 ∈ M0 such

that (Pμ0) = (P) (i.e., �μ0 ≡ �, etc.); (ii) the mappings �̃, φ̃, f̃ , g̃ are C2q, where q is
the order of the state constraint of problem (P); (iii) the state constraints are of order
q for all μ ∈ M0; and (iv) the mappings fμ are Lipschitz continuous over R × R

n,
uniformly over μ ∈ M0.

For each μ ∈ M0, problem (Pμ) satisfies (A0); taking if necessary a smaller
neighborhood of μ0, we may assume that (A1) holds as well. Given (μ, u, v) ∈ M0 ×
U × V, denote by (yμu , z

μ
u,v) ∈ Y × Z the state and linearized state solutions of

ẏμu = fμ(u, yμu); yμu(0) = yμ0 ,(4.1)

żμu,v = fμ
y (u, yμu)zμu,v + fμ

u (u, yμu)v; zμu,v(0) = 0,(4.2)
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and let Jμ(u) :=
∫ T

0
�μ(u(t), yμu(t))dt + φμ(yμu(T )).

In what follows, (ū, ȳ) denotes a Pontryagin extremal of (P) ≡ (Pμ0), with as-
sociated multipliers (p̄, η̄). We denote by θ0 ∈ Θ the vector of shooting parameters
associated with (ū, ȳ).

We say that a feasible trajectory (u, y) for (Pμ) has a neighboring structure to
that of (ū, ȳ) if the structure of (u, y) (number and order of boundary arcs and touch
points) differs from that of (ū, ȳ) only by possibly removing some nonessential touch
points. With a trajectory (u, y) having a neighboring structure to that of (ū, ȳ) is

naturally associated a set of shooting parameters θ̂, but the latter may have a lower
dimension than θ0 if (u, y) has (strictly) fewer touch points than (ū, ȳ). We can
show (and this is precisely the idea of reduction methods; see further) that when
‖u− ū‖∞ and ‖μ−μ0‖ are small enough and q ≥ 2, for every touch point τto of (ū, ȳ)
satisfying (3.8), the function gμ(y(·)) reaches its maximum over a small neighborhood

of τto at a unique time denoted τ ′to. Then adding to θ̂ this time τ ′to and a zero jump
parameter, and doing so for each touch point of (ū, ȳ) that is inactive for (u, y), we
obtain an augmented vector of shooting parameters θ having the same dimension as
θ0. Therefore the following definition makes sense.

Definition 4.1. We say that the uniform second-order quadratic growth con-
dition holds if, for every q-stable extension (Pμ) there exist c > 0 and open neigh-
borhoods Vμ × Vu × Vθ of (μ0, ū, θ0) in M0 × U × Θ, such that for all μ ∈ Vμ, there
exists a unique stationary point (uμ, yμ := yμuμ) ∈ Vu×Y of (Pμ) having a neighboring
structure to that of (ū, ȳ) with its augmented shooting parameters in Vθ, and that point
satisfies

Jμ(u) ≥ Jμ(uμ) + c‖u− uμ‖2
2, for all u ∈ Vu, gμ(yμu) ≤ 0 on [0, T ].(4.3)

As a consequence of the definition of the uniform growth condition, we have
ū = uμ0 and ȳ = yμ0 .

Note that in the uniform growth condition (4.3), the neighborhood (in L∞) on
which uμ satisfies the quadratic growth condition is independent of μ. Our definition
of uniform quadratic growth is different from the one in [7, section 5.1], since the
latter implies the local uniqueness of solutions of the first-order optimality system
(stationary points). Here, since our stability analysis is based on the shooting formu-
lation, we can argue only the uniqueness of the stationary point among the feasible
trajectories that have their structure and shooting parameters “in the neighborhood”
of those of (ū, ȳ). The uniqueness of the stationary point, in a certain sense, is needed
to prove the implication (i) ⇒ (ii) in Theorem 4.3 below.

We will use the assumption below, which is a modification of (A5).
(A5′) (i) If q ≤ 2, the following strengthening of (3.3)–(3.4) holds:

∃β > 0 (−1)q
dq

dtq
η̄q(t) ≥ β for all t ∈ int Ib;(4.4)

if q = 2, (3.5) holds; if q > 2, the trajectory (ū, ȳ) has no boundary arc.
(ii) If q = 1, (ū, ȳ) has no (nonessential) touch points.

Assumption (A5′)(i) is a strengthening of (A5)(i). It requires, in addition to
(A5)(i), uniform strict complementarity on boundary arcs, which is stronger than
(3.3) (and implies (3.4)), and that (ū, ȳ) have no boundary arc if q ≥ 3. Assump-
tion (A5′)(ii) is weaker than (A5)(ii) since it allows nonessential touch points for
constraints of order q ≥ 2 only.
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Define the set of increasing times in (0, T ) of cardinal N as

ITN := {τ ∈ R
N ; 0 < τ1 < · · · < τN < T}.(4.5)

Set τ0 := 0 and τN+1 := T . Given S ⊂ ITN , we have a natural isomorphism between
PCk

S [0, T ] and Ck([0, 1]; RN+1), defined by{
ϕ̂i(s) = ϕ(τi + (τi+1 − τi)s) for all s ∈ (0, 1),
ϕ̂i(0) = ϕ(τ+

i ), ϕ̂i(1) = ϕ(τ−i+1),
i = 0, . . . , N.(4.6)

We may therefore identify the set PCk
N [0, T ] := ∪{PCk

S [0, T ];S ∈ ITN} of all possi-
ble N -piecewise k-times continuously differentiable functions, with Ck([0, 1]; RN+1)×
ITN . The corresponding notion of convergence follows: A sequence ϕn ∈ PCk

Sn [0, T ]
converges to ϕ ∈ PCk

S [0, T ] if Sn → S in R
N and ϕ̂n → ϕ̂ in Ck([0, 1]; RN+1). Sim-

ilarly, a mapping defined over an open subset W of a Banach space, W → PCk
N ,

w 	→ ϕw ∈ PCk
Sw is of class Ck if the mapping W → Ck([0, 1]; RN+1) × R

N ,

w 	→ (ϕ̂w,Sw) is Ck. We denote by PCk,r
N [0, T ] = PCk

N [0, T ] ∩ Cr[0, T ] the sub-
set of PCk

N [0, T ] of functions having continuous derivatives on [0, T ] until order r ≥ 0.
The next lemma is elementary and will be used at the end of this section.

Lemma 4.2. Let W be an open subset of a Banach space, and W → PC1,0
N ,

w 	→ ϕw ∈ PC1,0
Sw a C1 mapping. Then the mapping w 	→ ϕw is C1 in Lr(0, T )

for all 1 ≤ r < ∞. More precisely, for w ∈ W , let Sw := {τw1 < · · · < τwN} and

denote by (ξ̂w, σw) the directional derivative in C1([0, 1]; RN+1)×ITN of the mapping
w 	→ (ϕ̂w, τw) at point w in direction δw ∈ W . Then the directional derivative ξ̃w in
Lr(0, T ) is given by

ξ̃w(t) = ξ̂wi

(
t− τwi

τwi+1 − τwi

)
− ϕ̇w(t)

(
σw
i +

t− τwi
τwi+1 − τwi

(σw
i+1 − σw

i )

)
on (τwi , τwi+1).

By Proposition 2.5, a regular Pontryagin extremal and its multipliers (uμ, yμ, pμ, ημ)
satisfying (A2)–(A4) belong to the product space

XS := PCq,0
S [0, T ] × PCq+1,1

S ([0, T ]; Rn) × PC1
S([0, T ]; Rn∗) × PC1

S [0, T ],(4.7)

with here S = T , which is the finite set of its junction times assumed to be of cardinal
N . So let us define the union XN of all such spaces, and define as well some other
sets needed later:

XN := ∪{XS ; S ∈ ITN},
X q

S := PCq
S [0, T ] × PCq+1,0

S ([0, T ]; Rn) × PCq+1
S ([0, T ]; Rn∗) × PCq

S [0, T ],

X 1
S := PCq

S [0, T ] × PCq+1,0
S ([0, T ]; Rn) × PC1

S([0, T ]; Rn∗) × PC1
S [0, T ],

X q
N := ∪{X q

S ; S ∈ ITN}, X 1
N := ∪{X 1

S ; S ∈ ITN}.

The main result of this section is the next theorem, which gives stability results
for the optimal control problem (P) without assuming strict complementarity at the
touch points. Therefore we cannot directly apply the implicit function theorem as it
was done in [23, 24] and our section 3.

Theorem 4.3. Let (ū, ȳ) be a Pontryagin extremal of (P) satisfying (A2)–(A4),
(A5′) and (A6). Then the following statements are equivalent:

(i) The uniform second-order quadratic growth condition (Definition 4.1) holds.
Denote by uμ ∈ Vu the solution of (4.3) for μ ∈ Vμ, and set yμ := yμuμ . With (uμ, yμ)
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are associated a unique costate pμ and state constraint multiplier ημ, and the mapping
μ 	→ (uμ, yμ, pμ, ημ) ∈ XN is Lipschitz continuous over Vμ.

(ii) The following strong second-order sufficient condition holds:

J (v, z) > 0 for all (v, z) ∈ V × Z \ {0} satisfying (3.10) and

gy(ȳ(t))z(t) = 0 for all t ∈ Ib ∪ T ess
to .(4.8)

Remark 4.4. Note that condition (ii) is stronger than the following second-order
characterization of quadratic growth (3.2) (see [5]):

J (v, z) > 0 for all (v, z) ∈ V × Z \ {0} satisfying (3.10), (4.8), and

gy(ȳ(τ))z(τ) ≤ 0 for all τ ∈ Tto \ T ess
to .

We need the following notation. Denote by T nes
to := Tto\T ess

to the subset of nonessen-
tial touch points of the trajectory (ū, ȳ). For μ close to μ0, let F(·, μ) be the shooting
mapping (2.50) for problem (Pμ), with the same structure as the trajectory (ū, ȳ), i.e.,
the same number of boundary arcs and touch points and the same order of their occur-
rence w.r.t. time. Thus nonessential touch points are present in the shooting mapping
and may be active or inactive for the perturbed problem. Let N̄ := n+(q+2)Nb+2Nto

denote the dimension of the shooting mapping, with Nb = Card Ten = Card Tex and
Nto = Card Tto, and denote by N0 the cardinal of T nes

to , the set of nonessential touch
points. Split F into two components such that F(·, μ) = (Φ(·, μ)∗,Ψ(·, μ)∗)∗ and Ψ
corresponds to the component gμ(y(T nes

to )) ∈ R
N0 . We consider the following problem

for μ close to μ0: Find

θ = (pμ∗0 , νμ,1:qTen
, νμT ess

to
, νμT nes

to
, T μ

en, T μ
ex, T

μ,ess
to , T μ,nes

to ) ∈ Θ(4.9)

such that

Φ(θ, μ) = 0; Ψ(θ, μ) ∈ R
N0
− ∩ (νμT nes

to
)⊥; νμT nes

to
∈ R

N0
+ .(4.10)

In (4.10), we express the complementarity condition for nonessential touch points
only. The complementarity condition at essential touch points and boundary arcs,
where strict complementarity is satisfied, will hold by continuity, since we perform a
local analysis (see further Lemmas 4.6–4.7).

The point θ0, solution of (4.10) for μ = μ0, is said to be strongly regular (see
Robinson [28]) if there exists a neighborhood V ′

θ ×Vδ in R
N̄ ×R

N̄ of (θ0, 0) such that

for all δ ∈ Vδ, δ = (δ1, δ2) ∈ R
N̄−N0 × R

N0 , there exists a unique solution θ in V ′
θ of

DθΦ(θ0, μ0)(θ − θ0) − δ1 = 0,

DθΨ(θ0, μ0)(θ − θ0) − δ2 ∈ R
N0
− ∩ ν⊥T nes

to
; νT nes

to
∈ R

N0
+ ,

(4.11)

and the mapping Ξ : δ 	→ θ(δ) is Lipschitz continuous over Vδ. If θ0 is strongly
regular, then by [28], there exists a neighborhood Vθ × Vμ of (θ0, μ0) such that for
each μ ∈ Vμ, (4.10) has in Vθ a unique solution θμ and there exists κ > 0 such that
for all μ, μ′ ∈ Vμ,

|θμ − θμ
′ | ≤ κ‖μ− μ′‖.(4.12)

In addition, the following expansion of θμ holds (see [7, eq. (5.41), p. 413]):

θμ = Ξ(−DμF(θ0, μ0)(μ− μ0)) + o(‖μ− μ0‖).(4.13)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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4.1. Stability analysis (proof of Theorem 4.3). The first step in the proof
of (ii) ⇒ (i) in Theorem 4.3 is to show that (ii) implies the strong regularity property
(Lemma 4.5). The existence of a (locally unique) shooting extremal (uμ, yμ) for
problem (Pμ) having its shooting parameters in the neighborhood of those of (ū, ȳ)
follows (Lemma 4.6). The next step is to check the additional conditions of Corollary
2.17, implying that (uμ, yμ) is a stationary point (Lemma 4.7). We end the proof
by checking that uμ satisfies the uniform quadratic growth condition (4.3) (Lemmas
4.8–4.9).

Lemma 4.5. Under the assumptions of Theorem 4.3, condition (ii) of Theorem
4.3 implies that θ0 is a strongly regular solution of (4.10) for μ = μ0.

Proof. The proof is somewhat similar to that of Proposition 3.9. Let δ = (δ1, δ2) ∈
R

N̄−N0 × R
N0 with

δ1 = (aT , b
1:q
Ten

, bT ess
to

, cTen
, cTex

, cT ess
to

, cT nes
to

); δ2 = bT nes
to

.

Let us show that there exists a unique ω ∈ Θ,

ω = (π∗
0 , γ

1:q
Ten

, γT ess
to

, γT nes
to

, σTen , σTex , σT ess
to

, σT nes
to

),

solution of the following relation, equivalent to (4.11) with ω = θ − θ0:

DθΦ(θ0, μ0)ω − δ1 = 0,

DθΨ(θ0, μ0)ω − δ2 ∈ R
N0
− ∩ γ⊥

T nes
to

; γT nes
to

∈ R
N0
+ .

(4.14)

Consider the following linear quadratic optimal control problem:

(Pδ) min
v∈V

1

2
Jq(v, zv) + a∗T zv(T ) +

∑
τ∈Tto

cτντ
g
(1)
y (y(τ))zv(τ)
d
dtg

(1)(y)|t=τ

subject to Av = (0L2(Ib), b
1:q
Ten

, bT ess
to

)∗; Bv ≤ bT nes
to

,

(4.15)

where Jq(v, zv) is defined by (3.9) and the linear operators A, B are defined by

Av :=

⎛⎜⎝ (g
(q)
y (u(·), y(·))zv(·) + g

(q)
u (u(·), y(·))v(·))|Ib

g
(0:q−1)
y (y(Ten))zv(Ten)
gy(y(T ess

to ))zv(T ess
to )

⎞⎟⎠ ,

Bv := gy(y(T nes
to ))zv(T nes

to ).

(4.16)

Being equal to A defined in (3.36), the operator (A,B) is onto by Lemma 3.8. By
Lemma B.1, the Legendre form Q̄(v) := Jq(v, zv) is coercive over KerA. It follows
from Lemma B.2 that the first-order optimality system of problem (Pδ) has a unique
solution vδ ∈ V, with a unique associated Lagrange multiplier (ζδ, λ

1:q
δ,Ten

, λδ,T ess
to

, λδ,T nes
to

)

in L2(Ib)×R
qNb×R

Nto−N0×R
N0 , and the mapping δ 	→ (vδ, ζδ, λ

1:q
δ,Ten

, λδ,T ess
to

, λδ,T nes
to

)
is Lipschitz continuous. Now, defining as in Proposition 3.9 σT by (3.45)–(3.47) and
defining γ1:q

Ten
, γT ess

to
, γT nes

to
by the invertible relations (3.48), γT ess

to
= λδ,T ess

to
and

γT nes
to

= λδ,T nes
to

, this implies that the system of equations (3.28)–(3.32), (3.33)–(3.35),
(3.41), (3.45)–(3.47), together with the constraints and complementarity conditions
of (Pδ)

g
(0:q−1)
y (y(Ten))zδ(Ten) = b1:qTen

, gy(y(T ess
to ))zδ(T ess

to ) = bT ess
to

,

gy(y(T nes
to ))zδ(T nes

to ) ≤ bT nes
to

, γT nes
to

≥ 0, (gy(y(T nes
to ))zδ(T nes

to ) − bT nes
to

) ⊥ γT nes
to

,
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has a unique solution (vδ, zδ, πδ, ζδ, γ
1:q
Ten

, γT ess
to

, γT nes
to

, σT ). Thus by Lemma 3.7, we
obtain that ω is a solution of (4.14) iff π0 = πδ(0) and the other variables of ω are
given as above. The existence and uniqueness of ω follows, and it is not difficult to
check the Lipschitz continuity of ω w.r.t. δ.

By strong regularity, there exist neighborhoods Vμ and Vθ of μ0 and θ0 such that,
for all μ ∈ Vμ, there exists in Vθ a unique solution θμ of (4.10):

θμ = (pμ∗0 , νμ,1:qTen
, νμT ess

to
, νμT nes

to
, T μ

en, T μ
ex, T

μ,ess
to , T μ,nes

to ) ∈ Vθ ⊂ R
N̄ .

Denote the associated trajectory and multipliers by (uμ, yμ, pμq , η
μ
q ) ∈ X q

N . Recall that
Ψ(θμ, μ) = gμ(yμ(T μ,nes

to )) and set

T μ
to := T μ,ess

to ∪ {τ ∈ T μ,nes
to ; gμ(yμ(τ)) = 0}.

By the definition of (4.10), we have gμ(yμ(τ)) < 0 and νμτ = 0 if τ /∈ T μ
to . Hence

(uμ, yμ, pμq , η
μ
q ) is a shooting extremal for (Pμ), with jump parameters (νμ,1:qTen

, νμT μ
to

)

and junction times (T μ
en, T μ

ex, T
μ
to).

In order to show now that the mapping μ 	→ (uμ, yμ, pμ, ημ) is Lipschitz continous,
where (pμ, ημ) is given by (2.36)–(2.38) and (2.21), consider the mapping

Vμ × Vθ → X q
N , (μ, θ) 	→ (uμ,θ, yμ,θ, pμ,θq , ημ,θq ),(4.17)

where (uμ,θ, yμ,θ, pμ,θq , ημ,θq ) is the solution of (2.23)–(2.24), (2.26), (2.28), (2.30), and
(2.31)–(2.33) for (Pμ), with initial value of the costate, jump parameters and junction
times given by argument θ. By the Cauchy–Lipschitz theorem, this mapping is well
defined and of class Cq on neighborhoods Vμ × Vθ of (μ0, θ0). Therefore the mapping

Vμ × Vθ → X 1
N , (μ, θ) 	→ (uμ,θ, yμ,θ, pμ,θ, ημ,θ),(4.18)

where ημ,θj , 0 ≤ j ≤ q− 1, pμ,θ, and ημ,θ are defined by (2.36)–(2.38) and (2.21), is of

class C1.
Lemma 4.6. Under assumptions and condition (ii) of Theorem 4.3, there exists a

neighborhood Vμ of μ0 such that the mapping Vμ → XN , μ 	→ (uμ, yμ, pμ, ημ), is well
defined and Lipschitz continuous on Vμ.

Proof. Since strong regularity holds by Lemma 4.5, the mapping μ 	→ θμ solution
of (4.10) is well defined on a neighborhood of μ and Lipschitz continuous by (4.12).
By continuity of the mappings (4.18) and μ 	→ θμ, the mapping μ 	→ (uμ, yμ, pμ, ημ) is
continuous Vμ → X 1

N . Let us show now that uμ is continuous. By (A2)–(A3), reducing

Vμ if necessary, we have Hμ
uu(û, yμ(t), pμ(t±)) ≥ α/2 and |(gμ)

(q)
u (û, yμ(t))| ≥ γ/2 for

all t and all û in the segment [uμ(t−), uμ(t+)] := {σuμ(t+)+(1−σ)(u(t−)), σ ∈ [0, 1]}.
By arguments similar to those used in the proof of Proposition 2.15(i) and in Remark
2.16, this is enough to show that uμ is continuous, and hence, (uμ, yμ) ∈ PCq,0

T μ [0, T ]×
PCq+1,1

T μ ([0, T ]; Rn). Reducing V μ if necessary, by composition of μ 	→ θμ with the C1

mapping (4.18), we deduce that the mapping μ 	→ (uμ, yμ, pμ, ημ) ∈ XN is Lipschitz
continuous on a neighborhood of μ.

Lemma 4.7. Under assumptions and condition (ii) of Theorem 4.3, the shooting
extremal (uμ, yμ) is a stationary point for problem (Pμ).

Proof. By Corollary 2.17 and Remark 2.20, we need to check (2.39), (2.40), (2.43),
and also, when q = 2, (2.51). By (A5′) and Lemma 4.6, (2.40) follows from (4.4).
If q = 2, (2.51) follows from (3.5). By continuity of jumps at essential touch points
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and the definition of (4.10), we obtain (2.43). It remains to prove (2.39). Near an
entry/exit point τμ (when q = 1 or 2) this is a consequence of hypothesis (3.7) and
continuity w.r.t. μ of u(τμ±). Similarly, near touch points, this follows from the
reducibility hypothesis (3.8). Finally, outside a small neighborhood of contact points,
we obtain that gμ(yμ) < 0 by a standard compactness argument.

The next two lemmas extend those in [5, section 4] to the setting of perturbed
optimal control problems. In what follows we denote by supp(dη) the support of the
measure η in M[0, T ].

Lemma 4.8. Assume that the assumptions and condition (ii) of Theorem 4.3 hold.
Let (Pμ) be a q-stable extension, and μn → μ0 with its associated shooting extremal
(un, yn) and multipliers (pn, ηn). For v ∈ V, define Qn(v) := J μn(v, zμn

un,v), where
J μn(·, ·) is given by (3.17) for (Pμn) and zμn

un,v is defined by (4.2). Define similarly

Q̄(v) := J μ0(v, zμ0
ū,v). Let vn ⇀ v̄ ∈ L2. Then it holds that

Q̄(v̄) ≤ liminf Qn(vn) and vn → v̄ strongly if Qn(vn) → Q̄(v̄).(4.19)

Set zn := zμn
un,vn

, and assume in addition that gμn
y (yn(t))zn(t) ≤ rn, where ‖rn‖∞ → 0

for all t ∈ supp(dηn) and all n. Let z̄ := zμ0
ū,v̄. Then

gy(ȳ(t))z̄(t) ≤ 0 on supp(dη̄).(4.20)

Proof. Since by Lemma 4.6, (un, yn) converges uniformly to (ū, ȳ), and vn ⇀ v,
we have that (zn) converges weakly in H1 to z̄ and hence uniformly. Relation (4.20)
follows from the convergence of ηn in PC1

N , strict complementarity (4.4), and uniform
convergence of gμn

y (yn)zn. Let us now show (4.19).

Set Q0
n(vn) :=

∫ T

0
v∗nH

μn
uu (un, yn, pn)vndt. By Lemma 4.6, uniform convergence

of zn, and convergence in XN of Hμn
uy (un, yn, pn) and Hμn

yy (un, yn, pn), it follows eas-

ily that Qn(vn) − Q0
n(vn) → Q̄(v̄) − Q̄0(v̄). Writing Q0

n(vn) = Q̄0(vn) + εn with

εn =
∫ T

0
v∗n(Hμn

uu (un, yn, pn) − Huu(ū, ȳ, p̄))vndt, by continuity of Hμn
uu at junction

times (Lemma A.1 and Remark 2.20), Lemma 4.6 implies that Hμn
uu (un, yn, pn) →

Huu(ū, ȳ, p̄) uniformly, and hence, εn → 0. Since by (A2), Q̄0 : v 	→
∫ T

0
v∗Huu(ū, ȳ, p̄)v

is a Legendre form, (4.19) follows.
We recall the reduction approach of [5, section 5.2]. When q ≥ 2, with all touch

points of the trajectory (ū, ȳ) being reducible by (A6), let ε, δ > 0 and Vμ be small
enough so that, for all ‖u− ū‖∞ ≤ δ, all μ ∈ Vμ, and all τto ∈ Tto, the function gμ(yμu)
attains its maximum over [τto− ε, τto + ε] at a unique point τμu ∈ (τto− ε, τto + ε). Set
Īto := ∪τto∈Tto(τto − ε, τto + ε) and Īb := [0, T ] \ Īto. When q = 1, set Īb := [0, T ] and
Īto := ∅. Then the following reduced problem is well defined and locally equivalent to
(Pμ):

(Pμ
red) min

u∈B∞(ū,δ)
Jμ(u) subject to

Gμ(u) :=

⎛⎜⎜⎜⎝
g(yu)|Īb

gμ(yμu(τμ,1u ))
...

gμ(yμu(τμ,Nto
u ))

⎞⎟⎟⎟⎠ ∈ K := C−[Īb] × R
Nto
− .

(4.21)

The Lagrangian Lμ of the reduced problem (4.21) is given, for u ∈ B∞(ū, δ) and a
multiplier λ = (ηb, ν) ∈ M+[Īb] × R

Nto
+ , by

Lμ(u, λ) = Jμ(u) +

∫
Īb

gμ(yμu(t))dηb(t) +

Nto∑
i=1

νig
μ(yμu(τμ,iu )).(4.22)
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Multipliers ημ and λμ = (ημb , ν
μ) associated with uμ in, respectively, problem (Pμ)

and its reduced form (Pμ
red), are related by

dημ(t) = dημb (t) on Īb; dημ(t) =

Nto∑
i=1

νμτiδτμ,i
u

(t) on Īto.(4.23)

In addition, we can show that the reduced Lagrangian (4.22) is twice Fréchet differ-
entiable at uμ, and its second-order derivative satisfies, for v ∈ V,

D2
uuLμ(uμ, λμ)(v, v) = J μ(v, zμu,v),(4.24)

with J μ given by (3.17), and that the remainder r(v) in the second-order expansion

Lμ(uμ + v, λμ) = Lμ(uμ, λμ) + DuLμ(uμ, λμ)v + 1
2D

2
uuLμ(uμ, λμ)(v, v) + r(v)

satisfies

r(v)/‖v‖2
2 → 0 when ‖v‖∞ → 0.(4.25)

In what follows, TK(x) and NK(x) denote, respectively, the tangent and normal
cones to K at point x ∈ K (in the sense of convex analysis).

Lemma 4.9. Under assumptions and condition (ii) of Theorem 4.3, there exists
an open neighborhood Vμ of μ0 such that the shooting extremal (uμ, yμ) associated
with (Pμ) for μ ∈ Vμ satisfies the uniform quadratic growth condition, and hence, is
a local solution of (Pμ).

Proof. If the conclusion does not hold, then there exists a q-stable extension (Pμ),
a sequence μn → μ0, with associated shooting extremal and multipliers (un, yn, pn, ηn)
converging to (ū, ȳ, p̄, η̄) in XN by Lemma 4.6 (which implies in particular un → ū in
L∞), and a point ũn ∈ U feasible for (Pμn), ũn �= un, ũn → ū in L∞, satisfying for
all n,

Jμn(ũn) ≤ Jμn(un) + o(‖ũn − un‖2
2).(4.26)

Since λn ∈ NK(Gμn(un)), we have (for the appropriate duality products)

〈λn,Gμn(ũn) − Gμn(un)〉 ≤ 0,

and thus

Lμn(ũn, λn) − Lμn(un, λn) ≤ o(‖ũn − un‖2
2).(4.27)

Let 0 < εn := ‖ũn − un‖2 → 0 and vn := ε−1
n (ũn − un). Since ‖vn‖2 = 1 for all

n, taking a subsequence if necessary, we may assume that vn ⇀ v̄ ∈ V. With the
notation of Lemma 4.8, we deduce from this lemma that (4.19) holds. Combining
DuLμn(un, λn) = 0 and (4.24) with (4.27) and (4.25), we get

Qn(vn) = DuuLμn(un, λn)(vn, vn) ≤ o(1),(4.28)

and thus Q̄(v̄) ≤ 0 by (4.19). Now

K � Gμn(ũn) = Gμn(un) + εnDGμn(un)vn + εnrn,
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where ‖rn‖∞ = o(1), and therefore DGμn(un)vn + rn ∈ TK(Gμn(un)), implying
gμn
y (yn)zn + rn ≤ 0 on supp(dηn). Thus (4.20) is satisfied by Lemma 4.8. Also,

by (4.26), DJμn(un)vn ≤ o(1), and hence,

〈ηn, gμn
y (yn)zn〉 = 〈λn, DGμn(un)vn〉 ≥ o(1).

Passing to the limit, we obtain 〈η̄, gy(ȳ)z̄〉 ≥ 0. By (4.20) and dη̄ ≥ 0, we deduce
that gy(ȳ)z̄ ∈ supp(dη̄)⊥; thus v̄ and its associated linearized state z̄ satisfy (3.10)
and (4.8). Therefore condition (ii) and Q̄(v̄) ≤ 0 imply v̄ = 0. Since by (4.28),
limsupQn(vn) ≤ 0, it follows from (4.19) that Qn(vn) → 0 = Q̄(v̄), and hence,
vn → v̄ = 0, contradicting ‖vn‖2 = 1 for all n.

Proof of Theorem 4.3. (ii) ⇒ (i) is a consequence of Lemmas 4.5–4.9. Let us
show (i) ⇒ (ii). Let ρ be a C∞ function over R such that supp(ρ) ⊂ [−1, 1] and ρ
is positive over (−1, 1). The function ψμ defined by ψμ(s) :=

∑
τ∈T nes

to
μ4q+2ρ( s−τ

μ )

for μ �= 0, and ψ0(s) = 0, for all s ∈ [0, T ], is of class C2q w.r.t. its arguments s
and μ and has support in ∪τ∈T nes

to
[τ − |μ|, τ + |μ|] for μ �= 0. Consider the perturbed

constraint mapping gμ(y) := g(y)−ψμ(yn) (recall that we assume that (P) is written
such that yn(t) = t). Observe that g0 = g and gμ is of order q for all μ; therefore
(Pμ) ≡ (�, φ, f, gμ, y0) is a q-stable extension of (P0) = (P) with μ0 = 0. In addition,
gμ(y) = g(y) for all y such that yn /∈ ∪τ∈T nes

to
(τ − |μ|, τ + |μ|), and gμ(ȳ(t)) < 0 on

(τ − |μ|, τ + |μ|) for all τ ∈ T nes
to . Since the touch points are isolated, we have for

|μ| > 0 small enough gμ(ȳ) = g(ȳ) on Ib ∪ T ess
to = supp(dη̄), and it is easy to see that

(ū, ȳ) is a stationary point for (Pμ), with the same Lagrange multiplier η̄ and the same
costate p̄. In addition, the stationary point (ū, ȳ) for (Pμ) has a neighboring structure
to that of (ū, ȳ) for (P0) (all nonessential touch points are removed). Therefore,
by (i) and Definition 4.1, for |μ| small enough, (ū, ȳ) satisfies the uniform quadratic
growth condition (4.3) for (Pμ). Since assumptions (A2)–(A6) are satisfied for (Pμ), it
follows from Theorem 3.4(ii) that the sufficient condition (ii) holds, which achieves the
proof.

4.2. Sensitivity analysis. If strong regularity holds, the mapping Ξ : Vδ → Vθ,
δ 	→ θ(δ) is given by Ξ(δ) = θ0 + ω(δ), where ω(δ) is the solution of (4.14). It follows
then from (4.13) that

θμ = θ0 + ω(−DμF(θ0, μ0)(μ− μ0)) + o(‖μ− μ0‖).

Since the mapping R
N̄ → Θ, δ 	→ ω(δ) is positively homogeneous of degree one, the

mapping μ 	→ θμ is Fréchet directionally differentiable. The directional derivatives in
direction d are obtained by substituting −DμF(θ0, μ0)d for δ in (4.14). Therefore,

θμ0+d = θ0 + ωd + o(‖d‖),(4.29)

where ωd = (π∗
d,0, γ

1:q
d,Ten

, γd,Tto , σd,Ten , σd,Tex , σd,Tto) is as follows. Denote by (vd, zd)

and (ζd, πd, λ
1:q
d,Ten

, λd,Tto) the (unique) optimal solution and multipliers of the quadra-
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tic problem below:

(Pd) min
(v,z)∈V×Z

1

2

∫ T

0

D2
(u,y,μ),(u,y,μ)H̃(ū, ȳ, p̄q, η̄q, μ0)((v, z, d), (v, z, d))dt

+
1

2
D2φ̃(ȳ(T ), μ0)((z(T ), d), (z(T ), d))

+
1

2

∑
τ∈Ten

q∑
j=1

νjτD
2g̃(j−1)(ȳ(τ), μ0)((z(τ), d), (z(τ), d))

+
1

2

∑
τ∈Tto

ντ

(
D2g̃(ȳ(τ), μ0)((z(τ), d), (z(τ), d)) − (Dg̃(1)(ȳ(τ), μ0)(z(τ), d))2

d
dt g̃

(1)(ȳ(t), μ0)|t=τ

)

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż(t) = Df̃(ū, ȳ, μ0)(v, z, d) on [0, T ], z(0) = Dỹ0(μ0)d,
Dg̃(0:q−1)(ȳ(τ), μ0)(z(τ), d) = 0, τ ∈ Ten,
Dg̃(ȳ(τ), μ0)(z(τ), d) = 0, τ ∈ T ess

to ,
Dg̃(ȳ(τ), μ0)(z(τ), d) ≤ 0, τ ∈ T nes

to ,
Dg̃(q)(ū, ȳ, μ0)(v, z, d) = 0 on Ib.

Then ωd is given by πd,0 = πq(0), γd,Tto = λd,Tto ,

σd,τ = −Dg̃(1)(ȳ(τ), μ0)(zd(τ), d)
d
dt g̃

(1)(ȳ, μ0)|t=τ

, τ ∈ Tto,(4.30)

σd,τ = −Dg̃(q)(ū(τ), ȳ(τ), μ0)(vd(τ
+), zd(τ), d)

d
dt g̃

(q)(ū, ȳ, μ0)|t=τ+

, τ ∈ Tex,(4.31)

σd,τ = −Dg̃(q)(ū(τ), ȳ(τ), μ0)(vd(τ
−), zd(τ), d)

d
dt g̃

(q)(ū, ȳ, μ0)|t=τ−
, τ ∈ Ten,(4.32)

γ1
d,τ = λ1

d,τ , γj
d,τ = λj

d,τ − νj−1
τ σd,τ , j = 2, . . . , q, τ ∈ Ten.(4.33)

Once we have the expressions for the directional derivatives of the shooting pa-
rameters, by composition with the Fréchet derivatives of the C1 mapping (4.18) in
direction (d, ωd), we obtain the expressions of the directional derivatives, in XN , of the
mapping μ 	→ (uμ, yμ, pμ, ημ). By Lemma 4.2, we then easily obtain the expression
of the directional derivatives of the control and state in Lr(0, T )×W 1,r(0, T ; Rn) for
all 1 ≤ r < ∞.

Corollary 4.10. If either point (i) or (ii) of Theorem 4.3 is satisfied, then there
exists a neighborhood Vμ of μ such that the mapping Vμ → XN , μ 	→ (uμ, yμ, pμ, ημ),
is Fréchet directionally differentiable on Vμ. In addition, the directional derivative in
Lr(0, T ) × W 1,r(0, T ; Rn), 1 ≤ r < ∞, of the mapping μ 	→ (uμ, yμ) at point μ0 in
direction d, is the optimal solution (vd, zd) of problem (Pd).

We end the paper with a remark related to the ill-posedness of the shooting
algorithm for a state constraint of order q ≥ 3 when boundary arcs are present (see
Theorem 3.3).

Remark 4.11 (existence of regular boundary arcs for constraints of order q ≥ 3).
Contrary to some conjectures in the literature, regular boundary arcs can occur for
state constraints of all orders. Take, for example, the problem

(Pq) min
(u,y)∈L∞(0,T )×W q,∞(0,T )

∫ T

0

(
y(t) +

u2(t)

2

)
dt

subject to y(q)(t) = u(t); y(0) = y0
1 ; ẏ(0) = y0

2 ; . . . ; y(q−1)(0) = y0
q ;

y(t) ≥ 0, t ∈ [0, T ].
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It is easy to check that, for τ ∈ (0, T ), y defined by y(t) = 0 on [τ, T ] and

y(t) =

⎧⎪⎪⎨⎪⎪⎩
(t− τ)2q

(2q)!
if q is odd

− (t− τ)2q

(2q)!
− ν

(t− τ)2q−1

(2q − 1)!
if q is even

on [0, τ ],

is, for ν > τ/2q if q is even and for appropriate initial conditions when q ≥ 3, a
solution that satisfies all necessary optimality conditions, and hence, by convexity of
the problem, an optimal solution with a regular entry point τ . Strict complementarity
holds since η0(t) = 1 on (τ, T ].

Robbins in [27] studies this example when q = 3 for generic initial conditions
and shows that the optimal trajectory has a boundary arc, whose entry point is
not regular, being the limit of an infinite number of touch points, with a geometric
decreasing of the length of the interior arcs. Regular boundary arcs correspond to
the case when the multiplier of the geometric sequence is equal to zero for a specific
subset of initial conditions. Therefore, we see in that example, though satisfying all
regularity assumptions (A0)–(A3), that the structure of boundary arcs is not stable
under perturbations of the initial condition when q ≥ 3, which illustrates why the
shooting algorithm should be ill-posed in that case.

Appendix A. The next two lemmas follow immediately from the junction con-
ditions established in [18, 25].

Lemma A.1. Let (u, y) be a regular Pontryagin extremal satisfying (A2)–(A4).
Then the function t 	→ Huu(u(t), y(t), p(t)) is continuous on [0, T ].

Proof. Let τ ∈ T . Since u is continuous by Proposition 2.5, we have

[Huu(u(τ), y(τ), p(τ))] = [p(τ)]fuu(u(τ), y(τ)) = −ντg
(1)
uu (u(τ), y(τ)) = 0,

since either ντ = 0 when q = 1 by Proposition 2.5, or g
(1)
u ≡ 0 when q > 1.

Lemma A.2. Let (u, y) be a regular Pontryagin extremal, satisfying (A2)–(A4),
and let τ ∈ Ten ∪ Tex be an entry/exit time. The following conditions are equivalent:

(i) (3.7) holds at τ ;
(ii) if q is odd, limt→τ ; t∈Ib

η0(t) > 0; if q is even, ντ > 0.
Proof. Define the mappings (Al)0≤l≤q : [0, T ] \ T → R

n by (2.34) and (al)0≤l≤q :
[0, T ] \ T → R by

a0(t) = �u(u(t), y(t)); al(t) = �y(u(t), y(t))Al−1(t) − ȧl−1(t), l = 1, . . . , q.

Then it can be seen by (2.35) (see [25]) that for all t ∈ [0, T ] \ T , we have

0 =
dj

dtj
Hu(u(t), y(t), p(t)) = (−1)j(aj(t) + p(t)Aj(t)); j = 0, . . . , q − 1,(A.1)

0 =
dq

dtq
Hu(u(t), y(t), p(t)) = (−1)q

(
aq(t) + p(t)Aq(t) +

dη

dt
g(q)
u (u(t), y(t))

)
.(A.2)

Since the derivatives of the control are continuous until order q − 2, the functions
aj and Aj are continuous for j = 0, . . . , q − 2, and it is then easily seen, since u is
continuous, that the jumps of Aq−1 and aq−1 at τ ∈ T , when q is even, are given,
respectively, by

[Aq−1(τ)] = (−1)q−1fuu(u(τ), y(τ))[u(q−1)(τ)],

[aq−1(τ)] = (−1)q−1�uu(u(τ), y(τ))[u(q−1)(τ)].
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Taking the jump in (A.1) at τ for j = q − 1 then yields

0 = (−1)q−1Huu(u(τ), y(τ), p(τ+))[u(q−1)(τ)] − ντgy(y(τ))Aq−1(τ
−).

By (2.35), we have gy(y(τ))Aq−1(τ
±) = g

(q)
u (u(τ), y(τ)), so we obtain, when q is even,

ντ = (−1)q−1Huu(u(τ), y(τ), p(τ+))[u(q−1)(τ)]

g
(q)
u (u(τ), y(τ))

.(A.3)

It follows that ντ > 0 iff u(q−1) is discontinuous at τ , which is equivalent to saying that
(3.7) holds (when q is even). When q is odd, u(q−1), aq−1, and Aq−1 are continuous
(and ντ = 0). Taking the jump in (A.2), we obtain

0 = (−1)qHuu(u(τ), y(τ), p(τ))[u(q)(τ)] + [η0(τ)] g(q)
u (u(τ), y(τ)).

Consequently, we have η0(τ
±) > 0 at an entry/exit point, where τ± stands for τ+ if

τ ∈ Ten and τ− if τ ∈ Tex iff u(q) is discontinuous at τ , and hence iff (3.7) holds.

Appendix B. The next two lemmas recall classical results. For the second one
see related results by Aubin [1].

Lemma B.1. Let X be a Hilbert space and Q a Legendre form over X. Let A be
a continuous linear operator over X. The following assertions are equivalent:

(i) Q(v) > 0, for all v ∈ KerA \ {0}.
(ii) There exists α > 0 such that Q(v) ≥ α‖v‖2

2 for all v ∈ KerA.
Lemma B.2. Let X be a Hilbert space and Y a Banach space, H : X → X∗ ≡ X

a self-adjoint continuous linear operator, and A : X → Y and B : X → R
r, r ∈ N,

continuous linear operators. Assume that

(i) ∃α > 0, 〈Hx, x〉 ≥ α‖x‖2 for all x ∈ KerA.

(ii) The operator (A,B) : X → Y × R
r is onto.

Then, for all (x∗, y, δ) ∈ X∗×Y ×R
r, there exists a unique (x, y∗, ν) ∈ X×Y ∗×R

r∗,
solution of ⎧⎨⎩

Hx + A∗y∗ + B∗ν = x∗,
Ax = y,
Bx ≤ δ, ν ≥ 0, ν(Bx− δ) = 0,

(B.1)

and the mapping (x∗, y, δ) 	→ (x, y∗, ν), where (x, y∗, ν) is solution of (B.1), is Lip-
schitz continuous.

Acknowledgments. The authors thank the anonymous referees for their useful
remarks.
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1430 J. FRÉDÉRIC BONNANS AND AUDREY HERMANT

[4] J. F. Bonnans and A. Hermant, Second-Order Analysis for Optimal Control Problems with
Pure and Mixed State Constraints, Research Report 6199, INRIA, Le Chesnay, France,
2007.

[5] J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal con-
trol problems with a single state constraint and control, Math. Program. Ser. B, to appear.

[6] J. F. Bonnans and A. Hermant, Conditions d’optimalité du second-ordre nécessaires ou
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CORRECTION TO “WELL-POSEDNESS OF THE SHOOTING
ALGORITHM FOR STATE CONSTRAINED OPTIMAL CONTROL
PROBLEMS WITH A SINGLE CONSTRAINT AND CONTROL”

• page 1410, proof of Lemma 3.1: Delete > 0 after ντ . The sentence should
read “By Proposition 2.10 (see (2.38), (3.5) is equivalent (when q is even) to
the strict positivity of ντ at entry/exit points τ ∈ Ten ∪ Tex).”

• page 1411, Theorem 3.4, line 5: Delete “a” before “unique solution.” The
sentence should read “If (u, y) is a Pontryagin extremal such that (A2)–(A6)
hold, it is a local solution of (P) satisfying the quadratic growth condition
(3.2) iff problem (3.19) has zero for unique solution.”

• page 1412, line 4: delete the word “zero.” The sentence should read “With
the junction conditions results of Proposition 2.5 and (A5)(i), we can show
that boundary arcs have no contribution to the curvature term.”
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ON FEEDBACK CLASSIFICATION OF CONTROL-AFFINE
SYSTEMS WITH ONE- AND TWO-DIMENSIONAL INPUTS∗
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Abstract. The paper is devoted to the local classification of generic germs of control-affine
systems on an n-dimensional manifold with scalar input for any n ≥ 4 or with two inputs for n = 4
and n = 5, up to state-feedback transformations, preserving the affine structure (in the C∞ category
for n = 4 and the Cω category for n ≥ 5). First, using the Poincaré series of moduli numbers, we
introduce the intrinsic numbers of functional moduli of each prescribed number of variables on which
a classification problem depends. In order to classify generic germs of affine systems with scalar input
we associate with such a system the canonical frame by normalizing some structural functions in a
commutative relation of the vector fields, which define our control system. Then, using this canonical
frame, we introduce the canonical coordinates and find a complete system of state-feedback invariants
of the system. It also automatically gives the local in state-input space classification of generic germs
of nonaffine n-dimensional control systems with scalar input for n ≥ 3 (in the C∞ category for n = 3
and in the Cω category for n ≥ 4). Further, we show how the problem of feedback equivalence of
generic germs of affine systems with two-dimensional input in state space of dimensions 4 and 5 can
be reduced to the same problem for affine systems with scalar input. In order to make this reduction
we distinguish the subsystem of our control system, consisting of the directions of all extremals in
dimension 4 and all abnormal extremals in dimension 5 of the time optimal problem, defined by
the original control system. In each classification problem under consideration we find the intrinsic
numbers of functional moduli of each prescribed number of variables according to its Poincaré series.

Key words. state-feedback equivalence, control-affine systems, Poincaré series, extremals
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1. Introduction. For the convenience of presentation, all objects are C∞ unless
otherwise noted, although all constructions and some statements remain valid in an
obvious way also in the Ck category for an appropriate finite k. On the other hand,
some of the statements are known to be true only in the real analytic category, which
will be indicated explicitly.

Let M be an n-dimensional manifold, and let f0, f1, . . . , fr be vector fields on M ,
r < n. Consider the following control-affine system with r inputs on M :

(1.1) q̇ = f0(q) +

r∑
k=1

uk fk(q), q ∈ M, u1, . . . , ur ∈ R.

We say that a system of type (1.1) is an (r, n) control-affine system. Fix a point
q0 ∈ M . Throughout the paper we will assume that at the point q0

(1.2) dim span
(
f0(q0), f1(q0), . . . , fr(q0)

)
= r + 1.

Consider the group FBq0 of state-feedback transformations that preserve an affine
structure and the point q0, i.e., transformations of the type

(1.3)

⎧⎪⎨⎪⎩
q = Φ(q̃),

u = B(q̃)ũ + A(q̃),

q0 = Φ(q0),

u =

⎛⎜⎝ u1

...
ur

⎞⎟⎠ ,

∗Received by the editors February 1, 2005; accepted for publication (in revised form) March 17,
2007; published electronically September 26, 2007.

http://www.siam.org/journals/sicon/46-4/62371.html
†S.I.S.S.A., Via Beirut 2-4, 34014 Trieste, Italy (agrachev@sissa.it, zelenko@sissa.it).

1431



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1432 ANDREI AGRACHEV AND IGOR ZELENKO

where Φ is a diffeomorphism in a neighborhood of q0, A(q) ∈ R
r, B(q) is an (r × r)-

matrix, and detB(q0) �= 0. This group of transformations acts naturally on the set
of germs at q0 of systems of type (1.1) and defines an equivalence relation, called the
state-feedback equivalence.1 The state-feedback equivalence can be described in more
geometric terms: any control-affine system on M defines the affine subbundle of the
tangent bundle TM of M . Two germs of control-affine systems are state-feedback
equivalent if and only if the corresponding germs of affine subbundles belong to the
same orbit w.r.t. the natural action of the group of germs of diffeomorphisms of M
on the set of germs of affine subbundles of TM . Thus, the problem of state-feedback
equivalence of control-affine systems is a particular case of the classical equivalence
problem of geometric structures on manifolds.

In the case of corank 1 control-affine systems, i.e., when r = n − 1, all generic
germs of control-affine systems are state-feedback equivalent to each other. Indeed,
under assumption (1.2) there is the natural one-to-one correspondence between the
set of control-affine systems, up to feedback transformations, and the set of differen-
tial 1-forms on the ambient manifold: To any affine system (1.1) one can assign a
unique differential 1-form ω such that ω(fi) = 0 for i = 1, . . . , n − 1 and ω(f0) = 1.
Thus, the state-feedback classification of corank 1 control-affine systems satisfying
(1.2) is equivalent to the well-known classification of differential 1-forms w.r.t. the
action of the group of diffeomorphisms (see, for example, [19, section 3 and Appen-
dix C]). In particular, all germs of (1.1) such that the underlying vector distribution
span(f1, . . . , fn−1) is contact for odd n or quasi-contact for even n (which is a generic
assumption) are state-feedback equivalent to the control-affine system, corresponding
to the classical Darboux model (note also that in [19] normal forms for codimension 1
singularities are given, too).

Now suppose that r < n−1. Let us roughly estimate the “number of parameters”
in the considered equivalence problem. The set of r-dimensional affine subspaces in
R

n forms an (r + 1)(n − r)-dimensional manifold. Therefore, if the coordinates on
M are fixed, then the control system of type (1.1) can be defined by (r + 1)(n − r)
functions of n variables. The group of the coordinate changes on M is parameterized
by n functions of n variables. Thus, by a coordinate change one can “normalize,” in
general, only n functions among those (r + 1)(n − r) functions defining our control
system. Thus we may expect that the set of orbits of generic germs of systems (1.1)
at q0 ∈ M w.r.t. the action of the group of transformations of type (1.3) can be
parameterized by (r + 1)(n− r) − n = r(n− r − 1) arbitrary germs of functions of n
variables and a number of germs of functions, depending on less than n variables (see
the next section for the discussion about the number of these additional functional
invariants).

According to the last estimate, for r < n − 1 generic germs of (r, n) control-
affine systems have functional invariants (see also [8, Proposition 3.12]). How does
one construct such invariants and, more generally, a complete system of such invari-
ants? These and related questions were the subject of intensive study in the last
two decades, and numerous important contributions were made by different authors.
Classical methods of differential geometry such as the Cartan method of equivalence
(see, for example, [7], [18], [14]) were used, and new methods coming from Pontrya-
gin’s maximum principle, such as the theory of Jacobi curves of extremals [1], [2], [3],
[4], [16] and the method of critical Hamiltonians [9], were developed. Different criteria

1Some authors refer to the transformations (1.3) and the corresponding equivalence by the name
“feedback,” while in the case Φ = Id they use the term “pure feedback.”
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for the state-feedback equivalence in terms of the associated system of extremals were
given as well [6], [10]. Also the important case of the so-called equilibrium point, i.e.,
when f0(q0) ∈ span

(
f1(q0), . . . , fr(q0)

)
, was intensively studied for corank 1 control-

affine systems, using singularity theory (see, for example, [11], [15], and [20]), and
for control-affine systems with scalar input, using the formal approach similar to the
classical Poincaré–Dulac procedure [12], [13], [17].

However, as far as we know, except for the case r = n − 1, the set of orbits of
generic germs of (r, n) control-affine systems w.r.t. the action of the group of state-
feedback transformations was parameterized by certain tuples of invariants only in
the case r = 1, n = 3, i.e., in the case of the smallest dimensions, when functional
parameters appear [2, section 3, Proposition 3.2]. In particular, it was shown there
that in this case this set of orbits can be parameterized by one arbitrary function of
three variables, two arbitrary functions of two variables, and the discrete invariant
from the set {−1, 1}.

Remark 1. Actually, in Proposition 3.2 of [2] the two functions of two vari-
ables satisfy certain conditions on coordinate subspaces of some special coordinates,
which are canonical up to some reflections, but instead of these functions one can
take their appropriate partial derivatives, which are already arbitrary. The functions
of the parameterization are state-feedback invariants up to some reflections in the
coordinates.

In the present paper we make a classification of generic germs of systems of type
(1.1), up to state-feedback equivalence, in the following cases:

1. r = 1, n = 4;
2. r = 1, n ≥ 5 in the real analytic category;
3. r = 2, n = 4;
4. r = 2, n = 5 in the real analytic category.

In general, statements of the kind “the classification problem depends on the tuple
of functional invariants, consisting of certain number of functions of each number of
variables” need to be clarified: These numbers could be changed rather arbitrarily by
mixing, combining, or separating the formal Taylor series of these functional invariants
without losing any information (at least if we work in the category of formal Taylor
series or in the real analytic category). In [5, section 1] the author proposed using the
so-called Poincaré series of the moduli numbers of the classification problem in order to
determine intrinsically the number of functions of each prescribed number of variables
on which some classification problem depends. In section 2 below, using the Poincaré
series, we give a canonical selection of these numbers. Throughout this section we
demonstrate all our notions and constructions on the problem of classification of
germs of Riemannian metrics on a two-dimensional manifold. The way in which
the canonical parameterization is obtained indicates the presence of an interesting
algebraic structure on the set of all tuples of fundamental invariants parameterizing a
given classification problem. For the moment, this algebraic structure remains hidden
and needs further research.

In the case of scalar input, our method of the classification is similar to the pro-
cedure used in [2] for the case n = 3 and is described in section 3. It basically consists
of the following two steps: first, for any control system, satisfying some genericity as-
sumptions, we construct the canonical frame by normalizing some structural functions
in certain commutative relations of the vector fields, which define our control-affine
systems; then, using this canonical frame, we introduce the canonical coordinates and
find the complete system of state-feedback invariants of the system.
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In addition, to any control system

(1.4) ẏ = F(y, v), y ∈ S, v ∈ V,

on an m-dimensional manifold S (the state space) with one-dimensional control space
V one can assign the following control-affine system on the (m+1)-dimensional state-
space S × V :

(1.5)

{
ẏ = F(y, v),

v̇ = u,

where v ∈ R (here we look on v as on a new state variable, u is the new control,
f0 = (F(y, v), 0)T , and f1 = (0, 1)T in the notation of (1.1)). It turns out that having
the local classification of generic germs of (m + 1)-dimensional control-affine systems
with scalar input, one also gets the local in state-input space classification of generic
germs of nonaffine m-dimensional control system with scalar input (see Remark 6).

Further, in section 4, we show that the problem of state-feedback classification of
the control-affine systems with two-dimensional input in dimensions 4 and 5 can be
reduced to the previous problem for the control-affine systems with scalar input in
the same dimensions. In order to make this reduction, we distinguish the subsystem,
consisting of the directions of all extremals in dimension 4 and all abnormal extremals
in dimension 5 of the time optimal problem, defined by the original control system.

In each classification problem under consideration we find the intrinsic numbers
of functional moduli of each prescribed number of variables according to its Poincaré
series.

Finally note that the previously mentioned papers [12], [17] were devoted to the
classification of control-affine systems with scalar control in a neighborhood of an
equilibrium point. Here we classify the control-affine systems with scalar control
near a nonequilibrium point. In general the feedback invariants, constructed here for
generic germs, could also be used for the problem with equilibrium points by passing
to the limit. The relation of the invariants obtained in this way with the invariants
obtained in [12], [17] is the subject of further study.

2. Poincaré series and the intrinsic number of functional invariants.
We start with some terminology. Let M be a smooth manifold. Fix a point q0 ∈ M .
Consider a set O of germs at q0 of smooth objects on M (for example, Riemannian
metrics, vector distributions, control-affine systems) such that the group of local dif-
feomorphisms Diffq0 , preserving the point q0, acts naturally on it. This action defines
the equivalence relation on O.

Denote by Jk(O) the space of all k-jets at q0 of objects from the set O. We say

that the set Õ ⊂ O is a generic subset of O if there exists an integer k ≥ 0 and a
Zariski open set U in Jk(O) such that

Õ = {b ∈ O : k-jet of b belongs to U}.

By “classification problem on O” we mean the problem of finding a system of
fundamental invariants for objects from some generic subset of O such that two generic
objects are equivalent if and only if they have the same systems of fundamental
invariants.

Let Õ be a generic subset of O, which is invariant w.r.t. the action of the group
Diffq0 .
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Definition 1. A mapping F from the set Õ to the set C∞
0 (Rl,R) of germs at 0

of smooth functions in R
l, which is invariant w.r.t. the action of the group Diffq0 on

Õ, is called a functional invariant of l variables of a generic subset of objects from O
(or, for short, the functional invariant of O).

When the object b ∈ Õ is fixed, we will mean by the functional invariant also the
value of the mapping F at b. We will denote this germ of function by the same letter
F .

Let Orb(Õ) be the set of orbits of Õ w.r.t. the action of Diffq0 . Then any func-

tional invariant F : Õ �→ C∞
0 (Rl,R) induces the mapping F̂ : Orb(Õ) �→ C∞

0 (Rl,R)
in the obvious way.

Definition 2. Let {Fi}si=1 be the tuple of functional invariants of O defined

on Õ, where each Fi is a functional invariant of li variables. We say that the tuple
{Fi}si=1 defines a parameterization of the classification problem on O if the mapping

(F̂1, . . . , F̂s) : Orb(Õ) �→ C∞
0 (Rl1 ,R) × · · · × C∞

0 (Rls ,R)

is injective and has an open image in C∞
0 (Rl1 ,R) × · · · × C∞

0 (Rls ,R).
Example 1. Let O1 be a set of germs of Riemannian metrics at a point q0 on

an oriented two-dimensional manifold M . Given a germ of metric G, let KG be its
Gaussian curvature. Let Õ1 be the set of all germs G of Riemannian metrics at q0
such that dKG(q0) �= 0. Obviously, Õ1 is a generic subset of O1. For any G ∈ O1

consider the geodesic polar coordinates (r, ϕ) centered at q0 and in accordance with
the orientation such that the vector gradKG(q0) is in the direction of the ray {ϕ = 0}.
We will call these coordinates the canonical polar coordinates of G. The corresponding
Cartesian coordinates (x1, x2) will be called the canonical coordinates of the metric

G at q0. Then the mapping K : Õ1 �→ C∞
0 (R2,R) such that

(2.1) K(G) = KG(x1, x2)

is a functional invariant of two variables of O1.
Now let us construct the parameterization of the classification problem on O1.

By construction the image of K lies in the set

N = {f ∈ C∞
0 (R2,R) : fx2(0, 0) = 0, fx1(0, 0) > 0}.

Actually, K defines the one-to-one correspondence between the set Orb
(
Õ1

)
of orbits

of Õ1 w.r.t. the action of Diffq0 and the set N . Indeed, for any f ∈ N take the metric
G, which can be written in some polar coordinates centered at q0 in the following
way:

(2.2) G = dr2 +
(
B(r, ϕ)

)2
dϕ2,

where

(2.3)

⎧⎪⎨⎪⎩
∂2

∂r2
B + f(r cosϕ, r sinϕ)B = 0,

B(0, φ) = 0,
∂

∂r
B(0, φ) = 1.

Then K(G) = f , and any germ of metric G at q0 such that K(G) = f is isometric
to G.
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However, K does not define the parameterization of the considered classification
problem in the sense of Definition 2, because the set N is not an open subset of
C∞

0 (R2,R). But instead of K we can consider the following two functional invariants
of one variable and one functional invariant of two variables:

(2.4) K1(G) = KG(x1, 0), K2(G) =
∂2

∂x2
2

KG(0, x2), K3(G) =
∂2

∂x1∂x2
KG(x1, x2),

where (x1, x2) are the canonical coordinates of the metric G at q0. The image of the
mapping (K1,K2,K3) is open in C∞

0 (R,R) × C∞
0 (R,R) × C∞

0 (R2,R); namely, it is
equal to

N1 = {f1(x1), f2(x2), f3(x1, x2) ∈ C∞
0 (R,R) × C∞

0 (R,R) × C∞
0 (R2,R) : f ′

1(0) > 0}.

In addition, the original functional invariant K can be uniquely recovered from the
tuple (K1,K2,K3). Thus, the tuple (K1,K2,K3) defines the one-to-one correspondence

between the set Orb
(
Õ1

)
and the set N1. Hence this tuple defines the parameteriza-

tion of the considered classification problem in the sense of Definition 2.
Now let us describe the Poincaré series of the moduli numbers of the classifica-

tion problem. The action of the group Diffq0 induces the action Ak of some finite
dimensional Lie group Gk on the space Jk(O) for any integer k ≥ 0. Thus, Ak is a
mapping from Gk × Jk(O) to Jk(O). Given any b ∈ Jk(O), let Ab

k be the mapping
from Gk to Jk(O) such that Ab

k(·) = Ak(·, b). Let ek be the identity of the group Gk.
Set

(2.5) m(k) = dimJk(O) − max
b∈Jk(O)

rank dAb
k(ek) = min

b∈Jk(O)
corank dAb

k(ek)

(here rank dAb
k(ek) and corank dAb

k(ek) are the rank and the corank of the differential
of Ab

k at ek, respectively). Roughly speaking, m(k) is the dimension of the space of
orbits w.r.t. the last action Ak. The number m(k) is called the moduli number of
the k-jets. The Poincaré series of the moduli numbers of the classification problem
(or, for short, the Poincaré series of the classification problem) is by definition the
following function:

(2.6) M(t) =

∞∑
k=0

m(k)tk.

Remark 2. Since the integer-valued function b �→ rank dAb
k(ek) takes its max-

imal value at a Zariski open set, in (2.5) we can replace O by any of its generic

subsets Õ.
The Poincaré series could be useful in evaluating the number of the functional

invariants of the given number of variables, on which the given classification problem
depends, because of the following well-known fact: If one denotes by jl(k) the dimen-
sion of the space Jk(Rl,R) of k-jets of functions of l-variables, then the corresponding
Poincaré series of numbers jl(k) satisfies

(2.7)
∞∑
k=0

jl(k)tk =
1

(1 − t)l+1

(here one uses that jl(k) = (l+k)!
l!k! ). So if, for example, the Poincaré series of some

classification problem is equal to
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(2.8) M(t) = tw
n∑

i=1

pi
(1 − t)i+1

,

where all pi are nonnegative integers, then it is natural to conclude that this problem
depends on the tuple, consisting of pi functional invariants of i variables for each
1 ≤ i ≤ n, while the parameter w (i.e., the order of zero of the Poincaré series M(t)
at t = 0) is equal to the minimal k ≥ 0 such that the action of the group Gk on the
space of Jk(O) has a nondiscrete set of orbits.

Until now nothing was known about the form of the functions M(t) for general
classification problems. For example, the following open question is stated in [5]:
Is it true that the Poincaré series of moduli numbers are rational functions in most
classification problems? In the next sections we will show by direct computations
that in all classification cases 1–4 listed in the introduction it is true and, moreover,
the function M(t) has a unique pole at t = 1. On the other hand, in all considered
cases (except the cases r = 1, n = 3 or 5) the Poincaré series has no representation
of type (2.8) with nonnegative pi. Below we give an algorithm to extract the number
of functional invariants from Poincaré series also in these cases.

From now on we will suppose that the Poincaré series M(t) of the classification
problem is a rational function with a unique pole at t = 1. Let w0 be the order of
zero of the function M(t) at t = 0.

Lemma 1. For any integers w ≥ w0 and l there exist a unique polynomial R(t)
with

(2.9) degR(t) < w − w0

and a unique rational function Q(t) with the unique pole at t = 1 such that

(2.10) M(t) =
tw0R(t)

(1 − t)l+1
+ twQ(t).

Proof. Let us fix l ∈ Z and prove the existence of a representation of type (2.10)
for any w ≥ w0 by induction in w.

If w = w0, then from the condition (2.9) it follows that R(t) ≡ 0. Then by
definition of order of zero the function Q(t) = 1

tw0
M(t) is rational with the unique

pole at t = 1, which implies (2.10).
Now suppose that a representation of type (2.10) exists for some w = w̄, w̄ ≥ w0,

and prove its existence for w = w̄ + 1. For this let Q(t) and R(t) be as in the
representation (2.10) for w = w̄. Let

(2.11) Q1(t) =
1

t

(
Q(t) − Q(0)

(1 − t)l+1

)
.

Then by construction Q1 is also the rational function with the unique pole at t = 1.
Expressing Q(t) from (2.11) and substituting it into (2.10), one has

(2.12) M(t) =
tw0

(
R(t) + Q(0)tw̄−w0

)
(1 − t)l+1

+ tw̄+1Q1(t).

Since deg
(
R(t)+Q(0)tw̄−w0

)
< w̄−w0 +1, it implies the existence of a representation

(2.10) also for w = w̄+1. This completes the proof by induction of the existence part
of the lemma.
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Now let us prove the uniqueness part. If there exists another representation of
M(t) of type (2.10) with a polynomial R̄(t), deg R̄(t) < w−w0, and a rational function
Q̄(t) instead of R(t) and Q(t), then we have the following identity:

R̄(t) −R(t) = tw−w0(1 − t)l+1
(
Q(t) − Q̄(t)

)
.

It implies that the polynomial R̄(t) − R(t) has zero of order not less than w − w0.
On the other hand, by assumptions deg

(
R(t) − R̄(t)

)
< w − w0, which implies that

R(t) ≡ R̄(t) and then also Q(t) ≡ Q̄(t).
We will call the representation (2.10) (with R(t) satisfying (2.9)) the (w, l)-

representation of the function M(t). Let N be the order of pole of (1 − t)M(t)
at t = 1.

Definition 3. The (w, l)-representation (2.10) of M(t) with R(t) and Q(t)
satisfying

(2.13) R(t) =

w−w0−1∑
i=0

rit
i, Q(t) =

N∑
j=l1

qj

(1 − t)j+1
, ql1 �= 0

is called nice if 1 ≤ l ≤ N , l1 ≥ l, and all coefficients ri, qj in (2.13) are nonnegative
integers.

Of course, in general a rational function M(t) = tw0Z(t)
(1−t)N+1 , where Z(t) is a poly-

nomial (even with integer coefficients), may not have any nice (w, l)-representation.
But if the function M(t) is the Poincaré series of a classification problem, which can
be parameterized by functional invariants in some reasonable way, then M(t) has at
least one nice representation.

To be more precise and to explain why the nice representation of the Poincaré
series is interesting, let us introduce additional terminology. Let F be a functional
invariant of l variables of a generic subset Õ of objects from O. Denote by Πk the
natural projection from the set Õ to the space Jk(Õ). Let (x1, . . . , xl) be the standard
coordinates in R

l. As before, let C∞
0 (Rl,R) be the set of germs at 0 of smooth

functions in R
l and let Jk(Rl,R) be the space of k-jets of germs of these functions

at 0. Denote also by πl
k the natural projection from C∞

0 (Rl,R) to Jk(Rl,R).
Definition 4. The weight of the functional invariant F of l variables, defined

on a generic subset Õ ⊂ O, is the minimal nonnegative integer w with the following
property: For any integer k ≥ w there exists a mapping Fk : Jk(Õ) �→ Jk−w(Rl,R)
such that the diagram

(2.14) Õ
F //

Πk

C∞
0 (Rl,R)

πl
k−w

Jk(Õ)
Fk

//Jk−w(Rl,R)

is commutative. If such w does not exist, we will say that F has an infinite weight.
Suppose that the tuple {Fi}si=1 defines a parameterization of the classification

problem on O such that each Fi is a functional invariant of li ≥ 0 variables and the

finite weight νi, νi ≤ νi+1. Let Õ be the common domain of definition of all invariants
Fi, 1 ≤ i ≤ s. For any k ≥ 0 set μk = max{i ∈ {1, . . . , s} : νi ≤ k}. For a given

functional invariant Fi and any k ≥ νi denote by Fi,k : Jk(Õ) �→ Jk−νi(Rli ,R) the

corresponding mapping in the commutative diagram (2.14) for Fi. Let Orb
(
Jk(Õ)

)
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be the set of orbits of Jk(Õ) w.r.t. the action Ak of the group Gk (recall that Ak is the
action on Jk(O) induced by the action of the group Diffq0 on O). Then the mapping

Fi,k : Jk(Õ) �→ Jk−νi(Rli ,R) induces the mapping F̂i,k : Orb
(
Jk(Õ)

)
�→ Jk−νi(Rli ,R)

in the obvious way. Also let Ui be the image of Õ under Fi. From Definition 2 it
follows that the set Ui is an open subset of C∞

0 (Rli ,R). Then, according to the
definition of the weight, for any k ≥ 0 the mapping

(2.15) (F̂1,k, . . . , F̂μk,k) : Orb
(
Jk(Õ)

)
�→ Jk−ν1(Rl1 ,R) × · · · × Jk−νμk (Rlμk ,R)

is well defined and has an open image equal to πl1
k−ν1

(U1) × · · · × π
lmk

k−νμk
(Uμk

).

Definition 5. The parameterization, defined by the tuple {Fi}si=1 as above, is
called regular if for any k ≥ 0 the mappings (2.15) are injective. We also say that a
classification problem is regular if it can be parameterized by a regular parameteriza-
tion.

Suppose that w1 and w2 are, respectively, the minimal and maximal weights of
functional invariants, defining some regular reparameterization, while n1 and n2 are,
respectively, the minimal and maximal number of variables of these invariants. Then
to such regular parameterization one can assign an (n2−n1+1)×(w2−w1+1) matrix
P such that its (i, j)-entry pij is equal to the number of the functional invariants of
i+n1 − 1 variables and weight j +w1 − 1 in this parameterization. Directly from the
definitions of regular parameterization, formula (2.7), and Remark 2 it follows that the
Poincaré series of the classification problem, admitting such regular parameterization,
satisfies

(2.16) M(t) =
tw1−1

(1 − t)n1

w2−w1+1∑
j=1

tj

(
n2−n1+1∑

i=1

pij
(1 − t)i+1

)
.

Note that w1 = w0 and n2 = N , where as before w0 is the order of zero of M(t) at
t = 0 and N is the order of pole of (1 − t)M(t) at t = 1, but all other parameters
appearing in (2.16) cannot be uniquely recovered from the Poincaré series M(t). In
the considered situation we will say that the classification problem admits a regular
(w2, n1)-parameterization with parameterization matrix P .

The continuation of Example 1. Consider again the situation described in Exam-
ple 1. From the normal form (2.2)–(2.3) it follows easily that the functional invariant
K, defined by (2.1), has weight 2, while invariants K1, K2, and K3, defined by (2.4),
have weights 2, 4, and 4, respectively. Moreover, the tuple of invariants (K1,K2,K3)
defines the regular (4, 1)-parameterization with parameterization matrix

(2.17) P =

(
1 0 1
0 0 1

)
.

The Poincaré series of the considered classification problem satisfies

(2.18) M(t) =
t2

(1 − t)2
+ t4

(
1

(1 − t)3
+

1

(1 − t)2

)
.

Given some regular (w2, n1)-parameterization of the classification problem, one
can easily build a new regular (w2, n1)-parameterization with another parameteriza-
tion matrix. Indeed, take some functional invariant F of the weight j0, depending on
i0 variables, say x1, x2, . . . , xi0 , where 2 ≤ i0 ≤ n2 − n1 + 1 and 1 ≤ j0 ≤ w2 − w1.
Let G(x1, . . . , xi0) be the function such that
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(2.19) F (x1, . . . , xi0) = F (x1, . . . , xi0−1, 0) + xi0G(x1, . . . , xi0).

Then we can obtain the new parameterization of the classification problem by re-
placing the functional invariant F (x1, . . . , xi0) by two functional invariants F (x1, . . . ,
xi0−1, 0) and G(x1, . . . , xi0). Obviously, the first invariant has weight j0 and depends
on i0 − 1 variables, while the second one has weight j0 + 1 and depends on i0 invari-
ants. The matrix of the new parameterization is obtained from the original one by
decreasing the (i0, j0)-entry by 1 and increasing both the (i0 − 1, j0)-entry and the
(i0, j0+1)-entry by 1. Such transformation on the set of (N−n1+1)×(w2−w0+1) ma-
trices will be called an elementary transformation. Conversely, given two functional
invariants G1 and G2 such that G1 depends on i0 − 1 variables, say x1, . . . , xi0−1,
and has the weight j0, while G2 depends on i0 variables, say x1, . . . , xi0 , and has the
weight j0 + 1 (here again 2 ≤ i0 ≤ n2 − n1 + 1 and 1 ≤ j0 ≤ w2 − w1), one can build
the new parameterization by replacing the invariants G1 and G2 by one invariant
G1 + xi0G2, which depends on i0 variables and has the weight j0. Of course, in this
case the matrix of the new parameterization is obtained from the original one by the
transformation, which is inverse to the elementary one.

Now for convenience denote

(2.20) K1 = N − n1 + 1, K2 = w2 − w0 + 1.

Note that among all matrices, which can be obtained from the given K1×K2 matrix P
with integer entries by a composition of a finite number of elementary transformations
and their inverses, there exists a unique matrix, denoted by Norm(P ), such that all
its entries, except those lying on the first row and the last column, are equal to zero.
To prove the existence of Norm(P ) one can vanish the entries of the matrix P by a
composition of elementary transformations and their inverses step by step, starting
from the entry in the lower left corner, going along the first column from the bottom
to the top until the entry on the second row, then passing to the bottom of the second
column, going along it from the bottom to the top until the entry on the second row,
and so on until the column before the last one. The uniqueness follows from the fact
that if we put the entries of the matrix Norm(P ) instead of the entries of P into
the representation (2.16), then we obtain the (w2, n1)-representation of the Poincaré
function M(t). This representation is unique according to Lemma 1, and the matrix
Norm(P ) is obviously uniquely recovered from it. Also it is not difficult to express all
nontrivial entries of Norm(P ) by the entries of P :

(Norm(P ))1j = p1j +

j−1∑
l=0

K1−1∑
k=1

(
k + l − 1

l

)
pk+1,j−l, 1 ≤ j ≤ K2 − 1,

(2.21a)

(Norm(P ))i,K2
= pi,K2 +

K1−i+1∑
l=0

K2−1∑
k=1

(
K2 − k + l − 1

l

)
pi+l,k, 2 ≤ i ≤ K1,

(2.21b)

(Norm(P ))1,K2
= p1,K2 .

(2.21c)

The last relation can be proved, for example, using the procedure of passing from P
to Norm(P ), described above, and the following well-known combinatorial identity:

n∑
i=1

(
i + k − 1

k

)
=

(
n + k

k + 1

)
.
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If the matrix P has only nonnegative integer entries, then the matrix Norm(P )
is obtained from P by a finite composition of elementary transformations (without
using their inverses) and also has only nonnegative integer entries (which follows also
from relations (2.21)). Moreover, if we put the entries of the matrix Norm(P ) instead
of the entries of P into the representation (2.16), then we obtain the nice (w2, n1)-
representation of the Poincaré function M(t) of our classification problem. We also say
that this nice representation corresponds to the matrix Norm(P ). We can summarize
all of the above in the following proposition.

Proposition 1. If the classification problem admits a regular (w2, n1)-parame-
terization with parameterization matrix P , then it admits a regular (w2, n1)-param-
eterization with parameterization matrix Norm(P ), and its Poincaré series has the
nice (w2, n1)-representation, which corresponds to the matrix Norm(P ).

The last proposition indicates that the nice representations of the Poincaré series
(if they exist) may be used in the definition of the intrinsic number of functional
invariants of each number of variables and weight, on which the given classification
problem depends. Suppose that the Poincaré series M(t) has the nice representation
for some (w, l). Thus, the set

(2.22) NS
(
M(t)

) def
= {(w, l) : the (w, l)-representation of M(t) is nice}

is not empty. The natural question is what pair to choose from NS
(
M(t)

)
. To answer

this question we propose to introduce the order ≺ on the set of ordered pairs (w, l)

in the following way: (w, l) ≺ (w̄, l̄) if and only if w < w̄ or w = w̄, but l > l̄. By
Definition 3,

(2.23) NS
(
M(t)

)
⊂ {(w, l) : w ≥ w0, l ≤ N},

which implies immediately that the set NS
(
M(t)

)
contains the minimal element

w.r.t. the introduced order ≺. This minimal element will be called the character-
istic pair of the classification problem. Denote it by (w̄, l̄). Let C be the (N − l̄+ 1)×
(w̄ − w0 + 1) matrix such that the (w̄, l̄)-representation of M(t) corresponds to the
matrix C.

Definition 6. The (i, j)-entry of the matrix C is called the intrinsic number of
the functional invariants of i+ l̄−1 variables and the weight j+w0−1 of the considered
classification problem. The matrix C is called the characteristic matrix of the classifi-
cation problem. Any regular (w̄, l̄)-parameterization of the problem (if it exists) with
the parameterization matrix C is called the characteristic regular parameterization.

In general, it is better to have a parameterization consisting of invariants which
have minimal possible weight and depend on the maximal possible number of vari-
ables. Our definition of characteristic parameterization is in accordance with this
goal. Actually the maximal weight of invariants appearing in a characteristic regu-
lar parameterization is not greater than the maximal weight of invariants appearing
in any other regular parameterization. Besides, the minimal number of variables in
invariants of a characteristic regular parameterization is not less than the minimal
number of variables in invariants of any other regular parameterization having the
same maximal weight of invariants as a characteristic one.

One can improve the formula (2.23) for the localization of the set NS
(
M(t)

)
.

Indeed, let d be the degree of the rational function M(t) at infinity. Namely, if

M(t) = Q1(t)
Q2(t)

, where Q1(t) and Q2(t) are polynomials, then d = degQ1(t)−degQ2(t).

Then
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(2.24) NS
(
M(t)

)
⊂ {(w, l) : w ≥ w0, 1 ≤ l ≤ min(w − d− 1, N)}.

To prove (2.24) we actually have to prove that if the pair (w, l) ∈ NS
(
M(t)

)
, then

l ≤ w − d − 1. Indeed, from (2.10) and (2.13) it follows that d = max(w − l1 − 1,
w0 + degR − l1 − 1). But first, since l1 > l, we have w − l1 − 1 ≤ w − l − 1, and
second, since degR < w − w0, we have w0 + degR − l1 − 1 < w − l − 1. Therefore
d ≤ w − l − 1.

From (2.24) it follows also that

(2.25) NS
(
M(t)

)
⊂ {(w, l) : w ≥ max(w0, d + 2)}.

The relations (2.24) and (2.25) may be useful in searching for the characteristic pair
of the classification problem.

Conclusion about Example 1. The representation (2.18) of the Poincaré series of
the classification problem considered in Example 1 is its nice (4, 1)-representation. Let
us show that (4, 1) is the characteristic pair of the considered classification problem.
Indeed, from (2.18) in the considered case w0 = 2, N = 2, and d = 2. Hence from
(2.25) it follows that

(2.26) NS
(
M(t)

)
⊂ {(w, l) : w ≥ 4}.

Further, using (2.24), one has NS
(
M(t)

)
∩ {(w, l) : w = 4} = {(4, 1)}, which together

with (2.26) implies that (4, 1) is the minimal element of NS
(
M(t)

)
. In other words,

(4, 1) is the characteristic pair of our classification problem. Also, it implies that the
characteristic matrix C of the problem is equal to the matrix P from (2.17) (note that
in this case Norm(P ) = P ). Thus, the characteristic parameterization of a set of germs
of Riemannian metrics on an oriented two-dimensional Riemannian manifold consists
of one functional invariant of one variable and the weight 2, one functional invariant
of one variable and the weight 4, and one functional invariant of two variables and
the weight 4.

Another useful property of the set NS
(
M(t)

)
can be formulated as follows.

Lemma 2. Assume that the function M(t) has the nice (w, l)-representation
(2.10), the functions R(t), Q(t), and the number l1 are as in (2.13), and l1 = l (or,
equivalently, ql > 0); then (w − 1, l − 1) /∈ NS

(
M(t)

)
.

Proof. Let S(t) be the polynomial such that M(t) = S(t)
(1−t)N+1 . Then, using the

assumption l = l1, it is easy to get

(2.27) degS(t) = w + N − l.

Moreover, directly from (2.10) and (2.13) one can obtain that

(2.28)
dw+N−lS

d tw+N−l
= (−1)N−l(w + N − l)! ql.

On the other hand, if the (w − 1, l − 1)-representation of M(t) has the form

(2.29) M(t) =
tw0

∑w−w0−2
i=0 r̄it

i

(1 − t)l
+ tw−1

N∑
j=l2

q̄j
(1 − t)j+1

, q̄l2 �= 0,

then degS(t) = max(w − 1 + N − l2, w + N − l − 1). Comparing this with (2.27)
one gets easily that l2 = l − 1. But then by analogy with (2.28) (applied for the
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(w − 1, l − 1)-representation instead of the (w, l)-representation), one has

(2.30)
dw+N−lS

d tw+N−l
= (−1)N−l+1(w + N − l)! q̄l−1.

Comparing (2.28) and (2.30), we obtain that q̄l−1 = −ql. Hence q̄l−1 < 0, and the
(w − 1, l − 1)-representation (2.29) is not nice.

As a direct consequence of Proposition 1, the previous lemma, and the relation
(2.21c) one has the following corollary.

Corollary 1. If the classification problem with the Poincaré series M(t) ad-
mits the regular (w, l)-parameterization with the parameterization matrix P such that
the entry in the upper right corner of P is positive (i.e., in the previous notation
p1,w−w0+1 > 0), then (w − 1, l − 1) /∈ NS

(
M(t)

)
.

In what follows we will show that all of the classification problems 1–4 listed in
the introduction are regular. For each of these problems we will describe explicitly
some of its regular (w, l)-parameterization such that (w, l) is the characteristic pair
of the problem and find its characteristic matrix, which also enables us to obtain the
characteristic parameterization.

Remark 3. In the classification problem of Example 1 and, as we will see later,
in all of the classification problems 1–4 listed in the introduction, one can assign to
any generic object the canonical coordinates. This allows us to construct functional
invariants in the sense of Definition 1 from the invariants defined on the ambient
manifold (in the same manner as in Example 1 where we constructed the functional
invariant K from the Gaussian curvature). Sometimes (as in the case of (1, 3) control-
affine systems and in the case of Riemannian metrics on a nonoriented two-dimensional
manifold) the canonical coordinates (even for generic objects) are defined up to some
discrete group of transformations (in the mentioned cases a group of reflections).
Such classification problems can be treated in a similar way after slight modifications
of definitions of the functional invariants, the parameterization, the weight, and the
regular parameterization.

Indeed, a discrete group Γ on R
l induces the action S on C∞

0 (Rl,R) in the obvious
way. By the functional quasi invariant we mean the mapping from the generic subset
Õ of the set of considered objects to the set of orbits w.r.t. the action S on C∞

0 (Rl,R)

such that this mapping is invariant w.r.t. the action of the group Diffq0 on Õ. The
notions of the weight of the functional quasi invariants, the parameterization, and the
regular parameterization by functional quasi invariants can be defined in the natural
way. Besides, in parameterizations we can admit invariants taking their values in some
discrete set (or, for short, discrete invariants) and define the regular parameterization
by functional (quasi) invariants and discrete invariants in the natural way. Permission
of the functional quasi invariant and the discrete invariants does not affect the formula
(2.16) for the Poincaré series in terms of the parameterization matrix containing the
information about the number of functional (quasi) invariants of the given number of
variables and weight in the parameterization. Thus, also the characteristic pair, the
characteristic matrix, and the characteristic regular parameterization can be defined
in this case, too. In the case of Riemannian metrics on the nonoriented manifolds
the canonical coordinates are defined up to the reflection (x1, x2) �→ (x1,−x2), the
characteristic pair and the characteristic matrix are as in the oriented case, and the
characteristic parameterization is defined by formula (2.4), where we take into account
both canonical coordinates (x1, x2) and (x1,−x2).

Further, according to Proposition 3.2 of [2] (see also Remark 1 and the paragraph
before it in the introduction), the state-feedback classification problem for the (1, 3)
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control-affine system admits regular (2, 2)-parameterization by one discrete invariant
taking values in {−1, 1} and the functional quasi invariants with the 2 × 2 param-
eterization matrix P =

(
2 0
0 1

)
. Besides, w0 = 1 and N = 3. By the inverse to the

elementary transformation one can transform P into the matrix P̃ =
(

1 0
1 0

)
. The

Poincaré series M(t) of the problem satisfies

M(t) = t

(
1

(1 − t)3
+

1

(1 − t)4

)
.

It is not difficult to see that by erasing the last column of the matrix P̃ one obtains
the characteristic matrix C = (1, 1)T of the considered classification problem and the
characteristic pair is equal to (1, 2). Thus, the characteristic regular parameterization
of the state-feedback classification problem for the (1, 3) control-affine system consists
of one functional quasi invariant of three variables and the weight 1, one functional
quasi invariant of two variables and the weight 1, and the discrete invariant from the
set {−1, 1}. This parameterization is obtained from the original one by a rearrange-
ment of the invariants, which corresponds to the inverse to elementary transformation,
transforming the matrix P into the matrix P̃ (such rearrangements were described in
the paragraph after the formula (2.19)).

3. Classification of (1, n) control-affine systems for n ≥ 4. For r = 1 the
system (1.1) has the form

(3.1) q̇ = f0(q) + u f1(q), q ∈ M, u ∈ R.

Our genericity assumptions are

dim span(f0, f1, [f1, f0], . . . , (ad f1)
n−2f0) = n,(3.2)

dim span
(
f1,

[
f0, [f0, f1]

]
, [f1, f0], . . . , (ad f1)

n−2f0

)
= n,(3.3)

and for n ≥ 5 also

(3.4) dim span
(
f0, f1,

[
f0, [f0, f1]

]
, [f1, f0], . . . , (ad f1)

n−3f0

)
= n.

The group of feedback transformations

(3.5) u = β(q)ũ + α(q), α(q), β(q) ∈ R, β(q) �= 0

acts naturally on the set of pairs of vector fields (f0, f1). The orbit w.r.t. this action
is

(3.6) O(f0,f1) = {(f0 + αf1, βf1) : α, β : M �→ R are functions, β �= 0}.

The first observation is given by the following proposition.

Proposition 2. If the pair (f0, f1) satisfies conditions (3.2) and (3.3), then
there exists a unique pair (F0, F1) ∈ O(f0,f1) such that

(3.7)
[
F0, [F0, F1]

]
= F0 + I1F1 + I2[F1, F0] +

n−2∑
k=3

Ik(adF1)
kF0.
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Proof. By assumption (3.2) the vector fields f0, f1, [f1, f0], . . . , (ad f1)
n−2f0 con-

stitute the frame on M . Therefore there are functions E, N , J1, . . . , Jn−2 such that

(3.8)
[
f0, [f0, f1]

]
= Ef0 + J1f1 + J2[f1, f0] + Z

[
f1, [f1, f0]

]
+

n−2∑
k=3

Jk(ad f1)
kf0.

Take some pair (f̃0, f̃1) ∈ O(f0,f1); then

(3.9) f̃0 = f0 + αf1, f̃1 = βf1.

Suppose that

(3.10)
[
f̃0, [f̃0, f̃1]

]
= Ẽf̃0 + J̃1f̃1 + J̃2[f̃1, f̃0] + Z̃

[
f̃1, [f̃1, f̃0]

]
+

n−2∑
k=3

Jk(ad f̃1)
kf̃0.

First note that

(3.11) Ẽ = βE.

It follows immediately from (3.9) and the following relations:[
f̃0, [f̃0, f̃1]

]
≡ β

[
f0, [f0, f1]

]
− αβ

[
f1, [f1, f0]

]
mod span(f1, [f0, f1]),(3.12)

(ad f1)
kf0 ∈ span

(
f̃1, . . . , (ad f̃1)

kf̃0

)
, k ∈ N.(3.13)

From assumption (3.3) it follows that E �= 0. Therefore, taking β = 1
E , we have

(3.14) Ẽ = 1.

Let us denote by O(f0,f1) the set of all pairs (f̃0, f̃1) satisfying (3.14). We can assume

from the beginning that the original pair (f0, f1) belongs to O(f0,f1); i.e., E = 1 (we

make this assumption just to avoid extra notation). If (f̃0, f̃1) ∈ O(f0,f1), then also

Ẽ = 1. Hence β = 1 or, equivalently, f1 = f̃1. In other words, condition (3.14)
normalizes the vector field f1 or the direction defining the straight line in the set of
admissible velocities of the system (3.1) at any point.

Further, from (3.9), taking into account that β = 1, it follows easily that

(ad f1)
kf0 ≡ (ad f̃1)

kf̃0 mod span(f1), k ∈ N.

This and relation (3.12) imply that

(3.15) Z̃ = Z − α.

Setting α = Z, we make Z̃ = 0, which normalizes the drift f̃0. Thus, we have proved
that there is a unique (f̃0, f̃1) ∈ O(f0,f1) such that Ẽ = 1 and Z̃ = 0, which completes
the proof of the proposition.

Remark 4. The mappings I1, . . . , In−2 from M to R, defined by identity (3.7),
are state-feedback invariants of the control system (3.1).

The vector field F0 and the pair of vector fields (F0, F1) from Proposition 2 are
called the canonical drift and the canonical pair of the system (3.1), respectively.
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Remark 5. Actually, in the case n = 4, the vector F0(q) is the velocity of the
unique abnormal extremal starting at q of the time optimal problem defined by system
(3.1).

Now fix some point q0 ∈ M . Denote by etf the flow generated by the vector field
f and by q ◦ etf the image of the point q w.r.t. this flow. Let Φn : R

n �→ M be the
following mapping:

Φ4(x1, x2, x3, x4) = q0 ◦ ex4

[
F1,[F1,F0]

]
◦ ex3[F1,F0] ◦ ex2F1 ◦ ex1F0 ,(3.16)

Φn(x1, . . . , xn) = q0 ◦ exn(adF1)
n−3F0 ◦ · · · ◦ ex5

[
F1,[F1,F0]

]
◦ ex4

[
F0,[F0,F1]

]
◦ ex3[F1,F0] ◦ ex2F0 ◦ ex1F1 , n ≥ 5.

(3.17)

From assumption (3.2) in the case n = 4 or assumption (3.4) in the case n ≥ 5
it follows that Φ′

n(0) is bijective. Hence Φ−1
n defines the canonical coordinates in a

neighborhood of q0 (or, for short, the canonical coordinates at q0). Denote

(3.18) Ik = Ik ◦ Φn, k = 1, . . . , n− 2.

Assigning to any generic germ at q0 of control-affine systems (3.1) the function Ik,
we obtain the functional invariant of n variables of this set of objects in the sense of
Definition 1 for any 1 ≤ k ≤ n− 2.

Now let us consider the cases n = 4 and n ≥ 5 separately.
(a) The case n = 4. By (3.16) and (3.7), in the canonical coordinates the vector

fields F0 and F1 have the form

(3.19) F0 =
∂

∂x1
, F1 =

4∑
k=1

ak
∂

∂xk
,

where the components of F1 satisfy the following second order linear ordinary differ-
ential equations w.r.t. the variable x1:

(3.20)
∂2ak
∂x2

1

+ I2
∂ak
∂x1

− I1ak − δ1,k = 0, k = 1, 2, 3, 4,

with the following restrictions on the initial conditions for any k = 1, 2, 3, 4:

ak(0, x2, x3, x4) ≡ δ2k,(3.21a)

∂ak
∂x1

(0, 0, x3, x4) ≡ −δ3k,(3.21b)

∂2ak
∂x1∂x2

(0, 0, 0, x4) ≡ −δ4k,(3.21c)

where δij is the Kronecker symbol. Let for any k = 1, 2, 3, 4

βk(x2, x3, x4)
def
=

∂3ak
∂x1∂x2

2

(0, x2, x3, x4),(3.22a)

ψk(x3, x4)
def
=

∂3ak
∂x1∂x2∂x3

(0, 0, x3, x4).(3.22b)
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Thus, with any germ at q0 of a four-dimensional affine system (3.1) satisfying gener-
icity assumptions (3.2) and (3.3), one can associate the ordered tuple

(3.23) (I1, I2, β1, β2, β3, β4, ψ1, ψ2, ψ3, ψ4)

of state-feedback functional invariants, consisting of two germs I1 and I2 of functions
of four variables at 0, four germs β1, β2, β3, β4 of functions of three variables at 0, and
four germs ψ1, ψ2, ψ3, ψ4 of functions of three variables at 0. We call it the tuple of the
primary invariants of the (1, 4) control-affine system (3.1) at the point q0. Note that
by (3.22) the functional invariants βk and ψk have the weight 3 for any 1 ≤ k ≤ 4,
while by (3.20) and (3.21) the functional invariants I1 and I2 have the weight 2.

Further, fixing βk and ψk and using (3.21b) and (3.21c), we can find ∂ak

∂x1
(0, x2, x3, x4)

for any 1 ≤ k ≤ 4 by the appropriate integrations (see (3.31) below). If in turn we fix
also I1 and I2, then from the knowledge of ∂ak

∂x1
(0, x2, x3, x4), condition (3.21a), and

differential equation (3.20), we can recover the functions ak(x1, x2, x3, x4) and there-
fore our control-affine system itself, just using the standard existence and uniqueness
results from the theory of ordinary differential equations. We summarize all of the
above in the following theorem.

Theorem 1. Given two arbitrary germs I1 and I2 of functions of four variables
at 0, four arbitrary germs β1, β2, β3, β4 of functions of three variables at 0, and four
arbitrary germs ψ1, ψ2, ψ3, ψ4 of functions of two variables at 0, there exists a unique,
up to state-feedback transformation of type (1.3), four-dimensional control-affine sys-
tem with scalar input, satisfying genericity assumptions (3.2) and (3.3), such that the
tuple (I1, I2, β1, β2, β3, β4, ψ1, ψ2, ψ3, ψ4) is its tuple of the primary invariants at the
given point q0. In other words, the tuples of the primary invariants give the regular
(3, 2)-parameterization of the considered classification problem with the following 3×2
parameterization matrix P :

(3.24) P =

⎛⎝0 4
0 4
2 0

⎞⎠ .

The Poincaré series M(t) of the considered classification problem satisfies

(3.25) M(t) =
2t2

(1 − t)5
+ t3

(
4

(1 − t)4
+

4

(1 − t)3

)
.

It turns out that (3, 2) is the characteristic pair of the considered classification
problem. Indeed, as before let w0 be the order of zero of M(t) at t = 0, N be the
order of pole of (1− t)M(t) at t = 1, and d be the degree of M(t) (at infinity). Then
from (3.25) it follows that w0 = 2, N = 4, and d = 0. Hence from (2.23) (or (2.25))
it follows that

(3.26) NS
(
M(t)

)
⊂ {(w, l) : w ≥ 2}.

Further, using (2.24), one has
(3.27)
NS

(
M(t)

)
∩{(w, l) : w = 2} ⊂ {(2, 1)}, NS

(
M(t)

)
∩{(w, l) : w = 3} ⊂ {(3, 1), (3, 2)}.

But by the previous theorem our classification problem admits (3, 2)-parameterization
such that its parameterization matrix has a positive entry in the upper right corner.
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Therefore from Corollary 1 it follows that (2, 1) /∈ NS
(
M(t)

)
. Since (3, 2) ≺ (3, 1) we

can conclude from (3.26) and (3.27) that (3, 2) is the minimal element of NS
(
M(t)

)
.

In other words, (3, 2) is the characteristic pair of our classification problem. Also, it
implies that the characteristic matrix C of the problem is equal to Norm(P ), which
can be found easily by the series of elementary transformations. Namely,

(3.28) C = Norm(P ) =

⎛⎝2 4
0 6
0 2

⎞⎠ .

Conclusion 1. The characteristic parameterization of (1, 4) control-affine sys-
tems, up to state-feedback transformations, consists of two functional invariants of
four variables and the weight 3, six functional invariants of three variables and the
weight 3, two functional invariants of two variables and the weight 2, and four func-
tional invariants of two variables and the weight 3.

In order to obtain a characteristic parameterization from the parameterization by
the tuple of the primary invariants one can implement some series of rearrangement of
the primary invariants according to the series of elementary transformations from the
matrix P to Norm(P ), as described in the previous section (see, for example, formula
(2.19) and the paragraph that follows it).

We finish the treatment of the case of (1, 4)-affine control systems by writing the
local normal form of such systems, up to state-feedback transformation, in terms of
the tuple of their primary invariants: Let N be the solution of the following nonhomo-
geneous second order linear ordinary differential equation w.r.t. the variable x1 with
prescribed initial values:

(3.29)

⎧⎪⎪⎨⎪⎪⎩
∂2N

∂x2
1

+ I2
∂N

∂x1
− I1N − 1 = 0;

N(0, x2, x3, x4) ≡ 0,
∂N

∂x1
(x1, x2, x3, x4)

∣∣∣
x1=0

≡ 0.

Then let the functions ρ1, ρ2 be the solution of the following homogeneous second
order linear ordinary differential equations w.r.t. the variable x1 with prescribed initial
values:

(3.30)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2ρi
∂x2

1

+ I2
∂ρi
∂x1

− I1ρi = 0, i = 1, 2;(
ρ1(0, x2, x3, x4) ρ1(0, x2, x3, x4)
∂

∂x1
ρ1(0, x2, x3, x4)

∂
∂x1

ρ2(0, x2, x3, x4)

)
≡

(
1 0
0 1

)
.

Let also
(3.31)

Bk(x2, x3, x4) = −δ3k + x2

(
−δ4k +

∫ x3

0

ψk(y, x4) dy

)
+

∫ x2

0

(x2 − y)βk(y, x3, x4) dy

for 1 ≤ k ≤ 4 (actually Bk(x2, x3, x4) = ∂ak

∂x1
(0, x2, x3, x4), where the functions ak

are as in (3.19)). Then the generic germs at q0 of four-dimensional control-affine sys-
tem (3.1) with the tuple of the primary invariants (I1, I2, β1, β2, β3, β4, ψ1, ψ2, ψ3, ψ4)
has the following form in the canonical coordinates (x1, x2, x3, x4), up to a feedback
transformation:
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(3.32)

⎧⎪⎨⎪⎩
ẋ1 = 1 + (N + B1ρ2)u,

ẋ2 = (ρ1 + B2ρ2)u,

ẋi = Biρ2u, i = 3, 4,

where u ∈ R.
(b) The case n ≥ 5. By (3.17) and (3.7), in the canonical coordinates the vector

fields F0 and F1 have the form

(3.33) F0 =

n∑
k=1

ak
∂

∂xk
, F1 =

∂

∂x1
,

where the components ak of F0 satisfy the system of partial differential equations

In−2
∂n−2ak

∂xn−2
1

+

n−3∑
j=3

Ij
∂jak

∂xj
1

+

n∑
l=1

(
al
∂2ak
∂x2

1

− ∂al
∂x1

∂ak
∂xl

)
+ I2

∂ak
∂x1

+ ak + I1δ1,k = 0,

k = 1, . . . , n,

(3.34)

with the following restrictions on the boundary conditions for any 1 ≤ k ≤ n:

ak(0, x2, . . . , xn) ≡ δ2k,(3.35a)

∂ak
∂x1

(0, 0, x3 . . . , xn) ≡ δ3k,(3.35b)

∂2ak
∂x1∂x2

(0, 0, 0, x4, . . . , xn) ≡ −δ4k,(3.35c)

∂jak

∂xj
1

(0, . . . , 0, xj+1, . . . , xn) ≡ δj+3,k, 2 ≤ j ≤ n− 3,(3.35d)

where δij is the Kronecker symbol. Note also that the genericity assumption (3.4)
implies that

(3.36) In−2 �= 0.

Let us introduce the following functions for any 1 ≤ k ≤ n:

βk(x2, . . . , xn)
def
=

∂3ak
∂x1∂x2

2

(0, x2, . . . , xn),

(3.37a)

ψk(x3, . . . , xn)
def
=

∂3ak
∂x1∂x2∂x3

(0, 0, x3, . . . , xn),

(3.37b)

φkjl(xl, . . . , xn)
def
=

∂j+1ak

∂xj
1∂xl

ak(0, . . . , 0, xl, . . . xn), 2 ≤ j ≤ n− 3, 2 ≤ l ≤ j + 2.

(3.37c)

Thus, with any germ at q0 of an n-dimensional affine system (3.1), satisfying genericity
assumptions (3.2) and (3.3), one can associate the ordered tuple(

{Is(x1, . . . , xn)}n−2
s=1 , {βk(x2, . . . , xn)}nk=1, {ψk(x3, . . . , xn)}nk=1,

{φkjl(xl, . . . , xn) : 1 ≤ k ≤ n, 2 ≤ j ≤ n− 3, 2 ≤ l ≤ j + 2}
)(3.38)
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of state-feedback invariants. We call it the tuple of the primary invariants of the
(1, n)-affine control system (3.1) with n > 4 at the point q0. Note that by (3.22)
for any 1 ≤ k ≤ n the functional invariants βk and ψk have the weight 3, and the
functional invariants φkjl have the weight j + 1, while by (3.20) and (3.21) for any
1 ≤ s ≤ n− 2 the functional invariants Is have the weight n− 2.

Further, fixing βk and ψk and using (3.35b) and (3.35c), one finds ∂ak

∂x1
(0, x2, . . . , xn)

for any 1 ≤ k ≤ n by the appropriate integrations. Similarly, fixing {φkjl}j+2
l=2 for given

j, 2 ≤ j ≤ n−3, and using (3.35d), one can find ∂jak

∂xj
1

(0, x2, . . . , xn) for any 1 ≤ k ≤ n

by the appropriate integrations. Finally, if we suppose that all functions βk, ψk, and
φkjl are real analytic and fix also real analytic {Is}n−2

s=1 , then from the knowledge of
∂jak

∂xj
1

(0, x2, . . . , xn) for all 1 ≤ j ≤ n − 3, condition (3.35a), and differential equation

(3.34), we can recover the functions ak(x1, . . . , xn) and therefore our affine control sys-
tem itself, just by using the classical Cauchy–Kowalewsky theorem for system (3.34).
We summarize all of the above in the following theorem.

Theorem 2. If n ≥ 5, then given an arbitrary tuple (3.38) of germs of real ana-
lytic functions, there exists a unique, up to state-feedback real analytic transformation
of type (1.3), n-dimensional real analytic control-affine system with scalar input, sat-
isfying genericity assumptions (3.2), (3.3), and (3.4), such that the tuple (3.38) is its
tuple of the primary invariants at the given point q0. In other words, the tuples of the
primary invariants give the regular (n−2, 2)-parameterization of the considered classi-
fication problem in the real analytic category with the (n−1)×(n−4)-parameterization
matrix P such that for n = 5

(3.39) P = (5, 10, 10, 3)T ,

and for n > 5

(3.40) P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . 0 n
... . ·

.

. ·
. ...

... . ·
.

. ·
. ...

... . ·
.

. ·
. ...

0 n . . . . . . . . n
n n . . . . . . . . n
2n n . . . . . . . . n
2n n . . . . . . . . n
0 . . . . . . . . 0 n− 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(in the matrix P all entries in the triangle with vertices in the (1, 1)-entry, the
(1, n−5)-entry, and the (n−5, 1)-entry are equal to 0, while all entries in the triangle
with vertices in the (1, n− 4)-entry, the (n− 4, 1)-entry, and the (n− 4, n− 4)-entry
are equal to n). The Poincaré series M(t) of the considered classification problem
satisfies

M(t) = nt3

(
2

(1 − t)n
+

2

(1 − t)n−1
+

1

(1 − t)n−2

)

+ n
n−2∑
i=4

ti
n−1∑

j=n−i

1

(1 − t)j+1
+

(n− 2)tn−2

(1 − t)n+1
.

(3.41)
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It turns out that (n−2, 2) is the characteristic pair of the considered classification
problem. Indeed, as before let w0 be the order of zero of M(t) at t = 0, let N be the
order of pole of (1 − t)M(t) at t = 1, and let d be the degree of M(t) (at infinity).
Then from (3.25) it follows that w0 = 3, N = n, and d = n− 5. Hence from (2.25) it
follows that

(3.42) NS
(
M(t)

)
⊂ {(w, l) : w ≥ n− 3}.

Further, using (2.24), one has

NS
(
M(t)

)
∩ {(w, l) : w = n− 3} ⊂ {(n− 3, 1)},

NS
(
M(t)

)
∩ {(w, l) : w = n− 2} ⊂ {(n− 2, 1), (n− 2, 2)}.

(3.43)

But by the previous theorem our classification problem admits (n− 2, 2)-parameter-
ization such that its parameterization metric has a positive entry in the upper right
corner. Therefore from Corollary 1 it follows that (n − 3, 1) /∈ NS

(
M(t)

)
. Since

(n − 2, 2) ≺ (n − 2, 1), we can conclude from (3.42) and (3.43) that (n − 2, 2) is the
minimal element of NS

(
M(t)

)
. In other words, (n − 2, 2) is the characteristic pair

of our classification problem. Also, it implies that the characteristic matrix C of the
problem is equal to Norm(P ), where P is as in Theorem 2. If n = 5, then obviously
C = Norm(P ) = P . For n > 5 one can calculate all nontrivial entries of Norm(P ),
using identities (2.21). This gives all nontrivial entries of the characteristic matrix C:

Cn−1,n−4 = n− 2,

Cn−2,n−4 = n(n− 3),

Ci,n−4 = n

(
1 +

n−3−i∑
l=1

(
i+2l−3

l

)
+
(
2n−9−i
n−3−i

)
+ 2

(
2n−8−i
n−2−i

)
+
(
2n−7−i
n−7−i

))
, 2 ≤ i ≤ n− 3,

C1,n−4 = n,

C1j = n

((
n−4+j
j−1

)
+ 2

(
n−5+j
j−1

)
+ 2

(
n−6+j
j−1

)
+
(
n−7+j
j−1

)
− 1 −

j−1∑
l=1

(
n+2l−7−j

l

))
,

1 ≤ j ≤ n− 5.

(3.44)

Recall that Cij is the intrinsic number of the functional invariants of i + 1 variables
and the weight j + 2. In order to obtain a characteristic parameterization from
the parameterization by the tuple of the primary invariants, one can implement some
series of rearrangement of the primary invariants according to the series of elementary
transformations from the matrix P to Norm(P ), as described in the previous section
(see, for example, the formula (2.19) and the paragraph that follows it).

Remark 6. Two control systems ẏ = F(y, v) and ˙̃y = F̃(ỹ, ṽ), with m-dimensional
state-space S and one-dimensional control space V , are called locally in state-input
space state-feedback equivalent at the point (y0, v0) ∈ S × V if there exists the state-
feedback transformation ⎧⎪⎨⎪⎩

ỹ = Φ1(y),

ṽ = Φ2(y, v),

y0 = Φ1(y0), v0 = Φ2(y0, v0)
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such that in a neighborhood of (y0, v0) in S × V the following identity holds:

F̃
(
Φ1(y),Φ2(y, v)

)
= dΦ1F(y, v).

The affine (1,m + 1) control system (1.5) will be called the affine extension of the
control system (1.4). It is not difficult to show that two control systems with scalar
input are locally in state-input space state-feedback equivalent at some point (y0, v0) ∈
S × V if and only if their affine extensions are locally equivalent w.r.t. the state-
feedback transformations of type (1.3) at the same point. Note also that the affine
extensions of generic m-dimensional control systems with scalar input are generic in
the set of all (1,m + 1)-affine systems. Using this fact and Theorems 1 and 2, one
obtains the local in state-input space state-feedback classification of generic germs of
nonaffine m-dimensional control systems with scalar inputs, and m ≥ 3 by the tuples
of the primary invariants of their affine extensions (in the C∞ category for m = 3
and the Cω category for m ≥ 4). Obviously, the Poincaré series, the characteristic
pair, and the characteristic matrix of the local in state-input space state-feedback
classification problem for m-dimensional control systems with scalar input are exactly
the same as in the case of the state-feedback classification problem of (1,m+1) control-
affine systems. Besides, since in our method of normalization of (1, n) control-affine
systems with n ≥ 5 we rectify the vector field f1, in the case m ≥ 4 the generic germ
at (y0, v0) of an m-dimensional real analytic control system with the prescribed tuple
(3.38) of the primary invariants of its affine extension has the following normal form
w.r.t. the local in state-input space state-feedback equivalence:

ξ̇s = fs(ξ1, . . . , ξm, ν), 1 ≤ s ≤ m,

such that fs(x2, x3, . . . , xm+1, x1) = as+1(x1, . . . , xm+1), where the tuple {ak}m+1
k=1

is the solution of the system of partial differential equations (3.34) with boundary
conditions, which can be expressed by the primary invariants βk, ψk, and φkjl, using
(3.37) (the point (y0, v0) corresponds to the origin of the coordinates (ξ1, . . . , ξm, ν)
in the state-input space).

4. Reduction of control-affine systems with two-dimensional input to
the scalar input case in dimensions 4 and 5. For r = 2 the system (1.1) has the
following form:

(4.1) q̇ = f0(q) + u1 f1(q) + u2 f2(q), q ∈ M, u1, u2 ∈ R.

Our aim is to assign to the system (4.1) in a canonical way an affine subsystem with
scalar input.2 It turns out that in the case n = 4 the original system can be recovered
from it uniquely up to a feedback transformation, while in the case n = 5 such unique
recovering is possible after introducing an additional invariant function of n variables
(which is natural in view of the estimates for the number of functional parameters
given in the introduction).

4.1. Preliminaries. Let us look on (4.1) as on the time optimal control problem
and find its extremals. First we introduce some notation. Let T ∗M be the cotangent
bundle of M with canonical symplectic form σ. Denote by hi, 0 ≤ i ≤ 2, the following
functions on T ∗M :

(4.2) hi(λ) = p · fi(q), λ = (p, q), q ∈ M, p ∈ T ∗
q M.

2The meaning of the word “subsystem” is that at any point q the set of its admissible velocities
is a subset of the set of the admissible velocities of the original system at q.
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For a given function G : T ∗M �→ R denote by �G the corresponding Hamiltonian vector
field defined by the relation σ(�G, ·) = −dG(·). For a given vector distribution D on
M (i.e., a subbundle of the tangent bundle), define the lth power Dl by the recursive
relation

Dl = Dl−1 + [D,Dl−1], D1 = D,

and denote by (Dl)⊥ ⊂ T ∗M the annihilator of Dl, namely,

(Dl)⊥ = {(p, q) ∈ T ∗M : p · v = 0 ∀v ∈ Dl(q)}.

In the introduced notation the Hamiltonian of Pontryagin’s maximum principle
for the time optimal problem (4.1) can be written as follows:

(4.3) H(λ, u1, u2) = h0(λ) + u1h1(λ) + u2h2(λ), λ ∈ T ∗M, u1, u2 ∈ R.

Let γ(·) be an extremal of (4.1) with extremal control functions ū1(t) and ū2(t). Then

(4.4) γ̇(t) = �h0

(
γ(t)

)
+ ū1(t)�h1

(
γ(t)

)
+ ū2(t)�h2

(
γ(t)

)
,

and from the maximality condition for H it follows that

(4.5) γ(·) ⊂ {λ ∈ T ∗M : h1(λ) = h2(λ) = 0}.

If we denote D2 = span(f1, f2), then (4.5) is equivalent to γ(·) ⊂ (D2)
⊥. Combining

(4.4) and (4.5), we obtain

(4.6) dγ(t)hi

(
γ̇(t)

)
= 0, i = 1, 2.

Then from (4.4) and (4.6) it follows that

{h0, h1}
(
γ(t)

)
+ ū2(t){h2, h1}

(
γ(t)

)
= 0,

{h0, h2}
(
γ(t)

)
+ ū1(t){h1, h2}

(
γ(t)

)
= 0

(4.7)

(here {hi, hj} are Poisson brackets of the Hamiltonians hi and hj : {hi, hj} = dhj(�hi)).
Now suppose that

(4.8) dimD2
2 = 3.

Then relations (4.7) imply that the extremals of (4.1), lying in (D2)
⊥\(D2

2)
⊥, are

exactly the integral curves of the vector field

(4.9) �X = �h0 +
{h0, h2}
{h2, h1}

�h1 +
{h1, h0}
{h2, h1}

�h2

(which is the Hamiltonian vector field, corresponding to the Hamiltonian X = h0 +
{h0,h2}
{h2,h1}h1 + {h1,h0}

{h2,h1}h2). Denote by V the affine subbundle of TM , defined by system

(4.1), and let V (q) be the set of all admissible velocities of the system (4.1) at the
point q,

V (q) = {f0(q) + u1f1(q) + u2f2(q) : u1, u2 ∈ R}.

Let π : T ∗M �→ M be the canonical projection. The set

(4.10) Ext(q) = {π∗ �X(λ) : λ ∈ T ∗
q M ∩ (D2)

⊥\(D2
2)

⊥}, q ∈ M,
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is the subset of V (q), consisting of the velocities of all extremal trajectories starting
at q and having a lift in (D2)

⊥\(D2
2)

⊥.
Among all extremals on (D2)

⊥\(D2
2)

⊥, one can distinguish so-called abnormal
extremals, i.e., the extremals lying on the zero level set of the Hamiltonian X. Denote
D3 = span(f0, f1, f2) and suppose that

(4.11) dim(D2
2 + D3) = 4.

The set

(4.12) Abn(q) = {π∗ �X(λ) : λ ∈ T ∗
q M ∩ (D3)

⊥\(D2
2)

⊥}, q ∈ M,

is the subset of Ext(q), consisting of the velocities of all abnormal extremal trajectories
starting at q and having a lift in (D2)

⊥\(D2
2)

⊥. One can show that for generic germs
of affine systems of type (4.1), Ext(q) = V (q) in the case n ≥ 5 and Abn(q) = V (q) in
the case n ≥ 6. But in the cases n = 4 and n = 5 either Ext(q) or Abn(q) (or both of
them) defines the proper subsystem of the original system (4.1). Moreover, it turns
out that these subsystems are affine with scalar input, so one can apply the theory of
the previous section. Now let us consider the cases n = 4 and n = 5 separately.

4.2. The case n = 4. Let

[V,D2](q) = {[X,Y ](q) : X ∈ V, Y ∈ D2, are vector fields}.

It is not difficult to show that [V,D2](q) is a linear space and

(4.13) [V,D2](q) = span
(
f1(q), f2(q), [f1, f2](q), [f0, f1](q), [f0, f2](q)

)
.

The crucial observation is formulated in the following proposition.
Proposition 3. The set Ext(q) is an affine line, provided that (4.8) holds and

(4.14) dim [V,D2](q) = 4.

Proof. Take some vector field f3 such that the tuple (f0, f1, f2, f3) constitutes the
frame on M . Denote by ckji the structural functions of this frame, i.e., the functions
satisfying

(4.15) [fi, fj ] =

3∑
k=0

ckjifk.

Using the well-known property of the Poisson brackets,

(4.16) {hi, hj}(p, q) = p · [fi, fj ](q), q ∈ M, p ∈ T ∗
q M,

and (4.9), one can easily obtain that

(4.17) Ext(q) = Π(q) ∩ V (q),

where

Π(q) =
{(

c012(q)ν + c312(q)μ
)
f0(q) +

(
c020(q)ν + c320(q)μ

)
f1(q)

+
(
c001(q)ν + c301(q)μ

)
f2(q) : μ, ν ∈ R

}
.

(4.18)
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From assumption (4.14) and identity (4.13) it follows that Π(q) is a plane. Assumption
(4.8) implies that the plane Π(q) is not parallel to the plane V (q). Note also that
both Π(q) and V (q) belong to D3(q). Hence by (4.17) it follows that the set Ext(q)
is an affine line.

Consider the control system such that Ext(q) is its set of admissible velocities
at q. By Proposition 3 it is an affine system with scalar input. We call this sys-
tem the reduction of the four-dimensional control-affine system (4.1). The following
proposition gives another characterization of the reduction of the system (4.1).

Proposition 4. Assume that the four-dimensional control-affine system (4.1)
satisfies the conditions (4.8) and (4.14). Then the subsystem

(4.19) q̇ = g0 + ug1

of (4.1) is its reduction if and only if

(4.20) [g0, g1] ∈ D2.

Proof. By definition, the system (4.19) is the reduction of (4.1) if and only if

(4.21) Ext(q) = {g0(q) + tg1(q) : t ∈ R}.

On the other hand, one can take from the beginning f0 = g0 and f1 = g1. Then
comparing (4.21) with (4.17) and (4.18), we obtain that the system (4.19) is the
reduction of (4.1) if and only if c001 = c301 = 0, which is equivalent to [g0, g1] ∈
span(g1, f2) = D2.

Corollary 2. Assume that a four-dimensional affine control system (4.19)
satisfies

(4.22) dim span
(
g1, [g1, g0],

[
g1, [g1, g0]

]
,
[
g0, [g1, g0]

])
= 4.

Then any four-dimensional control-affine system with two-dimensional input, having
the system (4.19) as its reduction, is feedback equivalent to the system

(4.23) q̇ = g0 + u1g1 + u2[g0, g1], u1, u2 ∈ R.

Proof. First, by assumption (4.22) and relation (4.13), the system (4.23) satisfies
conditions (4.8) and (4.14) (where f0, f1, and f2 are replaced by g0, g1, and [g0, g1]).
Hence, by Proposition 3 the system (4.23) admits the reduction, and by Proposition 4
this reduction is the system (4.19). On the other hand, suppose that some system (4.1)
has the reduction (4.19). Then from the previous proposition [g0, g1] ∈ span(g1, f2).
According to (4.22), g1 and [g0, g1] are linearly independent. Hence the system (4.1)
is feedback equivalent to (4.23).

According to the previous proposition, a generic germ of a four-dimensional
control-affine system with two-dimensional input can be uniquely—up to a feedback
transformation—recovered from its reduction. Suppose that the reduction (4.19) of
the system (4.1) satisfies (4.22) and

(4.24) dim span
(
g0, g1, [g1, g0],

[
g1, [g1, g0]

])
= 4.

Then we can apply to the system (4.19) all constructions of section 2. In particular,
one can construct the tuple of the primary invariants of (4.19) at a given point, which
are also feedback invariants of the original system (4.1). Note that the set of germs
of systems of type (4.1) having the reductions, which satisfies conditions (4.22) and
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(4.24), is generic. Combining Theorem 1, Corollary 2, and normal form (3.32), we
obtain the following classification of generic germs of systems of type (4.1) in terms
of the tuple of the primary invariants of their reductions as follows.

Theorem 3. Given two arbitrary germs I1 and I2 of functions of four vari-
ables at 0, four arbitrary germs β1, β2, β3, β4 of functions of three variables at 0, and
four arbitrary germs ψ1, ψ2, ψ3, ψ4 of functions of two variables at 0, there exists a
unique, up to state-feedback transformation of type (1.3), four-dimensional control-
affine system with two-dimensional input such that its reduction satisfies genericity
assumptions (4.22) and (4.24) and (I1, I2, β1, β2, β3, β4, ψ1, ψ2, ψ3, ψ4) is the tuple of
the primary invariants of the reduction at the given point q0. This control system is
state-feedback equivalent to the following system:

(4.25)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 1 + (N + B1ρ2)u1 +

(
∂N

∂x1
+ β1

∂ρ2

∂x1

)
u2,

ẋ2 = (ρ1 + B2ρ2)u1 +

(
∂ρ1

∂x1
+ B2

∂ρ2

∂x1

)
u2, u1, u2 ∈ R,

ẋi = Biρ2u1 + βi
∂ρ2

∂x1
u2, i = 3, 4,

where N is the solution of (3.29), ρi, i = 1, 2, are the solutions of (3.30), and Bk,
1 ≤ k ≤ 4, are as in (3.31). The Poincaré series, the characteristic pair, and the
characteristic matrix of the classification problem are exactly the same as in the case
of (1, 4) control-affine systems.

Remark 7. It is easy to show that in the case n = 4 the set Abn(q) consists of
one vector provided that (4.11) holds. Besides, if the system (4.19) is the reduction of
the system (4.1) and it satisfies (4.22) and (4.24), then Abn(q) is exactly its canonical
drift.

Remark 8. Actually, there is another intrinsic way to assign to the system (4.1),
satisfying (4.11), an affine subsystem with scalar input: As a drift one can take again
Abn(q). It remains to define canonically the direction of the affine line of the reduc-
tion. For this note first that the distribution D2 satisfies (4.8) because of assumption
(4.11). Therefore through any point of M the unique (unparameterized) abnormal
extremal trajectory of the rank 2 distribution D2 passes: The line subdistribution L
of D2, tangent to the abnormal extremal trajectories at any point, is characterized
by the relation [L,D2] ⊆ D2. The direction of the affine line of the reduction can be
taken parallel to L. The direction of L is different in general from the direction of the
affine line in the first reduction. But this new reduction is worse than the previous
one, because the original system (4.1) is not uniquely recovered from it: If (ḡ0, ḡ1)
is the canonical pair of the new reduction (by construction and the previous remark
g0 = Abn), then the field f2 can be taken in the form f2 = αḡ0 + [ḡ1, ḡ0], where the
function α satisfies some second order ordinary differential equation along each inte-
gral curve of ḡ1. Note that the direction ḡ1 depends on the second jet of the original
system (4.1), while the direction of the affine line in the first reduction depends only
on the first jet. This could be the reason for the loss of some information about the
original system during the reduction described in the present remark.

4.3. The case n = 5. In this case by analogy with Proposition 3 we have the
following proposition.

Proposition 5. The set Abn(q) is an affine line, provided that (4.11) holds and

(4.26) dimD2
3 = 5.
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Proof. Take some vector fields f3 and f4 such that the tuple (f0, f1, f2, f3, f4)
constitutes the frame on M . By analogy with (4.15), let ckji, 0 ≤ i, j, k ≤ 4, be the
structural functions of this frame. From (4.9) and (4.12), using (4.16) and the fact
that h0 = 0 on (D3)

⊥, one can easily obtain that

(4.27) Abn(q) = Π1(q) ∩ V (q),

where

Π1(q) =
{(

c312(q)ν + c412(q)μ
)
f0(q) +

(
c320(q)ν + c420(q)μ

)
f1(q)

+
(
c301(q)ν + c401(q)μ

)
f2(q) : μ, ν ∈ R

}
.

(4.28)

From assumption (4.26) and identity (4.13) it follows that Π1(q) is a plane. Assump-
tion (4.11) implies that the plane Π1(q) is not parallel to the plane V (q). Note also
that both Π1(q) and V (q) belong to D3(q). Hence by (4.27) the set Abn(q) is an
affine line.

Consider the control system such that Abn(q) is its set of admissible velocities
at q. By Proposition 5 it is an affine system with scalar input. We call this sys-
tem the reduction of the five-dimensional control-affine system (4.1). The following
proposition gives another characterization of the reduction of the system (4.1).

Proposition 6. Assume that the five-dimensional control-affine system (4.1)
satisfies the conditions (4.26) and (4.11). Then the subsystem

(4.29) q̇ = g0 + ug1

of (4.1) is its reduction if and only if

(4.30) [g0, g1] ∈ D3.

Proof. By definition, the system (4.19) is the reduction of (4.1) if and only if

(4.31) Abn(q) = {g0(q) + tg1(q) : t ∈ R}.

On the other hand, one can take from the beginning f0 = g0 and f1 = g1. Then
comparing (4.31) with (4.27) and (4.28), we obtain that the system (4.29) is the
reduction of (4.1) if and only if c301 = c401 = 0, which is equivalent to [g0, g1] ∈
span(g0, g1, f2) = D3.

Corollary 3. Assume that a five-dimensional affine control system (4.19) sat-
isfies

(4.32) dim span
(
g0, g1, [g1, g0],

[
g1, [g1, g0]

]
,
[
g0, [g1, g0]

])
= 5.

Then a five-dimensional control-affine system with two-dimensional input has the sys-
tem (4.19) as its reduction if and only if it is feedback equivalent to the system

(4.33) q̇ = g0 + u1g1 + u2(αg0 + [g0, g1]), u1, u2 ∈ R,

where α is some function.
Proof. First by assumption (4.32) the system (4.33) satisfies conditions (4.26)

and (4.11). Hence, by Proposition 5 the system (4.33) admits the reduction, and
by Proposition 6 this reduction is the system (4.19). On the other hand, suppose
that some system (4.1) has the reduction (4.19). Then from the previous proposition
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[g0, g1] ∈ span(g0, g1, f2). According to (4.22), g0, g1, and [g0, g1] are linearly inde-
pendent. Hence, f2 = ξ0g0 + ξ1g1 + ξ2[g0, g1], where ξ2 �= 0. Hence by a feedback
transformation we can replace f2 with αg0 + [g0, g1].

Thus, in contrast to the case n = 4, five-dimensional control-affine systems with
two-dimensional input cannot be recovered from their reduction only. Suppose that
the system (4.1) has the reduction (4.29) satisfying condition (4.32) and also

dim span
(
g0, g1, [g1, g0],

[
g1, [g1, g0]

]
,
[
g1,

[
g1, [g1, g0]

]])
= 5,(4.34)

dim span
(
g1,

[
g0, [g0, g1]

]
, [g1, g0],

[
g1, [g1, g0]

]
,
[
g1,

[
g1, [g1, g0]

]])
= 5.(4.35)

Then we can apply to the system (4.29) all constructions of section 2. In particular,
let (G0, G1) be the canonical pair of the system (4.29). As before, let V be the affine
subbundle of TM , defined by system (4.1). Then by the same arguments, as in the
proof of Corollary 3, there exists a unique vector field G2 ∈ V such that

(4.36) G2 = RG0 + [G0, G1].

By construction, the function R is a feedback invariant of system (4.1). Moreover,
the system (4.1) can be uniquely—up to a feedback transformation—recovered from
its reduction and the function R.

Fix some point q0 in M . Let Φ5 be as in (3.17). Denote

(4.37) R = R ◦ Φ5.

Note that R is the germ of a function of five variables at 0. We call it the recovering
invariant of (4.1) at the point q0. By construction, it is an invariant of the weight 0.
Note that the set of germs of systems of type (4.1) having the reductions, which
satisfies conditions (4.32), (4.34), and (4.35), is generic. Using Theorem 2 in the
case n = 5 and the definition of the recovering invariant, we obtain the following
classification of generic real analytic germs of systems of type (4.1) in terms of the
tuple of the primary invariants of their reductions and their recovering invariant.

Theorem 4. Given four germs I1, I2, I3, and R of real analytic functions of
five variables at 0 such that I3(0) �= 0, 10 germs {βk}5

k=1 and {φk22}5
k=1 of real

analytic functions of four variables at 0, 10 germs {ψk}5
k=1 and {φk23}5

k=1 of real
analytic functions of three variables at 0, and five germs {φk24}5

k=1 of real analytic
functions of two variables at 0, there exists a unique, up to state-feedback real analytic
transformation of type (1.3), five-dimensional real analytic control-affine system with
two inputs such that first, its reduction satisfies genericity assumptions (4.32), (4.34),
(4.35), second,

(
{Ij}3

j=1, {βk}5
k=1, {ψk}5

k=1, {φk2l : 1 ≤ k ≤ 5, 2 ≤ l ≤ 4}
)

is its
tuple of the primary invariants, and finally, R is its recovering invariant at the given
point q0. In other words, the tuples of the primary invariants give the regular (3, 2)-
parameterization of the considered classification problem in the real analytic category
with the following (4 × 4)-parameterization matrix P :

(4.38) P =

⎛⎜⎜⎝
0 0 0 5
0 0 0 10
0 0 0 10
1 0 0 3

⎞⎟⎟⎠ .

The Poincaré series M(t) of the considered classification problem satisfies

(4.39) M(t) =
1

(1 − t)6
+ t3

(
5

(1 − t)3
+

10

(1 − t)4
+

10

(1 − t)5
+

3

(1 − t)6

)
.
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By the same arguments, as in the case of the (1, n)-affine control system with
n ≥ 5, treated in section 3, one can show that (3, 2) is the characteristic pair of the
considered classification problem (just use formulas (2.24), (2.25), and Corollary 1).
The characteristic matrix C of the problem is equal to Norm(P ), which can be found
easily by the series of elementary transformations. Namely,

(4.40) C = Norm(P ) =

⎛⎜⎜⎝
1 3 6 5
0 0 0 16
0 0 0 13
0 0 0 4

⎞⎟⎟⎠ .

Conclusion 2. The characteristic parameterization of (2, 5) control-affine sys-
tems, up to state-feedback transformations, consists of four functional invariants of
five variables and the weight 3, 13 functional invariants of four variables and the
weight 3, 16 functional invariants of three variables and the weight 3, one functional
invariant of two variables and the weight 0, three functional invariants of two vari-
ables and the weight 1, six functional invariants of two variables and the weight 2,
and five functional invariants of two variables and the weight 3.

In order to obtain a characteristic parameterization from the parameterization by
the tuple of the primary invariants and the recovering invariant, one can implement
some series of rearrangement of the primary invariants according to the series of ele-
mentary transformations from the matrix P to Norm(P ), as described in the previous
section (see, for example, formula (2.19) and the paragraph that follows it).

REFERENCES

[1] A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory. I. Reg-
ular extremals, J. Dynam. Control Systems, 3 (1997), pp. 343–389.

[2] A. A. Agrachev, Feedback-invariant optimal control theory. II. Jacobi curves for singular
extremals, J. Dynam. Control Systems, 4 (1998), pp. 583–604.

[3] A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I, J. Dynam. Control Systems, 8
(2002), pp. 93–140.

[4] A. Agrachev and I. Zelenko, Geometry of Jacobi curves. II, J. Dynam. Control Systems, 8
(2002), pp. 167–215.

[5] V. I. Arnold, Mathematical problems in classical physics, in Trends and Perspectives in Ap-
plied Mathematics, Appl. Math. Sci. 100, F. John, J. E. Marsden, and L. Sirovich, eds.,
Springer, New York, 1994, pp. 1–20; in Selected Works of V. I. Arnold, Phasis, Moscow,
1997, pp. 553–575 (in Russian).

[6] B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,
SIAM J. Control Optim., 29 (1991), pp. 1300–1321.

[7] R. B. Gardner, The geometry of nonlinear control systems, in Differential Geometry: A
Symposium in Honor of Manfredo do Carmo, Pitman Monogr. Surveys Pure Appl. Math.
52, B. Lawson and K. Tenenblatt, eds., Longman Scientific and Technical, Harlow, UK,
1991, pp. 179–198.

[8] B. Jakubczyk, Equivalence and invariants of nonlinear control systems, in Nonlinear Control-
lability and Optimal Control, H. J. Sussmann, ed., Marcel Dekker, New York, Basel, 1990,
pp. 177–218.

[9] B. Jakubczyk, Critical Hamiltonians and feedback invariants, in Geometry of Feedback and
Optimal Control, B. Jakubczyk and W. Respondek, eds., Marcel Dekker, New York, Basel,
1998, pp. 219–256.

[10] B. Jakubczyk, Feedback invariants, critical trajectories, and Hamiltonian formalism, in Non-
linear Control in the Year 2000, Vol. 1, Lecture Notes in Control and Inform. Sci. 258,
A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds., Springer, London, 2001, pp.
219–256.

[11] B. Jakubczyk and W. Respondek, Feedback classification of analytic control systems in the
plane, in Analysis of Controlled Dynamical Systems, B. Bonnard et al., eds., Birkhäuser
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Abstract. We consider a multistock market model. The stock price process satisfies a stochastic
differential equation where both the drift and the volatility are driven by a discrete-time Markov chain
of finite states. Not only the underlying Brownian motion but also the Markov chain in the stochastic
differential equation are assumed to be unobservable. Investors can observe the stock price process
only. The main result of this paper is that we derive the approximation of the optimal trading
strategy and the corresponding optimal expected utility function from the terminal wealth for the
CRRA utility function.
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1. Introduction. In this paper, we consider a model of an incomplete market
in which stocks are driven by an m-dimensional geometric Brownian motion the same
as in the Black–Scholes model. However, the drift and the diffusion coefficients of
this process depend on a discrete-time Markov chain whose states are not observable.
Moreover, we do not observe the driving diffusion process—rather only the values of
the price process.

There are quite a few papers devoted to studies of the problem of maximizing the
expected utility function from the terminal wealth under partial information. Pham
and Quenez [15] considered a stochastic volatility model. They solved the portfolio
optimization problem under partial information by stochastic filtering techniques and
adapting martingale duality methods. For more literature on partial information and
stochastic volatility problems, we refer the reader to Lakner [12], [13], Frey [8], Rung-
galdier [16], Frey and Runggaldier [9], Cvitanić, Lipster, and Rozovskii [1], Elliott
and Rishel [6], Elliott [7], and Henderson and Hobson [10].

Sass and Haussman [18] considered a multistock market model in continuous–
time. The drift is a continuous–time, finite state Markov chain, and the volatility
matrix is constant and nonsingular. They used Malliavin calculus and hidden Markov
chain theory to derive an explicit expression for the optimal portfolio selection. How-
ever, their method cannot be extended to the case in which the volatility is driven by
a Markov chain, because the EM algorithm they used to estimate the drift does not
work for the volatility due to the fact that the measures involved in their method are
not equivalent if the volatility is driven by a Markov chain.

In this paper, we consider a discrete-time multistock market model where both
the drift and the volatility are driven by a Markov chain. In our paper, we use the
method of estimating volatility studied by Elliott [4], Elliott, Hunter, and Jamieson
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[5], developed for the discrete-time setting. The algorithm enables us to estimate
the states of the Markov chain and its transition matrix. We solve the problem of
optimizing the expected utility from the terminal wealth problem, and using dynamic
programming we construct the optimal strategy in terms of the filter of the price
process.

The rest of this paper is structured as follows. In section 2, we present the discrete-
time model from the general continuous model and describe the relationship between
the two models. We prove some preliminary results, which will be used in subsequent
calculation. In section 3, we introduce some definitions and state the optimization
problem. Section 4 is devoted to an important lemma related to an approximation of
the optimal trading strategy for the CRRA utility function. In section 5 we show the
results of simulation to illustrate our results.

2. Models and preliminary results.

2.1. Regime switching model: Continuous time. Consider the m-dimen-
sional stock price process whose dynamics is given by a geometric Brownian motion
equation:

(2.1) dS(t) = diag(St)(μ(Y (t))dt + σ̂(Y (t))dW (t)), 0 ≤ t ≤ T.

Here St = (S
(1)
t , S

(2)
t , . . . , S

(m)
t )′, and the column vector Wt is an m-dimensional

standard Brownian motion. Y (t) is a finite state, homogeneous Markov chain with
a generator Q = (qij)d×d, independent of W (t). The distribution of Y (0) is known.
Y (t) has a state space M = {e1, . . . , ed}, where ei, i = 1, 2, . . . , d, is the unit vector
in Rd.

Y (t) ∈ M := {e1, . . . , ed}.

There are different values for the drift and different matrices for the volatility
corresponding to states of the Markov chain Y (t). Thus μ(·) (resp., σ(·)) is a mapping
of M (resp., N := {B := (bi,j)1≤i,j≤m is invertible |bi,j ∈ R+}) into Rm (resp., into
Rm×m).

Suppose r is a constant interest rate. Then (2.1) may be written as follows.

(2.2) d log(e−rtS(t)) = (μ(Y (t)) − r1m − diag(σ̂n−1σ̂
′
n−1))dt + σ̂(Y (t))dW (t),

where 0 ≤ t ≤ T, 1m = (1, 1, . . . , 1)′ ∈ Rm×1, where we use the following convention:

log((x1, x2, . . . , xn)′) = (log(x1), . . . , log(xn))′.

2.2. Regime switching model: Discrete time. In this paper, we will con-
sider a discrete approximation to the continuous-time model (2.1).

Let Δt = T
N , Yn = Y (nΔt),

μn = μ(Y (nΔt)), σ̂n = σ̂(Y (nΔt)), Sn = S(nΔt),

where n = 0, 1, . . . , N . Then (2.2) becomes

(2.3)
log(Sne

−rΔt) − log(Sn−1)
= (μn−1 − r1m − diag(σ̂n−1σ̂

′
n−1)/2)Δt + σ̂n−1(Wn −Wn−1)

:= yn

for n = 1, 2, 3, . . . , N .
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Let

(2.4)

⎧⎨⎩
gn : = (μn − r1m − diag(σ̂nσ̂

′
n)/2)Δt

= (μ(Yn) − r − diag(σ̂(Yn)σ̂(Yn)′)/2)Δt,

σn : = σ̂n

√
Δt = σ̂(Yn)

√
Δt.

Then

(2.5) yn = gn−1 + σn−1Zn, n = 1, 2, . . . , N,

where Zn = (Wn − Wn−1)/
√

Δt, n = 1, 2, . . . , N , is a sequence of standard normal
independently and identically distributed random variables.

Note that gn and σn are functions of Yn and can be written as G(Yn) and H(Yn),
respectively, which obviously satisfy

(2.6)

G(ei)
Δt = μ(ei) − r1m − diag(σ̂(ei)σ̂(ei)

′)/2,
H(ei)√

Δt
= σ̂(ei).

In this paper, we assume only the price of stock Sn or yn can be observed. Denote
the filtration generated by Sn by {Fn}. We will study an optimization of the utility
function of the terminal wealth in the discrete-time model (2.5).

2.3. Preliminary results. We present some preliminary results which will be
used in the proofs in what follows.

By the definition of yn (2.3), we know that for each i = 1, 2, . . . ,m,

S(i)
n = S

(i)
n−1e

y(i)
n erΔt.

For k = 1, 2, . . . , d, denote

bk := G(ek) ∈ Rm×1, fk := H(ek) ∈ Rm×m.

Let bk(i) stand for the ith component of bk, and let fk(i) stands for the ith row
of fk. Then we have the following lemma.

Lemma 2.1.

Pr(y(i)
n ≤ t|Fn−1) =

d∑
k=1

Pr(Yn−1 = ek|Fn−1)

∫ t−bk(i)

−∞
φik(x)dx,

where φik(x) = 1√
2π(fk(i)·fk(i)′)

e
− x2

2fk(i)·fk(i)′ , i = 1, 2, . . . ,m.

Proof.

Pr(y(i)
n ≤ t|Fn−1) = Pr(g

(i)
n−1 + σ

(i)
n−1Zn ≤ t|Fn−1)

=

d∑
k=1

Pr(bk(i) + fk(i)Zn ≤ t, Yn−1 = ek|Fn−1)

=

d∑
k=1

Pr(bk(i) + fk(i)Zn ≤ t)Pr(Yn−1 = ek|Fn−1)

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)

∫ t−bk(i)

−∞
φik(x)dx.
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Remark 1. Similarly, for the multidimensional case, x ∈ Rm×1, we have

(2.7)
Pr(yn ≤ x|Fn−1)

=
∑d

k=1 Pr(Yn−1 = ek|Fn−1)
∫ x1−bk(1)

−∞ . . .
∫ xm−bk(m)

−∞ φk(z)dz,

where φk(x) = (2π|fkf ′
k|)

−1
2 e−x′(fkf

′
k)−1x/2, x ∈ Rm×1.

Lemma 2.2. We have a recursive filter:

(2.8) Pr(Yn = ek|Fn) =

∑d
i=1 Pr(Yn−1 = ei|Fn−1)φi(yn − bi)pki∑d
i=1 Pr(Yn−1 = ei|Fn−1)φi(yn − bi)

,

where pki is the (k, i) entry of the transition matrix P.
Proof. This is Theorem 3.1 of Elliott [4].
In what follows, we will use the notation En[ζ] := E[ζ|Fn].
Lemma 2.3. α < 1. For i = 1, 2, . . .m, we have

(i) |En−1[e
y(i)
n − 1]| = O(Δt), (ii) |En−1[(e

y(i)
n − 1)2]| = O(Δt),

(iii) |En−1[(e
y(i)
n − 1)3]| = O(Δt)2, (iv) |En−1[(1 − e−y(i)

n )3]| = O(Δt)2,

(v) |En−1[e
αy(i)

n (1 − e−y(i)
n )3]| = O(Δt)2.

Proof. The proof of this lemma is in Appendix A.
Remark 2. Using Lemmas 2.1 and 2.3, we have for m = 1 (i.e., when there is

only one stock in the model)
(2.9)

En−1[ΔSn]
En−1[(ΔSn)2]

=
∑d

k=1 Pr(Yn−1=ek|Fn−1)e
(f2

k/2+bk)−1

erΔtSn−1(
∑d

k=1 Pr(Yn−1=ek|Fn−1)e
(2f2

k
+2bk)−2

∑d
k=1 Pr(Yn−1=ek|Fn−1)e

(f2
k
/2+bk)+1)

=
∑d

k=1 Pr(Yn−1=ek|Fn−1)bk
erΔtSn−1

∑d
k=1 Pr(Yn−1=ek|Fn−1)f2

k

+ O(Δt).

When d = 1, denote the unique state of μn by μ and the unique state of σ̂n by
σ. Then (2.9) is reduced to

(2.10)
(En−1[ΔSn])
En−1[(ΔSn)2] = 1

erΔtSn−1

eσ
2/2+g−1

e2σ2+2g−2eσ2/2+g+1

= 1
erΔtSn−1

μ−r
σ2 + O(Δt).

3. Definition and optimization problem.

3.1. Wealth process and admissible strategies. In this section we describe
a discrete-time optimization model which approximates the original continuous-time
model presented at the beginning of this paper.

Definition 3.1. hn−1 ∈ Fn−1, n = 1, . . . , N , are column vectors ∈ Rm×1. A

wealth process {Xhn−1
n }n=1,2,...,N , X0 = x0 is defined as

Xhn−1
n = X

hn−2

n−1 erΔt

(
1 −

m∑
i=1

h
(i)
n−1

)
+ X

hn−2

n−1

m∑
i=1

h
(i)
n−1

S
(i)
n

S
(i)
n−1

+ o(
√

Δt),

where h
(i)
n−1 or S

(i)
n−1 denotes the ith component of the vector hn−1 or Sn−1.

Using the notation defined in section 1, the wealth process has a simpler expres-
sion:

Xhn−1
n = X

hn−2

n−1 erΔt(1 + hn−1 · (eyn − 1)),
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where “·” stands for the inner product in Rm. Generally, we have

Xhn−1
n = X0e

rnΔt(1 + h0 · (ey1 − 1)) . . . (1 + hn−1 · (eyn − 1)), n = 1, . . . , N.

Definition 3.2. A vector sequence h = {hi}N−1
i=0 is an admissible strategy if

Pr(X
hn−1
n > 0 for all n = 1, 2, . . . , N) = 1.

We use H to denote the set of all admissible strategies.
Remark 3. If h is admissible, then

Pr(Xhn−1
n > 0|Xhn−2

n−1 > 0) =
Pr(X

hn−1
n > 0, X

hn−2

n−1 > 0)

Pr(X
hn−2

n−1 > 0)
= 1.

Then we have

Pr(X
hn−2

n−1 erΔt(1 + hn−1 · (eyn − 1)) > 0|Xhn−2

n−1 > 0) = 1.

So if h is admissible, then

(3.1) Pr(1 + hn−1 · (eyn − 1) > 0) = 1.

By (2.5), we have y
(i)
n ∈ (−∞,∞), ey

(i)
n −1 ∈ (−1,∞). Hence the equality (3.1) implies

(3.2) ‖hn−1‖1 ≤ 1, 1 ≥ h
(i)
n−1 ≥ 0,

for each i ∈ {1, 2, . . . ,m}.
The inequalities above imply no stock shorting as well as no money borrowing in

our model. Rogers also mentioned such a restriction on the portfolio in his h-investor
model (see [17]).

3.2. HARA utility functions.
Definition 3.3. A function u : (xu,∞) → R, xu ∈ R, is called a utility function

if u is strictly increasing, strictly concave, and twice continuously differentiable on
(xu,∞) and satisfies limx→∞u′(x) = 0 and limx→x+

u
u′(x) = ∞.

Next we define the coefficient of absolute risk aversion,

Ra(x) = −u′′(x)

u′(x)
.

Definition 3.4. If R−1
a (x) is a linear function, i.e., R−1

a (x) = a + bx, then we
say that u(x) is of the hyperbolic absolute risk aversion (HARA) class.

It should be mentioned that the solution to the differential equation

1

a + bx
= −u′′(x)

u′(x)

is a power, logarithmic, or exponential function, i.e.,

u(x) =

⎧⎨⎩
c

b−1 (a + bx)1−
1
b + d, x > −a

b if b > 0, b 	= 1,

c ln(a + x) + e, x > −a if b = 1,
−f
a e−x/a + g, x ∈ R if b = 0,
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where c, d, e, f, g are some constants.
Hence, a HARA utility function is thirdly continuously differentiable and

u′′′(x)

u′′(x)
= − 1 + b

a + bx
.

The most popular HARA utility functions are
• constant relative risk aversion (CRRA): u(x) = xβ/β, where β < 1, and
• constant absolute risk aversion (CARA): u(x) = −e−βx/β, where β > 0.

3.3. Optimization problem. Let u(x) be a utility function, and {Xh
n} be the

wealth process. The objective is to calculate

(∗) V ∗ = sup
h∈H

{E[u(Xh
N )]}

and find an admissible trading strategy h∗ s.t. E[u(Xh∗

N )] = V ∗.

4. Dynamic programming. Define

(4.1) Un(x) = sup
h∈H

E[u(Xh
N )|Fn], n = 0, 1, . . . , N.

From this definition, U0 = V ∗, as defined in the optimization problem of section
3.3. The dynamic programming equation for the sequence u0, u1, . . . , uN is

(4.2)

{
Un(x) = suphn

E[Un+1(xe
rΔt + xerΔthn · (eyn+1 − 1))|Fn],

UN (x) = u(x).

In what follows we derive a numerical scheme for the solution of these dynamic
programming equations and approximations for the optimal strategies for the original
optimization problem.

For each ηn ∈ Fn, n = 0, 2, . . . , N − 1, define

An−1,ηn = En−1

⎡⎢⎢⎢⎣ηn
⎛⎜⎜⎜⎝

(ey
(1)
n − 1)2 . . (ey

(m)
n − 1)(ey

(1)
n − 1)

(ey
(2)
n − 1)(ey

(1)
n − 1) . . (ey

(m)
n − 1)(ey

(2)
n − 1)

. . . .

(ey
(m)
n − 1)(ey

(1)
n − 1) . . (ey

(m)
n − 1)2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

Proposition 4.1. Let u(x) = xα/α, 0 	= α < 1. Let

λN := 1, ηn := En[
∏N

k=n λk],
λn−1 := (1 + 1

1−α (eyn − 1)′A−1
n−1,ηn

En−1[(e
yn − 1)ηn])α,

n = 1, . . . , N . Then the following hold:
(i) ηn ∈ Fn is bounded.
(ii) An−1,ηn

is invertible and there exists a constant C s.t. Δt‖A−1
n−1,ηn

‖ < C for
all n = 1, 2, . . . , N .

(iii) ‖En−1[ηn(eyn − 1)]‖ = o(
√

Δt).
The proof of this proposition follows from Theorem B.3 (iii), (ii) and Theorem

B.4.
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For each ηn ∈ Fn, n = 0, 2, . . . , N − 1, define

Wn(xn, hn) : = E[ηn+1u(xhn
n )|Fn](4.3)

= E[ηn+1u(xne
rΔt + xne

rΔthn · (eyn+1 − 1))|Fn],

Vn(xn, hn)(4.4)

: = E

[
ηn+1(u(xne

rΔt) + u′(xne
rΔt)xne

rΔthn · (eyn+1 − 1)

+
1

2
u′′(xne

rΔt)(xne
rΔthn · (eyn+1 − 1))2)|Fn

]
.

Assume for any xn−1 ≥ 0 that there exist h∗
n−1, h

∗∗
n−1 ∈ [0, 1]m ⊂ Rm s.t.

(4.5) Wn−1(xn−1, h
∗
n−1) = sup

hn−1

Wn−1(xn−1, hn−1)

and

(4.6) Vn−1(xn−1, h
∗∗
n−1) = sup

hn−1

Vn−1(xn−1, hn−1).

We use h∗∗
n defined in (4.6) to approximate h∗

n defined in (4.5).
As is seen from (4.4), (4.5) Vn is obtained from Wn by taking a Taylor expansion

up to the second term. Thus the function Vn approximates Wn when Δt is small (and
as a result yn is close to 0).

Lemma 4.2. Let u(x) = xα/α, 0 	= α < 1. Let ηn be defined as in Proposition
4.1. Then

(4.7) |Wn−1(xn−1, h
∗∗
n−1) −Wn−1(xn−1, h

∗
n−1)| = xαo(Δt),

where

(4.8) h∗∗
n−1 =

1

1 − α
A−1

n−1,ηn
· En−1[ηn(eyn − 1)].

The proof of this lemma is in Appendix B.
Remark 4. Using the same route we can prove that Lemma 4.2 holds for any ηn

satisfying the three conditions in Proposition 4.1.
Remark 5. The motivation to define Wn and Vn can be seen as follows. Let

n = N − 1. Then in (4.2) we have

UN−1(x) = sup
hN−1

E[u(xerΔt + xerΔthN−1 · (eyN − 1))|FN−1].

Clearly, UN−1(xN−1) coincides with WN−1(xN−1, h
∗
N−1) defined by (4.4), (4.5)

with ηN = 1. Below, we write En−1(xn−1) := Wn−1(xn−1, h
∗
n−1)−Wn−1(xn−1, h

∗∗
n−1)

for convenience.
In other words,

(4.9)
UN−1(xN−1) = WN−1(xN−1, h

∗
N−1) = WN−1(xN−1, h

∗∗
N−1) + EN−1

≈ WN−1(xN−1, h
∗∗
N−1) = EN−1[u(xN−1e

rΔt(1 + h∗∗
N−1 · (eyN − 1)))],

since EN−1 is small by Lemma 4.2.
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As a result, one can find an approximation for the optimal strategy in a recursive
way. Moreover, the expected utility of the terminal wealth associated with h∗∗ =
{h∗∗

k }N−1
k=0 is an approximation for the value function V ∗ in the optimization problem.

The next two theorems show that in a limit as Δt tends to zero the value of V ∗∗

converges to that of V ∗. Thus h∗∗
n can serve as an approximation for the optimal

strategy.
Hence Lemma 4.2 shows that the difference between the wealth associated with

optimal portfolio h∗ and the portfolio h∗∗ is small when Δt is small.
Theorem 4.3. Let u(x) = xα

α , 0 	= α < 1. Define

(4.10)

λN := 1, ηN = 1,
h∗∗
n−1 = 1

1−αA
−1
n−1,ηn

· En−1[(e
yn − 1)ηn],

λn−1 := erΔtα(1 + 1
1−αh

∗∗
n−1 · (eyn − 1))α,

ηn := En[
∏N

i=n λi], 1 ≤ n ≤ N.

Then

(4.11) |U∗∗
n (xn) − Un(xn)| = u(xn)o(1),

where

(4.12)
U∗∗
n (xn) := En[u(x∗∗

n,N )],

x∗∗
n,k := xne

(k−n)rΔt ·
∏k−1

i=n (1 + h∗∗
i · (eyi+1 − 1)).

Proof. Define the following sequences:

U∗∗
N := u(x),

U∗∗
k (xk) := Wk(xk, h

∗∗
k ),

U∗
k (xk) := Wk(xk, h

∗
k).

From the definition of ηn and (4.4), (4.8), we verify that

(4.13) U∗∗
k (xk) = u(xk)ηk,

and using (4.13) above we can write

(4.14)
U∗
k (xk) = Wk(xk, h

∗
k)

= suphk
Ek[ηk+1u(xke

rΔt(1 + hk · (eyk+1 − 1)))]
= suphk

Ek[U
∗∗
k+1(xke

rΔt(1 + hk · (eyk+1 − 1)))].

First, we prove that

|U∗∗
N−1(xN−1) − UN−1(xN−1)| ≤ u(xN−1)o(Δt).

Really U∗∗
N−1(xN−1) = u(xN−1)ηN−1, and

U∗
N−1(xN−1) = suphN−1

EN−1[U
∗∗
N (xN−1e

rΔt(1 + hN−1 · (eyN − 1)))]

= suphN−1
EN−1[u(xN−1e

rΔt(1 + hN−1 · (eyN − 1)))] = UN−1(xN−1).

Therefore,

|U∗∗
N−1(xN−1) − UN−1(xN−1)| = |WN−1(xN−1, h

∗∗
N−1) − U∗

N−1(xN−1)|
= |WN−1(xN−1, h

∗∗
N−1) −WN−1(xN−1, h

∗
N−1)| ≤ u(xN−1)o(Δt).
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The last inequality is due to Lemma 4.2.
Let C1 = 1. Suppose for n ≤ N we have

(4.15) |U∗∗
n (xn) − Un(xn)| = CN−nu(xn)o(Δt),

where {Ck}Nk=2 is a bounded sequence to be determined later. Then

|U∗∗
n−1 − Un−1| = |Wn−1(xn−1, h

∗∗
n−1) − Un−1|

≤ |Wn−1(xn−1, h
∗∗
n−1) −Wn−1(xn−1, h

∗
n−1)|

+ |Wn−1(xn−1, h
∗
n−1) − Un−1|

≤ o(Δt)u(xn−1) + | sup
hn−1

En−1[U
∗∗
n (xn−1e

rΔt(1 + hn−1 · (eyn − 1)))]

− sup
hn−1

En−1[Un(xn−1e
rΔt(1 + hn−1 · (eyn − 1)))]|.

Then, using (4.14), (4.15), and Lemma 4.2, we get

|U∗∗
n−1 − Un−1|

≤ o(Δt)u(xn−1) + sup
hn−1

En−1[|U∗∗
n (γ) − Un(γ)|]|γ=xn−1erΔt(1+hn−1·(eyn−1))

≤ o(Δt)u(xn−1) + sup
hn−1

En−1[u(xn−1e
rΔt(1 + hn−1 · (eyn − 1)))CN−no(Δt)]

for all sufficiently small Δt (so as o(Δt) < 1).
Applying Remark 4 with ηn = 1, we have

suphn−1
En−1[u(xn−1e

rΔt(1 + hn−1 · (eyn − 1)))]

≤ En−1[u(xn−1e
rΔt(1 + h∗∗

n−1 · (eyn − 1)))] + o(Δt)u(xn−1)

= (νn−1 + o(Δt))u(xn−1),

where νn−1 := erαΔtEn−1[(1 + h∗∗
n−1 · (eyn − 1))α]. Therefore,

|U∗∗
n−1 − Un−1| ≤ (1 + CN−n(νn−1 + o(Δt)))o(Δt)u(xn−1).

Define Cn = 1 + CN−n(νN−n + o(Δt)), C1 = 1. Then

|U∗∗
n−1 − Un−1| ≤ CN−n+1o(Δt)u(xn−1).

Continuing this process we get

|U∗∗
0 − U0| ≤ CNu(x0)o(Δt).

To complete the proof, we have to prove CNo(Δt) = o(1). In fact, νN−k has the
limit 1 as Δt → 0 by virtue of Theorem B.3. Moreover, there exists a constant D2 > 0
s.t.

limΔt→0
1

Δt
|νN−k − 1| < D2

for all k = 1, . . . , N . From the definition of Ck and the properties of νk for k ≥ 2, we
have

Ck ≤ 1+Ck−1(1+ (D2 +1)Δt) ≤ · · · ≤ (k− 2)+
1

(D2 + 1)Δt
((1+ (D2 +1)Δt)k − 1).
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Then CNΔt converges to a constant as Δt → 0. Consequently CNo(Δt) → 0
as Δt → 0. Hence we have proved that U∗∗

0 has the same limit as U0 (the optimal
expected utility of the terminal wealth), as Δt → 0, i.e.,

|U∗∗
0 − U0|u(x0) = o(1).

By the definition of U∗∗
n , it is easy to see that

U∗∗
n (xn) := Wn(xn, h

∗∗
n ) = En[ηn+1u(xne

rΔt(1 + h∗∗
n · (eyn+1 − 1)))]

= En[Wn+1(xne
rΔt(1 + h∗∗

n · (eyn+1 − 1)), h∗∗
n+1)]

= En[ηn+2u(x)|x=xn+1erΔt(1+h∗∗
n (eyn+1−1))]

= En[WN−1(x
∗∗
n,N−1, h

∗∗
N−1)] = En[u(x∗∗

n,N )],

where x∗∗
n,k = xne

(k−n)rΔt ·
∏k−1

i=n (1 + h∗∗
i · (eyi+1 − 1)).

The case of a logarithmic utility function can be treated as the same way as
the power utility function. The same results hold, although with a higher rate of
convergence.

Lemma 4.4. Let u(x) = log(x), and choose ηn = 1, n = 1, 2, . . . , N. Then we
have

|Wn−1(xn−1, h
∗∗
n−1) −Wn−1(xn−1, h

∗
n−1)| = O(Δt)2,

where

(4.16) h∗∗
n−1 = A−1

n−1,1 · En−1[e
yn − 1].

The proof is the same as that of Lemma 4.2. Moreover when we repeat the proof,
we see that the resulting convergence rate is O(Δt)2, which is higher than O(Δt)
obtained in the case of the power utility function.

Theorem 4.5. Let u(x) = log(x), and choose ηn = 1, n = 1, 2, . . . , N . Then

|Un(xn) − U∗∗
n (xn)| = O(Δt),

where

U∗∗
n (xn) := En[u(x∗∗

n,N )],

x∗∗
n,k := xne

(k−n)rΔt ·
∏k−1

i=n (1 + h∗∗
i · (eyi+1 − 1)),

and h∗∗
i is defined by (4.16).

Proof. This is the special case of Lemma 4.2 with α = 0. However, the condition
α = 0 enables us to obtain a higher convergence rate of O(Δt).

Remark 6. There are particular cases depending on the structure of the transition
matrix P, when we have the convergence rate O(Δt) as above even for the power utility
function. One of those cases is when the transition matrix has identical columns. We
also have another case in Appendix D, Theorem B.5 (ii), when the convergence rate
is of a higher rate of O(Δt).

Remark 7. Let u(x) = 1
γ e

−xγ . Define

ηN := 1,

ηn−1 := e−γh∗∗
n−1(e

yn−1),
h∗∗
n−1 = A−1

n−1,ηn
· En−1[(e

yn − 1)ηn]( 1
γxn−1

e−r(N−n)Δt),

U∗∗
n−1 = u(xn−1e

r(N−n+1)Δt
∏N−1

k=n−1(1 + h∗∗
i · (eyi+1 − 1))), n = N, . . . , 1.
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Then

|U0(x0) − U∗∗
0 (x0)| = o(1).

The proof follows the same route as that of Theorem 4.3.
Remark 8. From the definition (4.10) of ηn, we can see that ηn is the expected

utility under strategy h∗∗, given Fn, and given xn = 1. That is,

ηn = E[u(Xh∗∗

N )|Fn, xn = 1].

5. Simulations. Generally, as a result it is not easy to compute the approximate
optimal strategy {h∗∗

n }N−1
n=0 in (4.8) in the case of a power utility function. However,

we can get an estimation using a simplified strategy:

h̄∗∗
n := − 1

1 − α
A−1

n−1,1 · En−1[(e
yn − 1)], n = 0, 1, . . . , N − 1.

From the definition of V ∗, we see that the expected utility E[u(xh̄∗∗

N )] associated
with h̄∗∗ is a lower bound for V ∗.

There are cases, however, where (4.8) is relatively easy to evaluate. For example, if
the transition matrix has identical columns, then the conditional probability Pr(Yn =
ek|Fn), n ≥ 1, would be a constant regardless of n, k. Thus ηn is a constant, and it
can be excluded from the expression for h∗∗

n−1 (4.8). Therefore, the strategy h∗∗ is the
same as h̄∗∗.

We apply the results of section 2 to obtain an applicable representation of the
strategy for the case of m = 1,

(5.1) h̄∗∗
n−1

m=1
=

∑d
k=1 Pr(Yn−1 = ek|Fn−1)(μ(ek) − r)

(1 − α)
∑d

k=1 Pr(Yn−1 = ek|Fn−1)σ̂(ek)2
+ O(Δt), n = 1, 2, . . . , N.

The simulations in this section deal with (5.1). We use Lemma 2.2 to calculate
Pr(Yn = ek|Fn) recursively.

Comparing the strategies (5.1) with Merton strategies, we can see that in our case
the constant drift or the constant volatility in the expression for Merton strategies
is replaced by linear combinations of the drifts or of the volatilities corresponding
to different states of the Markov chain. The weights of the linear combinations are
probabilities that the Markov chain is in those states. We divide the time interval
[0,T] into N parts and assume the transition of the Markov chain occurs only at those
points of time. Hence we have the Merton model on each interval. The consequence is
that we might obtain a solution directly like (5.1) in the case of the logarithmic utility
function. However, it is not true for the power or the exponential utility functions.

To illustrate this point, let us assume that the transition matrix does not have
identical columns. Then in (4.8) we cannot choose ηn = 1 as in the case of a loga-
rithmic utility function, nor can we simplify the expression by canceling ηn as in the
case when all the columns of the transition matrix are identical. A representation as
simple as (5.1) cannot not be obtained. We have to employ the Monte Carlo method
to calculate the portfolio (4.8). However, we may use (5.1) to get a lower bound for
V ∗.

In our simulations, W0 stands for the initial wealth. The default value of W0 is
1. P denotes the transition matrix. The interest rate r is equal to 0.06. The time
horizon T is 1, and it is divided into N = 1000 parts, i.e., Δt = 10−3.
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We compare our optimal strategy with the Merton strategy. Since the Markov
chain has several states, we use the Merton strategy, replacing the drift and volatility
in it with those obtained from taking the average of the drift and volatility, respec-
tively, over different states of the Markov chain. The resulting Merton’s strategy
is

(5.2) hn−1 =
μ̄− r

(1 − α)σ̄2
, n = 1, . . . , N,

where μ̄ =
∑

i μ(ei)/d, σ̄ =
∑

i σ̂(ei)/d. One may think of using
∑

i σ(ei)
2/d instead

of σ̄2 in the formula. However, our simulation shows that it does not provide a better
result.

We also compare our optimal strategy with the buy-and-hold strategy, which is
denoted as “b/h.” The buy-and-hold strategy means to buy the stock using all cash
available at the beginning and then hold the stock until the end. We generate the
wealth process 1000 times and calculate the average of the utilities from the terminal
wealth.

Table 1 lists the result for a Markov chain which has a transition matrix with
identical columns. For the power utility function, we can obtain that our optimal
strategy is a constant 0.1133 while the Merton strategy is also a constant 0.3636
different from ours as seen from (5.1). Table 1 shows that our optimal strategy on
average gives better utilities with smaller standard deviations for both the logarithm
and the power law utility functions. The last line of Table 1 shows the number of
simulations in which our optimal strategy generates a better utility than the Merton
strategy or the b/h strategy. Note that in the case of the power utility function,
even though our optimal strategy generates only 487 better than the Merton strategy
among 1000 simulations, the average (−0.2748) is still significantly higher than the
one (−0.2974) generated by the Merton strategy, and the standard deviation (0.0380)
is also significantly less than 0.1348.

In Table 2, we use the same parameters except the transition matrix is replaced
by a matrix with nonidentical columns. In this case for the power utility function,
the Merton strategy is still a constant (h = 0.3636). However, our optimal strategy
h∗∗ varies from 0.1294 to 0.3324 with a mean 0.1450, while it is a constant 0.1133 in
the previous case. The result are similar to those of Table 1, though.

The average utility may vary slightly if more wealth processes are generated in the
simulation. However, we always find that our optimal strategy generates on average
the best utilities. The results in Table 3 for 5000 and 10000 simulations show that
although the utilities vary slightly, our optimal strategy still has the best performance
among the three strategies.

For one more example, we choose the same parameters as in Example 1 of Sass
and Haussmann [18]. The results for this example are listed in Table 4. Table 5
is a copy of Table 2 of Sass and Haussmann [18]. One can see that our optimal
strategy generates the average utilities (0.3969 for the logarithm, and −0.1128 for the
power) very close to theirs (0.399 for the logarithm, and −0.121 for the power). It
is not surprising because our model can be viewed as an extension of theirs in an
approximate sense. Therefore, similar results are expected when the same parameters
are employed.

Finally, we provide standard deviations in Tables 1 and 2. One can see that the
standard deviation associated with the optimal strategy is always the smallest one.
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Table 1

μ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.95; 0.05, 0.05],Δt = 10−3. 1000 simulations.

u(x) log(x) −x−3/3

Strategy opt Merton b/h opt Merton b/h
av. u(x) 0.0772 0.0041 0.0498 −0.2748 − 0.2974 − 0.6352
med u(x) 0.0781 0.0084 0.0535 −0.2719 − 0.2687 − 0.2839
std u(x) 0.1871 0.5592 0.4039 0.0380 0.1348 0.9696
opt better 574 548 487 515

Table 2

μ = [0.1, 0.9]′, σ̂ = [0.4, 0.7]′, P = [0.95, 0.5; 0.05, 0.5],Δt = 10−3. 1000 simulations.

u(x) log(x) −x−3/3

Strategy opt Merton b/h opt Merton b/h
av. u(x) 0.0946 0.0360 0.0760 −0.2715 − 0.2877 − 0.6236
med u(x) 0.0930 0.0177 0.0644 −0.2664 − 0.2587 − 0.2747
std u(x) 0.2703 0.6012 0.4441 0.0557 0.1450 1.1093
opt better 565 552 470 512

Appendix A. Proof of Lemma 2.3.
Proof. For k = 1, 2, . . . , d, denote

bk := gn−1|Yn−1=ek ∈ Rm×1, fk := σn−1|Yn−1=ek ∈ Rm×m.

(i) Using Lemma 2.1, we have

|E[y(i)
n − 1|Fn−1]|

=

∣∣∣∣∣
∫

ey
(i)
n

d∑
k=1

Pr(Yn−1 = ek|Fn−1)φik(y
(i)
n − bk(i))dy

(i)
n − 1

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

Pr(Yn−1 = ek|Fn−1)e
fk(i)fk(i)′/2+bk(i) − 1

∣∣∣∣∣
≤ maxk{|efk(i)fk(i)′/2+bk(i) − 1|}.

By virtue of (2.6) the right-hand side of the above expression is of the order Δt.
Therefore, there exists a constant C1 > 0 s.t.

|En−1[e
y(i)
n − 1]| ≤ C1Δt.

(ii) Similarly,

En−1[(e
yn(i) − 1)2]

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)e
2fk(i)fk(i)′+2bk(i)

− 2

d∑
k=1

Pr(Yn−1 = ek|Fn−1)e
fk(i)fk(i)′/2+bk(i) + 1

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)(e
2fk(i)fk(i)′+2bk(i) − 2efk(i)fk(i)′/2+bk(i) + 1).
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Table 3

5000, 10000 simulations.

u(x) log(x) −x−3/3

Strategy opt Merton b/h opt Merton b/h
5000 sim. 0.0923 0.0338 0.0743 −0.2719 − 0.2883 − 0.6541
10000 sim. 0.0966 0.0422 0.0805 −0.2709 − 0.2857 − 0.6284

Table 4

μ = [0.8,−0.4]′, σ̂ = [0.2, 0.2]′, Q = [−30, 24; 30,−24], P = eQ/250,Δt = 1/250. 500 simulations.

u(x) log(x) −x−5/5

Strategy opt Merton b/h opt Merton b/h
av. u(x) 0.3969 0.1125 0.1205 −0.1128 − 0.1525 − 0.2180
med u(x) 0.2965 0.1033 0.1186 −0.0902 − 0.1218 − 0.1105
opt better 319 313 338 288

Note that we assumed fk(i, j) to be positive for any k, i, j, and

e2fk(i)fk(i)′+2bk(i) − 2efk(i)fk(i)′/2+bk(i) + 1 = fk(i)fk(i)
′ + O(Δt2).

Therefore, using (2.6) once more we conclude that there exist constants C2 >
0, C3 > 0 s.t.

C2Δt < En−1[(e
y(i)
n − 1)2] ≤ C3Δt.

(iii) Again, we have

|En−1[(e
y(i)
n − 1)3]|

=

∣∣∣∣∣
d∑

k=1

Pr(Yn−1 = ek|Fn−1)(e
9f2

ik/2+3bk(i) − 3e2f2
ik+2bk(i) + 3ef

2
ik/2+bk(i) − 1)

∣∣∣∣∣
≤ max

k
{|e9f2

ik/2+3bk(i) − 3e2f2
ik+2bk(i) + 3ef

2
ik/2+bk(i) − 1|} = O((Δt)2).

Therefore,

|E[(ey
(i)
n − 1)3]|Fn−1]| = O((Δt)2).

(iv) Similarly,

|E[(1 − e−y(i)
n )3|Fn−1]|

≤
d∑

k=1

Pr(Yn−1 = ek|Fn−1)|(−e9f2
ik/2−3bk(i) + 3e2f2

ik−2bk(i) − 3ef
2
ik/2−bk(i) + 1)|

≤ max
k

| − e9f2
ik/2−3bk(i) + 3e2f2

ik−2bk(i) − 3ef
2
ik/2−bk(i) + 1|

= O(Δt)2.

(v) Similarly, we have

E[eynα(1 − e−yn)3|Fn−1] = O(Δt)2.
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Table 5

Sass and Haussmann’s Table 2. Known parameters.

u(x) log(x) −x−5/5

Strategy opt Merton b/h opt Merton b/h
av. u(x) 0.399 0.136 0.118 −0.121 − 0.141 − 0.214
med u(x) 0.305 0.150 0.126 −0.091 − 0.131 − 0.107
opt better than 296 288 359 292

Appendix B. Proof of Lemma 4.2.
Proof. Using the definition (4.5), we have the first order condition:

0 =

(
∂Wn−1

∂hn−1

)
|hn−1=h∗

n−1
=

(
∂Wn−1(xn−1, hn−1)

∂hn−1

)
|hn−1=h∗

n−1

= E[ηnu
′(xn−1e

rΔt + xn−1e
rΔth∗

n−1 · (eyn − 1))(eyn − 1)xn−1e
rΔt|Fn−1]

= En−1[ηn(eyn − 1)]u′(xn−1e
rΔt)xn−1e

rΔt + (xn−1e
rΔt)2En−1[ηn(h∗

n−1

· (eyn − 1))(eyn − 1)u′′(xn−1e
rΔt)

+ x3
n−1e

3rΔtEn−1[ηn(h∗
n−1 · (eyn − 1))2(eyn − 1)u′′′(ξ)]/2,

where ξ = xn−1e
rΔt(1+ t · (eyn − 1)) for some t ∈ [0, 1]m ⊂ Rm×1. Solving h∗

n−1 from
the equations above, we obtain

(B.1)

h∗
n−1 = −A−1

n−1,ηn
· En−1[ηn(eyn − 1)]

u′(xn−1e
rΔt)

u′′(xn−1erΔt)xn−1erΔt

−A−1
n−1,ηn

· En−1[ηn(h∗
n−1 · (eyn − 1))2(eyn − 1)u′′′(ξ)]

xn−1e
2rΔt

2u′′(xn−1erΔt)
,

where An−1,ηn
is defined right before Proposition 4.1.

At the same time, according to the first order condition for the function Vn−1, we
have

h∗∗
n−1 = −A−1

n−1,ηn
· En−1[ηn(eyn − 1)]

u′(xn−1e
rΔt)

u′′(xn−1erΔt)xn−1erΔt
(B.2)

=
1

1 − α
A−1

n−1,ηn
· En−1[ηn(eyn − 1)].

Therefore, using (B.1) and (B.2), we have

‖h∗
n−1−h∗∗

n−1‖1 =

∥∥∥∥A−1
n−1,ηn

· En−1[ηn(eyn − 1)(h∗
n−1 · (eyn − 1))2u′′′(ξ)]

xn−1e
rΔt

2u′′(xn−1erΔt)

∥∥∥∥
1

.

Since each entry of An−1,ηn is of the order O(Δt), it is easy to show that every
entry of A−1

n−1,ηn
is of the order of 1/O(Δt). By Theorem B.2, we have

‖En−1[ηn(eyn − 1)(h∗
n−1 · (eyn − 1))2u′′′(ξ)]‖ = u′′′(xn−1e

rΔt)o(Δt)3/2.

Therefore,

‖h∗
n−1 − h∗∗

n−1‖1 = ‖A−1
n−1,ηn

‖∞u′′′(xn−1e
rΔt)o(Δt3/2)

∣∣∣∣ xn−1e
rΔt

u′′(xn−1erΔt)

∣∣∣∣
=

xn−1u
′′′(xn−1e

rΔt)

u′′(xn−1erΔt)
· oΔt1/2 = o(Δt)1/2.
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On the other hand,

|Wn−1(xn−1, h
∗∗
n−1) −Wn−1(xn−1, h

∗
n−1)|

= ‖En−1[ηnu
′(ζ)(eyn − 1)]‖1‖h∗

n−1 − h∗∗
n−1‖1xn−1e

rΔt

= xn−1o(Δt1/2)‖En−1[ηn(eyn − 1)u′(ζ)]‖1,

where ζ = xn−1e
rΔt(1 + s · (eyn − 1)) for some s between h∗

n−1 and h∗∗
n−1.

Note that since we assume h∗
n−1, h

∗∗
n−1 ∈ [0, 1]m, then s ∈ [0, 1]m. By the as-

sumption (i), ηn is bounded, and we can apply the dominated convergence theorem
to obtain

limΔt→0‖En−1[ηn(eyn − 1)((1 + s · (eyn − 1))α−1 − 1)]‖1
1

Δt

≤ En−1

[
limΔt→0

∥∥∥∥ηn(eyn − 1)√
Δt

∥∥∥∥
1

limΔt→0

∣∣∣∣ 1√
Δt

((1 + s(eyn − 1))α−1 − 1)

∣∣∣∣]
< Constant.

Therefore,

(B.3) ‖En−1[ηn(eyn − 1)((1 + s · (eyn − 1))α−1 − 1)]‖1 = O(Δt).

To complete our proof, we apply (B.3) and Theorem B.4 to obtain

‖En−1[ηn(eyn − 1)u′(ζ)]‖1

≤ ‖En−1[ηn(eyn − 1)(u′(ζ) − xα−1
n−1e

(α−1)rΔt)]‖1 + ‖En−1[ηn(eyn − 1)xα−1
n−1e

(α−1)rΔt]‖1

= xα−1
n−1e

(α−1)rΔtEn−1[ηn(eyn − 1)((1 + s(eyn − 1))α−1 − 1)] + xα−1
n−1o(Δt1/2)

= xα−1
n−1o(Δt1/2).

As a result we have proved

|Wn−1(xn−1, h
∗∗
n−1) −Wn−1(xn−1, h

∗
n−1)| = xα

n−1o(Δt).

Proposition B.1. If ξ = (1 + s · (ey − 1))α−3, α < 1, s ∈ [0, 1]m,
∑m

i=1 si ≤ 1,

y = gΔt + σ
√

ΔtZ, σ > 0, Z = (Z1, . . . , Zm)′ ∈ Rm, Zi ∼ N(0, 1), then there exists a
constant C s.t. |ξ − 1| ≤ C(1 + ‖Z‖1)e

‖Z‖1
√

Δt.
Proof. First, we suppose

∑m
i=1 si < 1. It is easy to see that

(1 + s · (ey − 1))α−3 <

(
1 −

m∑
i=1

si

)α−3

.

Then for small Δt, we have

1√
Δt

|(1 + s · (ey − 1))α−3 − 1|

= (3 − α)(1 + s · (egτ−σ
√
τZ − 1))α−4(s · (diag(2g(i)

√
τ + σ(i)Z)egτ+σ

√
τZ))|

≤ C

(
1 −

m∑
i

si

)α−4 m∑
i=1

(2|g(i)τ | + σ(i)|Z|)eg(i)τ+σ(i)√τZ

≤ C(1 + ‖Z‖1)e
‖Z‖1 ,
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where τ ∈ [0,
√

Δt]. Therefore |(1 + s · (ey − 1))α−3 − 1| ≤ C(1 + ‖Z‖1)e
‖Z‖1

√
Δt.

In case
∑m

i=1 si = 1, we observe

(1 + s · (ey − 1))α−3 =

(
1 +

m∑
i=2

si(e
y(i)−y(1) − 1)

)α−3

ey
(1)(α−3)

<

(
1 −

m∑
i=2

si

)α−3

ey
(1)(α−3).

We still can prove the proposition as above.
Theorem B.2. u(x) = xα/α, α < 1. If α = 0, define u(x) = log(x). ξ =

xerΔt(1 + s · (eyn − 1)) for some s ∈ (0, 1)m ⊂ Rm. yn is defined by (2.5). hn−1 ∈
(0, 1)m ⊂ Rm satisfies the constraints (3.2). ηn ∈ Fn is bounded by a constant δ.
Then

‖En−1[ηn(eyn − 1)(hn−1 · (eyn − 1))2u′′′(ξ)]‖1 = u′′′(xn−1)o(Δt3/2).

Proof. Write Gi = ey(i) − 1, hn−1 = (hn−1(1), . . . , hn−1(m)) ∈ RM . We have

‖En−1[ηn(ey − 1)(hn−1 · (ey − 1))2u′′′(ξ)]‖1

≤ m maxi

∣∣∣∣∣∣En−1

⎡⎣ηn∑
j,k

hn−1(j)Gjhn−1(k)GkGiu
′′′(ξ)

⎤⎦∣∣∣∣∣∣
≤ m3maxi,j,k|En−1[ηnhn−1(j)Gjhn−1(k)GkGiu

′′′(ξ)]|
≤ m3maxi,j,k|En−1[ηnGjGkGiu

′′′(ξ)]|.

Recall (3.2); that is, ‖h‖1 ≤ 1 and 1 ≥ h(i) ≥ 0 for i = 1, . . . ,m.

|En−1[ηnGjGkGiu
′′′(ξ)]|(B.4)

≤ |En−1[ηnGjGkGi(u
′′′(ξ) − u′′′(xn−1))]| + u′′′(xn−1)|En−1[ηnGjGkGi]|

≤ |En−1[ηnGjGkGi(u
′′′(ξ) − u′′′(xn−1))]| + |En−1[ηnGjGkGi]|u′′′(xn−1).

The second term is u′′′(xn−1)o(Δt3/2) according to Theorem B.4.
Now consider the first term. We have

|u′′′(ξ) − u′′′(xn−1)| = (α− 1)(α− 2)|((1 + s · (eyn − 1))α−3 − 1)xα−3
n−1|

= u′′′(xn−1)|(1 + s · (eyn − 1))α−3 − 1|.

By Proposition B.1, we know

limΔt→0
1√
Δt

|(1 + s · (eyn − 1))α−3 − 1| = Constant, a.s.

Proposition B.1 also guarantees that the dominated convergence theorem works.
Hence we have

limΔt→0
1

u′′′(xn−1)Δt2
|En−1[ηnGiGjGk(u

′′′(ξ) − u′′′(xn−1))]|

≤ δ En−1

[
limΔt→0

|GiGjGk|
Δt3/2

|u′′′(ξ) − u′′′(xn−1)|√
Δtu′′′(xn−1)

]
= 0.
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So the first term of (B.4) is of order O(Δt2). Therefore,

‖En−1[ηn(ey − 1)(hn−1 · (ey − 1))2u′′′(ξ)]‖1

≤ m3 max
i,j,k

|En−1[ηnGjGkGiu
′′′(ξ)]| = u′′′(xn−1)o(Δt)3/2

= u′′′(xn−1)(O(Δt2) + o(Δt3/2)) = u′′′(xn−1)o(Δt3/2).

Define

λN : = 1, ηn := En

[
N∏

k=n

λk

]
,

h∗∗
n−1 =

1

1 − α
A−1

n−1,λn
En−1[(e

yn − 1)ηn],

λn−1 : = (1 + h∗∗
n−1 · (eyn − 1))α =

(
1 +

1

1 − α
(eyn − 1)′A−1

n−1,λn
En−1[(e

yn − 1)ηn]

)α
,

An−1,ηn
: = En−1

⎡⎢⎢⎢⎣ηn
⎛⎜⎜⎜⎝

(ey
(1)
n − 1)2 . . (ey

(m)
n − 1)(ey

(1)
n − 1)

(ey
(2)
n − 1)(ey

(1)
n − 1) . . (ey

(m)
n − 1)(ey

(2)
n − 1)

. . . .

(ey
(m)
n − 1)(ey

(1)
n − 1) . . (ey

(m)
n − 1)2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

for i = 1, . . . , N .
Theorem B.3. Let u(x) = xα

α , α < 1. Assume that h∗∗
n−1, n = 1, 2, . . . , N, defined

above are admissible; then we have the following:
(i) For all n, there exist positive constants D > 1

Δt s.t.

|En[λn] − 1|
Δt

< D.

(ii) For all n, Δt‖A−1
n−1,ηn

‖∞ ≤ C2, where C2 is a constant.
(iii) For all n,

(1 −DΔt)N−n ≤ ηn ≤ (1 + DΔt)N−n.

Proof. We prove the theorem for the case m = 1. It becomes much more complex
if m > 1; the idea of the proof is the same though.

Directly, we have

limΔt→0
|En[λn] − 1|

Δt
= limΔt→0

∣∣∣∣En

[
1

Δt
|(1 + (h∗∗

n )
′
(eyn+1 − 1))α − 1

]∣∣∣∣
= limΔt→0

1

Δt
|En[α(h∗∗

n )
′
(eyn+1 − 1)] + O(Δt)|

= limΔt→0

∣∣∣∣α(h∗∗
n )

′
En

[
α(eyn+1 − 1)

Δt

]∣∣∣∣+ C0

≤ limΔt→0

∥∥∥∥En

[
α(eyn+1 − 1)

Δt

]∥∥∥∥
1

+ C0 = D.

In the last inequality above, we use the assumption that h∗∗ are admissible (and
therefore bounded). (We may get the same conclusion by applying Proposition B.1.)

Therefore, λn satisfies (i).
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To prove (iii), note that λn is Fn+1 measurable, and so

ηn = En[λnηn+1] = En[λnλn+1 . . . λN−2EN [λN−1]]

≤ En[λn . . . λN−2](1 + DΔt)

≤ · · · ≤ (1 + DΔt)N−n.

Similarly, we obtain ηn > (1−DΔt)N−n. So we proved (iii). Applying (iii), we can
know that each of the diagonal elements of An−1,ηn

is of order O(Δt),
while nondiagonal elements are of order O(Δt)2. Hence, ‖An−1,ηn‖∞ are of order
1/O(Δt).

Theorem B.4. ηn defined in (4.10) or in Proposition 4.1 satisfies

En−1[ηn(eyn − 1)] = o(
√

Δt)

and

En−1[ηn(eyn − 1)3] = o(Δt3/2).

Proof. Write t = (n− 1)Δt. Fix t; then

En−1[ηn(eyn − 1)3] = E[ηn(eyn − 1)3|Ft].

By Theorem B.3 (iii), ηn is bounded, so there exists an upper limit as Δt → 0.
Denote the limit by η̄t. Then

¯limΔt→0
1√
Δt

En−1[ηn(eyn − 1)]

= ¯limΔt→0
1√
Δt

En−1[(ηn − η̄t)(e
yn − 1)] + En−1[η̄t(e

yn − 1)]

= En−1

[
¯limΔt→0(ηn − η̄t)

1√
Δt

(eyn − 1)

]
+ η̄tEn−1

[
1√
Δt

(eyn − 1)

]
= 0.

In the last step, we use the fact

ey
(i)
n −1

√
Δt

≤ Ce‖Z‖1(1 + ‖Z‖1)

for each i = 1, 2, . . . ,m, so that the dominated convergence theorem can be applied.
Therefore, we proved the first equality. Similarly, we can prove the second

one.
Theorem B.5. For either of the two following cases:
(i) the transition matrix P has identical columns;
(ii) all bi = (μ(ei) − r1m − diag(σ̂(ei)σ̂(ei)

′)/2)Δt, i = 1, . . . , d, are the same,
we have

En−1[ηn(eyn − 1)] = O(Δt),
En−1[ηn(eyn − 1)3] = O(Δt)2.

Proof. Again, we suppose m = 1 (there is only one stock).
Note that by the definition, ηn is the expected utility of terminal wealth given

xn = 1 and Fn, while the wealth process is associated with the strategy {h∗∗
n }.
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Intuitively, the expected utility of the terminal wealth should depend only on the
initial wealth and the initial state of the Markov chain. Since the initial wealth is
given as 1, ηn should be a functional of En[Yn]—the expected state of Markov chain
Yn at time n ∗Δt. To see this point, one may use the definition of ηn, λn and Lemma
2.2 to calculate ηn directly. For example,

ηN−1 = EN−1[λN−1]

= EN−1[(1 + h∗∗
N−1

′(eyN − 1))α]

(2.1)
=

∫
R

(1 + h∗∗
N−1

′(eyN − 1))α
d∑

k=1

Pr(YN−1 = ek|FN−1)φk(yN − bk)dyN .

We can see that ηN−1 is a function of EN−1[YN−1]. Recursively, we may conclude
that each ηn is a function of En[Yn].

Recalling En[Yn] ∈ [0, 1]d ⊂ Rd, we can rewrite (2.2) in a vector form,

H(yn) := En[Yn] =
PΦ(yn)En−1[Yn−1]

‖Φ(yn)En−1[Yn−1]‖1
,

where

Φ(yn) = diag{(2πf2
i )−

1
2 e

− (yn−bi)
2

f2
i , i = 1, . . . , d},

fi = μ(ei)
√

Δt, bi = (μ(ei) − r − σ̂(ei)
2/2)Δt.

Using the density function of yn in Lemma 2.1, we have

En−1[ηn(H(yn))yn]

=

∫
R
ηn(H(yn)) yn

d∑
k=1

Pr(Yn−1 = ek|Fn−1)φk(yn − bk)dyn

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)

∫
R
ηn(H(bk + fkZn))

· (bk + fkZn) φk(bk + fkZn − bk)d(fkZn) (change variable).

Note bi/Δt = Constant, fi/
√

Δt = Constant for i = 1, . . . , d. Therefore, we have

En−1[ηn(H(yn))]

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)f
2
k

∫
R
ηn(H(bk + fkZn)) Zn φk(fkZn)dZn + O(Δt)

=

d∑
k=1

Pr(Yn−1 = ek|Fn−1)

∫
R
ηn(H(bk + fkZn)) Zn

fk√
2π

e−Z2
n/2dZn + O(Δt).

One can see that if H(bk + fkZn) is an even function of Zn, then∫
R
ηn(H(bk + fkZn)) Zn

fk√
2π

e−Z2
n/2dZn = 0;

therefore,

(B.5) En−1[ηn(H(yn))] = O(Δt).
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For the case (i) given in the condition of the theorem, one can easily check that
the value of H depends only on P—the transition matrix. In fact, H equals one
column of P which is constant, so the theorem is true for this case.

For the case (ii), we can see that H(bk + fkZn) is even by applying the condition
bk = bj , k 	= j, in the definition of H(yn).

Therefore,

En−1[ηnyn] = O(Δt),

and

En−1[ηn(eyn − 1)] = En−1[ηnyn] + O(Δt) = O(Δt).

Similarly, we can prove

En−1[ηn(eyn − 1)3] = O(Δt)2.
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A SMALL-GAIN THEOREM FOR A WIDE CLASS OF FEEDBACK
SYSTEMS WITH CONTROL APPLICATIONS∗
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Abstract. A small-gain theorem, which can be applied to a wide class of systems that includes
systems satisfying the weak semigroup property, is presented in the present work. The result gener-
alizes all existing results in the literature and exploits notions of weighted, uniform, and nonuniform
input-to-output stability properties. Applications to partial state feedback stabilization problems
with sampled-data feedback applied with zero order hold and positive sampling rate are also pre-
sented.
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1. Introduction. A common feature of stability analysis for complex inter-
connected systems is the application of small-gain results. Small-gain theorems for
continuous-time finite-dimensional systems expressed in terms of “nonlinear gain func-
tions” have a long history (see [14, 32, 51, 52] and the references therein). A nonlinear
small-gain result was presented in [14], which allowed numerous applications to feed-
back stabilization problems. The methodology presented in [14] was followed by many
researchers (see [15, 16, 22, 24, 47, 50]). A common characteristic of current research
on nonlinear small-gain results in mathematical systems theory is the use of the no-
tion of uniform input-to-state stability (ISS), introduced by Sontag in [44] for systems
described by ordinary differential equations, or the notion of uniform input-to-output
stability (IOS), introduced by Sontag and Wang in [46] (also see [14]) and extended
in [10]. Small-gain theorems for discrete-time systems can be found in [17, 18, 19].

Extensions of small-gain results were presented recently in the literature. In
[12, 13] less conservative small-gain conditions were presented for finite-dimensional
systems. In [2, 3] matrix gain functions were used for the study of large scale finite-
dimensional systems. A nonuniform in time small-gain theorem for continuous-time
finite-dimensional systems was presented in [22]. Moreover, in [24, 47] small-gain
results for wide classes of systems were provided. The classes of systems considered
in [24, 47] satisfy the classical semigroup property (see [24, 25, 26, 45]). Small-gain
results for hybrid systems satisfying the classical semigroup property were recently
presented in [30].

An important feature of certain hybrid systems is that they do not satisfy the
classical semigroup property: For example, the solution x(t) of a system Σ with initial
condition x(t0) = x0 does not coincide (in general) for t ≥ t1 > t0 with the solution
x̃(t) of Σ with initial condition x̃(t1) = x(t1). Such systems arise when sampled-data
feedback laws are applied to finite-dimensional control systems or when numerical
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discretization schemes are applied for the numerical solution of a system of ordinary
differential equations. However, from a mathematical point of view, these structures
cannot be considered as “systems” in the sense given in [20, 24, 45]. This feature
has important consequences, since the researcher cannot use the tools developed for
systems theory and mathematical control theory. In [25, 26] the notion of a system
was relaxed so that the semigroup property does not hold in a strict sense. Moreover,
the modification introduced allows the results obtained in [24] to hold. Thus we are
in a position to develop a complete stability theory, which covers the systems that
satisfy the so-called “weak semigroup property.”

The purpose of the present work is to present a small-gain result (Theorem 3.1
and Corollary 3.4), which

∗ can be applied to a very general class of systems (including systems that do
not satisfy the classical semigroup property),

∗ unifies all existing results, which make use of uniform or nonuniform and
weighted notions of ISS or IOS,

∗ can be used directly for the solution of sampled-data feedback stabilization
problems or problems of numerical stability of discretization schemes, and

∗ can be applied to uncertain time-varying systems with vanishing or non-
vanishing perturbations.

We believe that the main result of the present work is a valuable tool for estab-
lishing stability and will be used frequently in future research. However, we would
like to emphasize the theoretical significance of our main result: It is a method for
establishing qualitative properties expressed in a very general framework that unifies
works from various fields as well as different stability notions. The results presented
in the paper can be extended without much difficulty to the case of local stability
notions.

The contents of this paper are presented as follows. In section 2 we provide
the definitions of the notions used and several examples of systems that have the
“boundedness-implies-continuation” (BIC) property. In section 3 the main result is
stated and proved. In section 4, it is shown how the main result of the present
work can be applied to an ISS stabilization problem of a certain class of systems
with partial-state sampled-data feedback. It should be emphasized that sampled-
data control systems cannot be handled with small-gain results that have appeared
so far in the literature, since sampled-data control systems do not satisfy the classical
semigroup property. Finally, section 5 contains the conclusions of the paper. The
proofs of some basic results are given in the appendix.

Notations. Throughout this paper we adopt the following notations:
∗ We denote by K+ the class of positive, continuous functions defined on �+.

We say that a function ρ : �+ → �+ is of class N , if ρ is continuous, nonde-
creasing, with ρ(0) = 0. By K we denote the set of positive definite, increasing
and continuous functions. We say that a positive definite, increasing and con-
tinuous function ρ : �+ → �+ is of class K∞ if lims→+∞ ρ(s) = +∞. By KL
we denote the set of all continuous functions σ = σ(s, t) : �+ × �+ → �+

with the properties: (i) for each t ≥ 0 the mapping σ( · , t) is of class K; (ii) for
each s ≥ 0, the mapping σ(s, · ) is nonincreasing with limt→+∞ σ(s, t) = 0.

∗ By ‖ ‖X , we denote the norm of the normed linear space X . By | | we de-
note the Euclidean norm of �n. Let U ⊆ X , with 0 ∈ U . By BU [0, r] :=
{u ∈ U ; ‖u‖X ≤ r } we denote the intersection of U ⊆ X with the closed
sphere of radius r ≥ 0, centered at 0 ∈ U .
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∗ Let a set U be a subset of a normed linear space U , with 0 ∈ U . By M(U)
we denote the set of all locally bounded functions u : �+ → U . By u0 we
denote the identically zero input, i.e., the input that satisfies u0(t) = 0 ∈ U
for all t ≥ 0. If U ⊆ �n, then L∞

loc(�+;U) denotes the space of measurable,
locally bounded functions u : �+ → U .

The following convention will be adopted throughout the paper: The Cartesian
product of two normed linear spaces C := X × Y will be considered to be endowed

with the norm ‖(x, y)‖C :=
√

‖x‖2
X + ‖y‖2

Y , unless stated otherwise. Furthermore,

our results can be extended to the case of measurable and locally essentially bounded
inputs (where the “sup” operator is to be understood as “essential supermum”).

2. Input-to-output stability in a system-theoretic framework. In this
section we first give the notion of a control system with outputs. We emphasize that
we consider control systems which do not necessarily satisfy the classical semigroup
property (see [20, 24, 45]).

Definition 2.1. A control system Σ := (X ,Y,MU ,MD, φ, π,H) with outputs
consists of

(i) a set U (control set) which is a subset of a normed linear space U , with 0 ∈ U ,
and a set MU ⊆ M(U) (allowable control inputs) which contains at least the
identically zero input u0,

(ii) a set D (disturbance set) and a set MD ⊆ M(D), which is called the “set of
allowable disturbances,”

(iii) a pair of normed linear spaces X ,Y called the “state space” and the “output
space,” respectively,

(iv) a continuous map H : �+×X ×U → Y that maps bounded sets of �+×X ×U
into bounded sets of Y, called the “output map,”

(v) a set-valued map �+ × X × MU × MD � (t0, x0, u, d) → π(t0, x0, u, d) ⊆
[t0,+∞), with t0 ∈ π(t0, x0, u, d) for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD,
called the set of “sampling times,” and

(vi) the map φ : Aφ → X , where Aφ ⊆ �+ × �+ × X × MU × MD, called the
“transition map,” which has the following properties:
(1) Existence: For each (t0, x0, u, d) ∈ �+ × X × MU × MD, there exists

t > t0 such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ.
(2) Identity property: For each (t0, x0, u, d) ∈ �+ ×X ×MU ×MD, it holds

that φ(t0, t0, x0, u, d) = x0.
(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ, with t > t0, and for each

(ũ, d̃) ∈ MU ×MD, with (ũ(τ), d̃(τ)) = (u(τ), d(τ)) for all τ ∈ [t0, t], it
holds that (t, t0, x0, ũ, d̃) ∈ Aφ, with φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) Weak semigroup property: There exists a constant r > 0 such that for
each t ≥ t0 with (t, t0, x0, u, d) ∈ Aφ:
(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t];
(b) φ(t, τ, φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩

π(t0, x0, u, d);
(c) if (t+r, t0, x0, u, d) ∈ Aφ, then it holds that π(t0, x0, u, d)∩[t, t+r] =

∅;
(d) for all τ ∈ π(t0, x0, u, d), with (τ, t0, x0, u, d) ∈ Aφ, we have π(τ, φ(τ,

t0, x0, u, d), u, d) = π(t0, x0, u, d) ∩ [τ,+∞).
In order to develop stability notions for a control system with outputs we need to

clarify the notions of an equilibrium point as well as certain other important notions
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and classes of systems that characterize the dynamic behavior of the system (see
[24, 25]).

Definition 2.2. Let T > 0. A control system Σ := (X ,Y,MU ,MD, φ, π,H) with
outputs is called T-periodic, if:

(a) H(t + T, x, u) = H(t, x, u) for all (t, x, u) ∈ �+ ×X × U,
(b) for every (u, d) ∈ MU × MD and integer k there exist inputs PkTu ∈ MU ,

PkT d ∈ MD, with (PkTu) (t) = u (t + kT ) and (PkT d) (t) = d (t + kT ), for all
t + kT ≥ 0,

(c) for each (t, t0, x0, u, d) ∈ Aφ, with t ≥ t0, and for each integer k, with t0 −
kT ≥ 0 it follows that (t− kT, t0 − kT, x0, PkTu, PkT d) ∈ Aφ and π(t0 −
kT, x0, PkTu, PkT d) = ∪τ∈π(t0,x0,u,d){τ − kT}, with φ(t, t0, x0, u, d) = φ(t −
kT, t0 − kT, x0, PkTu, PkT d).

Definition 2.3. A control system Σ := (X ,Y,MU ,MD, φ, π,H) with outputs is
called time-invariant or autonomous, if it is T-periodic for all T > 0.

Definition 2.4. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H) with
outputs. We say that system Σ

(i) has the BIC property if for each (t0, x0, u, d) ∈ �+ × X × MU × MD, there
exists a maximal existence time, i.e., there exists tmax := tmax(t0, x0, u, d) ∈
(t0,+∞], such that Aφ = ∪(t0,x0,u,d)∈�+×X×MU×MD

[t0, tmax)×{(t0, x0, u, d)}.
In addition, if tmax < +∞, then for every M > 0 there exists t ∈ [t0, tmax),
with ‖φ(t, t0, x0, u, d)‖X > M ; and

(ii) is robustly forward complete (RFC) from the input u ∈ MU if it has the BIC
property and for every r ≥ 0, T ≥ 0, it holds that

sup{‖φ(t0 + s, t0, x0, u, d)‖X ;
u ∈ M(BU [0, r]) ∩MU , s ∈ [0, T ], ‖x0‖X ≤ r, t0 ∈ [0, T ], d ∈ MD} < +∞.

Definition 2.5. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H), and
suppose that H(t, 0, 0) = 0 for all t ≥ 0. We say that 0 ∈ X is a robust equilibrium
point from the input u ∈ MU for Σ if

(i) for every (t, t0, d) ∈ �+ ×�+ ×MD, with t ≥ t0, it holds that φ(t, t0, 0, u0, d)
= 0; and

(ii) for every ε > 0, T, h ∈ �+ there exists δ := δ(ε, T, h) > 0 such that for all
(t0, x, u) ∈ [0, T ]×X ×MU , τ ∈ [t0, t0 + h], with ‖x‖X + supt≥0 ‖u(t)‖U < δ,
it holds that (τ, t0, x, u, d) ∈ Aφ for all d ∈ MD and

sup{‖φ(τ, t0, x, u, d)‖X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

Remark 2.6. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H) with the
BIC property. It follows that Σ satisfies the (classical) semigroup property (see [24,
45]) if the weak semigroup property holds with π(t0, x0, u, d) = [t0, tmax), where tmax ∈
(t0,+∞] is the maximal existence time of the transition map for Σ that corresponds
to (t0, x0, u, d) ∈ �+ ×X ×MU ×MD, i.e.,

“for each t ∈ [t0, tmax) it holds that
φ(t, τ, φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t]”

(classical semigroup property).

The following example shows the difference between the classical semigroup prop-
erty and the weak semigroup property for simple systems.
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Example 2.7. Consider the following system:

ẋ(t) = −x(τi) , t ∈ [τi, τi+1),
τi+1 = τi + 1,
x(t) ∈ �,

(2.1)

with initial condition x(t0) = x0 ∈ � and τ0 = t0 ≥ 0. Such systems will be char-
acterized as hybrid systems with a sampling partition generated by the system (see
Example 2.11), and they satisfy the BIC property. In this case we can determine
analytically the transition map for all t ≥ t0 (u, d in this example are irrelevant):

φ(t, t0, x0) =

{
(1 − t + t0)x0 for t ∈ [t0, t0 + 1),
0 for t ≥ t0 + 1.

It is clear that the state space is � and that the classical semigroup property does not
hold for this system. On the other hand, the weak semigroup property holds for this
system with π(t0, x0) = {t0, t0 + 1, t0 + 2, . . .}. Notice that the set of sampling times
(the sampling partition) π(t0, x0) = {t0, t0 + 1, t0 + 2, . . .} is generated by the system
itself and depends on the initial condition. Furthermore, according to Definition 2.3,
system (2.1) is autonomous.

Next, consider the following system:

ẋ(t) = −x(τi) , t ∈ [τi, τi+1),
x(t) ∈ � , π = {τi}∞i=0 = {0, 1, 2, . . .}.(2.2)

Such systems will be characterized as hybrid systems with impulses at fixed times (see
Example 2.12), and they satisfy the BIC property. Notice that if the initial time t0
is not a member of the partition π = {τi}∞i=0 = {0, 1, 2, . . .}, then it is not possible to
determine the solution of (2.2) based only on the initial condition x(t0) = x0 ∈ � and
the transition map is not well-defined. In order to be able to determine the solution
of (2.2), we need to know x(t0), x([t0]) = x0 = (x1,0, x2,0) ∈ �2 (where [t0] denotes
the integer part of t0). Indeed, we have

x(t) =

⎧⎨⎩
x1,0 − (t− t0)x2,0, t0 ≤ t < [t0] + 1,

(2 − t + [t0]) (x1,0 − ([t0] + 1 − t0)x2,0) , [t0] + 1 ≤ t < [t0] + 2, if t0 /∈ π,
0, t ≥ [t0] + 2,

x(t) =

{
(1 − t + t0)x1,0 for t ∈ [t0, t0 + 1),

0 for t ≥ t0 + 1,
if t0 ∈ π.

In this case the state space is �2, and the state of (2.2) at time t ≥ t0 is
φ(t, t0, x0) = (x(t), x([t])) ∈ �2. Furthermore, notice that the classical semigroup
property holds and that the partition π = {τi}∞i=0 = {0, 1, 2, . . .} is fixed and does not
depend on the initial condition. Finally, according to Definitions 2.2 and 2.3, system
(2.2) is T -periodic, with T = 1, but it is not autonomous.

It should be emphasized that there are systems which do not satisfy the weak
semigroup property (e.g., systems described by integrodifferential equations studied

in [29], such as ẋ(t) = −x(t)+
∫ t

t0
sin (tx(s)) ds, x(t) ∈ �, with initial condition x(t0) =

x0 ∈ �). However, many classes of systems used in physics and engineering satisfy the
weak semigroup property and the BIC property and have a robust equilibrium point.
The following examples provide classes of control systems which satisfy the weak
semigroup property and the BIC property and possess a robust equilibrium point.
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The examples help the reader to understand that the notions defined by Definitions
2.4–2.5 are typical for a wide class of systems under minimal assumptions.

Example 2.8 (finite-dimensional control systems described by ordinary differential
equations (ODEs)). Consider the class of systems described by ODEs of the form

ẋ(t) = f(t, x(t), u(t), d(t)),
Y (t) = H(t, x(t), u(t)),
x(t) ∈ �n , u(t) ∈ U , d(t) ∈ D , t ≥ t0,

(2.3)

where U ⊆ �m, D ⊆ �l, with 0 ∈ U , and f : �+ × �n × U × D → �n, H : �+ ×
�n × U → �k are two locally bounded mappings, with H(t, 0, 0) = 0, f(t, 0, 0, d) = 0
for all (t, d) ∈ �+ ×D, that satisfy the following hypotheses.

(A1) The mapping (x, u, d) → f(t, x, u, d) is continuous for each fixed t ≥ 0,
measurable with respect to t ≥ 0 for each fixed (x, u, d) ∈ �n × U ×D and such that
for every pair of bounded sets I ⊆ �+, S ⊂ �n × U , there exists a constant L ≥ 0
such that

(x− y)
′
(f(t, x, u, d) − f(t, y, u, d)) ≤ L |x− y|2

∀t ∈ I , ∀(x, u, y, u) ∈ S × S , ∀d ∈ D.

(A2) The mapping H : �+ ×�n × U → �k is continuous.
(A3) There exist functions γ ∈ K+, a ∈ K∞ such that |f(t, x, u, d)| ≤ γ(t)a(|x|+

|u|) for all (t, x, u, d) ∈ �+ ×�n × U ×D.
The theory of ordinary differential equations guarantees that, under hypotheses

(A1)–(A3), for each (t0, x0) ∈ �+ × �n and for each pair of measurable and locally
bounded inputs (u, d) ∈ M(U)×M(D), there exists a unique absolutely continuous
mapping x(t) that satisfies a.e. the differential equation (2.3) with initial condition
x(t0) = x0 ∈ �n. Moreover, certain results from the theory of ordinary differential
equations guarantee that (2.3) is a control system Σ := (�n,�k,MU ,MD, φ, π,H)
with outputs that satisfies the BIC property with MU ,MD the sets of all measur-
able and locally bounded mappings u : �+ → U , d : �+ → D, respectively. Fur-
thermore, the classical semigroup property is satisfied for this system; i.e., we have
π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is the maximal existence time of the so-
lution. Finally, hypotheses (A1)–(A3) guarantee that 0 ∈ �n is a robust equilibrium
point from the input u ∈ MU for Σ.

The following example presents a class of neutral functional equations described
by continuous-time difference equations. Such systems were recently studied in [26,
42]. The importance of functional difference equations in applications is explained in
[42].

Example 2.9 (control systems described by functional difference equations (FDEs)).
Consider the class of systems described by FDEs of the form

x(t) = f(t, Tr−τ(t)(t− τ(t))x, u(t), d(t)),
Y (t) = H(t, Tr(t)x, u(t)),
x(t) ∈ �n , Y (t) ∈ Y , u(t) ∈ U , d(t) ∈ D , t ≥ t0,

(2.4)

where r > 0 is a constant, τ : �+ → (0,+∞) is a positive continuous function, with
supt≥0 τ(t) ≤ r, D ⊂ �l, U ⊆ �m, with 0 ∈ U , are nonempty sets, Tr−τ(t)(t −
τ(t))x := x(t − τ(t) + θ); θ ∈ [−r + τ(t), 0], Tr(t)x := x(t + θ); θ ∈ [−r, 0] and H,
f : Ω × U × D → �n, where Ω = ∪t≥0{t} × Ft and Ft denotes the set of bounded
functions x : [−r + τ(t), 0] → �n, are locally bounded mappings which satisfy the
following hypotheses.
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(R1) There exist functions γ ∈ K+, a ∈ K∞ such that |f(t, Tr−τ(t)(−τ(t))x, u, d)|
≤ γ(t)a(supθ∈[−r,−τ(t)] |x(θ)| + |u|) for all (t, x, u, d) ∈ �+ × X × U ×D, where X is
the normed linear space of the bounded functions x : [−r, 0] → �n, with ‖x‖X :=
supθ∈[−r,0] |x(θ)|.

(R2) The output map H : �+ ×X × U → Y, where Y is a normed linear space,
is a continuous mapping that maps bounded sets of �+ ×X ×U into bounded sets of
Y with H(t, 0, 0) = 0 for all t ≥ 0.

It should be clear that, under the hypotheses stated above, for each (t0, x0) ∈
�+×X and for each pair of locally bounded functions u : �+ → U , d : �+ → D, there
exists a unique locally bounded mapping x(t) that satisfies the difference equations
(2.4) with initial condition x(t0+θ) = x0(θ); θ ∈ [−r, 0]. Consequently, (2.4) describes
a control system Σ := (X ,Y,MUMD, φ, π,H), with outputs and evolution map φ
defined by φ(t, t0, x0, u, d) = x(t + θ); θ ∈ [−r, 0], where U := �m, MU the set of all
locally bounded functions u : �+ → U and MD the set of all functions d : �+ → D.

Systems described by functional difference evolution equations of the form (2.4)
are considered in [6, 26, 42]. Working exactly in the same way as in [26], it can be
shown that system (2.4) is RFC from the input u ∈ MU and that 0 ∈ X is a robust
equilibrium point from the input u ∈ MU for system (2.4).

Notice that a major advantage of allowing the output to take values in abstract
normed linear spaces is that we are in a position to consider:

• outputs with no delays, e.g., Y (t) = h(t, x(t), u(t)), with Y = �k,
• outputs with discrete or distributed delay, e.g., Y (t) = h(t, x(t), x(t−r), u(t))

or Y (t) = supθ∈[t−r,t] h(t, θ, x(θ), u(t)), with Y = �k, and
• functional outputs with memory, e.g., Y (t) = h(t, θ, x(t + θ)); θ ∈ [−r, 0] or

the identity output Y (t) = Tr(t)x = x(t + θ); θ ∈ [−r, 0], with Y = X .
Finally, notice that the classical semigroup property is satisfied for this system;

i.e., we have π(t0, x0, u, d) = [t0,+∞).
The following example is an immediate consequence of Theorems 2.2 and 3.2

in [6], concerning continuous dependence on initial conditions and continuation of
solutions of retarded functional differential equations, respectively.

Example 2.10 (control systems described by retarded functional differential
equations (RFDEs)). Consider the class of systems described by RFDEs of the form

ẋ(t) = f(t, Tr(t)x, u(t), d(t)),
Y (t) = H(t, Tr(t)x, u(t)),
x(t) ∈ �n , u(t) ∈ U , d(t) ∈ D , t ≥ t0,

(2.5)

where Tr(t)x := x(t+θ); θ ∈ [−r, 0], D ⊆ �l is a nonempty set, U ⊆ �m is a nonempty
set, with 0 ∈ U , f : �+×C0([−r, 0];�n)×U×D → �n, H : �+×C0([−r, 0];�n)×U →
Y (Y is a normed linear space) are locally bounded mappings, with f(t, 0, 0, d) = 0,
H(t, 0, 0) = 0 for all (t, d) ∈ �+ ×D, that satisfy the following hypotheses.

(S1) The mapping (x, u, d) → f(t, x, u, d) is continuous for each fixed t ≥ 0 and
such that, for every bounded I ⊆ �+ and for every bounded S ⊂ C0([−r, 0];�n)×U ,
there exists a constant L ≥ 0 such that

(x(0) − y(0))
′
(f(t, x, u, d) − f(t, y, u, d)) ≤ L max

τ∈[−r,0]
|x(τ) − y(τ)|2

∀t ∈ I,∀(x, u, y, u) ∈ S × S,∀d ∈ D.

(S2) There exist functions γ ∈ K+, a ∈ K∞ such that |f(t, x, u, d)| ≤ γ(t)a(‖x‖r+
|u|) for all (t, x, u, d) ∈ �+×C0([−r, 0];�n)×U×D, where ‖x‖r denotes the sup-norm
of the space C0([−r, 0];�n), i.e., ‖x‖r := maxθ∈[−r,0] |x(θ)|.
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(S3) There exists a countable set A ⊂ �+, which is either finite or A = {tk; k =
1, . . . ,∞}, with tk+1 > tk > 0 for all k = 1, 2, . . . and lim tk = +∞, such that the
mapping (t, x, u, d) ∈ (�+\A) × C0([−r, 0];�n) × U × D → f(t, x, u, d) is continu-
ous. Moreover, for each fixed (t0, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D, we have
limt→t+0

f(t, x, u, d) = f(t0, x, u, d).

(S4) The mapping H : �+ × C0([−r, 0];�n) × U → Y is a continuous mapping
that maps bounded sets of �+ × C0([−r, 0];�n) × U into bounded sets of Y.

The theory of retarded functional differential equations guarantees that under
hypotheses (S1)–(S4), for each (t0, x0) ∈ �+ × C0([−r, 0];�n) and for each pair of
measurable and locally bounded inputs (u, d) ∈ M(U)×M(D), there exists a unique
absolutely continuous mapping x(t) that satisfies a.e. the differential equation (2.5)
with initial condition x(t0) = x0 ∈ C0([−r, 0];�n). Moreover, certain results from
the theory of retarded functional differential equations (Theorems 2.2 and 3.2 in [6])
guarantee that (2.5) is a control system Σ := (C0([−r, 0];�n),Y,MU ,MD, φ, π,H)
with outputs that satisfies the BIC property with MU ,MD the sets of all measur-
able and locally bounded mappings u : �+ → U , d : �+ → D, respectively. Fur-
thermore, the classical semigroup property is satisfied for this system; i.e., we have
π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is the maximal existence time of the so-
lution. Finally, hypotheses (S1)–(S4) guarantee that 0 ∈ C0([−r, 0];�n) is a robust
equilibrium point from the input u ∈ MU for Σ. Again notice that a major advantage
of allowing the output to take values in abstract normed linear spaces is that we are
in a position to consider various output cases (see previous example).

The following example presents an important class of systems that does not satisfy
the classical semigroup property.

Example 2.11 (hybrid systems with sampling partition generated by the system).
Consider the class of systems described by impulsive differential equations of the form

ẋ(t) = f(t, τi, x(t), x(τi), u(t), u(τi), d(t), d(τi)), t ∈ [τi, τi+1),
τ0 = t0, τi+1 = τi + h(τi, x(τi), u(τi), d(τi)) , i = 0, 1, . . . ,

x(τi+1) = R

(
τi, lim

t→τ−
i+1

x(t), x(τi), u(τi+1), u(τi), d(τi+1), d(τi)

)
,

Y (t) = H(t, x(t), u(t)),

(2.6)

where D ⊆ �l, U ⊆ �m is a closed set, with 0 ∈ U , h : �+ ×�n ×U ×D → (0, r] is a
positive function which is bounded by a certain constant r > 0, f : �+×�+×�n×�n×
U×U×D×D → �n, H : �+×�n×U → �p, and R : �+×�n×�n×U×U×D×D →
�n is a triplet of vector fields that satisfy the following hypotheses.

(P1) f(t, τ, x, x0, u, u0, d, d0) is measurable with respect to t ≥ 0, continuous with
respect to (x, d, u) ∈ �n ×D × U , and such that for every bounded S ⊂ �+ × �+ ×
�n ×�n × U × U there exists a constant L ≥ 0 such that

(x− y)
′
(f(t, τ, x, x0, u, u0, d, d0) − f(t, τ, y, x0, u, u0, d, d0)) ≤ L |x− y|2

∀(t, τ, x, x0, u, u0, d, d0) ∈ S ×D ×D , ∀(t, τ, y, x0, u, u0, d, d0) ∈ S ×D ×D.

(P2) There exist functions γ ∈ K+, a ∈ K∞ such that

|f(t, τ, x, x0, u, u0, d, d0)| ≤ γ(t) a (|x| + |x0| + |u| + |u0|)
∀(τ, u, u0, d, d0, x, x0) ∈ �+ × U × U ×D ×D ×�n ×�n, ∀t ≥ τ,

|R(t, x, x0, u, u0, d, d0)| ≤ γ(t) a (|x| + |x0| + |u| + |u0|)
∀(t, u, u0, d, d0, x, x0) ∈ �+ × U × U ×D ×D ×�n ×�n.
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(P3) H : �+ × �n × U → �p is a continuous map, with H(t, 0, 0) = 0 for all
t ≥ 0.

(P4) There exist a positive, continuous, and bounded function hl : �+×�n×U →
(0, r] and a partition π = {Ti}∞i=0 of �+, i.e., an increasing sequence of times with
T0 = 0 and Ti → +∞, such that

h(t, x, u, d) ≥ min {pπ(t) − t , hl(t, x, u) } ∀(t, x, u, d) ∈ �+ ×�n × U ×D,

where pπ(t) := min{T ∈ π; t < T}.
Hybrid systems of the form (2.6) under hypotheses (P1)–(P4) are considered in

[25, 26], where it is shown that, for each (t0, x0) ∈ �+ × �n and for each pair of
measurable and locally bounded inputs u : �+ → U and d : �+ → D, there exists a
unique piecewise absolutely continuous function t → x(t) ∈ �n with initial condition
x(t0) = x0, which is produced by the following algorithm:

Step i:
1. Given τi and x(τi), calculate τi+1 using the equation τi+1 = τi + h(τi, x(τi),

u(τi), d(τi)).
2. Compute the state trajectory x(t), t ∈ [τi, τi+1), as the solution of the differ-

ential equation ẋ(t) = f(t, τi, x(t), x(τi), u(t), u(τi), d(t), d(τi)).
3. Calculate x(τi+1) using the equation x(τi+1) = R(τi, limt→τ−

i+1
x(t), x(τi),

u(τi+1), u(τi), d(τi+1), d(τi)).
4. Compute the output trajectory Y (t), t ∈ [τi, τi+1], using the equation Y (t) =

H(t, x(t), u(t)).
For i = 0 we take τ0 = t0 and x(τ0) = x0 (initial condition).
In [25] it is shown that system (2.6) under hypotheses (P1)–(P4) is a control

system Σ := (X ,Y,MU ,MD, φ, π,H) with outputs with the BIC property for which
0 ∈ �n is a robust equilibrium point from the input u ∈ MU . Particularly, we have
X = �n, Y = �p, U = �m, and MU , MD the sets of measurable and locally bounded
inputs u : �+ → U and d : �+ → D, respectively. The set π(t0, x0, u, d) ⊆ [t0,+∞)
involved in the weak semigroup property consists of the sequence π = {τ0, τ1, . . .} gen-
erated by the recursive relation τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 0, 1, . . . , with
τ0 = t0. Notice that the control system (2.6) fails to satisfy the classical semigroup
property.

If h(τ+T, x, u, d) = h(τ, x, u, d), f(t+T, τ+T, x, x0, u, u0, d, d0) = f(t, τ, x, x0, u, u0,
d, d0), R(τ+T, x, x0, u, u0, d, d0) =R(τ, x, x0, u, u0, d, d0), and H(t+T, x, u) =H(t, x, u)
for certain T > 0 and for (t, τ, u, u0, d, d0, x, x0) ∈ �+×�+×U×U×D×D×�n×�n,
with t ≥ τ , then system (2.6) is T-periodic. Moreover, if h(τ, x, u, d) = h(x, u, d),
f(t, τ, x, x0, u, u0, d, d0) = f(t−τ, x, x0, u, u0, d, d0), R(τ, x, x0, u, u0, d, d0) = R(x, x0, u,
u0, d, d0), and H(t, x, u) = H(x, u) for (t, τ, u, u0, d, d0, x, x0) ∈ �+ × �+ × U × U ×
D ×D ×�n ×�n, with t ≥ τ , then system (2.6) is autonomous.

Systems of the form (2.6) under hypotheses (P1)–(P4) arise frequently in certain
applications in mathematical control theory and numerical analysis. Specifically, they
arise when

(i) a (not necessarily continuous) sampled-data feedback law (with a possibly
variable sampling rate) is applied to a finite-dimensional control system. For
example, state-dependent sampling rates were related in [4] with the classi-
cal work on discontinuous stabilizability in [1], while feedback stabilization
problems with zero order hold and a constant positive sampling rate were
considered in [33, 34, 35, 36, 37, 38, 40] and time-varying sampling rates were
considered in [8, 9],
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(ii) a synchronous controller switching strategy is applied to a finite-dimensional
control system (see [31, 43]), and

(iii) a numerical discretization method (with possibly variable integration step
sizes) is applied in order to obtain the numerical solution of a given system of
ordinary differential equations; see [5, 48] for the case of constant integration
step sizes and [23, 25] for the case of variable integration step sizes.

For a unified description of the above problems, see [25, 26].
In contrast with the previous example, it should be noted that hybrid systems

with impulses at fixed times satisfy the classical semigroup property. The following
example illustrates this case.

Example 2.12 (hybrid systems with impulses at fixed times). Consider the class
of systems described by impulsive differential equations of the form

ẋ(t) = f (t, d(t), d (τi) , x(t), x (τi) , u(t), u (τi)) , τi ≤ t < τi+1,

x(τi+1) = R

(
τi, lim

t→τ−
i+1

x(t), x(τi), u(τi+1), u(τi), d(τi+1), d(τi)

)
,

Y (t) = H(t, x(t), u(t)),
x(t) ∈ �n , Y (t) ∈ �k , u(t) ∈ V ⊆ �m , t ≥ 0 , d(t) ∈ D,

(2.7)

where D ⊆ �l, V ⊆ �m is a closed set, with 0 ∈ V , π = {τi}∞i=0 is a partition of
�+with diameter r > 0, i.e., an increasing sequence of times with τ0 = 0, sup{τi+1−τi;
i = 0, 1, 2, . . .} = r, and τi → +∞, d(t) represents the disturbance vector or the
vector of time-varying uncertainties taking values in the set D ⊂ �l, Y (t) represents
the output of the system, and u(t) ∈ V represents the input vector. A wide class of
systems described by impulsive differential equations with impulses at fixed times, as
well as hybrid systems of the form:

ẋ(t) = f(t, x(t), u(t), w(i)), τi ≤ t < τi+1,
w(i) = g(i, x(τi), u(τi)),

(2.8)

where π = {τi}∞i=0 is a partition of �+ of diameter r > 0, can be represented by the
time-varying case (2.7). Fundamental properties of the solutions of systems of the
form (2.8) are studied in [28, 29].

Consider system (2.7) under the following assumptions.
(Q1) π = {τi}∞i=0 is a partition of �+ with finite diameter r > 0, i.e., an increasing

sequence of times with τ0 = 0, sup{τi+1 − τi; i = 0, 1, 2, . . .} = r, and τi → +∞.
(Q2) H : �+ ×�n × V → �k is continuous, with H(t, 0, 0) = 0, for all t ≥ 0.
(Q3) f(t, d, d0, x, x0, u, u0) is measurable with respect to t ≥ 0, continuous with

respect to (x, d, u) ∈ �n×D×V , and such that, for every compact S ⊂ �n×�n×V ×V
and for every compact I ⊂ �+, there exists a constant L ≥ 0 such that

(x− y)
′
(f(t, d, d0, x, x0, u, u0) − f(t, d, d0, y, x0, u, u0)) ≤ L |x− y|2

∀t ∈ I , ∀(d, d0) ∈ D ×D , ∀(x, x0, u, u0) ∈ S , ∀(y, x0, u, u0) ∈ S.

(Q4) There exist functions γ ∈ K+, a ∈ K∞ such that |f(t, d, d0, x, x0, u, u0)| ≤
γ(t)a|x0| + |x| + |u| + |u0|), |R(t, x, x0, u, u0, d, d0)| ≤ γ(t)a(|x| + |x0| + |u| + |u0|) for
all (t, d, d0, x, x0, u, u0) ∈ �+ ×D ×D ×�n ×�n × V × V .

Systems of the form (2.7) with R(t, x, x0, u, u0, d, d0) ≡ x (impulse free case) were
considered in [27]. Special classes of impulsive systems of the form (2.7) were studied
in [7]. Using the method of steps on consecutive intervals, it is clear that system (2.7)
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under hypotheses (Q1)–(Q4) defines a control system Σ := (X ,Y,MU ,MD, φ, π,H)
with outputs and the BIC property, with state space X = �n × �n, output space
Y = �k, the set of structured uncertainties MD being the set of mappings t ∈ �+ →
d(t) = {d̃(t + θ); θ ∈ [−r, 0]}, where d̃ : � → D is any measurable and locally
bounded function, input space U the normed linear space of measurable and bounded
functions on [−r, 0] taking values in �m endowed with the sup-norm, U ⊆ U the set
of measurable and bounded functions on [−r, 0] taking values in V ⊆ �m, and the
set of external inputs MU being the set of mappings t ∈ �+ → u(t) = {ũ(t + θ); θ ∈
[−r, 0]} ∈ U , where ũ : � → �m is a measurable and locally bounded function.
The reader may be surprised by the complicated definition of MD and MU , but it
should be emphasized that this definition guarantees that the causality property of the
control system (2.7) holds. Notice that the classical semigroup property is satisfied for
this system; i.e., we have π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is the maximal
existence time of the solution. However, notice that if the vector fields f and R are
independent of d(τi), x(τi), u(τi) (this is the case studied in [7]), then system (2.7)
under hypotheses (Q1)–(Q4) defines a control system Σ := (X ,Y,MU ,MD, φ, π,H)
with outputs and the BIC property, with state space X = �n, output space Y = �k,
the set of structured uncertainties MD being the set of measurable and locally bounded
functions d : � → D, input space U = �m, and MU being the set of measurable and
locally bounded functions u : � → U .

Let qπ(t) = max{τi; τi ∈ π, τi ≤ t}. For all (t0, x0, x1, d, u) ∈ �+ × �n ×
�n × MD × MU , we denote by x(t) = φ(t, t0, x0, x1; d, u) ∈ �n the solution of
(2.7) at time t ≥ t0 with initial condition x(t0) = x0 and the additional condi-
tion x(qπ(t0)) = x1, which holds only for the case t0 /∈ π, corresponding to inputs
(d, u) ∈ MD ×MU (this solution is unique by virtue of property (Q3)). Notice that
the actual state of system (2.7) at time t ≥ t0 is given by φ̃(t, t0, x0, x1; d, u) =
(φ(t, t0, x0, x1; d, u), φ(qπ(t), t0, x0, x1; d, u)) ∈ �n ×�n.

Hypotheses (Q3)–(Q4) can be used in order to show that 0 ∈ �n × �n is a
robust equilibrium point from the input u ∈ MU , exactly in the same way with
the proof of the analogous result in [27]. Notice that if f(t + T, x, x0, u, u0, d, d0) =
f(t, x, x0, u, u0, d, d0), R(t+T, x, x0, u, u0, d, d0) = R(t, x, x0, u, u0, d, d0), H(t+T, x, u)
= H(t, x, u), and π = {iT}∞i=0 for certain T > 0 and for all (t, u, u0, d, d0, x, x0) ∈
�+ ×V ×V ×D×D×�n ×�n, then system (2.7) is T-periodic. Moreover, it should
be noted that system (2.7) fails to be autonomous for every possible selection of the
sets D, V , vector fields f,R,H, and partition π.

For control systems with the BIC property the following lemma provides a useful
characterization of the RFC property. Its proof is provided in the appendix.

Lemma 2.13. System Σ := (X ,Y,MU ,MD, φ, π,H) is RFC from the input
u ∈ MU if and only if for every β ∈ K+ there exist functions μ, c ∈ K+, a, p ∈ K∞ (de-
pending only on β ∈ K+) such that the following estimate holds for all (t0, x0, d, u) ∈
�+ ×X ×MD ×MU :

β(t) ‖φ(t, t0, x0, u, d)‖X
≤ max

{
μ(t− t0) , c(t0) , a ( ‖x0‖X ) , sup

t0≤τ≤t
p ( ‖u(τ)‖U )

}
∀t ≥ t0.

(2.9)

Next we present the IOS property for the class of systems described by Definition
2.1.

Definition 2.14. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H) with
outputs and the BIC property and for which 0 ∈ X is a robust equilibrium point from
the input u ∈ MU . Suppose that Σ is RFC from the input u ∈ MU .
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• If there exist functions σ ∈ KL, β, δ ∈ K+, γ ∈ N such that the following
estimate holds for all u ∈ MU , (t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y
≤ σ (β(t0) ‖x0‖X , t− t0) + sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ,(2.10)

then we say that Σ satisfies the weighted input-to-output stability (WIOS)
property from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+.
Moreover, if β(t) ≡ 1, then we say that Σ satisfies the uniform weighted
input-to-output stability (UWIOS) property from the input u ∈ MU , with
gain γ ∈ N and weight δ ∈ K+.

• If there exist functions σ ∈ KL, β ∈ K+, γ ∈ N such that the following
estimate holds for all u ∈ MU , (t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y ≤ σ (β(t0) ‖x0‖X , t− t0)+ sup
t0≤τ≤t

γ (‖u(τ)‖U ) ,

(2.11)
then we say that Σ satisfies the IOS property from the input u ∈ MU , with
gain γ ∈ N . Moreover, if β(t) ≡ 1, then we say that Σ satisfies the uniform
input-to-output stability (UIOS) property from the input u ∈ MU , with gain
γ ∈ N .

Finally, for the special case of the identity output mapping, i.e., H(t, x, u) := x,
the (uniform) (weighted) input-to-output stability property from the input u ∈ MU is
called the (uniform) (weighted) input-to-state stability ((U)(W)ISS) property from the
input u ∈ MU .

Remark 2.15. Using the inequalities max{a, b} ≤ a + b ≤ max
{
a + ρ(a), b + ρ−1

(b)} (which hold for all ρ ∈ K∞ and a, b ≥ 0), it should be clear that the WIOS
property for Σ := (X ,Y,MU ,MD, φ, π,H) can be defined by using an estimate of the
form

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y
≤ max

{
σ (β(t0) ‖x0‖X , t− t0) , sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U )

}
(2.10′)

instead of (2.10). Similarly, the IOS property for Σ := (X ,Y,MU ,MD, φ, π,H) can
be defined by using an estimate of the form

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y ≤ max

{
σ (β(t0) ‖x0‖X , t− t0) , sup

t0≤τ≤t
γ (‖u(τ)‖U )

}
(2.11′)
instead of (2.11).

The following lemmas provide ε − δ characterizations of the WIOS and UWIOS
properties, which are going to be used in the following section of the paper. Their
proofs are provided in the appendix.

Lemma 2.16. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H) with
outputs and the BIC property and for which 0 ∈ X is a robust equilibrium point from
the input u ∈ MU . Suppose that Σ is RFC from the input u ∈ MU . Furthermore,
suppose that there exist functions V : �+ × X × U → �+, with V (t, 0, 0) = 0, for all
t ≥ 0, γ ∈ N , and δ ∈ K+ such that the following properties hold:
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P1. For every s ≥ 0, T ≥ 0, it holds that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0, ‖x0‖X ≤ s, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
< +∞.

P2. For every ε > 0 and T ≥ 0, there exists a ρ := ρ (ε, T ) > 0 such that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0, ‖x0‖X ≤ ρ, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
≤ ε.

P3. For every ε > 0, T ≥ 0, and R ≥ 0, there exists a τ := τ (ε, T,R) ≥ 0 such
that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0 + τ, ‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
≤ ε.

Then there exist functions σ ∈ KL and β ∈ K+ such that the following estimate holds
for all u ∈ MU , (t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0:

V (t, φ(t, t0, x0, u, d), u(t)) ≤ σ (β(t0) ‖x0‖X , t− t0) + sup
t0≤τ≤t

γ (δ(τ) ‖u(τ)‖U ) .(2.12)

Moreover, if there exists a ∈ N such that ‖H(t, x, u)‖Y ≤ a(V (t, x, u)) for all (t, x, u) ∈
�+ × X × U , then for every ρ ∈ K∞, Σ satisfies the WIOS property from the input
u ∈ MU , with gain γ̃ ∈ N and weight δ ∈ K+, where γ̃(s) := a (γ(s) + ρ (γ(s))) .

Lemma 2.17. Consider a control system Σ := (X ,Y,MU ,MD, φ, π,H) with
outputs and the BIC property and for which 0 ∈ X is a robust equilibrium point from
the input u ∈ MU . Suppose that Σ is RFC from the input u ∈ MU . Furthermore,
suppose that there exist functions V : �+ × X × U → �+, with V (t, 0, 0) = 0, for all
t ≥ 0, γ ∈ N , and δ ∈ K+ such that the following properties hold:

P1. For every s ≥ 0, it holds that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0, ‖x0‖X ≤ s, t0 ≥ 0, d ∈ MD, u ∈ MU

}
< +∞.

P2. For every ε > 0, there exists a ρ := ρ (ε) > 0 such that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0, ‖x0‖X ≤ ρ, t0 ≥ 0, d ∈ MD, u ∈ MU

}
≤ ε.

P3. For every ε > 0 and R ≥ 0, there exists a τ := τ (ε,R) ≥ 0 such that

sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

t ≥ t0 + τ, ‖x0‖X ≤ R, t0 ≥ 0, d ∈ MD, u ∈ MU

}
≤ ε.
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Then there exists a function σ ∈ KL such that estimate (2.12) holds for all u ∈ MU ,
(t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0, with β(t) ≡ 1. Moreover, if there exists a ∈ N
such that ‖H(t, x, u)‖Y ≤ a(V (t, x, u)) for all (t, x, u) ∈ �+ × X × U , then for every
ρ ∈ K∞, Σ satisfies the UWIOS property from the input u ∈ MU , with gain γ̃ ∈ N
and weight δ ∈ K+, where γ̃(s) := a (γ(s) + ρ (γ(s))) .

Remark 2.18. Notice that Lemmas 2.16 and 2.17 can be very useful for the
demonstration of the (U)WIOS property, because in practice we show properties (P1)–
(P3) for some Lyapunov functional V and not necessarily for the norm of the output
map. Moreover, notice that it is not required that V is continuous. If V : �+ ×
X × U → �+ is a continuous functional that maps bounded sets of �+ ×X × U into
bounded sets of �+, then Lemmas 2.16 and 2.17 guarantee that Σ satisfies the WIOS
and the UWIOS properties with V as output, respectively, from the input u ∈ MU ,
with gain γ ∈ N and weight δ ∈ K+.

Finally, we end this section with some useful observations for T-periodic control
systems. It turns out that periodicity guarantees uniformity with respect to the initial
times. The following lemmas should be compared with Lemma 1.1, p. 131 in [6]. Their
proofs are provided in the appendix.

Lemma 2.19. Suppose that Σ := (X ,Y,MU ,MD, φ, π,H) is T-periodic. If Σ
satisfies the WIOS property from the input u ∈ MU , then Σ satisfies the UWIOS
property from the input u ∈ MU .

Lemma 2.20. Suppose that Σ := (X ,Y,MU ,MD, φ, π,H) is T-periodic. If Σ
satisfies the IOS property from the input u ∈ MU , then Σ satisfies the UIOS property
from the input u ∈ MU .

3. A small-gain theorem for a wide class of systems. The main result of
the present work is stated next.

Theorem 3.1. Consider the system Σ := (X ,Y,MU ,MD, φ, π,H) with the BIC
property for which 0 ∈ X is a robust equilibrium point from the input u ∈ MU , and
suppose that there exist maps V1 : �+ × X × U → �+, V2 : �+ × X × U → �+, with
Vi(t, 0, 0) = 0 for all t ≥ 0 (i = 1, 2) such that the following hypotheses hold.

(H1) There exist functions σ1 ∈ KL, β1, μ1, c1, δ1, δu1 , qu1 ∈ K+, γ1, γu
1 , a1,

p1, p
u
1 ∈ N , L1 : �+ × X → �+, with Li(t, 0) = 0 for all t ≥ 0, such that for every

(t0, x0, u, d) ∈ �+ × X × MU × MD the mapping t → V1(t, φ(t, t0, x0, u, d), u(t)) is
locally bounded on [t0, tmax), and the following estimates hold for all t ∈ [t0, tmax):

V1(t, φ(t, t0, x0, u, d), u(t)) ≤ σ1 (β1(t0)L1(t0, x0), t− t0)
+ sup

t0≤τ≤t
γ1 (δ1(τ)V2(τ)) + sup

t0≤τ≤t
γu
1 (δu1 (τ) ‖u(τ)‖U ) ,

(3.1)

β1(t)L1(t, φ(t, t0, x0, u, d)) ≤ max

{
μ1(t− t0), c1(t0), a1 (‖x0‖X ) ,

sup
t0≤τ≤t

p1 (V2(τ)) , sup
t0≤τ≤t

pu1 (qu1 (τ) ‖u(τ)‖U )

}
,

(3.2)

where V2(t) = V2 (t, φ(t, t0, x0, u, d), u(t)) and tmax is the maximal existence time of
the transition map of Σ.

(H2) There exist functions σ2 ∈ KL, β2, μ2, c2, δ2, δu2 , qu2 ∈ K+, γ2, γu
2 , a2,

p2, p
u
2 ∈ N , L2 : �+ × X → �+, with L2(t, 0) = 0 for all t ≥ 0, such that for every

(t0, x0, u, d) ∈ �+ × X × MU × MD the mapping t → V2(t, φ(t, t0, x0, u, d), u(t)) is
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locally bounded on [t0, tmax), and the following estimates hold for all t ∈ [t0, tmax):

V2(t, φ(t, t0, x0, u, d), u(t)) ≤ σ2 (β2(t0)L2(t0, x0), t− t0) + sup
t0≤τ≤t

γ2 (δ2(τ)V1(τ))

+ sup
t0≤τ≤t

γu
2 (δu2 (τ) ‖u(τ)‖U ) ,

(3.3)

β2(t)L2(t, φ(t, t0, x0, u, d)) ≤ max

{
μ2(t− t0), c2(t0), a2 (‖x0‖X ) ,

sup
t0≤τ≤t

p2 (V1(τ)) , sup
t0≤τ≤t

pu2 (qu2 (τ) ‖u(τ)‖U )

}
,

(3.4)

where V1(t) = V1 (t, φ(t, t0, x0, u, d), u(t)) and tmax is the maximal existence time of
the transition map of Σ.

(H3) There exist a function ρ ∈ K∞ and a constant M > 0 such that

δ1(t) ≤ M ∀t ≥ 0,(3.5)

g1 (δ1(t)g2 (δ2(τ)s)) ≤ s ∀t, s ≥ 0 and τ ∈ [0, t],(3.6)

where gi(s) := γi(s) + ρ (γi(s)), i = 1, 2.
(H4) There exists a function a ∈ N such that the following inequality holds for

all (t, x, u) ∈ �+ ×X × U :

‖H(t, x, u)‖Y ≤ a (V1(t, x, u) + γ1 (δ1(t)V2(t, x, u))) .(3.7)

(H5) There exist functions b ∈ N , μ ∈ K+ such that the following inequalities
hold for all (t, x) ∈ �+ ×X :

μ(t) ‖x‖X ≤ b (L1(t, x) + L2(t, x)) ; max (L1(t, x), L2(t, x)) ≤ b (‖x‖X ) .(3.8)

Then there exists a function γ ∈ N such that system Σ satisfies the WIOS property
from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+, where

δ(t) := max{δu1 (t), δu2 (t), qu1 (t), qu2 (t)}.(3.9)

Moreover, if β1, β2, c1, c2, δ2 ∈ K+ are bounded, then system Σ satisfies the UWIOS
property from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+.

Remark 3.2.
(a) It should be clear that Theorem 3.1 takes into account all possible cases

(weights, nonuniformity with respect to initial times) and thus is applicable
to a very wide class of systems.

(b) When γ1 ∈ N (or γ2 ∈ N ) is identically zero, it follows that (3.6) is automat-
ically satisfied. This is the case of systems in cascade (see [14]). On the other
hand, if γi(s) = Kis for certain constants Ki ≥ 0 (i = 1, 2), then inequal-
ity (3.6) is satisfied if K1K2 supt≥0

(
δ1(t) maxτ∈[0,t] δ2(τ)

)
< 1. Moreover, if

γi(s) = Kis for certain constants Ki ≥ 0 (i = 1, 2) and δ1(t) ≡ δ2(t) ≡ 1,
then hypothesis (H3) is satisfied if K1K2 < 1. This is the case of the classical
small-gain theorem.

(c) If, instead of hypothesis (H4), there exists a function a ∈ N such that
‖H(t, x, u)‖Y ≤ a (V2(t, x, u) + γ2 (δ2(t)V1(t, x, u))) holds for all (t, x, u) ∈
�+ ×X ×U , then indices 1 and 2 must be changed in hypothesis (H3). Fur-
thermore, in this case system Σ satisfies the UWIOS property from the input
u ∈ MU , with gain γ ∈ N and weight δ ∈ K+, if functions β1, β2, c1, c2, δ1 ∈
K+ are bounded.
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(d) In previous nonlinear small-gain theorems (e.g., [14]), the functions L1 : �+×
X → �+ and L2 : �+ × X → �+ take the form L1(t, x) = x1 and L2(t, x) =
x2, respectively, where x = (x1, x2). It follows that hypothesis (H5) automati-
cally holds with b(s) := s and μ(t) ≡ 1. This is the case in Corollary 3.4 below.

(e) Hypothesis (H4) in conjunction with (3.5) guarantees that: (i) if the mappings
t → V1(t, φ(t, t0, x0, u, d), u(t)), t → V2(t, φ(t, t0, x0, u, d), u(t)) are bounded,
then the mapping t → ‖H(t, φ(t, t0, x0, u, d), u(t))‖Y is bounded as well, and
(ii) if V1(t, φ(t, t0, x0, u, d), u(t)) → 0, V2(t, φ(t, t0, x0, u, d), u(t)) → 0, then
‖H(t, φ(t, t0, x0, u, d), u(t))‖Y → 0. In other words, hypothesis (H4) guaran-
tees that the behavior of the output of system Σ := (X ,Y,MU ,MD, φ, π,H)
can be determined by studying the behavior of the functionals V1 : �+ ×X ×
U → �+, V2 : �+ ×X × U → �+.

Since small-gain results are frequently applied to feedback interconnections of
control systems, we need to clarify the notion of the feedback interconnection of two
control systems. However, the fact that we do not require the classical semigroup
property for each of the interconnected subsystems creates technical difficulties: For
example, the determination of the set of sampling times for the composite system is
not trivial. In order to guarantee the existence of a set of sampling times for the
composite system, we assume that the sampling times of the composite system are
the common sampling times of the interconnected subsystems. The details are given
in the following definition.

Definition 3.3. Consider a pair of control systems Σ1 = (X1,Y1,MS2×U ,MD,
φ̃1, π1, H1), Σ2 = (X2,Y2,MS1×U ,MD, φ̃2, π2, H2) with outputs H1 : �+ × X1 × Y2 ×
U → S1 ⊆ Y1, H2 : �+ × X2 × Y1 × U → S2 ⊆ Y2 and the BIC property and
for which 0 ∈ Xi, i = 1, 2, are robust equilibrium points from the inputs (v2, u) ∈
MS2×U , (v1, u) ∈ MS1×U , respectively. Suppose that there exists a unique pair of a
map φ = (φ1, φ2) : Aφ → X and a set-valued map �+×X×MU×MD � (t0, x0, u, d) →
π(t0, x0, u, d) ⊆ [t0,+∞), where Aφ ⊆ �+ ×�+ ×X ×MU ×MD, X = X1 ×X2, such
that for every (t, t0, x0, u, d) ∈ Aφ, with t ≥ t0, x0 = (x1,0, x2,0) ∈ X1 × X2, it holds
that:

“there exists a pair of external inputs vi ⊆ M(Si), i = 1, 2, with
v1(τ) = H1(τ, φ1(τ, t0, x0, u, d), v2(τ), u(τ)), v2(τ) = H2(τ, φ2(τ, t0, x0, u, d),
v1(τ), u(τ)) for all τ ∈ [t0, t], (vi, u) ∈ MSi×U , i = 1, 2, π(t0, x0, u, d) =
π1(t0, x1,0, (v2, u), d) ∩ π2(t0, x2,0, (v1, u), d), and φ1(τ, t0, x0, u, d) =

φ̃1(τ, t0, x1,0, (v2, u), d), φ2(τ, t0, x0, u, d) = φ̃2(τ, t0, x2,0, (v1, u), d) for
all τ ∈ [t0, t].”

Moreover, let Y be a normed linear space and H : �+ ×X ×U → Y a continuous
map that maps bounded sets of �+×X ×U into bounded sets of Y, with H(t, 0, 0) = 0
for all t ≥ 0, and suppose that Σ := (X ,Y,MU ,MD, φ, π,H) is a control system
with outputs and the BIC property, for which 0 ∈ X is a robust equilibrium point
from the input u ∈ MU . Then system Σ is said to be the feedback connection or the
interconnection of systems Σ1 and Σ2.

It should be emphasized that the feedback interconnection of two systems may
create a system which has different qualitative properties from each of the intercon-
nected subsystems. For example, if we interconnect a subsystem described by RFDEs
(see Example 2.10) with a hybrid subsystem with impulses at fixed times (see Exam-
ple 2.12), then the overall system will be a system with both “memory” and impulses
(discontinuous systems described by RFDEs—see [49]).

We are now in a position to state our main result for feedback interconnections of
control systems. It is a direct consequence of Theorem 3.1, and its proof is omitted.
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Corollary 3.4. Suppose that Σ := (X ,Y,MU ,MD, φ, π,H) is the feedback con-
nection of systems Σ1 = (X1,Y1,MS2×U ,MD, φ̃1, π1, H1) and Σ2 = (X2,Y2,MS1×U ,
MD, φ̃2, π2, H2) with outputs H1 : �+ ×X1 ×Y2 ×U → S1 ⊆ Y1, H2 : �+ ×X2 ×Y1 ×
U → S2 ⊆ Y2. We assume the following.

(H1′) Subsystem Σ1 satisfies the WIOS property from the inputs v2 ∈ M(S2)
and u ∈ MU . Particularly, there exist functions σ1 ∈ KL, β1, μ1, c1, δ1, δ

u
1 , q

u
1 ∈

K+, γ1, γ
u
1 , a1, p1, p

u
1 ∈ N such that the following estimate holds for all (t0, x1, (v2, u0),

d) ∈ �+ ×X1 ×MS2×U ×MD and t ≥ t0:∥∥∥H1(t, φ̃1(t, t0, x1, (v2, u), d), v2(t), u(t))
∥∥∥
Y1

≤ σ1

(
β1(t0) ‖x1‖X1

, t− t0
)

+ sup
t0≤τ≤t

γ1

(
δ1(τ) ‖v2(τ)‖Y2

)
+ sup

t0≤τ≤t
γu
1 (δu1 (τ) ‖u(τ)‖U ) ,

(3.10)

β1(t)
∥∥∥φ̃1(t, t0, x1, (v2, u), d)

∥∥∥
X1

≤ max

{
μ1(t− t0), c1(t0), a1

(
‖x1‖X1

)
,

sup
t0≤τ≤t

p1

(
‖v2(τ)‖Y2

)
, sup
t0≤τ≤t

pu1 (qu1 (τ) ‖u(τ)‖U )

}
.

(3.11)
(H2′) Subsystem Σ2 satisfies the WIOS property from the inputs v1 ∈ M(S1)

and u ∈ MU . Particularly, there exist functions σ2 ∈ KL, β2, μ2, c2, δ2, δ
u
2 , q

u
2 ∈

K+, γ2, γ
u
2 , a2, p2, p

u
2 ∈ N such that the following estimate holds for all (t0, x2, (v1, u0),

d) ∈ �+ ×X2 ×MS1×U ×MD and t ≥ t0:∥∥∥H2(t, φ̃2(t, t0, x2, (v1, u), d), v1(t), u(t))
∥∥∥
Y2

≤ σ2

(
β2(t0) ‖x2‖X2

, t− t0
)

+ sup
t0≤τ≤t

γ2

(
δ2(τ) ‖v1(τ)‖Y1

)
+ sup

t0≤τ≤t
γu
2 (δu2 (τ) ‖u(τ)‖U ) ,

(3.12)

β2(t)
∥∥∥φ̃2(t, t0, x2, (v1, u), d)

∥∥∥
X2

≤ max

{
μ2(t− t0), c2(t0), a2

(
‖x2‖X2

)
,

sup
t0≤τ≤t

p2

(
‖v1(τ)‖Y1

)
, sup
t0≤τ≤t

pu2 (qu2 (τ) ‖u(τ)‖U )

}
.

(3.13)
Moreover, assume that hypothesis (H3) of Theorem 3.1 holds and there exists a func-
tion a ∈ N such that the following inequality holds for all (t, x, u, Y1, Y2) ∈ �+ ×X ×
U × Y1 × Y2, with x = (x1, x2) ∈ X1 ×X2, Y1 = H1(t, x1, Y2, u), Y2 = H2(t, x2, Y1, u):

‖H(t, x, u)‖Y ≤ a
(
‖Y1‖Y1

+ γ1

(
δ1(t) ‖Y2‖Y2

))
.(3.14)

Then there exists a function γ ∈ N such that system Σ satisfies the WIOS property
from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+, where δ ∈ K+ is defined
by (3.9). Moreover, if β1, β2, c1, c2, δ2 ∈ K+ are bounded, then system Σ satisfies the
UWIOS property from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+.

Remark 3.5.
(a) When δ1(t) ≡ δ2(t) ≡ 1, H1 : �+ × X1 × U → S1 ⊆ Y1, and γ1 ∈ K∞, then

the result of Corollary 3.4 guarantees the WIOS property from the input
u ∈ MU for the output H(t, x, u) := (H1(t, x1, u), H2(t, x2, H1(t, x1, u), u)),
i.e., for the output that combines the outputs of each individual subsystem.
Moreover, if in addition the functions δui (t), qui (t) (i = 1, 2) are bounded,
then the result of Corollary 3.4 guarantees the IOS from the input u ∈ MU

for the output H(t, x, u) := (H1(t, x1, u), H2(t, x2, H1(t, x1, u), u)). Finally,
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if in addition the functions β1, β2, c1, c2, δ2 ∈ K+ are bounded, then the
result of Corollary 3.4 guarantees the UIOS from the input u ∈ MU for the
output H(t, x, u) := (H1(t, x1, u), H2(t, x2, H1(t, x1, u), u)). This particular
case coincides with the prior result of the nonlinear ISS small-gain theorem
presented in [14] for control systems described by ODEs.

(b) Conditions (3.11) and (3.13) hold automatically, when each one of the sub-
systems Σ1 and Σ2 satisfy the WISS property.

(c) If, instead of hypothesis (3.14), there exists a function a ∈ N such that
‖H(t, x, u)‖Y ≤ a

(
‖Y2‖Y2

+ γ2

(
δ2(t) ‖Y1‖Y1

))
holds for all (t, x, u, Y1, Y2) ∈

�+ × X × U × Y1 × Y2, with x = (x1, x2) ∈ X1 × X2, Y1 = H1(t, x1, Y2, u),
Y2 = H2(t, x2, Y1, u), then indices 1 and 2 must be changed in hypothesis
(H3). Furthermore, in this case system Σ satisfies the UWIOS property
from the input u ∈ MU , with gain γ ∈ N and weight δ ∈ K+, if functions
β1, β2, c1, c2, δ1 ∈ K+ are bounded.

Proof of Theorem 3.1. The proof consists of three steps:
Step 1. We show that Σ is RFC from the input u ∈ MU .
Step 2. Let ϕ̃(s) := s+ 1

2ρ(s), where ρ ∈ K∞ is the function involved in hypothesis
(H3). We show that properties P1 and P2 of Lemma 2.16 hold for system Σ with
V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N and δ ∈ K+ as defined by
(3.9). Moreover, if β1, β2 ∈ K+ are bounded, we show that properties P1 and P2 of
Lemma 2.17 hold for system Σ with V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate
γ̃ ∈ N and δ ∈ K+ as defined by (3.9).

Step 3. We show that property P3 of Lemma 2.16 holds for system Σ with
V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N and δ ∈ K+ as defined by
(3.9). Moreover, if β1, β2, c1, c2, δ2 ∈ K+ are bounded, we show that property P3 of
Lemma 2.17 holds for system Σ with V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate
γ̃ ∈ N and δ ∈ K+ as defined by (3.9).

It then follows from Lemma 2.16 that there exist functions σ ∈ KL and β ∈ K+

such that the following estimate holds for all u ∈ MU , (t0, x0, d) ∈ �+×X ×MD, and
t ≥ t0:

V1(t, φ(t, t0, x0, u, d), u(t)) ≤ σ (β(t0) ‖x0‖X , t− t0) + sup
t0≤τ≤t

γ (δ(τ) ‖u(τ)‖U ) ,

(3.15a)
ϕ̃ (γ1 (δ1(t)V2(t, φ(t, t0, x0, u, d), u(t))))

≤ σ (β(t0) ‖x0‖X , t− t0) + sup
t0≤τ≤t

γ (δ(τ) ‖u(τ)‖U ) .(3.15b)

Moreover, if β1, β2, c1, c2, δ2 ∈ K+ are bounded, it follows from Lemma 2.17 that
estimates (3.15a)–(3.15b) hold with β(t) ≡ 1.

Thus, using (3.7) and the fact that ϕ̃(s) ≥ s for all s ≥ 0, we conclude that Σ
satisfies the WIOS property from the input u ∈ MU , with gain γ(s) := a (4γ̃(s)) ∈ N
and weight δ ∈ K+. Moreover, if β1, β2, c1, c2, δ2 ∈ K+ are bounded, we conclude
that Σ satisfies the UWIOS property from the input u ∈ MU , with gain γ(s) :=
a (4γ̃(s)) ∈ N and weight δ ∈ K+.

Step 1. Let arbitrary (t, t0, x0, u, d) ∈ Aφ, with t ≥ t0, x0 ∈ X , and let tmax ∈
(t0,+∞] the maximal existence time of the transition map φ of Σ := (X ,Y,MU ,MD, φ,
π,H) that corresponds to (t0, x0, u, d) ∈ �+×X×MU×MD. Notice that, by virtue of
the BIC property, if tmax < +∞, then for every M > 0 there exists t ∈ [t0, tmax), with
‖φ(t, t0, x0, u, d)‖X > M . We define V1(τ) = V1(τ, φ(τ, t0, x0, u, d), u(τ)), L1(τ) =
L1(τ, φ(τ, t0, x0, u, d)) and V2(τ) = V2(τ, φ(τ, t0, x0, u, d), u(τ)), L2(τ) = L2(τ, φ(τ, t0,
x0, u, d)) for all τ ∈ [t0, t].
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The previous definitions in conjunction with (3.1), (3.2), (3.3), (3.4) imply the
following inequalities for all t ∈ [t0, tmax):

V1(t) ≤ σ1 (β1(t0)L1(t0), t− t0) + sup
t0≤τ≤t

γ1 (δ1(τ)V2(τ)) + sup
t0≤τ≤t

γu
1 (δu1 (τ) ‖u(τ)‖U ) ,

(3.16)

β1(t)L1(t) ≤ max

{
μ1(t− t0), c1(t0), a1 (‖x0‖X ) , sup

t0≤τ≤t
p1 (V2(τ)) ,

sup
t0≤τ≤t

pu1 (qu1 (τ) ‖u(τ)‖U )

}
,

(3.17)

V2(t) ≤ σ2 (β2(t0)L2(t0), t− t0) + sup
t0≤τ≤t

γ2 (δ2(τ)V1(τ))

+ sup
t0≤τ≤t

γu
2 (δu2 (τ) ‖u(τ)‖U ) ,

(3.18)

β2(t)L2(t) ≤ max

{
μ2(t− t0), c2(t0), a2 (‖x0‖X ) , sup

t0≤τ≤t
p2 (V1(τ)) ,

sup
t0≤τ≤t

pu2 (qu2 (τ) ‖u(τ)‖U )

}
.

(3.19)

Let ρ ∈ K∞ the function involved in hypothesis (H3), and define κ(s) := s + ρ−1 (s),
ϕ(s) := s + ρ (s). Using the inequality r + s ≤ max {κ(r);ϕ(s)} (which holds for
all r, s ≥ 0) as well as the equality g2(s) = ϕ (γ2(s)), we obtain from (3.18) for all
t ∈ [t0, tmax):

V2(t) ≤ max

{
κ

(
σ2 (β2(t0)L2(t0), t− t0) + sup

t0≤τ≤t
γu
2 (δu2 (τ) ‖u(τ)‖U )

)
;

sup
t0≤τ≤t

g2 (δ2(τ)V1(τ))

}
.

(3.20)

Notice that inequality (3.6) implies that γ1 (δ1(t)g2 (δ2(τ)s)) ≤ ϕ−1(s) ∀t, s ≥ 0 and
τ ∈ [0, t]. Thus (3.20) in conjunction with (3.5) and the previous observation implies
the following estimate which holds for all t ∈ [t0, tmax):

γ1 (δ1(t)V2(t)) ≤ max

{
γ1

(
Mκ

(
σ2 (β2(t0)L2(t0), t− t0)

+ sup
t0≤τ≤t

γu
2 (δu2 (τ) ‖u(τ)‖U )

))
;ϕ−1

(
supt0≤τ≤t V1(τ)

)}
.

(3.21)

Combining estimate (3.16) with (3.21), we obtain

sup
t0≤τ≤t

V1(τ) ≤ σ1 (β1(t0)L1(t0), 0) + sup
t0≤τ≤t

γu
1 (δu1 (τ) ‖u(τ)‖U )

+ max

{
γ1

(
Mκ

(
σ2 (β2(t0)L2(t0), 0) + sup

t0≤τ≤t
γu
2 (δu2 (τ) ‖u(τ)‖U )

))
;

ϕ−1

(
sup

t0≤τ≤t
V1(τ)

)}
.

(3.22)
Distinguishing the cases γ1(Mκ(σ2(β2(t0)L2(t0), 0)+supt0≤τ≤t γ

u
2 (δu2 (τ)‖u(τ)‖U ))) ≥

ϕ−1(supt0≤τ≤t V1(τ)), γ1(Mκ(σ2(β2(t0)L2(t0), 0) + supt0≤τ≤t γ
u
2 (δu2 (τ)‖u(τ)‖U ))) ≤

ϕ−1(supt0≤τ≤t V1(τ)), using the identity s−ϕ−1(s) = κ−1(s) and the fact that κ(s) ≥
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s in conjunction with (3.22) and (3.8) (which implies Li(t0) ≤ b (‖x0‖X ), i = 1, 2)
gives the following estimate which holds for all t ∈ [t0, tmax):

sup
t0≤τ≤t

V1(τ) ≤ max

{
κ

(
σ1 (β1(t0)b (‖x0‖X ) , 0) + sup

t0≤τ≤t
γu
1 (δu1 (τ) ‖u(τ)‖U )

)
;W

}
(3.23a)
where

W := σ1 (β1(t0)b (‖x0‖X ) , 0) + sup
t0≤τ≤t

γu
1 (δu1 (τ) ‖u(τ)‖U )

+ γ1

(
Mκ

(
σ2 (β2(t0)b (‖x0‖X ) , 0) + sup

t0≤τ≤t
γu
2 (δu2 (τ) ‖u(τ)‖U )

))
(3.23b)

We show next that Σ is RFC from the input u ∈ MU by contradiction. Suppose
that tmax < +∞. Then by virtue of the BIC property for every M > 0 there exists
t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M . On the other hand, estimate (3.23a)
in conjunction with the hypothesis tmax < +∞ shows that there exists M1 ≥ 0
such that supt0≤τ<tmax

V1(τ) ≤ M1. The fact that V1(t) is bounded in conjunc-
tion with estimates (3.18) and (3.19) implies that there exist constants M2,M3 ≥ 0
such that supt0≤τ<tmax

V2(τ) ≤ M2 and supt0≤τ<tmax
L2(τ) ≤ M3. Finally, the fact

that V2(t) is bounded in conjunction with estimate (3.17) implies that there exists
a constant M4 ≥ 0 such that supt0≤τ<tmax

L1(τ) ≤ M4. It follows from (3.8) and
inequality μ(t) ‖φ(t, t0, x0, u, d)‖X ≤ b (L1(t) + L2(t)) that the transition map of Σ,
i.e., φ(t, t0, x0, u, d), is bounded on [t0, tmax), and this contradicts the requirement
that for every M > 0 there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M . Hence,
we must have tmax = +∞.

Let arbitrary R ≥ 0, T ≥ 0. For every u ∈ M(BU [0, R])∩MU , s ∈ [0, T ], ‖x0‖X ≤
R, t0 ∈ [0, T ], d ∈ MD estimate (3.23a) shows that there exists M1(T,R) ≥ 0 such
that V1(t0 + s) ≤ M1(T,R) for all s ∈ [0, T ]. The previous observation in conjunction
with estimates (3.18), (3.19), and (3.8) (which gives Li(t0) ≤ b (‖x0‖X), i = 1, 2) im-
plies that there exist M2(T,R),M3(T,R) ≥ 0 such that for every u ∈ M(BU [0, R]) ∩
MU , s ∈ [0, T ], ‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD we have V2(t0 + s) ≤ M2(T,R) and
L2(t0 + s) ≤ M3(T,R) for all s ∈ [0, T ]. Finally, inequality V2(t0 + s) ≤ M2(T,R) in
conjunction with estimate (3.17) implies that there exists a constant M4(T,R) ≥ 0
such that for every u ∈ M(BU [0, R]) ∩MU , s ∈ [0, T ], ‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD

we have L1(t0 + s) ≤ M4(T,R) for all s ∈ [0, T ]. It follows from (3.8) and inequality
μ(t) ‖φ(t, t0, x0, u, d)‖X ≤ b (L1(t) + L2(t)) that for every u ∈ M(BU [0, R])∩MU , s ∈
[0, T ], ‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD the transition map of Σ, i.e., φ(t, t0, x0, u, d),

satisfies ‖φ(t, t0, x0, u, d)‖X ≤ b(M3(T,R)+M4(T,R))
min{μ(t):t∈[0,2T ]} < +∞, and this according to Defi-

nition 2.2 implies that Σ is RFC from the input u ∈ MU .
Step 2. Using (3.23a) in conjunction with the inequality q(r + s) ≤ q (κ(r)) +

q (ϕ(s)) (which holds for all r, s ≥ 0 and q ∈ N ) gives the following estimate, which
holds for all t ≥ t0:

V1(t) ≤ κ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0))) + γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0))))

+ sup
t0≤τ≤t

κ (ϕ (γu
1 (δu1 (τ) ‖u(τ)‖U ))) + sup

t0≤τ≤t
γ1 (Mκ (ϕ (γu

2 (δu2 (τ) ‖u(τ)‖U )))) .

(3.24)
Moreover, combining estimates (3.21) and (3.23a) and using the equalities ϕ−1 (κ(s)) =
ρ(s) and ϕ(s) := s+ρ (s) as well as the inequalities ϕ−1(s) ≤ s and (3.8) (which gives
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Li(t0) ≤ b (‖x0‖X ), i = 1, 2) gives the following estimate, which holds for all t ≥ t0:

γ1 (δ1(t)V2(t)) ≤ γ1

(
Mκ

(
σ2 (β2(t0)b (‖x0‖X ) , 0) + sup

t0≤τ≤t
γu
2 (δu2 (τ) ‖u(τ)‖U )

))
+ ϕ

(
σ1 (β1(t0)b (‖x0‖X ) , 0) + sup

t0≤τ≤t
γu
1 (δu1 (τ) ‖u(τ)‖U )

)
.

(3.25)
Using (3.25) in conjunction with the inequality q(r + s) ≤ q (κ(r)) + q (ϕ(s)) (which
holds for all r, s ≥ 0 and q ∈ N ) gives the following estimate, which holds for all
t ≥ t0:

γ1 (δ1(t)V2(t)) ≤ γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0))))
+ sup

t0≤τ≤t
γ1 (Mκ (ϕ (γu

2 (δu2 (τ) ‖u(τ)‖U ))))

+ ϕ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0)))
+ sup

t0≤τ≤t
ϕ (ϕ (γu

1 (δu1 (τ) ‖u(τ)‖U ))) .

(3.26)

Let ϕ̃(s) := s + 1
2ρ(s). Using (3.26) in conjunction with the inequality q(r + s) ≤

q (κ(r)) + q (ϕ(s)) (which holds for all r, s ≥ 0 and q ∈ N ), we obtain the following
estimate, which holds for all t ≥ t0:

ϕ̃ (γ1 (δ1(t)V2(t))) ≤ ϕ̃ (κ (γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0))))
+ ϕ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0)))))
+ sup

t0≤τ≤t
ϕ̃ (ϕ (ϕ (ϕ (γu

1 (δu1 (τ) ‖u(τ)‖U )))

+ γ1 (Mκ (ϕ (γu
2 (δu2 (τ) ‖u(τ)‖U )))))) .

(3.27)

Estimates (3.24), (3.27) show that properties P1 and P2 of Lemma 2.16 hold for
system Σ with V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N and δ ∈ K+

as defined by (3.9). Moreover, if β1, β2 ∈ K+ are bounded, then estimates (3.24),
(3.27) show that properties P1 and P2 of Lemma 2.17 hold for system Σ with V = V1

or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N and δ ∈ K+ as defined by (3.9).
Particularly, γ̃ ∈ N satisfies

γ̃(s) ≥ ϕ̃ (ϕ (ϕ (ϕ (γu
1 (s))) + γ1 (Mκ (ϕ (γu

2 (s))))))
and γ̃(s) ≥ κ (ϕ (γu

1 (s))) + γ1 (Mκ (ϕ (γu
2 (s)))) for all s ≥ 0.

(3.28)

Step 3. Let ϕ̃(s) := s + 1
2ρ(s), κ̃(s) := s + ρ−1(2s). Exploiting estimates (3.16),

(3.21) in conjunction with the inequality r+ s ≤ max {κ̃(r); ϕ̃(s)} (which holds for all
r, s ≥ 0), we obtain:

V1(t) ≤ max

{
κ̃

(
σ1 (β1(t0)L1(t0), t− t0) + sup

t0≤τ≤t
γu
1 (δu1 (τ) ‖u(τ)‖U )

)
;

sup
t0≤τ≤t

ϕ̃ (γ1 (δ1(τ)V2(τ)))

}
,

(3.29)

ϕ̃ (γ1 (δ1(t)V2(t))) ≤ max

{
ϕ̃

(
γ1 (Mκ (σ2 (β2(t0)L2(t0), t− t0)

+ sup
t0≤τ≤t

γu
2 (δu2 (τ) ‖u(τ)‖U )))) ; ϕ̃

(
ϕ−1

(
sup

t0≤τ≤t
V1(τ)

))}
.

(3.30)
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Let arbitrary ξ ∈ π(t0, x0, u, d) and t ≥ ξ. Estimates (3.29), (3.30) in conjunction
with estimates (3.17), (3.19) and the weak semigroup property imply

V1(t) ≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ̃
(
κ
(
σ1

(
a1

(
‖x0‖X

)
+ c1(t0) + μ1(ξ − t0), t− ξ

)))
,

sup
t0≤τ≤ξ

κ̃
(
κ
(
σ1

(
pu1

(
qu1 (τ) ‖u(τ)‖U

)
, 0
)))

, sup
t0≤τ≤ξ

κ̃ (κ (σ1 (p1 (V2(τ)) , t− ξ))) ,

sup
ξ≤τ≤t

ϕ̃ (γ1 (δ1(τ)V2(τ))) , sup
ξ≤τ≤t

κ̃
(
ϕ
(
γu
1

(
δu1 (τ) ‖u(τ)‖U

)))
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

(3.31)

ϕ̃ (γ1 (δ1(t)V2(t)))≤max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃
(
γ1

(
Mκ

(
κ
(
σ2

(
a2

(
‖x0‖X

)
+ c2(t0) + μ2(ξ − t0), t− ξ

)))))
,

sup
ξ≤τ≤t

ϕ̃
(
γ1

(
Mκ

(
ϕ
(
γu
2

(
δu2 (τ) ‖u(τ)‖U

)))))
,

sup
t0≤τ≤ξ

ϕ̃
(
γ1

(
Mκ

(
κ
(
σ2

(
pu2

(
qu2 (τ) ‖u(τ)‖U

)
, 0
)))))

,

ϕ̃

(
ϕ−1

(
sup

ξ≤τ≤t

V1(τ)

))
, sup
t0≤τ≤ξ

ϕ̃ (γ1 (Mκ (κ (σ2 (p2 (V1(τ)) , t− ξ)))))

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.32)
Estimate (3.32) combined with estimate (3.24) gives

ϕ̃ (γ1 (δ1(t)V2(t))) ≤ max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃
(
γ1

(
Mκ

(
κ
(
σ2

(
a2

(
‖x0‖X

)
+ c2(t0) + μ2(ξ − t0)

+p2(κ(A)), t− ξ
)))))

,

sup
ξ≤τ≤t

ϕ̃
(
γ1

(
Mκ

(
ϕ
(
γu
2

(
δu2 (τ) ‖u(τ)‖U

)))))
,

sup
t0≤τ≤ξ

ϕ̃
(
γ1

(
Mκ

(
κ
(
σ2

(
pu2

(
qu2 (τ) ‖u(τ)‖U

)
, 0
)))))

,

ϕ̃

(
ϕ−1

(
sup

ξ≤τ≤t

V1(τ)

))
,

sup
t0≤τ≤t

ϕ̃ (γ1 (Mκ (κ (σ2 (p2 (ϕ (B)) , 0)))))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(3.33)
where

A = κ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0))) + γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0)))) ,
B = κ (ϕ (γu

1 (δu1 (τ) ‖u(τ)‖U ))) + γ1 (Mκ (ϕ (γu
2 (δu2 (τ) ‖u(τ)‖U )))) .

Similarly, estimate (3.18) combined with estimate (3.24) and inequality (3.8) (which
implies Li(t0) ≤ b (‖x0‖X ), i = 1, 2) gives

V2(t) ≤ σ2 (β2(t0)b (‖x0‖X ) , 0) + sup
t0≤τ≤t

γu
2 (δu2 (τ) ‖u(τ)‖U )

+ γ2

(
δ̃2(t)κ (κ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0))) + γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0)))))

)
+ sup

t0≤τ≤t
γ2

(
δ̃2(t)ϕ (κ (ϕ (γu

1 (δu1 (τ) ‖u(τ)‖U ))) + γ1 (Mκ (ϕ (γu
2 (δu2 (τ) ‖u(τ)‖U )))))

)
,

(3.34)
where

δ̃2(t) := max
0≤τ≤t

δ2(τ).

Consequently, by combining estimates (3.31) and (3.34) we obtain

V1(t)≤max

⎧⎪⎪⎨⎪⎪⎩
κ̃
(
κ
(
σ1

(
a1

(
‖x0‖X

)
+ c1(t0) + μ1(ξ − t0), t− ξ

)))
, κ̃ (κ (σ1 (p1 (κ(C)) , t− ξ))) ,

sup
t0≤τ≤ξ

κ̃
(
κ
(
σ1

(
pu1

(
qu1 (τ) ‖u(τ)‖U

)
, 0
)))

, sup
t0≤τ≤t

κ̃ (κ (σ1 (p1 (ϕ(D)) , 0))) ,

sup
ξ≤τ≤t

ϕ̃ (γ1 (δ1(τ)V2(τ))), sup
ξ≤τ≤t

κ̃
(
ϕ
(
γu
1

(
δu1 (τ) ‖u(τ)‖U

)))
, κ̃ (κ (σ1 (p1 (E), t− ξ)))

⎫⎪⎪⎬⎪⎪⎭,

(3.35)
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where

C := σ2 (β2(t0)b (‖x0‖X ) , 0) + γ2

(
δ̃2(ξ)κ (κ (κ (σ1 (β1(t0)b (‖x0‖X ) , 0)))

+ γ1 (Mκ (κ (σ2 (β2(t0)b (‖x0‖X ) , 0)))))) ,

D := γu
2 (δu2 (τ) ‖u(τ)‖U ) + γ2

(
ϕ

(
1

2
ϕ2 (κ (ϕ (γu

1 (δu1 (τ) ‖u(τ)‖U )))

+ γ1 (Mκ (ϕ (γu
2 (δu2 (τ) ‖u(τ)‖U)))))

))
,

E := γ2

(
κ

(
1

2
δ̃2
2(ξ)

))
.

From (3.33) and (3.35) we conclude that there exist functions S1, S2 ∈ KL, continuous

functions M1,M2 : (�+)
3 → �+, and γ̃ ∈ N such that the following estimates hold

for all ξ ∈ π(t0, x0, u, d) and t ≥ ξ:

ϕ̃ (γ1 (δ1(t)V2(t))) ≤ max

⎧⎪⎨⎪⎩
S2 (M2 (t0, ξ − t0, ‖x0‖X ) , t− ξ) ,

ϕ̃

(
ϕ−1

(
sup

ξ≤τ≤t
V1(τ)

))
, sup
t0≤τ≤t

γ̃ (δ(τ) ‖u(τ)‖U )

⎫⎪⎬⎪⎭ ,

(3.36)

V1(t) ≤ max

{
S1 (M1 (t0, ξ − t0, ‖x0‖X ) , t− ξ) ,
sup

ξ≤τ≤t
ϕ̃ (γ1 (δ1(τ)V2(τ))) , sup

t0≤τ≤t
γ̃ (δ(τ) ‖u(τ)‖U )

}
,(3.37)

where δ ∈ K+ is defined by (3.9). Notice that if β1, β2, c1, c2, δ2 ∈ K+ are bounded,

then the functions M1,M2 : (�+)
3 → �+ are independent of t0 ∈ �+ (but still depend

on ξ − t0). Moreover, the function γ̃ ∈ N in addition to (3.28) satisfies for all s ≥ 0:

γ̃(s) ≥ max {κ̃ (κ (σ1 (pu1 (s) , 0))) , κ̃ (κ (σ1 (p1 (ϕ(D(s))) , 0))) , κ̃ (ϕ (γu
1 (s)))} ,

(3.38a)

γ̃(s) ≥ max {ϕ̃ (γ1 (Mκ (ϕ (γu
2 (s))))) , ϕ̃ (γ1 (Mκ (κ (σ2 (pu2 (s) , 0))))) ,

ϕ̃ (γ1 (Mκ (κ (σ2 (p2 (ϕ (B(s))) , 0)))))} ,(3.38b)

where D(s) := γu
2 (s)+γ2

(
ϕ
(

1
2ϕ

2 (κ (ϕ (γu
1 (s))) + γ1 (Mκ (ϕ (γu

2 (s)))))
))

and B(s) :=
κ (ϕ (γu

1 (s))) + γ1 (Mκ (ϕ (γu
2 (s)))) are functions of class N .

We define:

a1(h, T,R) := sup

{
V1(t0 + h) − sup

t0≤τ≤t0+h
γ̃ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
,

(3.39)

a2(h, T,R) := sup

{
ϕ̃ (γ1 (δ1(t0 + h)V2(t0 + h))) − sup

t0≤τ≤t0+h
γ̃ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
,

(3.40)
l1 := lim sup

h→+∞
a1(h, T,R), l2 := lim sup

h→+∞
a2(h, T,R).(3.41)

By virtue of (3.24) and (3.27), the limits defined in (3.41) exist and are finite. Def-
inition (3.41) implies that, for every ε > 0, T ≥ 0, and R ≥ 0, there exists a
τ := τ (ε, T,R) ≥ 0 such that

a1(h, T,R) ≤ l1 + ε, a2(h, T,R) ≤ l2 + ε ∀h ≥ τ.(3.42)
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By virtue of the weak semigroup property for system Σ, there exists a constant r > 0
such that for each (t0, x0, u, d) ∈ �+ × X ×MU ×MD we have π(t0, x0, u, d) ∩ [t0 +
τ, t0 + τ + r] = ∅. Let ξ ∈ π(t0, x0, u, d) ∩ [t0 + τ, t0 + τ + r]. Estimates (3.36), (3.37)
in conjunction with definitions (3.39), (3.40) and inequalities (3.42) give

V1(t)− sup
t0≤τ≤t

γ̃ (δ(τ) ‖u(τ)‖U ) ≤ max {S1 (M1 (t0, ξ − t0, ‖x0‖X ) , t− ξ) ; l2 + ε} ,

(3.43)

ϕ̃ (γ1 (δ1(t)V2(t))) − sup
t0≤τ≤t

γ̃ (δ(τ) ‖u(τ)‖U )

≤ max

⎧⎨⎩
S2 (M2 (t0, ξ − t0, ‖x0‖X ) , t− ξ) ,

ϕ̃

(
ϕ−1

(
l1 + ε + sup

t0≤τ≤t
γ̃ (δ(τ) ‖u(τ)‖U )

))
− sup

t0≤τ≤t
γ̃ (δ(τ) ‖u(τ)‖U )

⎫⎬⎭ .

(3.44)
Using the identity ϕ̃

(
ϕ−1(s)

)
= s− 1

2ρ
(
ϕ−1(s)

)
and inequality (3.44), we get

ϕ̃ (γ1 (δ1(t)V2(t))) − sup
t0≤τ≤t

γ̃ (δ(τ) ‖u(τ)‖U )

≤ max

{
S2 (M2 (t0, ξ − t0, ‖x0‖X ) , t− ξ) ; l1 + ε− 1

2
ρ
(
ϕ−1 (l1)

)}
.

(3.45)

The properties of the KL functions in conjunction with estimates (3.43), (3.45), the
fact that ξ ∈ [t0 + τ, t0 + τ + r], and definitions (3.39), (3.40), (3.41) give for all ε > 0:

l1 ≤ l2 + ε; l2 ≤ l1 + ε− 1

2
ρ
(
ϕ−1 (l1)

)
.

From the first inequality we obtain l1 ≤ l2. The second inequality implies ρ(ϕ−1(l1)) ≤
2ε for all ε > 0, which directly gives l1 = l2 = 0.

Definitions (3.39), (3.40), and (3.41) imply that P3 of Lemma 2.16 holds for
system Σ with V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N (which satisfies
(3.28) and (3.39)) and δ ∈ K+ as defined by (3.9).

Notice that if β1, β2, c1, c2, δ2 ∈ K+ are bounded, then definitions (3.39), (3.40)
are modified as follows:

a1(h,R) := sup

{
V1(t0 + h) − sup

t0≤τ≤t0+h
γ̃ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ R, t0 ≥ 0, d ∈ MD, u ∈ MU} ,
(3.46)

a2(h,R) := sup

{
ϕ (γ1 (δ1(t0 + h)V2(t0 + h))) − sup

t0≤τ≤t0+h
γ̃ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ R, t0 ≥ 0, d ∈ MD, u ∈ MU

}
.

(3.47)

Similar arguments as above show that property P3 of Lemma 2.17 holds for system
Σ with V = V1 or V = ϕ̃ (γ1 (δ1(t)V2)), for appropriate γ̃ ∈ N (which satisfies (3.28)
and (3.38)) and δ ∈ K+ as defined by (3.9). The proof is complete.

Remark 3.6. If the functions γu
1 , p

u
1 , γ

u
2 , p

u
2 ∈ N are all identically zero, then it

follows that the gain function γ ∈ N is identically zero. Indeed, the reader should
notice that γ ∈ N may be selected as γ(s) := a (4γ̃(s)) ∈ N , where a ∈ N is
the function involved in hypothesis (H4) and γ̃ ∈ N is the function that satisfies
(3.28), (3.38a)–(3.38b). Moreover, notice that for the input free case Theorem 3.1
and Corollary 3.4 imply (uniform) robust global asymptotic output stability (RGAOS)
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for the corresponding system. The following example shows the applicability of this
particular remark to systems with impulses at fixed times.

Example 3.7. Consider the following system:

ż(t) = Az(t) + g(x(t)),

ẋ(t) = f(x(t)), t /∈ π,
(3.48a)

x(τi) = h

(
lim

t→τ−
i

x(t)

)
,

z(t) ∈ �k, x(t) ∈ �n,

(3.48b)

where A ∈ �k×k is a Hurwitz matrix, π = {τi}∞i=0 is a partition of �+ with diameter
r > 0, f : �n → �n, g : �n → �k, h : �n → �n are continuous vector fields, f(x)
being locally Lipschitz with respect to x ∈ �n, with f(0) = 0, g(0) = 0, h(0) = 0. No-
tice that subsystem (3.48a) is a system described by ODEs which satisfies hypotheses
(A1)–(A3) of Example 2.8. Hence, subsystem (3.48a) satisfies the BIC property, and
0 ∈ �k is a robust equilibrium point from the input x. Moreover, subsystem (3.48b)
is a hybrid system with impulses at fixed times, which satisfies hypotheses (Q1)–(Q4)
of Example 2.12. Hence, subsystem (3.48b) satisfies the BIC property, and 0 ∈ �n is
a robust equilibrium point (from the zero input). We remark that both subsystems
(3.48a)–(3.48b) satisfy the classical semigroup property, and consequently the com-
posite system (3.48) can be regarded as the feedback interconnection of subsystems
(3.48a)–(3.48b).

Since A ∈ �k×k is Hurwitz, it follows that subsystem (3.48a) satisfies the UISS
property from the input x. Moreover, if there exists a C1 positive definite and radially
unbounded function V : �n → �+ and constants c1, c2 ∈ �, with c2 = 0, μ, λ > 0,
such that

∇V (x)f(x) ≤ −c1V (x) ∀x ∈ �n,(3.49a)

V (h(x)) ≤ exp(−c2)V (x) ∀x ∈ �n,(3.49b)

−c2card (π ∩ [s, s + t)) ≤ μ + (c1 − λ)t∀s, t ∈ �+.(3.49c)

where card(S) denotes the cardinal number of the set S, then Theorem 1 in [7] implies
that 0 ∈ �n is uniformly globally asymptotically stable for subsystem (3.48b). Taking
into account Remarks 3.2(b) and 3.6, we conclude that 0 ∈ �k × �n is uniformly
globally asymptotically stable for the composite system (3.48) under the hypotheses
stated above.

4. Application to partial-state sampled-data control. In this section we
present applications of the small-gain results (Theorem 3.1 and Corollary 3.4) to
partial-state sampled-data control problems. It should be emphasized that sampled-
data control systems cannot be handled with small-gain results that have appeared
so far in the literature, since sampled-data control systems do not satisfy the classical
semigroup property (see Example 2.11).

Consider the following control system described by ODEs:

ż = f(t, d, z, x, u),
z ∈ �k , d ∈ D , u ∈ U , t ≥ 0,

(4.1a)

ẋ = Ax + Bv + Bg(t, d, z, u),
x ∈ �n , v ∈ � , d ∈ D , u ∈ U , t ≥ 0,

(4.1b)
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where (A,B) is a controllable pair of matrices, D ⊂ �l is a compact set, U ⊆ �p

is nonempty, with 0 ∈ U , and the mappings f : �+ × D × �k × �n × U → �k,
g : �+ × D × �k × U → � are continuous, locally Lipschitz in (z, x), uniformly in
d ∈ D, with f(t, d, 0, 0, 0) = 0, g(t, d, 0, 0) = 0 for all (t, d) ∈ �+ ×D. The problem
we consider is the (W)ISS stabilization problem for (4.1) with sampled-data feedback
applied with zero order hold and depending only on x ∈ �n; i.e., we want to find a
function k : �n → � with k(0) = 0 and a constant r > 0 such that system (4.1a) with

ẋ(t) = Ax(t) + Bk(x(τi)) + Bg(t, d(t), z(t), u(t)), t ∈ [τi, τi+1),
τi+1 = τi + exp (−w(τi)) r, w(t) ∈ �+(4.2)

satisfies the WISS property from the inputs (u,w). Notice that the input w has been
introduced in order to quantify the uncertainty in sampling times; i.e., we have to
guarantee stability properties for the closed-loop system (4.1a)–(4.2) for all sampling
schedules of diameter less than or equal to r > 0. To this purpose we make the
following assumptions.

(A1) System (4.1a) satisfies the WISS property from the inputs x and u. Specif-
ically, there exist functions σ ∈ KL, β, δu1 ∈ K+, γ1, γu

1 ∈ N such that for all
(t0, z0, d, x, u) ∈ �+ ×�k ×L∞

loc(�+;D)×L∞
loc(�+;�n)×L∞

loc(�+;U) the solution of
(4.1) with initial condition z(t0) = z0 corresponding to inputs (d, x, u) ∈ L∞

loc(�+;D)×
L∞
loc(�+;�n) × L∞

loc(�+;U) satisfies the following estimate for all t ≥ t0:

|z(t)| ≤ σ (β(t0) |z0| , t− t0) + sup
t0≤τ≤t

γ1 (|x(τ)|) + sup
t0≤τ≤t

γu
1 (δu1 (τ) |u(τ)|) .(4.3)

(A2) There exist functions δu2 ∈ K+, γ2, γ
u
2 ∈ N such that the following inequality

holds for all (t, z, d, u) ∈ �+ ×�k ×D × U :

|g(t, d, z, u)| ≤ γ2(|z|) + γu
2 (δu2 (t) |u|) .(4.4)

(A3) There exist a function ρ ∈ K∞and a constant R ≥ 1 such that

γ1

(
R−1γ2 (s) + ρ

(
R−1γ2 (s)

))
+ ρ

(
γ1

(
R−1γ2 (s) + ρ

(
R−1γ2 (s)

)))
≤ s ∀s ≥ 0.

(4.5)
For example, hypothesis (A3) holds if γi(s) = Kis, where Ki ≥ 0 (i = 1, 2), i.e., if the
gain functions are linear.

Next we show that the problem of WISS stabilization problem for (4.1) with
sampled-data feedback applied with zero order hold and depending only on x ∈ �n is
solvable under hypotheses (A1)–(A3) by linear feedback. The proof of this result will
be made by making use of Corollary 3.4.

Notice that since (A,B) is a controllable pair of matrices, it follows that for every
μ > 0, R ≥ 1 there exist a symmetric positive definite matrix P ∈ �n×n, a vector
k ∈ �n, and constants Q1, Q2 > 0 such that the following inequalities hold for all
(x, u) ∈ �n ×�:

Q1 |x|2 ≤ x′Px ≤ Q2 |x|2 ,
2x′P (A + Bk′)x + 2x′PBu ≤ −4μx′Px +

Q1

4μR2
u2.

(4.6)

Next we show the following claim.
Claim. For every μ > 0, R ≥ 1 there exists a vector k ∈ �n and constants

M, r > 0 such that for all (t0, x0, d, z, u, w) ∈ �+×�n×L∞
loc(�+;D)×L∞

loc(�+;�k)×
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L∞
loc(�+;U) × L∞

loc(�+;�+) the solution of the hybrid system

ẋ(t) = Ax(t) + Bk′x(τi) + Bg(t, d(t), z(t), u(t)), t ∈ [τi, τi+1),
τi+1 = τi + exp (−w(τi)) r, w(t) ∈ �+,

(4.7)

with initial condition x(t0) = x0 corresponding to inputs (d, z, u, w) ∈ L∞
loc(�+;D) ×

L∞
loc(�+;�k) × L∞

loc(�+;U) × L∞
loc(�+;�+), satisfies the following estimate for all

t ≥ t0:

|x(t)| ≤ M exp (−μ(t− t0)) |x0|+ sup
t0≤τ≤t

R−1γ2 (|z(τ)|)+ sup
t0≤τ≤t

R−1γu
2 (δu2 (τ) |u(τ)|) ,

(4.8)
where δu2 ∈ K+, γ2, γ

u
2 ∈ N are the functions involved in (4.4).

Proof of Claim. Let arbitrary μ > 0, R > 1. Since (A,B) is a controllable pair of
matrices, it follows that there exists a symmetric positive definite matrix P ∈ �n×n,
a vector k ∈ �n, and constants Q1, Q2 > 0 such that inequalities (4.6) hold for
all (x, u) ∈ �n × �. Let arbitrary (t0, x0, d, z, u, w) ∈ �+ × �n × L∞

loc(�+;D) ×
L∞
loc(�+;�k) × L∞

loc(�+;U) × L∞
loc(�+;�+), and consider the solution x(t) of (4.7)

with initial condition x(t0) = x0 corresponding to inputs (d, z, u, w) ∈ L∞
loc(�+;D) ×

L∞
loc(�+;�k)×L∞

loc(�+;U)×L∞
loc(�+;�+) (the solution exists for all t ≥ t0). Finally,

consider the function V (t) := x′(t)Px(t), which is absolutely continuous on [t0,+∞).
By virtue of (4.6) the derivative of V (t) satisfies a.e. on the interval [τi, τi+1):

V̇ (t) ≤ −4μV (t) + 2x′PBk′(x(τi) − x(t)) +
Q1

4μR2
|g(t, d(t), z(t), u(t))|2 .(4.9)

Let r > 0 be a constant that satisfies

r ≤ 2μ

M |Bk′| |A + Bk′| (2 |A + Bk′| + |B|) + 2μ |A| + 2μ |A + Bk′| ;

r ≤ 1

4μR2M |B| |Bk′| + |A| + |A + Bk′| ,
(4.10)

where M := Q2

Q1
≥ 1.

It follows from (4.7) that |x(t) − x(τi)| ≤ r|A| supτi≤s≤t |x(s) − x(τi)| + r|A +
Bk′||x(τi)|+r|B| supτi≤s≤t |g(s, d(s), z(s), u(s))|, which directly implies |x(t)−x(τi)| ≤
r|A+Bk′|

1−r|A |x(τi)| + r|B|
1−r|A| supτi≤s≤t |g(s, d(s), z(s), u(s))|, for all t ∈ [τi, τi+1). More-

over, the previous inequality in conjunction with the triangle inequality |x(τi)| ≤
|x(t) − x(τi)| + |x(t)| implies the estimate |x(t) − x(τi)| ≤ r|A+Bk′|

1−r|A|−r|A+Bk′| |x(t)| +
r|B|

1−r|A|−r|A+Bk′| supτi≤s≤t |g(s, d(s), z(s), u(s))| for all t ∈ [τi, τi+1). Using the previ-

ous inequality in conjunction with (4.9) and completing the squares, we obtain for
almost all t ∈ [τi, τi+1):

V̇ (t) ≤ −
(

4μ− rM |Bk′| |A + Bk′| (2 |A + Bk′| + |B|)
1 − r (|A| + |A + Bk′|)

)
V (t)

+

(
Q1

4μR2
+

r |B| Q2 |Bk′|
1 − r (|A| + |A + Bk′|)

)
sup

τi≤s≤t
|g(s, d(s), z(s), u(s))|2 .

(4.11)

It follows from inequalities (4.10), (4.11) that the following estimate holds for the
derivative of V (t) a.e. on the interval [τi, τi+1):

V̇ (t) ≤ −2μV (t) +
Q1

2μR2
sup

t0≤s≤t
|g(s, d(s), z(s), u(s))|2 .(4.12)
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Notice that, since estimate (4.12) does not depend on the particular interval [τi, τi+1),
we may conclude that estimate (4.12) holds a.e. for t ≥ t0. Estimate (4.12) implies

directly that V (t) ≤ exp (−2μ(t− t0))V (t0) + Q1

R2 supt0≤s≤t |g(s, d(s), z(s), u(s))|2 for
all t ≥ t0. Finally, estimate (4.8) is an immediate consequence of the previous in-
equality, definitions V (t) := x′(t)Px(t) and M := Q2

Q1
≥ 1, as well as inequalities (4.4)

and (4.6). The proof of the claim is complete.
By making use of Corollary 3.4 and specifically Remark 3.5(b), we may conclude

that the closed-loop system (4.1a) with (4.7) satisfies the WISS property from the
inputs u and w, when R > 1 is chosen to be greater than or equal to the constant
involved in hypothesis (A3). Moreover, the gain function for the input w is identically
zero. Furthermore, if the functions δu1 , δ

u
2 ∈ K+ are bounded, then the closed-loop

system (4.1a) with (4.7) satisfies the ISS property from the inputs u and w. Finally, if
in addition β ∈ K+ is bounded, then the closed-loop system (4.1a) with (4.7) satisfies
the UISS property from the inputs u and w.

Example 4.1. The following planar system described by ODEs:

ż = −z3 + zx,
ẋ = d(t)z2 + u + v,
(z, x)′ ∈ �2, u, v ∈ �

(4.13)

is studied in [11], where it is shown that if d(t) ≡ d with |d| < 1
2 , then the feedback

law v(t) = −x(t) guarantees the UISS property for the closed-loop system from the
input u ∈ �. The proof of this fact is made by using a slightly modified version of
the small-gain theorem presented in [14]. Here we study the possibility of robustly
globally stabilizing the origin for system (4.13), using the following feedback law with
zero order hold and a positive sampling rate:

v(t) = −x(τi), t ∈ [τi, τi+1),
τi+1 = τi + exp(−w(τi))r, w(t) ∈ �+(4.14)

for time-varying disturbances d(t) ∈ D := [−δ, δ], with δ ∈ (0, 1).
First notice that system (4.13) is a system of the form (4.1) with f(t, d, z, x, u) =

−z3 + zx, g(t, d, z, u) = dz2 + u, B = [1], A = [0]. Moreover, hypothesis (A2) holds
with γ2(s) = δs2, γu

2 (s) := s, and δu2 (t) ≡ 1.
Working exactly as in [11] it may be shown that for every ε ∈ (0, 1) the subsystem

Σ1:

ż = −z3 + zx(4.15)

satisfies the UISS property from the input x with gain function γ1(s) :=
√

s
1−ε . Thus

the subsystem Σ1 satisfies hypothesis (A1) with γ1(s) :=
√

s
1−ε , β(t) ≡ 1, γu

2 (s) := s,

and appropriate σ ∈ KL.
For every δ ∈ (0, 1) there exist ε ∈ (0, 1) and L > 0 such that

(1 + L)

√
(1 + L)δ

1 − ε
≤ 1.(4.16)

Selecting ρ(s) := Ls, with L > 0, we conclude from (4.16) that (4.5) holds with
R = 1. Finally, since (4.6) holds with Q1 = Q2 = 1, P = [1], μ = 1

4 , and k = −1,
we conclude that (4.13) with (4.14) satisfies the UISS property from the inputs u and
w. Moreover, the gain function for the input w is identically zero. The maximum
allowable sampling period (r) may be determined by inequalities (4.10), which give
r = 1/7.
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5. Conclusions. A small-gain theorem, which can be applied to a wide class of
systems that includes systems that satisfy the weak semigroup property, is presented
in the present work. The result generalizes all existing results in the literature and
exploits notions of weighted, uniform, and nonuniform IOS property. Moreover, the
small-gain theorem of the present work is a method for establishing qualitative prop-
erties expressed in a very general framework unifying works from various fields as
well as different stability notions. The results presented in the paper can be extended
without much difficulty to the case of local stability notions.

Applications to partial-state feedback stabilization problems with sampled-data
feedback applied with zero order hold and a positive sampling rate are also presented.
It should be emphasized that sampled-data control systems cannot be handled with
small-gain results that have appeared so far in the literature, since sampled-data con-
trol systems do not satisfy the classical semigroup property. The results are illustrated
by examples which show the usefulness of the main result for the stability analysis of
interconnected systems. Other promising applications of the new generalized small-
gain theorem include the popular topics of hybrid systems and networked control
systems. Some initial, interesting results can be found in [30, 39, 41].

Appendix A.
Proof of Lemma 2.13. Lemma 3.5 in [24] guarantees that the control system

Σ := (X ,Y,MU ,MD, φ, π,H) which has the BIC property is RFC from the input
u ∈ M(U) if and only if there exist functions q ∈ K+, a ∈ K∞ and a constant R ≥ 0
such that the following estimate holds for all (t0, x0, d, u) ∈ �+ ×X ×MD ×MU and
t ≥ t0:

‖φ(t, t0, x0, u, d)‖X ≤ q(t)a

(
R + ‖x0‖X + sup

t0≤τ≤t
‖u(τ)‖U

)
.(A.1)

It should be emphasized that all results in [24] were proved under the assumption
of the classical semigroup property for the control system. However, the proof of
Lemma 3.5 does not depend on the semigroup property and consequently may be
repeated as it stands for a system which satisfies the weak semigroup property. Let
β ∈ K+ arbitrary. Using (A.1) we obtain

β(t) ‖φ(t, t0, x0, u, d)‖X
≤ 1

2
q2(t)β2(t) +

1

2
max

{
a2(3R); a2 (3 ‖x0‖X ) ; sup

t0≤τ≤t
a2 (3 ‖u(τ)‖U )

}
≤ max

{
q2(t)β2(t) ; a2(3R) ; a2 ( 3 ‖x0‖X ) ; sup

t0≤τ≤t
a2 (3 ‖u(τ)‖U )

}
≤ max

{
γ(t) ; a2 ( 3 ‖x0‖X ) ; sup

t0≤τ≤t
a2 ( 3 ‖u(τ)‖U )

}
,

(A.2)

where γ(t) = q2(t)β2(t) + a2(3R). Define

a(T, s) := max {γ(t0 + h) − γ(t0) : h ∈ [0, s], t0 ∈ [0, T ]} .(A.3)

Clearly, definition (A.3) implies that, for each fixed s ≥ 0, a(·, s) is nondecreasing
and, for each fixed T ≥ 0, a(T, ·) is nondecreasing. Furthermore, continuity of γ
guarantees that, for every T ≥ 0, lims→0+ a(T, s) = a(T, 0) = 0. It turns out from
Lemma 2.3 in [21] that there exist functions ζ ∈ K∞ and κ ∈ K+ such that

a(T, s) ≤ ζ(κ(T )s) ∀(T, s) ∈
(
�+

)2
.(A.4)
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Combining definition (A.3) with inequality (A.4), we conclude that, for all t0 ≥ 0
and t ≥ t0, it holds that

γ(t) ≤ γ(t0) + ζ (κ(t0) (t− t0)) ≤ γ(t0) + ζ
(

1
2κ

2(t0) + 1
2 (t− t0)

2
)

≤ γ(t0) + ζ
(
κ2(t0)

)
+ ζ

(
(t− t0)

2
)
≤ max

{
2γ(t0) + 2ζ

(
κ2(t0)

)
; 2ζ

(
(t− t0)

2
)}

.

The above inequality in conjunction with (A.2) implies that (2.9) holds for all
(t0, x0, d, u) ∈ �+ × X × MD × MU and t ≥ t0 with μ(t) := 2ζ

(
t2 + 1

)
, c(t) :=

2γ(t) + 2ζ
(
κ2(t)

)
, a(s) := a2(3s), and p(s) := a2(3s). The proof is complete.

Proof of Lemma 2.16. As in the proof of Proposition 2.2 in [21], let T, h ≥ 0,
s ≥ 0, and define

a(T, s) := sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ s, t ≥ t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
,

(A.5)

M(h, T, s) := sup

{
V (t0 + h, φ(t0 + h, t0, x0, u, d), u(t)) − sup

t0≤τ≤t0+h
γ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ s, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}
.

(A.6)
First notice that by virtue of property P1 it holds that a(T, s) < +∞ for all T ≥ 0,
s ≥ 0. Moreover, notice that, since 0 ∈ X is a robust equilibrium point from the
input u ∈ MU and V (t, 0, 0) = 0 for all t ≥ 0, we have a(T, s) ≥ 0 for all T ≥ 0,
s ≥ 0. Furthermore, notice that M is well-defined, since by definitions (A.5), (A.6)
the following inequality is satisfied for all T, h ≥ 0 and s ≥ 0:

0 ≤ M(h, T, s) ≤ a(T, s).(A.7)

Clearly, definition (A.5) implies that, for each fixed s ≥ 0, a(·, s) is nondecreasing
and, for each fixed T ≥ 0, a(T, ·) is nondecreasing. Furthermore, property P2 asserts
that, for every T ≥ 0, lims→0+ a(T, s) = 0. Hence, the inequality a(T, 0) ≥ 0 for all
T ≥ 0, in conjunction with lims→0+ a(T, s) = 0 and the fact that a(T, ·) is nonde-
creasing, implies a(·, 0) = 0. It turns out from Lemma 2.3 in [21] that there exist
functions ζ ∈ K∞ and q ∈ K+ such that

a(T, s) ≤ ζ(q(T )s) ∀(T, s) ∈
(
�+

)2
.(A.8)

Without loss of generality we may assume that q ∈ K+ is nondecreasing. More-
over, property P3 guarantees that, for every ε > 0, T ≥ 0, and R ≥ 0, there exists a
τ = τ(ε, T,R) ≥ 0 such that

M(h, T, s) ≤ ε ∀ h ≥ τ(ε, T,R) and 0 ≤ s ≤ R.(A.9)

Let

g(s) :=
√
s + s2,(A.10)

and let p be a nondecreasing function of class K+, with p(0) = 1 and

lim
t→+∞

p(t) = +∞.(A.11)
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Define

μ(h) := sup

{
M(h, T, s)

p(T )g (ζ (q(T )s))
; T ≥ 0, s > 0

}
.(A.12)

Obviously, by virtue of (A.7), (A.8), and (A.10) the function μ : �+ → �+ is
well-defined and satisfies μ(·) ≤ 1. We show that limh→+∞ μ(h) = 0; equivalently, we
establish that for any given ε > 0 there exists a δ = δ(ε) ≥ 0 such that

μ (h) ≤ ε for h ≥ δ (ε) .(A.13)

Notice first that for any given ε > 0 there exist constants a := a(ε) and b := b(ε),
with 0 < a < b, such that

x /∈ (a, b) ⇒ x√
x + x2

≤ ε.(A.14)

We next recall (A.11), which asserts that, for the above ε for which (A.14) holds,
there exists a c := c(ε) ≥ 0 such that p(T ) ≥ 1

ε for all T ≥ c. This by virtue of (A.7),
(A.8), (A.10), and (A.14) yields

M(h, T, s)

p(T )g(ζ(q(T )s))
≤ ε ∀h ≥ 0, when T ≥ c or ζ(q(T )s) /∈ (a, b).(A.15)

Hence, in order to establish (A.13), it remains to consider the case:

a ≤ ζ(q(T )s) ≤ b and 0 ≤ T ≤ c.(A.16)

Since, for each fixed (h, s) ∈ (�+)
2
, the mappings M(h, ·, s), M(h, s, ·), q(·), and

p(·) are nondecreasing, we have that

M(h, T, s)

p(T )g (ζ (q(T )s))
≤

M
(
h, c, ζ−1(b)

q(0)

)
g (a)

,(A.17)

provided that (A.16) holds. By using (A.9) and (A.17) with

ε := εg(a), T := c,R :=
ζ−1(b)

q(0)
,

it follows

M

(
h, c,

ζ−1(b)

q(0)

)
≤ εg (a) for h ≥ δ (ε) := τ

(
ε g(a), c,

ζ−1(b)

q(0)

)
.(A.18)

By taking into account (A.15), (A.16), (A.17), (A.18), and definition (A.12) of μ (·), it
follows that (A.13) holds with δ = δ (ε) as selected in (A.18). Since ε > 0 was arbitrary
we conclude that limh→+∞ μ(h) = 0. Consequently, there exists a continuous strictly
decreasing function μ̄ : �+ → (0,+∞) such that μ̄(h) ≥ μ(h) for all h ≥ 0 and
limh→+∞ μ̄(h) = 0. Thus, by recalling definition (A12) we obtain

M(h, T, s) ≤ μ̄(h)θ(T, s) ∀(T, s) ∈
(
�+

)2
, ∀h ≥ 0,(A.19)

where θ(T, s) := p(T )g(ζ(q(T )s)). Clearly, θ satisfies all hypotheses of Lemma 2.3 in
[21], and therefore there exist ζ2 ∈ K∞ and β ∈ K+ such that

θ(T, s) ≤ ζ2(β(T )s) ∀(T, s) ∈
(
�+

)2
.(A.20)
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Thus definition (A.6) implies that the following estimate holds for all u ∈ MU ,
(t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0:

V (t, φ(t, t0, x0, u, d), u(t)) ≤ μ̄(t− t0)ζ2 (β(t0) ‖x0‖X) + sup
t0≤τ≤t

γ (δ(τ) ‖u(τ)‖U ) .

(A.21)
Estimate (A.21) implies (2.12) with σ(s, t) := μ̄(t)ζ2(s).

Proof of Lemma 2.17. As in the proof of Lemma 2.16, let h ≥ 0, s ≥ 0, and define

a(s) := sup

{
V (t, φ(t, t0, x0, u, d), u(t)) − sup

t0≤τ≤t
γ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ s, t ≥ t0 ≥ 0, d ∈ MD, u ∈ MU

}
,

(A.22)

M(h, s) := sup

{
V (t0 + h, φ(t0 + h, t0, x0, u, d), u(t)) − sup

t0≤τ≤t0+h
γ (δ(τ) ‖u(τ)‖U ) ;

‖x0‖X ≤ s, t0 ≥ 0, d ∈ MD, u ∈ MU

}
.

(A.23)
First notice that by virtue of property P1 it holds that a(s) < +∞ for all s ≥ 0.

Moreover, notice that, since 0 ∈ X is a robust equilibrium point from the input u ∈
MU and V (t, 0, 0) = 0 for all t ≥ 0, we have a(s) ≥ 0 for all s ≥ 0. Furthermore, notice
that M is well-defined, since by definitions (A.22), (A.23) the following inequality is
satisfied for all h ≥ 0 and s ≥ 0:

0 ≤ M(h, s) ≤ a(s).(A.24)

Clearly, definition (A.22) implies that a(·) is nondecreasing. Furthermore, property
P2 asserts that lims→0+ a(s) = 0. Hence, the inequality a(0) ≥ 0, in conjunction
with lims→0+ a(s) = 0 and the fact that a(·) is nondecreasing, implies a(0) = 0.
It turns out that a can be bounded from above by the K∞ function ã defined by

ã(s) := s + 1
s

∫ 2s

s
a(w)dw for s > 0 and ã(0) = 0. Define

μ(h) := sup

{
M(h, s)

g (ã (s))
; s > 0

}
,(A.25)

where g is defined by (A.10). Working exactly as in the proof of Lemma 2.16 we
can show that the function μ : �+ → �+ is well-defined and satisfies μ(·) ≤ 1,
limh→+∞ μ(h) = 0. Consequently, there exists a continuous strictly decreasing func-
tion μ̄ : �+ → (0,+∞) such that μ̄(h) ≥ μ(h) for all h ≥ 0 and limh→+∞ μ̄(h) = 0.
Thus, by recalling definition (A.25) we obtain

M(h, s) ≤ μ̄(h)g(ã(s)) ∀h, s ≥ 0.(A.26)

Hence definition (A.23) implies that the following estimate holds for all u ∈ MU ,
(t0, x0, d) ∈ �+ ×X ×MD, and t ≥ t0:

V (t, φ(t, t0, x0, u, d), u(t)) ≤ μ̄(t− t0)g (ã(‖x0‖X)) + sup
t0≤τ≤t

γ (δ(τ) ‖u(τ)‖U ) .(A.27)

Estimate (A.27) implies (2.12) with β(t) ≡ 1 and σ(s, t) := μ̄(t)g(ã(s)).
Proof of Lemmas 2.19–2.20. The proof is based on the following observation:

If Σ := (X ,Y,MU ,MD, φ, π,H) is T -periodic, then for all (t0, x0, u, d) ∈ �+ ×
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X × MU × MD it holds that φ(t, t0, x0, u, d) = φ (t− kT, t0 − kT, x0, PkTu, PkT d)
and H(t, φ(t, t0, x0, u, d), u(t)) = H(t− kT, φ(t− kT, t0 − kT, x0, PkTu, PkT d), (PkTu)
(t− kT )), where k := [t0/T ] denotes the integer part of t0/T and the inputs PkTu ∈
MU , PkT d ∈ MD are defined in Definition 2.2.

Since Σ := (X ,Y,MU ,MD, φ, π,H) satisfies the WIOS property from the input
u ∈ MU , there exist functions σ ∈ KL, β, δ ∈ K+, γ ∈ N such that (2.10) holds for
all (t0, x0, u, d) ∈ �+ × X ×MU ×MD and t ≥ t0. Consequently, it follows that the
following estimate holds for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y
≤ σ (β (t0 − kT ) ‖x0‖X , t− t0) + sup

τ∈[t0−kT,t−kT ]

γ (δ(τ) ‖(PkTu) (τ)‖U ) .

Setting τ = s− kT and since 0 ≤ t0 −
[
t0
T

]
T < T for all t0 ≥ 0, we obtain

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y
≤ σ̃ (‖x0‖X , t− t0) + sup

s∈[t0,t]

γ (δ(s− kT ) ‖(PkTu) (s− kT )‖U ) ,(A.28)

where σ̃(s, t) := σ(rs, t) and r := max {β(t); 0 ≤ t ≤ T}. Estimate (A.28) and the
identity (PkTu) (s− kT ) = u(s) for all s ≥ 0 imply that the following estimate holds
for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y ≤ σ̃ (‖x0‖X , t− t0) + sup
s∈[t0,t]

γ
(
δ̃(s) ‖u(s)‖U

)
,(A.29)

where δ̃(t) := max {δ(s); s ∈ [0, t]}.
In the case that Σ := (X ,Y,MU ,MD, φ, π,H) satisfies the IOS property from the

input u ∈ MU , then all arguments above may be repeated with δ(t) ≡ 1. Thus we
conclude that (A.29) holds for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD and t ≥ t0 with
δ̃(t) ≡ 1. The proof is complete.
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1. Introduction. Throughout this paper, the following notation is used:
• Ω ⊂ Rn is a bounded domain with a C1,1 boundary ∂Ω;
• Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), ∂pQ = Σ

⋃
Ω̄ × {0};

• L2(0, T ;H1
0 (Ω)) = {z: (0, T ) → H1

0 (Ω)|
∫ T

0
‖z(·, t)‖2

H1
0 (Ω)

dt < ∞};
• W = {y ∈ L2(0, T ;H1

0 (Ω))| yt ∈ L2(0, T ;H−1(Ω)};
• W 2,1

p (Q) = {z ∈ Lp(Q)| zt, zx, zxx ∈ Lp(Q)};
• Ẇ 2,1

p (Q) = {z ∈ W 2,1
p (Q)| z|∂pQ = 0}.

This paper deals with an optimal obstacle control problem in which the state y
is governed by a semilinear parabolic bilateral variational inequality⎧⎪⎪⎨⎪⎪⎩

y ∈ W 2,1
2 (Q) ∩ L2(0, T ;H1

0 (Ω)), y|t=0 = y0 in Ω,
ϕ ≤ y ≤ ψ in Q,

(yt − Δy − f(x, t, y))(y − ϕ) ≤ 0 in Q,
(yt − Δy − f(x, t, y))(y − ψ) ≤ 0 in Q,

(1.1)

and the input control (ϕ,ψ) is a pair of upper and lower obstacles.
We assume that
(i)

y0 ∈ Cα
0 (Ω̄) ∩W 2− 1

p ,p(Ω)

for some α ∈ (0, 1) and any p > 1.
(ii) the function f : Ω × [0, T ] ×R → R has the following properties:

• f(·, ·, y) is measurable on Ω × [0, T ];
• f(x, t, ·) is a decreasing function in C1(R), so it is monotone;
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• f(x, t, ·) is a Lipschitz function, and thus, there exists a constant K > 0,
such that

|f(x, t, y1) − f(x, t, y2)| ≤ K |y1 − y2|
∀ (x, t) ∈ Ω × [0, T ]; y1, y2 ∈ R;(1.2)

•

|f(x, t, 0)| ≤ K ∀ (x, t) ∈ Ω × [0, T ].(1.3)

Denote

U = {(ϕ,ψ) ∈ W 2,1
p (Q) ×W 2,1

p (Q)|ϕ ≤ ψ inQ,

ϕ = 0 = ψ on Σ, ϕ|t=0 ≤ y0 ≤ ψ|t=0 in Ω}.

For any given (ϕ,ψ) ∈ U , the bilateral variational inequality (1.1) is uniquely solvable
(see Proposition 2.4 below). We will denote by y = S(ϕ,ψ) the unique solution of
(1.1) corresponding to (ϕ,ψ).

We shall take the pair of upper and lower obstacles (ϕ,ψ) as the control so that
the corresponding state y becomes close to a desired target profile zd ∈ L2(Q). This
leads to the following problem.

Problem (C). Find a control pair (ϕ̄, ψ̄) ∈ U such that

J(ϕ̄, ψ̄) = inf
(ϕ,ψ)∈U

J(ϕ,ψ),

where the objective functional J(ϕ,ψ) is defined by

J(ϕ,ψ) =

∫
Q

{
1

2
(S(ϕ,ψ) − zd)

2 +
1

p
[|ϕt|p + |Δϕ|p + |ψt|p + |Δψ|p]

}
dxdt.(1.4)

The variational inequalities and related optimal control problems have been stud-
ied extensively; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21,
22, 23, 24, 27, 29] and the references therein. When the governing system is an obsta-
cle variational inequality and the obstacle is considered as the control, the resulting
problem is referred to as an optimal obstacle control problem. This type of problem
usually appears in shape optimization (cf. [26]). It may concern, for example, the de-
sign of the shape for a string in the one-dimensional obstacle problem, or the optimal
shape for a dam, in which case the obstacle gives the form to be designed such that
the pressure of the fluid inside the dam is close to a desired value.

The motivations of our present work are as follows:
(a) In Problem (C), the state system is a parabolic bilateral variational inequality,

which has played an important role in the following recent research on math-
ematical finance: (1) the pricing model for American contingent claims (cf.
[28]) is formulated as a parabolic variational inequality with the obstacle be-
ing the “payoff” function, and in that particular case, controlling the obstacle
is equivalent to the design of the “payoff”; (2) in [11] the optimal investment
problem with finite-horizon and transaction costs for a constant relative risk
aversion investor is linked with a parabolic bilateral problem involving two
free boundaries which correspond to the optimal buying and selling bound-
aries, respectively; and (3) in [12] the pricing model of a callable convertible
security is formulated as a parabolic bilateral variational inequality in order
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to study the optimal policies of the holder’s conversion and issuer’s calling
for the callable American warrants and callable convertible bonds. It should
be acknowledged that there is a nontrivial gap between the results of the
present paper and that of the problem arising from mathematical finance,
since Black–Scholes with American options has singular coefficients and an
unbounded domain. However, in practical computation, we always truncate
the unbounded domain, then solve the related partial differential equations
on a bounded domain. In fact, if information on the interface between buy
and sell regions is available, then this can be used as a sophisticated way of
“cutting off” the domain; on this point we refer the reader to [30]. We also
note that there may be other discussions of this point, e.g., in the stochas-
tic community. Thus, it is possible, in some sense, to apply our results to
mathematical finance. This is a research topic worthy of further study.

(b) The existence and uniqueness as well as characterizations of the optimal pair
for an optimal obstacle control problem of an elliptic variational inequality
have been given in [1]. The optimal obstacle control problem for more general
systems has also been studied in [2, 3, 6, 8, 9, 10, 21, 22]. A problem, which
is similar to Problem (C) with p = 2, has been considered in [2]. However,
it seems that the method used in [2] cannot be applied to Problem (C) with
p > 2 in the sense that when p > 2 a nonlinear leading differential operator,
which lacks weak continuity, appears in the approximate optimality system
(3.4) in section 3, but this operator is linear in the case p = 2.

(c) In general, when the penalty on control is stronger, the proof of the exis-
tence of optimal control becomes easier, whereas the derivation of necessary
conditions will become harder, since the corresponding duality relation has
to be established in a bigger space. Moreover, when the state equation is a
variational inequality, one has to prove the convergence of the approximate
adjoint equation, which is difficult due to the fact that the approximate ad-
joint equation is defined in a very weak sense, and then some measure term
will occur in the limit. As far as the optimality system is concerned, it is
incomplete as long as the measure which intervenes in the adjoint equation
has not been precisely described. Hence, Problem (C) with p > 2 is much
more difficult than its version with p = 2 in the sense that it is hard to derive
the desired optimality system.

(d) Generally the existing results for elliptic variational inequalities cannot be
extended to Problem (C) for parabolic variational inequalities in a trivial
manner. In addition, some existing ideas, for example, the idea in [6], cannot
be used to solve Problem (C) with p > 2 because of the difficulties described
below. Furthermore, it is not clear if some existing results for the optimal
control of elliptic variational inequalities are still true for the case of parabolic
variational inequality; for instance, it is interesting to investigate whether the
optimality conditions in [17] and [23] can still be true for Problem (C).

In this paper, we mainly aim at establishing an optimality system for Problem
(C). Our approach is based on the penalty method and Barbu’s treatment (cf. [4, 5])
as a penalty parameter approaching zero. In order to derive a more complete opti-
mality system for Problem (C) than the one presented in [2] for a similar problem
with p = 2, we adopt the W 2,1

p framework which, however, causes some further dif-
ficulties due to the lack of weak continuity of the leading differential operator in the
approximate optimality systems. We have overcome the encountered difficulties by
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making full use of the special structure of the approximate optimality systems, in-
cluding the monotonicity of the leading differential operator. We will prove that for
most optimality conditions in [17, Theorem 5.1] and [23, Theorem 3.2], we can find
their counterparts in our parabolic bilateral obstacle control problem.

Our approach can also be applied to more general cases; for instance, the Lapla-
cian in (1.1) may be replaced by a general second order uniform elliptic operator with
smooth coefficients.

2. State analysis. This section is devoted to some necessary preliminaries for
the developments in the next sections.

2.1. Weak formulation. Given (ϕ,ψ) ∈ U , define

K(ϕ,ψ) = {w ∈ W |ϕ ≤ w ≤ ψ a.e. in Q and w|t=0 = y0 a.e. in Ω}.

Clearly, K(ϕ,ψ) is a nonempty convex and closed subset of W .
Lemma 2.1. Let y ∈ W 2,1

2 (Q)∩L2(0, T ;H1
0 (Ω)). Then y = S(ϕ,ψ) if and only if

(2.1){
y ∈ K(ϕ,ψ),∫
Q

[yt(w − y) + ∇y · ∇(w − y)]dxdt ≥
∫
Q
f(x, t, y)(w − y)dxdt ∀w ∈ K(ϕ,ψ).

Proof. If y solves (1.1), then

y ∈ K(ϕ,ψ),

and, for any w ∈ K(ϕ,ψ), (w − y)+ (resp., (w − y)−) can differ from 0 only when
y − ψ < 0 (resp., y − ϕ > 0) and therefore yt − Δy − f ≥ 0 (resp., yt − Δy − f ≤ 0).
Thus, by the divergence theorem, the following inequality holds:∫

Q

[yt(w − y) + ∇y · ∇(w − y) − f(x, t, y)(w − y)dxdt

=

∫
Q

(yt − Δy − f)(w − y)dxdt

=

∫
Q

(yt − Δy − f)(w − y)+dxdt−
∫
Q

(yt − Δy − f)(w − y)−dxdt

≥ 0 ∀w ∈ K(ϕ,ψ).

(2.2)

On the other hand, any y ∈ W 2,1
2 (Q) ∩ L2(0, T ;H1

0 (Ω)) satisfying (2.1) must be
a solution of (1.1). In fact, for any fixed D ⊂ Q and any sequence {χn} of functions
in C∞

c (Q) satisfying 0 ≤ χn ≤ 1 and χn → χD (characteristic function of D) a.e. in
Q, we can insert w = y + χn(ϕ− y) and w = y + χn(ψ − y) into (2.2), and then get∫

Q

(yt − Δy − f)χn(ϕ− y)dxdt ≥ 0,

∫
Q

(yt − Δy − f)χn(ψ − y)dxdt ≥ 0.(2.3)

So, by letting n → ∞ in (2.3) we obtain that∫
D

(yt − Δy − f)(ϕ− y)dxdt ≥ 0 and

∫
D

(yt − Δy − f)(ψ − y)dxdt ≥ 0.

Hence the last two inequalities in (1.1) follow directly from the arbitrariness
of D.

Clearly, (2.1) is a weak formulation of the bilateral variational problem (1.1).
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2.2. Approximation to the state. The objective functional J(ϕ,ψ) defined
by (1.4) is not smooth, which will cause difficulties for deriving an optimal system
for Problem (C), so we approximate it by a smooth functional. For this purpose, we
define

β(s) =

⎧⎨⎩
0, 0 ≤ s < +∞,

−s2, − 1
2 ≤ s < 0,

s + 1
4 , −∞ < s < − 1

2 ,

γ(s) =

⎧⎨⎩
0, −∞ < s < 0,
s2, 0 ≤ s < 1

2 ,
s− 1

4 ,
1
2 ≤ s < +∞

and introduce a family of approximations to the state equation (2.1):{
yεt − Δyε + 1

ε [β(yε − ϕ) + γ(yε − ψ)] = f(x, t, yε) in Q,
yε|Σ = 0, yε|t=0 = y0.

(2.4)

For any given (ϕ,ψ) ∈ U and ε > 0, (2.4) is uniquely solvable in W . This unique
solution is denoted by yε = Sε(ϕ,ψ).

We consider the W 2,1
p -estimation and the convergence for approximate state yε

in the following lemmas.
Lemma 2.2. For any (ϕ,ψ) ∈ U and ε > 0, the following inequality always holds:

‖yε‖W 2,1
p (Q) ≤ C

(
1 + ‖ϕ‖W 2,1

p (Q) + ‖ψ‖W 2,1
p (Q)

)
,(2.5)

where C is a constant independent of ε > 0 and (ϕ,ψ) ∈ U .
Proof. To obtain (2.5), it suffices to prove the two estimates

‖β(yε − ϕ)‖Lp
(Q) ≤ εC

(
1 + ‖ϕ‖W 2,1

p (Q)

)
,(2.6)

‖γ(yε − ψ)‖Lp
(Q) ≤ εC

(
1 + ‖ψ‖W 2,1

p (Q)

)
,(2.7)

since (2.5) follows immediately from (2.6)–(2.7) and the standard parabolic LP -
estimate (cf. [19]).

Define, for s ∈ R, B(s) = |β(s)|p−2β(s) and Γ(s) = |γ(s)|p−2γ(s). Then we have

B(s) ≤ 0 and Γ(s) ≥ 0 ∀s ∈ R,(2.8)

B(s) = 0 ∀s ≥ 0 and Γ(s) = 0 ∀s ≤ 0,(2.9)

(2.10)

B′(s) = (p− 1)|β(s)|p−2β′(s) ≥ 0 and Γ′(s) = (p− 1)|γ(s)|p−2γ′(s) ≥ 0.

Let

Φ(s) =

∫ s

0

B(τ)dτ.
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By (2.8)–(2.10), we further have

Φ(s) ≥ 0, Φ′(s) = B(s) ≤ 0 inR; Φ(s) = 0 inR+.

Thus, we easily get∫
Q

[(yε − ϕ)tB(yε − ϕ) + ∇(yε − ϕ) · ∇B(yε − ϕ)]dxdt

=

∫
Ω

Φ(yε − ϕ)|t=T dx +

∫
Q

B′(yε − ϕ)|∇(yε − ϕ)|2dxdt

≥ 0.

(2.11)

Under assumption (ii) of the introduction, f is decreasing in y, so using (2.8)–(2.9)
we have that ∫

Q

f(x, t, yε)B(yε − ϕ)dxdt ≤
∫
Q

f(x, t, ϕ)B(yε − ϕ)dxdt.(2.12)

Note that (2.9) implies

B(yε − ϕ)γ(yε − ψ) = 0 a.e. in Q,

so we can multiply (2.4) by εB(yε − ϕ), integrate it over Q, and then get

ε

∫
Q

[yεtB(yε − ϕ) + ∇yε · ∇B(yε − ϕ)]dxdt +

∫
Q

|β(yε − ϕ)|pdxdt

= ε

∫
Q

f(x, t, yε)B(yε − ϕ)dxdt.
(2.13)

Furthermore, from (2.13) using (2.11)–(2.12) and Hölder’s inequality we can deduce
that

‖β(yε − ϕ)‖p
L

p
(Q)

≤ ε

∫
Q

{f(x, t, ϕ)B(yε − ϕ) − [ϕtB(yε − ϕ) + ∇ϕ · ∇B(yε − ϕ)]}dxdt

= ε

∫
Q

[f(x, t, ϕ) − ϕt + Δϕ]B(yε − ϕ)dxdt

≤ ε[‖f(·, ·, ϕ(·, ·))‖Lp
(Q) + ‖ϕ‖W 2,1

p (Q)] ‖β(yε − ϕ)‖p−1
L

p
(Q)

.

Finally, because (1.2) and (1.3) hold, we get

(2.14)

|f(x, t, ϕ(x, t))| ≤ |f(x, t, 0)| + |f(x, t, ϕ(x, t)) − f(x, t, 0)| ≤ K[1 + |ϕ(x, t)|]

and then

‖f(·, ·, ϕ(·, ·))‖Lp
(Q) ≤ C

(
1 + ‖ϕ‖W 2,1

p (Q)

)
(2.15)

with C being independent of ε > 0 and ϕ. Thus, (2.6) follows.
The inequality (2.7) can be obtained similarly.
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Lemma 2.3. Given a sequence of obstacle pairs (ϕε, ψε) ∈ U , let yε = Sε(ϕε, ψε).
If the sequence {(ϕε, ψε)} is bounded in W 2,1

p (Q)×W 2,1
p (Q) with p > (n+ 2)/2, then

for some subsequences (still denoted by themselves), as ε → 0+,

ϕε → ϕ
ψε → ψ
yε → y

⎫⎬⎭weakly in W 2,1
p (Q) and strongly in Cθ,θ/2(Q̄) ∩ L2(0, T ;H1

0 (Ω))

for some θ ∈ (0, 1), where (ϕ,ψ) ∈ U and y = S(ϕ,ψ).
Proof. First, by Simon’s compactness lemma (cf. [25]), we know that, if p >

(n + 2)/2, any bounded subset of W 2,1
p (Q) is relatively compact in Cθ,θ/2(Q̄) ∩

L2(0, T ;H1
0 (Ω)) for some θ ∈ (0, 1). Thus, we can extract a subsequence (still de-

noted by itself) by virtue of (2.5) such that

ϕε → ϕ
ψε → ψ
yε → y

⎫⎬⎭weakly in W 2,1
p (Q) and strongly in Cθ,θ/2(Q̄) ∩ L2(0, T ;H1

0 (Ω)).

Obviously, (ϕ,ψ) ∈ U .
Next, by using (2.6), (2.7), the strong convergence of (ϕε, ψε, yε) to (ϕ,ψ, y) in

Cθ,θ/2(Q̄), and the definition of β(·) and γ(·), we also have (as ε → 0+)

β(yε − ϕε) + γ(yε − ψε) → 0 in Lp(Q),

β(y − ϕ) + γ(y − ψ) = 0 a.e. in Q,

and

ϕ(x, t) ≤ y(x, t) ≤ ψ(x, t) a.e. in Q.

Clearly, y|t=0 = y0. Hence, y ∈ K(ϕ,ψ).
For any w ∈ K(ϕ,ψ), let wε = sup(ϕε, inf(ψε, w)). Since β(yε−ϕε) can differ from

0 only when yε < ϕε ≤ wε, and γ(yε −ψε) can differ from 0 only when yε > ψε ≥ wε,
we deduce from (2.4) that∫

Q

[yεt (w
ε − yε) + ∇yε · ∇(wε − yε)]dxdt

= −1

ε

∫
Q

[β(yε − ϕε) + γ(yε − ψε)](wε − yε)dxdt +

∫
Q

f(x, t, yε)(wε − yε)dxdt

≥
∫
Q

f(x, t, yε)(wε − yε)dxdt.

Then letting ε → 0+ in the above inequality, we obtain that y = limε→0+ yε satisfies
(2.1). Hence, y = S(ϕ,ψ).

2.3. Unique solvability of the state system. As claimed in the introduction,
the state system (1.1) is uniquely solvable, and we prove this point in this subsection.

Proposition 2.4. For any given (ϕ,ψ) ∈ U , the state system (1.1) is uniquely
solvable. Moreover, let y = S(ϕ,ψ); then

‖y‖W 2,1
p (Q) ≤ C

(
1 + ‖ϕ‖W 2,1

p (Q) + ‖ψ‖W 2,1
p (Q)

)
,(2.16)
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where C is a constant independent of (ϕ,ψ) ∈ U .
Proof. Choose (ϕε, ψε) ≡ (ϕ,ψ) and let yε = Sε(ϕ,ψ); then Lemma 2.3 gives

yε → y = S(ϕ,ψ),

and thus (2.16) follows from Lemma 2.2.
To prove the uniqueness, let yi (i = 1, 2) be two weak solutions of the state system

(1.1). Taking y2 (resp., y1) as a test function, substituting it into inequality (2.1) of
y1 (resp., y2), and then adding, we get

1

2

∫
Ω

(y1−y2)
2|t=T dx+

∫
Q

|∇(y1−y2)|2dxdt ≤
∫
Q

[f(x, t, y1)−f(x, t, y2)](y1−y2)dxdt.

By assumption (ii) of the introduction, the integral on the right-hand side is nonpos-
itive, so we can assert that

‖y1 − y2‖L2(0,T ;H1
0 (Ω)) = 0,

i.e.,

y1(x, t) = y2(x, t) a.e. inQ.

3. Main results. In this section we establish our main results, which are the
existence and the optimality system for Problem (C).

In our cost functional (1.4), there appears the Laplacian together with the t-
derivative of the control (obstacle), which provides a certain compactness of the
control. As a direct result, the existence of the optimal control is almost routine.
Consequently, the following existence theorem for Problem (C) can be obtained by
some standard ideas with some suitable variational inequality techniques.

Theorem 3.1. Problem (C) has at least one pair of optimal obstacles (ϕ̄, ψ̄) ∈ U .
Let (ϕ̄, ψ̄) be an optimal pair for Problem (C) and let ȳ = S(ϕ̄, ψ̄). We first

introduce a family of approximate control problems.
Problem (C

ε
). Find a pair (ϕε, ψε) ∈ U such that

Jε(ϕε, ψε) = inf
(ϕ,ψ)∈U

Jε(ϕ,ψ),

where

Jε(ϕ,ψ) =

∫
Q

{
1

2
(yε − zd)

2 +
1

p
[|ϕt|p + |Δϕ|p + |ψt|p + |Δψ|p

+|ϕ− ϕ̄|p + |ψ − ψ̄|p]
}
dxdt

with yε = Sε(ϕ,ψ) being the approximate state solving (2.4).
As an analogy to Problem (C), we have the following.
Proposition 3.2. There exists an optimal control pair (ϕε, ψε) ∈ U for Problem

(Cε).
Before deriving the optimality system for Problem (Cε) we need a support result

on the Gâteaux-differentiability of the approximate state operator Sε.
Lemma 3.3. For any fixed ε > 0, the solution mapping Sε : (ϕ,ψ) → yε of (2.4)

is differentiable in the following sense:
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Given (ϕ,ψ) ∈ U , for any (u, v) ∈ U ,

Sε(ϕ + δ(u− ϕ), ψ + δ(v − ψ)) − Sε(ϕ,ψ)

δ
→ ξε weakly in W

as δ → 0+, where ξε satisfies⎧⎨⎩
ξεt − Δξε + { 1

ε [β
′(yε − ϕ) + γ′(yε − ψ)] − fy(x, t, y

ε)}ξε
= 1

ε [β
′(yε − ϕ)(u− ϕ) + γ′(yε − ψ)(v − ψ)] in Q,

ξε|∂pQ = 0.
(3.1)

Proof. The proof is standard and tedious. We omit it here.
Proposition 3.4. Assume (ϕε, ψε) is an optimal solution to Problem (Cε) and

yε = Sε(ϕε, ψε). Then, there exists pε ∈ L2(0, T ;H1
0 (Ω)) such that the following opti-

mality system is satisfied:{
yεt − Δyε + 1

ε [β(yε − ϕε) + γ(yε − ψε)] = f(x, t, yε) in Q,
yε|Σ = 0, yε|t=0 = y0,

(3.2)

(3.3)⎧⎨⎩
−pεt − Δpε + { 1

ε [β
′(yε − ϕε) + γ′(yε − ψε)] − fy(x, t, y

ε)}pε = yε − zd in Q,
pε|Σ = 0,
pε|t=T = 0,

and

(3.4) ∫
Q

{[
1

ε
β′(yε − ϕε)pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄)

]
(ϕ− ϕε)

+

[
1

ε
γ′(yε − ψε)pε + |ψε − ψ̄|p−2(ψε − ψ̄)

]
(ψ − ψε)

+ [|ϕε
t|p−2ϕε

t(ϕ− ϕε)t + |Δϕε|p−2ΔϕεΔ(ϕ− ϕε)]

+ [|ψε
t |p−2ψε

t (ψ − ψε)t + |Δψε|p−2ΔψεΔ(ψ − ψε)]

}
dxdt ≥ 0

∀(ϕ,ψ) ∈ U .

Proof. Let (ϕε, ψε) ∈ U be an optimal control pair for Problem (Cε) and let
yε = Sε(ϕε, ψε). For any given (ϕ,ψ) ∈ U , as (ϕε, ψε) is optimal to Problem (Cε), we
have

0 ≤ lim infδ→0 δ−1[Jε(ϕε + δ(ϕ− ϕε), ψε + δ(ψ − ψε)) − Jε(ϕε, ψε)]

=

∫
Q

{(yε − zd)ξ
ε + [|ϕε

t|p−2ϕε
t(ϕ− ϕε)t + |Δϕε|p−2ΔϕεΔ(ϕ− ϕε)]

+ [|ψε
t |p−2ψε

t (ψ − ψε)t + |Δψε|p−2ΔψεΔ(ψ − ψε)]
+ [|ϕε − ϕ̄|p−2(ϕε − ϕ̄)(ϕ− ϕε) + |ψε − ψ̄|p−2(ψε − ψ̄)(ψ − ψε)]}dxdt,

where ξε satisfies⎧⎨⎩
ξεt − Δξε + { 1

ε [β
′(yε − ϕε) + γ′(yε − ψε)] − fy(x, t, y

ε)}ξε
= 1

ε [β
′(yε − ϕε)(ϕ− ϕε) + γ′(yε − ψε)(ψ − ψε)] in Q,

ξε|∂pQ = 0.
(3.5)
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Let pε ∈ W be the unique solution of linear equation (3.3). Then, using (3.3) and
(3.5) we get that∫

Q

(yε − zd)ξ
εdxdt

=

∫
Q

1
ε p

ε[β′(yε − ϕε)(ϕ− ϕε) + γ′(yε − ψε)(ψ − ψε)]dxdt.

So (3.4) follows.
With respect to the approximate optimality condition (3.4), we give the following

remarks, which are crucial in deriving the optimality system for the original Problem
(C).

Remark 1. Using the so-called monotonicity inequality (cf. [16]),

(|a|p−2a− |b|p−2b)(a− b) ≥ 0 (a, b ∈ R),

we can deduce from (3.4) that∫
Q

{[
1

ε
β′(yε − ϕε)pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄)

]
(ϕ− ϕε)(3.6)

+

[
1

ε
γ′(yε − ψε)pε + |ψε − ψ̄|p−2(ψε − ψ̄)

]
(ψ − ψε)

+ [|ϕt|p−2ϕt(ϕ− ϕε)t + |Δϕ|p−2ΔϕΔ(ϕ− ϕε)]

+ [|ψt|p−2ψt(ψ − ψε)t + |Δψ|p−2ΔψΔ(ψ − ψε)]

}
dxdt ≥ 0

∀(ϕ,ψ) ∈ U .

Remark 2. For any w ∈ Ẇ 2,1
p (Q), by inserting ϕ = ϕε + w and ψ = ψε + w into

inequality (3.4), we get

(3.7)∫
Q

{[
1

ε
(β′(yε − ϕε) + γ′(yε − ψε))pε + |ϕε − ϕ̄|p−2(ϕε − ϕ̄) + |ψε − ψ̄|p−2(ψε − ψ̄)

]
w

+ [|ϕε
t|p−2ϕε

t + |ψε
t |p−2ψε

t ]wt

+ [|Δϕε|p−2Δϕε + |Δψε|p−2Δψε]Δw

}
dxdt = 0

∀w ∈ Ẇ 2,1
p (Q).

The equality in (3.7), instead of the inequality, is due to the arbitrariness of w.
The relationship between Problems (C) and (Cε) is revealed in the following

proposition.
Proposition 3.5. Let (ϕε, ψε) ∈ U be an optimal control pair for Problem (Cε)

and let yε = Sε(ϕε, ψε). Then, for p > (n + 2)/2,

ϕε → ϕ̄
ψε → ψ̄
yε → ȳ

⎫⎬⎭ weakly in W 2,1
p (Q) and strongly in Cθ,θ/2(Q̄) ∩ L2(0, T ;H1

0 (Ω)),

and

lim
ε→0+

Jε(ϕε, ψε) = J(ϕ̄, ψ̄),
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where θ ∈ (0, 1) and (ϕ̄, ψ̄) ∈ U is the optimal control pair for Problem (C) given at
the beginning of this subsection and ȳ = S(ϕ̄, ψ̄) is the corresponding optimal state.

Proof. First, Lemma 2.2 yields

Jε(ϕε, ψε) ≤ Jε(ϕ̄, ψ̄) ≤ C
(
1 + ‖ϕ̄‖W 2,1

p (Q) + ‖ψ̄‖W 2,1
p (Q)

)
.

So, (ϕε, ψε) is bounded in W 2,1
p (Q) ×W 2,1

p (Q), due to the form of the functional Jε.

Then, by Lemma 2.3, for some subsequences (still denoted by themselves) and
some θ ∈ (0, 1),

ϕε → ϕ∗

ψε → ψ∗

yε → y∗

⎫⎬⎭ weakly inW 2,1
p (Q) and strongly inCθ,θ/2(Q̄) ∩ L2(0, T ;H1

0 (Ω)),

where (ϕ∗, ψ∗) ∈ U and y∗ = S(ϕ∗, ψ∗).

Next, from the weak lower semicontinuity of the Lp-norm, we have

(3.8)

J(ϕ∗, ψ∗)

≤ J(ϕ∗, ψ∗) +
1

p

∫
Q

{
|ϕ∗ − ϕ̄|p + |ψ∗ − ψ̄|p

}
dxdt

=

∫
Q

{
1

2
(y∗ − zd)

2 +
1

p
[|ϕ∗

t |p + |Δϕ∗|p + |ψ∗
t |p + |Δψ∗|p + |ϕ∗ − ϕ̄|p

+|ψ∗ − ψ̄|p]
}
dxdt

≤ lim inf
ε→0

Jε(ϕε, ψε)

≤ lim sup
ε→0

Jε(ϕε, ψε)

≤ lim
ε→0

Jε(ϕ̄, ψ̄)

= J(ϕ̄, ψ̄).

On the other hand, (ϕ̄, ψ̄) is optimal to Problem (C), and then J(ϕ̄, ψ̄) ≤ J(ϕ∗, ψ∗).
Thus, all the equalities in (3.9) must hold. This means that∫

Q

{
|ϕ∗ − ϕ̄|p + |ψ∗ − ψ̄p

}
dxdt = 0;

i.e., ϕ∗ = ϕ̄ and ψ∗ = ψ̄. By the unique solvability of the state variational inequality
(1.1), we get y∗ = ȳ. In addition, we see that

lim
ε→0+

Jε(ϕε, ψε) = J(ϕ̄, ψ̄).

Finally, the uniqueness of limit point implies the convergence of the whole
sequence of (ϕε, ψε) and the whole sequence of yε as well. The proof is completed.

We are now ready to present the optimality system for Problem (C).

Theorem 3.6. Let (ϕ̄, ψ̄) be an optimal control pair for Problem (C) and let
ȳ = S(ϕ̄, ψ̄). Then for p > (n+ 2)/2, there exist p̄ ∈ L2(0, T ;H1

0 (Ω)) and μ̄ ∈ M0(Q̄)
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satisfying1 ⎧⎨⎩
−p̄t − Δp̄− fy(x, t, ȳ)p̄ = ȳ − zd − μ̄ in Q,
p̄|Σ = 0,
p̄|t=T = 0,

(3.9)

with

supp μ̄ ⊂ {(x, t) ∈ Q| ȳ(x, t) = ϕ̄(x, t) or ȳ(x, t) = ψ̄(x, t)};(3.10)

supp [ȳt − Δȳ − f(x, t, ȳ)] ⊂ {(x, t) ∈ Q| ȳ(x, t) = ϕ̄(x, t) or

ȳ(x, t) = ψ̄(x, t)}
(3.11)

such that

(3.12)∫
Q

[(|ϕ̄t|p−2ϕ̄t + |ψ̄t|p−2ψ̄t)wt + (|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄)Δw]dxdt + 〈μ̄, w〉 = 0

∀w ∈ Ẇ 2,1
p (Q)

and ∫
Q

[ȳt − Δȳ − f(x, t, ȳ)]p̄dxdt = 0.(3.13)

Moreover,

−ȳt + Δȳ + f(x, t, ȳ) = λ̄ϕ + λ̄ψ

with

〈λ̄ϕ, ȳ − ϕ̄〉 = 0; 〈λ̄ψ, ȳ − ψ̄〉 = 0;(3.14)

(3.15)

supp λ̄ϕ ⊂ {(x, t) ∈ Q| ȳ(x, t) = ϕ̄(x, t)}; supp λ̄ψ ⊂ {(x, t) ∈ Q| ȳ(x, t) = ψ̄(x, t)};

and

μ̄ = μ̄ϕ + μ̄ψ

with

〈μ̄ϕ, ȳ − ϕ̄〉 = 0; 〈μ̄ψ, ȳ − ψ̄〉 = 0;(3.16)

1According to [2], the function p̄ ∈ L2(0, T ;H1
0 (Ω)) solves (3.9) in the sense that∫

Q
[p̄χt + ∇p̄ · ∇χ− fy(x, t, ȳ)p̄χ− (ȳ − zd)χ] dxdt + 〈μ̄, χ〉 = 0 ∀χ ∈ Ẇ 2,1

p (Q),

or equivalently,∫
Q

[p̄χt + ∇p̄ · ∇χ− fy(x, t, ȳ)p̄χ] dxdt =

∫
Q

(ȳ − zd)χdxdt− 〈μ̄, χ〉 ∀χ ∈ Ẇ 2,1
p (Q).
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(3.17)

supp μ̄ϕ ⊂ {(x, t) ∈ Q| ȳ(x, t) = ϕ̄(x, t)}; supp μ̄ψ ⊂ {(x, t) ∈ Q| ȳ(x, t) = ψ̄(x, t)}.

Remark. In the above optimality system, (3.9) and (3.13) are referred to as the
adjoint equation and the optimality condition, respectively. The condition (3.10)
is understood as the following: For any η ∈ C0(Q̄) = {η ∈ C(Q̄)| η|Σ = 0} with
supp η ⊂ Q′ = {(x, t) ∈ Q| ϕ̄(x, t) < ȳ(x, t) < ψ̄(x, t)},

〈μ̄, η〉M0(Q̄), C0(Q̄) = 0,

where M0(Q̄) = C0(Q̄)∗ is the set of all regular signed measures on Q̄ with the
support contained in Q ∪ (Ω × {0, T}).

Proof. Let (ȳ, ϕ̄, ψ̄) be an optimal triple to Problem (C). Consider the approximate
Problem (Cε) related to (ȳ, ϕ̄, ψ̄). Let (yε, ϕε, ψε) be any optimal triple to Problem
(Cε). Then, by Proposition 3.4, (3.4) holds (furthermore, (3.6) and (3.7) also hold)
for some pε ∈ L2(0, T ;H1

0 (Ω)) which satisfies (3.3). Note that by β′ ≥ 0, γ′ ≥ 0,
and fy ≤ 0 (cf. assumption (ii) of the introduction), one can easily get the following
estimate from (3.3):

‖pε‖L2(0,T ;H1
0 (Ω)) ≤ C,

where C is independent of ε. This implies that for some subsequence,

pε ⇀ p̄ weakly in L2(0, T ;H1
0 (Ω)).(3.18)

Denote

με
ϕ =

1

ε
β′(yε − ϕε)pε, με

ψ =
1

ε
γ′(yε − ψε)pε, με = με

ϕ + με
ψ,

and let Sδ(·) ∈ C1(R) be a family of smooth approximations to the sign function and
satisfy the following:

S′
δ(r) ≥ 0 ∀r ∈ R

and

Sδ(r) =

⎧⎨⎩
1 if r > δ,
0 if r = 0,
−1 if r < −δ.

Then we can multiply (3.3) by Sδ(p
ε) and integrate it over Q. As a result, we get∫

Q

μεSδ(p
ε)dxdt ≤ C.

Moreover, by letting δ → 0+ we have that

‖με‖L1(Q) (= ‖με
ϕ‖L1(Q) + ‖με

ψ‖L1(Q)) ≤ C.

Thus, after extracting some subsequence if necessary, we can let

με
ϕ ⇀ μ̄ϕ

με
ψ ⇀ μ̄ψ

με ⇀ μ̄

⎫⎬⎭weakly	 in M0(Q̄),(3.19)
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where μ̄ = μ̄ϕ + μ̄ψ.

Multiplying (3.3) by any test function χ in Ẇ 2,1
p (Q), integrating it over Q, and

then letting ε → 0+, we get∫
Q

[p̄χt + ∇p̄ · ∇χ− fy(x, t, ȳ)p̄χ− (ȳ − zd)χ] dxdt + 〈μ̄, χ〉 = 0 ∀χ ∈ Ẇ 2,1
p (Q),

which shows that p̄ solves (3.9).
Furthermore, by passing to the limit in (3.6) we have that

〈μ̄ϕ, ϕ− ϕ̄〉 + 〈μ̄ψ, ψ − ψ̄〉

+

∫
Q

[|ϕt|p−2ϕt(ϕ− ϕ̄)t + |Δϕ|p−2ΔϕΔ(ϕ− ϕ̄)

+ |ψt|p−2ψt(ψ − ψ̄)t + |Δψ|p−2ΔψΔ(ψ − ψ̄)]dxdt ≥ 0 ∀(ϕ,ψ) ∈ U

and consequently, by inserting ϕ = ϕε +w and ψ = ψε +w into the above inequality,
we have that

(3.20)

〈μ̄, w〉 +

∫
Q

[|(ϕ̄ + w)t|p−2(ϕ̄ + w)t + |(ψ̄ + w)t|p−2(ψ̄ + w)t]wtdxdt

+

∫
Q

[|Δ(ϕ̄ + w)|p−2Δ(ϕ̄ + w) + |Δ(ψ̄ + w)|p−2Δ(ψ̄ + w)]Δwdxdt ≥ 0 ∀w ∈ Ẇ 2,1
p (Q).

Note that for p′ = p/(p− 1),

‖|ϕε
t|p−2ϕε

t + |ψε
t |p−2ψε

t‖p′ ≤ ‖ϕε
t‖p−1

p + ‖ψε
t‖p−1

p ≤ C,

‖|Δϕε|p−2Δϕε + |Δψε|p−2Δψε‖p′ ≤ ‖Δϕε‖p−1
p + ‖Δψε‖p−1

p ≤ C,

we may assume for some subsequence that

|ϕε
t|p−2ϕε

t + |ψε
t |p−2ψε

t ⇀ F weakly in Lp′
(Q),

|Δϕε|p−2Δϕε + |Δψε|p−2Δψε ⇀ G weakly in Lp′
(Q).

Taking the limit in (3.7), we obtain

〈μ̄, w〉 +

∫
Q

(Fwt + GΔw)dxdt = 0 ∀w ∈ Ẇ 2,1
p (Q).(3.21)

Now, to prove (3.13), we need only verify that

(3.22)∫
Q

(Fχt + GΔχ)dxdt

=

∫
Q

[(|ϕ̄t|p−2ϕ̄t + |ψ̄t|p−2ψ̄t)χt + (|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄)Δχ]dxdt

∀χ ∈ Ẇ 2,1
p (Q).
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In fact, by combining (3.21) and (3.21) we have that

(3.23) ∫
Q

(Fwt + GΔw)dxdt

≤
∫
Q

[|(ϕ̄ + w)t|p−2(ϕ̄ + w)t + |(ψ̄ + w)t|p−2(ψ̄ + w)t]wtdxdt

+

∫
Q

[|Δ(ϕ̄ + w)|p−2Δ(ϕ̄ + w) + |Δ(ψ̄ + w)|p−2Δ(ψ̄ + w)]Δwdxdt

∀w ∈ Ẇ 2,1
p (Q).

For any given χ ∈ Ẇ 2,1
p (Q), take w = κχ (κ �= 0) in (3.24), then divide it by κ.

Finally, by letting κ → 0+ and κ → 0−, respectively, we get∫
Q

(Fχt + GΔχ)dxdt

≤
∫
Q

[(|ϕ̄t|p−2ϕ̄t + |ψ̄t|p−2ψ̄t)χt + (|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄)Δχ]dxdt

and ∫
Q

(Fχt + GΔχ)dxdt

≥
∫
Q

[(|ϕ̄t|p−2ϕ̄t + |ψ̄t|p−2ψ̄t)χt + (|Δϕ̄|p−2Δϕ̄ + |Δψ̄|p−2Δψ̄)Δχ]dxdt,

respectively. Thus, (3.23) follows.
Denote

λε
ϕ =

1

ε
β(yε − ϕε), λε

ψ =
1

ε
γ(yε − ψε), λε = λε

ϕ + λε
ψ.

Recalling approximate equation (2.4), estimates (2.5)–(2.6), and Lemma 2.3, we know
that

λε
ϕ ⇀ λ̄ϕ

λε
ψ ⇀ λ̄ψ

}
weakly inLp(Q),(3.24)

λε = −yεt + Δyε + f(x, t, yε) ⇀ −ȳt + Δȳ + f(x, t, ȳ) ≡ λ̄,

where λ̄ = λ̄ϕ + λ̄ψ.
Now, (3.13) is equivalent to ∫

Q

λ̄ p̄ dxdt = 0,(3.25)

which can be proved by the following steps:
(1) Prove

〈με
ϕ, y

ε − ϕε〉 → 0; 〈με
ψ, y

ε − ψε〉 → 0(3.26)

(which implies (3.16)).
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As με
ϕ = 1

εβ
′(yε − ϕε)pε is different from zero only when yε − ϕε < 0, we have

〈με
ϕ, (yε − ϕε)+〉 = 0 ∀ε > 0.

In addition, by (3.19) and Lemma 2.3, we have that

〈με
ϕ, (yε − ϕε)−〉 → 〈μ̄ϕ, (ȳ − ϕ̄)−〉 = 〈μ̄ϕ, 0〉 = 0.

Hence,

〈μ̄ϕ, ȳ − ϕ̄〉 = lim
ε→0+

〈με
ϕ, y

ε − ϕε〉 = 0.

The other assertion in (3.26) can be obtained similarly.
(2) Prove ∫

Q

λε pε dxdt → 0.(3.27)

By direct computation, we have∫
Q

λε
ψ pε dxdt =

1

ε

∫
Q

[(
yε − ψε − 1

4

)
χ{yε−ψε≥ 1

2} + (yε − ψε)2χ{0<yε−ψε< 1
2}

]
pε dxdt

and

〈με
ψ, y

ε − ψε〉 =
1

ε

∫
Q

[(yε − ψε)χ{yε−ψε≥ 1
2} + 2(yε − ψε)2χ{0<yε−ψε< 1

2}] p
ε dxdt.

Then

2

∫
Q

λε
ψ pε dxdt− 〈με

ψ, y
ε − ψε〉 =

1

ε

∫
Q

(
yε − ψε − 1

2

)
χ{yε−ψε≥ 1

2} p
ε dxdt.

Noting the fact that

1

4
≤

∣∣∣∣yε − ψε − 1

4

∣∣∣∣ in

{
yε − ψε ≥ 1

2

}
,

we get by using (2.7) that

1

4p
meas

{
yε − ψε ≥ 1

2

}
≤

∫
Q

∣∣∣∣yε − ψε − 1

4

∣∣∣∣p χ{yε−ψε≥ 1
2} dxdt ≤ ‖γ(yε−ψε)‖pLp(Q) → 0.

Applying Hölder’s inequality, we obtain∣∣∣∣2∫
Q

λε
ψ pε dxdt− 〈με

ψ, y
ε − ψε〉

∣∣∣∣
≤ 1

ε

∥∥∥∥(yε − ψε − 1

2

)
χ{yε−ψε≥ 1

2}

∥∥∥∥
Lp(Q)

‖pεχ{yε−ψε≥ 1
2}‖Lp′ (Q)

≤ 2

ε

∥∥∥∥(yε − ψε − 1

4

)
χ{yε−ψε≥ 1

2}

∥∥∥∥
Lp(Q)

‖pε‖L2(Q)‖χ{yε−ψε≥ 1
2}‖L

2p′
2−p′ (Q)

≤ 2

ε
‖γ(yε − ψε)‖Lp(Q) ‖pε‖L2(Q)

(
meas

{
yε − ψε ≥ 1

2

}) 2−p′
2p′

= 2‖λε
ψ‖Lp(Q) ‖pε‖L2(Q)

(
meas

{
yε − ψε ≥ 1

2

}) 2−p′
2p′

→ 0,
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which, in view of (3.26), leads to ∫
Q

λε
ψ pε dxdt → 0.

Similarly, we can prove that ∫
Q

λε
ϕ pε dxdt → 0,

and hence (3.27) follows.
(3) Prove ∫

Q

(λ̄− λε) pε dxdt → 0.(3.28)

Lemma 2.3 gives

yε → ȳ strongly in C0(Q̄),

and thus

〈με, ȳ − yε〉 → 0;

‖f(x, t, ȳ) − f(x, t, yε)‖L∞(Q) → 0.

Then, it is not hard to get∫
Q

(λ̄− λε) pε dxdt

=

∫
Q

[−(ȳ − yε)t + Δ(ȳ − yε) + (f(x, t, ȳ) − f(x, t, yε))] pε dxdt

=

∫
Q

[(pεt + Δpε)(ȳ − yε) + (f(x, t, ȳ) − f(x, t, yε))pε] dxdt

=

∫
Q

[(με − fy(x, t, y
ε)pε − (yε − zd))(ȳ − yε) + (f(x, t, ȳ) − f(x, t, yε))pε] dxdt

→ 0.

By the weak convergency of pε to p̄ in L2(Q),∫
Q

λ̄ p̄ dxdt = lim
ε→0+

∫
Q

λ̄ pε dxdt.

Thus, (3.27) combined with (3.28) implies (3.25). (Note that, since both {λε} and {pε}
are only weakly convergent, (3.27) does not suffice to imply (3.25) without (3.28).)

It remains to prove (3.10) and (3.11). As p > (n+2)/2, the W 2,1
p -bounded subset

is relatively compact in Cθ,θ/2(Q̄) for some θ ∈ (0, 1). So, for any η ∈ C0(Q̄) with
supp η ⊂ Q′, the uniform convergence of the approximate optimal control and state
(cf. Proposition 3.5), together with the compactness of supp η, ensures that, for some
ε0 > 0,

ϕε(x, t) < yε(x, t) < ψε(x, t) ∀(x, t) ∈ supp η, 0 < ε < ε0,
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which yields

〈μ̄, η〉M0(Q̄), C0(Q̄) = limε→0

∫
Q

μεη dxdt

= limε→0

∫
supp η

1

ε
[β′(yε − ϕε) + γ′(yε − ψε)]pεη dxdt

= 0.

Thus (3.10) holds. Replacing με and μ̄ by λε and λ̄, respectively, (3.11) follows.
Alternatively, we can first prove (3.18) which also leads to (3.10).
In a similar way, (3.14) and (3.15) can be obtained.
The proof is completed.
In Theorem 3.6, it is assumed that p > (n + 2)/2, which excludes the case p = 2

when n ≥ 2. Hence, before closing this section, we consider the case p = 2.
When p = 2, the objective functional J(ϕ,ψ) and Problem (C) are reduced to

J2(ϕ,ψ) ≡ 1

2

∫
Q

{
[S(ϕ,ψ) − zd]

2 + |ϕt|2 + |Δϕ|2 + |ψt|2 + |Δψ|2
}
dxdt

and the following.
Problem (C2). Find a control pair (ϕ̄, ψ̄) ∈ U2 such that

J2(ϕ̄, ψ̄) = inf
(ϕ,ψ)∈U2

J2(ϕ,ψ),

respectively, where

U2 = {(ϕ,ψ) ∈ W 2,1
2 (Q) ×W 2,1

2 (Q)|ϕ ≤ ψ in Q,

ϕ = 0 = ψ on Σ, ϕ|t=0 ≤ y0 ≤ ψ|t=0 in Ω}.

Accordingly, the approximate optimal control problem is to minimize the following
approximate functional:

Jε
2(ϕ,ψ) ≡ 1

2

∫
Q

[(yε − zd)
2 + |ϕt|2 + |Δϕ|2 + |ψt|2 + |Δψ|2 + |ϕ− ϕ̄|2 + |ψ− ψ̄|2]dxdt,

where yε = Sε(ϕ,ψ) is the approximate state solving (2.4) and (ϕ̄, ψ̄) is an optimal
control pair of Problem (C2).

The following result is an analogy to Proposition 3.5.
Proposition 3.7. Let (ϕ̄, ψ̄, ȳ) be an optimal triple for Problem (C2), let (ϕε, ψε) ∈

U2 be approximate optimal control pairs, and let yε = Sε(ϕε, ψε). Then

ϕε → ϕ̄
ψε → ψ̄
yε → ȳ

⎫⎬⎭ weakly in W 2,1
2 (Q) and strongly in L2(0, T ;H1

0 (Ω)).

By taking limits in the corresponding approximate optimality condition, which can be
obtained easily, owing to the quadratic cost functional and smooth state equation, we
arrive at the following result for Problem (C2).

Theorem 3.8. Let (ϕ̄, ψ̄) be an optimal control pair for Problem (C2) and let
ȳ = S(ϕ̄, ψ̄). Then there exist p̄ ∈ L2(0, T ;H1

0 (Ω)) and μ̄ ∈ M0(Q̄) such that p̄ solves
the following equation:⎧⎨⎩

−p̄t − Δp̄− fy(x, t, ȳ)p̄ = ȳ − zd − μ̄ in Q,
p̄|Σ = 0,
p̄|t=T = 0,
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and furthermore,∫
Q

[(ϕ̄t + ψ̄t)wt + (Δϕ̄ + Δψ̄)Δw]dxdt + 〈μ̄, w〉 = 0 ∀ w ∈ Ẇ 2,1
2 (Q).

In the present situation with p = 2, although the state analysis in section 2 is still
valid for the set of approximate optimal controls and states, the compactness in Hölder
spaces Cθ,θ/2(Q̄) with θ ∈ (0, 1) would not be expected to remain valid, since a bounded
subset in W 2,1

2 (Q) is not necessarily compact in Cθ,θ/2(Q̄) for any θ ∈ (0, 1) when
n ≥ 2. As a result, if p = 2, the conditions (3.10), (3.11), and (3.13)–(3.17) in
Theorem 3.6 cannot be expected to remain valid; however, the results and analysis for
the related Problem (C2) and Theorem 3.8 would still be useful.
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DIET SELECTION AS A DIFFERENTIAL FORAGING GAME∗

FRÉDÉRIC HAMELIN† , PIERRE BERNHARD† , A. J. SHAIJU‡ , AND ÉRIC WAJNBERG§

Abstract. An important issue addressed by behavioral ecology is that of the evolutionary
relevance of foraging strategies adopted by animals in quest of a patchily distributed resource, both
in terms of diet selection and patch-leaving decisions under competition. We revisit the classical
model of diet selection concerning an isolated—not subject to competition—forager; it yields a zero-
one rule, i.e., a type of resource should be always accepted, or always rejected, that appears to be
more the exception than the rule, as partial preferences are commonly observed in many species.
Thus arises the question of the rule’s robustness where there is an uncertainty on the time available
to a forager to enjoy a patch, due to the possible occurrence of a perturbating event. We mean any
event that would affect its gain with respect to what it would obtain by enjoying alone the patch
as long as it wants. For instance, the sudden presence of a predator could force it to flee the patch
or the arrival of a conspecific would deprive it of some good resources. By taking into account the
potentially imminent arrival of a conspecific—but also any event that would suddenly shorten patch
exploitation—we show that the classical policy of diet selection no longer holds, as it changes the
qualitative aspect of the optimal foraging strategies. Qualitatively, the optimal strategy is close to,
but less greedy than, the evolutionarily stable strategy that concerns foragers actually competing for
resources. It consists in accepting only the most profitable resource until it is depleted down to a
given level, after which time both resources are accepted. The underlying mathematical technique
involves the solution of nonzero-sum differential games and synthesis techniques.

Key words. differential games, evolutionarily stable strategies, optimal foraging theory, behav-
ioral ecology
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1. Introduction. “Nothing in biology makes sense except in the light of evolu-
tion.”1 In this respect, behavioral ecology [18] interprets an animal’s behavior through
an evolutionary approach, via estimating its capacity to get through the natural se-
lection process and thus maximize Darwinian fitness [22]—a notion analogous to that
of “utility” in economics. Typically, in foraging theory [33], or the art of gathering
resources in the environment, fitness is related to the amount of resource gathered. In
many cases, the resource is patchily distributed and the utility function on each patch
is strictly increasing, concave, and bounded with respect to time. As the intake-rate
decreases with the quantity of resource available on the patch, it is likely advanta-
geous for an animal to leave a patch not yet exhausted in order to find a new one, in
spite of an uncertain travel time. Charnov’s marginal value theorem [6] reveals that
the optimal giving-up time is when the intake-rate is equal to the optimal long-term
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mean rate γ∗ which, if achieved, gives the best fitness a forager can expect in its
environment.

This famous theoretical model was originally designed for lone foragers in quest
of a singular patchily distributed resource. In parallel, another branch of the theory
grew by focusing on the optimal diet selection [5, 17, 31] when the environment offers
a plural resource which varies both in profitability and abundance but spatially is
regularly and homogeneously distributed. The authors of [23] have merged these two
theories.

Naturally, the question arises of whether this theory holds for foragers competing
for a common patchily distributed resource, i.e., whether this is an evolutionarily
stable strategy [20]; for instance, it might have implications in terms of population
dynamics [34, 37].

Concerning the singular resource case, Charnov’s patch-leaving rule remains qual-
itatively unchanged under scramble competition, i.e., when the only competition be-
tween foragers is in sharing a common resource [32, 8]; γ∗ is clearly affected by the
number of potential competitors, but the patch-leaving rule is unchanged. However, if
there is interference, i.e., a decline in intake-rate due to competition, the game results
in a war of attrition [32, 9] or random patch-leaving strategies.

In the present paper, our aim is to determine the evolutionarily stable strategy
that noninterfering foragers competing for a plural and depleting resource should
adopt, both in terms of diet selection and patch-leaving decision [3, 33].

The remainder of the paper is organized as follows. In section 2, we reformulate
the optimal diet selection policy for a lone forager free to leave the current patch of
resources at any time. On our way, we solve the optimal diet selection problem for
a single forager with a fixed end time; this is done in Appendix A. In section 3, we
investigate the foraging game involving several foragers arriving simultaneously on a
patch containing two distinct types of resources. Section 4 focuses on an asynchronous
two-forager game, where the interarrival time is assumed deterministic. Finally, the
game considered in section 5 lets the possible arrival of an opponent be a Poisson
variable.2

2. Foraging alone. It is well known [5, 16] that a lone forager should accept
a unit of resource i if its energy value ei is worth the time required to retrieve it,
i.e., the handling-time hi. Indeed, Charnov’s marginal value theorem [6, 22] prohibits
the intake-rate from falling below a critical threshold γ∗. Hence the rule is to accept
this resource if and only if γ∗ ≤ ei/hi. However, let us recall this result in order
to introduce our modeling and solution approaches—the latter is close to that of
[26]. We shall define profitability of resource i as the ratio ei/hi. We shall also let
δi := ei − γ∗hi.

Let x be the state vector containing the ratios xi ∈ [0, 1] of each type of resource
available in the patch. Let u be the control vector containing the controls ui ∈ [0, 1]
deciding the acceptance rate3 of each type of resource available in the patch. Let
ẋ := dx/dt, where t stands for the residence time.

Proceeding as in [14, 8] and most of the literature, an assumption of random

2A particular case of that game is that of a single player with an exponential random end time,
such as the possible occurrence of a predator.

3Or equivalently the probability to accept a given type of resource when encountered.
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probing on a patch yields the following dynamics:

∀i ∈ {1, . . . , N} , qẋi = − uixi

α +
∑N

j=1 ujxjhj

, xi(0) = x0
i ,

N∑
i=1

x0
i = 1 ,(2.1)

where α is the time required to probe an area of the patch that could contain a unit
of resource and q is the quality of the patch or the quantity of resources it initially
contains.

Following [22], we want to maximize the criterion

J =

∫ t∗

0

L(x, u)dt with L(x, u) = −
N∑
j=1

ejqẋj − γ∗ ,(2.2)

where t∗ is a free final time.
We claim the following result.
Theorem 2.1. The optimal policy in the problem stated by (2.1) and (2.2) is

given by

• ∀t ∈ [0, t∗], take ui =

⎧⎨⎩
1 if γ∗ < ei/hi,
arbitrary in [0, 1] if γ∗ = ei/hi,
0 if γ∗ > ei/hi

• and leave as soon as
∑N

j=1 ujxj(ej − γ∗hj) − γ∗α ≤ 0.

Proof. Let s be such that dt = qDds with D := α+
∑N

j=1 hjujxj . Let x̊ := dx/ds
and f(x, u) := x̊. The dynamics become

x̊i = −uixi , xi(0) = x0
i .

Our criterion can now be expressed as follows: Let

J := J/q =

∫ s∗

0

L(x, u)ds with L(x, u) =

N∑
j=1

ujxjej − γ∗D .

It directly yields that the optimal end time is such that L is zero on the optimal tra-
jectories, since ∂J /∂s∗ = L(x(s∗), u(s∗)) = 0; this corresponds to Charnov’s patch-
leaving rule. Hence the claim of the theorem.

Let λ be the adjoint vector. It yields the Hamiltonian

H = L(x, u) + 〈λ, f(x, u)〉 =
N∑
j=1

(δj − λj)ujxj − αγ∗ .

According to Pontryagin’s maximum principle [30], if a policy u∗(s) generating a
trajectory x∗(s) is optimal, then there exists an adjoint trajectory λ(s) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ̊ = −∇xH(λ, u∗, x∗),
λ(s∗) = 0,
H(s∗) = 0.∣∣∣∣ ∀s ∈ [0, s∗], where u∗(·) is continuous,
H(λ(s), u∗(s), x∗(s)) = maxu∈[0,1]n H(λ(s), u, x∗(s)).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1542 HAMELIN, BERNHARD, SHAIJU, AND WAJNBERG

The last condition above translates into the switch-functions

σi := ∂H/∂ui = (δi − λi)xi

and the bang-bang optimal policy

u∗
i =

{
1 if σi > 0,
0 if σi < 0.

The singular case σi = 0 allows the focal forager to either accept or reject the less
profitable resource indifferently.

We also have

λ̊i = −∂H/∂xi = −(δi − λi)ui , λi(s
∗) = 0 .

It yields σ̊i = 0. Hence the sign of σi never changes, and therefore the optimal policy
is

∀t ∈ [0, t∗] , ui =

{
1 if γ∗ < ei/hi,
0 if γ∗ > ei/hi.

As already mentioned in [23], the reason the author of [26] found another result is that
he—consciously—considered, as a constraint, an arbitrarily predetermined residence
time.4 It has to be noticed that in this simple model, partial preferences [21] should
occur only in the nongeneric case γ∗ = ei/hi.

Given the optimal policy as a function of γ∗, it is possible to compute both γ∗

and the corresponding optimal diet, as done in [23], where the authors provide an
algorithm that converges to the solution.

3. The synchronous foraging game. The authors of [15] argue that when
“a large number” of foragers is competing for a plural and depleting resource, they
should maximize their intake-rate. Thus the evolutionarily stable policy consists of
being selective first and, after a while, being opportunistic.5 The results of both
[26, 35] are in agreement with [15], except that the authors of [26, 35] found “earlier”
switch-times for a relatively low number of competitors. However, both approaches
point to a convergence of the switch-time towards the intake-rate maximizing switch-
time as the number of foragers increases.

Our aim now is to determine the evolutionarily stable policy via an approach sim-
ilar to that of [26], except that we do not set any arbitrarily predetermined residence
time or final patch state.

Following section 2, we now restrict the resource range to those resources which
would be included in the diet of a lone forager: ∀i ∈ {1, 2} , δi ≥ 0—the resource types
rejected by a lone forager should a fortiori be rejected under competition. We shall
also let ζ := e1h2 − e2h1 ≥ 0 as e2/h2 ≤ e1/h1 by hypothesis.

Proceeding as in [26], we look for the optimal policy against a strategy assumed
commonly adopted by the opponents. If it leads to the latter, this is indeed an
evolutionarily stable strategy—as this is a strict and symmetric Nash equilibrium
[13, 9]. However, to be consistent, we need to assume a state feedback strategy for
the opponents. Hence we must use a regular synthesis technique in order to recover

4This issue is addressed in Appendix A.
5The author of [10] also mentioned this “expanding-specialist” strategy under competition.
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Fig. 3.1. The Nash-optimal fields of trajectories in the state-space (x1, x2).

the costate vector as a function of the current state and to construct a switch-manifold
in the state space. This, in turn, induces discontinuities in the adjoint variables of
the focal player and other difficulties that we must take into account. Throughout
our reasoning, we shall refer to Figure 3.1, which represents the state-space (x1, x2).

Let n be the number of foragers on the patch. Let u be the decision variable
of the focal forager, i.e., the acceptance rate of resource 2—as resource 1, the most
profitable one, should, of course, always be accepted. Similarly, let v be the decision
variable of its opponents.

Let D(u) := α + h1x1 + uh2x2. The dynamics are now{
qẋ1 = −x1/D(u) − (n− 1)x1/D(v) , x1(0) = x0

1,
qẋ2 = −ux2/D(u) − v(n− 1)x2/D(v) , x2(0) = x0

2.
(3.1)

The criterion of the focal forager is

J =

∫ t∗

0

L(x, u)dt with L(x, u) = e1x1/D(u) + ue2x2/D(u) − γ∗,(3.2)

where t∗ is a free final time.
We claim the following result (see Figure 3.1).
Theorem 3.1. The unique pure symmetric state feedback Nash equilibrium in

the game stated by (3.1) and (3.2) corresponds to

• take

{
u = 0 as long as S(x) ≤ 0,
u = 1 as soon as S(x) > 0,

where S(x) is given by (3.9)

• and leave as soon as δ1x1 + δ2x2 − γ∗α ≤ 0.

Proof. Let s be such that dt =: qD(u)ds. Let x̊ := dx/ds and f(x, u) := x̊. The
dynamics become{

x̊1 = −x1(1 + (n− 1)D(u)/D(v)) , x1(0) = x0
1,

x̊2 = −x2(u + v(n− 1)D(u)/D(v)) , x2(0) = x0
2.

Our criterion can now be expressed as follows: Let

J := J/q =

∫ s∗

0

L(x, u)ds with L(x, u) = e1x1 + ue2x2 − γ∗D(u) .
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Clearly, ∂J /∂s∗ = L(x(s∗), u(s∗)) = 0. It directly yields that the optimal end
time is such that L—which does not depend on s—is zero on the optimal trajectories;
this corresponds to Charnov’s patch-leaving rule. The oblique line sloping to the left
in Figure 3.1 represents this terminal manifold.

Let λ be the adjoint vector associated with the focal forager. It yields the Hamil-
tonian

H = e1x1 + ue2x2 − γ∗D(u) − λ1x1(1 + (n− 1)D(u)/D(v))

−λ2x2(u + v(n− 1)D(u)/D(v)) .

According to Pontryagin’s maximum principle,6 the optimal policy is thus bang-
bang, according to the switch-function

σ = [δ2 − λ1(n− 1)h2x1/D(v) − λ2(1 + v(n− 1)h2x2/D(v))]x2 .

We have

λ̊1 = λ1[(1 + (n− 1)D(u)/D(v)) + (n− 1)h1x1(1/D(v) −D(u)/D(v)2)]

+ λ2v(n− 1)h1x2(1/D(v) −D(u)/D(v)2) − δ1 , λ1(s
∗) = 0,

λ̊2 = λ2[(u + v(n− 1)D(u)/D(v)) + v(n− 1)h2x2(u/D(v) − vD(u)/D(v)2)]

+ λ1(n− 1)h2x1(u/D(v) − vD(u)/D(v)2) − uδ2 , λ2(s
∗) = 0 .

Clearly, u∗(s∗) = 1 as σ(s∗) = δ2x2 ≥ 0 by hypothesis.
Proceeding as in [26], we first assume that the opponents are opportunists. The

optimal strategy is then given via integrating backward the above differential equa-
tions, with v = 1. As long—as from the end time—σ remains positive, being oppor-
tunistic is optimal. Thus if it remains so backward up to time zero, being opportunistic
the whole time spent on the patch is the evolutionarily stable strategy. Otherwise, i.e.,
if the sign of σ changes in backward time, being selective is, at least locally, optimal
before the switch-point. Thanks to the assumed symmetry among foragers, if such
a switch-point appears, then it prevails for any competitor on the patch. Therefore,
we shall assume in a second time that v = 0 from this possible switch-point down to
s = 0. However, a prerequisite for reiterating a similar process backward in time is
that being selective is optimal against selective opponents.

Let (ŝ, x̂) be either the first—in backward time—switch-point, if there is one, or
(0, x(0)) otherwise; i.e., beyond this point, being opportunistic remains optimal up to
the end time. Let the superscript + denote the region of the state-space beyond the
last switch-point; thus we postulate that in region + the Nash-optimal strategies are
u = v = 1. For instance, let D+ := D(1) = α + h1x1 + h2x2. We have ∀s ∈ (ŝ, s∗),
∀i ∈ {1, 2},

x̊i = −nxi , xi(s
∗) =: x∗

i and λ̊+
i = nλ+

i − δi , λ+
i (s∗) = 0 .

We also have

σ+ = [δ2 − λ+
1 (n− 1)h2x1/D

+ − λ+
2

(
1 + (n− 1)h2x2/D

+
)
]x2(3.3)

and H+ = e1x1 + e2x2 − γ∗D+ − λ+
1 x1n− λ+

2 x2n. It yields ∀s ∈ (ŝ, s∗), ∀i ∈ {1, 2},

xi(s) = x∗
i e

n(s∗−s) and λ+
i (s) = δi(1 − e−n(s∗−s))/n .(3.4)

6As long as the opponent uses a Lipschitz continuous (here, constant) strategy w.r.t. x.
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As a consequence

λ+
1 (s) = δ1(1 − x∗

1/x1)/n ≥ 0 .(3.5)

Moreover, one can notice from (3.4) that ∀s ∈ (ŝ, s∗) , x∗
1/x1 = x∗

2/x2 or, equivalently,
that x1/x2 is invariant over [ŝ, s∗]—this results from our assumption of homogeneous
probing on the patch, and that is why in Figure 3.1 the field of optimal trajectories is
a radial one. Furthermore, as the Hamiltonian remains constant all along the optimal
trajectory, it remains equal to zero here and this yields ∀s ∈ (ŝ, s∗), ∀i ∈ {1, 2},

x∗
i /xi =

γ∗α

x1δ1 + x2δ2
.(3.6)

Hence the claim of the theorem.
The switch-function can also be rewritten as follows:

σ+ =
[
(e2 − λ+

2 )(α + h1x1) − (e1 − λ+
1 )h2x1

]
x2/D

+ .

Let us now assume that there is a switch-point by definition such that σ+(ŝ) = 0. Our
aim now is to verify that switching—in backward time—u to zero remains optimal if v
switches to zero simultaneously at time ŝ. Let the superscript − denote the region of
the state-space where we conjecture that the Nash-optimal strategies are u = v = 0.
For instance, let D− := D(0) = α + h1x1. We have

σ−(ŝ) = [δ2 − λ−
1 (ŝ)(n− 1)h2x̂1/D

−(ŝ) − λ−
2 (ŝ)]x̂2 .

One also has H−(ŝ) = e1x̂1 − γ∗D−(ŝ) − λ−
1 (ŝ)x̂1n.

Notice that the time instant ŝ depends on the trajectory considered, and thus
x(ŝ) describes a switch-manifold S(x) = 0—the curve in Figure 3.1. Therefore, λ−

1 (ŝ)
and λ−

2 (ŝ) must satisfy the system of equations below—the difference of the adjoint
vectors is a normal to the manifold (see, e.g., [1]):⎛⎝ λ−

1 (ŝ)
λ−

2 (ŝ)
−H−(ŝ)

⎞⎠ =

⎛⎝ λ+
1 (ŝ)

λ+
2 (ŝ)

−H+(ŝ)

⎞⎠ + κ

⎛⎝ ∂S(ŝ)/∂x1

∂S(ŝ)/∂x2

∂S(ŝ)/∂s

⎞⎠ ,(3.7)

where κ is a scalar that remains to be determined and S is any function that char-
acterizes the manifold σ+ = 0 in the plane (x1, x2). Indeed, (3.5) and (3.6) clearly
show that σ+ can be expressed as a function of x1 and x2 alone, and not s. Hence
∂S/∂s = 0. Therefore, H−(ŝ) = H+(ŝ) = 0 and it yields λ−

1 (ŝ) = [e1x̂1−γ∗D−]/x̂1n;
thus λ−

1 (ŝ) − λ+
1 (ŝ) = (δ1x

∗
1 − γ∗α)/(x̂1n) ≤ 0 as L(s∗) = δ1x

∗
1 + δ2x

∗
2 − γ∗α = 0.

Moreover, using H−(ŝ) = 0, we can rewrite σ−(ŝ) as follows:

σ−(ŝ) =
[
(e2 − λ−

2 (ŝ))(α + h1x̂1) − (e1 − λ−
1 (ŝ))h2x̂1

]
x2/D

−(ŝ) .

Using the fact that σ+(ŝ) = 0 yields

σ−(ŝ) = κ

(
∂S(ŝ)

∂x1
h2x̂1 −

∂S(ŝ)

∂x2
(α + h1x̂1)

)
x̂2/D

−(ŝ),

and we have

σ−(ŝ) = [λ−
1 (ŝ) − λ+

1 (ŝ)]

(
h2x̂1 − (α + h1x̂1)

∂S(ŝ)

∂x2

/
∂S(ŝ)

∂x1

)
x̂2/D

−(ŝ) .(3.8)
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Describing the switch manifold via an implicit function x̂1 = ξ(x̂2), equation (3.8)
also reads

σ−(ŝ) = [λ−
1 (ŝ) − λ+

1 (ŝ)]

(
h2x̂1 + (α + h1x̂1)

dξ(x̂2)

dx2

)
x2/D

−(ŝ) .

Choose S(x1, x2) := n(x1δ1 + x2δ2)D
+σ+/x2, and S can be expressed as follows:

(3.9)∣∣∣∣∣∣∣∣∣∣∣∣

S(x1, x2) = a(x2)x
2
1 + b(x2)x1 + c(x2) or S(x1, x2) = d(x1)x2 + e(x1), where∣∣∣∣∣∣∣∣

a := −(n− 1)δ1ζ ≤ 0,
c := x2δ2h/δ1 + δ2γ

∗α2 ≥ 0,
d := −fx1 + δ2h/δ1 = δ2(ax1 + h)/δ1,
e := −ax2

1 + (g + h)x1 + δ2γα
2,

∣∣∣∣∣∣∣∣
b := −fx2 − g + h with
f := −δ2a/δ1 ≥ 0,
g := ζγ∗α ≥ 0,
h := αδ1(e2n− δ2) ≥ 0.

Hence ξ(x2) =
(
−b−

√
b2 − 4ac

)
/2a and one has

dξ(x2)

dx2
= − d

2aξ(x2) + b
=

δ2
δ1

aξ(x2) + h

2aξ(x2) + b
= − δ2

2δ1

(
1 +

b− 2h√
b2 − 4ac

)
.

As b− 2h ≤ 0, it yields

dξ(x2)

dx2
= − δ2

2δ1

(
1 −

√
(b− 2h)2

b2 − 4ac

)
= − δ2

2δ1

(
1 −

√
1 +

ι

b2 − 4ac

)
≥ 0

as ι = 4[ac − h(b − h)] = 4nζγ∗2α2δ1h2 ≥ 0. Hence ∀x2 , dξ(x2)/dx2 ≥ 0, which
justifies the orientation of the curve in Figure 3.1. As a consequence, σ−(ŝ) ≤ 0.

As long as u remains equal to zero while going backward in time from ŝ, one has{
x̊1 = −nx1 , x1(ŝ) =: x̂1,
x̊2 = 0 , x2(ŝ) =: x̂2,

and σ− =
[
(e2 − λ−

2 )(α + h1x1) − (e1 − λ−
1 )h2x1

]
x2/D

−, with{
λ̊−

1 = nλ−
1 − δ1 , λ−

1 (ŝ) = [e1x̂1 − γ∗D−(ŝ)]/x̂1n,

λ̊−
2 = 0 , λ−

2 (ŝ) = ·

Thus, still going backward in time from ŝ with u = v = 0, one has{
x1(s) = x̂1e

n(ŝ−s),
x2(s) = x̂2

and

{
λ−

1 (s) = (e1x1 − γ∗D−)/x1n,
λ−

2 (s) = λ−
2 (ŝ).

Introducing y(x1) := e1h2(n− 1)x1/[n(α+ h1x1)] yields σ− − σ−(ŝ) = y(x̂1)− y(x1).
It is easy to see that y(x1) is increasing. Thus ∀s ∈ [0, ŝ] , σ− ≤ 0. Hence there is at
most one switch-point.

Finally, it is also necessary to check that if the focal forager does not switch to the
generalist strategy upon reaching the switch manifold the state nevertheless crosses
the said manifold and enters the region where the optimal behavior for all players is
to be opportunistic. This is the so-called “permeability condition” [1].7

7Yet, this is a nonzero sum game, and one cannot conclude as in [1] that the adjoint variables
are continuous.
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Fig. 3.2. The switch-manifolds associated with several values of e2 in the state-space (x1, x2).
We took n = 2, e1 = 1, α = 1, h1 = h2 = 1, γ∗ = 0.1, and from the left to the right, e2 =
{0.125, 0.25, 0.375}.

To that aim, let ν = (−1,dξ/dx2) be a normal vector of the switch-manifold
which points in the same direction as the outgoing trajectories. We have

〈ν, f(x, 1, 1)〉 =

(
x1 − x2

dξ

dx2

)
> 0 .

We calculate

〈ν, f(x, 0, 1)〉 = x1 + (n− 1)
α + h1x1

α + h1x1 + h2x2

(
x1 − x2

dξ

dx2

)
,

which, taking the previous inequality into account, is clearly positive. Hence the
permeability condition is satisfied.

Therefore, the evolutionarily stable strategy is indeed either opportunistic dur-
ing the whole time spent on the patch, or it is selective first and, after a while, is
opportunistic.

Our aim now is to characterize this possible switch-point. Clearly, x̂2 = 1 − x0
1

and thus x̂1 = ξ(1 − x0
1).

Figure 3.2 shows the switch-manifolds associated with several values of e2 in the
state-space (x1, x2). Interestingly, we see that the threshold x̂1 is almost independent
from x2. In other words, the curve in Figure 3.1 seems to be qualitatively very close
to a straight line of constant x1.

Figure 3.3 shows the mapping n 
→ x̂1. Interestingly, the greater the number of
foragers on the patch, the closer the evolutionarily stable strategy becomes to the
intake-rate maximization.

3.1. Partial conclusion. Our results are in agreement with those of [26], ob-
tained via a similar approach, although the author of [26] ignored the discontinuities
on the adjoint variables; see (3.7). Our innovation lies in the fact that we do not
consider any arbitrarily predetermined residence time or final patch state. It allows
us to analyze the sensitivity of the switch-point to the initial conditions, and our
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Fig. 3.3. The mapping n �→ x̂1. We took e2 = 0.25, x0
1 = 0.5, n ∈ [2, 100] and left the others

parameters unchanged. The horizontal axis has a logarithmic scale. The dashed line represent
the threshold x̌1 that corresponds to intake-rate maximization; indeed, intake-rate maximization is
selective, while x1 remains larger than a given threshold x̌1 := e2α/ζ, independent of x2.

model reveals8 that it seems almost independent from them. Qualitatively, the evo-
lutionarily stable strategy is then close to intake-rate maximization, a policy that is
selective until the best resource is depleted down to an optimal threshold—whatever
the abundance of the less profitable resource. However, the intake-rate maximization
threshold remains a lower bound; for instance, the larger the number of foragers on
the patch, the closer the evolutionarily stable strategy to intake-rate maximization.
Moreover, these results are also in agreement with those of [15, 35] obtained by quite
different approaches.

As the diet selection policy of an isolated—not subject to competition—forager is
really different from the evolutionarily stable strategy relevant in a situation of actual
competition, the question that arises then is, What should a lone forager entering a
patch do if the probability of facing a situation of competition is nonzero?

4. An asynchronous but deterministic foraging game. As a preliminary
approach, this section focuses on an asynchronous two-forager game, where the arrival
time ta of the second one is assumed deterministic—this might be relevant in a case
of group foraging with “information sharing” [7], assuming that the first forager on a
patch has some time to take advantage of its discovery.

Once the second forager arrives, the evolutionarily stable policy depends only on
the current patch-state x and is detailed in section 3. It thus remains to determine
the optimal strategy before the intruder’s arrival.

We claim the following result (see Figure 4.1).

Theorem 4.1. In the deterministic arrival time problem, the optimal strategy of
the first forager before the arrival of the second one is as follows:

• Any admissible policy that leads to S(x) = 0 at t = ta, provided that it is
feasible; if so, there exists an infinite number of optimal trajectories.

8Compared to [26], as the author of [35] also observed that the switch-point is “nearly independent
of. . . the ratio of the prey types. . . initially present on the patch.”



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIET SELECTION AS A DIFFERENTIAL FORAGING GAME 1549

Fig. 4.1. This graph represents the optimal fields of trajectories in the state-space (t, x). The
regions B (before the opponent’s arrival) and A (after) correspond, respectively, to t < ta and
t ≥ ta, or equivalently, to n = 1 and n = 2. The signs − and + denote, respectively, that being
strictly selective or strictly opportunistic is the (Nash) optimal policy in the region considered. In the
latter case, optimal trajectories are, symbolically, linearly plotted. The vertical line represents the
manifold t = ta. The horizontal one in region A represents the switch-manifold given by S(x) = 0.
The curvilinear trajectory starting in the region (not cross-hatched by “linear” trajectories) reflects
the fact that any trajectory that remains in this region is optimal.

• Otherwise, take u = 0, respectively, u = 1, all along the trajectory if this leads
to S(x) < 0, respectively, S(x) > 0, at time t = ta.

Proof. As we now need to consider the variable t explicitly, we let it be a state
variable; thus the dynamics are extended as follows:⎧⎨⎩

x̊1 = −x1[1 + (n− 1)D(u)/D(v)] , x1(0) = x0
1,

x̊2 = −x2[u + v(n− 1)D(u)/D(v)] , x2(0) = x0
2 = 1 − x0

1,
t̊ = D(u) , t(0) = 0.

From now on, we shall refer to Figure 4.1 to support our reasoning; we stress
that this is a symbolic sketch. In region A, the Nash-optimal fields of trajectories are
perfectly known, thanks to section 3; i.e., the evolutionarily stable strategy depends
only on the sign of S(x).

It remains to determine the optimal fields of trajectories in region B.
For ease of notation, we let μ and H be, respectively, the adjoint vector and

the Hamiltonian associated with the trajectories evolving in region B—the part of
the game during which the forager is still alone. Connecting μ to λ is a matter
of transversality conditions relative to the manifold t = ta—or possibly only to its
intersection with the switch-manifold given by S(x) = 0. The plane t = ta, parallel
to the x subspace, is consequently transparent for this patch-state variable. Thus the
only possible discontinuity concerning the adjoint vector is on the costate variables
associated with t, say, μ3 and λ3—except on the intersection of the two manifolds.
Thus, apart from this particular 1-D curve, we have the following relation:⎛⎜⎜⎝

μ1(sa)
μ2(sa)
μ3(sa)
−H(sa)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
λ1(sa)
λ2(sa)
λ3(sa) = 0
−H(sa) = 0

⎞⎟⎟⎠ + ν

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,
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where ν is a scalar that remains to be determined and sa is such that t(sa) = ta. To
be exhaustive, we show that the transversality condition associated with the curve
given by the intersection of the two manifolds is the following, although we will not
need it:⎛⎜⎜⎝

μ1(sa)
μ2(sa)
μ3(sa)
−H(sa)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
λ1(sa)
λ2(sa)
λ3(sa)
−H(sa)

⎞⎟⎟⎠ + κ̃

⎛⎜⎜⎝
∂S(sa)/∂x1

∂S(sa)/∂x2

∂S(sa)/∂t = 0
∂S(sa)/∂s = 0

⎞⎟⎟⎠ + ν̃

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ .

As, in region B, n = 1, one has H = L − μ1x1 − μ2ux2 + μ3D(u).

Let ς = ∂H/∂u = (δ2 − μ2 + h2μ3)x2. The fact that H(sa) = H(sa) = 0 yields

μ3(sa) = ν = − μ1x1(sa) + μ2ux2(sa)

α + h1x1(sa) + h2x2(sa)
.

Thus ς(sa) = σ(sa): the discontinuity on the costate variable associated with t pre-
cisely maintains the continuity of the switch-function. Moreover, one has⎧⎨⎩

μ̊1 = −∂H/∂x1 = δ1 − μ1 + h1μ3 , μ1(sa) = λ1(sa),
μ̊2 = −∂H/∂x2 = −u(δ2 − μ2 + h2μ3) , μ2(sa) = λ2(sa),
μ̊3 = −∂H/∂t = 0 , μ3(sa) = ν,

and it yields ς̊ = 0. We now investigate the possible geometry of the trajectory
fields, referring the reader to the four sketches of Figure A.2. As it is clear that
being opportunistic does not deplete the best resource as much as being selective
during the same time, the fourth quadrant represents an impossible scenario. If being
selective until the intruder’s arrival yields S(x(sa)) < 0 (second quadrant), then this
is optimal. In a similar fashion, if being opportunistic yields S(x(sa)) > 0 (first
quadrant), then this is optimal. Otherwise (third quadrant), the optimal policy is
such that S(x(sa)) = 0. Moreover, as dξ/dx2 ≥ 0, the scenario of the third quadrant,
now considering the dashed line as the switch-manifold, cannot happen. Hence there
is no state prior to ta through which trajectories of the two extremal fields can pass.
On the contrary, there is indeed a gap—a region uncovered by our extremal fields—
between regions + and − in region B of Figure 4.1.

Appendix A provides a relation giving the time spent to move from a point of the
state-space (x1, x2) to another—as it does not depend on the trajectory followed—via
the same dynamics if taken with n = 1. It thus yields the locus of all points attainable
in a time ta from a given point (x0

1, x
0
2)—the manifold represented by the dot-dashed

line in the third quadrant of Figure 4.2 contains the said locus. More precisely, this
manifold corresponds to the application

x1 
→ x0
2 − [ta − α ln(x0

1/x1) − (x0
1 − x1)h1]/h2 ,

clearly monotonously decreasing. Hence for each initial condition, there is a unique
point (x̂1, x̂2) such that S(x̂1, x̂2) = 0 at time ta—this is the intersection of the two
manifolds. Therefore, any trajectory that remains in the gap has to reach this unique
point, and therefore yields the same overall payoff. Further, since optimal trajectories
cannot penetrate any of the two extremal fields, any trajectory remaining in the gap
and reaching the switch-manifold at t = ta is optimal.
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Fig. 4.2. Each quadrant represents a state-space (x1, x2). The thick arrows are possible trajec-
tories. The solid curves represent the switch-manifold S(x) = 0. The time horizon is the same for
both trajectories plotted: “being selective” and “being opportunistic.”

5. An asynchronous stochastic foraging game. It remains to show how to
forage optimally under the risk of competition, i.e., if the intruder’s arrival is no longer
deterministic.

As in the last section, once the possible intruder arrives, the optimal policy de-
pends only on the current patch-state x and is as detailed in section 3. Therefore, the
optimal total future reward V2(x) is known. It thus remains to determine the optimal
strategy before a possible intruder’s arrival.

Notice that taking V2 = 0 addresses the question of the optimal diet selection
when the end time is random; for instance, the sudden arrival of a predator could
cause the forager to flee from the patch.

Let this possible perturbation be a Poisson variable of intensity π.
We still let the time have a cost—in terms of missed opportunities—of γ∗ per

unit, and thus the forager is nevertheless incited to leave the patch in order to avoid
wasting its time.

Let t∗ be the time the forager would remain on the patch if not interrupted and
ε be the random event time, exponentially distributed with mean 1/π.

Our dynamics are {
qẋ1 = −x1/D(u) , x1(0) = x0

1,
qẋ2 = −ux2/D(u) , x2(0) = x0

2.
(5.1)

Let our criterion be

G = EJ with J =

∫ ε∧t∗

0

L(x, u)dt +

{
V2(x(ε ∧ t∗)) if ε < t∗,
0 otherwise,

(5.2)

and L(x, u) = e1x1/D(u) + ue2x2/D(u) − γ∗.
We claim the following result.
Theorem 5.1. The optimal policy in the stochastic arrival time problem stated by

(5.1) and (5.2) is bang-bang with a single switch from u = 0 to u = 1 occurring before
reaching the manifold S(x) = 0. The leaving policy is unchanged from Theorem 3.1.
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Proof. Using the fact that P (ε > t∗) = e−πt∗ , we have

G = Eε<t∗

[∫ ε

0

L(x, u)dt + V2(x)

]
+ e−πt∗

∫ t∗

0

L(x, u)dt

=

∫ t∗

0

[(∫ ε

0

L(x, u)dt

)
+ V2(x)

]
πe−πεdε + e−πt∗

∫ t∗

0

L(x, u)dt ,

=

∫ t∗

0

L(x, u)

(∫ t∗

t

πe−πεdε

)
dt +

∫ t∗

0

V2(x)πe−πεdε + e−πt∗
∫ t∗

0

L(x, u)dt ,

=

∫ t∗

0

[
L(x, u) + πV2(x)

]
e−πtdt .

Having in mind these equivalent dynamics f(x, u),{
x̊1 = −x1 , x1(0) = x0

1,
x̊2 = −ux2 , x2(0) = x0

2,

our criterion can also be expressed as follows:

G = q

∫ s∗

0

L(x, u)e−πt(s)ds , L(x, u) = δ1x1 + uδ2x2 − γ∗α + πV2(x)D(u) ,

with t(s) := αs + h1(x
0
1 − x1) + h2(x

0
2 − x2)—see Appendix A—and t(s∗) := t∗.

However, let us consider an equivalent criterion:

G = eπ(h1x
0
1+h2x

0
2)G/q =

∫ s∗

0

L(x, u)e−π(αs−h1x1−h2x2)ds .

Our stochastic end time optimization problem is thus equivalent to the above
deterministic one. Formulated in such a fashion, it directly yields that the end time
is such that L is zero. As V2 is zero beyond the manifold δ1x1 + δ2x2 − γ∗α = 0, the
latter is the terminal manifold corresponding to this problem. Therefore, we introduce
the value function V , or the optimal total future reward, which is the solution of the
following Hamilton–Jacobi–Bellman equation:{

∀x , V (x, s∗) = 0 and ∀(x, s < s∗) ,
−∂V (x, s)/∂s = maxu

[
〈∇xV (x, s), f(x, u)〉 + L(x, u)e−π(αs−h1x1−h2x2)

]
.

Let V (x, s) =: e−π(αs−h1x1−h2x2)V(x) ∀i ∈ {1, 2} , μi := ∂V/∂xi, and V(x) :=
V(x) − V2(x); V is thus the solution of the following stationary Hamilton–Jacobi–
Bellman equation:{

∀(x|L ≤ 0) , V(x) = 0, and ∀(x|L > 0) ,
απV(x) = maxu [x1(δ1 − πh1V(x) − μ1) + ux2(δ2 − πh2V(x) − μ2) − γ∗α] .

Let us notice that V(x) is indeed the optimal value of our payoff G. Hence V(x)
is nonnegative.

As it is clear that the optimal control is bang-bang, let us introduce the switch-
function σ = δ2 − πh2V(x)− μ2. We conjecture that there is at most one switch. Let
the superscript + denote the region of the state-space beyond the switch-point, where
we postulate that the optimal strategy is u = 1. For instance, let D+ := D(1) =
α + h1x1 + h2x2.
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We have ∀i ∈ {1, 2} , μ+
i (s∗) = 0. It yields σ+(s∗) = δ2 ≥ 0 by hypothesis. Thus

at the end time, the optimal policy is to be opportunistic, i.e., to take both resources.
The Hamilton–Jacobi–Bellman equation states that ∀(x|L > 0) in region +,

πD+V+(x) = x1(δ1 − μ+
1 ) + x2(δ2 − μ+

2 ) − γ∗α .

Let ∀i ∈ {1, 2} , νi := ∂V/∂xi = μi − λi, as λi = ∂V2/∂xi.
According to the classical theory of characteristics [4], ∀i ∈ {1, 2},

μ̊+
i = πD+ν+

i − (δi − πhiV
+(x) − μ+

i ) , μ+
i (ŝ) = μ̂i .

We thus have σ̊+ = πh2(x1ν
+
1 + x2ν

+
2 ) − μ̊+

2 = πh2x1ν
+
1 − πD−ν+

2 + σ+.
Our aim is now to show that, if σ+ becomes zero while going backward in time,

switching u to zero remains optimal down to the initial time. Let the superscript −
denote the region of the state-space where we conjecture that the optimal strategy is
u = 0. For instance, let D− := D(0) = α + h1x1.

In the latter region, the Hamilton–Jacobi–Bellman equation states that ∀x,

πD−V−(x) = x1(δ1 − μ−
1 ) − γ∗α .(5.3)

Via a similar calculation of the characteristics:{
μ̊−

1 = πD−ν−1 − (δ1 − πh1V
−(x) − μ1) , μ−

1 (ŝ) = μ̂1,
μ̊−

2 = πD−ν−2 , μ−
2 (ŝ) = μ̂2,

where ŝ is the time at which the switch-manifold is reached.
We thus have σ̊− := πh2x1ν

−
1 − μ̊−

2 = πh2x1ν
−
1 − πD−ν−2 . Hence on the switch-

manifold, σ̊−(ŝ) = σ̊+(ŝ) ≥ 0.
Using (5.3), we have

μ̊1 = πD−ν−1 − (απV−(x) + γ∗α)/x1

= πD−μ−
1 −

[
(απV−(x) + γ∗α)/x1 + πD−λ1

]
.

Let Θ(x) := [(απV−(x) + γ∗α)/x1 + πD−λ1] ≥ 0,

χ(s, ŝ) := exp

(
π

∫ s

ŝ

D−d�

)
= eπ[t(s)−t(ŝ)] ,

and

φ(s, ŝ) := απ

∫ ŝ

s

Θ(x)χ(s, �)d� ≥ 0 ,

as it is clear from section 3 that ∀x, λ1(x) ≥ 0.
We have ∀s ∈ [0, ŝ], {

μ−
1 (s) = μ̂1χ(s, ŝ) + φ(s, ŝ),

μ−
2 (s) = μ̂2χ(s, ŝ).

Let ψ(x1) := πh2x1μ̂
−
1 − πD−μ̂−

2 = π(h2μ̂1 − h1μ̂2)x1 − παμ̂2, which yields

σ̊− = ψ(x1)χ(s, ŝ) + φ(s, ŝ)πh2x1 .

As ψ(x̂1) = σ̊−(ŝ) ≥ 0, (h2μ̂1 − h1μ̂2) is clearly positive. Thus ψ(x1) is increasing
in x1. Therefore σ̊− remains positive in region −. As an expected consequence, the
trajectory generated by taking u = 0 backward from the switch-manifold implies that
σ− remains negative down to the initial time. Hence the optimal strategy is indeed
at most one-switch bang-bang.
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5.1. A digression on the random end time problem. In this subsection,
our aim is to numerically characterize the switch-manifold for a random end time
problem, i.e., taking ∀x , V2(x) = 0.

Integrating forward the trajectory field where u = 1 yields

V+(x) = ΔB1(β) − γ∗αB0(β) ,

with Δ := δ1x1 +δ2x2, β := π(h1x1 +h2x2), and the function Bn is defined as follows,
with n ∈ N:

Bn(β) :=

∫ s∗

0

e−(n+πα)s−β(1−e−s)ds .

Integrating by parts easily yields∣∣∣∣ B1(β) = (1 − z0(β) − παB0(β))/b,
B2(β) = (1 − z1(β) − (1 + πα)B1(β))/β

with zn(β) := e−(n+πα)s∗−β(1−e−s∗ ).
Using either the explicit form of s∗9 or the remark that it maximizes G and the

envelope lemma, we have that

∀i ∈ {1, 2} , μ+
i = δiB1(β) − Δπhi(B1(β) −B2(β)) + γ∗απhi(B0(β) −B1(β)) .

As σ+ := δ2 − πh2V+ − μ+
2 , we have that

σ+ = δ2 − δ2B1(β) − Δπh2B2(β) + γ∗απh2B1(β)

= (δ2 − Δπh2(1 − z1(β))/β) − (δ2 − (1 + πα)Δπh2/β − γ∗απh2)B1(β) .

The switch-manifold is thus given by σ+(x) = 0. Figure 5.1 shows the switch-
manifolds associated with various values of π.

5.2. Implications for the original problem. It is clear that the switch-
manifold corresponding to the original problem is bounded by that of the synchronous
foraging game characterized in section 3, as it corresponds to being disturbed by a
conspecific with a probability of one. Besides the latter point, it is likely that quali-
tatively, the optimal policy remains equivalent to the random end time problem, i.e.,
switching at a given x1, depending on the intensity of the Poisson process.

6. Conclusion. Our aim was to determine the evolutionarily stable strategy
[20] that foragers competing for a plural and depleting resource should adopt, both
in terms of diet selection and patch-leaving decision [3, 33].

First, we reformulated the optimal diet selection policy [23] for a lone forager, in
a similar fashion to [26], except that we allow for a free patch-leaving time. On our
way, we solved the optimal diet selection problem for a single forager with an end
time either fixed or possibly random.

Next, we investigated the foraging game involving several foragers arriving si-
multaneously at a patch containing two distinct types of resources. The resulting
differential game involves discontinuous state feedback strategies constructed via a
classical synthesis technique, and hence requires for its solution a careful analysis of

9As s∗ is the time to leave the patch as a function of the current state, we have s∗ = − ln(γ∗α/Δ);
see (3.6) and the dynamics taken with u = 1.
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Fig. 5.1. The switch-manifolds in the state-space (x1, x2) associated with several values of π;
from right to left, π = {0.1, 0.25, 1, 5}, with α = 1, h1 = 1, h2 = 1, e1 = 1, e2 = 0.25, and γ∗ = 0.1.
The left bound corresponds to the intake rate maximization switch-manifold, i.e., x̌1 = e2α/ζ.

the induced discontinuities of the adjoint variables. The end result is a one-switch
bang-bang evolutionarily stable strategy. This is in agreement with [15, 26, 35] and
is more precise in several respects.

As there is a qualitative gap between the optimal behavior of an isolated forager
and that of competing foragers, the question which thus arose was that of the optimal
strategy of a single forager subject to a potentially imminent competition.

As a preliminary approach, we solved an asynchronous two-forager game, where
the interarrival time was assumed deterministic. Partial preferences arose in several
fashions.

Finally, we no longer considered a deterministic interarrival time but let the prob-
ability that an opponent enters the game follow a Poisson distribution. We showed
that the optimal policy belongs to a qualitative continuum which fills10 the gap that
separates the two extremal policies found previously.

Thus, although the classical diet selection policy states that a lone forager should
take both resources indiscriminately during the whole time spent on the patch (see
section 2), we showed that it suffices to add some stochasticity in the model to predict
a qualitatively different behavior. Indeed, under the risk of viewing a predator (or a
conspecific) shortening its time spent (alone) on the patch, a lone forager should be
selective for a while, at least if the probability of being disturbed is nonnegligible.

7. Discussion and prospects. Our results are based on the assumption that
foragers are identical in terms of their ability to find and consume resources and of the
relative values they attribute to resources with respect to both other resources and
their environment. The game is symmetric in this sense. In recent years, however,
foraging theory has looked more at the effect of the foragers’ state; see [16]. Thus arises
the question of the robustness of our results when considering relevant differences in
forager state such as

• competitive ability, which may be correlated to the size of the animal [25, 24];
• level of satiation or body reserves and their effect on the relative values of food

10By playing on the intensity of the Poisson variable.
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resources compared to other resources or opportunities in the environment,
such as finding a mate;

• time away from the nest and its effect on the “cost of the time”;
• life expectancy of the animal [36], i.e., a time horizon.

In this sense the game would no longer be symmetric. Moreover, the question of the
information on the opponent state would also arise. Yet, we conjecture that, of course,
the foragers would probably not switch or leave simultaneously, but a qualitatively
similar behavior would persist; i.e., switching from being selective to opportunistic
and leaving according to their own Charnov’s rule.

Also, in our model, foragers’ ability to gather resources is not affected by the
presence of conspecifics; the present paper ignores interference (i.e., contacts or fights)
that could occur among them. As in the single resource case, as long as there is no
interference, the evolutionarily stable strategy is pure, in particular in terms of the
patch-leaving policy. We conjecture that including interference in the model would
result in a war of attrition, or random patch-leaving times, but would not qualitatively
affect the resource acceptance policy. More accurately, we conjecture that a war of
attrition occurs after foragers have switched from a selective diet to an opportunistic
one. Yet, this makes sense to us as long as interference intensity does not depend
on the resource acceptance policy. If it does, i.e., if interference is greater when both
foragers focus on the best quality resource, the question is open (see [25, 24] for
experimental evidence of a competition avoidance behavior).

Last, but not least, the question arises of the relevance of this model with respect
to real life. A field study in the Negev Desert, Israel [12] was conducted on Nubian
ibex Capra ibex nubiana, wild social goats that actually compete for resources. Inter-
estingly, an indirect observation based on “giving-up densities” [2] tends to show that
Nubian ibex “forage selectively on plants of higher quality until a certain threshold
density, switching later to a more opportunistic foraging.” Also, such an interpreta-
tion may hold with respect to similar observations made on kangaroo rats Dipodomys
merriami foraging on the same patch during a study done in Arizona [3]. As pointed
out by [11], diet selection dynamics are rarely directly observed.11 Nevertheless, the
authors of [27] observed, through laboratory experiments with the cichlid fish Hap-
lochromis piceatus (a predator accustomed to foraging in group), a switch in their
resource acceptance policy, regardless of whether they were foraging alone or by pair.
However, the switch-point occurred at a higher density of the preferred resource when
foraging by pair than when foraging alone [35]. In light of the present model, an
inverse ranking of the switch-points would have been expected; i.e., if uncertainty
with respect to the time available to exploit resources—possibly before the expected
arrival of a competitor—makes a single forager focus on the best resources first, such
a selectivity is expected to be exacerbated, or at least unaffected, under competition.
Our simple model is therefore falsifiable and seems to be so in this species. Moreover,
white king pigeons, which also forage in a group under natural conditions, have been
shown [29, 28] to be more “choosy” alone than in the presence of a competitor. More
accurately, the authors actually observed that pigeons switch “earlier” under compe-
tition. It may be that interference occurring when focusing on the preferred resource
qualitatively changes the resource acceptance policy. Further theoretical investiga-
tions are thus needed to better understand how competition affects the dynamics of
diet selection.

11Yet, this article refers to other (of a physiological nature) dynamics, ignoring resource depletion
and competition.
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Fig. A.1. Three of the optimal trajectories in the state-space (x1, x2): “accepting the less prof-
itable resource with a constant optimal acceptance rate”; “switching from selective to opportunistic”;
and vice versa. The intersection of the vertical and horizontal lines represents the point (x̂1, x̂2).

Appendix A. Optimal diet selection with a fixed end time. In the body
of the paper, we allow the forager a free patch-leaving time, given that the time
itself has a cost of γ∗ per unit. This appendix is a digression on the optimal diet
selection problem under a fixed residence time constraint, as already addressed by
some authors; see [26, 19], where the example of an intertidal forager is mentioned.
Our patch dynamics are closer to that of [26],12 whose author argues that there is a
partial preference region in the state-space; our aim is to prove this statement.

Although the question addressed is not the same, our basic model remains that
detailed in the body of the paper. As we consider a lone forager in an environment
that offers two types of resources, the notations we shall use are those introduced in
section 3. For instance, we assume that resource 1 is more profitable than resource 2,
i.e., e1/h1 ≥ e2/h2.

We claim the following result (see Figure A.1).

Theorem A.1. In the fixed end time problem, the optimal strategy is as follows:
Let x̂1 = e2α/ζ.

• Any admissible strategy that leads to x1(T ) = x̂1, provided that it is feasible. If
so, there exists an infinite number of optimal trajectories, all of them reaching
the same point (x̂1, x̂2); x̂2 is given by (A.1).

• Otherwise, take u = 0, respectively, u = 1, all along the trajectory if this leads
to x1(T ) > e2α/ζ, respectively, x1(T ) < e2α/ζ.

Proof. As we need to consider the variable t explicitly, we let it be a state variable.
We thus have the following dynamics f(x, u):⎧⎨⎩

x̊1 = −x1 , x1(0) = x0
1,

x̊2 = −ux2 , x2(0) = x0
2 = 1 − x0

1,
t̊ = D(u) , t(0) = 0.

Our criterion is

J = K(x(T )), where K(x) := e1(x
0
1 − x1) + e2(x

0
2 − x2)

12The dynamics of [19] are, then, really stochastic, as they allow for “a run of back luck” that
leads the forager to “become more selective as the time left in the patch runs out.”
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and T is a fixed final time.
Let S be the final s, i.e., t(S) = T . Let λ be the adjoint vector. It yields the

Hamiltonian

H = 〈λ, f(x, u)〉 = −λ1x1 − λ2ux2 + λ3D(u) .

According to Pontryagin’s maximum principle, if a policy u∗(s) generating a
trajectory x∗(s) is optimal, then there exists an adjoint trajectory λ(s) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ̊ = −∇xH(λ, u∗, x∗),
λ(s∗) = ∇xK(x∗) + v,
H(s∗) = 0∣∣∣∣ ∀s ∈ [0, s∗], where u∗(·) is continuous,
H(λ(s), u∗(s), x∗(s)) = maxu∈[0,1] H(λ(s), u, x∗(s)),

where v is a vector normal to the target manifold. As the latter is the plane t = T ,
the only nonzero component of v is that in t, say, ν. We have⎧⎨⎩

λ̊1 = −∂H/∂x1 = λ1 − λ3h1 , λ1(S) = ∂K/∂x1 = −e1,

λ̊2 = −∂H/∂x2 = u(λ2 − λ3h2) , λ2(S) = ∂K/∂x2 = −e2,

λ̊3 = −∂H/∂t = 0 , λ3(S) = ∂K/∂t + ν = ν.

The last condition above translates into the switch-function

σ = ∂H/∂u = x2(λ3h2 − λ2) .

As S is free, the final value of the Hamiltonian is zero. It yields

∀s, λ3(s) = ν = − e1x1(S) + ue2x2(S)

α + h1x1(S) + h2x2(S)
.

Thus

σ(S) = x2(S)

(
e2α + x1(S)(e2h1 − e1h2)

α + h1x1(S) + h2x2(S)

)
.

It is easy to show that ∀s, σ̊ = 0. Let x̂1 = e2α/ζ. Hence⎧⎨⎩
if x1(S) > x̂1, then ∀s, σ < 0 ⇒ u∗ = 0;
if x1(S) = x̂1, then ∀s, σ = 0 ⇒ u∗ ∈ [0, 1];
if x1(S) < x̂1, then ∀s, σ > 0 ⇒ u∗ = 1.

We now investigate the possible geometry of the trajectory fields, referring the
reader to the four sketches of Figure A.2. Therefore, if being opportunistic yields a
ratio of the best resource that remains lower than x̂1 (first quadrant), then this is
optimal. In a similar fashion, if being selective yields a ratio of the best resource that
remains greater than x̂1 (second quadrant), then this is optimal. Otherwise (third
quadrant), the optimal policy is such that the ratio of best resources equals x̂1 at the
end time. As it is clear that being opportunistic does not deplete the best resource
as much as being selective during the same time, the fourth quadrant represents an
impossible scenario.

However, Pontryagin’s maximum principle provides only necessary conditions; it
does not prove that any policy that leads to x1(S) = x̂1 is optimal.
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Fig. A.2. Each quadrant represents a state-space (x1, x2). Vertical lines indicate the manifold
x1 = x̂1. The temporal horizon is the same for both trajectories plotted: “being selective” and “being
opportunistic.”

Fig. A.3. The differing regions in the parameter space (x0
1, T ). We took α = 1, e1 = 1, e2 = 1,

h1 = 1, and h2 = 5.

It is easy to see that

∀u, s, t(s) = αs + [x0
1 − x1(s)]h1 + [x0

2 − x2(s)]h2 ,

and that S = ln(x0
1/x̂1). Hence there is a unique x2(S) such that x1(S) = x̂1; i.e.,

x2(S) =: x̂2 is such that

T = α ln(x0
1/x̂1) + [x0

1 − x̂1]h1 + [x0
2 − x̂2]h2 .(A.1)

However, it does not mean that the optimal trajectory is unique, as the time needed
to move from a point (x1, x2) to another does not depend on the path followed.
Therefore, any strategy that leads to x1(S) = x̂1 is indeed optimal. For instance,
Figure A.1 represents some possible optimal trajectories in the state-space
(x2, x1).

Figure A.3 shows the differing regions in the parameter space (x0
1, T ) that cor-

respond to each policy: being selective, being opportunistic, and having “partial
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preferences.” The manifold separating the selective region and the partial preferences
is given by the application

x0
1 
→ α ln(x0

1/x̂1) + [x0
1 − x̂1]h1 ,

as x0
2 = x̂2 on this boundary, and the other boundary (separating the partial prefer-

ences region from the opportunistic one) is given by

x0
1 
→ α ln(x0

1/x̂1) + (x0
1 − x̂1)[h1 + h2x

0
2/x

0
1],

as x0
1/x

0
2 = x̂1/x̂2 on this boundary.
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SINGULAR PERTURBATIONS IN ERGODIC CONTROL OF
DIFFUSIONS∗
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Abstract. Ergodic control of a nondegenerate diffusion with two time-scales is studied in the
limiting case as the time-scale separation increases to infinity. It is shown that the limit problem is
another ergodic control problem for the slow time-scale component alone, with its dynamics averaged
over the (controlled) invariant probability measures for the fast component. These measures in turn
can be treated as the “effective control variable.”
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1. Introduction. In this paper, we consider a long run average (ergodic) prob-
lem of optimal control of nonlinear singularly perturbed (SP) stochastic differential
equations (SDEs), in which the singular perturbations parameter ε > 0 is introduced
in such a way that the state variables are decomposed into a group of slow variables
that change their values with rates of the order O(1), and a group of fast variables
that change their values with rates of the order O( 1

ε ).
Singularly perturbed problems of control and optimization have been studied

intensively in both deterministic and stochastic settings (see the classic texts [7], [23],
[25], [31] and the most recent publications [1], [2], [3], [4], [5], [6], [12], [14], [15], [16],
[17], [18], [20], [21], [22], [26], [30], [32], [33]). Problems of optimal control of SP SDEs
have been studied in [1], [7], [12], [21], [25], where earlier references can also be found.

In [12], in particular, it has been established in a very general setup that, for
the problem of optimal control of SP SDEs considered on a finite time interval, the
limiting problem (obtained when the singular perturbation parameter tends to zero) is
an averaged problem, in which the slow dynamics is controlled by stationary marginal
distributions of the fast dynamics, obtained with the slow state variables kept “frozen”
(note that a deterministic counterpart of this result has been obtained in [17]).

In this article, we continue the line of research started in [12] by establishing the
validity of a similar limit behavior for long run average problems of optimal control of
SP SDEs (referred to in what follows as SP ergodic control problems). Note that in
our study we restrict ourselves to the case of nondegenerate diffusions, and thus our
results complement earlier results obtained in the purely deterministic setting in [18].
Our analysis is largely based on the stability and control theory for nondegenerate
diffusions established in [8], [9], and [11].
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The paper is organized as follows. We introduce the singularly perturbed ergodic
control problem in the next section. Our objective will be to relate this problem to the
ergodic control problem for the “averaged” system obtained in the ε → 0 limit, i.e.,
to prove that the latter (lower dimensional) problem is a valid approximation to the
above problem for small ε. The exact definition of the averaged problem is deferred
until after the appropriate terminology has been introduced. A key assumption here
is a condition on the running cost (see (4) below) which penalizes large excursions of
the state process.

Section 3 recalls some known facts about ergodic control, notably the basic exis-
tence result (Theorem 3.1 below). This is stated in both the “almost sure” and the
“expectation” form. It uses a characterization of limit points of the joint empirical
process for state and control processes. This in turn shows that with probability one,
none of these limit points can improve over the best attainable cost over the so-called
Markov controls that depend only on the present state.

Section 4 is devoted to some preliminaries, in particular the definition of the
averaged control problem. It then gives an important characterization of the set of the
so-called “ergodic occupation measures,” which have the property that the cost under
stable Markov controls can be expressed as an average of the running cost function
w.r.t. these. This result plays an important role throughout, as it helps us characterize
limits of sequences of ergodic occupation measures and invariant measures. Section 4
also specializes the result concerning existence of optimal controls from section 3 to
the present scenario.

Section 5 shows that the optimal cost for the averaged problem serves in general
as an asymptotic lower bound for the optimal cost for the original problem in the ε ↓ 0
limit (Corollary 5.1). This argument is based on the tightness of the optimal ergodic
occupation measures as ε is reduced to zero, implying their relative compactness in
Prohorov topology. Section 6 shows that in the special case of the control entering
the drift in an affine manner and the running cost strictly convex in the control,
it is in fact the exact limit (Theorem 6.1). This crucially uses the fact that under
these conditions, the expression being minimized over the control parameter in the
associated Hamilton–Jacobi–Bellman equation is strictly convex, and therefore the
minimizer is unique and continuously varying with ε. This result is extended to a
more general case in section 7 under some technical assumptions (Theorem 7.1). These
assumptions basically allow us, given an optimal control for the averaged problem,
to approximate the optimal process at process level (i.e., in law) by the ε-indexed
processes we start with, along with the associated control processes.

Section 8 discusses the “stable case,” where a blanket stability condition is
imposed on the controlled diffusion instead of the aforementioned condition on the
running cost. This is sketched in the barest outline, as most of the details will be
repetitive. Section 9 concludes with some discussion, which includes some directions
for future research. The main tools used throughout are relative compactness in
Prohorov topology and, in some cases, in the total variation norm, of the invari-
ant distributions/ergodic occupation measures as the case may be, when appropriate
parameters are varied.

2. The control problem. Let ε > 0. We consider the coupled pair of SDEs in
Rd ×Rs given by

dzε(t) = h(zε(t), xε(t), u(t))dt + γ(zε(t))dB(t),(1)

dxε(t) =
1

ε
m(zε(t), xε(t), u(t))dt +

1√
ε
σ(zε(t), xε(t))dW (t).(2)
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Here
• for a prescribed compact metric action space A, h : Rd × Rs × A → Rd,

γ : Rd → Rd×d, m : Rd ×Rs × A → Rs, σ : Rd ×Rs → Rs×s are Lipschitz
in the first and second (if any) arguments uniformly w.r.t. the third (if any);

• the least eigenvalues of γ(z)γ(z)T, σ(z, x)σ(z, x)T are uniformly bounded
away from zero (nondegeneracy assumption);

• the initial values are fixed: (zε(0), xε(0)) = (z0, x0);
• B(·),W (·) are, resp., d- and s-dimensional independent standard Brownian

motions;
• u(·) is an A-valued control process with measurable paths satisfying the fol-

lowing nonanticipativity condition: for t ≥ s, (B(t) − B(s),W (t) −W (s)) is

independent of Fs
def
= the completion of

∩s′>sσ(zε(y), xε(y), u(y), y ≤ s′).

We call such u(·) an admissible control.
We shall impose further restrictions on A, h,m later. The ergodic control problem

is to minimize over all admissible u(·) the “ergodic cost”

(3) lim
t↑∞

1

t

∫ t

0

E[k(zε(s), xε(s), u(s))]ds.

Here k : Rd ×Rs ×A → R+ is a continuous map satisfying

(4) lim
||(z,x)||→∞

inf
u

k(z, x, u) = ∞.

We shall discuss a possible relaxation of this condition later. We also assume the
following:

(†) There exists an ∞ > M∗ > 0 such that for each ε ∈ (0, 1), the cost for at
least one admissible u(·) is ≤ M∗.

We shall work with the weak formulation of the above control problem and as-
sume that u(·) is a relaxed control. That is, for some compact metric space A′,

A = P(A′)
def
= the space of probability measures on A′ with the Prohorov topol-

ogy. Moreover, all functions above of the form f(. . . , u(t)) (specifically, k and the
components of h,m) are of the form

∫
f ′(. . . , y)u(t, dy) for an f ′ satisfying the same

conditions as f , except that the factor A of its domain is replaced by A′. This
relaxation, originally introduced by L. C. Young in deterministic control, is a true
relaxation in this context, in the sense that the infima of the cost over relaxed and
original setup coincide. See [9, Chapter I] for more on this. As above, P(Z) for a
Polish space Z will denote the Polish space of probability measures on Z with the
Prohorov topology [10, Chapter 2].

Furthermore, we assume that the following “stochastic Liapunov” condition

holds: Define L : C2(Rs)(
def
= the space of twice continuously differentiable functions

Rs → R) → Cb(Rd ×Rs ×A′) by

(5) Lf(z, x, u)
def
=

1

2
tr

(
σ(z, x)σT (z, x)∇2f(x)

)
+ 〈∇f(x),m′(z, x, u)〉

∀ f ∈ C2(Rs). Then there exists a V ∈ C2(Rs), g ∈ C(Rd × Rs) such that
lim||x||→∞ V (x) = ∞, lim||x||→∞ g(z, x) = ∞ uniformly in z belonging to any compact

subset of Rd, and

(6) LV (z, x, u) ≤ −g(z, x).
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3. Ergodic control. We now recall from [9, Chapter VI] some facts about er-
godic control applicable to the above framework. For this purpose, we introduce the
notion of a Markov control as a u(·) of the form u(t) = v(zε(t), xε(t)) ∀t for a measur-
able v : Rd×Rs → A. By a standard abuse of terminology, we identify this u(·) with
the map v. Note that under a Markov control, (zε(·), xε(·)) will be a time-homogeneous
Markov process. In turn, v will be said to be a stable Markov control if the resulting
Markov diffusion is positive recurrent and thus has a unique invariant probability
measure ζv(dzdx). Furthermore, (3) will then equal

∫
k′(z, x, u)v(du|z, x)ζv(dzdx).

We call Φv(dzdxdu)
def
= ζv(dzdx)v(du|z, x) the ergodic occupation measure associated

with v and denote by G the set of all ergodic occupation measures Φv as v varies over
all stable Markov controls. This has another characterization as follows: Let

L̂f(z, x, u)

def
=

1

2
tr

(
γ(z)γT (z)∇2

zf(z, x)
)

+ 〈∇zf(z, x), h′(z, x, u)〉

+
1

2ε
tr

(
σ(z, x)σT (z, x)∇2

xf(z, x)
)

+
1

ε
〈∇xf(z, x),m′(z, x, u)〉,

where ∇y,∇2
y denote, resp., the gradient and the Hessian in the variable y. Also let

C2
0 (Rd+s)

def
= the space of twice continuously differentiable functions Rd+s → R that

vanish at infinity, along with their first and second order partial derivatives.
We recall now Lemma 1.1 from [9, p. 144] (see [8] for a more general result).
Lemma 3.1. G = {Φ ∈ P(Rd+s ×A′) :

∫
L̂fdΦ = 0 ∀f ∈ C2

0 (Rd+s)}.
Proof. Let Φ(dzdxdu) = ζ(dzdx)v(du|z, x) ∈ G and denote by L̂v the ex-

tended generator of the diffusion controlled by the Markov control v, i.e., L̂vf
def
=∫

L̂f(z, x, u)v(du|z, x). The corresponding diffusion is a time-homogeneous Markov
process with a transition semigroup Tt, t ≥ 0, of positive operators on the Banach
space B of bounded measurable functions Rd+s → R (with essential supremum norm)
and with (operator) norm 1. Its infinitesimal generator L′

v is an extension to D(L′
v)

of L̂v : C2
0 (Rd+s) ⊂ B → B. Thus, in particular,

(7)
d

dt
Ttf = L̂vTtf = TtL̂vf, f ∈ C2

0 (Rd+s).

Also, ζ is invariant under {Tt}:

(8)

∫
fdζ =

∫
Ttfdζ ∀t ≥ 0, f ∈ Cb(Rd+s).

Then for t > s, f ∈ C2
0 (Rd+s),

Ttf = Tsf +

∫ t

s

TyL̂vfdy.

Integrating w.r.t. ζ and using (8), we get∫
fdζ =

∫
fdζ +

∫ t

s

∫
L̂vfdζdy, t > s.

It follows that ζ(dzdx)v(du|z, x) = Φ(dzdxdu) satisfies

(9)

∫
L̂fdΦ

(
=

∫
L̂vfdζ

)
= 0, f ∈ C2

0 (Rd+s).
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Conversely, let Φ(dzdxdu) = ζ(dzdx)v(du|z, x) satisfy (9). Then ζ(t) ≡ ζ ∀t ≥ 0
satisfies the forward equation

(10)

∫
fdζ(t) =

∫
fdζ(0) +

∫ t

0

∫
L̂vfdζ(s)ds.

From (7) and (10), direct calculation shows that d
ds

∫
Tt−sfdζ(s) = 0. Integrating

this from 0 to t, we have
∫
fdζ(t) =

∫
Ttfdζ(0). Since ζ(t) = ζ(0) = ζ, this implies

that ζ is stationary under v. In particular, in view of our nondegeneracy assumption,
the resulting Markov diffusion process is ergodic. That is, Φ ∈ G.

Define the empirical measures νt, t > 0, and the average empirical measures ν̄t, t >
0, by ∫

fdνt
def
=

1

t

∫ t

0

f(zε(s), xε(s), u(s))ds,

∫
fdν̄t

def
=

1

t

∫ t

0

E[f(zε(s), xε(s), u(s))]ds

for f ∈ Cb(Rd+s × A′). Let R∗ denote the one point compactification of Rd × Rs

with ∞ the point at infinity. Finally, let

G∗ def
= {Φ ∈ P(R∗ ×A′) : there exist some 0 ≤ a ≤ 1, φ ∈ G, and φ′ ∈ P({∞} ×A′)

such thatΦ(B ×B′) = aφ((B ×B′) ∩ (Rd+s ×A′)) + (1 − a)φ′((B ×B′) ∩ ({∞} ×
A′)) ∀ B Borel in R∗, B′ Borel in A′}.

The following is adapted from [9, Chapter VI].
Lemma 3.2. As t ↑ ∞, ν̄t → G∗ and νt → G∗ a.s. in P(R∗ ×A′).
Proof. Consider f ∈ C2

0 (Rd+s). Then

E[f(zε(t), xε(t))]

t
− E[f(zε(0), xε(0))]

t
=

1

t

∫ t

0

E[L̂f(zε(s), xε(s), u(s))]ds

=

∫
L̂fdν̄t.

Let ν be a limit point of ν̄t in P(R∗ × A′) as t → ∞. It can then be written
as aν1 + (1 − a)ν2, where ν1 ∈ P(Rd+s × A′), ν2 ∈ P(∞ × A′), and a ∈ [0, 1].
Letting t → ∞ in the above equation along an appropriate subsequence, it follows
that

∫
L̂fdν1 = 0 when a > 0. When a = 0, this may be imposed without any loss

of generality. By Lemma 3.1, it then follows that ν1 ∈ G. For the second claim, one
similarly has

f(zε(t), xε(t))

t
− f(zε(0), xε(0))

t

=
1

t

∫ t

0

L̂f(zε(s), xε(s), u(s))ds

=
1

t

∫ t

0

〈∇f(zε(s), xε(s)), (γ(zε(s))dB(s),
1√
ε
σ(zε(s), xε(s))dW (s))〉

=

∫
L̂fdνt +

M(t)

t
,
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where M(t) is a continuous square-integrable martingale with quadratic variation
〈M〉(t) which is O(t). Since M(t)/〈M〉(t) → 0 a.s. on {〈M〉(t) ↑ ∞} (see, e.g., [28]),
it follows that

M(t)

t
=

M(t)

〈M〉(t)
〈M〉(t)

t
→ 0

a.s., whence the second claim follows by arguments similar to those used for proving
the first.

The following consequence thereof follows easily.
Theorem 3.1. There exists a stable optimal Markov control v∗ε such that if Φ∗

ε

is the corresponding ergodic occupation measure, then under any admissible u(·),

lim inf
t↑∞

1

t

∫ t

0

k(zε(s), xε(s), u(s))ds ≥
∫

k′dΦ∗
ε a.s.,

lim inf
t↑∞

1

t

∫ t

0

E[k(zε(s), xε(s), u(s))]ds ≥
∫

k′dΦ∗
ε .

Proof. From Lemma 3.2 and (4), it follows that the left-hand side in both cases is
(“a.s.” in the former case) at least as much as infΦ∈G

∫
k′dΦ. By (4), it also follows

that the set {Φ ∈ G :
∫
k′dΦ ≤ c} is compact for any c > 0. Since Φ →

∫
k′dΦ is

lower semicontinuous on G, it follows that the infimum is attained at some Φ∗
ε ∈ G.

The claim follows.
Remark. One can in fact show that the v∗ε can be taken to be precise, i.e., v∗ε (z, x)

is a Dirac measure ∀ z, x. This is because the extreme points of G correspond to
precise controls, as proved in [13].

4. The averaged system. Setting τ = t
ε , x̄(τ) = xε(ετ), z̄(τ) = zε(ετ),

ū(τ) = u(ετ), W̄ (τ) = 1√
ε
W (ετ), (2) becomes

dx̄(τ) = m(z̄(τ), x̄(τ), ū(τ))dτ + σ(z̄(τ), x̄(τ))dW̄ (τ),

which does not depend on ε explicitly. To this we associate the associated system

(11) dx̄(τ) = m(z̄, x̄(τ), ū(τ))dτ + σ(z̄, x̄(τ))dW̄ (τ),

where z̄ is fixed, W̄ (·) is a standard Brownian motion independent of x̄(0), and ad-
missibility of ū(·) is defined by the following: For t > s, W̄ (t) − W̄ (s) is independent

of Ξs
def
= the completion of ∩s′>sσ(x̄(τ), ū(τ), W̄ (τ), τ ≤ s′).

Remark. Equation (11) above is the relaxed control form of the associated system.
One also has the prerelaxation form

(12) dx̄(τ) = m′(z̄, x̄(τ), ū′(τ))dτ + σ(z̄, x̄(τ))dW̄ (τ),

which we shall have occasion to use later.

Let Dz
def
= {μ ∈ P(Rs × A′) :

∫
Lf(z, x, u)μ(dxdu) = 0 ∀ f ∈ C2

0 (Rs)}, where
L is as in (5). The next lemma in particular characterizes this as the set of ergodic
occupation measures for the associated system.

Lemma 4.1. Dz = the set of μ(dxdu) of the form μ(dxdu) = η(dx)v(du|x), where
η is the unique stationary distribution for the time-homogeneous Markov diffusion

X(·) given by (11) when u(·) = v(X(·)) def
= v(du|X(·)). The set valued map z → Dz
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is convex compact valued and continuous. Furthermore, for compact B ⊂ Rd, ∪z∈BDz

is compact.
Proof. The first claim follows exactly as in Lemma 3.1. That Dz is convex

closed for each z is easily verified from the definition. Thus we need to verify its
relative compactness in P(Rs × A′). Since A′ is compact, it suffices to verify the
relative compactness of the corresponding marginals η(dx) in P(Rs). Under our
assumption (6), this is proved in [11]. (The key step is to prove that

∫
gdη is uniformly

bounded over all such η, from which the claim is immediate in view of the condition
lim‖(z,x)‖→∞ g(z, x) = ∞, and the Chebyshev inequality.) Next, let zn → z∞ and
μn ∈ Dzn ∀ n, 1 ≤ n < ∞. Then

(i) {μn} are tight by arguments similar to those used in [11] (see above), and
(ii) any limit point μ thereof is in Dz∞—this is easily verified from the definition

of Dz. Thus z → Dz is upper semicontinuous.
Now fix a μ(dxdu) = ηz∞(dx)v(du|x) ∈ Dz∞ . Under z = zn, the stationary

Markov control v(du|x) leads to a unique stationary distribution ηzn(dx), 1 ≤ n ≤
∞. By our nondegeneracy assumption, the transition probabilities for t > 0 of the
corresponding time-homogeneous Markov processes have densities w.r.t. the Lebesgue
measure. Therefore so do the corresponding invariant probability measures {ηzn}.
Let {χzn(·)} denote these densities. We claim that they are pointwise bounded and
equicontinuous. If pointwise boundedness does not hold, χzn(x∗) ↑ ∞ for some x∗.
But {χzn} satisfy (Lzn

v )∗χzn ≡ 0, where

Lz
v

def
=

1

2
tr

(
σ(z, x)σT (z, x)∇2

x

)
+ 〈m(z, x, v(x)),∇x〉,

and (Lz
v)

∗ denotes its formal adjoint given by

(Lz
v)

∗f
def
=

1

2

∑
i,j,k

∂2

∂xi∂xj
(σik(z, x)σjk(z, x)f(x)) −

∑
i

∂

∂xi
(mi(z, x, v(x))f) .

By Harnack’s inequality (see Theorem 8.20 on page 199 of [19]), the ratio of the max-
imum to the minimum of χzn(·) on any compact set must remain bounded uniformly
in n. Thus χzn(·) ↑ ∞ uniformly on compacts, which contradicts the fact that they
are probability densities. Hence they are pointwise bounded. By [19, Theorem 8.24,
p. 202], they satisfy a uniform Hölder continuity condition on compacts, which gives
equicontinuity. In particular, χzn(·) are uniformly continuous on compacts. The
equation

(13)

∫
Lzn
v f(x)ηzn(dx) = 0 ∀ f ∈ C2

0 (Rs)

characterizes ηzn(dx) and therefore χzn(·). Let η∗ denote a limit point of ηzn(dx) in
P(Rs) as n ↑ ∞. By the Arzela–Ascoli theorem, we may drop to a subsequence if
necessary and suppose that χzn(·) → χ∗(·) in C(Rs). Then for compactly supported
f ∈ C(Rs), ∫

f(x)χzn(x)dx →
∫

f(x)χ∗(x)dx,

implying that η∗(dx) = χ∗(x)dx. By Scheffe’s theorem (see Borkar [10, p. 26]), we
have ηzn(dx) → η∗ in total variation. Hence we can let n → ∞ in (13) to obtain∫

Lz∞
v fdη∗ = 0 ∀ f ∈ C2

0 (Rs),
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implying η∗(dx) = ηz∞(dx). Thus the lower semicontinuity of z → Dz follows. To-
gether, upper and lower semicontinuity imply continuity of this set-valued map. Com-
pactness of ∪z∈BDz is proved by an argument similar to the one used for proving upper
semicontinuity.

In particular, it follows that {(z, μ) : z ∈ Rs, μ ∈ Dz} is closed and {(z, μ) : z ∈
B,μ ∈ Dz} is compact for compact B ⊂ Rs. Define

h̄(z, μ)
def
=

∫
h′(z, x, u)μ(dxdu),

k̄(z, μ)
def
=

∫
k′(z, x, u)μ(dxdu).

The averaged system is defined by

dz(t) = h̄(z(t), μ(t))dt + γ(z(t))dB′(t),(14)

μ(t) ∈ Dz(t) ∀ t.(15)

Here z(0) = z0 (the same as in (1)), B′(·) is a standard Brownian motion in Rd,
and μ(·) satisfies (15) and the following nonanticipativity condition: For t ≥ s ≥ 0,
B′(t) − B′(s) is independent of the completion of ∩s′>sσ(z(y), B′(y), μ(y), y ≤ s′).
We may view μ(·) as the “effective control process” for the averaged system. The
objective for the averaged control problem is to minimize

lim sup
t↑∞

1

t
E

[∫ t

0

k̄(z(s), μ(s))

]
ds

over all admissible μ(·). By analogy with section 2, we call μ(·) a Markov control

if μ(t) = q(z(t))
def
= q(dxdu|z(t)) ∀t, identified with the measurable map q. Call

it a stable Markov control if, in addition, the resulting time-homogeneous Markov
process z(·) is positive recurrent. In the latter case, z(·) will have a unique invariant
probability distribution ϕq(dz) and the corresponding ergodic occupation measure

Γ(dzdxdu)
def
= ϕq(dz)q(dxdu|z). Let Q denote the set of such Γ. Then as before, one

has the following characterization: Define L̃ : C2
0 (Rd) → Cb(Rd × P(Rs ×A′)) by

L̃f(z, μ) =
1

2
tr

(
γ(z)γT (z)∇2f(z)

)
+ 〈∇f(z), h̄(z, μ)〉.

Lemma 4.2.

Q =

{
ξ = q(dxdu|z)φ(dz) ∈ P(Rd ×Rs ×A′) : q(·|z) ∈ Dz ∀z,

∫
L̃f(z, q(dxdu|z))φ(dz) = 0 ∀ f ∈ C2

0 (Rd)

}
.

This again follows exactly as in Lemma 3.1. We have then the following counter-
part of Theorem 3.1, proved analogously.

Theorem 4.1. There exists a stable optimal Markov control q∗ for the aver-
aged system such that if Γ∗(dzdxdu) = q∗(dxdu|z)ϕ∗(dz) is the corresponding ergodic
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occupation measure, then for any admissible μ(·) as above,

lim inf
t↑∞

1

t

∫ t

0

k̄(z(s), μ(s))ds ≥
∫

k′dΓ∗ a.s.,

lim inf
t↑∞

1

t

∫ t

0

E[k̄(z(s), μ(s))]ds ≥
∫

k′dΓ∗.

Let Qopt denote the set of optimal ergodic occupation measures, i.e.,

(16) Argmin

{∫
k′dξ : ξ ∈ Q

}
.

Also, write

(17) q∗(dxdu|z) = v∗(du|z, x)η∗(dx|z).

5. A lower bound. We now consider the ε ↓ 0 limit. Let Φ∗
ε be as in Theo-

rem 3.1 above. Then by (†), it follows that sup
∫
kdΦ∗

ε < ∞. In turn, by (4) and the
Chebyshev inequality, it then follows that {Φ∗

ε , ε ∈ (0, 1)} is tight. Let Φ∗
0 be a limit

point thereof in P(Rd+s ×A′).
Theorem 5.1. Φ∗

0 ∈ Q.
Proof. Disintegrate Φ∗

0 as

Φ∗
0(dzdxdu) = ϕ(dz)μ(dxdu|z)

= ϕ(dz)η(dx|z)v(du|z, x).

(In particular, μ(dxdu|z) = η(dx|z)v(du|z, x).) Let f1 ∈ C2
0 (Rd), f2 ∈ C2

0 (Rs). Let
ε ↓ 0 in the equation ε

∫
L̂(f1f2)dΦ

∗
ε = 0 to obtain

(18)

∫
f1(z)

∫
Lf2(z, x, u)μ(dxdu|z)ϕ(dz) = 0.

Then as (18) holds ∀ f1 ∈ C2
0 (Rd), we conclude that for ϕ-a.s. z,∫
Lf2(z, x, u)dμ(dxdu|z) = 0,

implying that μ(dxdu|z) ∈ Dz. The qualification “ϕ-a.s.” may be dropped by choos-
ing a suitable version. Now for h ∈ C2

0 (Rd) (i.e., h is a function of z ∈ Rd alone), let
ε ↓ 0 in

∫
L̂hdΦ∗

ε = 0 to obtain

(19)

∫
L̂hdΦ∗

0 =

∫
L̃h(z, μ(·|z))ϕ(dz) = 0.

By Lemma 4.2, (19) implies that ϕ is the unique stationary distribution under μ for
the averaged system. It follows that Φ∗

0 ∈ Q.
Corollary 5.1. lim infε↓0

∫
k′dΦ∗

ε ≥
∫
k̄dΓ∗.

This shows that the optimal ergodic cost for the averaged problem provides an
asymptotic lower bound (as ε ↓ 0) for the optimal ergodic cost of the original problem.
To show that it is in fact a valid approximation, we must replace the “lim inf” by “lim”
in the above and replace the inequality by an equality. We shall do so under additional
assumptions in the following sections.
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6. Main results—the affine case. Assume the following:
(*) A′ is a compact subset of Rm for some m ≥ 1, and for each z, x, h′(z, x, ·),

m′(z, x, ·) are componentwise affine, and k′(z, x, ·) is strictly convex.
(**) ||h′(z, x, u)|| = o(k′(z, x, u)) as ||(z, x)|| ↑ ∞ and

sup
u

|k′(z, x, u)|1+a ≤ Kg(z, x)

for some K, a > 0, and g as in (6).
The next lemma, which uses only (*) and (**), shows in particular that v∗ in (17) is
unique. Thus we can state our third assumption as follows:

(***) v∗(z, x)
def
= v∗(du|z, x) in (17) is a stable Markov control for (1), (2) for

sufficiently small ε > 0 (say, ε < ε0) and the corresponding stationary distri-
butions, denoted ζε(dzdx), 0 < ε < ε0, are tight.

A stochastic Liapunov condition along the lines of (6) can be given to ensure this.
Lemma 6.1. v∗(du|z, x) in (17) is unique (that is, Qopt is a singleton: Qopt =

{Γ∗}) and continuous in z, x.
Proof. By [9, Theorem 3.3, p. 163], a necessary and sufficient condition for the

optimality of q∗ is that q∗(z) minimize the function

(20) μ → k̄(z, μ) + 〈∇Ψ(z), h̄(z, μ)〉

over Dz for a.e. z, where Ψ ∈ C2(Rd) is the value function for the ergodic control
problem for the averaged system.1 We may drop the qualification “for a.e. z” by
taking an appropriate version. Now for fixed z, consider the ergodic control problem
for the associated system (12) with cost

lim sup
t↑∞

1

t

∫ t

0

E[�z(x̄(s), a(t))]ds,

where �z ∈ C(Rs ×A′) is defined by

�z(x, a)
def
= k′(z, x, a) + 〈∇Ψ(z), h′(z, x, a)〉.

Since Dz is precisely the set of ergodic occupation measures for the associated system,
q∗ is the optimal ergodic occupation measure for the above problem. By (**), [9,
Theorem 3.3, p. 163] can be applied again to this new control problem in order to
conclude as above that v∗(du|z, x) minimizes

κ →
∫

(�z(x, ·) + 〈∇Ψ̃z(x),m′(z, x, ·)〉)dκ,

where Ψ̃z ∈ C2(Rs) is the value function for this new ergodic control problem. (Note
that for each z, the cost function �z satisfies a condition akin to (4) because of the first
half of (**), and thus the above remarks apply.) By [9, Theorem 2.1, p. 183], it follows

1[9] proves the existence of a C2 value function and the associated “verification theorem” for non-
degenerate diffusions with bounded coefficients and the so-called “near-monotone” cost for the case
when the control space is state-independent. The latter would correspond to Dz being independent
of z in the present setup. Condition (4) is a special case of near-monotonicity. The modifications
required to handle the more general Lipschitz coefficients and state-dependent control space needed
here are minor in view of the continuity of the set-valued map z → Dz already established. The
details, though routine, would be a significant digression and are therefore omitted.
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that the map (z, x) → ∇Ψ̃z(x) is continuous. By (*), the above minimum is attained
at a unique point. It is easy to see then that this point will depend continuously on
z, x. That is, (z, x) → v∗(z, x) is continuous.

Remark. Note that v∗(z, x) will in fact be Dirac ∀ z, x. Also note that the
assumption of affine dependence of k′,m′ on u is crucial in proving the strict convexity
claims above: The sum of a strictly convex function and an affine function is strictly
convex. Weakening it to convexity would not do because we do not have control on
the signs of the components of ∇Ψ,∇Ψ̃.

Recall the measures q∗,Γ∗ from Theorem 4.1.
Corollary 6.1. q∗, Γ∗ are unique.
Proof. Recall that q∗(dxdu|z) = η∗(dx|z)v∗(du|z, x), where η∗(dx|z) is the unique

stationary distribution for the associated system under v∗(du|z, x). Uniqueness of q∗

follows. In turn, Γ∗(dzdxdu) = q∗(dxdu|z)ϕ∗(dz), where ϕ∗ is the unique stationary
distribution of the averaged system under q∗(dxdu|z). Thus Γ∗ is unique.

Let

Φ̃ε(dzdxdu)
def
= ζε(dzdx)v∗(du|z, x), ε ∈ (0, ε0),

and let v∗ be as in (17).
Theorem 6.1. limε↓0 Φ̃ε = Γ∗, the convergence being in P(Rd ×Rs ×A′). Also

(21) lim
ε↓0

∫
k′dΦ̃ε =

∫
k′dΓ∗

and

(22) lim
ε↓0

∫
k′dΦ∗

ε =

∫
k′dΓ∗.

Proof. In view of Theorem 5.1, (21) implies (22). Below, we will prove the
convergence of Φ̃ε to Γ∗ and then show the validity of (21).

Let ζε(dzdx) → ζ̂(dzdx) = ϕ̂(dz)η̂(dx|z) along a subsequence as ε ↓ 0. In view of
the continuity of v∗(du|·, ·), we may pass to the limit along this subsequence in

ε

∫
L̂f(z, x, u)v∗(du|z, x)ζε(dzdx) = 0, f ∈ C2

0 (Rd+s)

to obtain ∫
L̂f(z, x, u)v∗(du|z, x)ζ̂(dzdx) = 0, f ∈ C2

0 (Rd+s).

Argue as in Theorem 5.1 to conclude that η̂(dx|z) is in fact the unique stationary dis-
tribution for the associated system controlled by v∗(du|z, x) (i.e., η̂(dx|z) = η∗(dx|z))
for ϕ̂-a.s. z. The latter qualification may be dropped by choosing an appropriate
version. Recall that q∗(dxdu|z) = η∗(dx|z)v∗(du|z, x) ∀ z. Let ε ↓ 0 in∫

L̂f(z, x, u)v∗(du|z, x)ζε(dzdx) = 0

for f ∈ C2
0 (Rd) (i.e., f is a C2 function of the z variable alone). An argument similar

to the above then yields∫
L̃f(z, q∗(·|z))ϕ̂(dz) = 0, f ∈ C2

0 (Rd).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SINGULAR ERGODIC CONTROL 1573

Thus ϕ̂(dz) is the unique stationary distribution for the averaged system controlled
by the stable Markov control q∗, i.e., ϕ̂ = ϕ∗. Then

v∗(du|z, x)ζ̂(dzdx) = Γ∗(dzdxdu).

That is, Φ̃ε → Γ∗. By (6) and Theorem 8.3 of [11],
∫
gdΦ is uniformly bounded as

Φ varies over Q. By the second half of (**) and [10, Theorem 1.3.10, p. 10], it then
follows that k′ is uniformly integrable over Q. Hence (21) holds.

7. Main results—the general case. Now we drop (*). Define v∗δ (du|z, x), δ >
0 small (say, δ ∈ (0, δ0]), by∫

fv∗δ (du|z, x)
def
=

∫ ∫
fv∗(du|z′, x′)πδ(z − z′, x− x′)dz′dx′, f ∈ C(A′),

where {πδ : Rd+s → R, δ ∈ (0, δ0]} are smooth approximations to the Dirac measure,
i.e., compactly supported C∞ probability density functions such that πδ(z, x)dzdx →
δ(0,0) in P(Rd+s) as δ ↓ 0. In the following, v∗0(du|z, x)

def
= v∗(du|z, x) and all quanti-

ties with subscript δ = 0 correspond to it. Replace (***) by (A1), (A2) below.

(A1) v∗δ (z, x)
def
= v∗δ (du|z, x) is a stable Markov control for (1), (2) for δ ∈

[0, δ0], ε ∈ (0, ε0). Furthermore, there exists a ĝ ∈ C(Rd+s) satisfying

(23) sup
u

|k′(z, x, u)|1+a ≤ Kĝ(z, x)

such that the stationary distributions of (1), (2) corresponding to {v∗δ}, denoted by
ζεδ(dzdx), 0 < ε < ε0, satisfy

(24) sup
0<ε<ε0

∫
ĝ(z, x)ζεδ(dzdx) < ∞

for each δ ∈ [0, δ0].
Once again in view of our nondegeneracy assumption, the transition probabilities

for t > 0 of the time-homogeneous Markov process described by (11) under Markov
control v∗δ , δ ∈ [0, δ0], have densities w.r.t. the Lebesgue measure. Therefore so do
the corresponding invariant probability measures η̂δ(dx|z). Let χδ(x|z) denote this

density. Let μ̄δ(dxdu|z)
def
= η̂δ(dx|z)v∗δ (du|z, x) and ϕ̄δ be the unique stationary

distribution for (14) under the Markov control μ̄δ. Let ζ0
δ (dzdx)

def
= η̂δ(dx|z)ϕ̄δ(dz)

and Φ0
δ(dzdxdu)

def
= ζ0

δ (dzdx)v∗δ (du|z, x) for δ as above. Note that Φ0
0 ∈ Qopt. We

also assume the following.
(A2) μ̄δ(dxdu|z) is a stable Markov control for (14) for δ ∈ [0, δ0], and for ĝ as

above,

(25) sup
δ∈[0,δ0]

∫
ĝ(z, x)ζ0

δ (dzdx) < ∞.

Lemma 7.1. As (δn, zn) → (δ, z) in [0, δ∗] ×Rd, η̂δn(dx|zn) → η̂δ(dx|z) in total
variation.

Proof. This follows by an argument based on the Harnack inequality, as in the
proof of Lemma 4.1, using the fact that χδ(·|z) will be equicontinuous and pointwise
bounded.
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Lemma 7.2.

∫
k′dΦ0

δ →
∫
k′dΦ0

0 as δ ↓ 0.
Proof. By (4), (23), (25), and the Chebyshev inequality, ζ0

δ , δ ∈ [0, δ0], and
therefore ϕ̄δ, δ ∈ [0, δ0], are tight. Let ϕ̄ be any limit point of ϕ̄δ as δ ↓ 0. Since ϕ̄δ is
characterized by

(26)

∫
L̃f(z, μ̄δ(·|z))ϕ̄δ(dz) = 0, f ∈ C2(Rs),

an argument based on the Harnack inequality analogous to that of Lemma 4.1 implies
that this convergence is in fact in total variation. Now for f ∈ Cb(Rd ×Rs ×A′),∫

f(z, x, u)v∗δ (du|z, x) →
∫

f(z, x, u)v∗0(du|z, x)

a.e. along a subsequence δ = δm ↓ 0. (This convergence is in L1
loc(Rd+s) by [27,

Theorem 2.16, p. 64] and therefore a.e. along a subsequence.) Hence by Lemma 7.1,
along this subsequence,∫ ∫

f(z, x, u)v∗δ (du|z, x)η̂δ(dx|z) →
∫ ∫

f(z, x, u)v∗0(du|z, x)η̂0(dx|z)

a.e., which in turn leads to∫ ∫ ∫
f(z, x, u)v∗δ (du|z, x)η̂δ(dx|z)ϕ̄δ(dz)

→
∫ ∫ ∫

f(z, x, u)v∗0(du|z, x)η̂0(dx|z)ϕ̄(dz).

In particular, letting δ ↓ 0 along an appropriate subsequence in (26), we have

(27)

∫
L̃f(z, μ̄0(·|z))ϕ̄(dz) = 0, f ∈ C2(Rs),

i.e., ϕ̄ = ϕ̄0. Thus Φ0
δ = μδ(dxdu|z)ϕ̄δ(dz) → Φ0

0 = μ0(dxdu|z)ϕ̄0(dz) as δ ↓ 0.
Equations (23) and (25) and [10, Theorem 1.3.4, p. 10] ensure uniform integrability
of k′ under these, which in turn implies the claim.

Going back to (1), (2), let u(·) = v∗δ (z
ε(·), xε(·)) and let Φε

δ ∈ P(Rd × Rs × A′)
be the corresponding ergodic occupation measure for δ > 0.

Lemma 7.3.

∫
k′dΦε

δ →
∫
k′dΦ0

δ as ε ↓ 0.
The proof follows along similar lines, using (24) in place of (25), and is omitted.
Theorem 7.1. limε↓0

∫
k′dΦ∗

ε =
∫
k′dΦ∗

0.
Proof. Fix α > 0 and take δ > 0 small enough such that∣∣∣∣∫ k′dΦ0

δ −
∫

k′dΦ0
0

∣∣∣∣ < α

2
.

Then pick ε > 0 small enough so that∣∣∣∣∫ k′dΦε
δ −

∫
k′dΦ0

δ

∣∣∣∣ < α

2
.

Thus

lim sup
ε↓0

∫
k′dΦ∗

ε ≤ lim sup
ε↓0

∫
k′dΦε

δ

≤
∫

k′dΦ0
0 + α.
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Since α > 0 is arbitrary, the claim follows in view of Corollary 5.1.
We conclude this section by pointing out a routine extension of the condition (4):

It can be replaced by the weaker requirement

(28) lim
||z||→∞

inf
x,u

k(z, x, u) > β∗ def
= sup

0≤ε<ε0

βε

for some ε0 > 0, where βε, ε > 0, is the optimal cost for the ergodic control problem
(ε = 0 corresponds to the same for the averaged problem). This follows exactly
along the lines of [9, Chapter VI]. The important thing to note is that the above
condition suffices to ensure tightness of Q. Since in particular this presupposes that
βε are uniformly bounded for ε ∈ (0, ε0), we may replace the “sup0≤ε<ε0 β

ε” above by
“sup0<ε<ε0 β

ε” in view of Theorem 5.1.

8. The stable case. We briefly indicate the corresponding developments when
a blanket stability condition is available. We do not assume (4) or its generalization
(28), but require that k′ be bounded from below. Suppose for ε ∈ (0, ε0) there exist

Δε, aε > 0, B ⊂ Rd+s bounded and V
(i)
ε ∈ C2(Rd+s), i = 1, 2, such that V

(i)
ε ≥

0, lim||(z,x)||→∞ V
(i)
ε (z, x) = ∞ for i = 1, 2, and,

L̂V (1)
ε (z, x, u) ≤ −Δε,(29)

L̂V (2)
ε (z, x, u) ≤ −aεV

(1)
ε (z, x)(30)

for (z, x) /∈ B. Let τ
def
= inf{t ≥ 0 : (zε(t), xε(t)) ∈ B} and τ̄N

def
= inf{t ≥ 0 :

||(zε(t), xε(t))|| > N}, N ≥ 1. Then τ̄N ↑ ∞ a.s., and for (z0, x0) /∈ B, the Ito–Dynkin
formula and (29) lead to

E[V (1)
ε (zε(τ ∧ τ̄N ), xε(τ ∧ τ̄N ))] − V (1)

ε (z0, x0) ≤ −ΔεE[τ ∧ τ̄N ].

Letting N ↑ ∞ and rearranging terms, we have

E[τ ] ≤ V
(1)
ε (z0, x0)

Δε
.

Similarly from (30) we get

E

[∫ τ∧τ̄N

0

V (1)
ε (zε(t), xε(t))dt

]
≤ V

(2)
ε (z0, x0)

aε
,

and therefore

1

2
E[(τ ∧ τ̄N )2]

= E

[∫ τ∧τ̄N

0

(τ ∧ τ̄N − t)dt

]

= E

[∫ τ∧τ̄N

0

E[τ ∧ τ̄N − t|Ft]dt

]

≤ 1

Δε
E

[∫ τ∧τ̄N

0

V (1)
ε (zε(t), xε(t))dt

]

≤ 1

aεΔε
V (2)(z0, x0).
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Letting N ↑ ∞,

E[τ2] ≤ 2

aεΔε
V (2)(z0, x0).

In view of this, one can argue as in [9, Chapter VI] to conclude Theorem 3.1. The
key step is that the above inequality ensures that {νt} remain a.s. tight (so do {ν̄t}),
and thus Lemma 3.2 can be strengthened to the claim

νt → G a.s., ν̄t → G.

Furthermore, G can be shown to be compact. This allows one to conclude Theorem 3.1
without the need to use (4). Conditions similar to (29), (30) imposed on (14) ensure
Theorem 4.1. Next, for obtaining the counterparts of the results of section 6 above
for the affine case, assume the additional conditions stipulated in [9, section VI.4]
to ensure the existence of C2 value functions for the two ergodic control problems
featured in the proof of Lemma 6.1. The rest remains as before. We omit the details,
as they are straightforward adaptations of the foregoing.

9. Some future directions. We conclude by pointing out some further possi-
bilities. We have not allowed σ to depend on the control variable u, or γ to depend
on either u or x. This is because such a dependence would lead to a diffusion ma-
trix which is measurable but not necessarily continuous under a Markov control (for
the averaged system in the latter case). Even in the nondegenerate case, only the
existence of weak solutions is known for this level of generality, not their uniqueness
[24], [29]. It may be possible to work with a “set of all weak solutions” in place
of the unique weak solution and extend the foregoing. In the degenerate case, even
with the existing form of (1), (2), there are problems. The results of [8] extend the
characterization of ergodic occupation measures from Lemma 3.1, which allows us to
prove Theorem 5.1 under suitable hypotheses. But Theorem 6.1 is a more difficult
proposition due to a lack of ergodicity and other problems.
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1. Introduction. Given T > 0 and a bounded domain Ω of R
n (n ∈ N) with C2

boundary Γ, put Q = (0, T )×Ω and Σ = (0, T )×Γ. Let ω be a proper open nonempty
subset of Ω and denote by χω the characteristic function of ω. For any set M ⊂ R

n and
δ > 0, we define Oδ(M) =

{
x ∈ R

n
∣∣ |x− x′| < δ for some x′ ∈ M

}
. Also, we denote∑n

i,j=1 and
∑n

i=1 simply by
∑

i,j and
∑

i , respectively. For simplicity, we will use the
notation yi = yxi

, where xi is the ith coordinate of a generic point x = (x1, . . . , xn)
in R

n. In a similar manner, we use the notation wi, vi, etc. for the partial derivatives
of w and v with respect to xi. On the other hand, for any domain M in R

n (even
without any regularity condition on its boundary ∂M), we refer to [1, Chap. 3] for the
definition and basic properties of the Sobolev spaces H1

0 (M), H−1(M), etc. (Hence,
H1

0 (Q) and H−1(Q) are particularly well defined in [1, Chap. 3].)
Let aij(·) ∈ C1(Ω) be fixed, satisfying

aij(x) = aji(x) ∀ x ∈ Ω, i, j = 1, 2, . . . , n,(1.1)

and for some constant β > 0,∑
i,j

aij(x)ξiξj ≥ β|ξ|2 ∀ (x, ξ) ∈ Ω × R
n,(1.2)

where ξ = (ξ1, . . . , ξn). In what follows, put A
�
= (aij)n×n. We define a differential
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operator P by

Py
�
= ytt −

∑
i,j

(
aij(x)yi

)
j
.(1.3)

Next, we fix a function f(·) ∈ C1(R), satisfying the following condition:

lim
s→∞

f(s)

s ln1/2 |s|
= 0.(1.4)

Note that f(·) in the above can have a superlinear growth. We consider the following
controlled semilinear hyperbolic equation with an internal local controller acting on
ω: ⎧⎨⎩

Py = f(y) + χω(x)γ(t, x) in Q,
y = 0 on Σ,
y(0) = y0, yt(0) = y1 in Ω.

(1.5)

In (1.5), (y(t, ·), yt(t, ·)) is the state, and γ(t, ·) is the control which acts on the system
through the subset ω of Ω. In what follows, we choose the state space and the control
space of system (1.5) to be H1

0 (Ω)×L2(Ω) and L2((0, T )×ω), respectively. We point
out that some other choices of spaces are possible. But our choice is natural in the
context of the hyperbolic equations. The space H1

0 (Ω)×L2(Ω) is often referred to as
the finite energy space. For any (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and γ ∈ L2((0, T ) × Ω),
using the method in [4] one can prove the global existence of a unique weak solution
y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) for (1.5) under assumption (1.1)–(1.2), and
under (1.4) with f(·) ∈ C1(R).

The main purpose of this paper is to study the global exact controllability of (1.5),
by which we mean the following: For any given (y0, y1), (z0, z1) ∈ H1

0 (Ω) × L2(Ω),
find a control γ ∈ L2((0, T )×ω) such that the corresponding weak solution y of (1.5)
satisfies

y(T ) = z0, yt(T ) = z1 in Ω.(1.6)

Due to the finite propagation speed of solutions to hyperbolic equations, the “waiting
time” T has to be large enough. The estimate of T is also a part of the problem.

The problem of exact controllability for linear hyperbolic equations (for example,
f(·) is a linear function, or simply, f(·) ≡ 0 in (1.5)) has been studied by many
authors. We mention here some standard references, for example, [2, 29, 33].

The study of exact controllability problems for nonlinear hyperbolic equations
began in the 1960s. Early works, including [5, 6, 10] and so on, were mainly devoted to
the local controllability problem, by which we mean that the controllability property
was proved under some smallness assumptions on the initial data and/or the final
target. In [43], further local results were proved for the exact controllability of some
semilinear wave equations in the form of (1.5) with A = I, the identity matrix, and
under a very general assumption on the nonlinearity f(·) (which allows f(·) to be
local Lipschitz continuous). We refer to [27] and the references cited therein for some
recent local controllability results of certain quasi-linear hyperbolic systems.

A global boundary exact controllability result for semilinear wave equations, cor-
responding to (1.5), in the state spaces Hr

0 (Ω) ×Hr−1(Ω) (r ∈ (0, 1/2) ∪ (1/2, 1)) or

H
1/2
00 (Ω) × (H

1/2
00 (Ω))′, with Dirichlet boundary control, was given in [44] under the
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assumption that A = I and that the nonlinearity f(·) is globally Lipschitz continuous,
i.e., f ′(·) ∈ L∞(R). In [23], this controllability result was improved to include the
critical points r = 0 and 1, and also extended to the abstract setting. Recent progress
in this respect can be found in [36] and [37]. In the case that f(·) is sublinear, we
refer to [34] for the global exact controllability of (1.5).

As for the case that f(·) grows superlinearly at infinity, very little is known for the
global exact controllability of the semilinear hyperbolic equation (1.5) except for the
one space dimension, i.e., n = 1. We refer to [3, 9, 30, 45] for related one-dimensional
results. To our best knowledge, in the superlinear setting, [26] is the only paper
that discussed the global exact controllability for multidimensional system (1.5) (we
refer to [42] for an updated survey on this problem). By assuming that A = I and
ω = Oδ(Γ)∩Ω for some δ > 0, [26] shows that system (1.5) with f(·) satisfying (1.4) is
exactly controllable. In this paper, based on a method which is different from [26], we
shall consider a more general case by using a smaller controller ω = Oδ(Γ+) ∩ Ω (see
(2.5) for Γ+) and allowing the coefficients matrix A to be nonconstant one. We refer
the reader to Condition 2.1 and the subsequent remarks, and especially Proposition
2.1, for assumptions on matrix A.

In order to obtain the exact controllability of (1.5), one needs to consider, by the
well-known duality argument (see [29], [28, Lemma 2.4, p. 282], and [39, Theorem 3.2,
p. 19], for example), the following dual system of the linearized system of (1.5):⎧⎨⎩

Pw = qw in Q,
w = 0 on Σ,
(w(0), wt(0)) = (w0, w1) ∈ L2(Ω) ×H−1(Ω),

(1.7)

with a potential q in some space (larger than L∞(Q), in general). It follows from the
standard perturbation theorem in the semigroup theory [31] that for a suitable q, say
q ∈ L∞(0, T ;Ln(Ω)), (1.7) is well-posed in L2(Ω) ×H−1(Ω).

Similar to [45] and [26], the above controllability problem may be reduced to an
explicit observability estimate for system (1.7). Namely, we expect to find a constant
C(q) > 0 such that all weak solutions w of (1.7) satisfy

|(w0, w1)|L2(Ω)×H−1(Ω) ≤ C(q)|w|L2((0,T )×ω) ∀ (w0, w1) ∈ L2(Ω) ×H−1(Ω).(1.8)

The explicit estimate of C(q) in terms of a suitable norm of the potential q is an
indispensable part of the problem, which is actually the key novelty in this paper.
Similar problems for A = I and bounded potentials q were considered in [36, 37].
However, in the present case we cannot assume that q in (1.7) is bounded since we
do not assume that the nonlinearity f(·) in (1.5) is globally Lipschitz continuous. To
overcome this difficulty, we need, among other things, to combine some ideas found
in [18] and [37].

It is well known that the Carleman estimate is one of the major tools used in the
study of unique continuation, observability, and controllability problems for various
kinds of partial differential equations (PDEs). However, the “concrete” Carleman
estimate for these problems is actually quite different! Indeed, in principle, among
these problems unique continuation is the “easiest,” and one may develop an abstract
theory for the unique continuation property (usually, of local nature) for very general
partial differential operators, based on a pseudoconvexity condition, the Carleman es-
timate, and by means of the microlocal analysis technique [16, 17, 35]. Observability
is, however, a quantitative version of the global unique continuation, which is much
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more difficult to establish than the classical (qualitative) unique continuation. For ex-
ample, the unique continuation for the parabolic equations was known for a very long
time, but the observability for the same equation was not established until the 1990s
by means of a new Carleman estimate [11, 14]. Also, for the hyperbolic equations,
the work of [20, 21] applied Carleman estimates for the proofs of the observability
results. On the other hand, there are many equations (say, the hyperbolic-parabolic
coupled systems in [32]), for which one can easily establish its unique continuation,
but its observability is completely unknown for multidimensions (the analysis for the
one-dimensional problem [41] is highly nontrivial, and some atypical phenomenon
occurs). Finally, as for controllability problems, as mentioned before the classical
duality argument reduces the problem to obtaining a suitable observability estimate.
However, for the global controllability problems for semilinear PDEs with superlinear
growing nonlinearity, the key point is the explicit estimate of the observability con-
stant by a suitable function of the norm of the potential. For this purpose, one has
to proceed more carefully than one would for the usual observability when using the
Carleman estimate. Note also that the approach developed in this article seems to be
virtually complete. Our key estimate on the observability constant C(q) is presented
in (2.12) of Theorem 2.3. As suggested by [8, Theorem 1.2], it may well be that (2.12)
is sharp (see also our Remark 2.1). In this respect, it is worth mentioning that one can
also adopt the method developed in [20, 21, 22] to establish an explicit observability
estimate for some special case of system (1.7) (i.e., A = aI with a suitable positive
function a), as done in [36]. However, it seems that the estimate obtained in this way
is far from sharp. Indeed, the estimate on the observability constant C(q) obtained
in [36] (for bounded potential q) reads as C exp(exp(exp(Cr0))) with r0 = |q|L∞(Q),
which is much weaker than that in (2.12). It would be quite interesting to check
whether the method in [20, 21, 22] can be adopted to derive the same estimate as
that of (2.12) in Theorem 2.3. But this remains to be done.

The rest of this paper is organized as follows. In section 2, we shall state the main
results. Some preliminary results are collected in section 3. In section 4, we derive an
estimate for second order differential operators with symmetric coefficients that is of
independent interest. This estimate will play a key role when we establish in section
5 a global Carleman estimate for the hyperbolic differential operators in H1

0 (Q). The
latter estimate, in turn, is one of the crucial preliminary results we derive in section
7, i.e., a similar global Carleman estimate for the hyperbolic differential operators
in a larger space L2(Q). Another crucial preliminary we study, in section 6, is an
auxiliary optimal control problem, where the key point is to obtain some regularity
of the optimal solution. In sections 8–9, we will prove our main results. Finally,
Appendices A, B, and C are devoted to proving some technical results that are used
throughout the paper.

2. Statement of the main results. To begin, we introduce the following con-
dition.

Condition 2.1. There exists a function d(·) ∈ C2(Ω) satisfying the following:
(i) For some constant μ0 > 0, it holds that

∑
i,j

⎧⎨⎩∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬⎭ ξiξj ≥ μ0

∑
i,j

aijξiξj

∀ (x, ξ1, . . . , ξn) ∈ Ω × R
n.

(2.1)
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(ii) There is no critical point of function d(·) in Ω, i.e.,

min
x∈Ω

|∇d(x)| > 0.(2.2)

Let us make some remarks on the above condition.
First, Condition 2.1 is really a restriction on the coefficient matrix A and the

domain Ω. Indeed, as we shall see later, Condition 2.1 at least leads to the exact
controllability of system (1.5) with f(·) ≡ 0 and ω = Oδ(Γ)

⋂
Ω for any given δ > 0

and sufficiently large “waiting time” T > 0, while it is shown in [2] that, in order
for the latter to hold, (T,Ω, ω) has to satisfy a geometric optics condition which is
characterized by the null bicharacteristic of operator P. But, for any T > 0, this
condition may fail to be true for some P (with special coefficients) and some (Ω, ω)
(see [2]). This condition is crucial in what follows, where we derive a Carleman
estimate for the hyperbolic operators (see (11.4)). Nevertheless, to the best of our
knowledge, there is no universal tractable Carleman estimates in the literature for
general hyperbolic operators. We shall give below some tractable examples. However,
a detailed analysis of Condition 2.1 is beyond the scope of this paper and will be
presented elsewhere.

Second, by (1.1)–(1.2), one can check that (2.1) is equivalent to the uniform
positivity of the following (symmetric) matrix:

A �
=

⎛⎝∑
i′,j′

(
aij

′
ai

′jdi′j′ +
(aij

′
ai

′j
j′ + ajj

′
ai

′i
j′ − aijj′a

i′j′)di′

2

)⎞⎠
1≤i,j≤n

≡ AHdA +
1

2

⎛⎝∑
i′,j′

(aij
′
ai

′j
j′ + ajj

′
ai

′i
j′ − aijj′a

i′j′)di′

⎞⎠
1≤i,j≤n

,

(2.3)

where Hd is the Hessian matrix of d(·). Hence, if A is a constant matrix, then
A = AHdA, and (2.1) is reduced to the (uniformly) strict convexity of d(x). A little
further, for any uniformly strict convex function d(·) ∈ C2(Ω), one can show that the
matrix AHdA is uniformly positive definite. Therefore, if

max
1≤i,j,k≤n

sup
x∈Ω

|aijk (x)| is small enough,(2.4)

one concludes that A is uniformly positive definite. Consequently, if in addition, d(·)
satisfies (2.2), then Condition 2.1 holds for d(·).

Third, the above remark, especially (2.4), does not mean that Condition 2.1 can
hold only for coefficient matrices A which are close to constant matrices. To illustrate
this, let us state the following proposition, whose proof is presented in Appendix A.

Proposition 2.1. Let n = 2, and let A = diag [a1, a2] with a1 ∈ C2(Ω) and
a2 ∈ C1(Ω) being uniformly positive functions. Assume further that

(i) a1(x1, x2) ≡ a1(x1), i.e., it is independent of x2;
(ii) a1

1a
2
1 ≥ 0 in Ω; and

(iii) there is at most one point x0
1 ∈ G

�
= {x1 ∈ R

∣∣(x1, x2) ∈ Ω for some x2 ∈ R}
so that a1

1(x
0
1) = 0. Moreover, if such an x0

1 exists, it satisfies a1
11(x

0
1) < 0. Then

Condition 2.1 holds.
We emphasize that in the above, the derivatives a1

1(·), a2
1(·), and a2

2(·) are not
necessarily small. Therefore, the matrix A is not necessarily close to a constant matrix.
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As a more concrete case, let us look at the following situation: Let a(x1) ∈ C2(G) be
a uniformly positive and strictly concave function. One may check that if a1(x1, x2) ≡
a2(x1, x2) ≡ a(x1), then a1 and a2 satisfy the conditions in Proposition 2.1. What is
more interesting is that for this nonidentity matrix A = aI, if a1, the derivative of a
with respect to x1, changes sign, then one may further check that it does not satisfy
the geometric condition introduced in [22, Theorem 2.2.4] (which, in our notation,
reads 1

2 − (x − x0) · ∇a ≥ 0 in Ω, for some x0 ∈ R
n) unless the length of G, or the

positive part of a1 in G (i.e., maxx∈G a+
1 (x)), or the negative part of a1 in G (i.e.,

maxx∈G a−1 (x)), is assumed to be sufficiently small. Hence, we have found a class of
explicit and nontrivial examples satisfying our Condition 2.1. Also, we indicate that
it is possible to construct nontrivial examples of nondiagonal coefficient matrices that
satisfy Condition 2.1.

For the function d(·) satisfying Condition 2.1, we introduce the following set:

Γ+
�
=

⎧⎨⎩x ∈ Γ

∣∣∣∣∣ ∑
i,j

aijνidj > 0

⎫⎬⎭ ,(2.5)

where ν = ν(x) = (ν1, ν2, . . . , νn) is the unit outward normal vector of Ω at x ∈ Γ.
Note that for the case A = I, by choosing d(x) = |x − x0|2 with any given

x0 ∈ R
n \Ω, we have Condition 2.1 with μ0 = 4, and (2.1) holds with an equality. In

this case,

Γ+ =
{
x ∈ Γ

∣∣∣ (x− x0) · ν(x) > 0
}
,

which coincides with the usual star-shaped part of the whole boundary of Ω [29].
On the other hand, it is easy to check that, if d(·) ∈ C2(Ω) satisfies (2.1), then

for any given constants a ≥ 1 and b ∈ R, the function

d̂ = d̂(x)
�
= ad(x) + b(2.6)

(scaling and translating d(x)) still satisfies Condition 2.1 with μ0 replaced by aμ0;
meanwhile, the scaling and translating d(x) do not change the set Γ+. Hence, by
scaling and translating d(x), if necessary, we may assume without loss of generality
that ⎧⎪⎪⎨⎪⎪⎩

(2.1) holds with μ0 ≥ 4,

1

4

∑
i,j

aij(x)di(x)dj(x) ≥ max
x∈Ω

d(x) ≥ min
x∈Ω

d(x) > 0 ∀ x ∈ Ω.
(2.7)

In what follows, we let

R1
�
= max

x∈Ω

√
d(x) , T∗

�
= 2 inf

{
R1

∣∣∣ d(·) satisfies (2.7)
}
.(2.8)

Concerning the controller ω in (1.5), we need the following assumption.
Condition 2.2. There is a constant δ > 0 such that

ω = Oδ(Γ+)
⋂

Ω.(2.9)
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Note that condition (2.9) can be replaced by

ω ⊇ Γ+,(2.10)

which looks much weaker. In fact, when (2.10) holds, one can find a δ > 0 such that

ω ⊇ Oδ(Γ+)
⋂

Ω.(2.11)

It is not hard to see that if we can prove the controllability for (1.5) with a smaller
controller ω satisfying (2.9), then we can do so for a larger controller ω satisfying
(2.11) (in particular, we can choose ω to be Oδ(Γ)

⋂
Ω, a neighborhood of the whole

boundary Γ). We assume an equality in (2.9) only for simplicity of presentation.
The main controllability result in this paper is stated as follows.
Theorem 2.2. Let aij(·) ∈ C1(Ω) satisfy (1.1)–(1.2), and let f(·) ∈ C1(R) satisfy

(1.4). Let Conditions 2.1–2.2 hold. Then for any T > T∗, system (1.5) is exactly
controllable in H1

0 (Ω) × L2(Ω) at time T by using some control γ ∈ L2((0, T ) × ω).
In what follows, we will use C to denote a generic positive constant which may

vary from line to line (unless otherwise stated). As we mentioned before, the proof of
Theorem 2.2 can be reduced to the following observability estimate result for system
(1.7).

Theorem 2.3. Let aij(·) ∈ C1(Ω) satisfy (1.1)–(1.2), q ∈ L∞(0, T ;Ln(Ω)), and
Conditions 2.1–2.2 hold. Then for any T > T∗, all weak solutions w of system (1.7)
satisfy estimate (1.8) with an observability constant C(q) > 0 of the form

C(q) = C exp(Cr2),(2.12)

where

r = |q|L∞(0,T ;Ln(Ω)).(2.13)

Several remarks are in order.
Remark 2.1. By adopting the approach developed in this paper, Theorem 2.3

is strengthened in [8] as follows (see [8, Theorem 2.2]): Replace the assumption on
q by q ∈ L∞(0, T ; Ls(Ω)) for any fixed s ∈ [n,∞] and let the other assumptions in
Theorem 2.3 remain unchanged. Then for any T > T∗, all weak solutions w of system
(1.7) satisfy estimate (1.8) with an observability constant C(q) > 0 of the form

C(q) = C exp

(
C|q|

1
3/2−n/s

L∞(0,T ;Ls(Ω))

)
.(2.14)

On the other hand, it is shown in [8, Theorem 1.2] that the exponent 2/3 in the

estimate |q|2/3L∞(0,T ;L∞(Ω)) (in (2.14) for the special case s = ∞) is sharp. Although

the problem of the optimality of the exponent 1
3/2−n/s in |q|

1
3/2−n/s

L∞(0,T ;Ls(Ω)) is unsolved

when s ∈ [n,∞), [8, Theorem 1.2] does support the idea that the exponent 2 of the
estimate r2 in (2.12) might be sharp.

Remark 2.2. The “minimal” waiting time T∗ in Theorems 2.2–2.3 is explicitly
constructed (by (2.8)) but not sharp. The sharp T∗, as suggested by the special case
A = I considered in [36, 37], should be given as follows:

T∗
�
= 2 inf

{
R1

∣∣∣ d(x) satisfies (2.1) with μ0 ≥ 4 and

1

4

∑
i,j

aij(x)di(x)dj(x) ≥ d(x) ≥ min
x∈Ω

d(x) > 0 ∀ x ∈ Ω

}
,
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i.e., one replaces the term maxx∈Ω d(x) in (2.7) by d(x). Unfortunately, we are unable
to obtain such a sharp waiting time at this moment. One will see that the inequality
involving

∑
i,j a

ij(x)di(x)dj(x) and maxx∈Ω d(x) in (2.7) plays a key role in (11.7).

Remark 2.3. Condition (1.4) on the nonlinearity f(·) in Theorem 2.2 is not sharp.
As suggested in [45] for the one-dimensional problem, it is reasonable to expect that
(1.4) may be relaxed to the following:

lim
s→∞

f(s)

s ln2 |s|
= 0.

But this remains unsolved for the time being.

Remark 2.4. Theorems 2.2–2.3 cover the main results in [26] except the minimal
waiting time T∗.

Remark 2.5. Theorems 2.2 can be extended to the case when the nonlinearity
f(y) in (1.5) is replaced by f(t, x, y), under suitable growth conditions on (t, x, y).
However, it seems to us that in the case when nonlinearity is f(y, yt,∇y), the technique
developed in this paper is not enough, and one might have to employ the Nash–
Moser–Hörmander iteration method [15] to overcome the difficulty due to the “loss of
derivatives.” The detailed study of this problem will be presented elsewhere. Note,
however, that for purely PDE problems (existence and uniqueness of solutions, etc.)
of the hyperbolic equations, the treatment on the nonlinearity f(y, yt,∇y) is almost
the same as the simpler one, f(y). This means that for the controllability problem of
nonlinear systems, there exist some extra difficulties.

3. Some preliminaries. Let us consider the following linear inhomogeneous
hyperbolic equation: {

Pz = f in Q,
z = 0 on Σ.

(3.1)

In what follows, we call z ∈ L2(Q) a weak solution to (3.1) if

(z,Pη)L2(Q) =

∫ T

0

〈 f(t, ·), η(t, ·) 〉H−1(Ω),H1
0 (Ω)dt ∀ η ∈ C2

0 ((0, T );H2(Ω) ∩H1
0 (Ω)).

Note that in (3.1), no initial conditions are specified. Similarly to [40, Lemma 5.1],
one can prove the following regularity result for system (3.1).

Lemma 3.1. Let 0 < t1 < t2 < T , f ∈ L1(0, T ;H−1(Ω)), and g ∈ L2((t1, t2)×Ω)
be given. Assume that z ∈ L2(Q) is a weak solution to (3.1), and z = g in (t1, t2)×Ω.
Then z ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)), and there exists a constant C > 0,
depending only on T , t1, t2, Ω, and aij, such that

|z|C([0,T ];L2(Ω))∩C1([0,T ];H−1(Ω)) ≤ C
[
|f |L1(0,T ;H−1(Ω)) + |g|L2((t1,t2)×Ω)

]
.(3.2)

From the above, we see that g plays the role of initial value for the weak solution
z. Next, similarly to [36, Lemma 3.3] we have the following result.

Lemma 3.2. Let aij ∈ C1(Ω) satisfy (1.1), and let g
�
= (g1, . . . , gn) : Rt × R

n
x →
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R
n be a vector field of class C1. Then for any z ∈ C2(Rt × R

n
x), we have

−
∑
j

⎡⎣2(g · ∇z)
∑
i

aijzi + gj

⎛⎝z2
t −

∑
i,k

aikzizk

⎞⎠⎤⎦
j

= 2

[
(Pz)g · ∇z − (ztg · ∇z)t + ztgt · ∇z −

∑
i,j,k

aijzizk
∂gk

∂xj

]

− (∇ · g)z2
t +

∑
i,j

zizj∇ · (aijg).

(3.3)

Next, we denote the energy of system (1.7) by

E(t)
�
=

1

2

[
|wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω)

]
.(3.4)

Using the usual energy method, one obtains the following result.
Lemma 3.3. Let T > 0, q ∈ L∞(0, T ;Ln(Ω)), w0 ∈ L2(Ω), and w1 ∈ H−1(Ω).

Then the weak solution w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of (1.7) satisfies
(recall (2.13) for r)

E(t) ≤ CE(s)eCr ∀ t, s ∈ [0, T ].(3.5)

Further, proceeding as in [36, Lemma 3.4], we conclude the following.
Lemma 3.4. Let 0 ≤ S1 < S2 < T2 < T1 ≤ T and q ∈ L∞(0, T ;Ln(Ω)). Then

the weak solution w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of (1.7) satisfies∫ T2

S2

E(t)dt ≤ C(1 + r)

∫ T1

S1

|w(t, ·)|2L2(Ω)dt.(3.6)

Finally, the following proposition will be useful.
Proposition 3.5. For any h > 0, m = 2, 3, . . ., and qim, wi

m ∈ C (i = 0, 1, . . . ,m)
with q0

m = qmm = 0, one has

−
m−1∑
i=1

qim
(wi+1

m − 2wi
m + wi−1

m )

h2
=

m−1∑
i=0

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h

=

m∑
i=1

(qim − qi−1
m )

h

(wi
m − wi−1

m )

h
.

(3.7)

Proof.

−
m−1∑
i=1

qim
(wi+1

m − 2wi
m + wi−1

m )

h2
= −

m−1∑
i=1

qim
(wi+1

m − wi
m)

h2
+

m−1∑
i=1

qim
(wi

m − wi−1
m )

h2

=

m−1∑
i=1

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
−

m−1∑
i=1

qi+1
m

h

(wi+1
m − wi

m)

h
+

m−2∑
i=0

qi+1
m

h

(wi+1
m − wi

m)

h

=
m−1∑
i=1

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
+

q1
m

h

(w1
m − w0

m)

h

=
m−1∑
i=0

(qi+1
m − qim)

h

(wi+1
m − wi

m)

h
,

which gives the desired equality.
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4. Second order differential operators with symmetric coefficients. In
this section, we consider second order differential operators with symmetric coeffi-
cients. Our hyperbolic differential operator P is of such a type. We will establish a
pointwise equality and a couple of inequalities for such differential operators, which
will play important roles. First, we have the following identity.

Theorem 4.1. Let m ∈ N,

bij = bji ∈ C1(Rm), i, j = 1, 2, . . . ,m,(4.1)

and u, �, Ψ ∈ C2(Rm). Set θ = e� and v = θu. Then

θ2

∣∣∣∣∣∣
∑
i,j

(bijui)j

∣∣∣∣∣∣
2

+ 2
∑
j

{
2
∑
i,i′,j′

bijbi
′j′�i′vivj′ −

∑
i,i′,j′

bijbi
′j′�ivi′vj′

+ Ψ
∑
i

bijviv −
∑
i

bij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

= 2
∑
i,j

⎧⎨⎩∑
i′,j′

[
2bij

′
(
bi

′j�i′
)
j′
−
(
bijbi

′j′�i′
)
j′

]
+ Ψbij

⎫⎬⎭ vivj + Bv2

+

∣∣∣∣∣∣
∑
i,j

(bijvi)j − Λv

∣∣∣∣∣∣
2

+ 4

∣∣∣∣∣∣
∑
i,j

bij�ivj

∣∣∣∣∣∣
2

,

(4.2)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Λ
�
= −

∑
i,j

(bij�i�j − bijj �i − bij�ij) − Ψ,

B
�
= 2

⎡⎣ΛΨ −
∑
i,j

(
(Λ + Ψ)bij�i

)
j

⎤⎦+ Ψ2 −
∑
i,j

(bijΨj)i.

(4.3)

We see that only the symmetry condition (4.1) is assumed in the above. Hence,
Theorem 4.1 is applicable to hyperbolic and ultrahyperbolic operators.

Theorem 4.1 looks similar to [25, Lemma 1, p. 124](which is devoted to a similar
problem for a class of ultrahyperbolic operators). The main difference is that we
leave the function v on the right-hand side of (4.2) without returning to u, unlike
the result of [25] mentioned above, which has only the variable u on both sides.
Our result greatly simplifies the computation. Also, a similar idea played a key
role in establishing the observability estimate for the wave equations with Neumann
boundary conditions in [24] (which should be compared with [19]). We refer the reader
to [12, 13] for further application of Theorem 4.1 and its generalization, and to [7] for
related work.

Proof of Theorem 4.1. The proof is divided into several steps.
Step 1. Recalling θ = e� and v = θu, one has ui = θ−1(vi − �iv) (i = 1, 2, . . . ,m).

By the symmetry condition (4.1), it is easy to see that

∑
i,j

bij(�ivj + �jvi) = 2
∑
i,j

bij�ivj .
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Thus, we obtain∑
i,j

(bijui)j =
∑
i,j

[θ−1bij(vi − �iv)]j(4.4)

= θ−1
∑
i,j

[bij(vi − �iv)]j − θ−1
∑
i,j

bij(vi − �iv)�j

= θ−1
∑
i,j

[
(bijvi)j − bij(�ivj + �jvi) + (bij�i�j − bijj �i − bij�ij)v

]
= θ−1

∑
i,j

[
(bijvi)j − 2bij�ivj + (bij�i�j − bijj �i − bij�ij)v

]
≡ −θ−1(I1 + I2 + I3),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1
�
= −

∑
i,j

[
(bijvi)j + (bij�i�j − bijj �i − bij�ij)v

]
− Ψv

= −
∑
i,j

(bijvi)j + Λv,

I2
�
= 2

∑
i,j

bij�ivj , I3
�
= Ψv.

(4.5)

Then, by (4.4) and (4.5), we get

θ2
∣∣∣∑

i,j

(bijui)j

∣∣∣2 = |I1|2 + |I2|2 + |I3|2 + 2(I1I2 + I2I3 + I1I3).(4.6)

Step 2. Let us compute I1I2. Using (4.1) again, and noting∑
i,j,i′,j′

(
bijbi

′j′�i′vivj

)
j′

=
∑

i,j,i′,j′

(
bijbi

′j′�ivi′vj′
)
j
,

we get

2
∑

i,j,i′,j′

bijbi
′j′�i′vivjj′

=
∑

i,j,i′,j′

bijbi
′j′�i′(vivjj′ + vjvij′) =

∑
i,j,i′,j′

bijbi
′j′�i′(vivj)j′

=
∑

i,j,i′,j′

(
bijbi

′j′�i′vivj

)
j′
−
∑

i,j,i′,j′

(
bijbi

′j′�i′
)
j′
vivj

=
∑

i,j,i′,j′

(
bijbi

′j′�ivi′vj′
)
j
−
∑

i,j,i′,j′

(
bijbi

′j′�i′
)
j′
vivj .

(4.7)

Hence, by (4.5) and (4.7), and noting∑
i,j,i′,j′

bij
(
bi

′j′�i′
)
j
vivj′ =

∑
i,j,i′,j′

bij
′
(
bi

′j�i′
)
j′
vivj ,
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we get

I1I2 = 2
∑
i,j

bij�ivj

[
−
∑
i,j

(bijvi)j + Λv

]
= −2

∑
i,j,i′,j′

(bijbi
′j′�i′vivj′)j + 2

∑
i,j,i′,j′

bij(bi
′j′�i′)jvivj′

+2
∑

i,j,i′,j′

bijbi
′j′�i′vivj′j + Λ

∑
i,j

bij�i(v
2)j

= −
∑
j

(
2
∑
i,i′,j′

bijbi
′j′�i′vivj′ −

∑
i,i′,j′

bijbi
′j′�ivi′vj′ − Λ

∑
i

bij�iv
2

)
j

+
∑

i,j,i′,j′

[
2bij

′
(bi

′j�i′)j′ − (bijbi
′j′�i′)j′

]
vivj −

∑
i,j

(Λbij�i)jv
2.

(4.8)

Step 3. Let us compute I2I3 and I1I3. By (4.5), we see that

I2I3 = 2Ψv
∑
i,j

bij�ivj = Ψ
∑
i,j

bij�i(v
2)j

=
∑
i,j

(
Ψbij�iv

2
)
j
−
∑
i,j

(
Ψbij�i

)
j
v2.

(4.9)

Similarly, by (4.5), we get

2I1I3 = 2Ψv

[
−
∑
i,j

(bijvi)j + Λv

]
= −2

∑
i,j

(
Ψbijvvi

)
j
+ 2Ψ

∑
i,j

bijvivj +
∑
i,j

bijΨj(v
2)i + 2ΛΨv2

= −
∑
i,j

(
2Ψbijvvi − bijΨiv

2
)
j
+ 2Ψ

∑
i,j

bijvivj +

[
−
∑
i,j

(bijΨj)i + 2ΛΨ

]
v2.

(4.10)
Step 4. Finally, combining (4.6), (4.8), (4.9), and (4.10), we immediately conclude

with the desired equality (4.2). This completes the proof of Theorem 4.1.
As a consequence of Theorem 4.1, we have the following.
Corollary 4.2. Let aij ∈ C1(Ω) satisfy (1.1), and let u, �,Ψ ∈ C2(R1+n). Let

θ = e� and v = θu. Then

θ2|Pu|2(4.11)

+ 2

[
�t

(
v2
t +

∑
i,j

aijvivj

)
− 2

∑
i,j

aij�ivjvt − Ψvvt +

(
(Λ + Ψ)�t +

Ψt

2

)
v2

]
t

+ 2
∑
j

{
2
∑
i,i′,j′

aijai
′j′�i′vivj′ −

∑
i,i′,j′

aijai
′j′�ivi′vj′ + Ψv

∑
i

aijvi

− 2�tvt
∑
i

aijvi +
∑
i

aij�iv
2
t −

∑
i

aij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

≥ 2

(
�tt +

∑
i,j

(aij�i)j − Ψ

)
v2
t − 8

∑
i,j

aij�jtvivt

+ 2
∑
i,j

{
aij�tt +

∑
i′,j′

[
2aij

′
(ai

′j�i′)j′ − (aijai
′j′�i′)j′

]
+ Ψaij

}
vivj + Bv2,
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = (�2t − �tt) −
∑
i,j

(aij�i�j − aijj �i − aij�ij) − Ψ,

B = 2

⎡⎣ΛΨ +
(
(Λ + Ψ)�t

)
t
−
∑
i,j

(
(Λ + Ψ)aij�i

)
j

⎤⎦
+ Ψ2 + Ψtt −

∑
i,j

(aijΨj)i.

(4.12)

In particular, if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ = φ(t, x)
�
= d(x) − c(t− T/2)2,

Ψ
�
= λ

⎡⎣∑
i,j

(aijdi)j − 2c− 1 + k

⎤⎦ ,

�
�
= λφ, v

�
= θu, θ

�
= e�,

(4.13)

with λ, T > 0, c ∈ (0, 1), and k ∈ R, then

(left-hand side of (4.11)) ≥ 2λ(1 − k)v2
t

+ 2λ
∑
i,j

⎧⎨⎩(k − 1 − 4c)aij +
∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬⎭ vivj + Bv2,

(4.14)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = λ2

⎡⎣4c2(t− T/2)2 −
∑
i,j

aijdidj

⎤⎦+ λ(4c + 1 − k),

B = 2λ3

[
(4c + 1 − k)

∑
i,j

aijdidj +
∑
i,j

aijdi

⎛⎝∑
i′,j′

ai
′j′di′dj′

⎞⎠
j

−4(8c + 1 − k)c2(t− T/2)2

]
+ O(λ2).

(4.15)

Proof. Using Theorem 4.1 with m = 1 + n, and

(bij)m×m =

(
−1 0
0 A

)
,

by a direct calculation, we obtain (4.11). The inequality occurs because we have
dropped the last two nonnegative terms (see (4.2)). Next, by the choice of (4.13), we
can obtain (4.14).
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5. Global Carleman estimate for the hyperbolic operators in H1
0(Q).

Recall (2.8) for the definitions of R1 and T∗. Let T > T∗ be given. We may assume
that

T > 2R1.(5.1)

By (5.1), one may choose a constant c ∈ (0, 1) so that(
2R1

T

)2

< c <
2R1

T
.(5.2)

Henceforth, we choose φ(t, x) as in (4.13) with T and c satisfying, respectively, (5.1)
and (5.2).

Remark 5.1. The function φ constructed above, together with Condition 2.1, will
play a similar role in establishing the Carleman estimate for the hyperbolic operators
to that of the function ψ in [18, Condition 1.1], both of which are pseudoconvex in the
sense of [17, Definition 28.3.1]. We refer to the classical monographs [16, 17] for more
extensive treatment of the Carleman estimate for general partial differential operators,
based on pseudoconvex assumptions. Note, however, that our more concrete and
explicit choice of φ has the following advantages:

(1) It avoids the complicated verification of the pseudoconvex assumption, say,
Condition 1.1 in [18]. Indeed, we need only check the “convexity” condi-
tion (2.1) and the nonvanishing condition (2.2) (see Proposition 2.1 for an
example).

(2) Our φ is more natural. In this respect, we note that the time variable t
and spatial variables x are separate, which matches the very fact that for
the principal operator P, the time derivative ∂tt and the spatial derivatives
−
∑

i,j ∂j(a
ij(x)∂i

)
have a similar separation property.

(3) The explicit form of φ(·) or d(·) is useful in the definition of the “con-
trolled/observed” subboundary Γ+ in (2.5). Also, it plays a key role by
scaling and translating d(x) as in (2.6) to achieve (2.7).

(4) What is more important, as mentioned before, is that with our assumption
of Condition 2.1, we can give an explicit formula for the waiting time T∗,
but this seems to be impossible in the setting of [18] and in that of [16, 17].
Meanwhile, as we shall see later (in the proof of Theorem 2.3), the explicit
form of φ(·) will play a crucial role in deducing the key estimate (2.12) on the
observability constant C(q).

The following Carleman estimate will play a crucial role in section 7.
Theorem 5.1. Let aij ∈ C1(Ω) satisfy (1.1)–(1.2), and let Conditions 2.1–2.2

hold. Then there exists a λ0 > 1 such that for all λ ≥ λ0 and all u ∈ H1
0 (Q) with

Pu ∈ L2(Q), it holds that

λ

∫
Q

(λ2u2 + u2
t + |∇u|2)e2λφdxdt

≤ C

[
|eλφPu|2L2(Q) + λ2

∫ T

0

∫
ω

(λ2u2 + u2
t )e

2λφdxdt

]
.

(5.3)

For the reader’s convenience, in Appendix B we will give a proof of Theorem 5.1
which is close to the spirit of [24].

Remark 5.2. In the above theorem, the main element, which enables one to
integrate over the entire cylinder Q instead of the “conventional” case of its subdomain
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bounded by a level surface of the function φ, is that u(0, x) = u(T, x) = 0 in Ω. From
the proof of Theorem 5.1, one can see that this point is achieved via (11.10). In the
cases A = I, and more generally A = a(x)I, with a quite restrictive positive function
a(x), inequality (11.10) actually follows from [22, equation (2.2.51)] if we introduce
(in this paper) a new variable τ = t− T/2 instead of the time variable t.

6. An auxiliary optimal control problem. In this section, we will present
an auxiliary optimal control problem which will be useful later. Although some ideas
are taken from [18, pp. 190–199], our presentation seems to be easier to understand.

Throughout this section, we fix φ as in (4.13), a parameter λ > 0, and a function
u ∈ C([0, T ];L2(Ω)) satisfying u(0, x) = u(T, x) = 0 for x ∈ Ω. For any K > 1, we
choose a function � ≡ �K(x) ∈ C2(Ω) with minx∈Ω �(x) = 1 so that (recall Condition
2.2 for ω)

�(x) =

{
1 for x ∈ ω,

K for dist (x, ω) ≥ 1
lnK .

(6.1)

Next, fix any integer m ≥ 3. Let h = T
m . Define

ui
m ≡ ui

m(x) = u(ih, x), φi
m ≡ φi

m(x) = φ(ih, x), i = 0, 1, . . . ,m.(6.2)

Let {(zim, ri1m, ri2m, rim)}mi=0 ∈ (H1
0 (Ω) × (L2(Ω))3)m+1 satisfy the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi+1
m − 2zim + zi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

zim)

=
ri+1
1m − ri1m

h
+ ri2m + λui

me2λφi
m + rim, (1 ≤ i ≤ m− 1) in Ω,

zim = 0, (0 ≤ i ≤ m) on Γ,

z0
m = zmm = r0

2m = rm2m = r0
m = rmm = 0, r0

1m = r1
1m in Ω.

(6.3)

Note that we do not assume r0
1m and rm1m vanish; instead we assume r0

1m = r1
1m. In

system (6.3), (ri1m, ri2m, rim) ∈ (L2(Ω))3 (i = 0, 1, . . . ,m) can be regarded as controls.
The set of admissible sequences for (6.3) is defined as

Aad
�
=
{
{(zim, ri1m, ri2m, rim)}mi=0 ∈ (H1

0 (Ω) × (L2(Ω))3)m+1
∣∣∣

{(zim, ri1m, ri2m, rim)}mi=0 satisfy (6.3)
}
.

Since {(0, 0, 0,−λui
me2λφi

m)}mi=0 ∈ Aad, one sees that Aad �= ∅.
Next, let us introduce the cost functional

J({(zim, ri1m, ri2m, rim)}mi=0)

=
h

2

∫
Ω

�
|rm1m|2
λ2

e−2λφm
mdx

+
h

2

m−1∑
i=1

[∫
Ω

|zim|2e−2λφi
mdx +

∫
Ω

�

(
|ri1m|2
λ2

+
|ri2m|2
λ4

)
e−2λφi

mdx + K

∫
Ω

|rim|2dx
]
.

(6.4)
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We pose the following optimal control problem: Find a {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad

such that

J({(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0)

= min
{(zi

m,ri1m,ri2m,rim)}m
i=0∈Aad

J({(zim, ri1m, ri2m, rim)}mi=0).
(6.5)

Note that for any {(zim, ri1m, ri2m, rim)}mi=0 ∈ Aad, by standard regularity results of
elliptic equations, one has that zim ∈ H2(Ω) ∩H1

0 (Ω). The following technical result
will play a crucial role in section 7.

Proposition 6.1. For any K > 1 and m ≥ 3, problem (6.5) admits a unique
solution {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad (which depends on K). Furthermore, for

pim ≡ pim(x)
�
= Kr̂im(x), 0 ≤ i ≤ m,(6.6)

one has

ẑ0
m = ẑmm = p0

m = pmm = 0 in Ω, ẑim, pim ∈ H2(Ω) ∩H1
0 (Ω) for 1 ≤ i ≤ m− 1,(6.7)

and the following optimality conditions hold:⎧⎪⎪⎨⎪⎪⎩
pim − pi−1

m

h
+ �

r̂i1m
λ2

e−2λφi
m = 0 in Ω,

pim − �
r̂i2m
λ4

e−2λφi
m = 0 in Ω,

1 ≤ i ≤ m,(6.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi+1
m − 2pim + pi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

pim) + ẑime−2λφi
m = 0 in Ω,

pim = 0 on Γ,

1 ≤ i ≤ m− 1.

(6.9)

Moreover, there is a constant C = C(K,λ) > 0, independent of m, such that

h
m−1∑
i=1

∫
Ω

[
|ẑim|2 + |r̂i1m|2 + |r̂i2m|2 + K|r̂im|2

]
dx + h

∫
Ω

|r̂m1m|2dx ≤ C,(6.10)

and

h
m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
+

(r̂i+1
1m − r̂i1m)2

h2
+

(r̂i+1
2m − r̂i2m)2

h2

+K
(r̂i+1

m − r̂im)2

h2

]
dx ≤ C.

(6.11)

We refer to Appendix C for a proof of this proposition.

7. Global Carleman estimate for hyperbolic operators in L2(Q). In or-
der to prove Theorem 2.3, we need the following result.
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Theorem 7.1. Let aij ∈ C1(Ω) satisfy (1.1)–(1.2). Let Conditions 2.1–2.2 hold.
Then for any λ ≥ λ0 ≥ 1, and any u ∈ C([0, T ];L2(Ω)) satisfying u(0, x) = u(T, x) =
0 for x ∈ Ω, Pu ∈ H−1(Q), and

(u,Pη)L2(Q) = 〈 Pu, η 〉H−1(Q),H1
0 (Q) ∀ η ∈ H1

0 (Q) with Pη ∈ L2(Q),(7.1)

it holds that

λ

∫
Q

u2e2λφdxdt ≤ C

(
|eλφPu|2H−1(Q) + λ2

∫ T

0

∫
ω

u2e2λφdxdt

)
,(7.2)

where φ is the same as in Theorem 5.1.

Proof. The proof is close to that of [18, Theorem 1.1]. However, for the reader’s
convenience, we give the details here.

The main idea is to apply (7.1) to some special η with Pη = · · ·+ λue2λφ, which
yields the desired term λ

∫
Q
u2e2λφdxdt and reduces the estimate to that for |η|H1

0 (Q).
We shall employ Proposition 6.1 to provide the desired η. The proof is divided into
several steps.

Step 1. First, recall the functions {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 in Proposition 6.1. We
define

z̃m(t, x) =
1

h

m−1∑
i=0

[
(t− ih)ẑi+1

m (x) −
(
t− (i + 1)h

)
ẑim(x)

]
χ(ih,(i+1)h](t),

r̃m1 (t, x) = r̂0
1m(x)χ{0}(t)

+
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

1m (x) −
(
t− (i + 1)h

)
r̂i1m(x)

]
χ(ih,(i+1)h](t),

r̃m2 (t, x) =
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

2m (x) −
(
t− (i + 1)h

)
r̂i2m(x)

]
χ(ih,(i+1)h](t),

r̃m(t, x) =
1

h

m−1∑
i=0

[
(t− ih)r̂i+1

m (x) −
(
t− (i + 1)h

)
r̂im(x)

]
χ(ih,(i+1)h](t).

By (6.10)–(6.11), one can find a subsequence of (z̃m, r̃m1 , r̃m2 , r̃m), which converges
weakly to some (z̃, r̃1, r̃2, r̃) ∈ (H1(0, T ;L2(Ω)))4, as m → ∞.

For any constant K > 1, put

p̃
�
= Kr̃.

In what follows, we shall choose K to be sufficiently large (see (7.19)). By (6.3),
(6.8)–(6.11), and noting Lemma 3.1, we see that

z̃, p̃ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P z̃ = r̃1,t + r̃2 + λue2λφ + r̃ in Q,

P p̃ + z̃e−2λφ = 0 in Q,

p̃ = z̃ = 0 on Σ,

p̃(0) = p̃(T ) = z̃(0) = z̃(T ) = 0 in Ω,

p̃t + �
r̃1
λ2

e−2λφ = 0 in Q,

p̃− �
r̃2
λ4

e−2λφ = 0 in Q.

(7.3)

Step 2. Applying Theorem 5.1 to p̃ in (7.3), one gets

λ

∫
Q

(λ2p̃2 + p̃2
t + |∇p̃|2)e2λφdxdt

≤ C

[∫
Q

z̃2e−2λφdxdt + λ2

∫ T

0

∫
ω

(λ2p̃2 + p̃2
t )e

2λφdxdt

]

≤ C

[∫
Q

z̃2e−2λφdxdt +

∫ T

0

∫
ω

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt

]
.

(7.4)

Here and henceforth, C is a constant, independent of K and λ.
By (7.3) again, one finds that p̃t satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P p̃t + (z̃e−2λφ)t = 0 in Q,

p̃t = 0 on Σ,

p̃tt +
�

λ

( r̃1,t
λ

− 2φtr̃1

)
e−2λφ = 0 in Q,

p̃t −
�

λ2

( r̃2,t
λ2

− 2

λ
φtr̃2

)
e−2λφ = 0 in Q.

(7.5)

Applying Theorem 5.1 to p̃t and noting (7.5), we obtain

λ

∫
Q

(
λ2p̃2

t + p̃2
tt + |∇p̃t|2

)
e2λφdxdt

≤ C

[
|eλφ(e−2λφz̃)t|2L2(Q) + λ2

∫ T

0

∫
ω

(
λ2p̃2

t + p̃2
tt

)
e2λφdxdt

]

≤ C

[∫
Q

(z̃2
t + λ2z̃2)e−2λφdxdt +

∫ T

0

∫
ω

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

]
.

(7.6)
Step 3. From (7.3), and noting that

−
∫
Q

(r̃1,t+r̃2)p̃dxdt =

∫
Q

(
r̃1p̃t−r̃2p̃

)
dxdt = −

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt,

(7.7)
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and recalling p̃ = Kr̃, we get

0 = (P z̃ − r̃1,t − r̃2 − λue2λφ − r̃, p̃)L2(Q)

= −
∫
Q

z̃2e−2λφdxdt−
∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt

−λ

∫
Q

up̃e2λφdxdt−K

∫
Q

r̃2dxdt.

(7.8)

Hence ∫
Q

z̃2e−2λφdxdt +

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt + K

∫
Q

r̃2dxdt

= −λ

∫
Q

up̃e2λφdxdt.

(7.9)

Combining (7.4) and (7.9), we arrive at∫
Q

z̃2e−2λφdxdt +

∫
Q

�

(
r̃2
1

λ2
+

r̃2
2

λ4

)
e−2λφdxdt + K

∫
Q

r̃2dxdt

≤ C

λ

∫
Q

u2e2λφdxdt.

(7.10)

Step 4. Using (7.3) and (7.5) again, and noting p̃tt(0) = p̃tt(T ) = 0 in Ω, we get

0 = (P z̃ − r̃1,t − r̃2 − λue2λφ − r̃, p̃tt)L2(Q)

= −
∫
Q

z̃(e−2λφz̃)ttdxdt−
∫
Q

(r̃1,t + r̃2)p̃ttdxdt

−λ

∫
Q

up̃tte
2λφdxdt−

∫
Q

r̃p̃ttdxdt.

(7.11)

Note

−
∫
Q

z̃(e−2λφz̃)ttdxdt =

∫
Q

(
z̃2
t e

−2λφ − z̃2

2
(e−2λφ)tt

)
dxdt

=

∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt.

(7.12)

Further, in view of the third and fourth equalities in (7.5), one has

−
∫
Q

(r̃1,t + r̃2)p̃ttdxdt = −
∫
Q

(r̃1,tp̃tt − r̃2,tp̃t)dxdt

=

∫
Q

r̃1,t
�

λ

(
r̃1,t
λ

− 2φtr̃1

)
e−2λφdxdt +

∫
Q

r̃2,t
�

λ2

(
r̃2,t
λ2

− 2

λ
φtr̃2

)
e−2λφdxdt

=

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
− 2

λ
φtr̃1r̃1,t −

2

λ3
φtr̃2r̃2,t

)
e−2λφdxdt.

(7.13)
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Moreover, by p̃
�
= Kr̃ and integration by parts, one gets

−
∫
Q

r̃p̃ttdxdt = K

∫
Q

r̃2
t dxdt.(7.14)

Combining (7.11)–(7.14), we end up with∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
− 2

λ
φtr̃1r̃1,t −

2

λ3
φtr̃2r̃2,t

)
e−2λφdxdt + K

∫
Q

r̃2
t dxdt

+

∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt = λ

∫
Q

up̃tte
2λφdxdt.

(7.15)

Now, by (7.15)+Cλ2·(7.10) (with a sufficiently large C > 0), using the Cauchy–
Schwarz inequality and noting (7.6), we obtain∫

Q

(
z̃2
t + λ2z̃2

)
e−2λφdxdt +

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

≤ Cλ

∫
Q

u2e2λφdxdt.

(7.16)

Step 5. By (7.3), we have

(r̃1,t + r̃2 + λue2λφ + r̃, z̃e−2λφ)L2(Q) = (P z̃, z̃e−2λφ)L2(Q)

= −
∫
Q

z̃t(z̃e
−2λφ)tdxdt +

∑
i,j

∫
Q

aij z̃i(z̃e
−2λφ)jdxdt

= −
∫
Q

(z̃2
t + λφttz̃

2 − 2λ2φ2
t z̃

2)e−2λφdxdt +
∑
i,j

∫
Q

aij z̃iz̃je
−2λφdxdt

− 2λ
∑
i,j

∫
Q

aij z̃iz̃φje
−2λφdxdt.

(7.17)

This, combined with (1.2), yields (recall λ ≥ λ0 > 1)∫
Q

|∇z̃|2e−2λφdxdt

≤ C

∫
Q

[
|r̃1,t + r̃2 + r̃||z̃|e−2λφ + λ|uz̃| + (z̃2

t + λ2z̃2)e−2λφ
]
dxdt

≤ C

∫
Q

[
u2e2λφ +

(
r̃2
1,t

λ2
+

r̃2
2

λ2
+ r̃2 + z̃2

t + λ2z̃2

)
e−2λφ

]
dxdt.

(7.18)

Combining (7.10), (7.16), and (7.18); choosing the constant K in (7.10) so that

K ≥ Ce2λmax(t,x)∈Q |φ|(7.19)

(to absorb the term C
∫
Q
r̃2e−2λφdxdt in the right-hand side of (7.18)); and noting

that �(x) ≥ 1 in Ω, we deduce that∫
Q

(|∇z̃|2 + z̃2
t + λ2z̃2)e−2λφdxdt +

∫
Q

�

(
r̃2
1,t

λ2
+

r̃2
2,t

λ4
+ r̃2

1 +
r̃2
2

λ2

)
e−2λφdxdt

≤ Cλ

∫
Q

u2e2λφdxdt.

(7.20)
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Step 6. Recall that (z̃, r̃1, r̃2, r̃) depend on K. We now fix λ and let K → ∞. By
(7.10) and (7.20), we conclude that there exists a subsequence of (z̃, r̃1, r̃2, r̃) which
converges weakly to some (ž, ř1, ř2, 0) in H1

0 (Q) × (H1(0, T ;L2(Ω)))2 × L2(Q), with
supp ři ⊂ (0, T ) × ω (i = 1, 2) since �(x) ≡ �K(x) → ∞ for any x /∈ ω, as K → ∞.
By (7.3), we deduce that (ž, ř1, ř2) satisfies{

P ž = ř1,t + ř2 + λue2λφ in Q,

ž = 0 on ∂Q.
(7.21)

Using (7.20) again, we find

|že−λφ|2H1
0 (Q) +

1

λ2

∫ T

0

∫
ω

(ř2
1,t + ř2

2)e
−2λφdxdt ≤ Cλ

∫
Q

u2e2λφdxdt.(7.22)

Now, by (7.1) with η replaced by the above ž, one gets(
u, ř1,t + ř2 + λue2λφ

)
L2(Q)

= 〈 Pu, ž 〉H−1(Q),H1
0 (Q).

Hence, noting supp ři ⊂ (0, T ) × ω (i = 1, 2), we conclude that for any ε > 0, it holds
that

λ

∫
Q

u2e2λφdxdt = 〈 Pu, ž 〉H−1(Q),H1
0 (Q) − (u, ř1,t + ř2)L2((0,T )×ω)

≤ C

{
1

ε

[
|eλφPu|2H−1(Q) + λ2

∫ T

0

∫
ω

u2e2λφdxdt

]

+ ε

[
|že−λφ|2H1

0 (Q) +
1

λ2

∫ T

0

∫
ω

(ř2
1,t + ř2

2)e
−2λφdxdt

]}
.

(7.23)

Finally, choosing ε in (7.23) sufficiently small and noting (7.22), we arrive at the
desired estimate (7.2). This completes the proof of Theorem 7.1.

8. Proof of Theorem 2.3. The main idea is to use the Carleman estimate in
Theorem 7.1. Note, however, that our w satisfying (1.7) does not necessarily vanish
at t = 0, T . Therefore we need to introduce a suitable cutoff function. To this end,
set ⎧⎪⎨⎪⎩

Ti
�
= T/2 − εiT, T ′

i
�
= T/2 + εiT,

R0
�
= min

x∈Ω

√
d(x) (> 0),

(8.1)

where i = 0, 1; 0 < ε0 < ε1 < 1/2 will be given below.
From (5.2) and (4.13), it is easy to see that

φ(0, x) = φ(T, x) < R2
1 − cT 2/4 < 0 ∀ x ∈ Ω.(8.2)

Therefore there exists an ε1 ∈ (0, 1/2) close to 1/2 such that

φ(t, x) ≤ R2
1/2 − cT 2/8 < 0 ∀ (t, x) ∈

(
(0, T1)

⋃
(T ′

1, T )
)
× Ω(8.3)
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with T1 and T ′
1 given by (8.1). Further, by (4.13), we see that

φ(T/2, x) = d(x) ≥ R2
0 ∀ x ∈ Ω.

Hence, one can find an ε0 ∈ (0, 1/2), close to 0, such that

φ(t, x) ≥ R2
0/2 ∀ (t, x) ∈ (T0, T

′
0) × Ω,(8.4)

with T0 and T ′
0 given by (8.1). We now choose a nonnegative function ξ ∈ C∞

0 (0, T )
so that

ξ(t) ≡ 1 in (T1, T
′
1).(8.5)

Clearly, ξw vanishes at t = 0, T . Hence, by Theorem 7.1, for any λ ≥ λ0, we have

λ

∫
Q

(ξw)2e2λφdxdt ≤ C

(
|eλφP(ξw)|2H−1(Q) + λ2

∫ T

0

∫
ω

w2e2λφdxdt

)
.(8.6)

By (1.7), we have

|eλφP(ξw)|H−1(Q) = |eλφ(ξPw + 2ξtwt + wξtt|H−1(Q)

= |eλφ(ξqw + 2ξtwt + wξtt)|H−1(Q)

= sup
|f |

H1
0(Q)

=1

〈 eλφ(ξqw + 2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q)

≤ sup
|f |

H1
0(Q)

=1

∫
Q

eλφξqwfdxdt

+ sup
|f |

H1
0(Q)

=1

〈 eλφ(2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q).

(8.7)

Using the Sobolev embedding theorem and the Hölder inequality, and recalling

r
�
= |q|L∞(0,T ;Ln(Ω)), we get

sup
|f |

H1
0(Q)

=1

∫
Q

eλφξqwfdxdt ≤ Cr|eλφw|L2(Q).(8.8)

On the other hand, by (8.3) and (8.5), we have

sup
|f |

H1
0(Q)

=1

〈 eλφ(2ξtwt + wξtt), f 〉H−1(Q),H1
0 (Q)

= sup
|f |

H1
0(Q)

=1

∫
Q

eλφw(−ξttf − 2ξtft − 2λφtξtf)dxdt

≤ Ce(R2
1/2−cT 2/8)λ(1 + λ)(|w|L2((0,T1)×Ω) + |w|L2((T ′

1,T )×Ω)).

(8.9)
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Further, by (8.3) and (8.5), we have∫
Q

(ξw)2e2λφdxdt =

∫
Q

w2e2λφdxdt−
∫
Q

(1 − ξ2)w2e2λφdxdt

=

∫
Q

w2e2λφdxdt−
∫ T1

0

∫
Ω

(1 − ξ2)w2e2λφdxdt

−
∫ T

T ′
1

∫
Ω

(1 − ξ2)w2e2λφdxdt

≥
∫
Q

w2e2λφdxdt− Ce(R2
1−cT 2/4)λ(|w|2L2((0,T1)×Ω) + |w|2L2((T ′

1,T )×Ω)).

(8.10)

Combining (8.6)–(8.10), we arrive at

λ

∫
Q

w2e2λφdxdt

≤ C1

[
r2

∫
Q

w2e2λφdxdt + λ2

∫ T

0

∫
ω

w2e2λφdxdt

+ e(R2
1−cT 2/4)λ(1 + λ2)(|w|2L2((0,T1)×Ω) + |w|2L2((T ′

1,T )×Ω))

]
,

(8.11)

for a constant C1 > 0, independent of λ and r. Since R2
1 − cT 2/4 < 0, one may find

a λ1 ≥ λ0 such that e(R2
1−cT 2/4)λ(1 + λ2) < 1 for all λ ≥ λ1. Now, taking

λ ≥ 2C1(λ1 + r2),(8.12)

it follows from (8.11) that

λ

∫
Q

w2e2λφdxdt

≤ C

(
λ2

∫ T

0

∫
ω

w2e2λφdxdt + |w|2L2((0,T1)×Ω) + |w|2L2((T ′
1,T )×Ω)

)
.

(8.13)

From (8.4), we see that∫
Q

w2e2λφdxdt ≥ eR
2
0λ

∫ T ′
0

T0

∫
Ω

w2dxdt.(8.14)

For any S0 ∈ (T0, T/2) and S′
0 ∈ (T/2, T ′

0), by Lemma 3.4, we obtain (recall (3.4) for
E(t)) ∫ S′

0

S0

E(t)dt ≤ C(1 + r)

∫ T ′
0

T0

∫
Ω

w2dxdt.(8.15)

On the other hand, by Lemma 3.3, we have

|w|2L2((0,T1)×Ω) + |w|2L2((T ′
1,T )×Ω) ≤ CE(0)eCr(8.16)
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and ∫ S′
0

S0

E(t)dt ≥ CE(0)eCr.(8.17)

Combining (8.13)–(8.17), we end up with(
C2λe

R2
0λ+C2r − C3(1 + r)eC3r

)
E(0) ≤ Cλ2(1 + r)eCλ

∫ T

0

∫
ω

w2dxdt,(8.18)

for two constants C2 > 0 and C3 > 0, independent of λ and r. We now choose λ so
that

C2λ ≥ C3(1 + r), R2
0λ + C2r ≥ C3r.(8.19)

Then, from (8.18), we obtain

E(0) ≤ C(q)|w|2L2((0,T )×ω).(8.20)

Finally, noting (8.12) and (8.19), we conclude (2.12). This completes the proof of
Theorem 2.3.

9. Proof of Theorem 2.2. The proof is very close to that of [26, Theorem 3.1]
and [38, Theorem 2.1]. However, for the reader’s convenience, we give some details
here.

Define a function h(·) ∈ C(R) by

h(s)
�
=

{
[f(s) − f(0)]/s if s �= 0,
f ′(0) if s = 0.

(9.1)

Let the initial and final data (y0, y1), (z0, z1) ∈ H1
0 (Ω) × L2(Ω) be given. For any

given z(·) ∈ L∞(0, T ;L2(Ω)), we look for a control γ = γ(z(·)) ∈ L2((0, T ) × ω) such
that the solution y = y(·; z(·)) of⎧⎨⎩

Py = h(z(·))y + f(0) + χω(x)γ(t, x) in Q,
y = 0 on Σ,
y(0) = y0, yt(0) = y1 in Ω

(9.2)

satisfies

y(T ) = z0, yt(T ) = z1 in Ω.(9.3)

For this purpose, we use the classical duality argument [29, 28, 39]. First, we
solve ⎧⎪⎪⎨⎪⎪⎩

Pv = h(z(·))v + f(0) in Q,

v = 0 on Σ,

v(T ) = z0, vt(T ) = z1 in Ω,

(9.4)

which admits a unique weak solution v = v(·; z(·)) ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)).

Next, put X
�
= L2(Ω) ×H−1(Ω). For any (w0, w1) ∈ X, we solve⎧⎪⎪⎨⎪⎪⎩

Pw = h(z(·))w in Q,

w = 0 on Σ,

w(0) = w0, wt(0) = w1 in Ω

(9.5)
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and ⎧⎪⎪⎨⎪⎪⎩
Pη = h(z(·))η + χω(x)w(t, x) in Q,

η = 0 on Σ,

η(T ) = ηt(T ) = 0 in Ω.

(9.6)

Now, we define a linear and continuous operator Λ : X → X ′, the dual space of
X, by

Λ(w0, w1)
�
= (−ηt(0), η(0)),(9.7)

where η ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) is the weak solution of (9.6).

Let us show the existence of some (w0, w1) ∈ X such that

Λ(w0, w1) = (−y1 + vt(0), y0 − v(0)).(9.8)

For this purpose, we observe that, by multiplying the first equation in (9.6) by w;
integrating it in Q; using integration by parts; and noting (9.5), η(T ) = ηt(T ) = 0 in
Ω, and (9.7), it follows that

〈Λ(w0, w1), (w0, w1) 〉X′,X =

∫ T

0

∫
ω

w2dxdt.(9.9)

However, by Theorem 2.3 and (9.9), we have

〈Λ(w0, w1), (w0, w1) 〉X′,X ≥ 1

C(h(z(·))) |(w0, w1)|2X ∀ (w0, w1) ∈ X,(9.10)

where C(·) is the constant given in (2.12). By the Lax–Milgram theorem, (9.8) admits
a unique solution (w0, w1) ∈ X. It is easy to check that

γ = w(9.11)

is the desired control such that the weak solution y ≡ v + η of (9.2) satisfies (9.3).
Further, proceeding as in the proof of [38, Theorem 2.1], by (9.10) we end up with

|w|C([0,T ];L2(Ω))

≤ C(h(z(·)))(|f(0)| + |(y0, y1)|H1
0 (Ω)×L2(Ω) + |(z0, z1)|H1

0 (Ω)×L2(Ω)).
(9.12)

Next, similarly to the proof of [26, Theorem 3.1] by applying the classical energy
method to (9.2), noting (9.11)–(9.12), and recalling assumption (1.4), one concludes
that there is a constant C > 0 such that, for any ε ∈ (0, 4], it holds that

|y|C([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω))

≤ C[|f(0)| + |(y0, y1)|H1
0 (Ω)×L2(Ω)

+ |(z0, z1)|H1
0 (Ω)×L2(Ω)]

(
1 + |z|4/(1+ε)

L∞(0,T ;L2(Ω))

)
.

(9.13)

Consequently if we take ε = 4 in (9.13), the desired exact controllability result follows
from the fixed point technique. This completes the proof of Theorem 2.2.
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10. Appendix A. Proof of Proposition 2.1. Consider first the case when
A = diag [a1, . . . , an] with ai ∈ C1(Ω) (i = 1, . . . , n). In this case, the matrix A
(defined in (2.3)) reads

A =

(
aiajdij +

aiajidj + ajaijdi

2

)
1≤i,j≤n

− 1

2
diag

[∑
k

aka1
kdk, . . . ,

∑
k

akankdk

]
.

In particular, when n = 2 and a1 is independent of x2 (hence a1
2 ≡ 0), the above A is

specialized as

A =

⎛⎝ (a1)2d11 +
a1a1

1d1−a2a1
2d2

2 a1a2d12 +
a1a2

1d2+a2a1
2d1

2

a1a2d12 +
a1a2

1d2+a2a1
2d1

2 (a2)2d22 +
a2a2

2d2−a1a2
1d1

2

⎞⎠
=

⎛⎝ (a1)2d11 +
a1a1

1d1

2 a1a2d12 +
a1a2

1d2

2

a1a2d12 +
a1a2

1d2

2 (a2)2d22 +
a2a2

2d2−a1a2
1d1

2

⎞⎠
≡
(

â11 â12

â12 â22

)
.

(10.1)

Put L = 2diam Ω. For any parameters τ > 0 and μ > 0, we now choose d to be
of the form

d(x1, x2) = e−τa1(x1) + e−μ(L+x2).

Then,

d1 = −τa1
1e

−τa1

, d11 = τ(τ |a1
1|2 − a1

11)e
−τa1

,

d12 = 0, d2 = −μe−μ(L+x2), d22 = μ2e−μ(L+x2).
(10.2)

We consider only the case when there is an x0 ∈ G such that a1
1(x

0
1) = 0, a1

11(x
0
1) <

0, |a1
1| �= 0 in G \ {x0

1} (the case when a1
1(x1) �= 0 for any x1 ∈ G is easier to analyze).

By (10.1), (10.2), and noting that a1 is uniformly positive in Ω, one may choose a
sufficiently large τ such that

â11 = (a1)2d11 +
a1a1

1d1

2

= τ

[(
τ(a1)2 − a1

2

)
|a1

1|2 − a1
11(a

1)2
]
e−τa1

> 0

(10.3)

uniformly in Ω.
Further, by (10.1) and (10.2), by noting that a1

1a
2
1 ≥ 0, and by noting that a2 is

uniformly positive in Ω, one may choose a sufficiently large μ such that

â22 = (a2)2d22 +
a2a2

2d2 − a1a2
1d1

2

=

[
(a2)2μ2 − a2a2

2μ

2

]
e−μ(L+x2) +

a1a1
1a

2
1τ

2
e−τa1

> 0

(10.4)

uniformly in Ω.
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Further, we have

â12 = a1a2d12 +
a1a2

1d2

2
= −a1a2

1μ

2
e−μ(L+x2).

Now, fixing the parameter τ , it is easy to see that

â11â22 − (â12)2 > 0 uniformly in Ω,(10.5)

provided that μ is large enough (because (â12)2 is an infinitesimal of higher order,
compared to â11â12, with respect to large μ). By (10.3)–(10.5), we deduce that the
matrix A in (10.1) is uniformly positive definite in Ω.

It is clear that minx∈Ω |∇d(x)| > 0. Therefore, Condition 2.1 holds for the above
constructed function d.

11. Appendix B. Proof of Theorem 5.1. The proof is long and we divide it
into several steps.

Step 1. Applying Corollary 4.2 to our present u and d, we conclude that for any
constants λ > 0 and k ∈ (0, 1), it holds that

θ2|Pu|2 + Mt

+ 2
∑
j

{
2
∑
i,i′,j′

aijai
′j′�i′vivj′ −

∑
i,i′,j′

aijai
′j′�ivi′vj′ + Ψv

∑
i

aijvi

−2�tvt
∑
i

aijvi +
∑
i

aij�iv
2
t −

∑
i

aij
[
(Λ + Ψ)�i +

Ψi

2

]
v2

}
j

≥ 2λ(1 − k)v2
t + Bv2

+2λ
∑
i,j

⎧⎨⎩(k − 1 − 4c)aij +
∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬⎭ vivj ,

(11.1)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
�
= 2

[
�t

(
v2
t +

∑
i,j

aijvivj

)
− 2

∑
i,j

aij�ivjvt

−Ψvvt +

(
(Λ + Ψ)�t +

Ψt

2

)
v2

]
,

Ψ
�
= λ

⎡⎣∑
i,j

(aijdi)j − 2c− 1 + k

⎤⎦ , �
�
= λφ, v

�
= θu, θ

�
= e�,

Λ = λ2

⎡⎣4c2(t− T/2)2 −
∑
i,j

aijdidj

⎤⎦+ λ(4c + 1 − k),

B = 2λ3

[
(4c + 1 − k)

∑
i′,j′

ai
′j′di′dj′ +

∑
i,j

aijdi

(∑
i′,j′

ai
′j′di′dj′

)
j

−4(8c + 1 − k)c2(t− T/2)2

]
+ O(λ2).

(11.2)
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Next, fix a k with 4c− 3 < k < 1. Hence

1 − k > 0.(11.3)

On the other hand, by Condition 2.1 and noting (2.1) with μ0 ≥ 4, we get

∑
i,j

⎧⎨⎩(k − 1 − 4c)aij +
∑
i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]⎫⎬⎭ vivj

≥ (k − 4c− 1 + μ0)
∑
i,j

aijvivj

= μ
∑
i,j

aijvivj ∀ x ∈ Ω,

(11.4)

where

μ = μ0 − 1 + k − 4c ≥ 3 + k − 4c > 0.(11.5)

Recalling that d satisfies (2.1), and noting ai
′j′ = aj

′i′ , we find

μ0

∑
i,j

aijdidj ≤
∑

i,j,i′,j′

[
2aij

′
(ai

′jdi′)j′ − aijj′a
i′j′di′

]
didj

=
∑

i,j,i′,j′

[
2aij

′
ai

′j
j′ di′didj + 2aij

′
ai

′jdi′j′didj − aijj′a
i′j′di′didj

]
=
∑

i,j,i′,j′

[
aij

′
ai

′j
j′ di′didj + 2aij

′
ai

′jdi′j′didj

]
=
∑

i,j,i′,j′

[
aijai

′j′

j di′didj′ + 2aijai
′j′di′jdidj′

]
=
∑

i,j,i′,j′

[
aijai

′j′

j di′didj′ + aijai
′j′di′jdidj′ + aijaj

′i′dj′jdidi′
]

=
∑
i,j

aijdi

⎛⎝∑
i′,j′

ai
′j′di′dj′

⎞⎠
j

.

(11.6)

Hence, recalling, respectively, (2.8) and (11.2) for R1 and B, by (11.6) and using the
third inequality in (2.7), and noting that A is positive definite and 4c+ 1− k + μ0 >
8c + 1 − k, we arrive at

B ≥ 2λ3

⎧⎨⎩(4c + 1 − k + μ0)
∑
i,j

aijdidj − 4(8c + 1 − k)c2(t− T/2)2

⎫⎬⎭+ O(λ2)

≥ 2λ3(8c + 1 − k)

⎡⎣∑
i,j

aijdidj − 4c2(t− T/2)2

⎤⎦+ O(λ2)

≥ 16c(4R2
1 − c2T 2)λ3 + O(λ2).

(11.7)
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Note that, by (5.2), the constant 16c(4R2
1 − c2T 2) in (11.7) is positive. Hence, by

choosing a suitable λ0 > 1, for any λ ≥ λ0, we have

B ≥ 8c(4R2
1 − c2T 2)λ3.(11.8)

Step 2. Integrating (11.1) on Q, using integration by parts, recalling (11.3)–(11.5)
and (11.8), and noting that vi = ∂v

∂ν νi on Σ (which follows from v|Σ = 0), we arrive
at (recall (11.2) for M = M(t, x))

λ

∫
Q

⎛⎝λ2v2 + v2
t +

∑
i,j

aijvivj

⎞⎠ dxdt

≤ C

[∫
Q

θ2|Pu|2dxdt +

∫
Ω

M(T, x)dx−
∫

Ω

M(0, x)dx

+λ

∫
Σ

(∑
i,j

aijνiνj

)(∑
i′,j′

ai
′j′di′νj′

)∣∣∣∂v
∂ν

∣∣∣2dxdt] ∀ λ ≥ λ0.

(11.9)

By (4.13) and (11.2), and noting that u(0, x) = u(T, x) ≡ 0, we get

M(0, x) = 2�t(0, x)[θ(0, x)ut(0, x)]2 = 2cTλ[θ(0, x)ut(0, x)]2 > 0,

M(T, x) = 2�t(T, x)[θ(T, x)ut(T, x)]2 = −2cTλ[θ(T, x)ut(T, x)]2 < 0.
(11.10)

Combining (11.9) and (11.10), and noting the definition of Γ+ in (2.5), we obtain

λ

∫
Q

⎛⎝λ2v2 + v2
t +

∑
i,j

aijvivj

⎞⎠ dxdt

≤ C

[∫
Q

θ2|Pu|2dxdt

+λ

∫ T

0

∫
Γ+

(∑
i,j

aijνiνj

)(∑
i′,j′

ai
′j′di′νj′

)∣∣∣∂v
∂ν

∣∣∣2dxdt].
(11.11)

Recalling u = θ−1v and θ = e�, noting (4.13) and (11.11), and noting (1.2) and
u|Σ = 0, we get

λ

∫
Q

θ2(λ2u2 + u2
t + |∇u|2)dxdt

≤ C

(∫
Q

θ2|Pu|2dxdt + λ

∫ T

0

∫
Γ+

θ2
∣∣∣∂u
∂ν

∣∣∣2dxdt) .

(11.12)

Step 3. Let us estimate ∫ T

0

∫
Γ+

θ2
∣∣∣∂u
∂ν

∣∣∣2dxdt.
We choose a g0 ∈ C1(Ω; Rn) such that g0 = ν on Γ, and a ρ ∈ C2(Ω; [0, 1]) such that
(recall Condition 2.2 for δ){

ρ(x) ≡ 1, x ∈ Oδ/3(Γ+) ∩ Ω,
ρ(x) ≡ 0, x ∈ Ω \ Oδ/2(Γ+).

(11.13)
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Put

g = g0ρθ
2.(11.14)

Integrating (3.3) (in Lemma 3.2) in Q, with g defined by (11.14) and z replaced by
u; using integration by parts; and noting (11.13), ui = ∂u

∂ν νi on Σ (which follows from
u|Σ = 0), and u(0, x) = u(T, x) ≡ 0, we get

∫
Σ

⎛⎝∑
i,j

aijνiνj

⎞⎠ ρθ2
∣∣∣∂u
∂ν

∣∣∣2dxdt
=

∫
Q

∑
j

⎡⎣2(g · ∇u)
∑
i

aijui + gj

⎛⎝u2
t −

∑
i,k

aikuiuk

⎞⎠⎤⎦
j

dxdt

= −
∫
Q

{
2

[
(Pu)g · ∇u− (utg · ∇u)t + utgt · ∇u−

∑
i,j,k

aijuiuk
∂gk

∂xj

]

−(∇ · g)
(
u2
t −

∑
i,j

aijuiuj

)}
dxdt

= −
∫
Q

{
2

[
(Pu)g · ∇u + utg · ∇u + utgt · ∇u−

∑
i,j,k

aijuiuk
∂gk

∂xj

]

−(∇ · g)
(
u2
t −

∑
i,j

aijuiuj

)}
dxdt

≤ C

[
1

λ
|θPu|2L2(Q) + λ

∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2(u2
t + |∇u|2)dxdt

]
.

(11.15)

Step 4. Let us estimate ∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2|∇u|2dxdt.

Put

η = η(t, x)
�
= ρ2

1θ
2,(11.16)

where ρ1 ∈ C2(Ω; [0, 1]) satisfies{
ρ1(x) ≡ 1, x ∈ Oδ/2(Γ+) ∩ Ω,
ρ1(x) ≡ 0, x ∈ Ω \ ω.(11.17)

By (1.3), we obtain

∫
Q

ηuPudxdt =

∫
Q

ηu

⎛⎝utt −
∑
i,j

(aijui)j

⎞⎠ dxdt

= −
∫
Q

[
ut(ηtu + ηut)

]
dxdt +

∫
Q

η
∑
i,j

aijuiujdxdt +

∫
Q

u
∑
i,j

aijuiηjdxdt.

(11.18)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1608 XIAOYU FU, JIONGMIN YONG, AND XU ZHANG

Hence, by (1.2) and (11.16)–(11.18), we find∫ T

0

∫
Oδ/2(Γ+)∩Ω

θ2|∇u|2dxdt

≤ C

[
1

λ2
|θPu|2L2(Q) +

∫ T

0

∫
ω

θ2(λ2u2 + u2
t )dxdt

]
.

(11.19)

Finally, combining (11.12), (11.15), and (11.19), and noting (11.13), we get the
desired estimate (5.3).

12. Appendix C. Proof of Proposition 6.1. We borrow some ideas from
[18]. The proof is split into several steps.

Step 1. Let {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 ⊂ Aad be a minimizing sequence of

J(·). Because of the coercivity of the cost functional and noting that zi,jm solves an
elliptic equation, it can be shown that {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 is bounded in

Aad. Therefore, there exists a subsequence of {{(zi,jm , ri,j1m, ri,j2m, ri,jm )}mi=0}∞j=1 converg-

ing weakly in (H1
0 (Ω) × (L2(Ω))3)m+1 to some {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 ∈ Aad. Since

the function J is strictly convex, this element is the unique solution of (6.5). By (6.6)
and the definition of Aad, it is obvious that ẑ0

m = ẑmm = p0
m = pmm = 0 in Ω.

Step 2. Fix any δi0m ∈ H2(Ω) ∩ H1
0 (Ω), δi1m ∈ L2(Ω), and δi2m ∈ L2(Ω) (i =

0, 1, 2, . . . ,m) with δ0
0m = δm0m = δ0

2m = δm2m ≡ 0 and δ0
1m = δ1

1m in Ω. For
(λ0, λ1, λ2) ∈ R

3, put⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rim
�
=

ẑi+1
m − 2ẑim + ẑi−1

m

h2
+

δi+1
0m − 2δi0m + δi−1

0m

h2
λ0

−
n∑

j1,j2=1

∂xj2

(
aj1j2∂xj1

(ẑim + λ0δ
i
0m)
)

− r̂i+1
1m − r̂i1m

h
− δi+1

1m − δi1m
h

λ1 − r̂i2m − λ2δ
i
2m − λui

me2λφi
m , 1 ≤ i ≤ m− 1;

r0
m = rmm = 0.

Then {(ẑim + λ0δ
i
0m, r̂i1m + λ1δ

i
1m, r̂i2m + λ2δ

i
2m, rim)}mi=0 ∈ Aad. Define a function in

R
3 by

g(λ0, λ1, λ2) = J
(
{(ẑim + λ0δ

i
0m, r̂i1m + λ1δ

i
1m, r̂i2m + λ2δ

i
2m, rim)}mi=0

)
.

Obviously g has a minimum at (0, 0, 0). Hence, ∇g(0, 0, 0) = 0. By ∂g(0,0,0)
∂λ1

=
∂g(0,0,0)

∂λ2
= 0, and noting that {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 satisfy the first equation in

(6.3), one gets

−K

m−1∑
i=1

∫
Ω

r̂im
δi+1
1m − δi1m

h
dx +

m∑
i=1

∫
Ω

�
r̂i1mδi1m

λ2
e−2λφi

mdx = 0,

−K

m−1∑
i=1

∫
Ω

r̂imδi2mdx +

m−1∑
i=1

∫
Ω

�
r̂i2mδi2m

λ4
e−2λφi

mdx = 0,
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which, combined with (6.6) and p0
m = pmm = r̂m2m = 0 in Ω, gives (6.8). From ∂g(0,0,0)

∂λ0
=

0, we obtain

m−1∑
i=1

∫
Ω

{
Kr̂im

[
δi+1
0m − 2δi0m + δi−1

0m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

δi0m)

]

+ẑimδi0me−2λφi
m

}
dx = 0,

(12.1)

which, combined with p0
m = pmm = δ0

0m = δm0m = 0 in Ω, implies that pim = Kr̂im is
a weak solution of (6.9). By means of the regularity theory for elliptic equations of
second order, one sees that ẑim, pim ∈ H2(Ω) ∩H1

0 (Ω) for 1 ≤ i ≤ m− 1.
Step 3. Recalling that {(ẑim, r̂i1m, r̂i2m, r̂im)}mi=0 satisfy (6.3), and noting (6.7)–(6.9)

and pim = Kr̂im, one gets

0 =

m−1∑
i=1

∫
Ω

(
ẑi+1
m − 2ẑim + ẑi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

− r̂i+1
1m − r̂i1m

h
− r̂i2m − λui

me2λφi
m − r̂im

)
pimdx

=
m−1∑
i=1

∫
Ω

⎛⎝pi+1
m − 2pim + pi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

pim)

⎞⎠ ẑimdx

+
m∑
i=1

∫
Ω

pim − pi−1
m

h
r̂i1mdx−

m−1∑
i=1

∫
Ω

(
r̂i2m + λui

me2λφi
m + r̂im

)
pimdx

= −
m−1∑
i=1

[∫
Ω

|ẑim|2e−2λφi
mdx +

∫
Ω

�

(
|r̂i1m|2
λ2

+
|r̂i2m|2
λ4

)
e−2λφi

mdx

+K

∫
Ω

|r̂im|2dx
]
−
∫

Ω

�
|r̂m1m|2
λ2

e−2λφm
mdx− λ

m−1∑
i=1

∫
Ω

ui
me2λφi

mpimdx.

(12.2)
Using the Hölder inequality, by (12.2) and (6.8) we conclude that there is a constant
C = C(K,λ) > 0, independent of m, such that

m−1∑
i=1

[∫
Ω

|ẑim|2e−2λφi
mdx +

∫
Ω

�

(
|r̂i1m|2
λ2

+
|r̂i2m|2
λ4

)
e−2λφi

mdx + K

∫
Ω

|r̂im|2dx
]

+

∫
Ω

�
|r̂m1m|2
λ2

e−2λφm
mdx

≤ C
m−1∑
i=1

∫
Ω

|ui
m|2e2λφi

mdx.

This yields (6.10).
Step 4. Noting that (6.9) holds for i = 1, 2, . . . ,m− 1, and that p0

m = ẑ0
m = pmm =

ẑmm = 0, one gets
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p3
m − 4p2

m + 5p1
m

h4
−

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(p2
m − 2p1

m − p0
m)

h2

)

+
ẑ2
me−2λφ2

m − 2ẑ1
me−2λφ1

m + ẑ0
me−2λφ0

m

h2
= 0 in Ω,

5pm−1
m − 4pm−2

m + pm−3
m

h4
−

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(pmm − 2pm−1
m + pm−2

m )

h2

)

+
ẑmme−2λφm

m − 2ẑm−1
m e−2λφm−1

m + ẑm−2
m e−2λφm−2

m

h2
= 0 in Ω,

(12.3)

and for i = 2, . . . ,m− 2,

pi+2
m − 4pi+1

m + 6pim − 4pi−1
m + pi−2

m

h4

−
n∑

j1,j2=1

∂xj2

(
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

)

+
ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m

h2
= 0 in Ω.

(12.4)

By (6.3), we find

0 =

m−1∑
i=1

∫
Ω

(
ẑi+1
m − 2ẑim + ẑi−1

m

h2
−

n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

− r̂i+1
1m − r̂i1m

h
− r̂i2m − λui

me2λφi
m − r̂im

)
(pi+1

m − 2pim + pi−1
m )

h2
dx.

(12.5)

Noting ẑ0
m = ẑmm = p0

m = pmm = 0 again, and using (12.3)–(12.4), we arrive at

m−1∑
i=1

∫
Ω

(ẑi+1
m − 2ẑim + ẑi−1

m )

h2

(pi+1
m − 2pim + pi−1

m )

h2
dx

=

m−1∑
i=2

∫
Ω

ẑim
(pim − 2pi−1

m + pi−2
m )

h4
dx− 2

m−1∑
i=1

∫
Ω

ẑim
(pi+1

m − 2pim + pi−1
m )

h4
dx

+

m−2∑
i=1

∫
Ω

ẑim
(pi+2

m − 2pi+1
m + pim)

h4
dx

=

∫
Ω

ẑ1
m

(p3
m − 4p2

m + 5p1
m)

h4
dx +

∫
Ω

ẑm−1
m

(5pm−1
m − 4pm−2

m + pm−3
m )

h4
dx

+
m−2∑
i=2

∫
Ω

ẑim
(pi+2

m − 4pi+1
m + 6pim − 4pi−1

m + pi−2
m )

h4
dx

=

m−1∑
i=1

∫
Ω

ẑim

{
n∑

j1,j2=1

∂xj2

[
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

]

− ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m

h2

}
dx.

(12.6)
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Next, noting zim|Γ = pim|Γ = 0, for 0 ≤ i ≤ m, one has

m−1∑
i=1

∫
Ω

⎛⎝ n∑
j1,j2=1

∂xj2
(aj1j2∂xj1

ẑim)

⎞⎠ (pi+1
m − 2pim + pi−1

m )

h2
dx

=
m−1∑
i=1

∫
Ω

ẑim

n∑
j1,j2=1

∂xj2

(
aj1j2∂xj1

(pi+1
m − 2pim + pi−1

m )

h2

)
dx.

(12.7)

Combining (12.5)–(12.7), we obtain

0 = −
m−1∑
i=1

∫
Ω

[
ẑim

(ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m )

h2

+

(
r̂i+1
1m − r̂i1m

h
+ r̂i2m + λui

me2λφi
m + r̂im

)
(pi+1

m − 2pim + pi−1
m )

h2

]
dx.

(12.8)

By Proposition 3.5 and noting pim = Kr̂im, one has

−
m−1∑
i=1

∫
Ω

[
ẑim

(ẑi+1
m e−2λφi+1

m − 2ẑime−2λφi
m + ẑi−1

m e−2λφi−1
m )

h2

+ r̂im
(pi+1

m − 2pim + pi−1
m )

h2

]
dx

=
m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)

h

(ẑi+1
m e−2λφi+1

m − ẑime−2λφi
m)

h
+ K

(r̂i+1
m − r̂im)2

h2

]
dx

=

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
(ẑi+1

m − ẑim)

h

(e−2λφi+1
m − e−2λφi

m)

h
ẑi+1
m

+K
(r̂i+1

m − r̂im)2

h2

]
dx.

(12.9)

Further, by (6.8), and using Proposition 3.5 again, we find

−
m−1∑
i=1

∫
Ω

(
r̂i+1
1m − r̂i1m

h
+ r̂i2m + λui

me2λφi
m

)
(pi+1

m − 2pim + pi−1
m )

h2
dx(12.10)

= −
m−1∑
i=1

∫
Ω

(
r̂i+1
1m − r̂i1m

h
+ λui

me2λφi
m

)
1

h

(
pi+1
m − pim

h
− pim − pi−1

m

h

)
dx

+

m−1∑
i=0

∫
Ω

(r̂i+1
2m − r̂i2m)

h

(pi+1
m − pim)

h
dx

=
m−1∑
i=1

∫
Ω

�

λ2

(
r̂i+1
1m − r̂i1m

h
+ λui

me2λφi
m

)
(r̂i+1

1m e−2λφi+1
m − r̂i1me−2λφi

m)

h
dx

+
m−1∑
i=0

∫
Ω

�

λ4

(r̂i+1
2m − r̂i2m)

h

(r̂i+1
2m e−2λφi+1

m − r̂i2me−2λφi
m)

h
dx

=

m−1∑
i=1

∫
Ω

�

λ2

[
(r̂i+1

1m − r̂i1m)2

h2
e−2λφi

m

+
(r̂i+1

1m − r̂i1m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
1m

]
dx
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+λ

m−1∑
i=1

∫
Ω

�

λ2
ui
m

[
(r̂i+1

1m − r̂i1m)

h
e−2λφi

m +
(e−2λφi+1

m − e−2λφi
m)

h
r̂i+1
1m

]
dx

+

m−1∑
i=0

∫
Ω

�

λ4

[
(r̂i+1

2m − r̂i2m)2

h2
e−2λφi

m

+
(r̂i+1

2m − r̂i2m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
2m

]
dx.

Combining (12.8)–(12.10), and noting that r̂1
1m = r̂0

1m, u0
m = 0, we end up with

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
�

λ2

(r̂i+1
1m − r̂i1m)2

h2
e−2λφi

m

+
�

λ4

(r̂i+1
2m − r̂i2m)2

h2
e−2λφi

m + K
(r̂i+1

m − r̂im)2

h2

]
dx

= −
m−1∑
i=0

∫
Ω

(ẑi+1
m − ẑim)

h

(e−2λφi+1
m − e−2λφi

m)

h
ẑi+1
m dx

−
m−1∑
i=1

∫
Ω

�

λ2

(r̂i+1
1m − r̂i1m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
1m dx

−λ

m−1∑
i=1

∫
Ω

�

λ2
ui
m

[
(r̂i+1

1m − r̂i1m)

h
e−2λφi

m +
(e−2λφi+1

m − e−2λφi
m)

h
r̂i+1
1m

]
dx

−
m−1∑
i=0

∫
Ω

�

λ4

(r̂i+1
2m − r̂i2m)

h

(e−2λφi+1
m − e−2λφi

m)

h
r̂i+1
2m dx.

(12.11)

Using the Hölder inequality and noting that φ is a smooth function, from (12.11) we
conclude that there is a positive constant C = C(K,λ), independent of m, such that

m−1∑
i=0

∫
Ω

[
(ẑi+1

m − ẑim)2

h2
e−2λφi

m +
�

λ2

(r̂i+1
1m − r̂i1m)2

h2
e−2λφi

m

+
�

λ4

(r̂i+1
2m − r̂i2m)2

h2
e−2λφi

m + K
(r̂i+1

m − r̂im)2

h2

]
dx

≤ C

[
m−1∑
i=1

∫
Ω

(
|ẑim|2 + |r̂i1m|2 + |r̂i2m|2 + K|r̂im|2 + |ui

m|2
)
dx

+

∫
Ω

|r̂m1m|2dx
]
.

(12.12)

Finally, combining (12.12) and (6.10), and recalling that u ∈ C([0, T ];L2(Ω)),
we establish the desired estimate (6.11). This completes the proof of Proposition
6.1.
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CONVERGENCE IN NONLINEAR FILTERING FOR STOCHASTIC
DELAY SYSTEMS∗

ANTONELLA CALZOLARI† , PATRICK FLORCHINGER‡ , AND GIOVANNA NAPPO§

Abstract. We study an approximation scheme for a nonlinear filtering problem when the state
process X is the solution of a stochastic delay diffusion equation and the observation process is a
noisy function of X(s) for s ∈ [t − τ, t], where τ is a constant. The approximating state is the
piecewise linear Euler–Maruyama scheme, and the observation process is a noisy function of the
approximating state. The rate of convergence of this scheme is computed.

Key words. conditional laws, strong approximation, stochastic delay differential equations,
rate of convergence
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1. Introduction. Stochastic diffusion processes with delay have been used as
models in many applications: in population dynamics (see Goel, Maitra, and Montroll
[16]), in respiratory systems (see Longtin et al. [30]), in eye movement control (see
Vasilakos and Beuter [42]), in postural control (see Peterka [37]), and in transmission
delays for neural networks and/or ensemble of coupled neural oscillators (see Niebur,
Schuster, and Kammen [35]).

In most of the literature the stochastic process is assumed to be completely ob-
servable. However, this cannot always be the case, since measurement errors may
occur. This difficulty can be overcome by modelling this situation as a nonlinear
filtering problem.

The aim of stochastic nonlinear filtering is to compute the conditional law at time
t of a state process, which cannot be directly observed, given an observation process
up to time t. This task can be achieved only in a few specific cases, and therefore the
problem of the approximation of the conditional law naturally arises.

A classical model of partially observed system extensively studied in the last few
years arises when both the state and the observation processes are diffusion processes.

For this model, under suitable hypotheses on the coefficients, the filtering equa-
tions have been established by Kushner [23], Duncan [10], Mortensen [34], and Zakai
[43] and have been studied since then by many authors (see, for example, Pardoux [36]
or Kallianpur [18] and the references therein). Different approximation schemes for
the filter have been studied in various frameworks by many authors (see, for example,
Kushner [24], Le Gland [28], or Del Moral [9] and the references therein).

In this paper we are interested in nonlinear filtering of partially observed delay
systems of the following form.
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The state process X =
(
X(t)

)
t∈[−τ,T ]

satisfies the stochastic delay differential

equation on the probability space (Ω,F , (Ft)t∈[0,T ], P )

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = η(t), −τ ≤ t ≤ 0,

X(t) = η(0) +

∫ t

0

a(u,ΠuX)du +

∫ t

0

b(u,ΠuX)dW̃u, 0 ≤ t ≤ T,

where τ is a positive constant,
(
ΠtX

)
t∈[0,T ]

is a C([−τ, 0],R)-valued random process

defined by

ΠtX(s) = X(t + s), −τ ≤ s ≤ 0,

W̃ =
(
W̃ (t)

)
t∈[0,T ]

is a standard Brownian motion, and η =
(
η(s)

)
s∈[−τ,0]

is a

C([−τ, 0],R)-valued random variable.
The observation process Y =

(
Y (t)

)
t∈[0,T ]

is given by

(1.2) Y (t) =

∫ t

0

h(u,ΠuX)du + W (t), 0 ≤ t ≤ T,

where W =
(
W (t)

)
t∈[0,T ]

is a standard Brownian motion, independent of W̃ , and

h : [0, T ] × C([−τ, 0],R) → R is a Borel measurable function.
As an example the functions a(t, θ), b(t, θ), and h(t, θ) for θ ∈ C([−τ, 0],R) can

be taken of the form

(1.3) g

(
t, max

u∈[τi−1,τi]
θ(u); i = 1, . . . , r

)
,

where −τ = τ0 < τ1 < · · · < τr = 0, or

(1.4) g

(
t,

∫ 0

−τ

ψi(u, θ(u))γi(du); i = 1, . . . , r

)
,

where γi are finite measures on [−τ, 0], and g and ψi are continuous functions.
By taking in (1.4) ψi(u, x) = x for all i, and γi(ds) in the set {eλsds, δ−τ (ds), δ0(ds)},

we recover the stochastic delay differential equation considered in a control framework
by Larssen and Risebro [27] and by Elsanousi and Larssen [11]

dX(t) = ga

(
t,X(t), X(t− τ),

∫ t

t−τ

eλ(u−t)X(u) du, w(t)

)
dt

+ gb

(
t,X(t), X(t− τ),

∫ t

t−τ

eλ(u−t)X(u) du, w(t)

)
dW̃t,

where w(t) is the control.
Moreover, when the function ga(t, x1, x2, x3, w), as well as gb(t, x1, x2, x3, w), de-

pends only on (x1, x2), we recover the fixed time delay model

(1.5) dX(t) = ga
(
X(t), X(t− τ)

)
dt + gb

(
X(t), X(t− τ)

)
dW̃t,

which is studied in Frank [14], and in particular, for ga(x1, x2) =
(
H −K log(x2)

)
x1

and gb(x1, x2) = x1, we recover the stochastic Gompertz model with delay; see Goel,
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Maitra, and Montroll [16] and Frank and Beek [15]. The stochastic Gompertz model
without delay has been used in population growth (see Ricciardi [40]) or in biomedical
sciences (see Ferrante et al. [12]).

At first the aim was to obtain a computable approximation for E
[
ϕ
(
X(t)

)
/FY

t

]
for all functions ϕ belonging to a determining class, i.e., the best estimate of ϕ

(
X(t)

)
given the σ-algebra of the observations up to time t, FY

t = σ{Y (s), s ≤ t}. In
fact, since ΠtX(0) = X(t), we shall give a computable approximation for the filter πt

associated with the delay system
(
ΠtX,Y (t)

)
t∈[0,T ]

, defined for any measurable and

bounded functions φ mapping C([−τ, 0],R) into R by

(1.6) πt(φ) = E[φ(ΠtX)|FY
t ].

In our paper the state is approximated by the piecewise linear Euler–Maruyama
scheme (see (2.7) and (2.10)), while the observation is approximated by a diffusion
(see (2.8)), which can be considered as a continuous Euler–Maruyama scheme (see
Remark 2.1 for the peculiarities due to the delay). The filter process of this approx-
imating system is the first approximation scheme of π = (πt)t∈[0,T ] we consider (see
(2.14)). This approximation scheme has a drawback: it depends on the approximat-
ing observation process, which is not the actual observation process Y . Instead, the
other approximation scheme we consider depends on the actual observation process
(see (2.15)).

As the time step converges to zero, the two approximating filters converge in
probability to π as measure-valued processes (see Theorem 2.2).

To our knowledge there are only three papers dealing with nonlinear filtering for
delay systems: Kwong and Willsky [26], Chang [8], and Kallianpur and Mandal [20].

In [26] Kwong and Willsky give a characterization of the optimal filter when deal-
ing with nonlinear delay systems with Gaussian noises, i.e., with b depending only on
time. A Fujisaki–Kallianpur–Kunita equation for the filter is deduced from a repre-
sentation result which characterizes conditional moment functionals of nonlinear delay
systems. However, the uniqueness of the solution of this equation is not guaranteed.

In [8] Chang gives a computable approximation for the optimal filter when deal-
ing with one-dimensional nonlinear delay filtering systems with b = 1. The original
model is approximated by a discrete-time model obtained by applying an Euler dis-
cretization scheme. An optimal filter for the approximate system is obtained by an
explicit procedure, and the weak convergence of the approximating process and the
approximating filter to the original ones is verified.

In [20] Kallianpur and Mandal study a nonlinear filtering problem where the
state process is solution of the stochastic delay differential equation (1.1), in the
homogeneous case, and the observation process is given by (1.2). By using some
extensions of results obtained by Mohammed [32] for stochastic delay differential
equations, they prove that the signal process is the unique solution to an appropriate
martingale problem. By taking this fact into account the authors prove that the
optimal filter corresponding to the nonlinear filtering problem solves a Zakai-type
equation. The uniqueness for the solution of the Zakai equation is deduced from the
results of Bhatt, Kallianpur, and Karandikar [2], and a Fujisaki–Kallianpur–Kunita
equation for the filter is deduced from the Zakai equation by usual arguments in
nonlinear filtering theory.

In addition to the previous references we also quote the paper [3] by Bhatt,
Kallianpur, and Karandikar, which is the starting point in some of our analysis, and
Bhatt and Karandikar [4]. Though none of these papers is explicitly connected with
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filtering models involving delays, the results achieved by these authors can be used in
the delay context.

This paper is divided into six sections and is organized as follows. In section 2,
we introduce the approximation scheme for the system we are dealing with in this
paper and state the main results. The first result concerns the convergence of the
approximation schemes for the filter, while the second result deals with the rate of
convergence w.r.t. the bounded Lipschitz metric. In section 3, we prove the conver-
gence for the filter by making use of a convergence result deduced from the papers by
Bhatt, Kallianpur, and Karandikar [3] and Bhatt and Karandikar [4]. In section 4,
we compute an upper bound for the rate of convergence w.r.t. the bounded Lipschitz
metric for our approximation scheme by combining filter approximation techniques
similar to those in Calzolari, Florchinger, and Nappo [7] with a convergence result for
the approximation of stochastic delay differential equations. In section 5, we give the
proofs of some technical results that we use in sections 3 and 4. Moreover we recall a
result on the expectation of the modulus of continuity for diffusion due to S�lomiński
[41], which we use in the proof of the approximation result for stochastic delay differ-
ential equations. In section 6, we conclude by giving a comparison between our result
and the one by Chang [8], and we discuss briefly some works on approximation for
stochastic delay differential equations, in particular the one by Mao and Sabanis [31].

2. Approximation scheme and main results. For the partially observed de-
lay system (1.1) and (1.2) stated above we assume the following standing hypotheses:

(A1) η is a F0-measurable C([−τ, 0],R)-valued random variable, with

E
(
‖Π0X‖2k

)
= E

(
sup

s∈[−τ,0]

|η(s)|2k
)

< ∞, k = 1, 2.

(A2) The functionals a(t, θ) and b(t, θ) on [0, T ]×C([−τ, 0],R) are jointly globally
continuous, Hölder in time, and Lipschitz in space, i.e.,

(2.1) |a(t, θ) − a(t′, θ̄)|2 + |b(t, θ) − b(t′, θ̄)|2 ≤ K
(
|t− t′|2α + ‖θ − θ̄‖2

)
, α > 0,

and satisfy the growth condition

(2.2) |a(t, θ)|2 + |b(t, θ)|2 ≤ K
(
1 + ‖θ‖2

)
for some constant K > 0.

(A3) h : [0, T ] × C([−τ, 0],R) → R is jointly continuous and sublinear, i.e.,

|h(t, θ)|2 ≤ K(1 + ‖θ‖2).

Conditions (A1) and (A2), with t′ = t in (2.1), assure the existence and the
uniqueness of the solution of (1.1) together with

(2.3) E

[
sup

u∈[0,T ]

‖ΠuX‖2k

]
< ∞, k = 1, 2

(see [32, Theorem II.2.1 and Lemma III.1.2] and [33, Theorem I.2]). Note that, under
condition (A2), with t′ = t in (2.1), the existence and the uniqueness of the solution
of (1.1) follow without condition (A1) (see Kallianpur and Mandal [20]). The latter
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condition is used to obtain (2.3), which together with the sublinearity of h implies
that ∫ T

0

E[|h(u,ΠuX)|2k]du < ∞, k = 1, 2.

The above condition, for k = 1, together with the independence of the noises, is
a classical assumption in nonlinear filtering theory which guarantees that the filter πt

can be represented via a Kallianpur–Striebel formula

πt(φ) =
σt(φ)

σt(1)
,

with

(2.4) σt(φ) = E0

[
φ(ΠtX) exp

{∫ t

0

h(s,ΠsX)dYs −
1

2

∫ t

0

|h(s,ΠsX)|2 ds
} ∣∣∣FY

t

]
,

where E0 denotes the expectation w.r.t. the reference probability measure P 0, defined
by the Radon–Nikodym derivative

(2.5)
dP 0

dP
= exp

{
−

∫ T

0

h(s,ΠsX)dYs +
1

2

∫ T

0

|h(s,ΠsX)|2 ds
}
.

The independence of X and W under P implies the independence of X and Y
under P 0; furthermore the law of X is the same under P and P 0 (see, e.g., Bhatt,
Kallianpur, and Karandikar [3] and Kallianpur and Mandal [20]). This fact will play
a fundamental role in the proof of our approximation results. In particular it implies
that there exists a deterministic functional, with values in P(C([−τ, 0],R)), the metric
space of probability measures on C([−τ, 0],R), endowed with the Prohorov metric,

U : [0, T ] × C([0, T ],R) → P(C([−τ, 0],R)),

(t,y) �→ U
(
t,y

)
with the property U

(
t,y

)
= U

(
t, y(· ∧ t)

)
, and such that

(2.6) πt = U
(
t,Y

)
.

We recall that the paths t �→ U(t,y) are right continuous with left limits, i.e., be-
long to the Skorohod space DP(C([−τ,0],R))([0, T ]) of càdlàg functions with values in
P(C([−τ, 0],R)), and therefore the same property holds for t �→ πt.

In this paper we consider the following approximation scheme.
The approximation Xn =

(
Xn(t)

)
t∈[−τ,T ]

of the state process X =
(
X(t)

)
t∈[−τ,T ]

is the piecewise linear Euler–Maruyama scheme, that is, the linear interpolation of the
Euler discretization scheme with step δ = δn = T/n, with τ = mδ (as in Chang [8],
for the sake of simplicity, we assume that T/τ is rational):1

(2.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xn(δ) = η(δ), −m ≤  ≤ 0,

Xn(( + 1)δ) = Xn(δ) + a(δ,Π�δX
n)δ

+ b(δ,Π�δX
n)
[
W̃ (( + 1)δ) − W̃ (δ)

]
, 0 ≤  ≤ n− 1.

1It is clear that, assuming T = p
q
τ , we first fix m = kq a multiple of q and then set δ = τ/m, so

that T = kpδ and n = kp. Or better, we first fix m, then set δ = τ/m, and finally take the interval
[−τ, �T/δ�δ], instead of [−τ, T ], so that n = n(m).
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With this approximation for the state process X, we can consider the piecewise-
constant C([−τ, 0],R)-valued process

(
Π�t/δ�·δX

n
)
t∈[0,T ]

as an approximation of the

C([−τ, 0],R)-valued process
(
ΠtX

)
t∈[0,T ]

.

For the approximation of the observation process, we define Y n =
(
Y n(t)

)
t∈[0,T ]

by

(2.8) Y n(t) =

∫ t

0

h(	s/δ
 · δ,Π�s/δ�·δX
n)ds + W (t), 0 ≤ t ≤ T,

where 	x
 is the integer part of x.
Remark 2.1. Note that, unlike in the finite-dimensional Euler scheme, the inter-

polation has to be performed at every step in order to evaluate Π�δX
n. Nevertheless

it is clear that

(2.9)
{(

Xn(�δ), Xn((�− 1)δ), . . . , Xn((�−m)δ)
)}

0≤�≤n

is an (m + 1)-dimensional Markov chain, and for t ∈ [δ, ( + 1)δ], 0 ≤  ≤ n− 1,

Xn(t) = Xn(δ) + a(δ,Π�δX
n)(t− δ)

+ b(δ,Π�δX
n)
[
W̃ (( + 1)δ) − W̃ (δ)

]
(t− δ)/δ,(2.10)

with Xn(0) = η(0), and

(2.11) Y n(t) = Y n(δ) + h(δ,Π�δX
n)(t− δ) +

[
W (t) −W (δ)

]
,

with Y n(0) = 0.
When the state is given by fixed time delay model (1.5), the linear interpolation,

in the above discrete Euler–Maruyama scheme, is not needed in order to compute the
sequence {Xn(δ)}0≤�≤n. Indeed in this case

Xn(( + 1)δ) = Xn(δ) + ga
(
δ,Xn(δ), Xn((−m)δ)

)
δ

+ gb
(
δ,Xn(δ), Xn((−m)δ)

)[
W̃ (( + 1)δ) − W̃ (δ)

]
,

with Xn(0) = η(0), and therefore the computation of the discrete Markov chain (2.9)
is much simpler.

The process Xn is neither adapted nor Markov, and therefore one cannot use the
results of [2] to characterize the filter as the unique solution of the Zakai equation.
Nevertheless the signal noise W is independent of Xn, and the same holds for the
approximated state process

(
Π�t/δ�·δX

n
)
t∈[0,T ]

, which is an adapted process; there-

fore one can compute the filter πn
t associated with the approximating delay system(

Π�t/δ�·δX
n, Y n(t)

)
t∈[0,T ]

by means of the classical Kallianpur–Striebel formula (see,

e.g., [19] and [3]). The filter πn
t is then given by

(2.12) πn
t (φ) =

σn
t (φ)

σn
t (1)

=
E0,n

[
φ(Π�t/δ�·δX

n)Ln
t |FY n

t

]
E0,n

[
Ln
t |FY n

t

] ,

where E0,n denotes the expectation w.r.t. the reference probability measure P 0,n,
defined by the Radon–Nikodym derivative

dP 0,n

dP
=

(
Ln
T

)−1
,
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with
(2.13)

Ln
t = exp

{∫ t

0

h(	s/δ
 · δ,Π�s/δ�·δX
n)dY n

s − 1

2

∫ t

0

|h(	s/δ
 · δ,Π�s/δ�·δX
n)|2 ds

}
,

which is well defined thanks to the sublinearity of h and (A1).
Taking into account that s �→ h(	s/δ
 · δ,Π�s/δ�·δX

n) is piecewise constant, we
have that

Ln
t = Ln

t (Xn
(·), Y n

0 , Y n
δ , . . . , Y n

�t/δ�, Y
n
t ),

where, for 0 ≤  ≤ n,

logLn
�δ(x(·), y0, y1, . . . , y�) =

�−1∑
k=0

h(kδ,Πkδx(·))(yk+1 − yk) −
1

2

�−1∑
k=0

|h(kδ,Πkδx(·))|2δ,

and, for t ∈ (δ, ( + 1)δ), 0 ≤  ≤ n− 1,

logLn
t (x(·), y0, y1, . . . , y�, y) = logLn

�δ(x(·), y0, y1, . . . , y�)

+ h(	t/δ
 · δ,Π�t/δ�·δx(·))(y − y�) −
1

2
|h(	t/δ
 · δ,Π�t/δ�·δx(·))|2(t− δ).

Moreover, under P 0,n, the processes Xn and Y n are independent and the law of
the approximated state process is invariant under P and P 0,n, and hence, for t ∈
[δ, ( + 1)δ), 0 ≤  ≤ n− 1,

σn
t (φ) = E

[
φ(Π�t/δ�·δX

n)Ln
t (Xn

(·), y0, y1, . . . , y�, y)
]∣∣∣∣

y0=Y n
0 ,y1=Y n

δ ,...,y�=Y n
�δ,y=Y n

t

.

Therefore, by taking the above equality into account, one can explicitly obtain a
deterministic functional

Un : [0, T ] × C([0, T ],R) → P(C([−τ, 0],R))

(t,y) �→ Un
(
t,y

)
,

with the property that Un
(
t,y

)
depends only on

(
y(kδ)

)
0≤k≤� t

δ �
and y(t), such that

(2.14) πn
t = Un

(
t,Y n

)
.

So the filter πn
t defined above depends explicitly on the approximated observation

process Y n, which, however, is not directly observable. To overcome this difficulty
we also consider the following approximation π̃n

t for the filter:

(2.15) π̃n
t = Un

(
t,Y

)
=

σ̃n
t

σ̃n
t (1)

,

where
(2.16)

σ̃n
t (φ) = E

[
φ(Π�t/δ�·δX

n)Ln
t (Xn

(·), y0, y1, . . . , y�, y)
]∣∣∣∣

y0=Y0,y1=Yδ,...,y�=Y�δ,y=Yt

.

Then the following convergence result, which will be proved in the following sec-
tion, holds.
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Theorem 2.2. Let π = (πt; t ≥ 0), πn = (πn
t ; t ≥ 0), and π̃n = (π̃n

t ; t ≥ 0) be
the càdlàg probability measure-valued processes defined by (1.6), (2.12), and (2.15),
respectively. Then the following hold:

1. The sequence of filters πn converges in probability (and therefore weakly) to
the original filter π in DP(C([−τ,0],R))([0, T ]).

2. The sequence of measure-valued processes π̃n converges in probability to the
original filter π.

3. The sequence maxk=1,...,n d(π̃
n
kδ, πkδ), where d denotes the Prohorov metric,

converges in probability to zero.
From the practical point of view, the interest of this method relies on the fact that

σt(φ) in (2.4) cannot usually be computed explicitly, or with a Monte Carlo method,
while σ̃n

t (φ) in (2.16) can always be computed by means of a Monte Carlo method. In
addition, under further hypotheses on a, b, and h, the following result concerning the
rate of convergence w.r.t. the bounded Lipschitz metric of our approximation scheme
will be proved in section 4. For the ease of the reader we recall that, for any metric
space S, and for given probability measures ν1 and ν2 on S,

dBL(ν1, ν2) = sup

{
|ν1(ϕ) − ν2(ϕ)|

‖ϕ‖ ∨ Lϕ
;ϕ bounded and Lipschitz

}
,

where ‖ϕ‖ denotes the sup-norm, and Lϕ is the Lipschitz constant of ϕ.
Theorem 2.3. Assume further that the functions a and b are bounded, 1/2 ≤

α ≤ 1 in (2.1), the function h is jointly globally Lipschitz, and there exists a constant
Cη such that the modulus of continuity of the initial condition η satisfies

(2.17) E
[
ω2
η

(
δ; [−τ, 0]

)]
≤ Cη δ log( 1

δ ).

Then there exists a constant C such that

(2.18) E
[
dBL(πt, π̃

n
t )

]
≤ C( logn

n )
1
2 ,

where dBL is the bounded Lipschitz metric on the space P(C([−τ, 0],R)).
Remark 2.4. As will be shown in the example at the end of section 4, by con-

sidering the case where η = 0, a = 0, b = 1, and h = 0, the upper bound for the rate
of convergence given by (2.18) appears to be the best we can obtain in our context.

Furthermore, as is clear from the proof (see (5.13)), if E
[
ω2
η

(
δ; [−τ, 0]

)]
converges

to zero with an order of convergence lower than O
(
δ log( 1

δ )
)
, then

E
[
dBL(πt, π̃

n
t )

]
≤ C (E

[
ω2
η

(
δ; [−τ, 0]

)]
)

1
2

for a suitable constant C.
Finally, as will be clear from the proof, condition (A1) for k = 2 is not necessary

(see Proposition 4.2).
To conclude this section, note that in order to evaluate πn

t and π̃n
t we need to

compute
(a) the transition probability of the (m + 1)-dimensional Markov chain(

Xn(�δ), Xn((�− 1)δ), . . . , Xn((�−m)δ)
)
,

(b) the explicit expression of Ln
t .

Consequently we need the explicit expression of a(δ,Π�δX
n), b(δ,Π�δX

n), and
h(δ,Π�δX

n).
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When the functionals a, b, and h are taken to be of the form (1.4), with r = 1,
we need to evaluate expressions such as

g

(
δ,

∫ 0

−τ

ψ(u,Π�δX
n(u)) γ(du)

)
,

where∫ 0

−τ

ψ(u,Π�δX
n(u))γ(du) =

∫ 0

−τ

ψ(u,Xn(δ + u)) γ(du)

=

−1∑
k=−m

∫ (k+1)δ

kδ

ψ
(
u,Xn((� + k)δ) +

u− kδ

δ

[
Xn((� + k + 1)δ) −Xn((� + k)δ)

])
γ(du).

3. The convergence result. This section is dedicated to the proof of Theo-
rem 2.2. With this aim, we will make use of a result deduced from the papers by
Bhatt, Kallianpur, and Karandikar [3] and Bhatt and Karandikar [4] in the following
context.

Consider a signal process X = (Xt)t∈[0,T ], with values in a complete separable
metric space (S, dS), defined on (Ω,F , P ), with càdlàg paths and being continuous in
probability, and the observation process Y = (Y (t))t∈[0,T ] given by

(3.1) Y (t) =

∫ t

0

h(Xs)ds + W (t),

where W = (W (t))t∈[0,T ] is a standard Brownian motion, defined on (Ω,F , P ), inde-

pendent of X , and h is a measurable function on S with values in R
k, such that

P

(∫ T

0

|h(Xs)|2 ds < ∞
)

= 1.

The approximation signal processes Xn = (Xn
t )t∈[0,T ] are defined on (Ω,F , P )

and take values in S as well. The approximation observation processes Y n =
(Y n(t))t∈[0,T ] are defined by

(3.2) Y n(t) =

∫ t

0

hn(Xn
s )ds + W (t),

where W is independent of Xn, and hn are measurable functions on S with values
in R

k, such that

P

(∫ T

0

|hn(Xn
s )|2 ds < ∞

)
= 1.

Then the following result is an easy consequence of [3] and Remark 7.4 in [4].
Theorem 3.1. Assume that
(B1) hn converges to h uniformly on compact sets;
(B2) h is continuous;
(B3) Xn converges in P -probability (and therefore weakly) to X in DS([0, T ]);

(B4) limn→∞ E(
∫ T

0
|hn(Xn

s ) − h(Xs)|2 ds) = 0.
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Then the filters of the system (Xn,Y n) converge in probability (and therefore
weakly) to the filter of the system (X ,Y ) as processes with values in DP(S)([0, T ]),
where P(S) is the metric space of probability measures on S, endowed with the Pro-
horov metric.

Note that the above conditions (B1)–(B4) are only sufficient conditions and that
in [3] weaker conditions and different frameworks can be found.

In order to be in the framework described above, we take S = [0, T ]×C([−τ, 0],R),
endowed with the distance

‖(t, θ) − (t′, θ′)‖S = |t− t′| + ‖θ − θ′‖,

and we consider the limit model
(
Xt, Y (t)

)
t∈[0,T ]

, where

Xt = (t,ΠtX),

and Y (t) is given by (1.2), and the approximating model
(
Xn

t , Y
n(t)

)
t∈[0,T ]

, where

(3.3) Xn
t = (δ · 	t/δ
 ,Πδ·�t/δ�X

n),

and Y n(t) is given by (2.11).
Then with this choice, the processes

(
Xt

)
t∈[0,T ]

and
(
Xn

t

)
t∈[0,T ]

have paths in

DS([0, T ]), and conditions (B1) and (B2) are obviously satisfied with hn = h = h.
Condition (B3), which asserts that Xn =

(
(δ ·	t/δ
 ,Πδ·�t/δ�X

n)
)
t∈[0,T ]

converges

in probability to X =
(
(t,ΠtX)

)
t∈[0,T ]

in DS([0, T ]) = D[0,T ]×C([−τ,0],R)([0, T ]), is also

satisfied thanks to the following proposition, which will be proved in section 5.
Proposition 3.2. Assume that conditions (A1), for k = 1, and (A2) are satis-

fied. Then

(3.4) lim
n→∞

E

[
sup

t∈[0,T ]

∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X
n) − (t,ΠtX)

∥∥2

S

]
= 0.

In our approximation scheme, since the function h appears in the definitions of
both Y (t) and Y n(t), condition (B4) reads

(3.5) lim
n→∞

∫ T

0

E
(
|h(δ · 	s/δ
 ,Πδ·�s/δ�X

n) − h(s,ΠsX)|2
)
ds = 0.

When the observation function h is jointly globally Lipschitz, then condition
(3.5) immediately follows by Proposition 3.2. Furthermore, condition (A1) is used for
k = 1, in the proof of Proposition 3.2, and, for k = 2, to obtain (3.5) in the general
case considered in (A3). In this general case, since h is jointly continuous and the
convergence condition (3.4) holds, the sequence |h(δ ·	s/δ
 ,Πδ·�s/δ�X

n)−h(s,ΠsX)|2
in (3.5) converges to zero in probability. Moreover a uniform integrability condition
holds by property (2.3), for k = 2, and by

sup
s∈[0,T ]

sup
n

E
[
|h(δ · 	s/δ
 ,Πδ·�s/δ�X

n)|4
]
≤ sup

n
E

[
C ′

(
1 + sup

t∈[−τ,T ]

|Xn(t)|4
)]

< ∞.

The above inequalities are immediate, thanks to the sublinear growth conditions
in (A3) and Lemma 3.3, which will be proved in section 5. Then the dominated
convergence theorem implies (3.5).
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Lemma 3.3. Assume that conditions (A1) and (A2) are satisfied; then, for
k = 1, 2,

sup
n

E

[
sup

t∈[0,T ]

‖ΠtX
n‖2k

]
= sup

n
E

[
sup

u∈[−τ,T ]

|Xn(u)|2k
]
< ∞.

Therefore, since all the conditions in Theorem 3.1 hold, the filters of the systems
(Xn,Y n) converge in probability to the filter of the system (X ,Y ) as random pro-
cesses with values in DP(S)([0, T ]), and this implies the convergence of πn to π as
random processes with values in DP(C([−τ,0],R))([0, T ]).

To prove the second assertion of Theorem 2.2, we make use, as in section 2, of a
representation result for the filters (Xn,Y n) and (X ,Y ) in the state space S.

In this setting there exist functionals

(3.6) V n, V : [0, T ] ×DRk([0, T ]) �→ P(S),

with the properties V n
(
t,y

)
= V n

(
t, y(· ∧ t)

)
and V

(
t,y

)
= V

(
t, y(· ∧ t)

)
, such that

the filters of (Xn,Y n) and (X ,Y ) are given by V n(t,Y n) and V (t,Y ), respectively.
This fact is true under very general conditions (see, for instance, Kurtz and Ocone
[22]). Note that if one uses the general representation result, then one could only say
that the functionals V n and V are defined almost surely w.r.t. PY n , the law of Y n,
and w.r.t. PY , the law of Y , respectively. Therefore, the approximation V n(t,Y ) of
the (X ,Y )-filter (as the one provided in (2.15)) could be not well defined. However,
in this case PY n and PY are equivalent, and this problem does not occur.

In our delay case, S = [0, T ]×C([−τ, 0],R) and the functional V n can be computed
starting from the Kallianpur–Striebel formula with the Radon–Nikodym derivative Ln

t

defined by (2.13). This fact implies also that, for any (t,y) in [0, T ] × C([0, T ],R),
the projection on the space C([−τ, 0],R) of the probability measure V n(t,y) coincides
with Un(t,y), defined in section 2.

Moreover in [3] (see Theorem 3.3(a)), as a step in the proof of a weak convergence
result, the authors prove that for any Wiener process B = (B(t))t∈[0,T ], the P(S)-
valued processes (V n(t,B))t∈[0,T ] converge in probability to the P(S)-valued process
(V (t,B))t∈[0,T ]. This amounts to saying that if P 0 is the reference probability measure
defined by the Radon–Nikodym derivative

(3.7)
dP 0

dP
= exp

{
−

∫ T

0

h(Xs)dYs +
1

2

∫ T

0

|h(Xs)|2 ds
}
,

i.e., the measure under which the process Y is a Wiener process, independent of
the state process X , then the P(S)-valued processes (V n(t,Y ))t∈[0,T ] converge in P 0-
probability to the P(S)-valued process (V (t,Y ))t∈[0,T ]. In addition, since the measure
P is also absolutely continuous w.r.t. P 0, the convergence also holds in P -probability.
This implies that

π̃n converges in P -probability to π,

which is the second assertion in Theorem 2.2.

Since the filter π is continuous in time, the last statement of the theorem is an
immediate consequence of the convergence in probability of π̃n to π.
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4. Rate of convergence. The aim of this section is to compute an upper bound
for the rate of convergence of our scheme under the further hypotheses that h is jointly
globally Lipschitz, that a and b are bounded, and that 1/2 ≤ α ≤ 1 in (2.1), i.e., to
prove Theorem 2.3.

Let (X ,Xn,Y ,Y n) be the stochastic processes introduced at the beginning of
section 3, with values in a complete separable metric space (S, dS), and let Pn be the
probability measure defined by

(4.1)
dPn

dP 0
= exp

{∫ T

0

hn(Xn
s )dYs −

1

2

∫ T

0

|hn(Xn
s )|2 ds

}
,

where P 0 is the reference probability measure on (Ω,F) defined in (3.7).
Then the law of (Xn,Y ) under Pn is the same as the law of (Xn,Y n) under

P , so that the processes (X ,Xn,Y ) and the probabilities P 0, P , and Pn satisfy
conditions (a), (an), (b1), and (b2) of Calzolari, Florchinger, and Nappo [7], apart
from the fact that we are in a complete separable metric space (S, dS). Therefore,
with slight modifications in the proof of (32) in Theorem 2.3 of [7], we get

E
[
dSBL

(
V (t,Y ), V n(t,Y )

)]
≤ 2E0

[∣∣(dPn/dP 0)|F̃t
− (dP/dP 0)|F̃t

∣∣] + E
[
dS

(
Xt,Xn

t

)]
,(4.2)

where V and V n are the functionals defined as in (3.6), dSBL is the bounded Lipschitz

metric on P(S), and F̃t = FX ,Xn,Y
t .

The above inequality is the starting point of the proof of Theorem 2.3, and, as a
consequence, we need the estimates for the quantities in the right-hand side of (4.2)
stated in the following proposition.

Proposition 4.1. For all t ≤ T , we have

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣]
≤ 2

(
E

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]) 1
2

+ E

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]
.(4.3)

In the particular case when hn = h and h is a globally Lipschitz function, then,
for all t ≤ T , we have, for a suitable constant K(T ),

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣]
≤ 2K(T )

{
sup

s∈[0,T ]

(
E
[
d2
S(Xn

s ,Xs)
]) 1

2 + sup
s∈[0,T ]

E
[
d2
S(Xn

s ,Xs)
]}

.(4.4)

Proof. Define Λt and Λn
t by

Λt =

∫ t

0

h(Xs)dYs −
1

2

∫ t

0

|h(Xs)|2 ds(4.5)

and

Λn
t =

∫ t

0

hn(Xn
s )dYs −

1

2

∫ t

0

|hn(Xn
s )|2 ds.(4.6)
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Then, using the fact that |ea − eb| ≤ ea |a− b| + eb |a− b|, we have

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣] = E0
[∣∣eΛn

t − eΛt
∣∣]

≤ E0
[
eΛn

t

∣∣Λn
t − Λt

∣∣] + E0
[
eΛt

∣∣Λn
t − Λt

∣∣]
= En

[∣∣Λn
t − Λt

∣∣] + E
[∣∣Λn

t − Λt

∣∣],
where En is the expectation w.r.t. Pn.

An easy calculation gives

Λn
t − Λt =

∫ t

0

[
hn(Xn

s ) − h(Xs)
]
dYs −

1

2

∫ t

0

[
|hn(Xn

s )|2 − |h(Xs)|2
]
ds

=

∫ t

0

[
hn(Xn

s ) − h(Xs)
](
dYs − hn(Xn

s )ds
)

+
1

2

∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

=

∫ t

0

[
hn(Xn

s ) − h(Xs)
](
dYs − h(Xs)ds

)
+

1

2

∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds.

Therefore we have

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣] ≤ En
[∣∣Λn

t − Λt

∣∣] + E
[∣∣Λn

t − Λt

∣∣]
≤ En

[∣∣∣∣∫ t

0

[
hn(Xn

s ) − h(Xs)
](
dYs − hn(Xn

s )ds
)∣∣∣∣]

+
1

2
En

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]
+ E

[∣∣∣∣∫ t

0

[
hn(Xn

s ) − h(Xs)
](
dYs − h(Xs)ds

)∣∣∣∣] +
1

2
E

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]
.

By recalling that

Yt −
∫ t

0

hn(Xn
s )ds and Yt −

∫ t

0

h(Xs)ds

are Wiener processes under Pn and P , respectively, we get, by Cauchy–Schwarz in-
equality and the isometry of stochastic integrals,

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣]
≤

(
En

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]) 1
2

+
1

2
En

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]

+

(
E

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]) 1
2

+
1

2
E

[∫ t

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]
.

As the joint laws of X and Xn under Pn and P coincide (with the joint law
under P 0), the final upper bound is

E0
[∣∣(dPn/dP 0)|F̃t

− (dP/dP 0)|F̃t

∣∣]
≤ 2

(
E

[∫ T

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]) 1
2

+ E

[∫ T

0

[
hn(Xn

s ) − h(Xs)
]2

ds

]
,
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which is inequality (4.3), and it immediately implies inequality (4.4).
As in the previous section, we take S = [0, T ] × C([−τ, 0],R), Xt = (t,ΠtX),

Xn
t = (δ · 	t/δ
 ,Πδ·�t/δ�X

n), and hn = h = h. Therefore (4.2) implies that

(4.7) E
[
dBL(πt, π̃

n
t )

]
≤ 2E0

[∣∣(dPn/dP 0)|F̃t
− (dP/dP 0)|F̃t

∣∣] + E
[
‖Xt −Xn

t ‖S
]
,

and, when h is a jointly globally Lipschitz function, inequality (4.4) holds. Finally
the result of Theorem 2.3 is a direct consequence of the following improvement of the
result of Proposition 3.2.

Proposition 4.2. Assume that conditions (A1), for k = 1, and (A2), with
1/2 ≤ α ≤ 1, are satisfied, and furthermore assume that the initial condition η satisfies
(2.17) and that the functions a and b are bounded. Then there exists a constant CX

such that

(4.8) E

[
sup

t∈[0,T ]

∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X
n) − (t,ΠtX)

∥∥2

S

]
≤ CX

log n

n
.

The proof of this result will be given in section 5.
Remark 4.3. Obviously, from (4.8) there exists a constant C ′

X ≤ CX such that

(4.9) sup
t∈[0,T ]

E
[∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X

n) − (t,ΠtX)
∥∥2

S

]
≤ C ′

X

log n

n
,

and, by (4.4), the above inequality is a sufficient condition to get the upper bound
(2.18) in Theorem 2.3. From the following example it appears that the rate of conver-
gence cannot be improved either in the right-hand side of the previous inequality or in
(2.18).

Example. Take η = 0, a = 0, b = 1, and h = 0. In this case X = W̃ and
Xn = W̃n, where W̃n is the piecewise linear interpolation of W̃ . Moreover πt and π̃n

t

coincide with the laws of ΠtW̃ and Πδ·�t/δ�W̃
n, respectively, and therefore

E
[
dBL(πt, π̃

n
t )

]
= dBL(πt, π̃

n
t )

≤ E
[∥∥Πδ·�t/δ�W̃

n − ΠtW̃ )
∥∥] ≤

(
E

[∥∥Πδ·�t/δ�W̃
n − ΠtW̃ )

∥∥2
]) 1

2

,

where the first inequality follows by standard coupling techniques.
Furthermore,

E
[∥∥Πδ·�t/δ�W̃

n − ΠtW̃ )
∥∥2

]
= O( logn

n )

for any t ∈ [0, T ] and uniformly in [0, T ]. This fact can be shown by using the results
established by Pickands in [38] (see also Fischer and Nappo [13]). This result could
be expected thanks to Lévy’s modulus of continuity, which implies that there exists
a finite random variable M such that

sup
s,t∈[0,1]
|s−t|≤δ,

|W̃s − W̃t| ≤ M
√

δ log(1/δ)

holds almost surely (see the paper by Pinsky [39] for a simple proof).
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5. Technical results. This section is devoted to the proofs of Lemma 3.3,
Proposition 3.2, and Proposition 4.2. In order to prove these results we introduce, as
a technical tool,

• the operator P δ, which gives the linear interpolation of a function
(
x(s)

)
s∈[−τ,T ]

,

with step δ, so that
(
P δx(s)

)
s∈[−τ,T ]

is the linear interpolation of (δ, x(δ)) for  =
−m, . . . , n,

and, as another approximation for the state,

• the continuous Euler–Maruyama scheme, i.e., the diffusion processes Zn =(
Zn(t)

)
t∈[0,T ]

, where

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Zn(t) := η(t), −τ ≤ t ≤ 0,

Zn(t) := η(0) +

∫ t

0

a(δ · 	s/δ
 ,Πδ·�s/δ�X
n)ds

+

∫ t

0

b(δ · 	s/δ
 ,Πδ·�s/δ�X
n)dW̃s, 0 ≤ t ≤ T,

which can be considered as intermediate approximation processes for the state X.

The processes Zn have the property that

P δZn(s) = Xn(s) for s ∈ [−τ, 0] ∪ [0, T ],(5.2)

since

Zn(δ) = Xn(δ) for  ≥ −m.

Indeed Zn(δ) = Xn(δ) = η(δ) for −m ≤  ≤ 0. The case  ≥ 0 follows by observing
that for t ∈ [δ, ( + 1)δ]

Zn(t) = Zn(δ) +

∫ t

�δ

a(δ,Π�δX
n)ds +

∫ t

�δ

b(δ,Π�δX
n)dW̃s

= Zn(δ) + a(δ,Π�δX
n)(t− δ) + b(δ,Π�δX

n)[W̃ (t) − W̃ (δ)],

so that

Zn(( + 1)δ) = Zn(δ) + a(δ,Π�δX
n)δ + b(δ,Π�δX

n)[W̃ (( + 1)δ) − W̃ (δ)],

and finally comparing the above recursive formula with the definition of Xn((+1)δ)
in (2.7).

We are now able to prove Lemma 3.3.

Proof of Lemma 3.3. First, observe that by (5.2)

sup
t∈[−τ,T ]

|Xn(t)| ≤ max

(
‖η‖, sup

t∈[0,T ]

|Zn(t)|
)
,

and set

(5.3) Mn
t :=

∫ t

0

bn(u)dW̃u, where bn(u) := b(δ · 	u/δ
 ,Πδ·�u/δ�X
n).
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For any  ∈ {1, 2} take α = 2 and β = 2/(2− 1), so that (1/α) + (1/β) = 1. Then
for any stopping time σ, there exists a suitable constant C� such that

sup
u∈[−τ,t∧σ]

|Xn(u)|2�

≤ C�

⎧⎨⎩‖η‖2� +

[∫ t

0

sup
u∈[0,s∧σ]

|a(δ · 	u/δ
 ,Πδ·�u/δ�X
n)|ds

]2�

+ sup
s∈[0,t∧σ]

|Mn
s |

2�

⎫⎬⎭
≤ C�

⎧⎨⎩‖η‖2� + t
2�
β

[∫ t

0

sup
u∈[0,s∧σ]

|a(δ · 	u/δ
 ,Πδ·�u/δ�X
n)|αds

] 2�
α

+ sup
s∈[0,t∧σ]

|Mn
s |

2�

⎫⎬⎭
≤ C�

{
‖η‖2� + t2�−1

∫ t

0

K�

[
1 + sup

u∈[−τ,s∧σ]

|Xn(u)|2�
]
ds + sup

s∈[0,t]

|Mn
s∧σ|

2�

}
.

If Mn
t∧σ is a martingale, setting

φn
σ,�(t) := E

[
sup

u∈[−τ,t∧σ]

|Xn(u)|2�
]

and applying Doob’s inequality for p = 2 to Mn
t∧σ yields

(5.4) φn
σ,�(t) ≤ C ′

�

{
1 + ‖η‖2� +

∫ t

0

φn
σ,�(s)ds + E

[
|Mn

t∧σ|
2�
]}

,

for all t ∈ [0, T ], for a suitable constant C ′
� = C ′

�(T ).
Taking σ = σn

N := inf{s > 0; supu∈[−τ,s] |Xn(u)| ≥ N}, we have

(5.5)

∫ T

0

E[1s≤σn
N
b2�n (s)]ds < ∞,

and Mn
t∧σ = Mn

t∧σn
N

is a martingale. Indeed by the sublinearity condition (2.2) on b
we have

(5.6)

∫ t

0

E[1s≤σn
N
b2�n (s)]ds ≤

∫ t

0

E

[
K�

(
1 + sup

u∈[−τ,s∧σn
N ]

|Xn(u)|2�
)]

ds,

which is finite since supu∈[−τ,s∧σn
N ] |Xn(u)| ≤ N . Then

E[|Mn
t∧σn

N
|2] = E

[(∫ t

0

1s≤σn
N
bn(s)dW̃s

)2
]

=

∫ t

0

E[1s≤σn
N
b2n(s)]ds

and (see, e.g., Lemma 4.12, page 125, in Liptser and Shiryayev [29])

E[|Mn
t∧σ|4] = E

[(∫ t

0

1s≤σn
N
bn(s)dW̃s

)4
]
≤ 62t

∫ t

0

E[1s≤σn
N
b4n(s)]ds.

Then, taking into account (5.4) and (5.6) and invoking Gronwall’s inequality, we
get a bound for φn

σ,�(T ) = φn
σn
N ,�(T ), uniform in n and N . Therefore, applying Fatou’s

lemma and making use of the fact that σn
N → ∞ as N → ∞, we get the results.
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Remark 5.1. Note that with the same technique one could prove that under the
same assumptions of Lemma 3.3

sup
n

E

[
sup

t∈[0,T ]

‖ΠtZ
n‖2�

]
= sup

n
E

[
sup

u∈[−τ,T ]

|Zn(u)|2�
]
< ∞ for  = 1, 2.

In order to prove Proposition 3.2 we need some intermediate results, stated in the
following lemmas, which will be proved at the end of this section.

The first lemma concerns the behavior of the modulus of continuity.
Lemma 5.2. Denoting by

ωx(δ; [−τ, T ]) := sup
s,t∈[−τ,T ]

|s−t|≤δ,

|x(s) − x(t)|

the modulus of continuity of the function
(
x(s)

)
s∈[−τ,T ]

, we have

sup
t∈[0,T ]

‖Πδ·�t/δ�P
δx− Πtx‖ ≤ 2ωx(δ; [−τ, T ]),(5.7)

and, for δ = δn,

lim
n→∞

E
[
ω2
X(δ, [−τ, T ])

]
= 0(5.8)

and

lim
n→∞

E

[
sup

t∈[0,T ]

‖Πδ·�t/δ�P
δX − ΠtX‖2

]
= 0.(5.9)

The second lemma concerns the convergence of the approximation Zn.
Lemma 5.3. Under the hypotheses of Proposition 3.2

lim
n→∞

E

[
sup

t∈[0,T ]

‖ΠtZ
n − ΠtX‖2

]
= 0.

With the above results the proof of Proposition 3.2 is straightforward.
Proof of Proposition 3.2. First, we note that

(5.10)
∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X

n) − (t,ΠtX)
∥∥2

S
≤ 2 δ2 + 2

∥∥Πδ·�t/δ�X
n − ΠtX

∥∥2
.

Then, by adding and subtracting Πδ·�t/δ�P
δX in the second term on the right-hand

side of the above expression, it yields
(5.11)∥∥Πδ·�t/δ�X

n − ΠtX
∥∥2 ≤ 2

∥∥Πδ·�t/δ�X
n − Πδ·�t/δ�P

δX
∥∥2

+ 2
∥∥Πδ·�t/δ�P

δX − ΠtX
∥∥2

.

Then, taking into account (5.9) and that

sup
t∈[0,T ]

‖ΠtX
n − ΠtP

δX‖ = sup
k:kδ∈[−τ,T ]

|Xn(kδ) −X(kδ)|

= sup
k:kδ∈[−τ,T ]

|Zn(kδ) −X(kδ)| ≤ sup
t∈[−τ,T ]

|Zn(t) −X(t)| = sup
t∈[0,T ]

‖ΠtZ
n − ΠtX‖,
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the result follows by Lemma 5.3.
Proof of Lemma 5.2. Noticing that Πδ·�t/δ�P

δx = P δΠδ·�t/δ�x, we have

‖Πδ·�u/δ�P
δx− Πux‖ ≤ ‖Πδ·�u/δ�P

δx− Πδ·�u/δ�x‖ + ‖Πδ·�u/δ�x− Πux‖
= ‖P δΠδ·�u/δ�x− Πδ·�u/δ�x‖ + ‖Πδ·�u/δ�x− Πux‖.

Furthermore, since

P δθ(v) = λ(v) θ(δ · 	v/δ
 + δ) + (1 − λ(v)) θ(δ · 	v/δ
)

with λ(v) = v/δ−	v/δ
, and since θ(v) = λ(v) θ(v) + (1− λ(v)) θ(v), we deduce that

‖Πδ·�u/δ�P
δx− Πux‖ ≤ 2 sup

s,t∈[0,T ]
|s−t|≤δ,

‖Πsx− Πtx‖ = 2 sup
s,t∈[−τ,T ]

|s−t|≤δ,

|x(s) − x(t)|,

which is the first assertion (5.7) of the lemma.
Equality (5.8) follows by the dominated convergence theorem: indeed

ωx(δ; [−τ, T ]) ≤ 2 sup
t∈[−τ,T ]

|x(t)|,

the integrability condition (2.3) for k = 1 holds, and, finally, the modulus of continuity
ωX(δ, [−τ, T ]) converges to zero as δ = δn converges to zero, as the paths of X are
continuous.

The last assertion (5.9) is an interesting observation which is a straightforward
consequence of (5.7) and (5.8).

Proof of Lemma 5.3. Noticing that P δZn(s) = Xn(s), for s ∈ [−τ, 0] ∪ [0, T ],
then we can rewrite (5.1) as

Zn(t) = η(0) +

∫ t

0

a(δ · 	s/δ
 ,Πδ·�s/δ�P
δZn)ds +

∫ t

0

b(δ · 	s/δ
 ,Πδ·�s/δ�P
δZn)dW̃s.

Therefore, taking into account that Zn(t) = X(t) = η(t) for t ∈ [−τ, 0],

sup
s∈[−τ,t]

|Zn(s) −X(s)|2

≤ 2

(∫ t

0

|a(δ · 	u/δ
 ,Πδ·�u/δ�P
δZn) − a(u,ΠuX)|du

)2

+ 2 sup
s∈[0,t]

(∫ s

0

[
b(δ · 	u/δ
 ,Πδ·�u/δ�P

δZn) − b(u,ΠuX)
]
dW̃u

)2

≤ 2t

∫ t

0

|a(δ · 	u/δ
 ,Πδ·�u/δ�P
δZn) − a(u,ΠuX)|2du

+ 2 sup
s∈[0,t]

(∫ s

0

[
b(δ · 	u/δ
 ,Πδ·�u/δ�P

δZn) − b(u,ΠuX)
]
dW̃u

)2

.

By Lemma 3.3, Remark 5.1, and the sublinearity of b,∫ s

0

[
b(δ · 	u/δ
 ,Πδ·�u/δ�P

δZn) − b(u,ΠuX)
]
dW̃u

is a martingale.
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Then taking the expectations we can apply Doob’s inequality, and we get for
t ∈ [0, T ]

E

[
sup

u∈[0,t]

‖ΠuZ
n − ΠuX‖2

]
= E

[
sup

s∈[−τ,t]

|Zn(s) −X(s)|2
]

≤ 2t

∫ t

0

E
[
|a(δ · 	u/δ
 ,Πδ·�u/δ�P

δZn) − a(u,ΠuX)|2
]
du

+ 8

∫ t

0

E

[
|b(δ · 	u/δ
 ,Πδ·�u/δ�P

δZn) − b(u,ΠuX)|2
]
du

≤ max(2T, 8)

∫ t

0

KE

[
sup

u∈[0,s]

‖Πδ·�u/δ�P
δZn − ΠuX‖2 + δ2α

]
ds

≤ C(T )

∫ t

0

E

[
sup

u∈[0,s]

(
‖Πδ·�u/δ�P

δZn − Πδ·�u/δ�P
δX‖2

+ ‖Πδ·�u/δ�P
δX − ΠuX‖2

)
+ δ2α

]
ds

≤ C(T )

∫ t

0

E

[
sup

u∈[0,s]

‖ΠuZ
n − ΠuX‖2 + 4ω2

X(δ; [−τ, T ]) + δ2α

]
ds,

where we have used (5.7).
Then Gronwall’s inequality gives the upper bound

(5.12) E

[
sup

u∈[0,T ]

‖ΠuZ
n − ΠuX‖2

]
≤ C1(T )

(
E

[
ω2
X(δ; [−τ, T ])

]
+ δ2α

)
and the proof is accomplished, since δ = δn and (according to (5.8)) E

[
ω2
X(δ; [−τ, T ])

]
go to zero as n goes to infinity.

We conclude this section with the proof of Proposition 4.2.
Proof of Proposition 4.2. First, we note that the inequalities in the proof of

Proposition 3.2 together with (5.7) imply∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X
n) − (t,ΠtX)

∥∥2

S

≤ 4

(
δ2 + sup

t∈[0,T ]

‖ΠtZ
n − ΠtX‖2

+ ω2
X(δ; [−τ, T ])

)
.

Then by (5.12) we get

E
[∥∥(δ · 	t/δ
 ,Πδ·�t/δ�X

n) − (t,ΠtX)
∥∥2

S

]
≤ C2(T )

(
δ2α + E

[
ω2
X(δ; [−τ, T ])

])
.

The thesis follows by observing that

(5.13) ωX(δ; [−τ, T ]) ≤ ωη(δ; [−τ, 0]) + ωX(δ; [0, T ])

and taking into account the result of Lemma A.4 of S�lomiński [41], which is recalled
in what follows for the ease of the reader.

Lemma 5.4 (Lemma A.4 of S�lomiński [41]). Let H, G be two adapted processes
with values in R

d ⊗ R
d and R

d, respectively, such that ‖Ht‖Rd⊗Rd , |Gt| ≤ L < ∞,
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for some constant L > 0, and let Yt =
∫ t

0
Hs dWs +

∫ t

0
Gs ds, t ∈ R

+. Then for every
p ∈ N

(5.14) E
[
ω2p
Y ( 1

n ; [0, T ])
]

= O
((

logn
n

)p)
.

Remark 5.5. We observe that the thesis holds for any real p > 0, as can be seen
following the lines in the proof by S�lomiński.

6. Conclusion. As already recalled in the introduction, Chang in [8] gives a
computable approximation for the optimal filter associated with the partially observ-
able delay system (1.1) and (1.2), with b(t, θ) = 1. The state process is approximated
by the linear interpolation of Xn(δ) as in (2.7) and the approximation for the ob-
servation process is the linear interpolation of Y n(δ) defined by (2.8), while our
approximation of the observation process is a continuous time diffusion. However, the
two approximation processes coincide at times δ.

The author proves weak convergence of the filters under the assumption that there
exists a strictly positive constant k such that

E[exp{k‖η‖2}] < ∞,

and for any partition −τ ≤ τ0 < · · · < τn = 0 the (n + 1)-dimensional random vector
(η(τi); 0 ≤ i ≤ n) has a density w.r.t. the Lebesgue measure in R

n+1. There are
other minor differences between our assumptions and the one by Chang, about the
diffusion coefficients, which allow us to consider coefficients of the form (1.4) but not
of the form (1.3).

Other weak approximation schemes, such as those recently used by Kushner in a
stochastic control framework (see Kushner [25]), could also be used to get weak con-
vergence of the filters. Nevertheless it seems difficult to compute the rate of conver-
gence with these methods. For this reason we were interested in strong approximation
schemes.

The problem of strong approximation for stochastic delay differential equations
has been the subject of research for many authors in the last years. There is quite a
substantial amount of work in this field, and in the following we mention only some of
them. Küchler and Platen [21] have proposed a Taylor approximation scheme, besides
the Euler scheme, and have proved the strong convergence of their scheme (see also
Baker and Buckwar [1] and Buckwar [6]). Hu, Mohammed, and Yan [17] have studied
strong convergence of Milstein schemes for stochastic delay differential equations with
tame coefficient functions ga and gb as in (1.4), with γi = δsi , for si ∈ [−τ, 0].
Though these schemes have better performances than Euler schemes, the authors do
not deal with convergence of the expectation of the uniform norm on [−τ, T ], which
we need in order to get our first result. In [31] Mao and Sabanis have investigated the
uniform norm for the continuous Euler–Maruyama scheme instead of the piecewise
linear Euler–Maruyama scheme, in the framework of a variable delay, namely, when in
(1.5) the term X(t− τ) is replaced by X(δ(t)), where δ(t) is a Lipschitz function with
−τ ≤ δ(t) ≤ t, and when ga and gb are locally Lipschitz functions. Moreover Mao
and Sabanis get, under suitable assumptions, a rate of convergence of order less than
or equal to

√
1/n. In our setting, and with our techniques, we cannot get a rate of

convergence of order
√

1/n, as one can see from the example at the end of section 4,
where the simple case of a Wiener process with redundant observation is considered.
Note that in this example the Wiener process coincides with its continuous Euler–
Maruyama approximation scheme, and hence the two filters also coincide, while this
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does not happen with the piecewise linear Euler–Maruyama scheme. Nevertheless in
the latter case the filters coincide with the expectations, and a rate of convergence
of order

√
1/n is achieved when restricting to functions φ(θ) depending on a fixed

number of times si ∈ [−τ, 0].
Finally, note that the boundedness condition on a in Proposition 4.2 (and as a

consequence in Theorem 2.3) is not necessary, since∣∣∣∣∣
∫ t′

t

a(u,ΠuX)du

∣∣∣∣∣ ≤ |t′ − t|K1/2

(
1 + sup

u∈[0,T ]

‖ΠuX‖2

)1/2

,

while the boundedness condition on b is fundamental to use Lemma 5.4. However,
one expects that this condition can be dropped, since a rate of convergence of or-
der (logn/n)1/2 holds for the piecewise linear approximation of solutions of ordinary
stochastic differential equations (see Bouleau and Lépingle [5]). This fact is under
investigation.

Note added in proof. As conjectured above, the results of Theorem 2.3 are
still valid without the boundedness condition on the coefficients a and b: indeed one
can use a generalization of S�lomiński’s lemma (see [13]).
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DUAL NONLINEAR FILTERS AND ENTROPY PRODUCTION∗

NIGEL J. NEWTON†

Abstract. This paper makes connections between nonlinear filtering and the entropic properties
of Markov processes. It starts by developing information flow models for continuous-time, discrete-
state filtering problems, identifying rates of information supply and dissipation. Time reversal yields a
dual filtering problem in which these flows are interchanged. The dual problem comprises a diffusion
signal with nonlinear dynamics, and observations of the point process variety, but yields a finite-
dimensional nonlinear filter. The paper goes on to define an entropic time derivative for a general
class of Markov processes and relates the entropic derivatives of the signal and filter to the rates
of information supply and dissipation. This leads to the definition of a rate of interactive entropy
production, which measures the time asymmetry of the interaction between the signal and filter.
This asymmetry is of the same nature as that occurring in the theory of nonequilibrium statistical
mechanics based on stochastic dynamics. In this context, the interaction between the signal and
filter is nondissipative—a property intimately connected with the existence of a dual problem.

Key words. dual filters, entropic derivative, finite-dimensional nonlinear filters, information
theory, nonequilibrium statistical mechanics, statistical filtering

AMS subject classifications. 93E11, 94A17, 62F15, 60J25, 60J60, 60G35, 82C31

DOI. 10.1137/050633809

1. Introduction. This paper investigates the information-theoretic properties
of nonlinear filters for discrete-state Markov processes. It builds on results appearing
in [19], concerning linear Gaussian problems. Starting from conventional definitions of
signal, X, and observation, Y , it defines information supply, storage, and dissipation
processes that quantify the information value of the observation history, (Ys, s ≤ t),
in the context of estimators of the entire signal process, X, its present and future,
(Xs, s ≥ t), and its past, (Xs, s < t), respectively. The filter state variable, Zt, is
thought of as storing that part of the information in the observation history useful for
estimating the present and future values of the signal. As time progresses, information
flows from the observation process into the filter state and is later dissipated. Rates
of information supply and dissipation are identified.

The signal and filter processes have the following key properties: (i) they are
jointly Markov; (ii) they are marginally Markov; (iii) the future of the signal is Xt-
conditionally independent of the past of both processes; (iv) the past of the filter is
Zt-conditionally independent of the future of both processes. Property (iii) states
that the evolution of the signal is not influenced by the filter process, and so the
flow of information between the processes is strictly one-way, from signal to filter.
Properties (i)–(iv) are retained if time is reversed and the signal and filter processes
are interchanged. The processes thus obtained can be thought of as the signal and
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filter of a dual problem. Like the original, this has information supply, storage, and
dissipation processes, and these are simply related to those of the original. The
dual problem has an R

n-valued signal with nonlinear dynamics and a point process
observation with signal dependent switching rates. Normally such a problem would
require an infinite-dimensional filter [6], but because of the special relation between
the signal and observation here, the filter is not only of finite dimension but even
evolves on a finite space.

One of the motivations for studying such issues is their connection with statisti-
cal mechanics. In a modern theory of nonequilibrium statistical mechanics, based on
stochastic dynamics (see, for example, [3], [11], [13], and [15]), invariant distributions
of time-homogeneous Markov processes are used to model stationary states of sta-
tistical mechanical systems. The latter come in two varieties called equilibrium and
nonequilibrium states. Nonequilibrium states are time-invariant states in which there
is a nonzero flow of some physical quantity (often energy). In this paper we define
an entropic time derivative for a general class of continuous-time Markov processes.
This is defined either in or out of an invariant distribution and is also defined for
time-inhomogeneous processes. For time-homogeneous processes admitting invariant
distributions, it coincides with the rate of entropy production, as defined in [13] (al-
though it is defined in a totally different way). Because our filtering problems have
properties (i) and (ii) above, we can identify three entropic time derivatives: one for
the signal, X, one for the filter, Z, and one for the joint process, (X,Z). Subtracting
the first two from the third, we obtain a rate of interactive entropy production that
characterizes the interaction between the signal and filter. (In fact, it is not quite
that easy because of degeneracy issues.)

The statistical mechanical properties of Kalman–Bucy filters are developed in
some detail in [18], and the interactive statistical mechanics of linear and nonlinear
filters are investigated in [20]. In the analogies developed in those papers, the signal-
filter pair describes a nondissipative system that makes statistical mechanical sense
in reverse time. This property is intimately connected with the existence of a dual
filtering problem. It is also connected with an information theoretic optimality of
Bayesian estimation, investigated in its abstract form in [17].

The paper is structured as follows. Section 2 introduces the signal and filter
models and evaluates the information theoretic quantities of interest. Section 3 derives
the dual system and relates its information flows to those of the original. Section 4
defines entropic time derivatives for Markov processes and, in particular, a rate of
interactive entropy production for the system comprising the signal and filter. Finally,
a simple illustrative example is developed in section 5.

2. Information flow in Markov chain filters. This section investigates the
information flows occurring between a discrete-state signal and its nonlinear filter
based on observations of the “signal-plus-white-noise” variety. In the model we con-
sider, both processes evolve over the finite time interval [−T, T ], and the observation
comprises initial and running parts. This enables the study of transient effects since
it permits the signal and filter to be initialized in any consistent state (including their
joint invariant distribution, where one exists). By “consistent state” we mean that the
average value of the filter variable (whose range is the space of probability measures
on that of the signal) should equal the marginal distribution of the signal. The use of
a symmetric time interval simplifies the discussion of the dual filter in section 3. All
random quantities are defined on the complete probability space (Ω,F ,P).

The signal, X, is a measurable Markov process taking values in the finite set
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X = {1, 2, . . . , n}, and having finite rate matrix A, so that

P(Xt+ε = i | Xt = j) = (In + Aε)i,j + o(ε),

where In is the n × n matrix identity. Let P(X) be the set of probability measures
on X. We identify elements Q ∈ P(X) by the associated probability mass function in
vector form:

c(Q) := veci{Q({i})}.

We shall be particularly interested in the convex subset of P(X) corresponding to
probability mass functions that belong to the following set:

S
n−1 := {z ∈ R

n : zi ∈ (0, 1) for all i; Σizi = 1} .

We assume that the initial value of the signal, X−T , has distribution θ ∈ S
n−1; the

prior distribution of Xt, pX(t) (= exp(A(t + T ))θ), is then also in S
n−1 for all t.

The initial observation is a random variable, ψ, taking values in a Borel space
(M,M, μ); it is X−T -conditionally independent of X with X−T -conditional density
(with respect to μ) q : X ×M → R

+. We assume that

(2.1) E log(q(i, ψ)/q(j, ψ)) < ∞ for all i, j;

this ensures (among other properties) that the posterior distribution of X−T is also
in S

n−1. The running observation takes the form

(2.2) Y r
t =

∫ t

−T

g(Xs) ds + Wt for t ∈ [−T, T ],

where g : X → R
d, and W is a d-vector shifted Brownian motion, independent of

(X,ψ); i.e., (Wt = BT+t, t ∈ [−T, T ]), where B is a d-vector standard Brownian
motion independent of (X,ψ). The full observation is then the M×R

d-valued process
Y = ((ψ, Y r

t ), t ∈ [−T, T ]).
Remark 2.1. Multidimensional running observations are included in this study

since they play an essential role in section 4, where a relaxation argument is used to
define interactive entropy production. Whatever the dimension of Y r in the filter-
ing problem of interest, a “relaxed” version, in which the dimension of the running
observation is at least n− 1, is used in that context.

Throughout the paper, Fξ
s,t will be used to signify the σ-field generated by a

process ξ over the time interval [s, t], where −T ≤ s ≤ t ≤ T :

(2.3) Fξ
s,t := σ(ξr, r ∈ [s, t]).

Thus (FY
−T,t, t ∈ [−T, T ]) is the filtration generated by the observations process.

Wonham’s filter [21] is a recursive formula for calculating a continuous process
(Zt ∈ R

n, t ∈ [−T, T ]) with the property that Zt is the FY
−T,t-conditional distribution

of Xt for all t. The initial value, Z−T , is found from the initial prior, θ, the likelihood
function, q( · , ψ), and Bayes’s formula; subsequent values of Z are found from the
following Itô equation, which has a strong solution (see [21] or [14]):

Zt = Z−T +

∫ t

−T

(AZs − σ(Zs)ḡ(Zs)) ds +

∫ t

−T

σ(Zs) dY
r
s

= Z−T +

∫ t

−T

AZs ds +

∫ t

−T

σ(Zs) dνs.

(2.4)
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Here, ḡ ∈ C2
b (Rn; Rd), σ ∈ C2

b (Rn; Rn×d), and, for all z ∈ S
n−1,

ḡ(z) := Σig(i)zi,

σ(z) := mati,l{(g(i) − ḡ(z))lzi},
(2.5)

and ν is the innovations process,

(2.6) νt := Y r
t −

∫ t

−T

ḡ(Zs) ds.

Remark 2.2. The process Z remains in S
n−1. (See Proposition 2.1.) The exten-

sion of the domains of definition of ḡ and σ to the whole of R
n is purely a matter

of convenience. It enables the use of standard results from the theory of stochastic
differential equations in R

n.
Remark 2.3. Unlike the problem addressed in this paper, the filtering problem

in [21] (and most papers on nonlinear filtering) does not involve an initial observation.
However, the extension of the results of that paper to the problem addressed here is
straightforward. Since (2.4) has a strong solution, and Z−T is X−T -conditionally
independent of X, the filtering problem can be thought of as a family of problems
parametrized by the values of Z−T , each problem having no initial observation. The
“parameter” Z−T is then the prior distribution for the initial signal value in the
corresponding filtering problem. The family of distributions of the signal (respec-
tively, observation, filter) processes of these problems is a regular Z−T -conditional
distribution for the signal (respectively, observation, filter) of this paper.

In order to derive some useful properties of X and Z, we introduce a measure
transformation of the type first proposed by Duncan in [7]. Let P

M be the measure
on F , whose Radon–Nikodym derivative with respect to P is LT , where

Lt =
χ(X−T )′θ

χ(X−T )′Z−T
exp

(
−
∫ t

−T

(g(Xs) − ḡ(Zs))
′ dWs

− 1

2

∫ t

−T

|g(Xs) − ḡ(Zs)|2 ds
)

for t ∈ [−T, T ].

(2.7)

Here, and in what follows, | · | is the Euclidean norm in R
d, and χ : X → {0, 1}n is

the “occupancy” map

(2.8) χ(i) = vecj{1{i}(j)},

where 1B is the indicator function of a set B.
Proposition 2.1. (i) The processes X, Z, and (X,Z) are Markov and have in-

finitesimal generators LX , LZ , and LX,Z , respectively, defined, for appropriate func-
tions f , as follows:

(LXf)(i) =
∑
j

Aj,i(f(j) − f(i)),

(LZf)(z) =
∑
j

(Az)j
∂f

∂zj
(z) +

1

2

∑
j,k

(σσ′)(z)j,k
∂2f

∂zj∂zk
(z),

(LX,Zf)(i, z) =
∑
j

b(i, z)j
∂f

∂zj
(i, z) +

1

2

∑
j,k

(σσ′)(z)j,k
∂2f

∂zj∂zk
(i, z)

+
∑
j

Aj,i(f(j, z) − f(i, z)),

(2.9)
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where, for each i ∈ X, b(i, · ) ∈ C2
b (Rn; Rn) and, for i ∈ X and z ∈ S

n−1,

(2.10) b(i, z) := Az + σ(z)(g(i) − ḡ(z)).

(ii) For each t ∈ [−T, T ], FX
−T,T and FY

−T,t are FZ
−T,t-conditionally independent.

(iii) For each t ∈ [−T, T ], FX,Z
−T,t and FX

t,T are Xt-conditionally independent.

(iv) For each t ∈ [−T, T ], FZ
−T,t and FX,Z

t,T are Zt-conditionally independent.

(v) P(Zt ∈ S
n−1 for all t ∈ [−T, T ]) = 1, and supi∈X, t∈[−T,T ] E log(Z−1

t,i ) < ∞.

(vi) P
M is a probability measure; P and P

M are mutually absolutely continuous.

(vii) Under P
M , (L−1

t ,FX,Z
−T,t) is a martingale.

(viii) Under P
M , X and (Y,Z) are independent processes but retain the marginal

distributions they have under P.
Proof. See Appendix A.
We define information supply, storage, and dissipation processes as follows: for

each t ∈ [−T, T ],

S(t) := I(X ; (Ys, s ∈ [−T, t])),

C(t) := I((Xs, s ∈ [t, T ]) ; (Ys, s ∈ [−T, t])),

D(t) := S(t) − C(t),

(2.11)

where, for random variables Θ and Φ taking values in measurable spaces and having
joint and marginal distributions PΘ,Φ, PΘ, and PΦ, I(Θ ; Φ) is the mutual information:

(2.12)
I(Θ ; Φ) :=

∫
log

(
dPΘ,Φ

d(PΘ ⊗ PΦ)

)
dPΘ,Φ if the integral exists,

+∞ otherwise.

Remark 2.4. Where one of the random quantities in I( · ; · ) is a stochastic process,
as is the case in (2.11), it is regarded as being a random variable taking values in
a product space. Thus, if (ηt, t ∈ [−T, T ]) is a stochastic process taking values
in the space E, then η is regarded as being a random variable that takes values

in the measurable space (E[−T,T ],B[−T,T ]
E ), where E[−T,T ] is the space of all maps

f : [−T, T ] → E and B[−T,T ]
E is the σ-field generated by the cylinder sets in E[−T,T ].

Thus, for example, the joint distribution PX,Y is a probability measure on B[−T,T ]
X ×

M × B[−T,T ]

Rd . S(t), C(t), and D(t) are insensitive to any choices we make about
the nature of the sample paths of X, Y r, and Z but depend only on their finite-
dimensional distributions.

The reader should think of S(t) (respectively, C(t)) as being the information
about X (respectively, (Xs, s ∈ [t, T ])) made available to the filter by the observations
(Ys, s ∈ [−T, t]). It follows from parts (ii), (iii), (vii), and (viii) of Proposition 2.1
and elementary manipulations of Radon–Nikodym derivatives that

S(t) = I(X ; (Zs, s ∈ [−T, t]))

= I((Xs, s ∈ [−T, t]) ; (Zs, s ∈ [−T, t]))

= E log(L−1
t )

= E
∑
i

log

(
Z−T,i

θi

)
Z−T,i +

1

2
E

∫ t

−T

|g(Xs) − ḡ(Zs)|2 ds.

(2.13)

Similarly, it follows from parts (ii), (iii), and (iv) of Proposition 2.1 that
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C(t) = I((Xs, s ∈ [t, T ]) ; (Zs, s ∈ [−T, t]))

= I(Xt ; (Zs, s ∈ [−T, t]))

= I(Xt ; Zt)

= E
∑
i

log

(
Zt,i

pX(t)i

)
Zt,i.

(2.14)

Itô’s rule can be used to obtain a stochastic integral representation for the integrand
here, and this shows that the storage C(t) changes with rate

(2.15) Ċ(t) = E
∑
i,j

log

(
Zt,i

pX(t)i

)
Ai,jZt,j +

1

2
E |g(Xt) − ḡ(Zt)|2 .

Thus the information dissipation, D(t), takes the form

(2.16) D(t) = −E

∫ t

−T

∑
i,j

log

(
Zs,i

pX(s)i

)
Ai,jZs,j ds.

It follows from elementary properties of mutual information that both S and C take
only nonnegative values. That the same is true of D follows from (2.18). Furthermore,
Ṡ(t) is clearly nonnegative for all t, and since Ḋ(t) = Ef(Zt) − f(EZt), where f is
the convex function f(z) = −

∑
i,j log(zi)Ai,jzj , the same is true of Ḋ(t).

The connection between quantities equivalent to S(t) and D(t) for diffusion fil-
ters was investigated in [16]. It was shown there that the rate of change of D(t) is
essentially a Fisher information quantity. This is also the case for the discrete-state
signal of this paper; in fact

(2.17) Ḋ(t) = −E

(
LX log

(
Zt,i

pX(t)i

))
(Xt),

and so Ḋ(t) is associated with the randomization of X as described by its infinitesimal
generator, LX . The dissipation also has the following interpretation. Consider the
problem of estimating (Xs, s ∈ [t, T ]) given the “initial” observation (Ys, s ∈ [−T, t])
and the running observation (Y r

s − Y r
t , s ∈ [t, T ]). It follows from its definition that

C(t) is the initial information supply in this problem. Furthermore, arguments similar
to those used to derive (2.13) show that the rate of information supply for this problem
at time s ∈ [t, T ] is Ṡ(s). Thus, for any t ∈ [−T, T ],

I((Xs, s ∈ [t, T ]) ; Y ) = C(t) +
1

2
E

∫ T

t

|g(Xs) − ḡ(Zs)|2 ds

= S(T ) −D(t).

(2.18)

So D(t) is that part of the information on X, derived from Y , that is of no use in
estimating the values of X at and beyond time t. It is shown in section 3 that D(t)
is itself an (average) mutual information.

3. The dual filter. This section explores the time-reversed dynamics of the
joint process (X,Z) under both P and P

M , and shows that they are the dynamics of
a dual system, in which Z is a signal process and X its filter.

Let (Z̃t ∈ R
n−1, t ∈ [−T, T ]) be the following parametrization of the filter:

(3.1) Z̃t := ΓZt = [In−1 0]Zt for all t ∈ [−T, T ].

We assume the following:
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(H1) Z̃−T has a square-integrable density with respect to Lebesgue measure.
The following technical lemma prepares the way for time reversal.

Lemma 3.1. Suppose that (H1) holds; then, for almost every t, the distribution
of Z̃t has a density, pZ̃( · , t).

Proof. Z̃ is the unique solution on (Ω,F ,P, Z−T , ν) of the following equation:

(3.2) Z̃t = ΓZ−T +

∫ t

−T

ΓAγ̃(Z̃s) ds +

∫ t

−T

Γσ ◦ γ̃(Z̃s) dνs,

where γ̃ ∈ C2
b (Rn−1; Rn) and γ̃(Γz) = z for all z ∈ S

n−1. The statement of the lemma
follows from (H1), the Lipschitz continuity and boundedness of Aγ̃ and σ ◦ γ̃, the
boundedness of the first two derivatives of σ ◦ γ̃, and Theorem 3.1 in [12].

For each t ∈ [−T, T ] and each z ∈ R
n, let

X∗
t := Z−t,

Z∗
t := X−t,

b̄(z, t) := −Az + veci

{∑
j

∂(σσ′)i,j
∂zj

}
(z) + (σσ′)(z)Γ′ (∇z̃pZ̃)(Γz,−t)

pZ̃(Γz,−t)
,

(3.3)

where b̄ is taken to be zero at any (z, t) for which pZ̃(Γz,−t) is zero, and ∇z̃pZ̃ is the
gradient of pZ̃ with respect to its first argument; the latter is understood in the sense
of distributions if pZ̃( · , t) is not differentiable. For each t ∈ [−T, T ] and z ∈ S

n−1, let

Ā(t) and Ă(z) be n× n Markov rate matrices defined as follows:

Ā(t)i,j = Aj,i
pX(−t)i
pX(−t)j

and Ă(z)i,j = Aj,i
zi
zj

if j 
= i,

Ā(t)i,i = −
∑
j �=i

Ā(t)j,i and Ă(z)i,i = −
∑
j �=i

Ă(z)j,i.
(3.4)

Theorem 3.2. The processes X∗, Z∗, and (X∗, Z∗) are Markov and have in-

finitesimal generators LX∗

t , LZ∗

t , and LX∗,Z∗

t , respectively, defined, for appropriate
functions f , as follows:

(LX∗

t f)(z) =
∑
j

b̄(z, t)j
∂f

∂zj
(z) +

1

2

∑
j,k

(σσ′)(z)j,k
∂2f

∂zj∂zk
(z),

(LZ∗

t f)(i) =
∑
j

Ā(t)j,i(f(j) − f(i)),

(LX∗,Z∗

t f)(z, i) =
∑
j

b̄(z, t)j
∂f

∂zj
(z, i) +

1

2

∑
j,k

(σσ′)(z)j,k
∂2f

∂zj∂zk
(z, i)

+
∑
j

Ă(z)j,i(f(z, j) − f(z, i)).

(3.5)

Proof. See Appendix B.
We can regard X∗ and Z∗ as being the signal and filter processes of a dual

problem. The dual signal X∗ is a Markov process in its own right, evolving on the
state space S

n−1 and having the infinitesimal generator LX∗

t . The X-valued process Z∗

is a filter for this dual signal in the sense that Z∗
t is a sufficient statistic for estimating
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the future of X∗ from the past of Z∗, as is shown by the following argument. For any
bounded, measurable f : S

n−1 → R and any B ∈ FX
t,T ,∫

B

E
(
f(Zt) | FX

t,T

)
dP =

∫
B

f(Zt) dP

=

∫
E(1Bf(Zt) |Xt) dP

=

∫
E(1B |Xt)E(f(Zt) |Xt) dP

=

∫
B

E(f(Zt) |Xt) dP,

where the third step follows from part (iii) of Proposition 2.1. Thus

E
(
f(X∗

t ) | FZ∗

−T,t

)
= E (f(X∗

t ) |Z∗
t ) a.s.

A straightforward application of Bayes’s formula shows that the Z∗
t -conditional

distribution of X∗
t has the form

PX∗|Z∗(B, i, t) = P(Z−t ∈ B | X−t = i)

=
EZ−t,i1B(Z−t)

P(X−t = i)

=

∫
ΓB

γ̃(z̃)ipZ̃(z̃,−t)

pX(−t)i
dz̃.

(3.6)

Clearly we could also regard Z∗ as being the dual observation process. However, there
are other possibilities. Any dual observation process (Y ∗

t , t ∈ [−T, T ]) must satisfy
the following two conditions:

(O1) FY ∗

−T,t ⊇ FZ∗

−T,t for all t ∈ [−T, T ];

(O2) X∗ and FY ∗

−T,t are FZ∗

−T,t-conditionally independent for all t ∈ [−T, T ].
The first of these requires that the dual filter should be derivable from the dual
observations; the second requires that any randomness in Y ∗ that is not in Z∗ should
bear no additional information about X∗.

Remark 3.1. The observation process of the original filtering problem in section 2
obviously satisfies the equivalent of (O1); that it also satisfies the equivalent of (O2)
is demonstrated in part (ii) of Proposition 2.1.

The following two examples of dual observation processes satisfy (O1) and (O2).
For ease of construction, we (temporarily) assume that Z∗ has right-continuous paths
with left limits.

Example 3.1. Let (Y ∗
t , t ∈ [−T, T ]) be the n-vector process whose ith component

is defined as follows:

(3.7) Y ∗
t,i = 1{i}(Z

∗
−T ) +

∑
s∈(−T,t]

(
1 − 1{i}(Z

∗
s−)

)
(χ(Z∗

s ) − χ(Z∗
s−))i.

Y ∗ is a vector of counting processes; its ith component increments by one whenever
Z∗ jumps into state i. Conditions (O1) and (O2) are trivially satisfied for this Y ∗

since FY ∗

−T,t = FZ∗

−T,t for all t. Note, however, that FY ∗

t,t is not in general the same

as FZ∗

t,t , and so there is some work for the filter to do; in fact Z∗
t = χ−1(Y ∗

−T ) if no
component of Y ∗ jumps during the interval (−T, t]; otherwise

Z∗
t = arg max

i

{
max{s ∈ (−T, t] : (Y ∗

s,i − Y ∗
s−,i) = 1}

}
.
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The observation process here generates the same filtration as does the filter process,
a property that is not as unnatural as it may seem at first sight. In fact it is shared
by the original filtering problem of section 2 in the special case that there is no initial
observation, the dimension of the running observation d is one, and g(i) 
= g(j) for at
least one pair i, j ∈ X.

Example 3.2. Let (Bk ∈ {0, 1}, k = 0, 1, . . .) be a sequence of independent
Bernoulli random variables, independent of (X∗, Z∗), with P(Bk = 0) = P(Bk = 1) =
0.5. Let

Y ∗
t = 2Z∗

t +

Nt∑
k=0

Bk,

where Nt = #{s ∈ (−T, t] : Z∗
s − Z∗

s− 
= 0}. The observation filtration here, FY ∗

−T,t,
is strictly larger than that generated by the filter process. However, condition (O2)
is satisfied since the source of the additional randomness, (Bk), is independent of
(X∗, Z∗). Condition (O1) is satisfied since

Z∗
−T = [0.5Y ∗

−T ],

Z∗
t − Z∗

t− =
[
0.5(Y ∗

t − Y ∗
t−)

]
for t ∈ (−T, T ],

where, for u ∈ R, [u] is the largest integer less than or equal to u. The additional
randomness in the observations here may appear, at first sight, to be rather superficial.
However, this is because the observation process is expressed in terms of the filter
process, rather than the signal. Of course, having constructed the observation in this
way we could express it purely in terms of X∗ by integrating out Z∗ according to its
X∗-conditional distribution.

The dual filter is a very particular example of a finite-dimensional nonlinear
filter. The dual signal is a multidimensional diffusion process with nonlinear dynamics,
and the components of the dual observation process are Markov-modulated point
processes. In general, problems of this nature lead to infinite-dimensional nonlinear
filters. Here, because of the special connection between the prior distribution and
dynamics of X∗, and the observation mechanism, the nonlinear filter is not only finite
dimensional but even evolves on a finite space.

In analogy with the definitions of S(t), C(t), and D(t) in section 2, we can identify
the information supply, storage, and dissipation of the dual filter as follows:

S∗(t) := I(X∗ ; (Y ∗
s , s ∈ [−T, t])),

C∗(t) := I((X∗
s , s ∈ [t, T ]) ; (Y ∗

s , s ∈ [−T, t])),

D∗(t) := S∗(t) − C∗(t).

(3.8)

The dual supply, like S(t), could be found by a measure transformation technique
involving an integral formula for the dual martingale

(3.9) L∗
t = E

(
LT | FX∗,Z∗

−T,t

)
,

where L is as defined in (2.7). However, there is an easier way of finding S∗. It follows
from (O2), part (ii) of Proposition 2.1, and (2.18) that

S∗(t) = I((Xs, s ∈ [−t, T ]) ; Z)

= S(T ) −D(−t).
(3.10)
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Furthermore, as in (2.14), it follows from (O2) that

C∗(t) = I((Xs, s ∈ [−t, T ]) ; (Zs, s ∈ [−T,−t]))

= C(−t),
(3.11)

and so

(3.12) D∗(t) = S(T ) − S(−t).

This shows that the time-reversed information flows for the original problem can be
interpreted as the forward-time information flows for the dual problem, with informa-
tion supply and dissipation swapping roles.

Like Ḋ in (2.17), Ḋ∗ is associated with the randomization of the dual signal, as
described by its infinitesimal generator, LX∗

. In fact

(3.13) Ḋ∗(t) = −E

(
LX∗

log

(
χ(Z∗

t )′z

χ(Z∗
t )′pX(−t)

))
(X∗

t ).

It may seem, at first sight, that Ṡ∗(−t) should equal Ṡ(t) since both concern
the supply of information between X and Z over the short time interval [t, t + δt].
That this is not so is because S and S∗ are cumulative information quantities with
derivatives that represent the flow rate of new information. What constitutes new
information between X and Z depends on the time direction over which it is being
accumulated. Over the time interval [t, t+ δt] an amount S(t+ δt)−S(t) ≈ Ṡ(t)δt of
new information is supplied in the original problem. Because this is new, it relates to
a dependency between Xt+δt and Zt+δt that is not present between (Xs, s ∈ [−T, t])
and (Zs, s ∈ [−T, t]). It is present in C(t + δt) (= C∗(−t− δt)), and therefore useful
to the dual filter at time −t− δt, but not present in C(t) (= C∗(−t)), and therefore
no longer useful to the dual filter at time −t. For this reason the dual filter dissipates
it and Ḋ∗(−t) = Ṡ(t).

4. Entropic derivatives. This section further investigates the interaction be-
tween the components of the joint process (X,Z). Parts (iii) and (iv) of Proposi-
tion 2.1 show that, in forward time, the evolution of X at time t is influenced only
by the first component of (Xt, Zt) and that, in reverse time, the evolution of Z is
influenced only by the second component. These properties result in unidirectional
flows of entropy between the two components. Let SX(t), SZ(t), and SX,Z(t) be the
entropies of Xt, Zt, and (Xt, Zt), respectively:

SX(t) := −E log (χ(Xt)
′pX(t)) ,

SZ(t) := −E log (pZ̃(ΓZt, t)) ,

SX,Z(t) := −E log (χ(Xt)
′ZtpZ̃(ΓZt, t)) .

(4.1)

(SZ is defined in terms of a uniform measure on S
n−1, whose total mass is

∫
ΓSn−1 dz̃.)

As t increases, SX(t) can increase, decrease, or remain constant according to the
distribution pX(t). Whichever of these happens, Xt acquires “new” entropy from
the random switching and loses “old” entropy as it “forgets its past.” If X has an
invariant distribution, then these two effects are balanced in that distribution. The
same is true of SZ(t), except that part of the “new” entropy acquired by Zt comes
from Xt, (the remainder having its origin in the observation noise). This intuition
can be made precise from a consideration of the side entropies:

SX|Z(t) := SX(t) − I(Xt ; Zt) and SZ|X(t) := SZ(t) − I(Xt ; Zt).
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The common term here I(Xt ; Zt) (= C(t)) is a shared component of the joint entropy
SX,Z(t). In fact

(4.2) SX,Z(t) = SX|Z(t) + C(t) + SZ|X(t).

The sum of the first two components on the right-hand side of (4.2) is the signal
entropy SX(t). Its rate of change would not be altered if we were to “turn off” the
observation mechanism at time t (which could be achieved by setting the observation
function, g, to zero); however, such action would reduce the rate of change of C by the
amount Ṡ(t). From this we can deduce that there is a flow of entropy from the first
component to the second component on the right-hand side of (4.2) of rate Ṡ(t). (The
term “flow” is justified because the entropy changes in question are conservative.) This
flow is strictly one way because of the optimality of the filter, which never discards
any information that is relevant to the present and future of the signal.

Similarly, the sum of the second and third components on the right-hand side of
(4.2) is the entropy of the dual signal SX∗(−t) (= SZ(t)). Its rate of change would
not be affected if we were to “turn off” the dual observation mechanism at (reverse)
time −t (which could be achieved by replacing Ă(X∗

−t) by Ā(−t)). However, a simple
rearrangement of (2.17) shows that

(4.3) Ṡ∗(−t) = E
∑

i,j:Ai,j>0

log

(
Ă(X∗

−t)i,j

Ā(−t)i,j

)
Aj,iX

∗
−t,i,

which in turn shows that this action would reduce the rate of change of C∗ by the
amount Ṡ∗(−t). From this we can deduce that, in forward time, there is a flow of
entropy from the second component to the third component on the right-hand side of
(4.2) of rate Ṡ∗(−t) (= Ḋ(t)). Once again, this is conservative and strictly one way.
Of course, these entropy flows are the information flows of sections 2 and 3.

In the theory of nonequilibrium statistical mechanics based on stochastic dy-
namics (see, for example, [3], [11], [13], and [15]), invariant distributions of Markov
processes are used to model stationary states of statistical mechanical systems. The
latter come in two varieties called equilibrium and nonequilibrium states. Nonequilib-
rium states represent time-invariant states in which there is a nonzero flow of some
physical quantity (often energy). For example, if the two ends of a cylinder of gas are
held at different fixed temperatures, a stationary nonequilibrium state is eventually
set up in the gas in which energy flows from the hotter end to the cooler end. The
state is stationary in the sense that the temperature profile along the cylinder does
not change with time; it is nonequilibrium in the sense that there is a nonzero flow of
energy through the system in the state. One of the fundamental features of thermo-
dynamics is that energy flow down a temperature gradient is accompanied by entropy
increase.

The joint process (X,Z) of this paper is Markov, and so it can be associated with
an abstract statistical mechanical system. This analogy is developed in [18] and [20],
where it is shown that the signal-filter pair models a nondissipative system lying on
the boundary between systems that do and do not satisfy the second law of ther-
modynamics. In the analogy, the unidirectional flow of entropy identified above is
accompanied by a unidirectional flow of energy that is not driven by temperature gra-
dients. This does not cause entropy increase, and so it makes statistical mechanical
sense in reverse time—a property connected with the existence of a dual system.

In what follows, we define an entropic time derivative for Markov processes and
explore its connections with the information flows of sections 2 and 3. In [13], a
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rate of entropy flow is identified for stationary nonequilibrium states of certain time-
homogeneous Markov processes. This involves large-time limits of the forward and
backward dynamics of the process in its stationary state. A rate of entropy production
for nonstationary states is then defined in terms of this quantity and the rate of change
of entropy of the state (cf. ṠX(t) above). Despite the name, a positive rate of entropy
production does not always imply that the physical system modelled causes entropy
increase, merely that its dynamics reveal the direction of time. The rate of entropy
production of [13] subsumes entropy changes and (conservative) entropy flows. The
entropic time derivative defined below coincides with the rate of entropy production
of [13] when the process in question is time-homogeneous and admits an invariant
distribution. However, since it involves small-time limits, it is inherently dynamical
in nature and is equally applicable to time-inhomogeneous processes such as the dual
signal process of section 3. We call the entropic time derivative a “rate of entropy
production” because of this connection with statistical mechanics.

Let (ηt, t ∈ [a, b]) be a Markov process defined on a complete probability space
and taking values in a Borel space (E, E). For any t ∈ (a, b), let ε̄ := min{t−a, b− t},
and let G := (Gε ⊆ B[0,ε]

E , 0 < ε < ε̄) be a family of σ-fields parametrized by ε. For

each ε, Gε is a sub-σ-field of B[0,ε]
E (the σ-field on E[0,ε], generated by the cylinder

sets). Let Πη
t,t+ε and Πη

t,t−ε be the distributions of the processes (ηt+s, s ∈ [0, ε]) and

(ηt−s, s ∈ [0, ε]), respectively, on the common space (E[0,ε],B[0,ε]
E ). Let Πη,G

t,t+ε and

Πη,G
t,t−ε be the restrictions of Πη

t,t+ε and Πη
t,t−ε to Gε. For probability measures Pa and

Pb on a measurable space (N,N ), let h(Pa|Pb) be the relative entropy :

(4.4)
h(Pa|Pb) :=

∫
log

(
dPa

dPb

)
dPa if Pa � Pb and the integral exists,

+∞ otherwise.

Definition 4.1. (i) The rate of entropy production (entropic time derivative) of
the process η at time t with respect to the family G is

(4.5) Rη,G(t) := lim sup
ε↓0

ε−1Eh
(
Πη,G

t,t+ε |Π
η,G
t,t−ε

)
.

(ii) The path rate of entropy production of the process η at time t is its rate of

entropy production with respect to the family {Gε = B[0,ε]
E , 0 < ε < ε̄}.

(iii) The point rate of entropy production of the process η at time t is its rate of
entropy production with respect to the family {Gε = (φ0, φε)

−1(E2), 0 < ε < ε̄}, where
φ is the coordinate function on E[0,ε].

Remark 4.1. Rη,G depends only on the finite-dimensional distributions of η, and
is not influenced by the choice of versions of η, for the same reason that this is true
of S, C, and D. (See Remark 2.4.)

Remark 4.2. The initial-time marginals of Πη
t,t+ε and Πη

t,t−ε are the same (they
are both the distribution of ηt). So, if the paths of η take values in a Polish space
(for example the Skorohod space D([0,∞);E), where E is a Polish space), then the
relative entropy in part (ii) (respectively, part (iii)) can also be thought of as that be-
tween regular conditional forward and backward path (respectively, point) transition
measures.

Rη,G(t) is a measure of the time asymmetry of the process η at time t. Consider
a game in which one player secretly takes a segment of the sample path of η between
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times t − ε and t + ε, tosses a coin, reversing the time direction of the segment if
“heads” occurs, and then shows the segment to the second player, asking whether or
not it has been reversed. Rη,G(t) is a measure of how easily the second player, knowing
only the forward and backward generators of the process, could answer correctly. It
follows from the convexity of the function x �→ x log x and Jensen’s inequality that if
families G1 and G2 are such that G1,ε ⊆ G2,ε for all ε, then Rη,G1

(t) ≤ Rη,G2
(t), and

so the measures of time asymmetry, Rη,G, become sharper as the families of σ-fields,
G, become richer. The sharpest measure is the path rate of entropy production.

We do not dwell here on the properties of Rη,G in the general case but proceed
to investigate it in the context of the filtering problems of sections 2 and 3. Since
the information quantities S(t), D(t), S∗(t), and D∗(t) are defined in terms of path
measures, and since we aim to connect rates of entropy production with these infor-
mation quantities, we shall concentrate on path rates of entropy production and omit
the subscript G from Rη. We shall make use of the following conditions; these are not
all required in the main result of this section (Proposition 4.4).

(H2) Ai,j > 0 for any i, j ∈ X for which Aj,i > 0.
(H3) d = n− 1, and rank{σ(z)} = n− 1 for all z ∈ S

n−1.
(H4) maxi,j E(q(i, ψ)/q(j, ψ))2 < ∞, where ψ is the initial observation and q is

the likelihood function of (2.1).
(H5) For a specified t ∈ (−T, T ), there is an ε > 0 such that pZ̃(z̃, s) is differentiable

with respect to z̃ for all s ∈ [t− ε, t], and E |σ(Zt+r)
′Γ′(∇z̃ log pZ̃)(ΓZt+r, t− |r|)|2 is

bounded and continuous as a function of r on the interval r ∈ (−ε, ε).
Proposition 4.2. (i) Let RX and RZ∗ be the path rates of entropy production

of the signal process, X, and its time reversal, Z∗. Then, for each t ∈ (−T, T ),

(4.6)

RX(t) = RZ∗(−t) =
∑

i,j:Ai,j>0

log

(
Ai,j

Ā(−t)i,j

)
Ai,jpX(t)j if (H2) is satisfied ,

+∞ otherwise.

(ii) Let RZ and RX∗ be the path rates of entropy production of the filter process,
Z, and its time reversal, X∗. If (H1), (H3), and (H4) are satisfied, then, for each
t ∈ (−T, T ) for which (H5) is satisfied,

(4.7) RZ(t) = RX∗(−t) =
1

2
E
∣∣(Γσ(Zt))

−1Γ(AZt − b̄(Zt,−t))
∣∣2 < ∞.

(iii) Let RX,Z and RX∗,Z∗ be the path rates of entropy production of the joint
process, (X,Z), and its time reversal, (Z∗, X∗). If (H1)–(H4) are satisfied, then, for
each t ∈ (−T, T ) for which (H5) is satisfied,

RX,Z(t) = RX∗,Z∗(−t) =
1

2
E
∣∣(Γσ(Zt))

−1Γ(b(Xt, Zt) − b̄(Zt,−t))
∣∣2

+ E
∑

i,j:Ai,j>0

log

(
Ai,j

Ă(Zt)i,j

)
Ai,jZt,j < ∞.

(4.8)

Proof. See Appendix C.
Remark 4.3. Parts (ii) and (iii) of Proposition 4.2 are not in their ripest form,

in that condition (H5) is not easy to verify. It would clearly be preferable to replace
it by explicit conditions on the parameters n, A, d, g, etc. The main difficulty with
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such a result is that of establishing suitable regularity properties for pZ̃—the forward
equation for pZ̃ is not uniformly parabolic, and this is a condition in many results
concerning explicit bounds on solutions and their derivatives. (See, for example, [10].)
Where explicit bounds are available, for example in [1], they are not sufficiently tight
for the purposes of establishing (H5). However, (H5) is only marginally stronger
than the finiteness of the right-hand sides in (4.7) and (4.8). The term in (H5) also
occurs in the Itô expansion of log(pZ̃(ΓZt, t)), and so (H5) is connected with the

finiteness of the rate of change of entropy of the filter, ṠZ(t). For example, if (Xt, Zt)
is in an invariant distribution with twice differentiable Z̃t-marginal density pZ̃,SS and
SZ,SS > −∞, then a comparison of the terms in log(M1(x)) of Appendix C with those
of the Itô expansion of log(pZ̃,SS(ΓZt)) shows that (H5) is satisfied, and

1

2
E
∣∣∣σ(Zt)

′Γ′(∇z̃ log pZ̃,SS)(ΓZt)
∣∣∣2 = − tr(A) +

1

2

∑
i,j

E
∂2(σσ′)i,j
∂zi∂zj

(Zt).

Remark 4.4. When regarded as an equation on ΓBm × (−T, T ), where Bm ={
z ∈ S

n−1 : zi > m−1 for all i
}
, the forward equation for pZ̃ is uniformly parabolic;

this observation can be used as the basis for a definition of a local path rate of entropy
production for Z and (X,Z) with respect to the sequence of sets (Bm). This is the
lim sup, over m, of the path rate of entropy production of the processes Z and (X,Z),
stopped at the exit time of the forward and backward processes (Zt+s, s ∈ [0, ε])
and (X∗

−t+s, s ∈ [0, ε]) from Bm. Condition (H5) is easily verified for these stopped
processes, and Z, X∗, (X,Z), and (X∗, Z∗) can be shown to have local path rates
of entropy production equal to the derivatives of Proposition 4.2 under mild, explicit
conditions. However, unlike Rη of Definition 4.1, this local rate depends on the choice
of a specific version of Z. We do not pursue it further in this paper.

Remark 4.5. If (H3) is not satisfied, then, except in special cases, RZ , RX∗ ,
RX,Z , and RX∗,Z∗ are all infinite. This is because the components of the vector
fields ΓAZt and Γb̄(Zt,−t) in the kernel of Γσ(Zt)σ(Zt)

′Γ′ can differ, resulting in the
mutual singularity of ΠZ

t,t+ε and ΠZ
t,t−ε.

Remark 4.6. Proposition 4.2 shows that (at least for the processes of this paper
under (H1)–(H5)) the path rate of entropy production is time symmetric—the rates for
the forward and time-reversed processes are identical, even though h(Πη

t,t+ε |Π
η
t,t−ε) 
=

h(Πη
t,t−ε |Π

η
t,t+ε) in general. This is because the negation caused by the inversion of

the Radon–Nikodym derivative in h(Πη
t,t+ε |Π

η
t,t−ε) is countered, in the limit of small

ε, by the change of integrating measure.
The fact that X and Z are both marginally and jointly Markov can be used

to isolate a component of their joint path rate of entropy production that is purely
associated with their interaction. If conditions (H1)–(H4) are satisfied, and (H5) is
satisfied for a given t, then an interactive path rate of entropy production can be
defined by simple subtraction. A straightforward calculation then shows that

(4.9) RI(t) := RX,Z(t) −RX(t) −RZ(t) = Ṡ(t) + Ḋ(t).

Clearly, the interactive path rate of the dual problem at time −t also takes this value.
Thus the time asymmetry of the interaction between the signal and filter processes,
as measured by the path rate of entropy production, is entirely associated with the
flow of information between the processes. The reason for this property becomes
apparent when the Radon–Nikodym derivative dΠX,Z

t,t+ε/dΠ
X,Z
t,t−ε is factorized in terms

of the likelihood functions of the original and dual filters. (See (C.3), (C.6), (C.7), and
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(C.8) in Appendix C.) It is closely related to the time symmetry property discussed in
Remark 4.6. Since RI is purely associated with the conservative flows of information,
Ṡ and Ḋ, it could also be called a rate of interactive entropy flow.

The sum of the supply and dissipation rates, Ṡ(t) + Ḋ(t), is finite under much
weaker conditions than (H1)–(H5), and so it is natural to ask whether one can define
a rate of interactive entropy production for filtering problems not satisfying these
conditions. In fact this can be done via a relaxation argument.

Let (Φk := (Ωk,Fk,Pk, Xk, ψk, Y k,r, Zk), k ∈ N) be a sequence of filtering prob-
lems similar to that of section 2. More precisely, for each k, let Xk be an X-valued
Markov process with initial distribution θk ∈ S

n−1 and rate matrix Ak; let ψk (∈ Mk)
be an initial observation that is Xk

−T -conditionally independent of Xk; and let Y k,r

be an R
m-valued running observation process of the form

(4.10) Y k,r
t =

∫ t

−T

gk(Xs) ds + W k
t for t ∈ [−T, T ],

where m ≥ max{d, n − 1}, gk : X → R
m, and W k is an m-vector shifted Brownian

motion, independent of (Xk, ψk). Suppose, further, that the following hold:
(A1) for each k, Φk satisfies (2.1) and (H1)–(H4);
(A2) Ak → A;
(A3) (Xk

−T , Z
k
−T ) ⇒ (X−T , Z−T ) and Ek log(Zk

−T,i) → E log(Z−T,i) for all i;

(A4) for each i ∈ X, gk(i) → g0(i), where g0 is the R
m-valued function on X

whose first d components are those of g and whose remaining components are zero.
Example 4.1. For each k, let ζk : Ωk → S

n−1 and ηk : Ωk → R
n be independent,

ζk having the same distribution as Z−T and ηk having the standard n-variate Gaussian
distribution. Let

Ak := A + k−1(JnJ
′
n − nIn),

gkl := gl for l = 1, 2, . . . , d,

k−11{l−d} for l = d + 1, d + 2, . . . , d + n− 1,

ψk,1 := (kn)−1Jn + (1 − k−1)ζk,

ψk,2 := χ(Xk
−T ) + kηk,

(4.11)

where Jn is the n-vector whose entries are all 1, 1 is the indicator function, Xk
−T

has ψk,1-conditional distribution ψk,1, and Xk is Xk
−T -conditionally independent of

(ζk, ηk) with rate matrix Ak. Let the running observation be as in (4.10), and let
the initial observation be ψk (:= (ψk,1, ψk,2)). Then (Φk) satisfies (A1)–(A4). (It can
also be shown by means of a number of theorems in [10] that Z̃t has a strictly positive
differentiable density for all t ∈ (−T, T ], and so Φk satisfies at least part of (H5).)

Definition 4.3. The path rate of interactive entropy production of the process
(X,Z) at time t is

RI(t) := lim sup
k↑∞

lim sup
ε↓0

ε−1Ek

(
h
(
ΠX,Z,k

t,t+ε |ΠX,Z,k
t,t−ε

)
− h

(
ΠX,k

t,t+ε |Π
X,k
t,t−ε

)
− h

(
ΠZ,k

t,t+ε |Π
Z,k
t,t−ε

))
,

(4.12)

where ∞−∞ is taken to be +∞, (Φk) is a sequence of filtering problems satisfying

(A1)–(A4), and ΠX,Z,k
t,t+ε is the equivalent of ΠX,Z

t,t+ε for the filtering problem Φk, etc.
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The following proposition justifies Definition 4.3, and shows that it is consistent,
in the sense that the limits in (4.12) do not depend on the specific sequence satisfying
(A1)–(A4). It also evaluates RI .

Proposition 4.4. Let (Φk) be a sequence of filtering problems satisfying (A1)–
(A4).

(i) The processes ((Xk, Zk), k = 1, 2, . . .), considered as random variables in the
product space X[−T,T ] × C([−T, T ]; Sn−1), converge weakly as k ↑ ∞ to (X,Z).

(ii) For each t ∈ (−T, T ), the forward and backward generators of the processes
(Xk, Zk) at time t converge to those of (X,Z) in the following sense. For any f, h :
X × R

n → R such that f(i, · ), h(i, · ) ∈ C2(Rn; R) for all i,

lim
k↑∞

lim
ε↓0

ε−1Ek
(
f(Xk

t±ε, Z
k
t±ε) − f(Xk

t , Z
k
t )
)
h(Xk

t , Z
k
t )

= lim
ε↓0

ε−1E (f(Xt±ε, Zt±ε) − f(Xt, Zt))h(Xt, Zt).
(4.13)

(iii) For each t ∈ (−T, T ), for which the filtering problems in the sequence (Φk)
satisfy (H5),

(4.14) RI(t) = Ṡ(t) + Ḋ(t).

Proof. See Appendix D.
Remark 4.7. If (H1)–(H5) are satisfied by the original filtering problem, then the

problems in the sequence (Φk) can all be chosen to be the same as the original, which
shows that Definition 4.3 is consistent with that in (4.9).

5. A simple example. The ideas of sections 2 to 4 are illustrated here through a
simple example in which n = 2 and the signal process X has the following symmetrical
rate matrix for some positive constant λ:

A =

[
−λ λ
λ −λ

]
.

The filtering problem will be investigated in its invariant distribution, and so the
initial distribution of X is chosen to be θ = [0.5 0.5]′.

The running observation has dimension d = 1, and g(i) = αu(i), where α is a
constant and u(i) := 2i− 3. In order to exploit the symmetry of the example, we will
represent the signal value by the {−1,+1}-valued statistic u(Xt), and the filter value,
Zt, by the (−1, 1)-valued conditional mean of u(Xt),

μt := Zt,2 − Zt,1.

The filter formulae of (2.4) now take the form

dμt =
(
−2λμt − α2(1 − μ2

t )μt

)
dt + α(1 − μ2

t ) dY
r
t

= −2λμt dt + α(1 − μ2
t ) dνt.

(5.1)

μ has the following invariant density (for an appropriate normalizing constant K):

(5.2) pμ,SS(x) =
K

(1 − x2)2
exp

(
−2λx2

α2(1 − x2)

)
.

In order to initialize the filter in this distribution, we choose an initial observation
ψ : Ω → (−1, 1) with the following X−T -conditional density:

pψ|X−T
(x, i) = (1 + u(i)x)pμ,SS(x).
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With this initial observation, μ−T = ψ.
The storage, C(t), and the supply and dissipation rates, Ṡ(t) and Ḋ(t), can now

be evaluated from (2.14), (2.13), and (2.16):

C(t) =
1

2

∫ 1

−1

(
log(1 − x2) + x log

(
1 + x

1 − x

))
pμ,SS(x) dx,

Ṡ(t) =
1

2
α2

∫ 1

−1

(1 − x2)pμ,SS(x) dx,

Ḋ(t) = λ

∫ 1

−1

x log

(
1 + x

1 − x

)
pμ,SS(x) dx.

(5.3)

(Since the signal and filter are initialized in their joint invariant distribution, these
quantities do not depend on t, and Ṡ = Ḋ.) One can easily define “disintegrated,”
μt-conditional information quantities by removing the averaging operation in (5.3).
This reveals that the disintegrated supply rate is proportional to the power signal-
to-noise ratio, α2; it is largest when μt is close to zero and decreases to zero as μt

approaches ±1. Similarly, the disintegrated dissipation rate is proportional to the
signal switching rate, λ; it is large when μt approaches ±1 and zero when μt is zero.
The disintegrated storage is zero when μt = 0 and equal to the self information of Xt

(1 bit) if μt = ±1.
It is clear that (H1)–(H5) are all satisfied for this example. Time reversing the

pair (X,μ), we obtain the dual system. The dual signal X∗ takes values in the interval
(−1, 1) and evolves according to the following equation:

(5.4) dX∗
t = −2λX∗

t dt + α(1 −X∗
t )2 dV ∗

t ,

where ((V ∗
t ,F

X∗,Z∗

−T,t ), t ∈ [−T, T ]) is a scalar shifted Brownian motion; it has initial
distribution pμ,SS . The dual observation is the counting process Y ∗ of (3.7) in Ex-
ample 3.1. The dual filter is a two-state Markov process with initial X∗-conditional
distribution

P (Z∗
−T = i | X∗

−T ) = (1 + u(i)X∗
−T )/2 for i = 1, 2

and X∗-conditional rate matrix at time t

Ă(X∗
t ) = λ

[
−(1 + X∗

t )/(1 −X∗
t ) (1 −X∗

t )/(1 + X∗
t )

(1 + X∗
t )/(1 −X∗

t ) −(1 −X∗
t )/(1 + X∗

t )

]
.

The observation-conditional distribution of X∗
t is as follows:

P (X∗
t ∈ B | Y ∗

s , s ∈ [−T, t]) =

∫
B

(1 + u(Z∗
t )x)pμ,SS(x) dx.

The disintegrated dual information supply rate is the same as the disintegrated primal
dissipation rate, and so it is large when the switching rate scaling factor λ is large.
Thus a high switching rate for Y ∗ is associated with a high information supply rate.
Similarly, the disintegrated dual dissipation rate is the same as the disintegrated
primal supply rate, and so it is large when the dual signal noise factor, α2, is large.
We can also “disintegrate” the dual supply and dissipation rates with respect to X∗

t to
obtain Z∗

t -conditional rates. However, because of the symmetry of the simple problem
considered here, these are equal to Ṡ∗ and Ḋ∗ for both values of Z∗

t .
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Both processes X and μ are self-adjoint, in that their dynamics are the same in
both time directions. This results in their (marginal) path rates of entropy production,
RX and Rμ, being zero. Of course the dynamics of their interaction are not time
symmetric, and

(5.5) RI = RX,μ = Ṡ + Ḋ = 2Ṡ.

6. Conclusions. This paper has developed dual nonlinear filtering problems and
defined and related information flows for them. It has defined an entropic time deriva-
tive for a general class of Markov processes and connected the entropic derivatives
of the signal and filter processes with these information flows. In the special case
of time-homogeneous processes admitting invariant distributions, the entropic time
derivative coincides with the “rate of entropy production” of [13]. This connection
enables the construction of statistical mechanical analogies for the signal and filter
(reported in [18] and [20]) in which the signal and filter interact in a nondissipative
way. The existence of dual filtering problems is thus connected with the second law
of thermodynamics.

The derivation of dual filters by the techniques of this paper is not restricted to
systems with discrete-state signals. The same approach can be taken with filters for
diffusion processes and leads to systems in which the optimal filter for an infinite-
dimensional signal is of finite dimension. A notable exception to this is the linear
Gaussian case in which the signal and filter are both of finite dimension. The signal
and Kalman–Bucy filter equations are self-dual in a certain sense. (See [19].) Other
special cases are the finite-dimensional filters of Benes̆ [2].

Appendix A. Proof of Proposition 2.1. It follows from the boundedness of
g − ḡ and the Novikov criterion (e.g., Theorem 6.1 in [14]) that, under P, (Lt,FX,Y

−T,t)

is a martingale, and so P
M (Ω) = ELT = EL−T = 1, which shows that P

M is a

probability measure. By the same argument (L−1
t ,FX,Y

−T,t) is a martingale under P
M ,

and this proves part (vi).
For any ε > 0, let

τε := inf {t ∈ [−T, T ] : Zt,i ≤ ε for any i ∈ X} ∧ T,

ξεt := Zt∧τε ;

then, from Itô’s rule applied to the second equation in (2.4),

log(ξεT,i) = log(ξε−T,i) +

∫ τε

−T

(
(ξεt,i)

−1(Aξεt )i −
1

2
(ξεt,i)

−2(σσ′(ξεt ))i,i

)
dt

+

∫ τε

−T

(ξεt,i)
−1 (σ(ξεt ) dνt)i

≥ log(ξε−T,i) +

∫ τε

−T

(
Ai,i −

1

2
|g(i) − ḡ(Zt)|2

)
ds +

∫ τε

−T

(g(i) − ḡ(Zt))
′ dνt

≥ ζ(ω) > −∞ a.s.,

where ζ does not depend on ε or i. Thus, if ε < exp(ζ(ω)), then τε(ω) = T . This,
and the fact that P(ΣiZt,i = 1 for all t) = 1 (which follows immediately from (2.4)),
proves part (v).

For any Borel measurable x : [−T, T ] → X and any t ∈ [−T, T ], let

M(x)t := Zt − Z−T −
∫ t

−T

(AZs + σ(Zs)(g(xs) − ḡ(Zs))) ds;
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then (M(x)t,FZ
−T,t) and (M(X)t,FX,Z

−T,t) are both continuous semimartingales with
the same quadratic covariation:

[M(x)i,M(x)j ]t = [M(X)i,M(X)j ]t

=

∫ t

−T

(σσ′)(Zs)i,j ds

=

∫ t

−T

Zs,iZs,j(g(i) − ḡ(Zs))
′(g(j) − ḡ(Zs)) ds.

Let

K(x)t :=
χ(x−T )′θ

χ(x−T )′Z−T
exp

(∫ t

−T

(χ(xs)
′Zs)

−1
χ(xs)

′ dM(x)s

− 1

2

∫ t

−T

|g(xs) − ḡ(Zs)|2 ds
)
.

(The stochastic integral here is well defined in the L2 sense because of part (v).) Then

L−1
t = K(X)t, which shows that L is adapted to (FX,Z

−T,t). This, together with the

fact that (L−1
t ,FX,Y

−T,t) is a martingale under P
M , proves part (vii).

The abstract Bayes formula of nonlinear filtering (e.g., Theorem 7.23 in [14])
states that, for any B ∈ BX

−T,T ,

(A.1) P
(
X ∈ B | FY

−T,t

)
=

∫
B

K(x)t PX(dx),

where PX is the distribution of X considered as a random variable taking values in
(X[−T,T ],BX

−T,T ). (In fact, Theorem 7.23 of [14] does not treat filtering problems
having initial observations. However, its extension to the filtering problem of this
paper is straightforward. See Remark 2.3.) Part (viii) follows from the fact that

dP

dPM
= K(X)T =

dPX,Y

d(PX ⊗ PY )
(X,Y ),

where PY is the distribution of Y considered as a random variable taking values in
(M × C([−T, T ]; Rd), M × Bd

−T,T ), and PX,Y is the joint distribution of X and Y .
(See Theorem 7.23 in [14].)

The signal and filter processes X and Z are Markov, X by definition, and Z since
it is a solution of the second equation in (2.4), in which the process ν is a multivari-
ate Brownian motion. (See, again, Theorem 7.23 in [14].) That their infinitesimal

generators are as stated in (2.9) follows from Itô’s rule. For any B ∈ FX,Z
−T,t and any

C ∈ FX,Z
t,T , ∫

B

P

(
C | FX,Z

−T,t

)
dP =

∫
B

EM
(
1CL

−1
T | FX,Z

−T,t

)
dP

M

=

∫
B

EM
(
1CL

−1
T Lt | FX,Z

−T,t

)
L−1
t dP

M

=

∫
B

EM
(
1CL

−1
T Lt |Xt, Zt

)
dP,

(A.2)

where we have used part (vii), the fact that (X,Z) is Markov under P
M , and the

fact that L−1
T Lt = K(X)TK(X)−1

t , which is FX,Z
−T,t-measurable, in the third step.
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From this it follows that P(C | FX,Z
−T,t) is (Xt, Zt)-measurable, which shows that (X,Z)

is Markov under P. Once again, Itô’s rule shows that LJ is its generator, and this
proves part (i).

Part (ii) follows directly from (A.1), since K(x)t is FZ
−T,t-measurable. For any

B ∈ FX,Z
−T,t and any C ∈ FX

t,T ,∫
B

P

(
C | FX,Z

−T,t

)
dP =

∫
B

P
M

(
C | FX,Z

−T,t

)
L−1
t dP

M

=

∫
B

P
M (C |Xt) dP.

Thus P(C | FX,Z
−T,t) is Xt-measurable, and this proves part (iii). Finally, let B ∈ FZ

−T,t,
i ∈ X, and C ∈ Bn; then∫

P(B |Xt, Zt)1{i}×C(Xt, Zt) dP =

∫
B

E(1{i}×C(Xt, Zt) | FZ
−T,t) dP

=

∫
B

Zt,i1C(Zt) dP

=

∫
P(B |Zt)1{i}×C(Xt, Zt) dP.

This shows that P(B |Xt, Zt) is Zt-measurable, and this, together with part (i), proves
part (iv).

Appendix B. Proof of Theorem 3.2. Under the measure P
M (as introduced

before Proposition 2.1), X∗ and Z∗ are independent Markov processes with the same
marginal distributions they have under P, and so, in order to prove the statement of
the theorem concerning the marginal processes X∗ and Z∗, it suffices to show that
the following hold:

(a) (Ω,F ,PM , X∗) solves the martingale problem associated with LX∗

t ;
(b) (Ω,F ,PM , Z∗) solves the martingale problem associated with LZ∗

t .
By (a), we mean that for all f ∈ C2

b (Rn; R), all h ∈ Cb(R
n; R), and all s ≤ t,

E

((
f(X∗

t ) − f(X∗
s ) −

∫ t

s

(LX∗

r f)(X∗
r ) dr

)
h(X∗

s )

)
= 0.

(Since ΓX∗
r has a density, this formulation of the martingale problem admits the case

that ∇z̃pZ̃( · , t) is defined only in the sense of distributions.) Statement (a) follows

from an application of Theorems 2.1 and 3.1 in [12] to the process Z̃ of (3.1). To
prove (b), we proceed as follows.

For any f : X → R, any i ∈ X, and any s ≤ t, let

π(i, t) :=
∑
j

f(j) exp(A(t− s))i,jpX(s)j ,

φ(i, t) := π(i,−t)/pX(−t)i.

Then E(f(Xs) | Xt = i) = φ(i,−t), and

∂φ

∂t
(i, t) = −(pX(−t)i)

−1 ∂π

∂t
(i,−t) + (pX(−t)i)

−2π(i,−t)
∂(pX)i

∂t
(−t),

= −
∑
j

Ā(t)j,i(φ(j, t) − φ(i, t)),
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and so Z∗ is a Markov jump process on X with time-dependent rate matrix Ā, and
this proves (b).

In order to prove the statement of the theorem concerning the joint process
(X∗, Z∗), it now suffices to establish that, under P, Z∗ is X∗-conditionally Markov

with rate matrix Ă of (3.4). For some t ∈ [−T, T ], let B ∈ FX
t,T , C ∈ FX,Z

−T,t, and

D ∈ FZ
t,T ; then∫

C∩D

P(B | FX
−T,t ∨ FZ

−T,T ) dP =

∫
C

P(B ∩D | FX,Z
−T,t) dP

=

∫
C

P(B ∩D | Xt, Zt) dP

=

∫
C

E
(
P(B |Xt,FZ

t,T )1D |Xt, Zt

)
dP

=

∫
C

E
(
P(B |Xt,FZ

t,T )1D | FX,Z
−T,t

)
dP

=

∫
C∩D

P(B |Xt,FZ
t,T ) dP,

where we have used the joint Markov property in the second and fourth steps. Since
(C∩D) forms a Dynkin π-system that generates FX

−T,t∨FZ
−T,T , the first and last inte-

grands are equal a.s., and X is Z-conditionally Markov, so that Z∗ is X∗-conditionally
Markov.

For any f : X → R, any j ∈ X, and any s ≤ t, let

αs,j
t = veci

{
P(Xt = i | Xs = j, FY

−T,t)
}
,

βs
t = veci

{
P(Xs = i | FY

−T,t)
}
,

Φ(i,−t) = E(f(Xs) | Xt = i, Z)

=
∑
j

f(j)αs,j
t,i β

s
t,jZ

−1
t,i .

Then it follows from Theorems 9.3 and 9.4 in [14], and Itô’s rule, that

∂

∂t
αs,j
t,i β

s
t,jZ

−1
t,i = βs

t,jZ
−2
t,i (Zt,i(Aαs,j

t )i − αs,j
t,i (AZt)i),

and so (
∂Φ

∂t

)
(i,−t) =

∑
j,k

f(j)βs
t,jZ

−2
t,i

(
Zt,iAi,kα

s,j
t,k − αs,j

t,i Ai,kZt,k

)

= −
∑
k

Ai,k
Zt,k

Zt,i

∑
i

f(j)βs
t,j

(
αs,j
t,i

Zt,i
−

αs,j
t,k

Zt,k

)
= −

∑
k

Ă(Zt)k,i (Φ(k,−t) − Φ(i,−t)) .

Appendix C. Proof of Proposition 4.2. We prove part (iii) only. Parts
(i) and (ii) follow from similar (but simpler) arguments. Throughout the proof, Xt,
Zt, X∗t, and Z∗t will be used as shorthand for the processes (Xt+s, s ∈ [0, ε]),
(Zt+s, s ∈ [0, ε]), (X∗

−t+s, s ∈ [0, ε]), and (Z∗
−t+s, s ∈ [0, ε]). The proof involves the
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construction of Radon–Nikodym derivatives between various regular Xt-, Zt-, and
(Xt, Zt)-conditional distributions of these processes. We shall, therefore, use versions
of Xt and Z∗t whose sample paths belong to the space, D([0, ε];X), of right-continuous
functions having left limits. When equipped with the Skorohod metric corresponding
to the Krönecker metric on X (r(i, j) = 1 if i 
= j), this is a Polish space. (See, for
example, [4], [8], and [9].) Of course, the sample paths of Zt and X∗t belong to the

space C([0, ε]; Sn−1), where Sn−1 is the closure of S
n−1 in R

n; this becomes a Polish
space when “metrized” by the supremum norm. For a process (ηs, s ∈ [0, ε]) having
sample paths in a Polish space, Πη

ε|0( · , θ) will signify a regular (η0 = θ)-conditional

distribution of η.
Let Gi,t := g(i) − ḡ(Zt); then it follows from Itô’s rule that

dZ−1
t,i =

(
|Gi,t|2 −Ai,i

)
Z−1
t,i dt− Z−1

t,i G
′
i,t dνt − Z−2

t,i

∑
j �=i

Ai,jZt,j dt.

Let (Θt, t ∈ [−T, T ]) be defined by the following equation:

Θt = Z−1
−T,i +

∫ t

−T

(
|Gi,s|2 −Ai,i

)
Θs ds−

∫ t

−T

ΘsG
′
i,s dνs;

then

Θt − Z−1
t,i =

∫ t

−T

exp

(∫ t

s

((
1

2
|Gi,r|2 −Ai,i

)
dr −G′

i,r dνr

))
Z−2
s,i

∑
j �=i

Ai,jZs,j ds

≥ 0,

and so 0 < Z−1
t,i < Θt for all t. It now follows from (H4) and a standard result on the

moments of solutions of Itô equations (see, for example, Theorem 4.6 in [14]) that

(C.1) sup
t∈[−T,T ]

EZ−2
t,i ≤ sup

t∈[−T,T ]

EΘ2
t < ∞.

Let F : D([0, ε];X)×S
n−1×C([0, ε]; Rn−1) → C([0, ε]; Sn−1) be the strong solution

of the following equation (which is parametrized by x ∈ D([0, ε];X)):

ρs = ρ0 +

∫ s

0

b(xr, ρr) dr +

∫ s

0

σ(ρr) dBr for s ∈ [0, ε],

so that Zt = F (Xt, Zt,W ). For x ∈ D([0, ε];X) and z0 ∈ S
n−1, let Π

Zt|Xt

ε|0 ( · , x, z0)

be the distribution of F (x, z0,W ). (This is a regular (Xt = x, Zt = z0)-conditional
distribution for Zt.)

For x ∈ D([0, ε];X), z ∈ C([0, ε]; Sn−1), and s ∈ [0, ε], let

α(x, z)s := (Γσ(zs))
−1Γ(b(xs, zs) − b̄(zs, s− t)),

V ∗
s :=

∫ s

0

(Γσ(X∗t
r ))−1Γ

(
dX∗t

r − b̄(X∗t
r , r − t)dr

)
,

V̄ (x)s := −
∫ s

0

α(x,X∗t)r dr + V ∗
s ,

M1(x) := exp

(∫ ε

0

α(x,X∗t)′s dV̄ (x)s +
1

2

∫ ε

0

∣∣α(x,X∗t)s
∣∣2 ds) .
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It follows from (C.1) and (H5) that, for ε sufficiently small, the ordinary integral in
the expression for M1 has finite expected value. Furthermore, X∗t = F (x, Zt, V̄ (x)),

and so (α(x,X∗t)s, s ∈ [0, ε]) is adapted to (FZ
t,t ∨ F V̄ (x)

0,s , s ∈ [0, ε]). Now (V ∗
s ,FX∗t

0,s ,
s ∈ [0, ε]) is a standard (n− 1)-vector Brownian motion, and so it follows from Theo-
rem 7.6 in [14] that V̄ (x) has a regular (Zt = z0)-conditional distribution, μV̄ (x)( · , z0),
that is absolutely continuous with respect to the Wiener measure, μW , and

(C.2)
dμV̄ (x)( · , Zt)

dμW
(V̄ (x)) = M1(x)−1 a.s.

Now F (x, z0, V
∗) has the distribution Π

Zt|Xt

ε|0 ( · , x, z0), and so it follows from (C.1)

and (H5) that, for almost all z0 (ΠZ
t,t),

E

∫ ε

0

|α(x, F (x, z0, V
∗))s|2 ds < ∞

and from Theorem 7.7 in [14] that μW � μV̄ (x)( · , z0) for almost all z0 (ΠZ
t,t). Thus

the measure on F , defined by dP1(x) = M1(x)dP, is a probability measure under

which (V̄ (x)s,FX∗t

0,s , s ∈ [0, ε]) is an (n − 1)-vector standard Brownian motion and

X∗t has the Zt-conditional distribution Π
Zt|Xt

ε|0 ( · , x, Zt). So

(C.3)
dΠ

Zt|Xt

ε|0 ( · , x, Zt)

dΠX∗t
ε|0 ( · , Zt)

(X∗t) = M1(x) a.s.

We now apply a similar procedure to the jump processes Xt and Z∗t. For each
z ∈ C([0, ε]; Sn−1) and s ∈ (0, ε], let

λs := −χ(Xt
s−)′Aχ(Xt

s−),

λ̆(z)s := −χ(Xt
s−)′Ă(zs)χ(Xt

s−),

Φs := veci
{
λ−1
s (1 − 1{i}(X

t
s−))χ(i)′Aχ(Xt

s−)
}

if λs > 0,

0 otherwise,

Φ̆(z)s := veci

{
λ̆(z)−1

s (1 − 1{i}(X
t
s−))χ(i)′Ă(zs)χ(Xt

s−)
}

if λ̆(z)s > 0,

0 otherwise,

β(z)s := veci

{
log

(
λsΦs,i

λ̆(z)sΦ̆(z)s,i

)}
(where 0/0 is taken to be 1),

Ns := veci

{∫
(0,s]

(1 − 1{i}(X
t
r−)) d1{i}(X

t
r)

}
,

M2(z) := exp

(
−
∫

(0,ε]

β(z)′s dNs +

∫ ε

0

(λs − λ̆(z)s) ds

)
.

In the terminology of Chapter VIII in [5], Xt is a X-marked point process with local

characteristics (λs,Φs,FXt

0,s−, s ∈ [0, ε]). Since z is continuous and [0, ε] is compact,
there exists a δ > 0 such that infs,i{zs,i} > δ, and so
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sup
s∈[0,ε]

λ̆(z)s < ∞ a.s.,(C.4)

sup
s∈[0,ε]

|β(z)s| ≤ n sup
s∈[0,ε]; i,j:Ai,j>0

∣∣∣∣∣log

(
Ai,j

Ă(zs)i,j

)∣∣∣∣∣ < ∞ a.s.,(C.5)

and, for any K < ∞,

E exp (KΣiNε,i) ≤
∞∑
k=0

exp(Kk)
(Λε)k

k!
exp(−Λε) < ∞,

where Λ := maxi(−Ai,i). It therefore follows from Theorem T11 in Chapter VIII
of [5] that EM2(z) = 1 for all z, and from Theorem T10 of the same reference that the
measure defined on F by dP2(z) = M2(z)dP is a probability measure, under which Xt

is an X-marked point process with local characteristics (λ̆(z)s, Φ̆(z)s,FXt

0,s−, s ∈ [0, ε]).
Under P2(z), the regular (Xt = i)-conditional distribution of Xt is the same as the

regular (X∗t = z, Xt = i)-conditional distribution of Z∗t under P, Π
Z∗t|X∗t

ε|0 ( · , z, i).
The latter is therefore absolutely continuous with respect to ΠXt

ε|0 ( · , i), and

(C.6)
dΠ

Z∗t|X∗t

ε|0 ( · , z,Xt)

dΠXt

ε|0 ( · , Xt)
(Xt) = M2(z) a.s.

It now easily follows from (C.3) and (C.6) that

(C.7) RX,Z(t) = lim sup
ε↓0

ε−1E
(
E1(x) log(M1(x))|x=Xt − log(M2(Z

t))
)

and

(C.8) RX∗,Z∗(−t) = lim sup
ε↓0

ε−1E
(
E2(z) log(M2(z))|z=X∗t − log(M1(Z

∗t))
)
.

Now (C.1), (C.4), and (C.5) show that, for each z ∈ C([0, ε]; Sn−1) and each
i ∈ X,

E

∫ ε

0

β(Zt)2s,iλsΦs,i ds < ∞ and E2(z)

∫ ε

0

β(z)2s,iλ̆(z)sΦ̆(z)s,i ds < ∞,

and so, from a standard result in the L2 theory of stochastic integration,

E

∫
(0,ε]

β(Zt)′s (dNs − λsΦs ds) = E2(z)

∫
(0,ε]

β(z)′s

(
dNs − λ̆(z)sΦ̆(z)s ds

)
= 0.

(C.9)

A simple calculation shows that E2(z)(λ̆(z) − λ) ≡ E(λ̆(Zt) − λ) ≡ 0, and this,
together with (C.9) and (C.1), shows that

lim
ε↓0

ε−1EE2(z) log(M2(z))|z=X∗t = − lim
ε↓0

ε−1E log(M2(Z
t))

= E
∑

i,j:Ai,j>0

log

(
Ai,j

Ă(Zt)i,j

)
Ai,jZt,j .

(C.10)
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Similarly, it follows from (H5) and (C.1) that

lim
ε↓0

ε−1EE1(x) log(M1(x))|x=Xt = − lim
ε↓0

ε−1E log(M1(Z
∗t))

=
1

2
E
∣∣(Γσ(Zt))

−1Γ(b(Xt, Zt) − b̄(Zt,−t))
∣∣2 .(C.11)

Equations (C.7), (C.8), (C.10), and (C.11) now prove part (iii).

Appendix D. Proof of Proposition 4.4. As in the proof of Proposition 4.2,
we use versions of the jump processes Xk and X whose sample paths belong to the
Skorohod space D([−T, T ];X). Throughout the proof the superscript 0 will be used
to indicate a parameter or process of the original (unrelaxed) filtering problem.

For each k = 0, 1, 2, . . . , let (T k(t), t ∈ [−T, T ]) be the transition semigroup of
the process ((Xk

t , Z
k
−T ), t ∈ [−T, T ]), so that (T k(t)f)(i, z) = Σj exp(Akt)j,if(j, z).

The T k are all Feller semigroups, and T k(t)f → T 0(t)f for all t ∈ [−T, T ] and
f ∈ C(X×Sn−1; R). It thus follows from Theorem 2.5 (p. 167) in [9] that (Xk, Zk

−T ) ⇒
(X0, Z0

−T ), and from the Skorohod representation theorem that there exists a sequence

((X̂k, Ẑk
−T ), k = 0, 1, 2, . . .), defined on a common probability space (Ω̂, F̂ , P̂), such

that (X̂k, Ẑk
−T ) has the same distribution as (Xk, Zk

−T ) for all k, and

(D.1) (X̂k, Ẑk
−T ) → (X̂0, Ẑ0

−T ) pointwise on Ω̂.

Let W 1 be the m-vector shifted Brownian motion of the relaxed problem Φ1, and,
for each k, let (Ẑk

t , t ∈ [−T, T ]) be the solution on Ω1 of the following equation (which
is parametrized by ω̂):

Ẑk
t = Ẑk

−T +

∫ t

−T

bk(X̂k
s , Ẑ

k
s ) ds +

∫ t

−T

σk(Ẑk
s ) dW 1

s ,

where bk and σk are the equivalents of b and σ, as defined in (2.5) and (2.10), for the
problem Φk. (Note that b0 = b, and σ0 is defined in terms of g0 of (A4).) Jensen’s
inequality shows that

∣∣∣Ẑk
t − Ẑ0

t

∣∣∣2 ≤ 3
∣∣∣Ẑk

−T − Ẑ0
−T

∣∣∣2 + 6T

∫ t

−T

∣∣∣bk(X̂k
s , Ẑ

k
s ) − b0(X̂0

s , Ẑ
0
s )
∣∣∣2 ds

+ 3

∣∣∣∣∫ t

−T

(
σk(Ẑk

s ) − σ0(Ẑ0
s )
)
dW 1

s

∣∣∣∣2 ,
and Doob’s submartingale inequality shows that

E1 sup
s∈[−T,t]

∣∣∣∣∫ s

−T

(
σk(Ẑk

r ) − σ0(Ẑ0
r )
)
dW 1

r

∣∣∣∣2 ≤ 4E1

∫ t

−T

∥∥∥σk(Ẑk
s ) − σ0(Ẑ0

s )
∥∥∥2

ds.

Now bk(i, · ) and σk are Lipschitz continuous on S
n−1, uniformly in (i, k), and so, for

some K < ∞ not depending on k,

E1 sup
s∈[−T,t]

∣∣∣Ẑk
s − Ẑ0

s

∣∣∣2 ≤ Rk +

∫ t

−T

KE1 sup
−T≤r≤s

∣∣∣Ẑk
r − Ẑ0

r

∣∣∣2 dr,
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where

Rk := 3
∣∣∣Ẑk

−T − Ẑ0
−T

∣∣∣2 + 18T

∫ T

−T

E1
∣∣∣bk(X̂k

t , Ẑ
k
t ) − bk(X̂0

t , Ẑ
k
t )
∣∣∣2 dt

+ 18T

∫ T

−T

E1
∣∣∣bk(X̂0

t , Ẑ
0
t ) − b0(X̂0

t , Ẑ
0
t )
∣∣∣2 dt

+ 24T

∫ T

−T

E1
∥∥∥σk(Ẑ0

t ) − σ0(Ẑ0
t )
∥∥∥2

dt.

(D.2)

Gronwall’s lemma now shows that

(D.3) E1 sup
t∈[−T,T ]

∣∣∣Ẑk
t − Ẑ0

t

∣∣∣2 ≤ exp(2KT )Rk.

Let N(ω̂) be the number of jumps made by X̂0(ω̂) in the time interval [−T, T ], and
suppose that k is sufficiently large that ‖X̂k(ω̂)−X̂0(ω̂)‖D < ε < 1, where ‖ · ‖D is the
Skorohod norm; then the Lebesgue measure of the subset of [−T, T ] on which X̂k(ω̂)
and X̂0(ω̂) differ is upper bounded by N(ω̂)ε. Thus, since bk is bounded on X×S

n−1,
uniformly in k, the first integral in (D.2) converges to zero. Since (bk, σk) → (b0, σ0)
uniformly on X× S

n−1, the second and third integrals in (D.2) also converge to zero.
It thus follows from (D.3) that

(D.4) E1‖Ẑk − Ẑ0‖2
C → 0 for all ω̂ ∈ Ω̂,

where ‖ · ‖C is the supremum norm on C([−T, T ]; Sn−1). Equations (D.1) and (D.4)

now readily show that (X̂k, Ẑk) → (X̂0, Ẑ0) in probability (P̂ ⊗ P
1), and this proves

part (i).
Let f and h be as in part (ii) of the proposition. Then

lim
ε↓0

ε−1E (f(Xt−ε, Zt−ε) − f(Xt, Zt))h(Xt, Zt)

= lim
ε↓0

ε−1E

∫ t

t−ε

(
f(Xt−ε, Zt−ε)(LX,Zh)(Xs, Zs) − (LX,Zfh)(Xs, Zs)

)
ds

→ E
(
fLX,Zh− LX,Zfh

)
(Xt, Zt),

where LX,Z is the differential generator of (X,Z), defined in (2.9). A similar expres-
sion holds with X and Z replaced by Xk and Zk and LX,Z replaced by the differential
generator of (Xk, Zk), LX,Z,k. Equation (4.13) with ± = − now follows from part (i)
and the fact that the functions fLX,Z,kh−LX,Z,kfh are continuous and converge to
fLX,Zh − LX,Z(fh) uniformly on X × S

n−1. Equation (4.13) with ± = + follows
from a similar argument.

The inner lim sup on the right-hand side of (4.12) is the rate of interactive entropy
production of the relaxed problem Φk, which, according to (4.9), (2.13), and (2.16),
takes the value

Ṡk(t) + Ḋk(t) =
1

2
Ek

∣∣gk(Xk
t ) − ḡk(Zk

t )
∣∣2 − Ek

∑
i,j

log

(
Zk
t,i

pkX(t)i

)
Ak

i,jZ
k
t,j .

Part (iii) now follows from part (i) and (A3).
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OPTIMAL DESIGN OF THIN PLATES BY A DIMENSION
REDUCTION FOR LINEAR CONSTRAINED PROBLEMS∗
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Abstract. The goal of this paper is to give a rigorous justification for the Hessian-constrained
problems introduced in [G. Bouchitté and I. Fragalà, Arch. Ration. Mech. Anal., 184 (2007), pp. 257–
284] and to show how they are linked to the optimal design of thin plates. To that aim, we study the
asymptotic behavior of a sequence of optimal elastic compliance problems in the double limit when
both the maximal height of the design region and the total volume of the material tend to zero. In
the vanishing volume limit, a sequence of linear constrained first order vector problems is obtained,
which in turn—in the vanishing thickness limit—produces a new linear constrained problem where
both first and second order gradients appear. When the load is orthogonal to the plate, only the
Hessian constraint is active, and we recover as a particular case the optimization problem studied
in [G. Bouchitté and I. Fragalà, Arch. Ration. Mech. Anal., 184 (2007), pp. 257–284] (see also
[T. Lewinski and J. J. Telega, Arch. Mech. (Arch. Mech. Stos.), 53 (2001), pp. 457–485]).
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1. Introduction. Let Ω be an open bounded connected subset of R
2 with a

smooth boundary. In [14] we considered the following mass optimization problem,
which consists in finding the optimal distribution of a given amount of plate-like
material in the design region Ω in order to minimize the work made on it by a given
system of forces:

(1.1) I = inf
{
Cpl(μ, j, f) : μ ∈ P(Ω)} .

Here measures μ in the space P(Ω) of probabilities on Ω represent the admissible
designs, which are allowed to be diffused as well as concentrated on low-dimensional
sets. The cost Cpl(μ, j, f) that we want to minimize is the plate compliance: for any
μ ∈ P(Ω), for a given stored energy density j : R

2×2
sym → R, and for a given real

measure f ∈ M(Ω; R), it is obtained as

(1.2) Cpl(μ, j, f) := − inf

{∫
j(∇2u) dμ− 〈f, u〉R2 : u ∈ C∞(R2; R)

}
.

In particular, in [14] we established the equality

(1.3) I = S2/2 ,

where S is computed through the following linear constrained problem:

(1.4) S = sup
{
〈f, u〉R2 : u ∈ C∞(R2; R) such that ρ(∇2u) ≤ 1 on Ω

}
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(ρ being related to j by j(z) = (1/2)ρ2(z)). Moreover, we proved that problems (1.1)
and (1.4) share the same optimality conditions, which can be explicitly determined.

The goal of this paper is to give a rigorous justification for problems of kind (1.1)
or (1.4) and to show how they are linked to the optimal design of thin plates. In fact
in [14] these problems were introduced just formally, as the second order analogues
of their corresponding first order problems. When the design region is a subset of R

3

of the form Q = Ω × [−h, h] ⊂ R
2 × R, the elastic compliance of a mass distribution

μ ∈ P(Q) for a given density j : R
3×3
sym → R and a given measure load F ∈ M(Q; R3)

is given by

(1.5) Cel(μ, j, F ) := − inf

{∫
j(e(U)) dμ− 〈F,U〉R3 : U ∈ C∞(R3; R3)

}
,

where e(U) denotes the symmetric gradient of U . Then the first order three-dimensional
(3D) versions of (1.1) and (1.4) read, respectively,

inf
{
Cel(μ, j, F ) : μ ∈ P(Q)} ,(1.6)

sup
{
〈F,U〉R3 : U ∈ C∞(R3; R3) such that ρ(e(U)) ≤ 1 on Q

}
.(1.7)

These problems were studied in detail in [11]; in particular, it turns out that they are
related to each other by the condition analogous to (1.3). From a mechanical point
of view, they are perfectly justified: when one tries to optimize the compliance of an
elastic material under a given load, in the limit of vanishing volume microstructures
appear—meaning that the material tends to occupy low-dimensional networks—and
the limit problem is of type (1.6). This is true both in the case of real materials, due
to a common-use result in shape optimization, and in the case of so-called fictitious
materials; see section 3.1 for more details.

We now ask,

Do problems of type (1.1) (or equivalently (1.4)) admit any mechanical justification?

Before explaining the approach we adopt in order to answer this question, let
us mention that, prior to [14], problems of type (1.4) had already made their first
appearance in the extensive literature on thin plates. Indeed, in the paper [26] by
Lewinski and Telega, problems of type (1.4) are obtained in the vanishing volume
limit starting from a two-dimensional (2D) compliance model for a plate with constant
thickness. In the present paper, problems of type (1.1) are obtained through a new,
different approach, which in particular enlightens their link with problems of type
(1.6). Actually we perform a 3D–2D reduction dimension analysis for problems (1.6):
we multiply the maximal height h by an infinitesimal parameter δ, and we take the
design region of the form Qδ = Ω× [−hδ, hδ] ⊂ R

2×R. In order to pass to the limit as
δ → 0, a quite natural idea—formerly unexplored to our knowledge—is to start with
the 3D vanishing volume model given by (1.7), with Q replaced by Qδ. One might
expect that such suprema remain finite as δ → 0 and that the convex set of constraints
appearing in the limit problem, which is nothing more than the Kuratowski limit of
the sets

Kδ :=
{
U ∈ C∞(R3; R3) such that ρ(e(U)) ≤ 1 on Ω × (−δh, δh)

}
,

is given by functions whose first order gradient satisfies some suitable relation. Ac-
tually, facts come up to these expectations only in the scalar case, namely, when
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functions U in Kδ take real values (see Remark 3.8). In spite of this, in the vector
case when functions U in Kδ take values in R

3, the situation is dramatically different.
First, if the vertical component of the force is of order 1, the suprema in (1.7) blow up
to infinity (like δ−1). Then we need to rescale the third component of the force by a
factor δ. After such scaling, another crucial difference with respect to the scalar case
shows up when studying the Kuratowski limit of Kδ: indeed, due to the role played
by a specific strain-displacement relation (of Kirchoff–Love type), two independent
constraints appear, each one involving both first and second order derivatives. This
analytical fact has an immediate mechanical counterpart: when the load is suitably
scaled, a bending effect coupled with membrane energy appears in the limit problem,
which can be written as

(P) sup
{
〈F , v〉R2 : v ∈ C∞(R2; R3) such that ρ(e(v1, v2) ± h∇2v3) ≤ 1 on Ω

}
for a suitably averaged system of forces F and a suitably modified function ρ (see
Theorem 3.3).

Problem (P) reduces to a problem of type (1.4) in the particular case when the
unique nonzero component of the load is the vertical one, because in such a case the
double constraint imposed on fields v simplifies into one inequality for the Hessian
matrix of their third component v3.

This amounts to saying—see Corollary 3.6—that problems of type (1.1) are re-
covered as 3D–2D limits of problems of type (1.6) when the load is a vertical one.
In particular, for such a kind of load, the optimality conditions found in [14] can
be fruitfully employed in order to determine explicit solutions to problem (P). For
arbitrary loads, the optimality system has to be suitably generalized in order to cover
the case of mixed regimes; see Proposition 3.10 and the examples in section 4.

To conclude this introduction, let us mention that problems of type (1.1) possibly
admit further justifications coming from the same background. More precisely, con-
sider a sequence of classical 3D-elasticity problems, where both the maximal height
of the design and the total volume of the material are multiplied by infinitesimal pa-
rameters, say δ and ε, respectively. The asymptotics of such problems as ε, δ → 0
can be studied by adopting one of the two following “strategies (A) or (B)” (notice
indeed that δ cannot go to zero for fixed ε). The first possible approach, which we call
strategy (A), consists in passing to the limit first in ε—which as already mentioned
yields problems of type (1.7)—and then in δ, ending up with problems of type (P)
(or (1.1)).

But it is tempting to also look at different ways of performing the double limit
in δ and ε. One might follow the alternative strategy (B) of passing to the limit
contemporarily in ε and δ, keeping the quotient η := δ/ε fixed, and eventually letting
η tend to +∞.

The interest in this alternative strategy (B) is twofold: investigating the commu-
tativity of the double limit process, and linking our approach with the classical thin
plates model widely studied in the literature, where a cubic dependence on the profile
of the plate appears (without any attempt of being complete, let us refer the reader
to [1, 5, 6, 7, 8, 9, 16, 18, 20, 22, 25, 27, 28]).

Here we limit ourselves to address strategy (B) as an interesting open field. We
do not accomplish the outcoming results, which are postponed to a forthcoming work.

The paper is organized as follows. In section 2 we fix some notation and the
setting of the problem; then we state our main results in section 3. Section 4 is
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entirely devoted to exemplifying the application of the results obtained in section 3.
Proofs are collected in section 5.

2. Preliminaries and setting of the problem. Let us take a design region
in R

3 of the form Q = Ω × [−h, h], where Ω is an open bounded connected subset of
R

2 and h is fixed in R
+; the spatial variable in Q will be denoted by (x′, x3).

Consider a given amount m of elastic material placed in a subset A of the design
region: thus A is subject to the constraints

A ⊆ Q = Ω × [−h, h] , vol(A) = m .

If the stored energy density is represented by a given integrand j : R
3×3
sym → R and

the material is subject to a given system of forces F = (F1, F2, F3) ∈ M(Q; R3), the
resulting elastic compliance is given by

Cel
(
A, j, F ) := − inf

{∫
A

j(e(U)) dx− 〈F,U〉R3 : U ∈ C∞(R3; R3)

}
(here and in the following, e(U) denotes the symmetric part of the gradient of U).

We assume that j is convex, 2-homogeneous, and coercive, so that it can be
written as

(2.1) j(z) =
1

2
ρ2(z) , with inf

z �=0

ρ(z)

|z| > 0 .

The typical choice of j is the usual quadratic elastic potential of the kind

(2.2) j(z) =
λ

2
(tr(z))2 + μ|z|2 .

Moreover, for the compliance to be finite, we ask that the system of forces is
balanced, namely,

(2.3) 〈F,U〉R3 = 0 whenever e(U) = 0 ,

and also that it belongs to the Sobolev space H−1(Q; R3).
We want to now consider the problem of optimizing the compliance when both

the maximal height of the design and the total volume of the material become very
small. In this situation the maximal height and the total volume will be multiplied
by two positive vanishing parameters, say δ and ε, respectively:

(2.4) A ⊆ Qδ = Ω × [−δh, δh] , vol(A) = εm .

The same optimization problem can also be considered for “fictitious materials,”
that is, when the set A is replaced by a density θ satisfying

(2.5) θ ∈ L∞(R3; [0, 1]) , spt(θ) ⊆ Qδ ,

∫
θ dx = εm ,

and the definition of compliance is extended by setting

(2.6) Cel
(
θ, j, F ) := − inf

{∫
j(e(U)) θ dx− 〈F,U〉R3 : U ∈ C∞(R3; R3)

}
.
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So we focus attention on the two variational problems

inf
{
Cel
(
A, j, F

)
: A satisfying (2.4)

}
,(2.7)

inf
{
Cel
(
θ, j, F

)
: θ satisfying (2.5)

}
.(2.8)

As announced in the introduction, in this paper we study the asymptotics of the
above infima as ε, δ → 0 through strategy (A), which seems to be the simpler way
leading from the infima in (2.7) or (2.8) to a problem of kind (1.1). Recall that this
strategy consists in the following two steps:

– Step 1. Keeping δ fixed, let ε tend to zero (so that the quotient η := δ/ε
tends to +∞).

– Step 2. Let δ tend to zero.
The first crucial remark is that the infima in (2.7) or (2.8) blow up at each of the two
steps. More precisely, if δ is fixed and ε tends to zero, the infima are of order ε−1.
Indeed, via the change of variables V = U/ε, it is easy to obtain the identity

Cel

(
θ

ε
, j, F

)
= εCel

(
θ, j, F

)
,

whose left-hand side has a finite infimum for θ satisfying (2.5). Therefore, we are
led to rescale the system of forces into

√
εF ; this will ensure that the infimum of the

compliance remains finite as ε tends to zero in view of the identity

Cel
(
θ, j,

√
εF
)

= εCel
(
θ, j, F

)
.

In turn, the infima obtained through the first step of strategy (A) blow up again
when performing the second step, that is, when δ also tends to zero. Thus, we need to
rescale the system of forces also with respect to δ. It will be more clear later on (see
the proof of Theorem 3.3) that the right scaling of the load in order to keep finite the
suprema in (3.3) as δ → 0 is the following one: set Qδ := Ω× [−δh, δh], and change F
into the element F δ ∈ H−1(Qδ; R

3) which acts on any test function ϕ ∈ C∞(R3; R3)
as

〈F δ, ϕ〉R3 :=

2∑
i=1

〈Fi(x), ϕi(x
′, δx3)〉R3 + δ〈F3(x), ϕ3(x

′, δx3)〉R3 .

We stress that, in the above definition, the vertical component F3 is multiplied
by δ, as is usual when dealing with plates in a flexion regime.

Summarizing, our rescaled optimization problems read

Iε,δ := inf
{
Cel
(
A, j,

√
εF δ

)
: A satisfying (2.4)

}
,(2.9)

Ĩε,δ := inf
{
Cel
(
θ, j,

√
εF δ

)
: θ satisfying (2.5)

}
.(2.10)

Notice that, for each fixed (ε, δ), Iε,δ and Ĩε,δ should remain finite because
√
εF δ

is still balanced; that is, it fulfills (2.3). Further, in view of the heuristic considerations

above, we expect that Iε,δ and Ĩε,δ admit finite limits as ε and δ tend to zero. In the
remainder of the paper our goal is to identify such limits.

For simplicity of notation, in what follows we take the volume parameter m
appearing in (2.4) and (2.5) equal to 1 (this is not restrictive up to a multiplicative
factor).
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3. Main results. The two steps of strategy (A) are carried out, respectively,
in subsections 3.1 and 3.2 below, and the optimality conditions for the limit problem
follow in subsection 3.3. All the statements (except the one of Proposition 3.2) will
be proved in section 5.

3.1. Vanishing volume limit (fixed thickness). When one performs the limit

as ε → 0 of Iε,δ or of Ĩε,δ, one obtains a pretty tractable limit infimum problem over
the space P(Qδ) of probabilities on Qδ. The functional to be minimized is of the kind
μ �→ Cel

(
μ,J , F δ), where for a given integrand J we have set

Cel
(
μ,J , F δ) := − inf

{∫
J (e(U)) dμ− 〈F δ, U〉R3 : U ∈ C∞(R3,R3)

}
.

The only difference between the real and the fictitious case lies in the determination
of the integrand J : in the fictitious case one can simply take J = j, while in the
real case one has to take J = j0, with j0 being deduced from j through a suitable
formula. This is stated more precisely in the next two propositions.

Proposition 3.1 (fictitious materials). There holds

lim
ε→0

Ĩε,δ = Ĩδ := inf
{
Cel
(
μ, j, F δ) : μ ∈ P(Qδ)

}
.

Proposition 3.2 (real materials). Assume that j is taken of the form (2.2).
Then there holds

lim
ε→0

Iε,δ = Iδ := inf
{
Cel
(
μ, j0, F

δ) : μ ∈ P(Qδ)
}

,

where j0 : R
3×3
sym → R denotes the following modified integrand:

(3.1) j0(z) =
1

2
ρ0(z)

2 := sup
{
z · z∗ − j∗(z∗) : z ∈ R

3×3
sym , det(z∗) = 0

}
.

Proposition 3.2 is actually a reformulation of the results in [2, 4] (to which we
refer for a proof), where the effective stress potential—the Fenchel conjugate j∗0 (z∗) of
j0(z)—is characterized explicitly in terms of the eigenvalues of the symmetric tensor
z∗. Formula (3.1) is a concise way to recover directly the related effective strain
potential j0; we refer the reader to [3] for some explicit computations in case j is
given by (2.2). We believe that Proposition 3.2 remains true even for nonquadratic
strain potentials; see [10].

3.2. Vanishing thickness limit. The kind of mass optimization problem given
by Propositions 3.1 and 3.2 has been widely studied in [11], where it is proved in
particular that

(3.2) Ĩδ = S̃2
δ /2 , Iδ = S2

δ /2 ,

where S̃δ,Sδ are given by the following linear constraint problems:

(3.3)
S̃δ := sup

{
〈F δ, U〉R3 : U ∈ C∞(R3; R3) such that ρ(e(U)) ≤ 1 on Qδ

}
,

Sδ := sup
{
〈F δ, U〉R3 : U ∈ C∞(R3; R3) such that ρ0(e(U)) ≤ 1 on Qδ

}
.

Thanks to the crucial equalities (3.2), this second step in strategy (A) is reduced to

determining the limit of the sequences S̃δ and Sδ in (3.3) as δ → 0. In other words,
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our goal is reached if we are able to perform the 3D–2D reduction dimension analysis
for such sequences of linear constrained problems.

In order to state our main theorem, we need to introduce an effective system of
forces F ∈ M(Ω; R3) and an effective integrand j : R

2×2
sym → R.

For any λ ∈ M(Q; R), we denote by [λ] ∈ M(Ω,R) the marginal measure defined
by the equality

(3.4) 〈[λ], ϕ〉R2 := 〈λ, ϕ〉R3 ∀ϕ ∈ C∞(R2; R) ;

then we define the effective system of forces F = (F 1, F 2, F 3) ∈ M(Ω; R3) compo-
nentwise by

(3.5) F i := [Fi], i = 1, 2, and F 3 :=

[
F3 + x3

2∑
i=1

∂Fi

∂xi

]
.

The effective density j : R
2×2
sym → R is obtained from j through the following

formula:

(3.6) j(z) =
1

2
ρ(z)2 := inf

{
j

(
z +

3∑
i=1

ξi(ei ⊗ e3)
∗

)
: ξi ∈ R

}
.

Theorem 3.3. The limit as δ → 0 of both the sequences {S̃δ} and {Sδ} defined
by (3.3) is given by

(3.7) S0 := sup
{
〈F , v〉R2 : v ∈ C∞(R2; R3) , ρ(e(v1, v2) ± h∇2v3) ≤ 1 on Ω

}
,

where F and ρ are given by (3.5) and (3.6), respectively.
It is worth noticing that, once Theorem 3.3 is proved for one among the two

sequences {S̃δ} and {Sδ}, the statement for the other one follows immediately from
the following algebraic lemma.

Lemma 3.4. There holds

j(z) = j0(z) ∀ z ∈ R
2×2
sym .

Another remark about Theorem 3.3 is that, in general, the limit problem given
by (3.7) cannot be “decoupled” into two separate problems, respectively, of first order
in (v1, v2) and of second order in v3. Nevertheless, there are special cases when it
simplifies into one of them.

Corollary 3.5.

(i) If F 1 = F 2 = 0, then

S0 = sup
{
〈F 3, v3〉R2 : v3 ∈ C∞(R2; R) such that ρ(∇2v3) ≤ 1/h on Ω

}
.

(ii) If F 3 = 0, then

S0 = sup

{
2∑

i=1

〈F i, vi〉R2 : (v1, v2) ∈ C∞(R2; R2) such that ρ(e(v1, v2)) ≤ 1

on Ω

}
.
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When F 1 = F 2 = 0, combining case (i) of the above corollary with our results
in [14], we are finally able to prove that the infima in (2.10) converge to a limit problem
of type (1.1).

Corollary 3.6. Let Iε,δ and Ĩε,δ be defined, respectively, by (2.9) and (2.10).
If F 1 = F 2 = 0, there holds

(3.8) lim
δ→0

lim
ε→0

Iε,δ = lim
δ→0

lim
ε→0

Ĩε,δ = h−2 inf
{
Cpl
(
μ, j, F 3

)
: μ ∈ P(Ω)

}
,

where the plate compliance Cpl
(
μ, j, F 3

)
is defined according to (1.2).

Remark 3.7. Let us emphasize that the assumption F ∈ H−1(Q; R3) stated in
section 2 is not needed for the well-posedness of the variational problems in (3.7) or
(3.8). For instance, it is enough to ask that F is a measure with finite variation. In
particular, pointwise applied forces are allowed in our limit problem.

Remark 3.8. The scalar analogue of Theorem 3.3 is simpler, and it can be easily
obtained with the same proof. For any f ∈ M(Q; R) (with f ∈ H−1(Q; R) and∫
Q
f = 0) and any convex, 1-homogeneous, coercive function ρ : R

3 → R, it can be
stated as follows: the limit as δ → 0 of

sδ := sup
{
〈fδ, u〉R3 : u ∈ C∞(R3; R) such that ρ(∇u) ≤ 1 on Qδ

}
is given by

s0 := sup
{
〈[f ], v〉R2 : v ∈ C∞(R2; R) such that ρ(∇v) ≤ 1 on Ω

}
.

Here fδ ∈ M(Q; R) is the measure which acts on any test function ϕ ∈ C∞(R3,R)
as 〈fδ, ϕ〉R3 := 〈f, ϕ(x′, δx3)〉R3 , while [f ] ∈ M(Ω; R) is defined according to (3.4),
and ρ : R

2 → R is given by ρ(z) := inf
{
ρ(z + ξe3) : ξ ∈ R

}
.

3.3. Dual problem and optimality conditions. For the practice computa-
tion of S0, one needs to determine optimality conditions for the infimum problem (P)
which defines S0. Such optimality conditions are obtained in [14], by exploiting the
results of [15], in the special situation of Corollary 3.5(i). Let us see how they look
in the more general situation of Theorem 3.3. As a preliminary step, we begin by
writing the dual problem of (P) (intended in the usual sense of convex analysis; see,
e.g., [19]). We denote by ρo : R

2×2 → R the polar function of ρ, that is,

ρo(ξ) := sup{ξ · z : ρ(z) ≤ 1} ,

where ξ · z indicates the Euclidean scalar product. Then, for λ in the space M =
M(Ω; R2×2

sym) of R
2×2
sym-valued measures supported on Ω with finite total variation,

we use the notation
∫
ρo(λ) in the usual sense of convex 1-homogeneous function-

als on measures (see, for instance, [21]).
Lemma 3.9. The dual problem (P∗) of (P) is given by

min

{∫
ρo(λ+) +

∫
ρo(λ−) : λ± ∈ M , −div(λ+ + λ−) = (F 1, F 2) ,

hdiv2(λ+ − λ−) = F 3

}
,

where the operators div and div2 are intended in distributional sense.
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Proposition 3.10. Let v be admissible for (P) and λ± be admissible for (P)∗.
They are optimal for the respective problems if and only if the following two equations
are satisfied:

(3.9) ρo(λ+) =
〈
λ+, e(v1, v2) + h∇2v3

〉
R2 , ρo(λ−) =

〈
λ−, e(v1, v2) − h∇2v3

〉
R2 .

The application of Proposition 3.10 is exemplified in two concrete cases in sec-
tion 4.

Remark 3.11. In Lemma 3.9 and Proposition 3.10, the measures λ± play the
role of Lagrange multipliers for the constraint ρ(e(v1, v2) ± h∇2v3) ≤ 1 in (3.7).
From the mechanical point of view, they can be interpreted as follows: for each
δ > 0, let σδ be the stress tensor in the 3D elastic problem, which after rescaling and
change of variables is supported on an optimal structure located in the reference set
Q = Ω× [−h, h]. When δ → 0, σδ as a tensor measure concentrates on the top-bottom
region Ω × {x3 = ±h} and produces λ± as limit in-plane stress tensors.

Remark 3.12. The optimality condition (3.9) can be extended to the case where v
is not smooth by using suitable notions of tangential (first and second order) gradient
with respect to measures for which we refer the reader to [12, 15]. Such optimal v
are in fact limits of maximizing sequences for (P) and satisfy v1, v2 ∈ W 1,q(Ω) for all
q < +∞ and v3 ∈ W 2,∞(Ω).

4. Examples. In the examples we are going to discuss, the systems of loads are
discrete (see Remark 3.7). Moreover, they lie in a plane, so that the corresponding
optimal structures are supported in that plane. As a consequence, we take a planar
design region Q of the form Ω × [−h, h], with Ω being an open bounded interval of
the real line. Thus throughout this section the spatial variable x′ ∈ Ω will become
x1, and the role of the “vertical variable” x3 will be played by x2. Clearly, the limit
problem will simply reduce to a one-dimensional problem.

We take as a function ρ in (3.3) the Euclidean norm on R
2×2
sym. In this case it is

easy to check, by using Lemma 3.4, that the corresponding functions ρ and ρ0 will
simply be equal to the Euclidean norm on R.

Example 4.1 (pure flexion regime). For fixed nonnegative parameters l and h0,
let the points O,A,B have coordinates

O :=
(
0, 0
)
, A :=

(
l, 0
)
, B :=

(
0, h0

)
,

and let us consider the following system of forces:

F1 := δO − δB , F2 =
h0

l
(δB − δA) .

This system of forces is supported on the design region Q = Ω× [−h, h], provided
Ω is an interval containing both O and A, and h ≥ h0 (see Figure 4.1). Moreover, it
is immediate to check that this system is balanced. Then we can apply Theorem 3.3
to compute S0, namely the limit as δ → 0 of the suprema Sδ or S̃δ in (3.3). The
effective system of forces on the x1-axis is easily obtained:

F 1 := 0 , F 2 =
h0

l
(δO − δA) − h0δ

′
O .

Then according to (3.7) S0 can be expressed as

sup

{
h0

l

(
v2(O) − v2(A)

)
+ h0v

′
2(O) : v2 ∈ C∞(R; R) such that |(v2)

′′| ≤ 1

h
on Ω

}
.
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O

B

A

Fig. 4.1. Loads yielding a pure flexion regime in the whole of OA.

In order to compute the explicit value of S0, we apply Proposition 3.10. Given
v = (v1, v2) ∈ C∞(R; R2) and λ± ∈ M(Ω; R), they are solutions to problem (P) and
its dual (P∗) if the following system is satisfied:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(λ+ + λ−)′ = 0 ,

h(λ+ − λ−)′′ =
h0

l
(δO − δA) − h0δ

′
O ,

|(v2)
′′| ≤ 1

h
,

|λ±| = 〈λ±,±h(v2)
′′〉R ,

where the first two equations select admissible λ± in problem (P)∗ (see Lemma 3.9),
the third equation selects admissible v in problem (P), and the last couple of equations
corresponds to the optimality conditions (3.9).

Solutions λ± to the first two equations are determined by

λ+ = −λ− =
1

2

h0

hl
(x1 − l)χOA(x1)L1 OA ,

and the remaining conditions are satisfied if we take

v2(x1) = −x2
1

2h
.

Thus we find for the value of the energy

S0 =
lh0

2h
.

Remark 4.2. (i) Exactly the same result above holds if, in the system of forces,
the point A is replaced by any other point of the type (l, h1), with |h1| ≤ h (or even
more generally if δA is replaced by any probability on the segment l × [−h, h]).

(ii) Exactly the same result above holds if, with the same system of forces, the
design region is changed into Ω × [0, h].

(iii) Note that S0 is infinitesimal as h → +∞, as always happens in a pure flexion
regime (see Corollary 3.5(i)).

(iv) The role of λ± in the reconstruction of 3D-optimal structures will be inves-
tigated more deeply in a subsequent work. In the above example we guess that, for
any δ > 0, optimal structures are given by two horizontal bars at heights 0 and h,
connected by some diagonal bars of vanishing mass.

Example 4.3 (mixed regime). For fixed nonnegative parameters l, h0, α, let the
points O,A,B,C have coordinates

O := (0, 0) , A :=

(
− l

2
, 0

)
, B :=

(
l

2
, 0

)
, C := (0, h0) ,
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and let us consider the axially symmetric system of forces:

F1 := α(δB − δA) , F2 = δC − 1

2
(δA + δB) .

This system of forces is balanced and is supported on the design region Q =
Ω× [−h, h], provided the interval Ω contains both A and B, and h ≥ h0. The effective
system of forces is given on the x1-axis by

F 1 := α
(
δB − δA

)
, F 2 = δO − 1

2

(
δA + δB

)
.

Then according to (3.7) the limit S0 of the suprema Sδ or S̃δ in (3.3) can be
expressed as

sup

{
α
[
v1(B) − v1(A)

]
+ v2(O) − 1

2

[
v2(A) + v2(B)

]
: v ∈ C∞(R; R2) such that

|(v1)
′ ± h(v2)

′′| ≤ 1 on Ω

}
.

Let us compute the explicit value of S0 in terms of the involved parameters.

By Proposition 3.10, given v = (v1, v2) ∈ C∞(R2; R2) and λ± ∈ M(Ω; R), they
are solutions to problem (P) and its dual (P∗) if the following system is satisfied:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(λ+ + λ−)′ = α
(
δA − δB

)
,

h(λ+ − λ−)′′ = δO − 1

2

(
δA + δB

)
,

|(v1)
′ ± h(v2)

′′| ≤ 1 ,

|λ±| = 〈λ±, (v1)
′ ± h(v2)

′′〉R .

Solutions λ± to the first two equations are determined by

(4.1) λ+ + λ− = αL1 AB , λ+ − λ− =
1

2h

(
|x1| −

l

2

)
L1 AB ,

and the remaining conditions are satisfied, provided

(4.2) (v1)
′ ± h(v2)

′′ = sign (λ±) ,

where sign (λ±) denotes the sign of (the densities of) λ±.

From (4.1), we see in particular that λ− remains always nonnegative, whereas for
λ+ two cases may occur:

case (1): if h ≥ l/(4α), then λ+ remains nonnegative;
case (2): if h < l/(4α), then{

λ+ ≥ 0 if |x1| ≥ (l/2) − 2hα ,

λ+ < 0 if |x1| < (l/2) − 2hα .

Accordingly, solutions to (4.2) and the value of S0 can be easily computed:
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A B

C

O
A B

C

O

Fig. 4.2. Loads yielding a membrane/flexion regime in the clear/dark part of AB.

case (1): we have (v1)
′ = 1, (v2)

′′ = 0 (see the left side of Figure 4.2), and

S0 =

∫
λ+ +

∫
λ− = αl ;

case (2): we have (see the right side of Figure 4.2){
(v1)

′ = 1 and (v2)
′′ = 0 if |x1| ≥ (l/2) − 2hα ,

(v1)
′ = 0 and (v2)

′′ = 1/h if |x1| < (l/2) − 2hα ,

and

S0 =

∫
|λ+| +

∫
λ− = 2h

[
α2 + l2/(16h2)

]
.

Summing up, we have obtained

S0 =

{
αl if h ≥ l/(4α) ,

2h
[
α2 + l2/(16h2)

]
if h < l/(4α) .

Remark 4.4. (i) The value found above for S0 is always independent of the
parameter h0.

(ii) The critical height hc := l/(4α) is the second coordinate of the intersection
point between the straight lines A + t(−α,−1/2) and B + t(α,−1/2) (namely the
point where the two forces (−α,−1/2)δA and (α,−1/2)δB concur). If h ≥ hc, then
the value of S0 is independent of h. In spite of this, if h < hc, then the dependence

of S0 on h tells that optimal structures for Sδ or S̃δ do “touch” the bottom of the
design region (independently of the choice of h0).

5. Proofs of the results in section 3.
Proof of Proposition 3.1. Let δ be fixed. We introduce, for every ε, the functional

Jε and the function ϕε defined, respectively, on M(Qδ; R
+) and on R by

Jε(μ) :=

{
Cel
(
μ, j, F δ

)
if μ = θ dx , θ ∈ L∞(R3; [0, ε−1]) , spt(θ) ⊆ Qδ ,

+∞ otherwise,

ϕε(t) :=

⎧⎨⎩inf

{
Jε(μ) : μ ∈ M(Qδ; R

+) ,

∫
dμ = t

}
if 0 < t ≤ ε−1|Qδ| ,

+∞ otherwise.

It is easy to check that Jε and ϕε are convex and decrease as ε goes down to zero. In
particular, the limit ϕ0(t) = limε→0 ϕε(t) exists and is convex as a function of t. We
claim that, for every t > 0, there holds

(5.1) ϕ0(t) =
(S̃δ)

2

2 t
.
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Recalling (3.2), the proposition will follow by taking t = 1, since by (2.10) and (2.6)

Ĩε,δ = inf

{
Cel

(
θ

ε
, j, F δ

)
: θ satisfying (2.5)

}
= ϕε(1) .

For proving (5.1), we are going to identify the Fenchel conjugate of ϕ0 through
the formula

(5.2) ϕ∗
0 =

(
inf
ε
ϕε

)∗
= sup

ε
ϕ∗
ε .

To compute ϕ∗
ε, we begin by noticing that for every k ∈ R, ϕ∗

ε computed at −k coin-
cides with the Fenchel conjugate of Jε computed at the constant function identically
equal to −k. Indeed,

(5.3) ϕ∗
ε(−k) = sup

{
−
∫

k dμ− Jε(μ) : μ ∈ M(Qδ; R
+) ,

∫
dμ = t

}
= J∗

ε (−k) .

Let us compute J∗
ε (−k). By definition we have

J∗
ε (−k) = sup

μ
inf
U

{∫
j
(
e(U) − k

)
dμ− 〈F δ, U〉R3

}
,

where the infimum in U is taken over C∞(R3; R3), while the supremum in μ is taken
over the class of measures of the form μ = θ dx with θ ∈ L∞(R3; [0, ε−1]) and spt(θ) ⊆
Qδ. Since the latter class is compact and since the dependence with respect to (μ,U)
is convex-concave, we may exchange the supremum and the infimum (see, e.g., [14,
Proposition 2.2]) so that

J∗
ε (−k) = inf

U

{
−〈F δ, U〉R3 + sup

μ

∫ (
j(e(U)) − k

)
dμ

}
= inf

U

{
−〈F δ, U〉R3 + ε−1

∫
Qδ

(
j(e(U)) − k

)+
dx

}
.

Then, in order to compute the limit as ε → 0 of J∗
ε (−k) (which is also their supre-

mum), we are led to consider the functionals Gε defined on H1(R3; R3) by

Gε(U) :=

⎧⎨⎩−〈F δ, U〉R3 + ε−1

∫
Qδ

(
j(e(U)) − k

)+
dx if U ∈ C∞(R3; R3) ,

+∞ otherwise.

It is easy to check that, since F δ ∈ H−1(Qδ; R
3), the functionals Gε are lower semi-

continuous with respect to the weak topology on H1(R3; R3). Therefore, since the
sequence Gε is monotone increasing in ε, its Γ-limit with respect to the weak conver-
gence on coincides with the functional G0 defined by

G0(U) :=

{
−〈F δ, U〉R3 if U ∈ H1(R3; R3) such that j(e(U)) ≤ k a.e. on Qδ ,

+∞ otherwise

(in particular, G0 ≡ +∞ for k < 0). Moreover, by using the coercivity of j and the
Korn inequality, one can easily check that any sequence {Uε} with supε Gε(U

ε) < +∞
is weakly precompact in H1(R3; R3) (up to subtracting a rigid displacement, which
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is not restrictive thanks to (2.3)). This compactness property, combined with the
Γ-convergence of Gε to G0, ensures that the infima of Gε converge to the infimum of
G0. Therefore

− limε J
∗
ε (−k)

= − inf
{
−〈F δ, U〉R3 : U ∈ H1(R3; R3) such that j(e(U)) ≤ k a.e. on Qδ

}
= sup

{
〈F δ, U〉R3 : U ∈ C∞(R3; R3) such that j(e(U)) ≤ k on Qδ

}
.

Recalling the definition of S̃δ in (3.3) and by the 2-homogeneity of j (see (2.1)), we
deduce after an easy computation that

− lim
ε

J∗
ε (−k) =

√
2k S̃δ for k ≥ 0

(and −∞ otherwise). By (5.2) and (5.3), then we arrive at ϕ∗
0(−k) = −

√
2k S̃δ for

k ≥ 0 (and +∞ otherwise). Passing to the biconjugate, we infer that, for any t > 0,

ϕ∗∗
0 (t) = sup

k≥0

{
−kt− ϕ∗

0(−k)
}

= sup
k≥0

{
−kt +

√
2k S̃δ

}
=

1

2

(S̃δ)
2

t
.

Finally, to deduce (5.1), it remains to check that ϕ∗∗
0 coincides with ϕ0. This is a

consequence of the fact that ϕ0 is convex continuous on R
+. Indeed, let μ0 be the

uniform probability density on Qδ. As F δ belongs to H−1(Qδ; R
3), we have that

k(δ) := Cel(μ0, j, F
δ) < +∞. Then, for every t > 0, the measure tμ0 is admissible for

ϕε(t) whenever ε ≤ t−1|Qδ|. Thus

ϕ0(t) ≤ ϕε(t) ≤ Cel(tμ0, j, F
δ) =

k(δ)

t
,

where the last equality is obtained performing the rescaling V = tU on the competing
strain displacements. The continuity of the convex function ϕ0 on (0,+∞) follows
from the latter upper bound, and the proof of Proposition 3.1 is concluded.

Proof of Theorem 3.3. In view of Lemma 3.4, it is enough to prove that one
among the sequences S̃δ and Sδ, say S̃δ, converges to S0.

Let us begin by writing S̃δ in a more convenient way. We set

U(x) =
(
u1

(
x′, δ−1x3

)
, u2

(
x′, δ−1x3

)
, δ−1u3

(
x′, δ−1x3

))
,

so that

(5.4) e(U)(x) = eδ(u)
(
x′, δ−1x3

)
:=

[
eαβ(u) δ−1eα3(u)

δ−1eα3(u) δ−2e33(u)

]
(x′, δ−1x3) ,

where the indices α and β take values in {1, 2}. Hence

S̃δ = sup
{
〈F, u〉R3 : u ∈ C∞(R3; R3) such that ρ(eδ(u)(x′, δ−1x3)) ≤ 1 on Qδ

}
= sup

{
〈F, u〉R3 : u ∈ C∞(R3; R3) such that ρ(eδ(u)) ≤ 1 on Q

}
= sup

{
〈F, u〉R3 : u ∈ Kδ

}
,
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where Kδ denotes the convex set

Kδ :=
{
u ∈ C∞(R3; R3) : ρ(eδ(u)) ≤ 1 on Q

}
.

As a preliminary remark, we notice that the following compactness property holds:
if we take a sequence {uδ} such that uδ ∈ Kδ, then up to subsequences and up to a
rigid motion, it converges uniformly on Q. Indeed, by (2.1) we have that eδ(u

δ) is
uniformly bounded in L∞(Q); hence, up to subtracting a rigid displacement (which
is not restrictive thanks to (2.3)), by the Korn inequality {uδ} is equibounded in
W 1,p(Q; R3) for every p ∈ (1,+∞).

In view of this remark, we are reduced to identifying the Kuratowski limit (if
any) of the sequence {Kδ} with respect to the uniform convergence on the compact
Q. Indeed, if K denotes such a Kuratowski limit, since the linear form u �→ 〈F, u〉 is
continuous with respect to the uniform convergence, we will have that

(5.5) lim
δ→0

S̃δ = sup
{
〈F, u〉R3 : u ∈ K

}
.

We claim that the set K can be characterized as follows:
(5.6)

K =
{
u ∈ L∞(Q; R3) : e(u) ∈ L∞(Q; R3×3

sym) , ρ(eαβ(u)) ≤ 1 , ei3(u) = 0 a.e. on Q
}
.

Let us first show how Theorem 3.3 follows from (5.6) and then give the proof of
(5.6).

As a slight variant of Theorem 3.1 in [13], it is easy to check that the right-
hand side of (5.6) is the closure in the uniform norm of the set of Kirchoff–Love
displacements

K =
{
u ∈ C∞(R3; R3) : ρ(eαβ(u)) ≤ 1 , ei3(u) = 0 on Q

}
.

As is well known, any function u ∈ K may be written under the form

ui(x) = vi(x
′) − ∂v3

∂xi
(x′)x3 for i = 1, 2 , u3(x) = v3(x

′) .

In terms of the function v, the matrix eαβ(u) is given by

(5.7) eαβ(u) = e(v1, v2) − x3∇2v3 ,

and hence v must satisfy the inequality

ρ
(
e(v1, v2) − x3∇2v3

)
≤ 1 ∀ (x′, x3) ∈ Ω ×

(
−h, h

)
,

which by convexity is equivalent to

(5.8) ρ
(
e(v1, v2) ± h∇2v3

)
≤ 1 on Ω .

On the other hand, we have

(5.9) 〈F, u〉R3 =

3∑
i=1

〈Fi, vi〉R3 +

2∑
i=1

〈
x3

∂Fi

∂xi
, v3

〉
R3

= 〈F , v〉R2 .

By (5.5), (5.8), (5.9) and recalling the definition of S0 in (3.7), we conclude that

lim
δ→0

S̃δ = sup
{
〈F, u〉R3 : u ∈ K

}
= S0 .

It remains to establish (5.6). Such an equality holds, provided one has
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(i) uδ ∈ Kδ, u
δ → u uniformly on Q =⇒ u ∈ K,

(ii) u ∈ K =⇒ ∃uδ ∈ Kδ such that uδ → u uniformly on Q.
Proof of (i). Let uδ ∈ Kδ such that uδ → u uniformly on Q. As already

noticed above in this proof, such a sequence {uδ} is weakly precompact in W 1,p(Q; R3)
for every p ∈ (1,+∞), which ensures that u belongs W 1,p(Q; R3) for every such p.
Possibly passing to a subsequence, we may assume that {eδ(uδ)} converges weakly in
Lp(Q; R3×3

sym) to some matrix valued function M(x) which is of the form

M =

[
eαβ(u) ξα3

ξα3 ξ33

]
.

By the convexity of ρ, one has

‖ρ(M)‖L∞(Q) ≤ lim inf
δ

‖ρ(eδ(uδ))‖L∞(Q) ≤ 1 .

Thus, by the definition (3.6) of ρ, it follows that

‖ρ(eαβ(u))‖L∞(Q) ≤ ‖ρ(M)‖L∞(Q) ≤ 1 .

On the other hand, it is clear that, for i = 1, 2, 3, ei3(u
δ) does converge strongly to 0

in Lp(Q) and therefore ei3(u) = 0. Summarizing we have proved that u belongs to K.
Proof of (ii). Let u ∈ K. We search for uδ ∈ Kδ such that uδ → u uniformly on

Q. To this end, it not restrictive to assume that the strict inequality ρ(eαβ(u)) < 1
holds on Q (indeed, for any u ∈ K the function ũ := (1 − δ)u satisfies ei3ũ = 0 and
ρ(eαβũ) < 1). Let ξi = ξi(x′, x3) be arbitrary smooth functions, and let Φi denote
their primitives with respect to the x3 variable:

Φi(x
′, x3) :=

∫ x3

0

ξi(x
′, s) ds .

We define the sequence {uδ} componentwise by

uδ
1 = u1 + δΦ1 , uδ

2 = u2 + δΦ2 , uδ
3 = u3 + δ2Φ3 .

Clearly {uδ} converges uniformly to u, and, according to definition (5.4), an
immediate calculation gives

eδ(u
δ) = eαβ(u) +

2∑
i=1

(
ξi + δ

∂Φ3

∂xi

)
(ei ⊗ e3)

∗ + ξ3(e3 ⊗ e3) ,

so that

ρ(eδ(u
δ)) ≤ ρ

(
eαβ(u) +

3∑
i=1

ξi(ei ⊗ e3)
∗

)
+ o(1) .

The proof of (ii) is concluded by the arbitrariness of the functions ξi.
Proof of Lemma 3.4. For any given integrand g : R

2×2
sym → R, if g is defined

according to (3.6), one can easily check that the Fenchel conjugates of g and g are
related by the identity

(g)∗(z∗) = g∗(z∗|0) ∀ z∗ ∈ R
2×2
sym ,
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where (z∗|0) denotes the 3 × 3 matrix obtained by adding to z∗ a null third line and
third column.

Applying this to the convex integrands j and j0 yields, for every z ∈ R
2×2
sym,

j0(z) = sup
{
z · z∗ − (j0)

∗(z∗|0) : z∗ ∈ R
2×2
sym

}
,

j(z) = sup
{
z · z∗ − j∗(z∗|0) : z∗ ∈ R

2×2
sym

}
.

Then the lemma is proved if we can show that

(j0)
∗(z∗|0) = j∗(z∗|0) ∀ z∗ ∈ R

2×2
sym .

Actually, this equality is satisfied since j∗0 and j∗ turn out to coincide more generally
on the class of degenerated tensors (see [10, Lemma 3.1]). Indeed, the inequality
j∗0 (τ) ≥ j∗(τ) holds for all τ ∈ R

3×3
sym because by definition j0 satisfies the inequality

j0 ≤ j. On the other hand, let τ ∈ R
3×3
sym be a degenerated tensor. By definition of j0,

for all z ∈ R
3×3
sym there holds

z · τ − j0(z) ≤ j∗(τ) ,

so that the inequality j∗0 (τ) ≤ j∗(τ) follows by passing to the supremum over z in the
left-hand side.

Proof of Corollary 3.5. In case (i) it is immediate that

S0 ≥ sup
{
〈F 3, v3〉R2 : v3 ∈ C∞(R2; R) such that ρ(∇2v3) ≤ 1/h on Ω

}
.

The converse inequality is obtained by noticing that, since ρ is even and subadditive,
the constraint ρ

(
e(v1, v2)±h∇2v3) ≤ 1 implies ρ

(
∇2v3) ≤ 1/h. The proof in case (ii)

is analogous.

Proof of Corollary 3.6. In view of Lemma 3.4, it is enough to prove the statement
for one among the sequences Ĩε,δ and Iε,δ, say Ĩε,δ.

First, we recall that there holds limε Ĩε,δ = Ĩδ (see Proposition 3.1) and that

Ĩδ = S̃2
δ /2 [11, Theorem 2.3]. Then Theorem 3.3 gives limδ S̃δ = S0. Finally, we apply

Corollary 3.5(i) and [14, Theorem 2.4] to conclude that S2
0/2 = h−2 inf

{
Cpl
(
μ, j, F 3

)
:

μ ∈ P(Ω)
}
.

Proof of Lemma 3.9. Let us rewrite (P) as

(P) − inf
{
−〈F , v〉R2 + χK(A+v) + χK(A−v) : v ∈ C∞(R2; R3)

}
,

where χK is the characteristic function of the set

K =
{
M ∈ C0(Ω; R2×2

sym) : ρ(M) ≤ 1
}
,

and A : C0(Ω; R3) � v �→ (A+v,A−v) ∈ [C0(Ω; R2×2
sym)]2 is the linear operator densely

defined by A±v := e(v1, v2) ± h∇2v3 for all smooth functions v.

By standard duality theory (see, for instance, [19]), there holds
(P∗)

min

{∫
ρo(λ+) +

∫
ρo(λ−) : (λ+, λ−) ∈ [M(Ω; R2×2

sym)]2 , A∗(λ+, λ−) = F

}
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL DESIGN OF THIN PLATES 1681

where A∗ : [M(Ω; R2×2
sym)]2 → M(Ω; R3) is the adjoint operator of A. It is determined

by the following identity (valid for every smooth v):

〈A∗(λ+, λ−), v〉R2 = 〈(λ+, λ−), (A+v,A−v)〉R2

= 〈λ+, e(v1, v2) + h∇2v3〉R2 + 〈λ−, e(v1, v2) − h∇2v3〉R2

= −〈div(λ+ + λ−), (v1, v2)〉R2 + 〈hdiv2(λ+ − λ−), v3〉R2 .

Therefore, when rewritten componentwise, the constraint A∗(λ+, λ−) = F is equiva-
lent to the system of two conditions: −div(λ++λ−) = (F 1, F 2) and hdiv2(λ+−λ−) =
F 3.

Proof of Proposition 3.10. Let v and λ± be optimal, respectively, for problems
(P) and (P)∗. By Lemma 3.9 there holds

(5.10)

∫
ρo(λ+) +

∫
ρo(λ−) = 〈F , v〉 .

On the other hand, if the operator Av = (A+v,A−v) is defined as in the proof of
Lemma 3.9, we have

(5.11) ρo(λ±) ≥ ρo(λ±) ρ(A±v) ≥ 〈λ±, A±v〉R2 ,

which implies

(5.12)

∫
ρo(λ+) +

∫
ρo(λ−) ≥ 〈(λ+, λ−), Av〉R2 = 〈A∗(λ+, λ−), v〉R2 = 〈F , v〉R2 .

Combining (5.10) and (5.12), we deduce that the inequalities in (5.11) must turn into
equalities, so that the optimality conditions (3.9) hold.

Conversely, any v and λ± which are admissible, respectively, for problems (P)
and (P)∗ satisfy

(5.13) 〈F , v〉R2 ≤ S0 ≤
∫

ρo(λ+) +

∫
ρo(λ−) .

If equations (3.9) hold, we have

〈F , v〉R2 = 〈A∗(λ+, λ−), v〉R2 = 〈(λ+, λ−), Av〉R2 =

∫
ρo(λ+) +

∫
ρo(λ−) ,

and hence the inequalities in (5.13) must turn into equalities, which means that v and
λ± are optimal.
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[12] G. Bouchitté, G. Buttazzo, and P. Seppecher, Energies with respect to a measure and
applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5
(1997), pp. 37–54.
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ASYMPTOTIC CONVERGENCE ANALYSIS OF A NEW CLASS OF
PROXIMAL POINT METHODS∗

WILLIAM W. HAGER† AND HONGCHAO ZHANG‡

Abstract. Finite dimensional local convergence results for self-adaptive proximal point methods
and nonlinear functions with multiple minimizers are generalized and extended to a Hilbert space
setting. The principle assumption is a local error bound condition which relates the growth in the
function to the distance to the set of minimizers. A local convergence result is established for almost
exact iterates. Less restrictive acceptance criteria for the proximal iterates are also analyzed. These
criteria are expressed in terms of a subdifferential of the proximal function and either a subdifferential
of the original function or an iteration difference. If the proximal regularization parameter μ(x) is
sufficiently small and bounded away from zero and f is sufficiently smooth, then there is local linear
convergence to the set of minimizers. For a locally convex function, a convergence result similar to
that for almost exact iterates is established. For a locally convex solution set and smooth functions,
it is shown that if the proximal regularization parameter has the form μ(x) = β‖f ′[x]‖η , where
η ∈ (0, 2), then the convergence is at least superlinear if η ∈ (0, 1) and at least quadratic if η ∈ [1, 2).

Key words. proximal point, degenerate optimization, multiple minima, self-adaptive method
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1. Introduction. In this paper, we consider an optimization problem:

(1.1) min{f(x) : x ∈ H},

where H is a real Hilbert space with inner product 〈·, ·〉 and f : H �→ R. It is assumed
that the set of minimizers for (1.1), denoted X, is nonempty and closed. We establish
new convergence rate results for proximal point methods for solving (1.1).

Literature connected with the analysis and development of proximal point meth-
ods includes [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27]. In the
proximal point method, iterates xk, k ≥ 1, are generated by the following rule:

(1.2) xk+1 ∈ arg min {Fk(x) : x ∈ H},

where

Fk(x) = f(x) +
1

2
μk‖x − xk‖2.

Here x0 ∈ H is an initial guess for a minimizer, the parameters μk, k ≥ 0, are
positive scalars, and ‖ · ‖ = 〈·, ·〉1/2 is the usual Hilbert space norm. When f is twice
continuously differentiable, the eigenvalues of the second derivative operator F ′′

k are
bounded from below by μk at a local minimizer; consequently, the regularization term
μk‖x − xk‖2 improves the conditioning of (1.1).
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In [21] Rockafellar shows that if f is convex, then the proximal point method
converges linearly when μk is bounded away from zero and superlinearly when μk tends
to zero. For these convergence results, X is a singleton. Luque [14] studied the case
when X may contain more than one element. By assuming some growth properties for
the (multivalued) inverse of the derivative, results analogous to those of Rockafellar
were obtained. Kaplan and Tichatschke [11] consider the case where f is convex, μk is
constant, and X may contain more than one element. A linear convergence result for
the iterates is established under a growth condition for the function which is similar
to the growth condition used in our paper (see Assumption 14.4 and Theorem 14.5
in [11]).

In another research direction, Combettes and Pennanen [2], Iusem, Pennanen, and
Svaiter [10], and Pennanen [19] replace the monotonicity assumptions appearing in
earlier work by a weaker hypomonotonicity condition for the inverse of the derivative,
that is, the inverse of the derivative is monotone when a multiple of the identity is
added. Additional assumptions, however, enter into the analysis which imply the
solution set X is a singleton.

In [7] we present a new class of self-adaptive proximal point methods for finite
dimensional optimization problems. Our analysis employs the following local error
bound condition at x̂ ∈ X: There exist positive constants α and ρ such that

(1.3) f(x) − f∗ ≥ αD(x,X)2 whenever ‖x − x̂‖ ≤ ρ,

where f∗ is the minimum value in (1.1) and

D(x,X) = inf
y∈X

‖x − y‖.

In other words, D(x,X) measures the distance to the solution set X. If (1.3) is
satisfied, then we say that f provides a local error bound at x̂ ∈ X. For an exact
proximal iterate xk+1 satisfying (1.2), we show in [7] that for any starting guess x0

in a neighborhood of the solution set, the iterates converge to a solution x∗ of (1.1)
and the following estimate holds:

(1.4) D(xk+1,X) ≤ CμkD(xk,X),

where C = 2/(2α− μk).
In a Hilbert space setting, the exact proximal iterate (1.2) may not exist. In

this paper, we establish a similar convergence result using the following acceptance
criterion: xk+1 is acceptable when

(C0) Fk(xk+1) ≤ inf
x∈X

{
Fk(x) +

μ2
k

2
‖x − xk‖2

}
= inf

x∈X

{
f(x) +

(
μk + μ2

k

2

)
‖x − xk‖2

}
.

In section 3 we show that there always exists an iterate satisfying (C0), and a con-
vergence result of the form (1.4) holds.

Although (C0) leads to an elegant convergence theory, which can be applied to
any function whose set of minimizers is nonempty and closed, the acceptance criterion
is not easily implemented since it is expressed in terms of the solution set (which we
are trying to compute). Consequently, we now introduce implementable acceptance
criteria which are expressed in terms of the (basic) subdifferential of f (see [17, p. 82]
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and [22]) denoted ∂f(x). If f is Fréchet differentiable, then ∂f(x) = f ′[x]. If f is
convex, then ∂f(x) is the usual subdifferential of convex analysis. The acceptance
criteria for (1.2) are

(C1) Fk(xk+1) ≤ f(xk) and ‖∂Fk(xk+1)‖inf ≤ μk‖∂f(xk)‖inf , and
(C2) Fk(xk+1) ≤ f(xk) and ‖∂Fk(xk+1)‖inf ≤ θμk‖xk+1 − xk‖.

Here θ is a positive constant smaller than 1/
√

2, and ‖ · ‖inf denotes the distance to
the origin; that is, for any set S ⊂ H,

‖S‖inf = inf
s∈S

‖s‖.

If S = ∅, then we set ‖S‖inf = ∞.
In [14] and [21], the authors considered the acceptance condition

‖∂Fk(xk+1)‖ ≤ εkμk‖xk+1 − xk‖,

where
∑

k εk < ∞. Our criterion (C2) corresponds to the case
∑

k εk = ∞. In
[14] and [21], the authors consider convex functionals, while here we obtain local
convergence rates for general nonlinear functionals. Note that our acceptance criteria
employ a subdifferential rather than the derivative used in our earlier work.

Slightly different versions of the proximal point method for maximal monotone
operators are developed by Solodov and Svaiter in the series of papers [24, 25, 26].
They develop both a hybrid proximal point algorithm where an approximate proximal
step is followed by a projection and a hybrid extragradient version in which the
original operator is replaced by an ε enlargement. In order to compare their analysis
to the results in our paper, we focus on the special case where the operator is the
subdifferential of a convex function f . In each iteration of the Solodov/Svaiter scheme,
they first compute an approximate proximal iterate yk satisfying a relaxed version
of (C2); they then update the iterate along the negative gradient:

(1.5) xk+1 = xk − skgk,

where gk ∈ ∂f(yk), sk is the scalar stepsize, and θ < 1. In [24], sk = 1/μk (the
reciprocal of the proximal regularization parameter), while in [25], sk is chosen so
that xk+1 is the projection of xk onto the half-space

{x ∈ H : 〈gk,x − yk〉 ≥ 0}.

Since the Solodov/Svaiter update (1.5) amounts to an extragradient step, their
convergence theory for fixed θ (see [26, Thm. 8]) yields linear convergence, even when
μk tends to 0, unless the accuracy criterion (C2) for the approximate proximal iterate
yk is strengthened. Ways to improve the accuracy of yk so as to obtain superlinear
convergence with the Solodov/Svaiter hybrid schemes are the following: (a) Replace
θ by θk in (C2) and let θk tend to 0 (see [26, Rem. 9]). (b) In the case H = R

n,
compute yk by a Newton iteration applied to the proximal problem (1.2), with μk on
the order of ‖∇f(xk)‖1/2 (see [26, sect. 5.2]).

In this paper, we obtain superlinear convergence with (C2) by letting μk ap-
proach 0, and we analyze how the convergence speed depends on the decay rate of
μk. We consider both a convex cost function analogous to the maximal monotone
operator in [24, 25, 26] and the more general case where the solution set X is locally
convex and f is sufficiently smooth. We allow multiple solutions satisfying the local
error bound condition (1.3), while in [24, 25, 26] the solution set is unique since the
inverse operator is required to be Lipschitz continuous at zero [26, eq. (28)].
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We will show that for either (C1) or (C2), for μk sufficiently small, and for either
f locally convex or X locally convex and f sufficiently smooth, an estimate of the form
(1.4) holds. For μk sufficiently small and bounded away from zero, and for smooth
functions, there is at least local linear convergence to the set of minimizers. For X
locally convex and f sufficiently smooth, and for μk = β‖f ′[xk]‖η, where η ∈ (0, 2),
the convergence is superlinear when η ∈ (0, 1) and at least quadratic when η ∈ [1, 2).

Our paper is organized as follows: In section 2 we establish the equivalence,
when f is twice continuously differentiable, of our local error bound condition and
a gradient-based local error bound condition used in [5, 13, 14, 28, 29, 30]. Note,
though, that our local error bound condition can be applied even when f has no
derivative. In section 3 we analyze proximal iterates which satisfy (C0). Section 4
studies the criteria (C1) and (C2).

1.1. Notation. Throughout this paper, we use the following notation. If A :
H �→ H is a bounded linear operator, then ‖A‖ is the operator norm induced by
the Hilbert space norm ‖ · ‖. The empty set is denoted ∅. The complement of a set
S ⊂ H is denoted Sc. If x and y ∈ H, then [x,y] is the line segment connecting x
and y. Bρ(x) is the ball with center x and radius ρ. f ′[x] and f ′′[x] are the first-
and second-order Fréchet derivatives of f at x when they exist. The derivatives are
operators defined on either H or H×H. We also view f ′[x] as an element of H and
write f ′[x](y) = 〈f ′[x],y〉. Similarly, we view f ′′[x] as a bounded linear map from H
to itself and write

f ′′[x](y, z) = 〈f ′′[x]y, z〉.

2. Local error bound based on derivative. In this paper, we utilize the local
error bound condition (1.3) based on function value. Earlier work [5, 13, 14, 28, 29, 30]
has exploited a local error bound condition based on the derivative. Namely, f ′

provides a local error bound at x̂ ∈ X if there exist positive constants α and ρ such
that

(2.1) ‖f ′[x]‖ ≥ αD(x,X) whenever ‖x − x̂‖ ≤ ρ.

We now show that when f is smooth enough, these two conditions are equivalent.
Lemma 2.1. If f is twice continuously Fréchet differentiable in a neighborhood

of x̂ ∈ X, then f provides a local error bound at x̂ in the sense of (1.3) if and only
if f ′ provides a local error bound at x̂ in the sense of (2.1).

Proof. Suppose f provides a local error bound at x̂ ∈ X with positive scalars α
and ρ satisfying (1.3). Choose ρ smaller, if necessary, so that f is twice continuously
Fréchet differentiable in Bρ(x̂) and

(2.2) ‖f ′′[x] − f ′′[y]‖ ≤ α/3 for all x,y ∈ Bρ(x̂).

Define r = ρ/2. Given x ∈ Br(x̂), let x̄ be any element of X∩Br(x). Since x ∈ Br(x̂),
we have x̂ ∈ X ∩ Br(x), which shows that X ∩ Br(x) is nonempty. The triangle
inequality implies that

(2.3) ‖x̄ − x̂‖ ≤ ‖x̄ − x‖ + ‖x − x̂‖ ≤ 2r = ρ.

Since both x and x̄ ∈ Bρ(x̂), f is twice continuously Fréchet differentiable in Bρ(x̂),
and f ′[x̄] = 0, we have

(2.4) f(x) − f∗ = f(x) − f(x̄) =
1

2
〈x − x̄, f ′′[x̄](x − x̄)〉 + R2(x, x̄),
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where R2 is the remainder term. The bound (2.2) gives

|R2(x, x̄)| ≤ α

3
‖x − x̄‖2

whenever x and x̄ ∈ Bρ(x̂). In this case, (2.4) and the local error bound condition
(1.3) give

(2.5) αD(x,X)2 ≤ f(x) − f∗ ≤ 1

2
‖x − x̄‖‖f ′′[x̄](x − x̄)‖ +

α

3
‖x − x̄‖2.

Again, since f is twice continuously Fréchet differentiable in Bρ(x̂) and f ′[x̄] = 0,
we have

(2.6) f ′[x] = f ′[x] − f ′[x̄] = f ′′[x̄](x − x̄) + R1(x, x̄),

where R1 is the remainder term. The bound (2.2) gives

(2.7) ‖R1(x, x̄)‖ ≤ α

3
‖x − x̄‖

whenever x and x̄ ∈ Bρ(x̂). Combining (2.5)–(2.7) yields

(2.8) αD(x,X)2 ≤ 1

2

(
‖x − x̄‖‖f ′[x]‖ + α‖x − x̄‖2

)
.

Since X ∩ Br(x) is nonempty, we have

D(x,X) = inf
x̄∈X

‖x − x̄‖ = inf{‖x − x̄‖ : x̄ ∈ X ∩ Br(x)}.

Minimizing the right-hand side of (2.8) over x̄ ∈ X ∩ Br(x) gives

αD(x,X)2 ≤ 1

2

(
D(x,X)‖f ′[x]‖ + αD(x,X)2

)
.

Rearranging this yields

‖f ′[x]‖ ≥ αD(x,X).

Hence, ∂f = f ′ provides a local error bound at x̂ with constants α and r.
Conversely, suppose f ′ provides a local error bound at x̂ ∈ X with positive scalars

α and ρ satisfying (2.1). Let ρ be as in the first half of the proof. Choose ρ smaller,
if necessary, so that

(2.9) ‖f ′′[x] − f ′′[y]‖ ≤ 7α2

18(λ + 1)
for all x,y ∈ Bρ(x̂),

where

(2.10) λ = sup{‖f ′′[x]‖ : x ∈ Bρ(x̂)}.

Let r = ρ/2, let x ∈ Br(x̂), and let x̄ ∈ X ∩ Br(x̂).
Since f achieves a minimum at x̄ ∈ X, f ′′[x̄] is positive. Thus, there exists

a unique, positive self-adjoint bounded linear operator B, the square root of f ′′[x̄],
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satisfying f ′′[x̄] = B2 [23, Thm. 13.31]. By (2.6), (2.7), and the local error bound
condition (2.1), we have

αD(x,X) ≤ ‖f ′[x]‖
≤ ‖f ′′[x̄](x − x̄)‖ +

α

3
‖x − x̄‖

= ‖B2(x − x̄)‖ +
α

3
‖x − x̄‖

≤ ‖B‖‖B(x − x̄)‖ +
α

3
‖x − x̄‖.

Squaring both sides yields

α2D(x,X)2 ≤ 2‖B‖2‖B(x − x̄)‖2 +
2α2

9
‖x − x̄‖2

= 2〈x − x̄, f ′′[x̄](x − x̄)〉‖f ′′[x̄]‖ +
2α2

9
‖x − x̄‖2

≤ 2〈x − x̄, f ′′[x̄](x − x̄)〉λ +
2α2

9
‖x − x̄‖2,

where λ is defined in (2.10). It follows that

〈x − x̄, f ′′[x̄](x − x̄)〉 ≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
.

(1 is added to the denominator to allow for the possibility that λ = 0.) Using this in
(2.4) yields

f(x) − f∗ =
1

2
〈(x − x̄), f ′′[x̄](x − x̄)〉 + R2(x, x̄)

≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
+ R2(x, x̄).(2.11)

By the choice of ρ in (2.9), we have

|R2(x, x̄)| ≤ β

2
‖x − x̄‖2, β =

7α2

18(λ + 1)
,

whenever x and x̄ ∈ Bρ(x̂). By (2.11),

f(x) − f∗ ≥ α2[9D(x,X)2 − 2‖x − x̄‖2]

18(λ + 1)
− β

2
‖x − x̄‖2.

Minimizing ‖x − x̄‖ over x̄ ∈ X ∩ Br(x) gives

f(x) − f∗ ≥
(
β

2

)
D(x,X)2,

which completes the proof.

3. Convergence analysis for almost exact minimization. We first show
that (C0) can always be satisfied.

Lemma 3.1. If μk > 0, then there exists xk+1 ∈ H satisfying (C0); moreover,
for any xk+1 satisfying (C0), we have

(3.1) ‖xk+1 − xk‖ ≤
√

1 + μkD(xk,X).
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Proof. If xk ∈ X, then the lemma holds trivially since xk+1 = xk. Hence, assume
that D(xk,X) > 0. Since μk > 0, we have

inf
x∈X

{
Fk(x) +

μ2
k

2
‖x − xk‖2

}
= f∗ +

(
μk + μ2

k

2

)
inf
x∈X

{‖x − xk‖}

= f∗ +

(
μk + μ2

k

2

)
D(xk,X)

> f∗ +
μk

2
D(xk,X)

= inf
x∈X

Fk(x) ≥ inf
x∈H

Fk(x).

Since one of these inequalities is strict, there exists xk+1 ∈ H satisfying (C0). More-
over, for all x ∈ X, (C0) yields

Fk(xk+1) = f(xk+1) +
μk

2
‖xk+1 − xk‖2 ≤ Fk(x) +

μ2
k

2
‖x − xk‖2

= f∗ +
μk + μ2

k

2
‖x − xk‖2.

Since f∗ ≤ f(xk+1), we conclude that

(3.2) ‖xk+1 − xk‖ ≤
√

1 + μk‖x − xk‖

for all x ∈ X. Taking the infimum over x ∈ X gives (3.1).
Iterates which satisfy the criterion (C0) are now analyzed.
Theorem 3.2. Assume the following conditions are satisfied:

(E0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying
(1.3).

(E1) β > 0 is small enough that the following inequalities hold:

β + 2β2

2
≤ α

3
and γ :=

β
√

3(1 + β)(3 + 4α)

2α
< 1.

(E2) μk ∈ (0, β].
(E3) x0 is close enough to x̂ that

‖x0 − x̂‖
(

1 +

√
1 + β

1 − γ

)
≤ ρ.

Then any proximal iterates {xk} satisfying (C0) have the property that xk ∈ Bρ(x̂)
for each k, and they approach a minimizer x∗ ∈ X; moreover, for each k, we have

(3.3) ‖xk − x∗‖ ≤ c1γ
kD(x0,X) and D(xk+1,X) ≤ c2μkD(xk,X),

where

(3.4) c1 =

√
1 + β

1 − γ
and c2 = γ/β.

Proof. For j = 0, (E3) implies that

(3.5) ‖xj − x̂‖ ≤ ρ and D(xj ,X) ≤ γjD(x0,X).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1690 WILLIAM W. HAGER AND HONGCHAO ZHANG

Proceeding by induction, suppose that (3.5) holds for all j ∈ [0, k] and for some k ≥ 0.
We show that (3.5) also holds for j = k + 1. By the triangle inequality, Lemma 3.1,
(E2), and the induction hypothesis, it follows that

‖xk+1 − x0‖ ≤
k∑

j=0

‖xj+1 − xj‖ ≤
k∑

j=0

√
1 + μjD(xj ,X)

≤
√

1 + β

k∑
j=0

γjD(x0,X) ≤
√

1 + β

1 − γ
D(x0,X) ≤

√
1 + β

1 − γ
‖x0 − x̂‖.

Again, by the triangle inequality and (E3),

(3.6) ‖xk+1 − x̂‖ ≤ ‖xk+1 − x0‖ + ‖x0 − x̂‖ ≤
(

1 +

√
1 + β

1 − γ

)
‖x0 − x̂‖ ≤ ρ.

For any x ∈ H, observe that

‖x − xk‖2 − ‖xk+1 − xk‖2

= 〈x + xk+1 − 2xk,x − xk+1〉
≤ (‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖.(3.7)

Rearranging (C0) and utilizing (3.7) gives, for all x ∈ X,

f(xk+1) − f∗

≤ μk

2
(‖x − xk‖2 − ‖xk+1 − xk‖2) +

μ2
k

2
‖x − xk‖2

≤ μk

2
(‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖ +

μ2
k

2
‖x − xk‖2

≤ μk

2
(‖x − xk+1‖ + 2‖xk+1 − xk‖)‖x − xk+1‖ +

μ2
k

2
(‖x − xk+1‖ + ‖xk+1 − xk‖)2

≤ μk

2
‖x − xk+1‖2 + μk‖xk+1 − xk‖‖x − xk+1‖

+μ2
k(‖x − xk+1‖2 + ‖xk+1 − xk‖2).

Utilizing the inequalities

μk‖xk+1 − xk‖‖x − xk+1‖ ≤ α

3
‖x − xk+1‖2 +

3μ2
k

4α
‖xk+1 − xk‖2

and μk ≤ β, we obtain

(3.8) f(xk+1) − f∗ ≤
(
β + 2β2

2
+

α

3

)
‖x − xk+1‖2 +

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

Taking the infimum over x ∈ X on the right-hand side of (3.8) gives

(3.9) f(xk+1) − f∗ ≤
(
β + 2β2

2
+

α

3

)
D(xk+1,X)2 +

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

By (3.6), xk+1 ∈ Bρ(x̂). Since f provides a local error bound at x̂,

(3.10) αD(xk+1,X)2 ≤ f(xk+1) − f∗.
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Combining this with (3.9) gives

(3.11)

(
2α

3
− β + 2β2

2

)
D(xk+1,X)2 ≤

(
3 + 4α

4α

)
μ2
k‖xk+1 − xk‖2.

By (E1), the coefficient of D in (3.11) is bounded from below by α/3. Hence, (3.11),
Lemma 3.1, and (3.5), with j = k, yield

D(xk+1,X) ≤ μk

√
3(3 + 4α)

2α
‖xk+1 − xk‖

≤ μk

√
1 + μk

√
3(3 + 4α)

2α
D(xk,X)

≤ μk

√
3(1 + β)(3 + 4α)

2α
D(xk,X)(3.12)

≤ γD(xk,X) ≤ γk+1D(x0,X).(3.13)

Relations (3.6) and (3.13) complete the proof of the induction step. Relations (3.12)
and (3.13) give the estimate (3.3).

By Lemma 3.1 and (3.5), the proximal iterates xk form a Cauchy sequence in H,
which has a limit denoted x∗. By (3.5), Lemma 3.1, and the bound μk ≤ β, we have

‖xk − x∗‖ ≤
∞∑
j=k

‖xj+1 − xj‖ ≤
∞∑
j=k

√
1 + μkD(xj ,X)

≤
√

1 + β

∞∑
j=k

γjD(x0,X) = γj

√
1 + β

1 − γ
D(x0,X).(3.14)

By (3.5) and (3.14), for any k ≥ 0 we have

D(x∗,X) ≤ D(xk,X) + ‖xk − x∗‖ ≤
(
γk + γk

√
1 + β

1 − γ

)
D(x0,X).

Thus D(x∗,X) = 0. Since X is closed, the limit x∗ ∈ X.
We now give a choice for μk which leads to a quadratic convergence rate for the

proximal point iteration.
Corollary 3.3. Assume that conditions (E0), (E1), and (E3) of Theorem 3.2

are satisfied. In addition, let e : H �→ R be any nonnegative function with the property
that

(3.15) e(x) ≤ β and e(x) ≤ LD(x,X)

for all x ∈ Bρ(x̂) and for some L ∈ R. Then for the choice μk = e(xk), any proximal
iterates {xk} satisfying (C0) have the property that xk ∈ Bρ(x̂) for each k, the iterates
approach a minimizer x∗ ∈ X, and for each k, we have

(3.16) D(xk+1,X) ≤ c2LD(xk,X)2,

where c2 is given in (3.4).
Proof. This follows directly from the proof of Theorem 3.2; simply append the

condition μj ≤ β for each j ∈ [0, k] to the induction hypothesis (3.5):

(3.17) ‖xj − x̂‖ ≤ ρ, D(xj ,X) ≤ γjD(x0,X), and μj ≤ β.
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Since x0 ∈ Bρ(x̂), (3.15) implies that μ0 = e(x0) ≤ β. Hence, (3.17) is satisfied for
j = 0. In the proof of Theorem 3.2, we show that if μj ≤ β for j ∈ [0, k], then the
first two conditions in (3.17) hold for j = k+1. In (3.6), we show that xk+1 ∈ Bρ(x̂).
Consequently, μk+1 = e(xk+1) ≤ β, and (3.17) holds for j = k + 1. Replacing μk by
e(xk) ≤ LD(xk,X) in (3.3) gives (3.16).

If f is Lipschitz continuously differentiable, then the function e(x) = ‖f ′[x]‖
satisfies the hypotheses of Corollary 3.3 when ρ is sufficiently small since f ′[x̄] = 0
for all x̄ ∈ X.

4. Convergence analysis for approximate minimization. We now analyze
the situation where the proximal point iteration (1.2) need only satisfy (C1) or (C2).
The following property of a convex function is used in the analysis.

Proposition 4.1. If x∗ is a local minimizer of Fk and f is convex in Bρ(x
∗)

for some ρ > 0, then

(4.1) Fk(x) ≤ Fk(x
∗) +

‖∂Fk(x)‖2
inf

μk

for all x ∈ Bρ(x
∗).

Proof. If ∂Fk(x) is empty, then ‖∂Fk(x)‖inf = ∞, and there is nothing to prove.
Hence, we assume that ∂Fk(x) �= ∅. Since f is convex in Bρ(x

∗), we have

(4.2) Fk(x
∗) ≥ Fk(x) + 〈y,x∗ − x〉 for all y ∈ ∂Fk(x).

For a convex functional, the subdifferentials satisfy the monotonicity condition [17,
Thm. 3.56]

(4.3) 〈ȳ − y∗,x − x∗〉 ≥ 0 for all ȳ ∈ ∂f(x) and y∗ ∈ ∂f(x∗).

Given ȳ ∈ ∂f(x), define

(4.4) y = ȳ + μk(x − xk) ∈ ∂Fk(x).

Since x∗ is a local minimizer of Fk, 0 ∈ ∂Fk(x
∗), or equivalently, there exists y∗ ∈

∂f(x∗) such that

(4.5) 0 = y∗ + μk(x
∗ − xk).

By (4.3), (4.4), and (4.5), we have

〈y, (x − x∗)〉 = 〈ȳ + μk(x − xk) − (y∗ + μk(x
∗ − xk)),x − x∗〉

= 〈ȳ − y∗,x − x∗〉 + μk‖x − x∗‖2

≥ μk‖x − x∗‖2(4.6)

for any y ∈ ∂Fk(x). The Schwarz inequality yields

(4.7) ‖x − x∗‖ ≤ ‖y‖
μk

.

Thus, it follows from (4.2) and (4.7) that for any y ∈ ∂Fk(x),

Fk(x) ≤ Fk(x
∗) +

‖y‖2

μk
.
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Minimizing over y ∈ ∂Fk(x) gives (4.1).
In our first convergence result, we focus on the case where f is convex over the

level set defined by the starting guess. We also employ a subdifferential generalization
of the gradient-based local error bound condition (2.1): For some x̂ ∈ X, there exist
positive constant α and ρ such that

(4.8) ‖∂f(x)‖inf ≥ αD(x,X) whenever ‖x − x̂‖ ≤ ρ.

If (4.8) is satisfied, then we say that ∂f provides a local error bound at x̂ ∈ X.
Theorem 4.2. Assume that the following conditions are satisfied:

(A0) ∂f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satis-
fying (4.8).

(A1) If L is the level set {x ∈ H : f(x) ≤ f(x0)}, then f is convex and lower
semicontinuous on L, and there exists a constant L such that ‖∂f(x)‖inf ≤
LD(x,X) for all x ∈ L.

(A2) Define the parameters

Λ = L + τ and τ2 = 1 + 2L2 if acceptance criterion (C1) is used,

while

Λ = τ(1 + θ) and τ2 =
1

1 − 2θ2
if acceptance criterion (C2) is used.

β > 0 is small enough that the following inequality holds:

(4.9) γ :=
βΛ

α
< 1.

(A3) μk ∈ (0, β] and θ < 1/
√

2.
(A4) x0 is close enough to x̂ that

‖x0 − x̂‖
(

1 +
τ

1 − γ

)
≤ ρ.

If the approximate proximal iterates xk satisfy either (C1) or (C2), then the iterates
are all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for
each k, we have

(4.10) ‖xk − x∗‖ ≤ c1γ
kD(x0,X) and D(xk+1,X) ≤ c2μkD(xk,X),

where

c1 =
τ

1 − γ
and c2 = γ/β.

Proof. For j = 0, we have

(4.11) ‖xj − x̂‖ ≤ ρ, xj ∈ L, and D(xj ,X) ≤ γjD(x0,X).

Proceeding by induction, suppose that (4.11) holds for all j ∈ [0, k] and for some
k ≥ 0. We show that (4.11) also holds for j = k + 1.

Due to the convexity and lower semicontinuity of f on L, this level set is closed
and convex. Suppose j ∈ [0, k]. By (C1) or (C2), we have

(4.12) f(xj+1) ≤ Fj(xj+1) ≤ f(xj).
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We conclude that f(xj) ≤ f(x0) for each j. Since Fj(xj) = f(xj) ≤ f(x0), minimizing
Fj over H is equivalent to minimizing Fj over L. Since Fj is strongly convex and lower
semicontinuous on L, Fj is weakly lower semicontinuous on L, and there exists an
exact proximal point iterate x∗

j defined by

x∗
j ∈ arg min {Fj(x) : x ∈ H}.

Moreover, f(x∗
j ) ≤ f(xj) ≤ f(x0). Combining this with (4.12), both xj+1 and x∗

j lie
in L. By (A2) and Proposition 4.1, we have

Fj(xj+1) = Fj(x
∗
j ) + (Fj(xj+1) − Fj(x

∗
j ))

≤ Fj(x
∗
j ) +

‖∂Fj(xj+1)‖2
inf

μj

≤ f∗ +
μj

2
D(xj ,X)2 +

‖∂Fj(xj+1)‖2
inf

μj
.

Since f∗ ≤ f(xj+1), it follows that

(4.13)
μj

2
‖xj+1 − xj‖2 ≤ μj

2
D(xj ,X)2 +

‖∂Fj(xj+1)‖2
inf

μj
.

By (C1) and (A1),

(4.14) ‖∂Fj(xj+1)‖inf ≤ μj‖∂f(xj)‖inf ≤ μjLD(xj ,X).

Combining this with (4.13), we have

(4.15) ‖xj+1 − xj‖2 ≤ (1 + 2L2)D(xj ,X)2.

Similarly, if criterion (C2) is used, then ‖∂Fj(xj+1)‖inf ≤ θμj‖xj+1 − xj‖, and by
(4.13), we have

(4.16) ‖xj+1 − xj‖2 ≤ 1

1 − 2θ2
D(xj ,X)2.

Together, (4.15) and (4.16) yield

(4.17) ‖xj+1 − xj‖ ≤ τD(xj ,X),

where τ is defined in (A2); this holds for any j ∈ [0, k].
By (4.11), we have

‖xk+1 − x0‖ ≤
k∑

j=0

‖xj+1 − xj‖ ≤
k∑

j=0

τD(xj ,X)

≤ τ

k∑
j=0

γjD(x0,X) ≤ τ

1 − γ
D(x0,X) ≤ τ

1 − γ
‖x0 − x̂‖.

Again, by the triangle inequality and (A4),

‖xk+1 − x̂‖ ≤ ‖xk+1 − x0‖ + ‖x0 − x̂‖ ≤
(

1 +
τ

1 − γ

)
‖x0 − x̂‖ ≤ ρ.
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Hence, xk+1 ∈ Bρ(x̂), which establishes the first relation in (4.11).
By (A0), we have

(4.18) αD(xk+1,X) ≤ ‖∂f(xk+1)‖inf ≤ ‖∂Fk(xk+1)‖inf + μk‖xk+1 − xk‖.

If (C1) is used, then ‖∂Fk(xk+1)‖inf ≤ μk‖∂f(xk)‖inf ; hence, (A1) and (4.18) imply
that

αD(xk+1,X) ≤ μk(‖∂f(xk)‖inf + ‖xk+1 − xk‖)
≤ μk(LD(xk,X) + ‖xk+1 − xk‖).(4.19)

If (C2) is used, then ‖∂Fk(xk+1)‖inf ≤ θμk‖xk+1 − xk‖, and by (4.18), we have

(4.20) αD(xk+1,X) ≤ μk(1 + θ)‖xk+1 − xk‖.

Inserting the bound (4.17) into (4.19) or (4.20) yields the second half of (4.10). By
the second half of (4.10) and (A3), we have

D(xk+1,X) ≤
(

Λμk

α

)
D(xk,X) ≤ γD(xk,X) ≤ γk+1D(x0,X).

This establishes the last relation in (4.11) for j = k+1, and the proof of the induction
step is complete. The proof that the xk form a Cauchy sequence converging to a limit
x∗ ∈ X and the first part of (4.10) are exactly as in Theorem 3.2.

Suppose that x∗ is a local minimizer of Fk, f is convex in Bρ(x
∗) for some ρ > 0,

and the following inequality holds:

(4.21) f(x1) ≥ f(x2) +
1

2
〈y1 + y2,x1 − x2〉

whenever yi ∈ ∂f(xi), i = 1, 2. For example, when f is a quadratic, (4.21) is satisfied
with equality. When (4.21) holds, Proposition 4.1 can be strengthened to

(4.22) Fk(x) ≤ Fk(x
∗) +

‖∂Fk(x)‖2
inf

2μk

for all x ∈ Bρ(x
∗). In Theorem 4.2, we require that θ < 1/

√
2 in (A3); this requirement

arises at inequality (4.16) since we need to ensure that 1−2θ2 > 0. If f satisfies (4.21),
then by exploiting the stronger inequality (4.22), the restriction on θ for stopping
criterion (C2) can be relaxed to θ < 1.

We now relax the convexity requirement for f while strengthening the smoothness
condition. We require only that X is locally convex, while f is locally, twice continu-
ously differentiable. If the set Bρ(x̂)∩X is convex for some ρ > 0, then the projection
x̄ of x onto Bρ(x̂) ∩ X exists. For x ∈ Bρ/2(x̂), it follows that ‖x − y‖ ≥ ρ/2 when
y ∈ Bρ(x̂)c, where c denotes complement. Hence, the distance from x ∈ Bρ/2(x̂) to
X is the same as the distance from x to X ∩ Bρ(x̂):

‖x − x̄‖ = min{‖x − y‖ : y ∈ Bρ(x̂) ∩ X} = min {‖x − y‖ : y ∈ X} = D(x,X).

The following lemma plays the role of Proposition 4.1 when we remove the convexity
requirement for f .

Lemma 4.3. Suppose f provides a local error bound at x̂ ∈ X with positive scalars
α and ρ satisfying (1.3), X ∩ Bρ(x̂) is convex, and f is twice Lipschitz continuously
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Fréchet differentiable on Bρ(x̂). If μk = β‖f ′[xk]‖η, where η ≥ 0 and β > 0, then
there exist r ∈ (0, ρ/2] and positive constants C1 and C2 with the following property:
For each xk ∈ Br(x̂), we have

(4.23) Fk(x) − Fk(x̄) ≤ C1

μk
‖F ′

k(x)‖2

whenever x ∈ Br(x̂) and ‖x − x̄‖ ≤ C2‖xk − x̄k‖η.
Proof. If xk = x̄k, then (4.23) is trivial. Hence, we assume that xk �= x̄k. By

Lemma 2.1, f ′ provides a local error bound with constants α and r ∈ (0, ρ/2]. Hence,
for any xk ∈ Br(x̂), we have

α‖xk − x̄k‖ = αD(xk,X) ≤ ‖f ′[xk]‖.

Raising this inequality to the η power and utilizing the definition of μk gives

(4.24) μk ≥ βαη‖xk − x̄k‖η.

By the second-order necessary optimality condition, the second derivative operator
f ′′[x] is positive for any x ∈ X. Hence, given any x ∈ Br(x̂) and y ∈ H, we deduce
from (4.24) that

〈y, F ′′
k (x)y〉 = 〈y, (f ′′[x̄] + μkI + f ′′[x] − f ′′[x̄])y〉

≥ μk‖y‖2 + 〈y, (f ′′[x] − f ′′[x̄])y〉

≥
(
βαη‖xk − x̄k‖η − L2‖x − x̄‖

)
‖y‖2,

where L2 is a Lipschitz constant for f ′′ on Bρ(x̂). Hence, if x ∈ Br(x̂) satisfies

(4.25) ‖x − x̄‖ ≤ C2‖xk − x̄k‖η, C2 =
βαη

2L2
,

then we have

(4.26) 〈y, F ′′
k (x)y〉 ≥ βαη

2
‖xk − x̄k‖η‖y‖2.

Let A be the collection of x ∈ Br(x̂) which satisfies (4.25):

A = {x ∈ Br(x̂) : ‖x − x̄‖ ≤ C2‖xk − x̄k‖η}.

We now show that A is closed and convex. Since r ≤ ρ/2, it follows from the discussion
preceding the lemma that for each y and z ∈ Br(x̂), the projections ȳ and z̄ onto X
exist in Bρ(x̂). By the convexity of Bρ(x̂) ∩ X, the line segment [ȳ, z̄] is contained in
Bρ(x̂) ∩X. Thus, if y and z ∈ A, then each x ∈ [y, z] lies in A. A is closed since the
projection onto a convex set is Lipschitz continuous.

By (4.26), Fk is strongly convex over the closed, convex set A. Consequently,
there exists a unique minimizer x∗

k:

(4.27) x∗
k = arg min{Fk(x) : x ∈ A}.

Given x ∈ A and t ∈ [0, 1], we define x(t) = x∗
k + t(x − x∗

k). Since A is convex
and both x and x∗

k ∈ A, it follows that x(t) ∈ A for all t ∈ [0, 1]. Since x(0) = x∗
k
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achieves the minimum in (4.27), we have Fk(x
∗
k) ≤ Fk(x(t)) for all t ∈ [0, 1]. Thus for

φ(t) := Fk(x(t)), we have φ′(0) ≥ 0, and by (4.26),

‖F ′
k(x)‖‖x − x∗

k‖ ≥ F ′
k(x)(x − x∗

k) = φ′(1) ≥ φ′(1) − φ′(0) = φ′′(s)

= 〈F ′′
k (x(s))(x − x∗

k),x − x∗
k〉

≥ βαη

2
‖xk − x̄k‖η‖x − x∗

k‖2

for some s ∈ [0, 1]. Hence, we have

(4.28) ‖x − x∗
k‖ ≤ 2

βαη‖xk − x̄k‖η
‖F ′

k(x)‖.

By (4.26), Fk(x(t)) is convex as a function of t ∈ [0, 1]. This implies that φ′(t) is an
increasing function of t ∈ [0, 1]. We combine this observation with (4.27) and (4.28)
to obtain

Fk(x) − Fk(x̄k) ≤ Fk(x) − Fk(x
∗
k)

= Fk(x(1)) − Fk(x(0))

=

∫ 1

0

φ′(t)dt ≤ φ′(1) = F ′
k(x)(x − x∗

k)

≤ 2

βαη‖xk − x̄k‖η
‖F ′

k(x)‖2(4.29)

whenever x ∈ A and xk ∈ Br(x̂).
If L1 is a Lipschitz constant for f ′ over Bρ(x̂), then we have

‖f ′[xk]‖ = ‖f ′[xk] − f ′[x̄k]‖ ≤ L1‖xk − x̄k‖

whenever xk ∈ Br(x̂). By the definition of μk, it follows that

‖xk − x̄k‖η ≥ μk/(βL
η
1).

Combining this with (4.29) gives (4.23) with C1 = 2Lη
1/α

η.
Theorem 4.4. Assume that the following conditions are satisfied:

(B0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying
(1.3).

(B1) The set Bρ(x̂) ∩ X is convex.
(B2) f is twice Lipschitz continuously Fréchet differentiable in Bρ(x̂).
(B3) The proximal iterates xk satisfy either (C1) or (C2) with μk = β‖f ′[xk]‖η,

where η ∈ (0, 2) and β is positive. If (C2) is used, then θ is small enough
that 2C1θ

2 < 1, where C1 is the constant in (4.23).
Then for ε sufficiently small and for each x0 ∈ Bε(x̂), the proximal iterates xk are
all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for each
k, we have

‖xk − x∗‖ ≤ c1γ
kD(x0,X) and

D(xk+1,X) ≤ c2μkD(xk,X) ≤ βc2L
η
1D(xk,X)1+η,(4.30)

where γ < 1, c1, and c2 are constants independent of k.
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Proof. We start by explaining how to choose ε so that the theorem holds. Define
the parameters

Λ = L1 + τ and τ2 = 1 + 2C1L
2
1 if acceptance criterion (C1) is used,

while

Λ = τ(1 + θ) and τ2 =
1

1 − 2C1θ2
if acceptance criterion (C2) is used,

where C1 is the constant in (4.23) and L1 is a Lipschitz constant for f ′ over Bρ(x̂).
Notice that the hypotheses of the theorem are satisfied if ρ is decreased. Choose ρ
small enough that

(4.31) γ := sup
x∈Bρ(x̂)

β‖f ′[x]‖ηΛ
α

< 1.

By Lemma 2.1, we can choose ρ smaller, if necessary, so that f ′ provides a local
error bound with constants α and ρ/2. By Lemma 4.3, we can choose ρ smaller, if
necessary, so that (4.23) holds whenever x ∈ Bρ(x̂) and ‖x − x̄‖ ≤ C2‖xk − x̄k‖η.
Choose ε > 0 small enough that

(4.32)

(
ε +

Eε1−η/2

1 − γ1−η/2

)
≤ ρ

2
, where E =

√
L1

2βαη
,

and

ε(L1 + Eε−η/2)

(
βLη

1

α

)
≤ C2 if stopping criterion (C1) is used,(4.33)

Eε1−η/2(1 + θ)

(
βLη

1

α

)
≤ C2 if stopping criterion (C2) is used.(4.34)

Since η ∈ (0, 2), (4.33) and (4.34) are satisfied for ε sufficiently small.
We now prove the theorem. Again, let x̄ be the projection of x onto X. For

j = 0, we have

(4.35) ‖xj − x̂‖ ≤ ρ/2 and ‖xj − x̄j‖ ≤ γj‖x0 − x̄0‖

since x0 ∈ Bε(x̂) ⊂ Bρ/2(x̂). Proceeding by induction, suppose that (4.35) holds for
all j ∈ [0, k] and for some k ≥ 0.

For any j ∈ [0, k], the condition Fj(xj+1) ≤ f(xj) in (C1) or (C2) implies that

(4.36) μj‖xj+1 − xj‖2 ≤ f(xj) − f(xj+1) ≤ f(xj) − f(x̄j).

By the induction hypothesis, xj ∈ Bρ/2(x̂), and by the triangle inequality, we have

(4.37) ‖x̄j − x̂‖ ≤ ‖x̄j − xj‖ + ‖xj − x̂‖ ≤ ‖x̄0 − x0‖ +
ρ

2
≤ ρ.

Hence, x̄j ∈ Bρ(x̂). We expand f in (4.36) in a Taylor series around x̄j and use the
fact that f ′[x̄j ] = 0 to obtain

(4.38) μj‖xj+1 − xj‖2 ≤ L1

2
‖xj − x̄j‖2,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROXIMAL POINT METHODS 1699

where L1 is a Lipschitz constant for f ′. Since f ′ provides a local error bound with
constants α and ρ/2 and xj ∈ Bρ/2(x̂), it follows that

μj = β‖f ′[xj ]‖η ≥ βαη‖xj − x̄j‖η.

Combining this with (4.38) gives

(4.39) ‖xj+1 − xj‖ ≤ E‖xj − x̄j‖1−η/2

for j ∈ [0, k], where E is defined in (4.32). By the triangle inequality, (4.32), (4.35),
and (4.39), we have

‖xk+1 − x̂‖ ≤ ‖x0 − x̂‖ +

k∑
j=0

‖xj+1 − xj‖

≤ ‖x0 − x̂‖ + E

k∑
j=0

‖xj − x̄j‖1−η/2

≤ ‖x0 − x̂‖ + E‖x0 − x̂‖1−η/2
k∑

j=0

(γ1−η/2)j

≤ ‖x0 − x̂‖ +
E‖x0 − x̂‖1−η/2

1 − γ1−η/2

≤ ε +
Eε1−η/2

1 − γ1−η/2
≤ ρ/2.

This establishes the first half of (4.35) for j = k + 1.
To establish the second half of (4.35), we will apply Lemma 4.3 to x = xk+1.

Since xk+1 ∈ Bρ/2(x̂), we need only show that x = xk+1 satisfies the qualification
‖x − x̄‖ ≤ C2‖xk − x̄k‖η for (4.23). Since ‖xk+1 − x̂‖ ≤ ρ/2 and since f ′ provides a
local error bound at x̂ with constants α and ρ/2,

(4.40) α‖xk+1 − x̄k+1‖ ≤ ‖f ′[xk+1]‖ ≤ ‖F ′
k(xk+1)‖ + μk‖xk+1 − xk‖.

Since f ′ is Lipschitz continuous over Bρ(x̂), it follows from (4.39), (4.40), and the
definition of μk that for stopping criterion (C1),

‖xk+1 − x̄k+1‖ ≤ μk

α
(‖∇f(xk)‖ + ‖xk+1 − xk‖)

≤
(
βLη

1

α
(L1‖xk − x̄k‖ + ‖xk+1 − xk‖)

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(L1‖x0 − x̄0‖ + E‖xk − x̄k‖1−η/2)

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(L1‖x0 − x̂‖ + E‖x0 − x̂‖1−η/2)

)
‖xk − x̄k‖η

≤ C2‖xk − x̄k‖η.(4.41)

The first inequality is due to (4.40) and (C1); the second inequality is based on the
definition of μk and the Lipschitz continuity of f ′; the third inequality utilizes the
induction hypothesis (4.35), the bound (4.39) for j = k, and the fact that xk and
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x̄k ∈ Bρ(x̂) (see (4.37)); and the fourth inequality is a consequence of the induction
hypothesis and the fact that ε satisfies (4.33).

If stopping criterion (C2) is used, then in the same fashion, (4.34) gives

‖xk+1 − x̄k+1‖ ≤ μk

α
(1 + θ)‖xk+1 − xk‖

≤
(
βLη

1

α
(1 + θ)‖xk+1 − xk‖

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(1 + θ)E‖xk − x̄k‖1−η/2

)
‖xk − x̄k‖η

≤
(
βLη

1

α
(1 + θ)E‖x0 − x̂‖1−η/2

)
‖xk − x̄k‖η

≤ C2‖xk − x̄k‖η.(4.42)

Thus, if either stopping criterion (C1) or (C2) is used, then x = xk+1 satisfies the
qualifications of Lemma 4.3.

We now give another bound for the change ‖xk+1 − xk‖. Lemma 4.3 yields

(4.43) Fk(xk+1) ≤ Fk(x̄k) +
C1

μk
‖F ′

k(xk+1)‖2.

Since f(x̄k) ≤ f(xk+1), we conclude that

(4.44)
μk

2
‖xk+1 − xk‖2 ≤ μk

2
‖x̄k − xk‖2 +

C1

μk
‖F ′

k(xk+1)‖2.

If (C1) is used, then we have

‖xk+1 − xk‖2 ≤ ‖x̄k − xk‖2 + 2C1‖f ′[xk]‖2

≤ ‖x̄k − xk‖2 + 2C1L
2
1‖x̄k − xk‖2.

If (C2) is used, then (4.44) gives

‖xk+1 − xk‖2 ≤ 1

1 − 2C1θ2
‖xk − x̄k‖2.

In either case,

(4.45) ‖xk+1 − xk‖ ≤ τ‖xk − x̄k‖,

where τ is defined at the start of the proof.
If (C1) is used, then

‖F ′
k(xk+1)‖ ≤ μk‖f ′[xk]‖ = μk‖f ′[xk] − f ′[x̄k]‖ ≤ μkL1‖xk − x̄k‖.

By (4.40) and (4.45), we have

(4.46) ‖xk+1 − x̄k+1‖ ≤ μk

α
(L1 + τ)‖xk − x̄k‖.

If (C2) is used, then ‖F ′
k(xk+1)‖ ≤ θμk‖xk+1−xk‖, and by (4.40) and (4.45), we have

(4.47) ‖xk+1 − x̄k+1‖ ≤ τμk(1 + θ)

α
‖xk − x̄k‖.
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In either case, since xk ∈ Bρ/2(x̂), it follows from the definition of γ and μk that

‖xk+1 − x̄k+1‖ ≤ γ‖xk − x̄k‖.

This establishes the second half of (4.35) for j = k + 1. Hence, the proof of the
induction step is complete. The proof that the xk form a Cauchy sequence converging
to a limit x∗ ∈ X is exactly as in Theorem 3.2. The first half of (4.30) follows from
(4.46) and (4.47). In the second half of (4.30), we replace μk by β‖f ′[xk]‖η and exploit
the Lipschitz continuity of f ′.

Remark. During the proof of Theorem 4.4, in (4.41) and (4.42), we show that
each iterate xk+1 lies in the region where Fk is convex (4.26).

When η = 0, we can drop the requirement of Theorem 4.4 that X is locally
convex. This convexity requirement arose since we use Lemma 4.3, which assumes
that X is locally convex. We now show that Lemma 4.3 can be established without
local convexity when μk is bounded away from 0.

Lemma 4.5. Let β > 0 and suppose that μk ≥ β for each k. Given x̂ ∈ X and
δ ∈ (0, 1), suppose f is twice Lipschitz continuously Fréchet differentiable on Bρ(x̂),
let L2 be a Lipschitz constant for f ′′ on Bρ(x̂), and let r = min{ρ, δβ/L2}. Then we
have

(4.48) Fk(x) − F ∗
k ≤

(
1

(1 − δ)μk

)
‖F ′

k(x)‖2

for all x ∈ Br(x̂), where

F ∗
k = min

x∈Br(x̂)
Fk(x).

Proof. Suppose x ∈ Br(x̂). We start with the identity

〈F ′′
k [x]y,y〉 = 〈F ′′

k [x̂]y,y〉 + 〈(F ′′
k [x] − F ′′

k [x̂])y,y〉.

By the second-order optimality condition, f ′′[x̂] is positive. Consequently, we have

〈F ′′
k [x̂]y,y〉 ≥ μk‖y‖2.

Since F ′′
k [x] − F ′′

k [x̂] = f ′′[x] − f ′′[x̂], it follows from the Lipschitz continuity of f ′′

that

〈(F ′′
k [x] − F ′′

k [x̂])y,y〉 ≤ L2‖x − x̂‖ ‖y‖2 ≤ δβ‖y‖2 ≤ δμk‖y‖2

since r ≤ δβ/L2. Hence, if x ∈ Br(x̂), we have

(4.49) 〈F ′′
k [x]y,y〉 ≥ (1 − δ)μk‖y‖2.

By (4.49), Fk is convex on Br(x̂). Consequently, the minimizer x∗
k over Br(x̂)

exists:

x∗
k = arg min{Fk(x) : x ∈ Br(x̂)}.

Since Br(x̂) is a convex set, the first-order optimality condition

〈F ′
k[x

∗
k],x − x∗

k〉 ≥ 0
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holds for all x ∈ Br(x̂). It follows that

〈F ′
k[x],x − x∗

k〉 ≥ 〈F ′
k[x] − F ′

k[x
∗
k],x − x∗

k〉.

We utilize the strong convexity property (4.49) to obtain

〈F ′
k[x],x − x∗

k〉 ≥ (1 − δ)μk‖x − x∗
k‖2,

which gives

(4.50) ‖x − x∗
k‖ ≤ 1

(1 − δ)μk
‖F ′

k[x]‖.

The convexity of Fk on Br(x̂) implies that

Fk(x
∗) ≥ Fk(x) + F ′

k[x](x∗
k − x).

Combining this with (4.50) completes the proof.
Theorem 4.4 holds with the following modifications: (i) The assumption (B0)

that Bρ(x̂) ∩ X is convex is dropped; and (ii) μk ∈ [β0, β1], where β1 is chosen small
enough that the constant γ = β2Λ/α is less than 1. For completeness, we state the
modified result.

Theorem 4.6. Assume that the following conditions are satisfied:
(b0) f provides a local error bound at x̂ ∈ X with positive scalars α and ρ satisfying

(1.3).
(b1) f is twice Lipschitz continuously Fréchet differentiable in Bρ(x̂).
(b2) The proximal iterates xk satisfy either (C1) or (C2) with μk ∈ [β0, β1], where

β0 > 0. If (C2) is used, then θ < 1/
√

2. δ ∈ (0, 1) is chosen small enough
that θ2 < (1 − δ)/2.

(b3) Define the parameters

Λ = L1 + τ and τ2 = 1+2L2
1/(1− δ) if acceptance criterion (C1) is used,

while

Λ = τ(1+θ) and τ2 =
1

1 − 2θ2/(1 − δ)
if acceptance criterion (C2) is used,

where L1 is a Lipschitz constant for f ′ over Bρ(x̂). β1 is small enough that

γ :=
β1Λ

α
< 1.

Then for ε sufficiently small and for each x0 ∈ Bε(x̂), the proximal iterates xk are
all contained in Bρ(x̂), and they approach a minimizer x∗ ∈ X; moreover, for each
k, we have

‖xk − x∗‖ ≤ c1γ
kD(x0,X),

where c1 is a constant independent of k.
The proof of Theorem 4.6 is the same as the proof of Theorem 4.4, except that

we use Lemma 4.5 instead of Lemma 4.3 and we replace expressions like ‖x − x̄‖ by
D(x,X).
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5. Final discussion. The local convergence results obtained in [7] for a new
class of self-adaptive proximal point methods have been extended from a finite di-
mensional setting to a Hilbert space setting. In particular the local convergence
estimates obtained for exact iterates in [7] are now established for approximate it-
erates satisfying (C0). Our analysis, which permits multiple minimizers, employs a
local error bound condition (1.3) relating the growth in f to the distance from the
set of minimizers. The gradient-based acceptance criteria in [7] have been replaced
by subdifferential-based criteria (C1) and (C2). The local convergence results for
the subdifferential-based stopping criteria are similar to the convergence results for
iterates satisfying (C0). Three types of assumptions were considered in our analysis
connected with (C1) and (C2): (a) f is convex and lower semicontinuous on a level
set; (b) the set X ∩ Bρ(x̂) is convex for some ρ > 0, and f is twice continuously
differentiable on Bρ(x̂); and (c) μk ∈ [β0, β1], with β1 sufficiently small, β0 > 0, and
f twice continuously differentiable on Bρ(x̂). The conditions (b) and (c) are weaker
than the local convexity requirement for f in [7].

The analysis in this paper has focused on local convergence. Global convergence
issues are studied in section 6 of [7], where we also present computational results which
show that for a class of ill-conditioned nonlinear optimization problem, a proximal
point approach could reduce the computing time.
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OPTIMAL ENERGY CONTROL IN FINITE TIME BY VARYING
THE LENGTH OF THE STRING∗

MARTIN GUGAT†

Abstract. We consider a finite string where, at both end points, a homogeneous Dirichlet
boundary condition holds. One boundary point is fixed, and the other is moving; hence the length
of the string is changing in time. The string is controlled through the movement of this boundary
point. We consider movements of the boundary that are Lipschitz continuous. Only movements
for which at the given finite terminal time the string has the same length as at the beginning are
admissible. Moreover, we impose an upper bound for the Lipschitz constant of the movement that
is smaller than the speed of wave propagation. We consider the optimal control problem to find an
admissible movement for which at the given terminal time the energy of the string is minimal. We
give a sufficient condition for the existence and uniqueness of an optimal movement and construct
an optimal control movement.

Key words. PDE-constrained optimization, optimal control of PDEs, optimal boundary control,
wave equation, optimal energy control, moving boundary, control constraint, optimal shape
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1. Introduction. We consider a string of finite length that is governed by the
wave equation with homogeneous Dirichlet boundary conditions. The left boundary
point is fixed, and the other boundary point of the string is moving. This system has
already been studied in [3].

The boundary control of the wave equation has been studied by many authors
(see, e.g., [16], [13], [11], [12], [1], [20], [8], and the references therein). In most studies
both boundary points of the string are fixed, and the string is controlled through
prescribed function values at the fixed boundary points.

In contrast to this approach, in this paper we control the system through the
movement of the boundary point, that is, through the length of the string as a function
of time. For the case of dimensions greater than one, this corresponds to the control of
the shape as a function of time. Thus our problem is a one-dimensional (1-d) case for
optimal shape control of a hyperbolic partial differential equation. The monograph
[5] gives an overview about problems where moving boundaries play an essential role.
Controllability of the wave equation with point control where the point is moving in
the system’s fixed spatial domain is studied in [9]. Observability and stabilizability
of this system are considered in [10]. A problem with moving control of the heat
equation is studied in [4].

The well-posedness of the wave equation in a noncylindrical, time periodical do-
main in R×RN has been studied in [17]. Distributed control of the wave equation in a
domain with a moving boundary has been studied in [2] for dimensions unequal to two.
For these dimensions, a contraction of the domain always leads to nondecreasing en-
ergy, and an expansion always leads to nonincreasing energy (see Theorem 2.1 in [2]).
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The situation in dimension two is completely different. For certain expansions,
the energy is nonincreasing, but also, if the interval is contracting sufficiently fast, a
decay of the energy can be achieved. In [18], [19] the stabilization of the wave equation
through the movement of the boundary is studied in dimension two. A movement is
constructed that assures exponential decay of the energy.

In this paper, we study the 1-d-case. In [6] the stability of the string with varying
length has been studied, and it has been shown that the energy cannot become arbi-
trarily small unless it is zero from the start. This follows from inequality (5.10), where
a lower bound for the energy at time t is given that depends on the initial state. A
sufficient condition for exponential growth of the energy is given in [7]. Interestingly,
this situation of exponential energy growth could have applications in photon creation
from the vacuum; see [14].

We consider the following optimal boundary movement control problem: Let at
time t = 0 the length L of the string and an initial state be given. Let a terminal
time T and a positive real number D that is strictly less than the speed of wave
propagation be given. We admit movements of the right boundary point of the string
that are given by a Lipschitz continuous function with a Lipschitz constant that is less
than or equal to the number D. Moreover, we assume that at the terminal time T the
string has the same length as at the beginning. For the set of Lipschitz continuous
functions on the time interval [0, T ], we use the notation

Lip = {φ |φ : [0, T ] → (0,∞) such that φ is Lipschitz continuous }.

We consider the boundary movements in the admissible set

(1.1) Φ = {φ ∈ Lip with Lipschitz constant ≤ D and φ(0) = L, φ(T ) = L} .

Our problem is to find an admissible boundary movement for which the energy
of the string at the terminal time T is miminal. We present an explicit formula for
optimal movements that solve this optimal control problem.

This paper has the following structure: In section 2, we define the problem of en-
ergy minimizing boundary movement control for a vibrating string with homogeneous
Dirichlet boundary conditions at both ends. We assume that at the terminal time the
string has the same length as at the beginning. As a control constraint, we prescribe
an upper bound for the Lipschitz constants of the admissible boundary movements.

Section 3 contains our main results. In Theorem 3.2, we present an optimal
boundary movement that depends on the initial state in a robust way. The energy
decay that can be achieved depends on the initial state. For certain initial states, it
is not possible to achieve an energy decay by boundary movement control. Theorem
3.1 contains sufficient conditions for the existence and uniqueness of optimal controls.

The proof of the main result uses the solution of the initial-boundary-value prob-
lem for a given boundary movement that is given in section 4. The construction is
based upon the method of characteristics. It is necessary to make sure that the Lips-
chitz constants of the admissible boundary movements are strictly less than the speed
of wave propagation, because, otherwise, the solution of the corresponding initial
boundary value problem is, in general, not well-defined. The reason is that the infor-
mation travels on the characteristic curves, and, if the length of the string increases
too fast, it may happen that there exist points that are not reached by characteristic
curves of both families.

In section 5, we introduce a set of functions that depend in a bijective way on
the boundary movements (see Lemma 5.1). These functions are the unknowns in our
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transformed optimization problem. To obtain the transformed problem, we write our
objective function, that is, the energy of the string at time T in terms of the new
unknowns. The solution of the transformed problem is given in Lemma 5.6.

2. The problem. Let the wave speed c > 0 be given. At the initial time t = 0,
the string has the length L > 0. Define the control time T = 2L/c. Let p ∈ [1,∞) be
given. Now we define the set B of admissible initial states. In the definition of the
set B and in what follows, we use generalized derivatives. Let

(2.1) B = {(y0, y1) : y′0 ∈ Lp(0, L), y1 ∈ Lp(0, L), y0(0) = y0(L) = 0}.

Let a real number D ∈ (0, c) be given. Define the set Φ of admissible boundary
motions as in (1.1). Let (y0, y1) ∈ B be given. We consider the problem

P : Find φ ∈ Φ such that

W (T ) =

∫ L

0

∣∣∣∣vx(x, T ) +
1

c
vt(x, T )

∣∣∣∣p +

∣∣∣∣vx(x, T ) − 1

c
vt(x, T )

∣∣∣∣p dx

is minimized, where v(x, t) is the solution of the initial boundary value problem

(2.2) v(x, 0) = y0(x), vt(x, 0) = y1(x), x ∈ (0, L),

(2.3) v(0, t) = 0, v(φ(t), t) = 0, t ∈ (0, T ),

(2.4) vtt(x, t) = c2vxx(x, t), (x, t) ∈ Ω = {(x, t) : t ∈ (0, T ), x ∈ (0, φ(t))}.

For p = 2, we have

W (T ) = 2

∫ L

0

(
vx(x, T )2 +

1

c2
vt(x, T )2

)
dx;

hence, W (T ) is equivalent to the classical energy. In the general case, we further refer
to W (T ) as a generalized energy function. For any t ∈ (0, T ), the definition of W (t)
is given in (5.8), where the integration interval is (0, φ(t)). If both boundary points
are fixed (that is, φ(t) ≡ L), the generalized energy defined in (5.8) is conserved; see
Remark 5.1.

3. Main result: Energy minimizing movement.
Theorem 3.1 (existence and uniqueness of the solution of problem P ). There

exists a movement φ ∈ Φ that solves problem P .
Let p ∈ (1,∞) and (y0, y1) ∈ B be given. Define the Lp-function A as

(3.1) A(x) =

{
y′0(−x) −(1/c)y1(−x) if x ∈ [−L, 0),
y′0(x) +(1/c)y1(x) if x ∈ [0, L].

Define the set Mz = {x ∈ [−L,L] : A(x) = 0}. If the set Mz has measure zero, the
solution of P is uniquely determined.

For a point z on the real axis define the projection on the interval [ c−D
c+D , c+D

c−D ] in
the usual way as

Π[ c−D
c+D , c+D

c−D ](z) = max{(c−D)/(c + D),min{(c + D)/(c−D), z}}.
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Define W (0) as follows:

W (0) =

∫ L

0

∣∣∣∣y′0(x) +
1

c
y1(x)

∣∣∣∣p +

∣∣∣∣y′0(x) − 1

c
y1(x)

∣∣∣∣p dx.

Theorem 3.2 (solution of problem P ). For p = 1, for all φ ∈ Φ we have
W (T ) = W (0).

Let p ∈ (1,∞) and an initial state (y0, y1) ∈ B be given. Define the Lp-function

A as in (3.1). If
∫ L

−L
|A(y)| dy > 0, there exists a real number λ > 0 such that the

moment equation

(3.2)

∫ L

−L

Π[ c−D
c+D , c+D

c−D ](λ |A(y)| ) dy = 2L

holds. With this choice of λ, define the function h : [−L,L] → [L, 3L] by

h(x) = L +

∫ x

−L

Π[ c−D
c+D , c+D

c−D ](λ |A(y)| ) dy

and the functions H1 : [−L,L] → (0,∞) and H2 : [−L,L] → [0, 2L] by

H1(x) =
h(x) − x

2
, H2(x) =

h(x) + x

2
.

Then an optimal control movement that is a solution of problem P is given by the
function φ ∈ Φ defined by

(3.3) φ(t) = H1(H
−1
2 (ct)), t ∈ (0, T ),

that yields the minimal value for

(3.4) W (T ) =

∫ L

−L

|A(s)|p
h′(s)p−1

ds.

If
∫ L

−L
|A(y)| dy = 0, we have W (T ) = 0 for all φ ∈ Φ.

The proofs of Theorems 3.1 and 3.2 will be given in section 5.4. They are based
upon an explicit representation of the solution of the initial-boundary-value problem
(2.2), (2.3), (2.4) for a given boundary motion. This representation of the solution
is given in section 4.2. It is used to transform the optimal control problem to a
convex optimization problem in a function space that we can solve. The transformed
set of admissible functions is defined in section 5.1 by positive pointwise bounds
for the function values and a moment equation that prescribes the integral of the
admissible functions. For the solution of the transformed problem, the convexity of
the transformed objective function on the transformed set of admissible functions is
essential.

Remark 3.1. The (non)movement φ(t) = L, t ∈ [0, T ] is admissible. For this
movement, the energy is conserved for all p (see Remark 5.1). Therefore the optimal
control movement does not lead to energy increase.

Remark 3.2. Assume that there exists a real constant r > 0 such that |A(x)| = r
for all x ∈ [−L,L]. Then for the minimal value of W (T ) we have W (T ) = W (0). This
follows from Theorem 3.2, since to satisfy the moment equation (3.2), the number λ
has to be chosen such that Π[ c−D

c+D , c+D
c−D ](λ |A(y)| ) = 1. This yields h(x) = x + 2L,
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H1(x) = L, φ(t) = L; hence, in this case it is optimal not to move the boundary
point, and thus the energy is conserved.

Example 3.1. Assume that c = 1 and D ∈ [1/2, 1). Then (c + D)/(c −D) ≥ 3.
Let γ > 0 be given. Assume that

γ y0(x) =

⎧⎪⎨⎪⎩
1
3x, x ∈ [0, L/2],

(L/6) − (4/3)(x− (L/2)), x ∈ (L/2, (5L/6)],

−(5L/18) + (5/3)(x− (5L/6)), x ∈ (5L/6), L],

γ y1(x) =

⎧⎨⎩
0, x ∈ [0, L/2],

−5/3, x ∈ (L/2, (5L/6)],
4/3, x ∈ (5L/6, L].

Then we have

γ A(x) =

⎧⎨⎩
1
3 , x ∈ [−L,L/2],

−3, x ∈ (L/2, (5L/6)],
3, x ∈ ((5L/6), L].

Equation (3.2) holds with λ = γ. For the function h defined in Theorem 3.2 we have

h(t) =

{
4
3L + 1

3 t, t ∈ [−L,L/2],
3t, t ∈ (L/2, L].

This yields the optimal movement

φ(t) =
L

2
+

1

2
|t− L|, t ∈ [0, 2L].

For the energy we have

W (0) =
1

γp

1

2

(
3p +

1

3p−1

)
L, W (T ) =

1

γp
2L.

This yields the ratio

W (T )

W (0)
=

4

3p + 1
3p−1

;

thus, for p = 2 we have W (T )/W (0) = 3/7. Hence the optimal movement absorbs
more than half of the initial energy. Since the set Mz has measure zero, Theorem 3.1
implies that the solution φ of P is uniquely determined.

Example 3.2. Let y0(x) = |x − (L/2)| − (L/2), y1(x) = 0, x ∈ [0, L]. We
have |A| = 1 almost everywhere; thus, the set Mz has measure zero. Theorem 3.1
implies the existence of a solution of P . Since Mz has measure zero, Theorem 3.1
implies that the solution of P is unique. Theorem 3.2 implies that the unique optimal
movement is the nonmovement φ(t) = L, t ∈ [0, 2L] that corresponds to the function
h(x) = 2L+x. Remark 5.1 implies that W (T )/W (0) = 1, so by boundary movement
an energy decrease cannot be achieved. Since the solution of P is unique, this implies
that for every other admissible boundary movement an energy growth is produced at
the terminal time.
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Example 3.3. Assume that 2L < D < c and (y0, y1) ∈ B are such that for some
λ > 0 we have

λ|A(x)| =
2c√

c2(1 − T )2 + 4c(L + x)
− 1.

Then Mz has measure zero; thus, Theorem 3.1 implies that P has a unique solution.
For all x ∈ [−L,L]: λ|A(x)| ∈ [(c−D)/(c + D), (c + D)/(c−D)], and (3.2) holds.
We have h(x) = −x+

√
c2(1 − T )2 + 4c(L + x)−c(1−T ), and the optimal movement

is given by φ(x) = L + cx(T − x).
Example 3.4. Assume that L(c + D) ≤ 2c. Let γ = 2c/(L(c − D)). Then

γ ≥ (c + D)/(c−D). Let y1(x) = 0 and

y0(x) =

⎧⎪⎨⎪⎩
γx, x ∈ [0, 1

2γ ],

1 − γx, x ∈ ( 1
2γ ,

1
γ ],

0, x > 1
γ .

With λ = 1, (3.2) holds. Theorem 3.2 implies that an optimal movement is given by
the function φ corresponding to

h′(t) =

{
c+D
c−D , t ∈ [− 1

γ ,
1
γ ],

c−D
c+D , t �∈ [− 1

γ ,
1
γ ].

For the energy, this yields

W (T )

W (0)
=

(
c−D

c + D

)p−1

.

For the corresponding optimal movement we have φ′(H2(x)/c) = cH ′
1(x)/H ′

2(x), and
thus φ′(H2(x)/c) = D, if x ∈ [−1/γ, 1/γ] and φ′(H2(x)/c) = −D otherwise. Hence

φ′(t) =

{
D, t ∈ [H2(−1/γ)

c , H2(1/γ)
c ] = [ L2c ,

L
c

(
3
2 + D

c

)
],

−D, otherwise.

Example 3.5. Assume that ε ∈ (0, 2D/(c + D)) and |A(x)| = 1 + ε sin(x). Then
Mz has measure zero; thus, P has a unique solution. Equation (3.2) holds with λ = 1,
H1(x) = L + ε[cos(L) − cos(x)]/2, H2(x) = H1(x) + x. For the graph of φ, by (3.3)
we obtain the curve G = {(t, φ(t)) : t ∈ [0, T ]} = {(H2(x)/c, H1(x)), x ∈ [−L,L]}.

4. Transformation of the problem. For a given boundary movement φ from
the set Φ defined in (1.1), we want to find a representation of the solution of the
initial-boundary-value problem (2.2), (2.3), (2.4) with one moving boundary point
in terms of traveling waves; that is, we want to derive d’Alembert’s solution for our
problem. In particular, we have to show that such a solution exists.

4.1. Wave propagation auxiliary functions. In this section we define some
auxiliary functions that we need to derive d’Alembert’s solution for our problem. Let
φ ∈ Φ be given. Since φ is Lipschitz, φ is absolutely continuous. For t ∈ [0, T ], define

(4.1) ψ1(t) = φ(t) − ct, ψ2(t) = φ(t) + ct.

Then ψ′
1(t) = φ′(t) − c. The definition of the set Φ implies the inequality

−D ≤ φ′(t) ≤ D
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and thus ψ′
1(t) ≤ D − c < 0; hence, ψ1 is strictly decreasing on [0, T ] and thus

invertible. We have ψ1(0) = L and ψ1(T ) = −L; therefore, ψ−1
1 (s) is defined for

s ∈ [−L,L].
We have ψ′

2(t) = φ′(t) + c ≥ −D + c > 0; hence, ψ2 is strictly increasing on [0, T ]
and thus invertible. We have ψ2(0) = L and ψ2(T ) = 3L; therefore, ψ−1

2 (s) is defined
for s ∈ [L, 3L].

Since φ(t) ≥ 0, for all t ∈ [0, T ] we have

(4.2) −ψ1(t) = ct− φ(t) < ct + φ(t) = ψ2(t).

For x ∈ [−L,L] define

(4.3) h(x) = ψ2(ψ
−1
1 (−x)).

Then h is strictly increasing and

(4.4) h′(x) = −ψ′
2(ψ

−1
1 (−x))

ψ′
1(ψ

−1
1 (−x))

> 0.

On account of (4.2) for all x ∈ [−L,L] we have

x = −ψ1(ψ
−1
1 (−x)) < ψ2(ψ

−1
1 (−x)) = h(x).

For the inverse of h we have

(4.5) h−1(x) = −ψ1(ψ
−1
2 (x)).

We have

(4.6) h−1(L) = −L, h−1(3L) = L.

Note that

(4.7) L = ψ2(0) < h(0) = ψ2(ψ
−1
1 (0)),

since

0 < ψ−1
1 (0),

which is true on account of

L = ψ1(0) > 0.

Let t1 = ψ−1
1 (0). Then φ(t1) − ct1 = 0, and thus φ(t1) = ct1. Therefore

ψ2(t1) = φ(t1) + ct1 = 2ct1.

Hence

h(0) = ψ2(ψ
−1
1 (0)) = ψ2(t1) = 2ct1 = 2cψ−1

1 (0).

In fact, t1 is the time that a characteristic curve starting at time zero at the left end
point of the string needs to reach the moving end of the string.

Later in Lemma 5.1 we will show that there is a bijection between the maps h
as defined in (4.3) and the corresponding maps φ, which allows one to transform our
optimal control problem to an optimization problem in terms of the function h.
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4.2. Solution of the initial-boundary-value problem. In this section, we
give a representation of the solution of the initial-boundary-value problem for a given
fixed boundary movement φ ∈ Φ.

Theorem 4.1. Let φ ∈ Φ and (y0, y1) ∈ B be given. With h−1 as in (4.5), define
the functions

α(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−y0(−x) + (1/c)
∫ −x

0
y1(s) ds, x ∈ (−L, 0),

y0(x) + (1/c)
∫ x

0
y1(s) ds, x ∈ [0, L),

−y0(−h−1(x)) + (1/c)
∫ −h−1(x)

0
y1(s) ds, x ∈ [L, h(0)),

y0(h
−1(x)) + (1/c)

∫ h−1(x)

0
y1(s) ds, x ∈ [h(0), 3L)

(4.8)

and

(4.9) v(x, t) = [α(x + ct) − α(−x + ct)]/2, (x, t) ∈ Ω.

We have α′ ∈ Lp(−L, 3L). The function v is continuous on Ω and vt, vx ∈ L1(Ω).
Define the family of test functions T as

T = {ϕ ∈ C2(Ω) : There exists a set Q = [x1, x2] × [t1, t2] ⊂ Ω such that the support

of ϕ is contained in the interior of Q}.

The function v satisfies the wave equation (2.4) in the following weak sense:

(4.10)

∫
Ω

vt(x, t)ϕt(x, t) d(x, t) = c2
∫

Ω

vx(x, t)ϕx(x, t) d(x, t) for all ϕ ∈ T .

The function v satisfies (2.2) and (2.3). In this sense, v is the solution of the initial-
boundary-value problem (2.2), (2.3), (2.4).

Proof. Since y′0 ∈ Lp(0, L), the Sobolev imbedding theorem implies that y0 is
continuous. Moreover, y1 is in Lp(0, L), and thus α is well-defined. Now we discuss
the regularity of α. On the intervals (−L, 0), [0, L), [L, h(0)), and [h(0), 3L) the
function α is continuous. Due to the definition of the set B we have

lim
x→0−

α(x) = −y0(0) = 0 = y0(0) = lim
x→0+

α(x),

lim
x→L−

α(x) = y0(L) +
1

c

∫ L

0

y1(s) ds = −y0(L) +
1

c

∫ L

0

y1(s) ds = lim
x→L+

α(x),

lim
x→h(0)−

α(x) = −y0(0) = y0(0) = lim
x→h(0)+

α(x),

and hence α is continuous on the interval (−L, 3L). The derivative α′ in the sense
of distributions exists on the intervals (−L, 0), (0, L), (L, h(0)), and (h(0), 3L) as a
Lp-function. Since α is continuous, this implies that α is absolutely continuous on
(−L, 3L). Hence α′ ∈ L1(−L, 3L), and the Lp regularity on the subintervals (−L, 0),
(0, L), (L, h(0)), and (h(0), 3L) implies that α′ ∈ Lp(−L, 3L). The continuity of v
follows from the continuity of α. For t = 0 and x ∈ (0, L) we have

v(x, 0) = [α(x) − α(−x)]/2 = y0(x).

For (x, t) ∈ Ω almost everywhere, we have

(4.11) vt(x, t) = c[α′(x + ct) − α′(−x + ct)]/2.
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Thus the definition of α implies the equation vt(x, 0) = y1(x). Hence the initial
conditions (2.2) are valid.

For (x, t) ∈ Ω almost everywhere, we have

(4.12) vx(x, t) = [α′(x + ct) + α′(−x + ct)]/2.

By Tonelli’s theorem (see, e.g., [15]), (4.12) implies vx ∈ L1(Ω), and (4.11) implies
vt ∈ L1(Ω).

For all ϕ ∈ T , integration by parts, (4.12) and (4.11) yield∫
Ω

vx(x, t)ϕx(x, t) d(x, t) =

∫ x2

x1

∫ t2

t1

ϕx(x, t)[α′(x + ct) + α′(−x + ct)]/2 dt dx

= −
∫ x2

x1

∫ t2

t1

ϕxt(x, t)[α(x + ct) + α(−x + ct)]/(2 c) dt dx

= −
∫ t2

t1

∫ x2

x1

ϕtx(x, t)[α(x + ct) + α(−x + ct)]/(2 c) dx dt

=

∫ t2

t1

∫ x2

x1

ϕt(x, t)[α
′(x + ct) − α′(−x + ct)]/(2 c) dx dt

=

∫
Ω

ϕt(x, t) vt(x, t)/c
2 d(x, t),

and hence (4.10) holds.
For x = 0 we have v(0, t) = [α(ct) − α(ct)]/2 = 0; hence, at x = 0 the boundary

condition v(0, t) = 0 holds for all t ∈ (0, T ).
We have v(φ(t), t) = [α(φ(t) + ct)−α(−φ(t) + ct)]/2 = [α(ψ2(t))−α(−ψ1(t))]/2.

The definition of the set Φ implies that, on the interval [0, T ], h is strictly increasing
and invertible (see section 4.1). By (4.6), for all s ∈ [L, 3L] = [ψ2(0), ψ2(T )] we have
h−1(s) ∈ [−L,L]. Hence the definition of α implies the equation

(4.13) α(h−1(s)) =

⎧⎨⎩ −y0(−h−1(s)) + (1/c)
∫ −h−1(s)

0
y1(t) dt, h−1(s) ∈ (−L, 0),

y0(h
−1(s)) + (1/c)

∫ h−1(s)

0
y1(t) dt, h−1(s) ∈ [0, L).

On the other hand, for s ∈ (L, h(0)) the definition of α implies that α(s) =

−y0(−h−1(s)) + (1/c)
∫ −h−1(s)

0
y1(t) dt, and we have h−1(s) ∈ (h−1(L), 0) = (−L, 0).

Thus (4.13) implies that α(h−1(s)) = α(s) for s ∈ (L, h(0)).

For s ∈ (h(0), 3L), the definition of α yields α(s) = y0(h
−1(s))+ 1

c

∫ h−1(s)

0
y1(t) dt,

and we have h−1(s) ∈ (0, h−1(3L)) = (0, L). Thus also in this case (4.13) implies
that α(h−1(s)) = α(s).

Hence for all s ∈ (L, 3L) the following equation holds:

(4.14) α(h−1(s)) = α(s).

Thus for all t ∈ (0, T ) we have

α(ψ2(t)) = α(h−1(ψ2(t)) = α(−ψ1(ψ
−1
2 (ψ2(t)))) = α(−ψ1(t)).

Therefore, the boundary condition v(φ(t), t) = 0 holds for all t ∈ (0, T ).
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The following lemma contains regularity conditions for the initial state and the
boundary movement φ that guarantee the existence of a solution of the initial-boundary-
value problem (2.2), (2.3), (2.4) that satisfies the wave equation pointwise almost
everywhere.

Lemma 4.2. If y0 ∈ C2[0, L], y1 ∈ C1[0, L], y0(0) = 0, y0(L) = y′0(L) = 0,
y1(0) = 0 = y1(L), and φ ∈ Φ∩C2[0, T ], then α defined by (4.8) is in C1(−L, 3L), α′

is absolutely continuous, α′′ ∈ L∞(−L, 3L), and v defined by (4.9) satisfies the wave
equation (2.4) in the following weak sense:

(4.15)

∫
Ω

vtt(x, t)ϕ(x, t) d(x, t) = c2
∫

Ω

vxx(x, t)ϕ(x, t) d(x, t) for all ϕ ∈ T .

Moreover, v satisfies (2.4) pointwise almost everywhere in Ω.
Proof. Since φ ∈ C2[0, T ], definition (4.1) implies that ψ1 and ψ2 are in C2[0, T ].

Moreover, ψ−1
1 and ψ−1

2 are in C2[0, T ]. Hence the definition (4.3) of h implies that h is
in C2[−L,L], and (4.5) implies that h−1 is also two times continuously differentiable.

In the proof of Theorem 4.1, we have seen that α is absolutely continuous. Since
y0 ∈ C2[0, L] and y1 ∈ C1[0, L], the definition (4.8) of α implies that on the intervals
(−L, 0), (0, L), (L, h(0)), and (h(0), 3L) the function α is two times continuously
differentiable. Due to the conditions y0(0) = 0, y0(L) = y′0(L) = 0, y1(0) = 0 = y1(L)
in the end point of these intervals, we have the one-sided derivatives

α′
−(0) = y′0(0) − (1/c)y1(0) = y′0(0) = y′0(0) + (1/c)y1(0) = α′

+(0),

α′
−(L) = y′0(L) + (1/c)y1(L) = 0 = y′0(L) (h−1)′(L) − (1/c)y1(L) (h−1)′(L)

= y′0(−h−1(L)) (h−1)′(L) − (1/c)y1(−h−1(L)) (h−1)′(L)

= α′
+(L),

α′
−(h(0)) = y′0(0) (h−1)′(h(0)) − (1/c)y1(0) (h−1)′(h(0)) = y′0(0) (h−1)′(h(0))

= y′0(0) (h−1)′(h(0)) + (1/c)y1(0) (h−1)′(h(0)) = α′
+(h(0)).

Since the one-sided derivatives are equal, α′ is continuous, and hence α ∈ C1(−L, 3L).
Since α′′ exists on the intervals (−L, 0), (0, L), (L, h(0)), and (h(0), 3L) as a bounded
continuous function, this implies that α′ is absolutely continuous on (−L, 3L) and
α′′ ∈ L∞(−L, 3L). For (x, t) in Ω almost everywhere we have

vtt(x, t) = c2[α′′(x + ct) − α′′(−x + ct)]/2,

vxx(x, t) = [α′′(x + ct) − α′′(−x + ct)]/2,

and hence (2.4) holds almost everywhere in Ω. For all ϕ ∈ T , integration by parts
yields ∫

Ω

ϕt(x, t) vt(x, t)/c
2 d(x, t) = −

∫
Ω

ϕ(x, t) vtt(x, t)/c
2 d(x, t)

and ∫
Ω

ϕx(x, t) vx(x, t) d(x, t) = −
∫

Ω

ϕ(x, t) vxx(x, t) d(x, t).

Hence (4.10) implies that (4.15) holds.
Remark 4.1. For x in the interval (0, L) we have

α′(x)2 + α′(−x)2 =
[α′(x) + α′(−x)]2

2
+

[α′(x) − α′(−x)]2

2
= 2 y′0(x)2 +

2

c2
y1(x)2.
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5. Solution of the optimal shape control problem.

5.1. The transformed set of admissible controls. Definition (4.3) states
how h can be obtained from a given movement φ. The following lemma shows that,
if h is known, the corresponding movement φ is uniquely determined and can be
computed.

Lemma 5.1. Let φ ∈ Φ be given. Define the function h by (4.3). For x ∈ [−L,L],
define

(5.1) H1(x) =
h(x) − x

2
, H2(x) =

h(x) + x

2
.

Then for all t ∈ [0, T ], we have

(5.2) φ(t) = H1(H
−1
2 (ct)).

Proof. In section 4.1, we have seen that h is strictly increasing, and hence H2

is strictly increasing. Since h(−L) = L, we have H2(−L) = 0. Since h(L) = 3L,
H2(L) = 2L. Thus the assertion (5.2) is equivalent to the statement that for all
x ∈ [−L,L] we have

φ

(
H2(x)

c

)
= H1(x).

From (4.1), we have for all t ∈ [0, T ] the equation ψ1(t)+2ct = ψ2(t). For t = ψ−1
1 (x)

with x ∈ [−L,L], this yields

x + 2cψ−1
1 (x) = ψ2(ψ

−1
1 (x)),

and by (4.3) this implies

h(x) = ψ2(ψ
−1
1 (−x)) = 2cψ−1

1 (−x) − x.

Therefore, the following equation holds: H2(x) = [h(x) + x]/2 = cψ−1
1 (−x). This

implies the equation

ψ1

(
H2(x)

c

)
= ψ1(ψ

−1
1 (−x)) = −x = φ

(
H2(x)

c

)
−H2(x),

where we have again used the definition of ψ1. Hence

φ

(
H2(x)

c

)
= H2(x) − x = H1(x),

where the last equation follows from definition (5.1).
Define the set H of functions defined on the interval [−L,L] as follows:

H = {h : h(x) = ψ2(ψ
−1
1 (−x)), x ∈ [−L,L], with ψ1, ψ2 as in (4.1) for some φ ∈ Φ }.

Lemma 5.2. Define the map θ : Φ → H by θ(φ) = h, where h(x) = ψ2(ψ
−1
1 (−x)),

x ∈ [−L,L] with ψ1, ψ2 as in (4.1). Then θ is bijective.
Proof. First we show that θ is injective. Let φ1, φ2 ∈ Φ be given such that

h1 = θ(φ1) = θ(φ2) = h2. Lemma 5.1 implies that, with

Hi
1(x) =

hi(x) − x

2
, Hi

2(x) =
hi(x) + x

2
, i ∈ {1, 2},
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we have

φi(t) = Hi
1((H

i
2)

−1(ct)), i ∈ {1, 2}.

Since h1 = h2, we have H1
1 = H2

1 and H1
2 = H2

2 , and thus φ1(t) = φ2(t). Therefore
θ is injective. The definition of the set H implies that H = θ(Φ), and thus θ is sur-
jective.

Later we will need the following result in a proof.
Lemma 5.3. Let I = [ c−D

c+D , c+D
c−D ]. The following equation holds:

(5.3) c max
z∈I

{
z − 1

z + 1
,

1 − z

1 + z

}
= D.

Proof. For z ∈ I, let η1(z) = (z − 1)/(z + 1). Since η′1(z) > 0, for all z ∈ I we
have η1(z) ≤ η1(

c+D
c−D ) = D/c.

For z ∈ I, let η2(z) = (1 − z)/(1 + z). Since η′2(z) < 0, for all z ∈ I we have
η2(z) ≤ η2(

c−D
c+D ) = D/c.

Lemma 5.4. Define the set
(5.4)

M =

{
h|h : [−L,L] → [L, 3L] such that h(x) = L +

∫ x

−L

f(s) ds with f ∈ F

}
,

where the set F is defined as

F =

{
f |f : [−L,L] →

[
c−D

c + D
,
c + D

c−D

]
such that

f is Lebesgue integrable and

∫ L

−L

f(x) dx = 2L

}
.

Then M = H.
Proof. First we show that H ⊂ M . Let h ∈ H = θ(Φ), h(x) = ψ2(ψ

−1
1 (−x)),

x ∈ [−L,L]. Since ψ2 is Lipschitz continuous with Lipschitz constant c + D, for all
x1, x2 ∈ [−L,L] we have

|h(x1)− h(x2)| = |ψ2(ψ
−1
1 (−x1))−ψ2(ψ

−1
1 (−x2))| ≤ (c+D)|ψ−1

1 (−x1)−ψ−1
1 (−x2)|.

For ψ1 and t1, t2 ∈ [0, T ] we have the inequality

|ψ1(t1)−ψ1(t2)| = |φ(t1)−φ(t2)−c(t1−t2)| ≥ c|t1−t2|−|φ(t1)−φ(t2)| ≥ (c−D)|t1−t2|.

With t1 = ψ−1
1 (−x1), t2 = ψ−1

1 (−x2), this yields

|ψ−1
1 (−x1) − ψ−1

1 (−x2)| ≤
1

c−D
|x1 − x2|.

This implies the inequality

|h(x1) − h(x2)| ≤
c + D

c−D
|x1 − x2|,

and thus h is Lipschitz continuous with Lipschitz constant c+D
c−D . Since h is Lipschitz,

h is absolutely continuous, and, for the derivative, we have the inequality |h′(x)| ≤
(c + D)/(c−D) almost everywhere.
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For all t1, t2 ∈ [0, T ], we have

|ψ2(t1) − ψ2(t2)| ≥ (c−D)|t1 − t2|, |ψ1(t1) − ψ1(t2)| ≤ (c + D)|t1 − t2|.

With t1 = ψ−1
1 (−x1), t2 = ψ−1

1 (−x2), this yields

|x1 − x2| ≤ (c + D)|ψ−1
1 (−x1) − ψ−1

1 (−x2)|.

Hence

|h(x1) − h(x2)| ≥ (c−D)|ψ−1
1 (−x1) − ψ−1

1 (−x2)| ≥
c−D

c + D
|x1 − x2|.

This implies that |h′(x)| ≥ (c − D)/(c + D) almost everywhere. In section 4.1, we
have shown that h is strictly increasing. Hence we have the inequality

(5.5)
c−D

c + D
≤ h′(x) ≤ c + D

c−D
.

We can write

h(x) = h(−L) +

∫ x

−L

h′(s) ds = L +

∫ x

−L

h′(s) ds.

Since h(L) = L +
∫ L

−L
h′(s) ds = 3L, we have

∫ L

−L
h′(s) ds = 2L. So we have shown

h′ ∈ F , which implies h ∈ M , and thus H ⊂ M .
Now we show that M ⊂ H. Let m ∈ M be given, m(x) = L +

∫ x

−L
f(s) ds,

with f ∈ F and x ∈ [−L,L]. Then m is strictly increasing. For x ∈ [−L,L], define
H1(x) = [m(x) − x]/2, H2(x) = [m(x) + x]/2. Then H2 is strictly increasing, and

{H2(x) : x ∈ [−L,L)} = [H2(−L), H2(L)] = [m(−L)−L
2 , m(L)+L

2 ] = [0, 2L]. For

t ∈ [0, T ], we have ct ∈ [0, 2L] = H2[−L,L]. Hence H−1
2 (ct) is well-defined and in

[−L,L]. So we can define

(5.6) φ(t) = H1(H
−1
2 (ct)).

Since H2(−L) = 0 and H2(L) = 2L we have

φ(0) = H1(H
−1
2 (0)) = H1(−L) = L,

φ(T ) = H1(H
−1
2 (2L)) = H1(L) = L.

Our assumptions imply that H1 is Lipschitz continuous with Lipschitz constant c/(c−
D) and H−1

2 is Lipschitz continuous with Lipschitz constant (c + D)/c. Hence φ is
Lipschitz continuous and thus absolutely continuous. Since φ(H2(x)/c) = H1(x),
the chain rule implies that for the derivative we have the equation φ′(H2(x)/c) =
cH ′

1(x)/H ′
2(x), which implies the inequality∣∣∣∣φ′

(
H2(x)

c

)∣∣∣∣ = c
|H ′

1(x)|
H ′

2(x)
= c

|f(x) − 1|
f(x) + 1

≤ cmax

{
f(x) − 1

f(x) + 1
,

1 − f(x)

1 + f(x)

}
≤ D,

where the last inequality follows from Lemma 5.3 since f ∈ F . Hence φ ∈ Φ. Therefore
we can compute θ(φ).

For x ∈ [−L,L], we have H2(x)/c ∈ [0, 2L/c] = [0, T ], and the definition of φ
implies the equation φ(H2(x)/c) = H1(x) = [m(x) − x]/2, and hence

ψ2

(
H2(x)

c

)
= φ

(
H2(x)

c

)
+ H2(x) =

m(x) − x

2
+

m(x) + x

2
= m(x).
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Moreover, we have

−ψ1

(
H2(x)

c

)
= H2(x)−φ

(
H2(x)

c

)
= H2(x)−H1(x) =

m(x) + x

2
−m(x) − x

2
= x.

This implies the equation ψ−1
1 (−x) = H2(x)/c. Hence θ(φ)(x) = ψ2(ψ

−1
1 (−x)) =

ψ2(H2(x)/c) = m(x). So we have shown that θ(φ) = m. Hence m ∈ θ(Φ) = H. Since
m ∈ M was arbitrary, this yields M ⊂ H. Since we have already shown the inclusion
H ⊂ M , this yields the equation H = M . Moreover, this implies the equation

(5.7) φ = θ−1(m).

We see that the mapping θ defined in Lemma 5.2 is a bijection between the
admissible motions φ ∈ Φ and the functions h ∈ M . Moreover, for all m ∈ M , (5.7)
implies that φ = θ−1(m) is given by (5.6).

5.2. The objective function: Computation of the energy. Let t ∈ [0, T ]
be given. Define the integrals

I1(t) =

∫ φ(t)

0

∣∣∣∣vx(x, t) +
1

c
vt(x, t)

∣∣∣∣p dx, I2(t) =

∫ φ(t)

0

∣∣∣∣vx(x, t) − 1

c
vt(x, t)

∣∣∣∣p dx

and the generalized energy by

(5.8) W (t) = I1(t) + I2(t).

Equation (4.9) implies that

I1(t) =

∫ ψ2(t)

ct

|α′(x)|p dx, I2(t) =

∫ ct

−ψ1(t)

|α′(x)|p dx.

Thus for all t ∈ [0, T ], we have

W (t) =

∫ ct

−ψ1(t)

|α′(x)|p dx +

∫ ψ2(t)

ct

|α′(x)|p dx =

∫ ψ2(t)

−ψ1(t)

|α′(x)|p dx.

For our terminal time T this implies that

W (T ) =

∫ 3L

L

|α′(x)|p dx =

∫ h−1(3L)

h−1(L)

|α′(h(s))|p h′(s) ds =

∫ L

−L

|α′(h(s))|p h′(s) ds.

By (4.14), for all u ∈ [L, 3L] we have h−1(u) ∈ [−L,L] and α(h−1(u)) = α(u).
Thus for all s ∈ [−L,L] we have α(s) = α(h(s)) and thus

α′(s) = α′(h(s)) h′(s).

This yields the equation

(5.9) W (T ) =

∫ L

−L

|α′(x)|p
h′(x)p−1

dx.
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We see that W as a function of t on the interval [0, T ] is absolutely continuous
and the derivative is given by the L1 function

W ′(t) = |α′(ψ2(t))|p ψ′
2(t) + |α′(−ψ1(t))|p ψ′

1(t)

= |α′(ψ2(t))|p ψ′
2(t) + |α′(h(−ψ1(t)))|p [h′(−ψ1(t))]

p
ψ′

1(t)

= |α′(ψ2(t))|p ψ′
2(t) + |α′(ψ2(t))|p

[
−ψ′

2(t)

ψ′
1(t)

]p
ψ′

1(t)

= |α′(ψ2(t))|p ψ′
2(t)

|ψ′
1(t)|p−1 − |ψ′

2(t)|p−1

|ψ′
1(t)|p−1

.

Here we have used (4.4) to evaluate h′(−ψ1(t)). Since |φ′(t)| < c, this implies that
the sign of W ′(t) is equal to the sign of

|ψ′
1(t)|p−1 − |ψ′

2(t)|p−1 = (c− φ′(t))p−1 − (c + φ′(t))p−1.

If, for almost all t ∈ (0, t1), φ
′(t) > 0, this implies that W ′(t) < 0 on (0, t1), and

thus W (0) > W (t1). This means that an expansion causes a decrease in energy.
On the other hand, if, for almost all t ∈ (0, t1), φ

′(t) < 0, we have W ′(t) > 0 on
(0, t1), and therefore W (0) < W (t1). Thus a contraction causes an increase in energy.

This means that the results given in Theorem 2.1 in [2] for the case p = 2 and
dimension unequal to two are also valid for p �= 2, p ∈ (1,∞) in the 1-d case.

Remark 5.1 (conservation of the energy for φ(t) ≡ L). Let φ(t) ≡ L. Then for
all t ∈ (0, T ), φ′(t) = 0; hence, W ′(t) = 0 and therefore W (t) = W (0); that is, in the
case of two fixed boundary points the generalized energy W (t) is conserved.

Remark 5.2 (conservation of the energy for p = 1). For p = 1 we have for all
φ ∈ Φ and for t ∈ (0, T )

W ′(t) = |α′(ψ2(t))|ψ′
2(t)

|ψ′
1(t)|1−1 − |ψ′

2(t)|1−1

|ψ′
1(t)|1−1

= 0,

and thus the integral

W (t) =

∫ L

−L

|α′(x)| dx = W (T )

is conserved for the limit case p = 1 regardless of φ. In other words, for p = 1 the
control problem P is meaningless.

Remark 5.3 (sharp lower bounds for the energy). Let q be such that 1
p + 1

q = 1.
Hölder’s inequality implies that

∫ L

−L

|α′(x)| dx =

∫ ψ2(t)

−ψ1(t)

|α′(x)| dx ≤
(∫ ψ2(t)

−ψ1(t)

|α′(x)|p dx
)1/p (∫ ψ2(t)

−ψ1(t)

1q dx

)1/q

= (2 φ(t))1−1/pW (t)1/p.

Thus for all t > 0 we have the following lower bound for the energy:

(5.10) W (t) ≥ 1

(2φ(t))p−1

(∫ L

−L

|α′(x)| dx
)p

.
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Assume now that α(x) is such that there exists a real number r such that for all
x ∈ [−ψ1(t), ψ2(t)] we have |α′(x)| = r. Such a situation occurs in Example 3.2 with

r = 1. Then
∫ L

−L
|α′(x)| dx =

∫ ψ2(t)

−ψ1(t)
|α′(x)| dx = 2φ(t) r and

W (t) = 2φ(t) rp =
1

(2φ(t))p−1

(∫ L

−L

|α′(x)| dx
)p

,

which shows that the lower bound (5.10) is sharp.
Equation (5.9) yields a lower bound for the energy W (T ) at the terminal time T .

With (5.5), (5.9) implies the inequality

W (T ) ≥
(
c−D

c + D

)p−1 ∫ L

−L

|α′(x)|p =

(
c−D

c + D

)p−1

W (0).

This lower bound is attained in Example 3.4.

5.3. The transformed optimization problem. Later in this section, we will
need the following result in a proof.

Lemma 5.5. Assume that p ∈ (1,∞). Let r ≥ 0 be given. For z ∈ (0, [c+D]/[c−
D]], define the function τ(z) = r/zp−1, and let κ = 1

2 (p−1)p(c−D)p+1/(c+D)p+1 >
0. Then for all z1, z2 ∈ (0, [c + D]/[c−D]], the following inequality holds:

τ(z2) − τ(z1) ≥ r(1 − p)
1

zp1
(z2 − z1) + rκ(z2 − z1)

2.

Proof. We have τ ′(z) = r(1− p)/zp and τ ′′(z) = r(p− 1)p/zp+1. We consider the
Taylor expansion for τ which yields the existence of a point μ between z1 and z2 such
that

τ(z2) = τ(z1) + τ ′(z1)(z2 − z1) +
τ ′′(μ)

2
(z2 − z1)

2

≥ τ(z1) + τ ′(z1)(z2 − z1) +
1

2
r(p− 1)p(z2 − z1)

2/max{z1, z2}p+1

≥ τ(z1) + τ ′(z1)(z2 − z1) + r κ (z2 − z1)
2,

and the assertion follows.
Now we come to the transformed optimization problem. Let the set F be defined

as in Lemma 5.4. For f ∈ F , define

J(f) =

∫ L

−L

|α′(x)|p
f(x)p−1

dx.

In Theorem 4.1, we have seen that α′ ∈ Lp(−L,L). Due to the bounds for f in the
definition of the set F , this implies that the number J(f) is well-defined. Lemma 5.4
states that M = H. Due to (5.9), for all h ∈ M , we have W (T ) = J(h′). Hence the
definition (5.4) of the set M and the bijection θ between the sets Φ and M given in
Lemma 5.2 imply that our problem P is equivalent to the problem

(5.11) Q : Find f ∈ F such that J(f) is minimized.

Problem Q is a convex optimization problem. The necessary optimality conditions
lead us to the following solution of problem Q.
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Lemma 5.6. Let p ∈ (1,∞), and let α be defined as in (4.8). For λ > 0, define
the function f on the interval [−L,L] by

f(x) =

⎧⎪⎨⎪⎩
c−D
c+D if x ∈ [−L,L] and λ|α′(x)| ≤ c−D

c+D ,

λ|α′(x)| if x ∈ [−L,L] and λ|α′(x)| ∈ ( c−D
c+D , c+D

c−D ),
c+D
c−D if x ∈ [−L,L] and λ|α′(x)| ≥ c+D

c−D .

If
∫ L

L
|α′(y)| dy > 0, there exists a real number λ > 0 such that

(5.12)

∫ L

−L

f(x) dx = 2L,

and, with this choice of λ, we have f ∈ F , and f is a solution of problem Q.
Define the set Mz = {x ∈ [−L,L] : α′(x) = 0}. If Mz has measure zero, the

solution of Q is uniquely determined.

If
∫ L

L
|α′(y)| dy = 0, we have J(f) = 0 for all f ∈ F .

Proof. A special case. For the special case that
∫ L

L
|α′(y)| dy > 0 and for

λ =
2L∫ L

−L
|α′(x)| dx

,

we have λ|α′(x)| ∈ [ c−D
c+D , c+D

c−D ] for all x ∈ [−L,L], and we give a proof for the
optimality of f that is based upon Hölder’s inequality. We have

J(f) =
1

λp−1

∫ L

−L

|α′(x)|p
|α′(x)|p−1

dx =
(
∫ L

−L
|α′(x)| dx)p

(2L)p−1
.

Let q be such that (1/p) + (1/q) = 1, and let g ∈ F . Then we have∫ L

−L

|α′(x)| dx =

∫ L

−L

|α′(x)|
g(x)1/q

g(x)1/q dx

≤
(∫ L

−L

|α′(x)|p
g(x)p/q

dx

)1/p (∫ L

−L

g(x) dx

)1/q

≤
(∫ L

−L

|α′(x)|p
g(x)p−1

dx

)1/p

(2L)1/q

= J(g)1/p(2L)1/q.

This implies the desired inequality

J(g) ≥
(
∫ L

−L
|α′(x)| dx)p

(2L)p/q
=

(
∫ L

−L
|α′(x)| dx)p

(2L)p−1
= J(f).

The general case. For the general case where
∫ L

L
|α′(y)| dy > 0, we give a proof

that is based upon the convexity of the objective function. Assume that f is given as
defined in Lemma 5.6 and that (5.12) holds. Then f ∈ F . Let g ∈ F be given. Define
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the difference function Δ = g − f . Then
∫ L

−L
Δ(x) dx = 0. Define the sets

M≤ =

{
x ∈ [−L,L] : |α′(x)| ≤ c−D

c + D

1

λ

}
,

M0 =

{
x ∈ [−L,L] : |α′(x)| ∈

(
c−D

c + D

1

λ
,
c + D

c−D

1

λ

)}
,

M≥ =

{
x ∈ [−L,L] : |α′(x)| ≥ c + D

c−D

1

λ

}
.

For all x ∈ M≤, we have Δ(x) = g(x) − c−D
c+D ≥ 0. Hence due to the definition of f

the following inequality holds:∫
M≤

|α′(x)|p
f(x)p

Δ(x) dx =

(
c + D

c−D

)p ∫
M≤

|α′(x)|p Δ(x) dx

≤
(
c + D

c−D

)p (
c−D

c + D

)p
1

λp

∫
M≤

Δ(x) dx =
1

λp

∫
M≤

Δ(x) dx.

For all x ∈ M≥, we have Δ(x) = g(x) − c+D
c−D ≤ 0. Hence due to the definition of

f the following inequality holds:∫
M≥

|α′(x)|p
f(x)p

Δ(x) dx =

(
c−D

c + D

)p ∫
M≥

|α′(x)|p Δ(x) dx

≤
(
c−D

c + D

)p (
c + D

c−D

)p
1

λp

∫
M≥

Δ(x) dx =
1

λp

∫
M≥

Δ(x) dx.

Moreover, the definition of f implies the equation∫
M0

|α′(x)|p
f(x)p

Δ(x) dx =

∫
M0

|α′(x)|p
λp |α′(x)|p Δ(x) dx =

1

λp

∫
M0

Δ(x) dx.

We have f(x), g(x) ∈ [ c−D
c+D , c+D

c−D ] almost everywhere on the interval [−L,L].
Hence, for our objective function, the application of Lemma 5.5 pointwise for all
x ∈ [−L,L] with r = |α′(x)|p and z2 = g(x), z1 = f(x) yields

J(g) − J(f) =

∫ L

−L

|α′(x)|p
g(x)p−1

− |α′(x)|p
f(x)p−1

dx

≥
∫ L

−L

(1 − p)
|α′(x)|p
f(x)p

Δ(x) dx +

∫ L

−L

|α′(x)|p κΔ(x)2 dx

= (1 − p)

∫
M≤

|α′(x)|p
f(x)p

Δ(x) dx + (1 − p)

∫
M0

|α′(x)|p
f(x)p

Δ(x) dx

+ (1 − p)

∫
M≥

|α′(x)|p
f(x)p

Δ(x) dx + κ

∫ L

−L

|α′(x)|p Δ(x)2 dx.

Since (1− p) < 0, with the inequalities for the integrals on M≤, M≥, and M0 derived
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above, this implies the inequality

J(g) − J(f) ≥ (1 − p)

∫
M≤

1

λp
Δ(x) dx + (1 − p)

∫
M0

1

λp
Δ(x) dx

+ (1 − p)

∫
M≥

1

λp
Δ(x) dx + κ

∫ L

−L

|α′(x)|p Δ(x)2 dx

=
1 − p

λp

∫ L

−L

Δ(x) dx + κ

∫ L

−L

|α′(x)|p Δ(x)2 dx

= κ

∫ L

−L

|α′(x)|p Δ(x)2 dx ≥ 0.

Thus J(g) ≥ J(f). Hence f is a solution of the optimization problem Q.
Define the set M1 = {x ∈ [−L,L] : Δ(x) �= 0}. If Mz has measure zero and M1

has strictly positive measure, that is, g �= f , we have the inequality

J(g) − J(f) ≥ κ

∫ L

−L

|α′(x)|p Δ(x)2 dx > 0.

Hence in this case, the solution of Q is uniquely determined.
Define the function U on the interval (0,∞) by the equation

U(λ) =

∫ L

−L

Π[ c−D
c+D , c+D

c−D ](λ |α′(y)| ) dy, λ ∈ (0,∞).

For all z1, z2 ∈ (0,∞), we have the inequality∣∣∣Π[ c−D
c+D , c+D

c−D ](z1) − Π[ c−D
c+D , c+D

c−D ](z2)
∣∣∣ ≤ |z1 − z2|.

Hence for all λ1, λ2 ∈ (0, ∞) we have

|U(λ1) − U(λ2)| ≤
∫ L

−L

∣∣∣Π[ c−D
c+D , c+D

c−D ](λ1 |α′(y)|) − Π[ c−D
c+D , c+D

c−D ](λ2|α′(y)|)
∣∣∣ dy

≤
∫ L

−L

| λ1 |α′(y)| − λ2|α′(y)| | dy

= |λ1 − λ2|
∫ L

−L

|α′(y)| dy.

Thus U is Lipschitz continuous. We have limλ→0 U(λ) = 2L c−D
c+D < 2L.

Since
∫ L

L
|α′(y)| dy > 0 we have limλ→∞ U(λ) = 2L c+D

c−D > 2L. Hence there exists

a number λ > 0 such that U(λ) = 2L, which means that (5.12) is valid.

The case where
∫ L

L
|α′(y)| dy = 0 is trivial.

5.4. Proofs of the main results.
Proof of Theorem 3.1. For p = 1, W (0) = W (T ) for all φ ∈ Φ (see Remark 5.2),

so φ(t) = L ∈ Φ is a solution of P .
Assume that p > 1. Due to (5.9) and the transformation of the set of admissible

controls described in section 5.1, problem P is equivalent to the problem

P1 : Find h ∈ H such that J(h′) =

∫ L

−L

|α′(x)|p
h′(x)p−1

dx is minimized.
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For all h ∈ H, we have h′(x) ∈ F , and, for all f ∈ F , we have h(x) = −L +∫ x

−L
f(x) ds ∈ H. Moreover, J(h′) = J(f). Due to the representation (5.4) of the set

H, this implies that P1 is equivalent to Q.
Lemma 5.6 implies the existence of a solution of Q, which yields in turn the

existence of a solution of P .
By Theorem 4.1, we have α′ ∈ Lp(−L, 3L), and, due to the compatibility condi-

tions y0(0) = y0(L) = 0 in the definition of the set B, the definition of the function α
implies that, for all x ∈ [−L,L], we have α′(x) = A(x).

Hence the definition of the set Mz in Theorem 3.1 is equivalent to the definition in
Lemma 5.6. If the set Mz has measure zero, Lemma 5.6 implies the uniqueness of the
solution of Q. We have seen that each function f ∈ F corresponds to an admissible
function φ ∈ Φ with J(f) = W (T ). This implies the uniqueness of the solution
of P .

Proof of Theorem 3.2. If
∫ L

L
|A(y)| dy > 0, Lemma 5.6 implies the existence of a

number λ > 0 such that (5.12) holds. If (5.12) holds for λ > 0, then (3.2) is valid
with this value of λ, and, for the function f defined in Lemma 5.6, we have

f(x) = Π[ c−D
c+D , c+D

c−D ](λ |A(x)| ).

For the function h defined in Theorem 3.2, we have h(x) = −L +
∫ x

−L
f(x) ds. Since

f solves Q, h solves problem P1 defined above. In Lemma 5.2, we have shown that
the solution φ of P can then be obtained by φ = θ−1(h). Equations (5.7) and (5.6)
show that φ is given by (3.3). Equation (5.9) yields the minimal value of W (T ) and

the result for the case
∫ L

L
|A(y)| dy = 0.

6. Conclusion. We study a system that is controlled through the movement of
the boundary and where the boundary movements are described by Lipschitz continu-
ous functions. To obtain a well-posed problem, we require that the Lipschitz constants
for the admissible controls are less than or equal to a given number D that is strictly
less than the speed of wave propagation. We give a representation of a boundary
movement that generates a maximal decrease of the energy in the given finite time
interval. In particular, we give sufficient conditions for the existence and uniqueness
of an optimal movement. Due to the nature of our system it is impossible to drive
the energy arbitrarily close to zero unless it is zero from the start. For some initial
states, it is even impossible to achieve any energy decrease by boundary movement
control. The optimal energy decrease depends on the initial state. Depending on the
initial state a considerable reduction of the energy can be achieved.
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CONSTRAINED DIRICHLET BOUNDARY CONTROL IN L2 FOR A
CLASS OF EVOLUTION EQUATIONS∗

K. KUNISCH† AND B. VEXLER‡

Abstract. Optimal Dirichlet boundary control based on the very weak solution of a parabolic
state equation is analyzed. This approach allows us to consider the boundary controls in L2, which
has advantages over approaches which consider control in Sobolev spaces involving (fractional) deriva-
tives. Pointwise constraints on the boundary are incorporated by the primal-dual active set strategy.
Its global and local superlinear convergences are shown. A discretization based on space-time finite
elements is proposed and numerical examples are included.

Key words. Dirichlet boundary control, inequality constraints, parabolic equations, very weak
solution
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1. Introduction. In this work we focus on the Dirichlet boundary optimal con-
trol problem with pointwise constraints on the boundary, formally given by

(1.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min J(y, u)

subject to ∂ty − κΔy + b · ∇y = f in Q,

y = u, u ≤ ψ on Σ,

y(0) = y0 in Ω,

where Q = (0, T ] × Ω, Σ = (0, T ] × ∂Ω, and κ, b, f, y0, ψ, and T > 0 are fixed.
We propose and analyze a function space formulation which is amenable to efficient
numerical realizations. To incorporate the constraints numerically the primal-dual
active set (PDAS) strategy is used and its convergence is investigated. We also propose
a space-time Galerkin approximation and provide numerical examples.

The specific difficulties involved in Dirichlet control problems result from the fact
that they are not of variational type. In the literature several treatments of Dirichlet
boundary control problems can be found, where the function space for the controls
is Hs with s ≥ 1

2 . As a consequence, the numerical realization by finite elements or
finite differences is more involved than if the control space were L2. Our approach
will be based on the concept of very weak solutions to the state equation. This allows
the use of L2 as the control space.

Let us briefly describe possible approaches to treating Dirichlet boundary optimal
control problems. While in our work we shall treat the time-dependent case, it will be
convenient for the present purpose to restrict our attention to a tracking-type optimal
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control problem with the most simple stationary elliptic equation as constraint:

(1.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 1

2 |y − z|2L2(Ω) + β
2 |u|2L2(∂Ω)

over (y, u) ∈ L2(Ω) × L2(∂Ω)

subject to − (y,Δv)L2(Ω) = −(u, ∂
∂nv)L2(∂Ω) for all v ∈ H2(Ω) ∩H1

0 (Ω)

and u ≤ ψ on ∂Ω,

where z ∈ L2(Ω) and ∂Ω denotes the boundary of the domain Ω. The variational
equation in (1.2) is the very weak form of{

−Δy = 0 in Ω,

y = u on ∂Ω;

see [36]. In our work we shall use the analogue of (1.2). If the state variable y is
considered in H1(Ω), then a proper formulation is given by

(1.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min 1
2 |y − z|2L2(Ω) + β

2 |u|2
H

1
2 (∂Ω)

over (y, u) ∈ H1(Ω) ×H
1
2 (∂Ω)

subject to (∇y,∇v)L2(Ω) = 0 for all v ∈ H1
0 (Ω) and y = u on ∂Ω

and u ≤ ψ on ∂Ω.

For both formulations (1.2) and (1.3) it is classical to argue existence of a unique
solution; see, e.g., [36]. Numerically realizing the H1/2-norm in (1.3) is more involved
than realizing the L2-norm in (1.2). To avoid difficulties with implementing the H1/2-
norm it was replaced in several publications by the H1-norm. As a consequence the
Laplace–Beltrami operator appears in the optimality condition. This formulation,
properly modified for the specific application and without control constraints, was
used in the context of optimal boundary control of the Navier–Stokes equations and
the Boussinesq equations; see, e.g., [23, 24, 33]. For a numerical wavelet–based real-
ization of Hs-norms in the context of Dirichlet control of elliptic equations, we refer
to [30].

A third alternative is given by

(1.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 1

2 |y − z|2H1(Ω) + β
2 |u|2L2(∂Ω)

over (y, u) ∈ H1(Ω) ×H1/2(∂Ω)

subject to (∇y,∇v)(Ω) = 0 for all v ∈ H1
0 (Ω) and y = u on ∂Ω

and u ≤ ψ on ∂Ω.

Again existence can be argued by standard arguments, but for (1.4), differently from
(1.2) and (1.3), the essential term for obtaining coercivity is the H1-norm of the
tracking functional. Just like (1.2) this formulation also avoids having to deal with
fractional order Sobolev spaces. It was used in the context of boundary control of
the stationary Navier–Stokes equations in [15], for example. In the adjoint equation,
however, a Laplacian now appears in the source term acting on the defect y − z.

Besides the difficulties already mentioned with (1.3) and (1.4) there is yet an-
other, possibly more essential, reason to favor the formulation in (1.2). For (1.2) the
Lagrange multiplier associated to the constraint u ≤ ψ is an L2-function, whereas
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it is only a measure for the formulations in (1.3) and (1.4). As a consequence the
complementarity conditions related to the inequality constraint can be expressed in a
pointwise a.e. manner by the common pointwise complementarity functions like the
max or the Fischer–Burmeister functions only for formulation (1.2). Such a pointwise
formulation is a basis for efficient optimization algorithms such as the PDAS strategy
or the semismooth Newton method.

Let us also recall the possibility of approximating Dirichlet boundary control
problems by regularization based on Robin boundary controls of the form δ ∂y

∂n +y = u
for δ → 0+. This results in the variational formulation

(1.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 1

2 |y − z|2L2(Ω) + β
2 |u|2L2(∂Ω)

over (y, u) ∈ H1(Ω) × L2(∂Ω)

subject to (∇y,∇v)L2(Ω) = 1
δ (y − u, v)L2(∂Ω) for all v ∈ H1(Ω)

and u ≤ ψ on ∂Ω.

The choice of δ remains a delicate matter. This approach was used for stationary and
nonstationary problems in [6] and [2], respectively. In [5] a numerical approach to
Dirichlet boundary control based on a discretization using the Nitsche method was
proposed.

We next point out some additional features of this paper. As already mentioned,
the pointwise inequality constraint u ≤ ψ will be treated by the PDAS algorithm. Its
global, as well as local, superlinear convergence will be analyzed. Here it is essential
that the Lagrange multiplier is an L2-function and that the resulting complementarity
condition involving the max operation is Newton differentiable. This is the case for
(1.2), whereas this is not true for the other two formulations. Newton differentiabil-
ity will be shown for (1.2) for time-dependent problems in the present paper. For
stationary problems it easily follows as well.

Discretization of infinite-dimensional problems will be carried out by a space-time
finite element method. This approach guarantees that the algorithm is invariant with
respect to the ordering of discretization of the problem and gradient computations.

In spite of the fact that we use the very weak solution concept as our functional
analytic setting for Dirichlet boundary control, the numerical discretization is based
on standard space-time Galerkin finite-dimensional spaces. This will be justified by
the fact that the solutions of the optimal control problems are more regular than those
required by (1.2).

In our numerical implementation we use piecewise (bi)linear elements for spatial
discretization of the primal and adjoint states as well as for the controls. This may
appear to be incompatible at first, since the optimality condition involves ∂p

∂n and u in

an additive manner, where p denotes the adjoint state. However, we replace ∂p
∂n by a

variational expression in such a way that the resulting discretization is well balanced.
In section 2 we gather well-posedness results and a priori estimates for a class of

evolution equations with Dirichlet boundary conditions in L2. We include a convection
term, due to future interest in considering similar problems for the Boussinesq systems,
with specific nonconvex cost functionals, motivated by fluid mechanics considerations.
In this case the convection coefficient is the velocity field of the fluid. Section 3
is devoted to the statements and analysis of the optimal control problems under
consideration. In particular, we describe regularity properties of the optimal solutions.
These are not only of interest in their own right, but are essential for superlinear
convergence of the PDAS strategy, as explained in section 4. Section 5 contains a
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description of the finite element discretization, and section 6 is devoted to selected
numerical examples.

2. On the state equation. In this section we provide the necessary existence
and a priori estimates for very weak solutions to

(2.1)

⎧⎪⎨⎪⎩
∂ty − κΔy + b · ∇y = f in Q,

y = u on Σ,

y(0) = y0 in Ω,

where Q = (0, T ] × Ω , Σ = (0, T ] × ∂Ω, and Ω is a bounded domain in R
n, n ≥ 2,

with C2 boundary ∂Ω. This boundary regularity of Ω guarantees that the Laplacian
with homogeneous Dirichlet boundary conditions, denoted by Δ0, is an isomorphism
form H2(Ω) ∩H1

0 (Ω) to L2(Ω) . We shall denote the adjoint of Δ0, mapping from
L2(Ω) to H−2(Ω) = (H2(Ω) ∩ H1

0 (Ω))∗ by Δ0 as well. For any Banach space Y ,
we use the abbreviations L2(Y ) = L2(0, T ;Y ), Hs(Y ) = Hs(0, T ;Y ), s ∈ [0,∞), and
C(Y ) = C([0, T ];Y ).

Further κ > 0, y0 ∈ H−1(Ω), f ∈ L2(H−2(Ω)), u ∈ L2(Σ) and b ∈ L
∞(Q), div b

∈ L∞(Ln̂(Ω)), where n̂ = max(n, 3), and L
∞(Q) =

⊗n
i=1 L∞(Q). At times we shall

simply write Lp(Q) for L
p(Q) .

The very weak form of (2.1) that we shall utilize is given by

(2.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈∂ty(t), v〉 − κ(y(t),Δv) − (y(t),div (b(t)) v) − (y(t), b(t)∇v)

= 〈f(t), v〉 − κ(u(t), ∂
∂nv)∂Ω for all v ∈ H2(Ω) ∩H1

0 (Ω)

and a.e. t ∈ (0, T ),

y(0) = y0,

where 〈·, ·〉 = 〈·, ·〉H−2(Ω),H2(Ω)∩H1
0 (Ω) and denotes the canonical duality pairing, and

(·, ·) and (·, ·)∂Ω stand for the inner products in L2(Ω) and L2(∂Ω), respectively. The
last equality in (2.2) is understood in H−1(Ω). The existence and uniqueness of a
very weak solution in the space L2(Q) ∩H1(H−2(Ω)) ∩ C(H−1(Ω)) is shown in the
following theorem.

Theorem 2.1. For every κ > 0, b ∈ L∞(Q), with div b ∈ L∞(Ln̂(Ω)), y0 ∈
H−1(Ω), f ∈ L2(H−2(Ω)), and u ∈ L2(Σ), there exists a unique very weak solution
y ∈ L2(Q) ∩H1(H−2(Ω)) ∩ C(H−1(Ω)) satisfying

(2.3) |y|L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω)) ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)),

where C depends continuously on κ > 0, |b|L∞(Q), and |div b|L∞(Ln̂(Ω)), and is inde-
pendent of f ∈ L2(H−2(Ω)), u ∈ L2(Σ), and y0 ∈ H−1(Ω).

Proof. Let us first assume existence of y with the claimed regularity and verify
the a priori estimate (2.3). Throughout, k will denote a generic embedding constant.
Let us introduce the transformed state-variable ŷ(t) = y(t)e−ct, c ≥ 0, and note that
if y is a very weak solution of (2.1), then ŷ ∈ L2(Q) ∩ H1(H−2(Ω)) is a very weak
solution of ⎧⎪⎨⎪⎩

∂tŷ + cŷ − κΔŷ + b · ∇ŷ = f̂ in Q,

ŷ = û on Σ,

ŷ(0) = y0 in Ω,
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where f̂ = fe−ct, û = ue−ct. The constant c will be fixed below. We further introduce
ω = (−Δ0)

−1 ŷ ∈ L2(H2(Ω) ∩ H1
0 (Ω)) ∩ H1(L2(Ω)) and note that ω satisfies for all

v ∈ H2(Ω) ∩ H1
0 (Ω)

〈(−Δ0) ∂tω(t), v〉 + κ(Δ0 ω(t), Δv) + c(−Δ0 ω(t), v)

+ (Δ0 ω(t), div b(t) v) + (Δ0 ω(t), b(t)∇v) = 〈f̂(t), v〉 − κ

(
û(t),

∂

∂n
v

)
∂Ω

for all t ∈ (0, T ). Setting v = ω(t) and integrating over (0, t), we find

1

2
|∇ω(t)|2 − 1

2
|∇ω(0)|2 + κ

∫ t

0

|Δ0 ω(s)|2 ds + c

∫ t

0

|∇ω(s)|2 ds

+

∫ t

0

(Δ0 ω(s), div b(s)ω(s)) ds +

∫ t

0

(Δ0 ω(s), b(s)∇ω(s)) ds

=

∫ t

0

〈f̂(s), ω(s)〉 ds− κ

∫ t

0

(
û(s),

∂

∂n
w(s)

)
∂Ω

,

and consequently using ‖ ∂
∂nw(s)‖L2(∂Ω) ≤ k ‖Δ0w(s)‖L2(Ω) we obtain

1

2
|∇ω(t)|2 ds + κ

∫ t

0

|Δ0 ω(s)|2ds + c

∫ t

0

|∇ω(s)|2 ds

≤ 1

2
|∇ω(0)|2 +

κ

8

∫ t

0

|Δ0 ω(s)|2 ds +
2k

κ
|div b|2L∞(Ln̂(Ω)

∫ t

0

|∇ω(s)|2 ds

+
κ

8

∫ t

0

|Δ0 ω(s)|2 +
2|b|2L∞(Q)

κ

∫ t

0

|∇ω(s)|2 ds +
2k2

κ

∫ t

0

|f̂(s)|2H−2 +
κ

8

∫ t

0

|Δ0 ω|2 ds

+ 2κ2

∫ t

0

|û(s)|2L2(∂Ω) ds +
κ

8

∫ t

0

|Δ0 ω(s)|2 ds

≤ 1

2
|∇ω(0)|2 +

4κ

8

∫ t

0

|Δ0 ω(s)|2 ds +

(
2k

κ
|div b|2L∞(Ln̂(Ω)) +

2|b|2L∞(Q)

κ

)∫ t

0

|∇ω(s)|2 ds

+
2k2

κ

∫ t

0

|f̂(s)|2H−2(Ω) ds + 2k2

∫ t

0

|û(s)|2L2(∂Ω) ds .

If we choose c such that

(2.4)
2k

κ
|div b|2L∞(Ln̂(Ω)) +

2 |b|2L∞(Q)

κ
≤ c

2
,

then

(2.5)
1

2
|∇ω(t)|2 +

k

2

∫ t

0

|Δ0 ω(s)|2 ds +
c

2

∫ t

0

|∇ω(s)|2 ds

≤ 1

2
|∇ω(0)|2 +

2k2

κ

∫ t

0

|f̂(s)|2H−2(Ω) ds + 2k2

∫ t

0

|û(s)|2L2(∂Ω) ds .

From (2.5) we deduce the existence of a constant C with the specified properties
such that for all t ∈ [0, T ]

|ŷ(t)|H−1(Ω) +

∫ t

0

|ŷ(s)|2L2(Ω) ds ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)) ,
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and, since ŷ(t) = y(t)e−ct, we find for a possibly modified C:

(2.6) |y(t)|H−1(Ω) +

∫ t

0

|y(s)|2L2(Ω)ds ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)) .

Finally using (2.2) we obtain∫ T

0

|∂ty(t)|2H−2(Ω) dt =

∫ T

0

sup
v∈H2(Ω)∩H1

0 (Ω),

|Δ0v|≤1

〈∂ty(t), v〉2 dt

≤ κ2

∫ T

0

|y(t)|2 dt +

∫ T

0

(y(t),div b v)2L2(Ω) dt

+ |b|2L∞(Q)

∫ T

0

|y(t)|2 dt + |f |2L2(H−2(Ω)) + k |u|2L2(Σ) .

For the second term on the right-hand side we estimate for n > 4∫ T

0

(y(t),div b v)2L2(Ω) dt ≤
∫ T

0

|y(t)|2L2(Ω) |div b|2L2p (Ω) |v|2L2q (Ω) dt

≤ k

∫ T

0

|y(t)|2L2(Ω) |div b|2Ln̂(Ω) dt ,

where q = n
n−4 , p = n

4 , and we used that H2(Ω) ↪→ L
2n

n−4 (Ω) and n̂ > 2p = n
2 . The

same estimate for dimensions n = 2, 3, 4 follows quite easily.
We obtain∫ T

0

|∂ty|2H−2(Ω) dt

≤ (κ2 + k |div b|L∞(Ln̂(Ω)) + |b|L∞(Q))

∫ T

0

|y(t)|2 dt + |f |2L2(H−2(Ω)) + k |u|2L2(Σ) .

Together with (2.6) this gives the desired estimate (2.3), which in particular also
implies the uniqueness of the very weak solution to (2.1). Existence follows, for
example, by combining this a priori estimate with a Galerkin procedure; see, e.g., [14,
Chapter 18]. Alternatively analytic semigroup theory as in [32] can be used, noting
that −κΔ − b · ∇ + cI generates an analytic semigroup in L2(Ω).

From the proof it follows that the solution y to (2.2) also satisfies the variational
equation in Q given by

(2.7)∫ T

0

(
〈∂ty(t), v(t)〉 − κ(y(t),Δv(t)) − (y(t),div(b(t))v(t) ) − (y(t), b(t)∇v(t))

)
dt

=

∫ T

0

〈f(t), v(t)〉dt−κ

∫ T

0

(
u(t),

∂

∂n
v(t)

)
L2(Ω)

dt for all v ∈ L2(H2(Ω)∩H1
0 (Ω)).

The following result will allow us to consider cost functionals with pointwise-in-
time evaluation of the trajectory.

Corollary 2.2. If, in addition to the assumptions of Theorem 2.1, y0 ∈
L2(Ω), f ∈ L2(Q), and u ∈ L∞(L2(∂Ω)), then the very weak solution satisfies y ∈
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L∞(L2(Ω)) and y(t̄) is a well-defined element in L2(Ω) for every fixed t̄ ∈ (0, T ].
Moreover, there exists a constant C independent of y0, f , and u, such that for the
corresponding solution y = y(u) we have

(2.8) |y(t̄)|L2(Ω) ≤ C(|y0|L2(Ω) + |f |L2(Q) + |u|L∞(L2(∂Ω))).

Proof. Fix κ > 0 and b ∈ L∞(Q) with div b ∈ L∞(Ln̂(Ω)). Without loss of
generality we can assume that A = −κΔ − b · ∇ is uniformly elliptic. If not, we
add a multiple c of the identity operator and accordingly multiply the constant C by
the factor ecT . Then A generates an analytic semigroup in L2(Ω). For the equation
with u = 0, estimate (2.8) follows by standard semigroup arguments. Using the
superposition principle for (2.1) it therefore suffices to consider the case y0 = 0, f = 0,
and u ∈ L∞(L2(∂Ω)). From [32] (see also [2]), we have the existence of C > 0 such
that

(2.9) |y|L∞(L2(Ω)) ≤ C|u|L∞(L2(∂Ω)) .

From Theorem 2.1 we deduce y ∈ C(H−1(Ω)) and therefore

(2.10) y(t̄) = lim
ε→0

1

ε

∫ 0

−ε

y(t̄ + τ) dτ,

where the integral and the equality are interpreted in H−1(Ω). Denoting

gε =
1

ε

∫ 0

−ε

y(t̄ + τ) dτ ,

we obtain using (2.9) that

|gε|L2(Ω) ≤ C|u|L∞(L2(∂Ω)).

Therefore, there is a subsequence converging weakly in L2(Ω) to g̃ with

|g̃|L2(Ω) ≤ C|u|L∞(L2(∂Ω)).

Using (2.10) we obtain that y(t̄) = g̃. The desired conclusion follows.

3. The optimal control problems and regularity of optimal controls.
We consider the following two optimal control problems:

(P1)

⎧⎪⎨⎪⎩
min J(y, u) = G(y) + β

2 |u|2L2(Σ)

over (y, u) ∈ L2(Q) × L2(Σ)

subject to (2.1) and u ≤ ψ on Σ,

where β > 0, ψ ∈ L2(Σ), and G : L2(Q) → R is bounded below, C1, and weakly lower
semicontinuous. The second problem under consideration is

(P2)

⎧⎪⎨⎪⎩
min J(y, u) = G (y(T )) + β

2 |u|2L2(Σ)

over (y, u) ∈ L2(Q) × L2
T1

(Σ)

subject to (2.1), ϕ ≤ u ≤ ψ on Σ,
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where β > 0, ϕ,ψ ∈ L∞(L2(∂Ω)), ϕ(x) < ψ(x) a.e. on Σ, and G : L2(Ω) → R is
bounded below, weakly lower semicontinuous, and C1. Here

L2
T1

(Σ) = {u ∈ L2(Σ) : u(t, x) = 0 for t ∈ (T1, T )},

with T1 ∈ [0, T ]. For (P2) we require that ϕ ≤ 0 ≤ ψ a.e. on (T1, T ). In section 3.2
we shall require that T1 < T . The practical interpretation of setting u = 0 in a neigh-
borhood of T is that the controller and the observer are not acting simultaneously.
This choice will be important for obtaining better regularity results for y(T ).

We refer to (y, u) as a solution of (2.1) if that equation is satisfied in the very
weak sense (2.2). Throughout this section the regularity assumptions of Theorem 2.1
for b are supposed to hold, and

f ∈ L2(Q), y0 ∈ L2(Ω).

Then we have the following result.
Proposition 3.1. There exist solutions (y∗, u∗) = (y(u∗), u∗) to (P1) as well as

(P2), which are unique if G is convex.
This follows from weak sequential limit arguments (see, e.g., [36]) utilizing Theo-

rem 2.1, respectively, Corollary 2.2. For (P1) a lower bound ϕ ≤ u can be added and
treated as we do for (P2). In (P2) the simultaneous use of upper and lower bounds for
the control is essential to guarantee the L∞(L2(∂Ω)) bound for the controls, which is
required by Corollary 2.2.

The above theorem is valid for all T1 ≤ T . If one additionally assumes that
T1 < T , then the condition ϕ,ψ ∈ L∞(L2(∂Ω)) can be weakened to ϕ,ψ ∈ L2(Σ),
and the statement of the theorem follows from additional regularity of y(T ) in this
case.

3.1. Problem (P1). To argue the existence of Lagrange multipliers for the
inequality constraint in (P1), we introduce

e = (e1, e2) : (L2(Q) ∩H1(H−2)) × L2(Σ) → L2(H−2(Ω)) ×H−1(Ω) ,

g : L2(Σ) → L2(Σ)

by

〈e1(y, u), v〉 =

∫ T

0

(
〈∂ty−f, v〉−(y div b, v)−κ(y,Δv)−(y, b · ∇v)+κ

(
u,

∂

∂n
v

)
∂Ω

)
dt ,

e2(y, u) = y(0) − y0 ,

g(u) = u− ψ

for arbitrary v ∈ L2(H2(Ω) ∩H1
0 (Ω)). Recall that L2(Q) ∩H1(H−2) ⊂ C(H−1(Ω)),

so that e2 is well defined. The linearizations e′ of e and g′ of g are obtained from
e and g by deleting the affine terms y0, f , and ψ, respectively. We introduce the
Lagrangian

L(y, u, p, p0, λ) = G(y) +
β

2
|u|2L2(Σ) + 〈(p, p0), e(y, u)〉 + (λ, g(u)).

From Theorem 2.1 it follows that (e′, g′) is surjective, and hence there exists a La-
grange multiplier (p, p0, λ) ∈ L2(H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω) × L2(Σ) associated to

the constraints (e, g); see, e.g., [37]. It follows that the optimality system satisfied



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1734 K. KUNISCH AND B. VEXLER

by an optimal pair (y∗, u∗) is obtained by setting ∇y,u,p,p0
L(y, u, p, p0, λ) = 0, and

λ ≥ 0, g(u) ≤ 0, λ g(u) = 0. Consequently the optimality system for (P1) is given by

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ty − κΔy + b · ∇y = f in Q,

y = u on Σ, y(0) = y0 in Ω,

−∂tp− κΔp− div b p− b · ∇p = −G′(y) in Q,

p = 0 on Σ , p(T ) = 0 in Ω,

κ ∂p
∂n + βu + λ = 0 on Σ,

λ = max(0, λ + c(u− ψ)) on Σ

for any c > 0. Moreover, p(0) = p0. Note that the last equation in (3.1) is equivalent
to λ ≥ 0, u ≤ ψ, and λ(u − ψ) = 0. The equations in the last two lines of (3.1) are
equivalent to

u = min

(
ψ,−κ

β

∂p

∂n

)
.

The equations in the first two lines of (3.1) are understood in the sense of very weak
solutions. The time derivative in ∂tp must first be interpreted in variational form, but
from the third equation in (3.1) it immediately follows that p ∈ L2(H2(Ω)∩H1

0 (Ω))∩
H1(L2(Ω)). This is consistent with the regularity results for parabolic equations, since
G′(y) ∈ L2(Q); see, e.g., [31, p. 342]. If G is convex, then (3.1) is a necessary and
sufficient optimal condition for (P1).

We now turn to regularity properties of the optimal solution on Σ. This result is
essential for superlinear convergence of the PDAS method; see section 4. Henceforth
let (y, u, p, λ) denote a solution to (3.1). The active and inactive sets at a solution are
denoted by

A = { (t, x) ∈ Σ : u(t, x) = ψ }, I = { (t, x) ∈ Σ : u(t, x) < ψ }.

Theorem 3.2. On the inactive set I we have for the optimal solution u|I ∈
Lqn(I) with

(3.2) qn =

{
2(n+1)

n if n ≥ 3 ,

3 − ε if n = 2 .

On the active set the regularity of u is determined by ψ. Moreover,

∂p

∂n
∈ Lqn(Σ) and

∥∥∥∥ ∂p∂n
∥∥∥∥
Lqn (Σ)

≤ C ‖p‖L2(H2(Ω))∩H1(L2(Ω))

with an embedding constant C.
Proof. As already noted, p ∈ L2(H2(Ω)) ∩H1(L2(Ω)). This implies that

∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω));

see [21], or [31, Chapter II and p. 342]. Since H
1
4 (L2(∂Ω)) ↪→ L4(L2(∂Ω)) (see [1]),

we find

(3.3)
∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩ L4(L2(∂Ω)),
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and hence interpolation [42, Chapter 1] implies that

∂p

∂n
∈ Lrs([H

1
2 (∂Ω), L2(∂Ω)]s), where

1

rs
=

1 − s

2
+

s

4
.

For n ≥ 3 we use the fact that for H
1
2 (∂Ω) ↪→ L

2n−2
n−2 (∂Ω), and we obtain

[H
1
2 (∂Ω), L2(∂Ω)]s ↪→ Lqs(∂Ω), where

1

qs
=

(1 − s)(n− 2)

2n− 2
+

s

2
.

Next we choose s such that rs = qs, i.e.,

rs =
8

4 − 2s
=

2n− 2

n + s− 2
= qs.

This implies that s = 2
n+1 and hence qs = 2(n+1)

n . Consequently for n ≥ 3 we obtain
∂p
∂n ∈ L

2(n+1)
n (Σ).

For n = 2 we have that H
1
2 (∂Ω) ↪→ Lr(∂Ω) for all r < ∞. Using similar argu-

ments to those before, we deduce that ∂p
∂n ∈ L3− 1

r−1 (Σ).

From (3.1) we have that ∂p
∂n = −βu on I, and the asserted regularity of u follows.

The desired estimate for ‖ ∂p
∂n‖Lqn (Σ) holds due to the continuity of all embeddings

involved.
Our next objective is to show that for the optimal solution u the corresponding

very weak solution y to the state equation is in fact a variational solution in the sense
that y ∈ L2(H1(Ω)) ∩H1(H−1(Ω)), y = u a.e. on Σ, and∫

Q

∂ty v dxdt =

∫
Q

(−κ∇y∇v − b · ∇y v + fv)dxdt

for all v ∈ L2(H2(Ω)∩H1
0 (Ω)). This is important for numerical realizations which are

conveniently based on this formulation. We shall require the following lemma, which
uses the notion of uniform 1-smooth regularity property of the boundary, for which
we refer to [1].

Lemma 3.3. Let D be a domain in R
n, having the uniform 1-smooth regularity

property and a bounded boundary, and let s ∈ [0, 1].
(a) If v ∈ Hs(D), then max(0, v) ∈ Hs(D) and

|max(0, v)|Hs(D) ≤ |v|Hs(D).

(b) If v ∈ Hs(0, T ;L2(D)), then max(0, v) ∈ Hs(0, T ;L2(D)) and

|max(0, v)|Hs(0,T ;L2(D)) ≤ |v|Hs(0,T ;L2(D)) .

Proof. (a) For s = 0 the claim is trivial and for s = 1 it is well known; see [42].
Thus let us consider the case 0 < s < 1. Under the stated regularity properties for
∂D, the interpolation norm on Hs(D) is equivalent to the intrinsic Hs(D)-norm on
D given by

(3.4) |v|2L2(D) +

∫
D

∫
D

|v(x) − v(y)|2
|x− y|n+2s

dxdy;

see [1]. Let Si ⊂ D ×D be given by

S1 = {(x, y) : v(x) ≥ 0, v(y) ≥ 0}, S2 = {(x, y) : v(x) ≥ 0, v(y) < 0},
S3 = {(x, y) : v(x) < 0, v(y) ≥ 0}, S4 = {(x, y) : v(x) < 0, v(y) < 0}.
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Then with v+ = max(0, v)∫
D

∫
D

|v+(x) − v+(y)|2
|x− y|n+2s

dxdy ≤
∫
s1∪s2∪s3

∫
s1∪s2∪s3

|v(x) − v(y)|2
|x− y|n+2s

dxdy

≤
∫
D

∫
D

|v(x) − v(y)|2
|x− y|n+2s

dxdy,

and (a) follows. Turning to (b), from [29, Theorem 1.7], it is known that for s ∈ (0, 1)
up to equivalence of norms we have

|v|2Hs(L2(D)) = |v|2L2(L2(D)) + 2

∫ T

0

∫ T−t

0

t−1−2s |v(τ) − v(t + τ)|2L2(D)dτdt.

Setting t + τ = r the last term can equivalently be expressed as∫ T

0

∫ T

τ

|r − τ |−1−2s |v(τ) − v(r)|2 drdτ,

and using the symmetry of this expression with respect to s and τ , we find

|v|2Hs(L2(D)) = |v|2L2(L2(D)) +

∫ T

0

∫ T

0

|v(τ) − v(r)|2L2(D)

|τ − r|1+2s
drdτ,

which is analogous to (3.4). The integral term can be expressed as∫ T

0

∫ T

0

∫
Ω

|v(τ, x) − v(r, x)|2
|τ − r|1+2s

dx dr dτ,

and hence the proof can be completed as in (a).

Theorem 3.4. Let (y, u) denote a solution to (P1) and assume that ψ ∈ L2(H
1
2 (∂Ω))

∩H
1
4 (L2(∂Ω)). Then y is a variational solution of the state equation with

u ∈ L2(H
1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω)) and y ∈ L2(H1(Ω)) ∩H

1
2 (L2(Ω)) ∩H1(H−1(Ω)).

If, moreover, G′(y) ∈ L2(H1(Ω))∩H 1
2 (L2(Ω)), y0 ∈ H

1
2−ε(Ω), and ψ ∈ L2(H1(∂Ω))∩

H
1
2 (L2(∂Ω)), then

u ∈ L2(H1(∂Ω)) ∩H
1
2 (L2(∂Ω)) and y ∈ L2(H

3
2−ε(Ω)) ∩H

3−2ε
4 (L2(Ω))

for every ε ∈ (0, 1
2 ]. In addition u = 0 on I ∩ ({T} × ∂Ω).

Proof. From the proof of Theorem 3.2 we have that

∂p

∂n
∈ L2(H

1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω)).

From (3.1) with β = c we deduce that u = min(0,− 1
β

∂p
∂n−ψ)+ψ, and hence Lemma 3.3

implies that u ∈ L2(H
1
2 (∂Ω)) ∩ H

1
4 (L2(∂Ω)). By regularity results for parabolic

equations based on interpolation theory [35, p. 78] (with s = − 1
2 ), we obtain that

y ∈ L2(H1(Ω)) ∩H
1
2 (L2(Ω)). Therefore∫ T

0

〈∂ty, v〉 dt =

∫
Q

(−κ∇y∇v − b · ∇y v + fv)dxdt
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for all v ∈ L2(H2(Ω)∩H1
0 (Ω)). Since the right-hand side can uniquely be extended to

a continuous functional on L2(H1
0 (Ω)), it follows that ∂ty ∈ L2(H−1(Ω)) . From (2.7),

moreover, y = u in L2(H
1
2 (∂Ω)). We conclude that y is a variational solution to (2.2).

If G′(y) ∈ L2(H1(Ω))∩H
1
2 (L2(Ω)), then p ∈ L2(H3(Ω))∩H

3
2 (L2(Ω)) [35, p. 32]

(with k = 1). It follows that ∂p
∂n ∈ L2(H

3
2 (∂Ω)) ∩ H

3
4 (L2(∂Ω)); see, e.g., [20, p. 9].

Due to the regularity assumption on ψ and Lemma 3.3, we find that u ∈ L2(H1(∂Ω))∩
H

1
2 (L2(∂Ω)). This implies that y ∈ L2(H

3
2−ε(Ω)) ∩ H

3
4−

ε
2 (L2(Ω)) for every ε > 0

[35, p. 78] (with s = − 1
4 −

ε
2 ). Regularity of p implies that p(T ) ∈ H2−ε(Ω) and hence

∂p
∂n (T ) ∈ H

1
2−ε(∂Ω). Since p(T ) = 0 on Ω we find that ∂p

∂n (T ) = 0 on ∂Ω. Hence from
the fifth equation in (3.1) we deduce that u = 0 on I ∩ ({T} × ∂Ω).

Remark 3.1. For G(y) = 1
2 |y−yd|2 the condition G′(y) ∈ L2(H1(Ω))∩H 1

2 (L2(Ω))

is satisfied if yd ∈ L2(H1(Ω)) ∩H
1
2 (L2(Ω)) and ψ ∈ L2(H

1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω)).

Corollary 3.5 (extra Lp regularity). By interpolation one can show that if

u ∈ L2(H1(∂Ω)) ∩ H
1
2 (L2(∂Ω)), then u ∈ Lqε(Σ), where qε = 2(n+1)

n−1 − ε, for every
ε > 0.

3.2. Problem (P2). We first derive the optimality system for (P2). This re-
quires more care than for (P1) since G in this case is not defined on the space of
trajectories L2(Q).

Let (y, u) denote an optimal solution to (P2). We shall require that G′(y(T )) ∈
H1

0 (Ω). This will guarantee the required regularity of the adjoint state. In case
G(y(T )) = 1

2 |y(T )−z|2, this is the case if y(T )−z ∈ H1
0 (Ω), i.e., we require regularity

of y(T ) (and z) beyond that which is guaranteed by Corollary 2.2, as well as boundary
conditions for y(T )−z. The required regularity of y at T can be achieved by restricting
u to be a function of t only in a neighborhood of T . To take into consideration the
additional boundary condition, we require that u = 0 in a neighborhood of T = 0.
Then by semigroup theory y(T ) ∈ H1

0 (Ω) ∩ H2(Ω) and, if z ∈ H1
0 (Ω), we have

y(T )−z ∈ H1
0 (Ω). Thus for tracking-type functionals the requirement that G′(y(T )) ∈

H1
0 (Ω) holds if u ∈ L2

T1
(Σ) and z ∈ H1

0 (Ω). This motivates the use of L2
T1

(Σ) in (P2).
Theorem 3.6. Let (y, u) denote a solution to (P2) with T1 < T and assume

that G′(y(T )) ∈ H1
0 (Ω). Then there exist p ∈ L2(H2(Ω) ∩H1

0 (Ω)) ∩H1(L2(Ω)) and
λ ∈ L2(ΣT1

) such that for all c > 0

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ty − κΔy + b · ∇y = f in Q,

y = u on Σ, y = y0 in Ω,

−∂tp− κΔp− div b p− b · ∇p = 0 in Q,

p = 0 on Σ, p(T ) = −G′(y(T )) in Ω,

κ ∂p
∂n + βu + λ = 0 on ΣT1

,

λ = max(0, λ + c(u− ψ)) + min(0, λ + c(u− ϕ)) on ΣT1

holds, where ΣT1 = (0, T1) × ∂Ω.
Proof. From Theorem 2.1 the affine mapping u → y(u) is continuous from L2(Σ)

to L2(Q) ∩H1(H−2(Ω)). The linearization ẏ at u in direction h satisfies

(3.6) 〈∂tẏ(t), v〉 − κ(ẏ(t), Δv) − (ẏ(t), div(b(t))v) − (ẏ(t), b(t)∇v)

= κ

(
h(t),

∂

∂n
v

)
∂Ω

for all v ∈ H2(Ω) ∩H1
0 (Ω) and a.e. t ∈ (0, T ).
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Moreover, by Corollary 2.2, the affine mapping u → y(T ;u) is continuous from L∞(Σ)
to L2(Ω), and hence it is differentiable at u in directions h ∈ L∞(Σ). By assumption,
G′(y(T )) ∈ H1

0 (Ω)), and hence the solution to the adjoint equation satisfies p ∈
L2(H2(Ω) ∩ H1

0 (Ω)) ∩ H1(L2(Ω)) [31]. Let j(u) = J(y(u), u) denote the reduced
cost functional corresponding to (P2). For the derivative at u ∈ L∞(Σ) in direction
h ∈ L2(Σ) we obtain by (3.6)

(j′(u), h)L2(Σ) = (G′(y(T )), ẏ(T ))L2(Ω) + β(u, h)L2(Σ)

= −(p(T ), ẏ(T ))L2(Ω) + β(u, h)L2(Σ) = −
∫ T

0

d

dt
(p(t), ẏ(t))L2(Ω)dt + β(u, h)L2(Σ)

=

(
κ
∂p

∂n
+ βu, h

)
L2(Σ)

.

At the solution we therefore have

(3.7) (j′(u), h− u) ≥ 0 for all h ∈ L2
T1

(Σ), with ϕ ≤ h ≤ ψ.

Note that the directions h in (3.7) are in L∞
T1

(Σ) as well. Define

Aϕ = {(t, x) ∈ ΣT1 : u = ϕ}, Aψ = {(t, x) ∈ ΣT1 : u = ψ}, I = ΣT1 \ (Aϕ ∪ Aψ),

where Σ1 = (0, T1)×∂Ω. Set S = {(t, x) ∈ I : j′(u) ≥ 0} and define h̄ = ϕχS+uχΣ\ S ,
which satisfies ϕ ≤ h̄ ≤ ψ on ΣT1

. By (3.7)

0 ≤ (j′(u), h̄− u)L2(ΣT1
) = (j′(u), ϕ− u)L2(S) ≤ 0,

and hence j′(u) = 0 on S, since ϕ < u < ψ on S. Analogously one shows that
j′(u) = 0 on {(t, x) ∈ I : j′(u) ≤ 0} and hence j′(u) = 0 on I. Next set Sψ =
{(t, x) ∈ Aψ : j′(u) ≥ 0}, and define h̄ = ϕχSψ

+ uχΣ \ Sψ
. Then by (3.7)

0 ≤ (j′(u), h̄− u)L2(ΣT1
) = (j′(u), ϕ− ψ)L2(ΣT1

) ≤ 0.

Since ϕ < ψ a.e. on ΣT1 this implies that j′(u) = 0 on Sψ and hence j′(u) ≤ 0 on Aψ.
Analogously one shows that j′(u) ≥ 0 on Aϕ.

Setting

λ =

{
−κ ∂p

∂n − βu on ΣT1 \ I,
0 on I,

the last two equations of (3.5) follow and the optimality system is verified.
Corollary 3.7. Under the assumptions of Theorem 3.4 we have ∂p

∂n ∈ Lqn(Σ)
and u|I ∈ Lqn(I) with qn defined in (3.2).

This is a direct consequence of Theorem 3.6, which asserts that p ∈ L2(H2(Ω))∩
H1(L2(Ω)), and of the proof of Theorem 3.2.

Corollary 3.8. Under the assumptions of Theorem 3.6 and if ϕ,ψ ∈ L2(H
1
2 (∂Ω))

∩H 1
4 (L2(∂Ω)), then y is a variational solution of the state equation with

u ∈ L2(H
1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω)) and y ∈ L2(H1(Ω)) ∩H

1
2 (L2(Ω)) ∩H1(H−1(Ω)).

If, moreover, G′(y(T )) ∈ H2(Ω)∩H1
0 (Ω), y0 ∈ H

1
2−ε(Ω), and ϕ,ψ ∈ L2(H1(∂Ω))∩

H
1
2 (L2(∂Ω)), then

u ∈ L2(H1(∂Ω)) ∩H
1−ε
2 (L2(∂Ω)) and y ∈ L2(H

3
2−ε(Ω)) ∩H

3−2ε
4 (L2(Ω))
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for every ε ∈ (0, 1
2 ].

Proof. The proof of the first part is similar to that of Theorem 3.4. By the last
two equations of (3.5) we find

(3.8) u = max

(
ϕ,min

(
ψ,−κ

β

∂p

∂n

))
a.e. on ΣT1

,

which is equivalent to u = max(0,min(0,−κ
β

∂p
∂n − ψ) + ψ − ϕ) + ϕ. Since ∂p

∂n ∈
L2(H

1
2 (∂Ω)) ∩H

1
4 (L2(∂Ω)) this implies by Lemma 3.3 that

u|(0, T1) ∈ L2(0, T1;H
1
2 (∂Ω)) ∩H

1
4 (0, T1;L

2(∂Ω)),

and by concatenation of functions in H
1
4 this implies that

u ∈ L2(0, T ;H
1
2 (∂Ω)) ∩H

1
4 (0, T ;L2(∂Ω))

(see [29, Proposition 1.13]), and hence y ∈ L2(H1(Ω)) ∩H
1
2 (L2(Ω)). Turning to the

second part of the proof, we assume that G′(y(T )) ∈ H2(Ω) ∩ H1
0 (Ω). Then p ∈

L2(H3(Ω)) ∩H
3
2 (L2(Ω)) [35, p. 32], and ∂p

∂n ∈ L2(H
3
2 (∂Ω)) ∩H

3
4 (L2(∂Ω)). By (3.8)

and concatenation of Hs-functions with s ∈ [0, 1
2 ), we find that u ∈ L2(H1(∂Ω)) ∩

H
1−ε
2 (L2(∂Ω)) for every ε ∈ (0, 1). This implies that y ∈ L2(H

3
2−ε(Ω)) ∩ H

3−2ε
4

(L2(Ω)).

4. The PDAS strategy and its convergence properties. The PDAS strat-
egy has proved to be very efficient for solving constrained optimal control problems [8].
We describe it here for (P1) and defer the necessary modifications for (P2) to Re-
mark 4.3.

In addition to the assumptions on G : L2(Q) → R made in section 3, we assume
that G is convex so that all auxiliary optimal control problems that arise in this
section have unique solutions.

The PDAS strategy is an iterative algorithm which, based on the current iterate
(uk, λk), defines the active set

Ak = {x ∈ Ω : λk(x) + c(uk − ψ)(x) > 0 }

and the inactive set

Ik = Ω \ Ak.

The subsequent step consists in solving the optimal control problem with equality
constraints only:

(Pk)

⎧⎪⎨⎪⎩
min J(y, u) = G (y) + β

2 |u|2L2(Σ)

over (y, u) ∈ L2(Q) × L2(Σ)

subject to (2.1) and u = ψ on Ak.

This leads to the following iterative algorithm, in which step (iii) is the necessary and
sufficient optimality condition for (Pk).

PDAS algorithm.

(i) Choose (u1, λ1) ∈ L2(Σ) × L2(Σ), c > 0.
(ii) Define Ak = {x ∈ Ω : λk(x) + c(uk − ψ)(x) > 0 }, Ik = Ω \ Ak.
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(iii) Solve for (yk+1, uk+1, pk+1) ∈ L2(Q) ∩H1(H−2(Ω)) ∩C(H−1(Ω))× L2(Σ)×
L2(H2(Ω) ∩H1

0 (Ω)):

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ty − κΔy + b · ∇y = f in Q,

y = u on Σ, y(0) = y0 in Ω,

−∂tp− κΔp− divb p− b · ∇p = −G′(y) in Q,

p = 0 on Σ, p(T ) = 0 in Ω,

u = ψ on Ak, κ ∂p
∂n + βu = 0 on Ik.

(iv) Set

λk+1 =

{
0 on Ik,
−κ∂pk+1

∂n − βψ on Ak.

(v) Stop or return to (ii).

Remark 4.1. For practical features of this algorithm, we refer to [8] and [9], for
example. Here, we mention only that

1. for k ≥ 2 the iterates of the algorithm are independent of the choice of c, and
2. if the algorithm finds two successive active sets, for which Ak = Ak+1, then

(y(uk), uk) is the solution of the problem.

The latter will be used as a stopping criterion for numerical examples in section 6.

Remark 4.2. The equality-constrained optimization problem (Pk) is solved using
the Newton method for the reduced cost functional j(u) = G(y(u)) + β

2 |u|2L2(Σ). The
required first and second derivatives of j are computed using solutions of the adjoint
problems; see, e.g., [3]. In section 5 we describe the computation of these derivatives
on the discrete level.

For the following result it will be convenient to choose a specific initialization for
λ, given by

(4.2)

⎧⎪⎨⎪⎩
choose u1 ∈ L2(Σ),

set λ1 = −κ∂p(u1)
∂n − βu1,

and set c = β for the first iteration.

Theorem 4.1. If the PDAS algorithm is initialized by (4.2), and if further ψ ∈
L

2(n+1)
n (Σ), G′ : L2(Q) → L2(Q) is locally Lipschitz, and |u1 − u∗|L2(Σ) is sufficiently

small, then the iterates (yk, uk, pk, λk) converge superlinearly in L2(Q)∩H1(H−2(Ω))∩
C(H−1(Ω)) × L2(Σ) × L2(H2(Ω) ∩H1

0 (Ω)) × L2(Σ) to (y∗, u∗, p∗, λ∗).

Proof. Let us consider λ in the last equation of (3.1) as a function of u. Then
(3.1) can equivalently be expressed as

(4.3) F (u) = λ(u) − max(0, λ(u) + β(u− ψ)) = 0, where F : L2(Σ) → L2(Σ).

Note that (4.3) is equivalent to

(4.4) F (u) = βu− βψ + max

(
0, κ

∂p

∂n
+ βψ

)
= 0,
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due to the fifth equation in (3.1). By Theorem 3.2 and the assumption that ψ ∈
L

2(n+1)
n (Σ) we have that κ ∂p

∂n +βψ ∈ Lqn(Σ) with qn defined in (3.2). Due to the fact
that qn > 2 we obtain that

u → F (u)

is Newton differentiable, as introduced in Definition 1 of [25] (see Proposition 4.1
of [25]), with the generalized derivate of F at u in direction h ∈ L2(Σ) given by

GF (u)h = βh + Gmax

(
κ
∂p

∂n
+ βψ

)
∂p(h)

∂n
,

where

Gmax(u)(x) =

{
1 if u(x) > 0,

0 if u(x) ≤ 0.

It was proved in general terms in [25, Theorem 4.1] that GF (u) has a bounded inverse
from L2(Σ) to itself for every u ∈ L2(Σ). Hence it follows that the semismooth Newton
algorithm applied to F (u) = 0 is locally superlinearly convergent. The semismooth
Newton iteration consists of the iteration

(4.5)

{
GF (uκ)δu = −F (uκ),

uk+1 = uk + δu.

In the following arguments we show that the semismooth Newton iteration and the
PDAS strategy coincide. In principle this argument can be extracted from [25], but we
believe that it is instructive to carry it out for the present case. A short consideration
shows that a semismooth Newton step (4.5) is equivalent to

(4.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tyk+1 − κΔyk+1 + b · ∇yk+1 = f in Q,

yk+1 = uk+1 on Σ, y(0) = y0 in Ω,

−∂tpk+1 − κΔpk+1 − divb pk+1 − b · ∇pk+1 = −G′(yk+1) in Q,

pk+1 = 0 on Σ, pk+1(T ) = 0 in Ω,

uk+1 = ψ on ASN
k , κ∂pk+1

∂n + βuk+1 = 0 on ISN
k ,

where

ASN
k =

{
x :

(
−κ

∂pk
∂n

− βψ

)
(x) > 0

}
, ISN

k = Ω \ ASN
k .

We further set

(4.7) λk+1 =

{
0 on ISN

k ,

−κ∂pk+1

∂n − βψ on ASN
k

and observe that

(4.8) λk + β(uk − ψ) = −κ
∂pk+1

∂n
− βψ for k = 2, 3, . . . .
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Note that

(4.9) λk(uk − ψ) = 0 for k = 2, 3, . . . .

Hence λk + β(uk −ψ) > 0 if and only if λk + c(uk −ψ) > 0 for any c > 0. From (4.8)
we have that

Ak = ASN
k and Ik = ISN

k for k = 2, 3, . . . .

Therefore the PDAS strategy and the semismooth Newton iteration coincide, provided
that their initialization phases coincide. For that it suffices to check that A1 = ASN

1 .
This is the case since for λ1 as in (4.2) we have

λ1 + β(u1 − ψ) = −κ
∂p(u1)

∂n
− βψ1.

Superlinear convergence of yk to y∗ in L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω)) follows from
Theorem 2.1. Moreover, superlinear convergence of (pk, λk) to (p∗, λ∗) in L2(H2(Ω)∩
H1

0 (Ω)) × L2(Σ) is a consequence of (3.1) and (4.1),

λ∗ − λk = −β(u∗ − uk) − κ

(
∂p∗

∂n
− ∂pk

∂n

)
,

and of Theorem 3.1.
In Theorem 4.1 we addressed local convergence of the PDAS algorithm. We

now turn to global convergence, i.e., to convergence from arbitrary initializations
(u1, λ1) ∈ L2(Σ) × L2(Σ).

Theorem 4.2. If β is sufficiently large and G(y) = 1
2 |y − z|2L2(Q) for some z ∈

L2(Q), then the iterates (yk, uk, pk, λk) → (y∗, u∗, p∗, λ∗) in L2(Q) ∩H1(H−2(Ω)) ∩
C(H−1(Ω)) × L2(Σ) × L2(H2(Ω) ∩H1

0 (Ω)) × L2(Σ).
Proof. Convergence of (uk, λk) → (u∗, λ∗) in L2(Σ)×L2(Σ) follows from a general

result in [27, Theorem 4.1]. It requires that β > ‖T‖L(L2(Σ),L2(Q)), where Tu =
y(u). Convergence of (yk, uk) in the specified norms is a consequence of the governing
equations for yk and pk.

Remark 4.3. For (P2), under the assumptions of Theorem 3.6, identical assertions
to Theorems 4.1 and 4.2 hold. (P2) differs from (P1) in that it involves a terminal
observation and bilateral constraints. We again have, provided by Corollary 3.7, the
necessary additional regularity ∂p

∂n ∈ Lqn(Σ). Global convergence and local superlinear
convergence for bilaterally constrained problems were treated in [27, Theorems 4.1 and
6.1].

5. Finite element discretization. In this section we discuss the space-time
finite element discretization of the optimization problem under consideration. The
space discretization of the state equation is based on the usual H1-conforming finite
elements, whereas the time discretization is done by a discontinuous Galerkin method
as proposed in [16, 17]. We refer to [3, 38] for a detailed description of the space-time
finite element methods for parabolic optimization problems including adaptivity. We
emphasize that space-time Galerkin discretizations of optimal control problems allow a
natural translation of the optimality system and the optimization algorithms from the
continuous to the discrete level: in fact, the approaches “discretize-then-optimize” and
“optimize-then-discretize” coincide. We return to this aspect in Remark 6.2 below.

Since the state equation (2.2) is considered in the very weak sense, it may appear
at first that its approximation by finite elements based on the standard variational
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formulation may not be appropriate. However, such an approach is justified since
the optimal state and control which need to be approximated possess the common
regularity of a variational solution; see Theorem 3.4. For an interesting discussion of
finite element discretizations of equations with rough boundary data, we refer to [7]
in the elliptic case and to [19] in the parabolic case. Finite element approximation
of Dirichlet optimal control problems governed by elliptic equations are discussed
in [11, 43].

For this section it is convenient to introduce the following notation: V = H1(Ω),
V0 = H1

0 (Ω), H = L2(Ω), and X = L2(0, T ;V ) ∩ H1(0, T ;V ∗). We introduce a
bilinear form a : X × X → R corresponding to the standard variational formulation
of the state equation:

a(y, v) =

∫ T

0

{(∂ty, v) + κ(∇y,∇v) + (b · ∇y, v)} dt .

To define the discretization in time, let us partition the time interval Ī = [0, T ]
as

Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k|Im = km for m = 1, . . . ,M .

By means of the subintervals Im, we define for r ∈ N0 a semidiscrete space Xr
k

consisting of discontinuous-in-time piecewise polynomial functions:

Xr
k = { vk ∈ L2(I, V0) : vk

∣∣
Im

∈ Pr(Im, V0) and vk(0) ∈ H } .

Here, Pr(Im, V0) denotes the space of polynomials up to order r defined on Im with
values in V0. For the definition of the discontinuous Galerkin method we introduce
the following notation for a function vk ∈ Xr

k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m .

Using this notation we define a discretized version of the bilinear form a:

ak(yk, vk) =

M∑
m=1

∫
Im

{(∂tyk, vk) + κ(∇yk,∇vk) + (b · ∇yk, vk)} dt

+

M−1∑
m=0

([yk]m−1, v
+
k,m−1) + (y−k,0, v

−
k,0) .

For the space discretization, we consider two- or three-dimensional shape-regular
meshes; see, e.g., [12]. A mesh consists of quadrilateral or hexahedral cells K, which
constitute a nonoverlapping cover of the computational domain Ω. The corresponding
mesh is denoted by Th = {K}, where we define the discretization parameter h as a
cellwise constant function by setting h

∣∣
K

= hK with the diameter hK of the cell K.
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On the mesh Th we construct a conforming finite element space Vh ⊂ V in a
standard way:

V s
h = { v ∈ V : v

∣∣
K

∈ Qs(K) for K ∈ Th } .

Here, Qs(K) consists of shape functions obtained via bi- or trilinear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n, where

Q̂s(K̂) = span

⎧⎨⎩
n∏

j=1

x
kj

j : kj ∈ N0, kj ≤ s

⎫⎬⎭ .

Remark 5.1. The definition of V s
h can be extended to the case of triangular

meshes in the obvious way.
The discrete space with homogeneous Dirichlet boundary conditions is denoted

by V s
h,0 = V s

h ∩H1
0 (Ω). Moreover, we introduce the space of traces of function in V s

h :

W s
h = {wh ∈ H1/2(∂Ω) : wh = γ(vh), vh ∈ V s

h },

where γ : H1(Ω) → H1/2(∂Ω) is the trace operator.
With these preliminaries, we define the discrete spaces for the control and state

variables:

Xr,s
k,h = { vkh ∈ L2(I, V s

h,0) : vkh
∣∣
Im

∈ Pr(Im, V s
h,0) and vkh(0) ∈ V s

h } ⊂ Xr
k ,

Ur,s
k,h = {ukh ∈ L2(I,W s

h) : ukh

∣∣
Im

∈ Pr(Im,W s
h) }.

Remark 5.2. In the above definition of the discrete spaces Xr,s
k,h and Ur,s

k,h, we
assumed that the spatial discretization is fixed for all time intervals. However, in
many situations the use of different meshes T m

h for each of the subintervals Im is
required for efficient adaptive discretizations. The consideration of such dynamically
changing meshes can be included in the above definitions in a natural way [41].

For a function ukh ∈ Ur,s
k,h we define an extension ûkh ∈ Xr,s

k,h such that

(5.1) γ(ûkh(t, ·)) = ukh(t, ·) and ûkh(t, xi) = 0 on all interior nodes xi of Th.

The optimization problem on the discrete level is then formulated as follows:

(5.2) minJ(ykh, ukh), ukh ∈ Ur,s
k,h ∩ Uad

subject to
(5.3)

ykh ∈ ûkh + Xr,s
k,h, ak(ykh, vkh) =

∫ T

0

(f, vkh) dt + (y0, v
−
kh,0) for all vkh ∈ Xr,s

k,h.

The discrete state equation (5.3) defines a discrete solution operator Skh which
maps a given discrete control ukh to the (unique) solution of (5.3). As on the contin-
uous level we introduce a discrete reduced cost functional

(5.4) jkh(ukh) = J(Skh(ukh), ukh).

The discrete optimization problem (5.2)–(5.3) is solved by the PDAS strategy
described in the previous section. In each step an equality-constrained optimization
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problem is solved by the Newton method for the discrete reduced cost functional jkh;
see Remark 4.2. For the realization of the Newton method, we need representations
of the first and second directional derivatives of jkh.

Proposition 5.1. Let the discrete reduced cost functional jkh be defined as
in (5.4). Then the following hold:

(a) The first directional derivative in direction δukh ∈ Ur,s
k,h can be expressed as

(5.5) j′kh(ukh)(δukh) = J ′
y(ykh, ukh)(δ̂ukh) − ak(δ̂ukh, pkh) + J ′

u(ykh, ukh)(δukh),

where ykh = Skh(ukh), the extension δ̂ukh is defined in (5.1), and pkh ∈ Xr,s
k,h is the

solution of the discrete adjoint equation

(5.6) ak(vkh, pkh) = J ′
y(ykh, ukh)(vkh) for all vkh ∈ Xr,s

k,h.

(b) The second derivatives of jkh in directions δukh, τukh ∈ Ur,s
k,h can be expressed

as

(5.7) j′′kh(ukh)(δukh, τukh) = J ′′
yy(ykh, ukh)(δykh, τ̂ukh) − ak(τ̂ukh, δpkh)

+ J ′′
uu(ykh, ukh)(δukh, τukh),

where δykh is the solution of the discrete tangent equation

(5.8) δykh ∈ δ̂ukh + Xr,s
k,h : ak(δykh, vkh) = 0 for all vkh ∈ Xr,s

k,h ,

δpkh ∈ Xr,s
k,h is given by

(5.9) ak(vkh, δpkh) = J ′′
yy(ykh, ukh)(δykh, vkh) for all vkh ∈ Xr,s

k,h ,

and δ̂ukh, τ̂ukh are the extensions of δukh, τukh defined as in (5.1).
Proof. Using the solution δykh = S′

kh(ukh)(δukh) of the discretized tangent equa-
tion (5.8), we obtain

j′kh(ukh)(δukh) = J ′
y(ykh, ukh)(δykh) + J ′

u(ykh, ukh)(δukh).

We rewrite the first term using (5.8) and (5.6):

J ′
y(ykh, ukh)(δykh) = J ′

y(ykh, ukh)(δykh − δ̂ukh) + J ′
y(ykh, ukh)(δ̂ukh)

= ak(δykh− δ̂ukh, pkh)+J ′
y(ykh, ukh)(δ̂ukh) = −ak(δ̂ukh, pkh)+J ′

y(ykh, ukh)(δ̂ukh).

This gives the desired representation (5.5). The representation of the second deriva-
tives is obtained in a similar way.

Remark 5.3. On the continuous level, similar representations of the derivatives
hold. They can be equivalently expressed using the normal derivatives of the adjoint
state on the boundary; see (3.1). A direct discretization of the representation involving
normal fluxes is in general not equivalent to (5.5) and would not lead to the exact
representation of the derivatives of jkh due to the lack of appropriate formulas for
integration by parts of the discretized solutions.

Remark 5.4. In the convection dominated case, i.e., if |b| � κ, the finite element
discretization may lead to strongly oscillatory solutions. Several stabilization methods
are known to improve the approximation properties of the pure Galerkin discretization
and to reduce the oscillatory behavior; see, e.g., [10, 22, 28, 39, 40]. For the stabilized
finite elements in the context of stationary optimal control problems, we refer the
reader to [13, 4].
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6. Numerical examples. In this section we discuss numerical examples illus-
trating our results and give some details on the numerical realization.

Due to the fact that the trial and the test spaces in the formulation of the discrete
state equation (5.3) are discontinuous in time, this formulation results in a time
stepping scheme. In our numerical realization we use bilinear finite elements for
the space discretization and piecewise constant functions in time resulting in spaces
X0,1

k,h and U0,1
k,h. In the following we describe the state equation (5.3), the adjoint

equation (5.6), equations (5.8) and (5.9), and the evaluation of the derivatives of the
discrete reduced cost functional for this choice of discretization. We define

Um = ukh

∣∣
Im

, Ym = ykh
∣∣
Im

, Pm = pkh
∣∣
Im

, i = 1, . . . ,M,

Y0 = y−kh,0, P0 = p−kh,0 .

The discrete state equation reads as follows for Y0 ∈ Vh and Ym ∈ Um + Vh,0:

(Y0, φ) = (y0, φ) for all φ ∈ Vh ,

(Ym, φ) + km (∇Ym,∇φ) + km

(∫
Im

b(s) ds · ∇Ym, φ

)
= (Ym−1, φ)

+ km

(∫
Im

f(s) ds, φ

)
for all φ ∈ Vh,0 , m = 1, . . . ,M .

Remark 6.1. If the time integrals are approximated by the box rule, then the
resulting scheme is equivalent to the implicit Euler method. However, a better ap-
proximation of these time integrals leads to a scheme which allows for better error
estimates with respect to the required smoothness of the solution and to long time
integration (T � 1); see, e.g., [18]. For the numerical examples which follow, the
trapezoidal rule is used, which guarantees this improved convergence behavior.

In order to cover both problem (P1) with a time-distributed cost functional and
the problem (P2) with a terminal time functional, we write the cost functional in the
form

J(y, u) =

∫ T

0

I(y(s)) ds + K(y(T )) +
β

2
|u|2L2(Σ) .

The discrete adjoint equation reads as follows for P0 ∈ Vh and Pm ∈ Vh,0:

(φ, PM ) + kM (∇φ,∇PM ) + kM

(∫
IM

b(s) ds · ∇φ, PM

)
= K ′(YM )(φ)

+ kM I ′(YM )(φ) for all φ ∈ Vh,0 ,

(φ, Pm) + km (∇φ,∇Pm) + km

(∫
Im

b(s) ds · ∇φ, Pm

)
= (φ, Pm+1)

+ km I ′(Ym)(φ) for all φ ∈ Vh,0 , m = M − 1, . . . , 1 ,

(φ, P0) = (φ, P1) for all φ ∈ Vh .

Remark 6.2. There are two possible ways to obtain the above equations for Pm,
m = 0, . . . ,M :
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• discretization of the continuous adjoint equation with dG(0) in time and with
H1-conforming finite elements in space (optimize-then-discretize approach);

• application of the Lagrange formalism on the discrete level for the optimiza-
tion problem with the state equation discretized by dG(0) in time and H1-
conforming finite elements in space (discretize-then-optimize approach).

The resulting schemes for Pm coincide independent of the temporal grid. This fact
relies on the space-time Galerkin discretization.

For a standard formulation of the implicit Euler scheme, i.e.,

1

km
(Ym − Ym−1, φ) + (∇Ym,∇φ) + (b(tm)∇Ym, φ) = (f(tm), φ) for all φ ∈ Vh,0,

the optimize-then-discretize approach leads to the discrete adjoint

1

km+1
(φ, Pm − Pm+1) + (∇φ,∇Pm) + (b(tm)∇φ, Pm) = (I ′(Ym), φ) for all φ ∈ Vh,0,

whereas the discretize-then-optimize approach produces

1

km
(φ, Pm)− 1

km+1
(φ, Pm+1)+(∇φ,∇Pm)+(b(tm)∇φ, Pm) = (I ′(Ym), φ) for all φ ∈ Vh,0.

These schemes are different for nonconstant time steps km.
For the optimization algorithm we need the evaluation of the derivatives of jkh

for basis functions in U0,1
k,h. We consider the following basis of U0,1

k,h:

(6.1) wi,m(t, x) =

{
φi(x), t ∈ Im,

0 otherwise,

where φi = γ(φ̂i) and φ̂i ∈ Vh is a finite element nodal basis function for a boundary
node i. We obtain the following corollary from Proposition 5.1.

Corollary 6.1. The following representation holds:

j′kh(ukh)(wi,M ) = β(UM , φi)∂Ω + K ′(YM )(φ̂i) + kM I ′(YM )(φ̂i)

− (φ̂i, PM ) − kM (∇φ̂i,∇PM ) − kM

(∫
IM

b(s) ds · ∇φ̂i, PM

)
,

j′kh(ukh)(wi,m) = β(Um, φi)∂Ω + km I ′(Ym)(φ̂i) + (φ̂i, Pm+1)

− (φ̂i, Pm) − km (∇φ̂i,∇Pm) − km

(∫
Im

b(s) ds · ∇φ̂i, Pm

)
,

m = M − 1, . . . , 1 .

Remark 6.3. Due to the fact that φ̂i has local support, the spatial integration in
the representations above is done only over cells adjacent to the boundary.

Next, we describe (5.8) and (5.9) and the evaluation of the second derivatives.
We define

δUm = δukh

∣∣
Im

, δYm = δykh
∣∣
Im

, δPm = δpkh
∣∣
Im

, i = 1, . . . ,M,

δY0 = δy−kh,0, δP0 = δp−kh,0 .
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The discrete tangent equation reads as follows for δY0 ∈ Vh and δYm ∈ δUm + Vh,0:

δY0 = 0 ,

(δYm, φ) + km (∇δYm,∇φ) + km

(∫
Im

b(s) ds · ∇δYm, φ

)
= (δYm−1, φ)

for all φ ∈ Vh , m = 1, . . . ,M .

The discrete equation (5.9) reads as follows for δP0 ∈ Vh and δPm ∈ Vh,0:

(φ, δPM ) + kM (∇φ,∇δPM ) + kM

(∫
IM

b(s) ds · ∇φ, δPM

)
= K ′′(YM )(δYM , φ)

+ kM I ′′(YM )(δYM , φ) for all φ ∈ Vh ,

(φ, δPm) + km (∇φ,∇δPm) + km

(∫
Im

b(s) ds · ∇φ, δPm

)
= (φ, δPm+1)

+ km I ′′(Ym)(δYm, φ) for all φ ∈ Vh , m = M − 1, . . . , 1 ,

(φ, δP0) = (φ, δP1) for all φ ∈ Vh .

Using the basis (6.1) we obtain the following representation of j′′kh(ukh)(δukh, wi,m)
as a corollary to Proposition 5.1.

Corollary 6.2. The following representation holds:

j′′kh(ukh)(δukh, wi,M ) = β(δUM , φi)∂Ω + K ′′(YM )(δYM , φ̂i) + kM I ′′(YM )(δYM , φ̂i)

− (φ̂i, δPM ) − kM (∇φ̂i,∇δPM ) − kM

(∫
IM

b(s) ds · ∇φ̂i, δPM

)

j′′kh(ukh)(δukh, wi,m) = β(δUm, φi)∂Ω + km I ′′(Ym)(δYM , φ̂i) + (φ̂i, δPm+1)

− (φ̂i, δPm) − km (∇φ̂i,∇δPm) − km

(∫
Im

b(s) ds · ∇φ̂i, δPm

)
,

m = M − 1, . . . , 1 .

We close the paper with three numerical examples. The first two examples cor-
respond to problems (P1) and (P2), respectively, and examine the behavior of the
PDAS method if the dimension of the discrete problem increases due to the refine-
ment of spatial and time meshes. The third example is devoted to the superlinear
convergence of the PDAS method.

Our special interest in considering the behavior of the algorithm as the mesh is
refined results from previous experience with constrained optimal control problems
with distributed controls. Pointwise control, respectively, state constraints, result in a
very different behavior of the algorithm in the sense that it is mesh-independent for the
former but strongly mesh-dependent for the latter; see [8] and [26]. Analytically this
is reflected in the fact that for the former the Lagrange multipliers are L2-functions,
whereas they are only measures in the case of state constraints. Regularization or
nested iteration can be used in the latter case to nearly restore mesh-independence.
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For the case of Dirichlet boundary control with pointwise constraints on the controls
the practical performance of the algorithm and specifically its behavior with respect
to mesh refinement cannot easily be predicted from previous experience. On the one
hand, as in the case of distributed control, the associated Lagrange multipliers are
L2-regular and we can prove superlinear convergence. However, at least formally,
inequality constraints on the control along the boundary are equivalent to inequality
constraints on the state on the boundary, and, second, the extra regularity on the
adjoint states and the optimal controls obtained in section 3 is rather less than that
in the case of distributed controls.

In section 4, we have shown the superlinear convergence of the PDAS method
on the continuous level for Dirichlet optimal control problems. On the discrete level,
we typically have finite step convergence (cf. the stopping criterion discussed in Re-
mark 4.1), which is, of course, better than superlinear convergence. In our last numer-
ical example, presented in section 6.3, we observe the behavior of the PDAS method
corresponding to superlinear convergence also before the method stops finding the
optimal discrete solution.

6.1. Example 1: Time-distributed functional. We consider the following
Dirichlet optimal control problem on Ω × (0, T ) with Ω = (0, 1)2 ⊂ R

2 and T = 1:

min J(u, y) =
1

2
‖y − yd‖2

L2(Q) +
β

2
‖u‖2

L2(Σ) ,

subject to yt − κΔy + b · ∇u = f in Ω × (0, T ),
y = u on ∂Ω × (0, T ),
y(0) = y0 in Ω

and control constraints

u ≥ φ .

The data are given as follows:

f = 0, κ = 1, b(t, x) = 15 (sin(2πt), cos(2πt)), y0 = 0, β = 10−4 ,

yd(t, x) = x1x2(cos(πt) − x1)(sin(πt) − x2), φ = −0.25 .

This optimal control problem is discretized by space-time finite elements as described
above. The resulting finite-dimensional problem is solved by the PDAS method. In
Table 6.1 the number of iterations of the method is shown for a sequence of uniformly
refined discretizations. Here, M denotes the number of time-steps and N is the
number of nodes in the space discretization. In all cases the algorithm terminated
with two consecutive active sets coinciding, so that the exact solution of the discretized
problem is found.

We present the results for two choices of initial guesses for the control variable: the
same choice for all discretization levels (u0 = 1), and an interpolated solution from
the previous discretization level (nested iteration). The goal consists in obtaining
practical experience as to which degree the weak additional regularity established in
Theorem 3.2 and Corollary 3.7 is sufficient for near mesh-independent behavior. The
results indicate that the additional regularity is sufficient for nearly mesh-independent
behavior and that nested iterations provide only a relatively moderate improvement.
The algorithm was also tested with other initial guesses and led to very similar results.
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Table 6.1

PDAS method on the sequence of uniformly refined discretizations.

N M dimXh = M ·N dimUh PDAS iterations PDAS nested iterations

25 2 50 32 2 2

81 4 324 128 3 3

289 8 2312 512 4 3

1089 16 17424 2048 4 3

4225 32 135200 8192 5 4

16641 64 1065024 32768 6 4

6.2. Example 2: Terminal functional. In this example we consider a Dirich-
let optimal control problem with a terminal cost functional:

min J(u, y) =
1

2
‖y(T ) − yTd ‖2

L2(Ω) +
β

2
‖u‖2

L2(Σ) ,

subject to yt − κΔy + b · ∇u = f in Ω × (0, T ),
y = u on ∂Ω × (0, T ),
y(0) = y0 in Ω ,

and control constraints

φ ≤ u ≤ ψ, u = 0 on ∂Ω × (T1, T ).

The data are given as follows:

f = 0, κ = 1, b(t, x) = 15 (sin(2πt), cos(2πt)), y0 = 0, β = 10−4, T1 = 0.75 ,

yTd (x) = 3
(
x1x2 + sin(12πx2

1(1 − x1)
2) sin(12πx2

2(1 − x2)
2)
)
, φ = −0.1, ψ = 2.5 .

In Table 6.2 we present the corresponding results.

Table 6.2

PDAS method on the sequence of uniformly refined discretizations.

N M dimXh = M ·N dimUh PDAS iterations PDAS nested iterations

25 2 50 32 3 3

81 4 324 128 3 3

289 8 2312 512 4 4

1089 16 17424 2048 5 4

4225 32 135200 8192 5 5

16641 64 1065024 32768 6 5

6.3. Example 3. In this example, we consider the following Dirichlet optimal
control problem on Ω × (0, T ) with Ω = (0, 1)2 ⊂ R

2 and T = 1:

min J(u, y) =
1

2
‖y − yd‖2

L2(Q) +
β

2
‖u‖2

L2(Σ) ,

subject to yt − κΔy + b · ∇u = f in Ω × (0, T ),

y = u on ∂Ω × (0, T ),

y(0) = y0 in Ω
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and control constraints

φ ≤ u ≤ ψ .

The data are given as follows:

f =

{
2, x1 ≤ 0.25,

−35 else,
κ = 1, b(t, x) = 10 (sin(2πt), cos(2πt)), y0 = 0, β = 10−5 ,

yd(t, x) =

{
2 − 2x1, x1 ≤ 0.5,

2 − 2x2 else,
φ = −1, ψ = 2 .

For a fixed discretization with M = 64 time-steps and N = 1089 nodes in the spacial
mesh, we consider the iteration error

ei = ‖u(i)
kh − ukh‖L2(Σ),

where u
(i)
kh is the ith iterate, and ukh is the optimal discrete solution. The results

presented in Table 6.3 demonstrate superlinear convergence of the algorithm.

Table 6.3

Iteration error for the PDAS method.

i 0 1 2 3 4 5 6 7

ei 2.3e-1 1.7e-1 4.1e-2 1.9e-2 6.5e-3 3.8e-4 4.5e-6 0

ei+1/ei 7.4e-1 2.4e-1 4.6e-1 3.4e-1 5.8e-2 1.2e-2 0 –
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[31] O. A. Ladyẑenskaja, V. A. Solonnikov, and N. N. Uralćeva, Linear and Quasilinear
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OPTIMAL CONTROL OF SEMILINEAR PARABOLIC EQUATIONS
WITH K-APPROXIMATE PERIODIC SOLUTIONS∗
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Abstract. In this paper, we study some optimal control problems governed by certain semi-
linear parabolic equations with K-approximate periodic solutions. We first prove the existence and
uniqueness theorems for K-approximate periodic solutions of the equations. We then use these results
to establish the qualified Pontryagin maximum principle. The existence for such optimal controls is
also investigated in the paper.
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1. Introduction. Let Ω be a bounded domain in Rn, n ≥ 3, with a C2-smooth
boundary ∂Ω. Write Q and Σ for the sets Ω × (0, T ) and ∂Ω × (0, T ), respectively.
Denote by χω the characteristic function of ω, where ω is a subdomain of Ω. Consider
the following controlled parabolic equation:{

yt(x, t) − Δy(x, t) + f(x, t, y(x, t)) = χω(x)u(x, t) in Q,
y(x, t) = 0 on Σ,

(1.1)

where f : Ω × (0, T ) × R → R is a given function satisfying certain conditions to be
specified later and the control function u(x, t) is taken from the space L2(Q). For
simplicity, we shall call the aforementioned function u(x, t) a control. This paper is
concerned with the optimal control problem governed by (1.1) with K-approximate
periodic solutions.

To start, we recall the concept of K-approximate periodic solutions for a parabolic
equation, first considered by the first author in [6], [7]. Let H = L2(Ω) and V =
H1

0 (Ω). Write | · |2 and ‖·‖ for the norms of H and V , respectively. Denote by 〈·, ·〉 the
inner product in H. Let A be the linear operator from H to H such that Ay = −�y,
with D(A) = H2(Ω) ∩H1

0 (Ω). Let {Xi(x)}∞i=1 be a complete set of eigenfunctions of
A, which serves as an orthonormal basis of H, and let {λi}∞i=1, with 0 < λ1 < λ2 ≤
· · · < +∞, be the corresponding eigenvalues. For each nonnegative integer K, we
denote by HI,K and HII,K the subspaces spanned by {Xi(x)}Ki=1 and {Xi(x)}∞i=K+1,
respectively. Then H = HI,K⊕HII,K, and each element h ∈ H can be written as h =
hI,K+hII,K, where hI,K ∈ HI,K and hII,K ∈ HII,K. Moreover, each function ϕ(x, t) ∈
L2(0, T ;H) can be expressed as ϕ(x, t) = ϕI,K(x, t)+ϕII,K(x, t) ≡

∑K
i=1 ϕi(t)Xi(x)+∑∞

i=K+1 ϕi(t)Xi(x), where ϕi(t) = 〈ϕ(·, t), Xi(·)〉 ∈ L2(0, T ). In what follows, we
shall omit variables x and t for functions in L2(0, T ;H) and omit x for functions of
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x, if there is no risk of causing confusion. Write Y = {y ∈ L2(0, T ;D(A)); yt ∈
L2(0, T ;H)} with norm ‖y‖Y = {‖y‖2

L2(0,T ;D(A)) + ‖yt‖2
L2(0,T ;H)}

1
2 . Then Y is a

Hilbert space. We say that y is a K-approximate periodic solution of (1.1) if y ∈ Y

satisfies (1.1) and yII,K(0) = yII,K(T ). When K = 0, we will always regard
∑0

i=1 = 0.
Hence, a 0-approximate periodic solution of (1.1) is a usual periodic solution.

A K-approximate solution of (1.1) can be explained mathematically as a special
type of solution for the equation like periodic solutions, steady state solutions, and
others. It can also be viewed as a perturbation of a periodic solution in the low
frequency part. In physics and applied sciences, it can be regarded as a solution with
a periodic higher frequency part.

In this paper, we shall study the following optimal control problem:

(PK,r) : InfJ(y, u) ≡ Inf
1

2

∫
Q

(y2 + u2)dxdt over all (y, u) ∈ Y × L2(Q)

satisfying (1.1) and the following state constraint:{
yI,K(0) = aI,K, yI,K(T ) ∈ BI,K(0, r),

yII,K(0) = yII,K(T ),
(1.2)

where aI,K ∈ HI,K is a given element and BI,K(0, r) denotes the closed ball in HI,K

centered at 0 and of radius r > 0. We shall establish the Pontryagin maximum
principle and the existence of optimal controls for the problem (PK,r). We define
the following certain properties for the function f , which will be used in our later
discussions.

Property (Af ). The function f : Ω × (0, T ) × R → R is measurable in (x, t) ∈
Ω× (0, T ) and continuously differentiable in the third variable. Moreover, there exist
positive constants L and α, with 1 < α ≤ n

n−2 , such that

|f(x, t, ξ)| ≤ L(|ξ|α + 1) ∀ ξ ∈ R and for almost all (x, t) in Q,(1.3)

|f ′
ξ(x, t, ξ)| ≤ L(|ξ|α−1 + 1) ∀ ξ ∈ R and for almost all (x, t) in Q.(1.4)

Property (Hf ). The function f : Ω × (0, T ) × R → R is measurable in (x, t) ∈
Ω × (0, T ) and continuously differentiable in the third variable. Moreover,

(i) there exists a positive constant μ such that

f(x, t, ξ)ξ + λ1ξ
2 ≥ μξ2, ∀ ξ ∈ R, a.e. (x, t) ∈ Q,

where λ1 is the first eigenvalue of operator A;
(ii) there exist positive constants L̃ and β with β ≤ 2

n , such that

|f(x, t, ξ)| ≤ L̃|ξ|(1 + |ξ|β), ∀ ξ ∈ R, a.e. (x, t) ∈ Q.

We shall derive the Pontryagin maximum principle and the existence of optimal
controls for the problem (PK,r) under property (Af ) and (Hf ), respectively. We now
are ready to state our main results.

Theorem 1.1. Suppose that f satisfies property (Af ). Let (y∗, u∗) ∈ Y × L2(Q)
be optimal for problem (PK,r). Then there exist a number μ0, with μ0 �= 0, a function

p in the space Y , and an element aI,K0 in the space HI,K such that⎧⎪⎪⎨⎪⎪⎩
χωp = μ0u

∗ a.e. in Q,
pt + �p− f ′

y(x, t, y
∗)p = μ0y

∗ in Q,
p = 0 on Σ,

pI,K(T ) = −aI,K0 , pII,K(T ) = pII,K(0) in Ω.
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Theorem 1.2. Suppose that f satisfies property (Hf ). Then, for each M > 0,
there exist an integer K ≡ K(M) ≥ 0 and a positive constant r ≡ r(M) such that for
each aI,K ∈ HI,K, with (1 + λK)|aI,K|22 ≤ M2, where λK is the Kth eigenvalue of the
operator A, problem (PK,r) has at least one solution.

Under the assumption (Af ), the controlled system (1.1) with given initial data
y(x, 0) = y0(x) (in L2(Ω) or in H1

0 (Ω)) may have no solution or may have many
solutions in (0,T) for some control u ∈ L2(Q). Thus the corresponding optimal control
problem (PK,r) cannot be treated by the traditional methods provided in [1], [2], [4],
[8], [9], where one regards the state function y as a well-defined functional of the control
u. Hence, our optimal control problem is not well-posed. (See [13]). The non-well-
posed optimal control problem was first mentioned in [10], where an example of the
optimal control problem governed by a semilinear parabolic equation, admitting no
solution for some controls, was studied. In [13], a more general non-well-posed optimal
control problem governed by some semilinear parabolic equations involving some kinds
of state constraints was further investigated. However, in the aforementioned work,
due to the technical difficulties, the control is allowed to be acted only in the whole
domain Ω, and the state is viewed as the weak solution of the controlled equation,
namely, the solution in the space Y1 = {y ∈ L2(0, T ;H1

0 (Ω)); yt −�y ∈ L2(Q)}. The
novelty of the present work compared with the others dealing with non-well-posed
optimal control problems mentioned above is as follows: First, we consider a new
type of state constraints—K-approximate periodic state constraints (which include
periodic state constraints). Moreover, the controls are applied internally into the
equations. Second, we consider the strong solution y of the controlled equation (1.1),
namely, y ∈ Y , as the state of the optimal control problem. This, together with the
state constraint (1.2) and the growth condition (Af ) on the nonlinear term f in (1.1),
motivates us to develop a new method to construct an approximate problem (Pε

K,r) to
approach the original problem (PK,r). The approximate problems in the works [10],
[13] are to ask the infimum of a penalty functional over the whole product space of the
state space with the control space, namely, the space Y1×L2(Q). This is also a general
method to construct an approximate problem when people use a penalization method
to derive the Pontryagin maximum principle. However, for the current problem, it is
difficult for us to construct a suitable penalty functional such that the corresponding
infimum problem over the space Y × L2(Q) approximates the original problem well.
The difficulty is mainly caused by the state constraint (1.2) and the facts that the
state is the strong solution and a weak solution of (1.1) satisfying the K-approximate
periodic condition may be not a strong solution due to the growth condition (Af ).
In this work, we construct a new type of approximate problem (Pε

K,r) which is to
ask the infimum of a penalty functional over a suitable subset of the product space
Y ×L2(Q). This approximate problem approaches the original problem well because
of the existence and uniqueness result of K0-approximate solution for the linearized
equation of (1.1) at the optimal state y∗ for sufficiently large K0. (See Theorem 2.1.)

Problem (PK,r) studied here is an optimal control problem without a control
constraint if one views χω as a linear bounded operator from the space L2(Ω) into
itself. But, on the other hand, if we set V (ω) = {v(x, t) ∈ L2(Q); suppv(x, t) ⊂ ω ×
[0, T ]} and write v(x, t) for the term χω(x)u(x, t) on the right-hand side of (1.1), then
the problem turns to an optimal control problem with control constraint v ∈ V (ω).
Both the control constraint and the state constraint may cause difficulties for us
to get the Pontryagin maximum principle in a qualified form. In this problem, the
state constraint is a special kind of two endpoint state constraint, and the control
constraint also has a special form. Thus, the unique continuation property for linear
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parabolic equations leads us to the Pontryagin maximum principle in a qualified form.
If problem (PK,r) involves another type of control constraints, then how to derive the
Pontryagin maximum principle in a qualified form is still open for us due to some
technical problems.

We emphasize that, even though the cost functional studied in this paper is a
typical quadratic form, our main results (Theorems 1.1 and 1.2) can be extended in
an identical way to the case where the cost functional has a more general form than
that appearing in [1], [13].

Existence and uniqueness problems for periodic solutions for parabolic equations
have been extensively studied in the literature. There have also been many works
done, in the past years, on the optimal control problems (including the Pontryagin
maximum principle and the existence of the optimal controls) governed by semilinear
parabolic equations with state constraints. These constraints include two ending
point state constraints in the time variable (see [1], [8], [9], [12], [13], [14], and the
references therein), the integral type of state constraints (see [5] and the references
therein), and the pointwise state constraints (see [4] and the references therein). One
of the most important two endpoint state constraints is the periodic state constraints,
i.e., y(x, 0) = y(x, T ) (see [1], [12], and the references therein). The state constraint
considered in this paper has the periodic state constraint as a special case.

The paper is organized as follows. In section 2, we establish the existence and
uniqueness of K-approximate periodic solutions in the space Y for certain linear
parabolic equations which is important for us to get the Pontryagin maximum of opti-
mal controls for problem (PK,r). We also obtain the existence of K-approximate peri-
odic solutions for certain semilinear parabolic equations which plays a key role in the
proof of Theorem 1.2. In section 3, we prove Theorem 1.1 by constructing a suitable
approximate problem (Pε

K,r). In the last section, we give the proof of Theorem 1.2.

2. Approximate periodic solution for parabolic equations. In this sec-
tion, we shall give the existence and uniqueness of K-approximate periodic solutions
in space Y for some linear parabolic equations and the existence of K-approximate
periodic solutions in Y for some semilinear parabolic equations. In the linear case, our
method is basically the same as that used in [6], where the existence and uniqueness
of K-approximate periodic solutions in space V2(Q) ≡ L∞(0, T ;H) ∩ L2(0, T ;V ) was
established. In the semilinear case, we will apply the fixed point theorem and the
existence result obtained in the linear problem.

Theorem 2.1. Let M be a positive number. Then there exists a nonnegative
integer K0 ≡ K0(−�,Ω, T,M) depending only on Ω, T,M , and (−Δ), where the de-
pendence on the operator −Δ is only through the eigenvalues of the operator −Δ such
that, for each integer K with K ≥ K0, each function e in the space L∞(0, T ;Ln(Ω)),
with ‖e‖L∞(0,T ;Ln(Ω)) ≤ M , each element aI,K in the space HI,K, and each function
v in the space L2(0, T ;H), the following problem has a unique solution y in the space
Y : ⎧⎨⎩

yt −�y − ey = v in Q,
y = 0 on Σ,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) in Ω.

(2.1)

Moreover, this solution y satisfies the following estimate:

‖y‖2
Y ≤ C(λK|aI,K|22 + ‖v‖2

L2(0,T ;H)),(2.2)

where C ≡ C(−�, T,Ω,M) is a positive constant depending only on −Δ, T,Ω, and
M and where λK is the Kth eigenvalue of the operator A.
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Proof of Theorem 2.1. By the theory of linear evolution equations (see Corol-
lary 4.3, Chapter 1 of [2]), one can easily get that for each function e in the space
L∞(0, T ;Ln(Ω)), with ‖e‖L∞(0,T ;Ln(Ω)) ≤ M , each element z0 in the space V , and
each function v in the space L2(0, T ;H), the following equation:⎧⎨⎩

zt −�z − ez = v in Q,
z = 0 on Σ,
z(0) = z0 in Ω

(2.3)

has a unique solution z in the space Y . Moreover, there exists a positive constant C
such that

‖z‖2
Y ≤ C(‖v‖2

L2(0,T ;H) + ‖z0‖2).(2.4)

Here and in what follows, C stands for a positive constant depending only on −�, T,Ω,
and M , which may be different in different contexts. Let e be a function in the space
L∞(0, T ;Ln(Ω)) satisfying ‖e‖L∞(0,T ;Ln(Ω)) ≤ M . Then, for each nonnegative integer
K and for each element aII,K in the space HII,K ∩ V , there exists a unique solution
ỹ(t) ≡ ỹ(t; aII,K) in the space Y satisfying⎧⎪⎨⎪⎩

ỹt −�ỹ − eỹ = 0 in Q,

ỹ = 0 on Σ,
ỹI,K(0) = 0, ỹII,K(0) = aII,K in Ω,

(2.5)

and

‖ỹ‖2
Y ≤ C‖aII,K‖2.(2.6)

Since Y ↪→ C([0, T ];V ) (see Chapter 1 of [11]), we have

‖ỹ‖2
C([0,T ];V ) ≤ C‖aII,K‖2.(2.7)

Multiplying the first equation of (2.5) by (−�ỹII,K(t)) and integrating over Ω, we get

1

2

d

dt
‖ỹII,K(t)‖2 + λK+1‖ỹII,K(t)‖2 ≤ |〈eỹ(t),�ỹII,K(t)〉|.

By the Hölder inequality and the Sobolev embedding theorem, we obtain

2|〈eỹ(t), �ỹII,K(t)〉| ≤ 2

∫
Ω

|eỹ(t)�ỹII,K(t)|dx

≤ 2

(∫
Ω

|e(x, t)|ndx
) 1

n
(∫

Ω

|ỹ(x, t)| 2n
n−2 dx

)n−2
2n

(∫
Ω

|�ỹII,K(x, t)|2dx
) 1

2

≤ 2MC1‖ỹ(t)‖ · |�ỹII,K(t)|2
≤ ε|�ỹII,K(t)|22 + C(ε,M,C1)‖ỹ(t)‖2 ∀ ε > 0,

where C1 is the constant of the embedding from H1
0 (Ω) into L

2n
n−2 (Ω) and C(ε,M,C1)

is a positive constant depending only on ε, M , and C1. Thus, it holds that

d

dt
(e2λK+1t‖ỹII,K(t)‖2) ≤ (ε|�ỹII,K(t)|22 + C(ε,M,C1)‖ỹ(t)‖2)e2λK+1t.
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Integrating the above over (0, T ) and making use of (2.7), we get

e2λK+1T ‖ỹII,K(T )‖2 ≤ ‖aII,K‖2 + ε

∫ T

0

e2λK+1t|�ỹII,K(t)|22dt

+C · C(ε,M,C1)‖aII,K‖2

∫ T

0

e2λK+1tdt,

which, together with (2.6), implies

‖ỹII,K(T )‖2 ≤ e−2λK+1T ‖aII,K‖2 + C · C(ε,M,C1)

(
1

2λK+1
− e−2λK+1T

2λK+1

)
‖aII,K‖2

+ε

∫ T

0

e−2λK+1(T−t)|ΔỹII,K(t)|22dt

≤
{
e−2λK+1T + C · C(ε,M,C1)

(
1

2λK+1
− e−2λK+1T

2λK+1

)}
· ‖aII,K‖2

+ε · C‖aII,K‖2.
(2.8)
We now first choose an ε sufficiently small such that ε · C < 1

4 . Then we fix such
an ε and an integer K0 � 1 such that e−2λK0+1T < 1

4 and C(ε,M,C1) · C( 1
2λK0+1

−
e−2λK0+1T

2λK0+1
) < 1

4 . (Apparently, the choice of such a K0 depends only on the operators

−Δ,M,Ω, and T .) Then, for each integer K with K ≥ K0, it holds that

‖ỹII,K(T )‖2 ≤ 3

4
‖aII,K‖2 for each aII,K ∈ HII,K ∩ V.(2.9)

Now, for each integer K with K ≥ K0, each element aI,K in the space HI,K, each
function v in the space L2(0, T ;H), and each function e in the space L∞(0, T ;Ln(Ω))
with the estimate ‖e‖L∞(0,T ;Ln(Ω)) ≤ M , we define a map J : HII,K∩V → HII,K∩V

by setting J(aII,K) = yII,K(T ; aI,K + aII,K), where y(t; aI,K + aII,K) is the unique

solution of (2.3) with z0 being replaced by (aI,K + aII,K). Then, for any aII,K1 , aII,K2

in the space HII,K ∩ V , we have

‖J(aII,K1 ) − J(aII,K2 )‖2 = ‖yII,K(T ; aI,K + aII,K1 ) − yII,K(T ; aI,K + aII,K2 )‖2

= ‖ỹ(T ; aII,K1 − aII,K2 )‖2,

where ỹ(t; aII,K1 − aII,K2 ) is the unique solution of (2.5) with aII,K being replaced by

aII,K1 − aII,K2 . Thus by (2.9), we get

‖J(aII,K1 ) − J(aII,K2 )‖2 ≤ 3

4
‖aII,K1 − aII,K2 ‖2.

Hence, the map J has a unique fixed point ãII,K in the space HII,K ∩ V , and thus
y(t; aI,K + ãII,K) ∈ Y is the unique solution of (2.1).

Next we shall prove the estimate (2.2). Let K be an integer, with K ≥ K0, and let
e be a function in the space L∞(0, T ;Ln(Ω)), with ‖e‖L∞(0,T ;Ln(Ω)) ≤ M . We write
y for the unique solution of (2.1) corresponding to aI,K ∈ HI,K and v ∈ L2(0, T ;H).
We can write y = y1 + y2, where the functions y1 and y2 satisfy⎧⎨⎩

(y1)t −�y1 − ey1 = v in Q,
y1 = 0 on Σ,

yI,K1 (0) = aI,K, yII,K1 (0) = 0 in Ω
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and ⎧⎨⎩
(y2)t −�y2 − ey2 = 0 in Q,
y2 = 0 on Σ,

yI,K2 (0) = 0, yII,K2 (0) = yII,K(0) in Ω,

respectively. Then by (2.4), we have

‖yII,K1 (T )‖2 ≤ ‖y1(T )‖2 ≤ C‖y1‖2
Y ≤ C(‖v‖2

L2(0,T ;H) + ‖aI,K‖2).

It follows from (2.9) that

‖yII,K2 (T )‖2 ≤ 3

4
‖yII,K2 (0)‖2 =

3

4
‖yII,K(0)‖2.

Thus it holds that

‖yII,K(0)‖2 = ‖yII,K(T )‖2 = ‖yII,K1 (T ) + yII,K2 (T )‖2

≤ C(ε)‖yII,K1 (T )‖2 + (1 + ε)‖yII,K2 (T )‖2

≤ C(ε) · C(‖v‖2
L2(0,T ;H) + ‖aI,K‖2) +

3

4
(1 + ε)‖yII,K(0)‖2 ∀ ε > 0,

where C(ε) is a positive constant depending only on ε. Then by taking ε small enough
such that 3

4 (1 + ε) < 1, we get

‖yII,K(0)‖2 ≤ C(‖v‖2
L2(0,T ;H) + ‖aI,K‖2)

≤ C(‖v‖2
L2(0,T ;H) + λK|aI,K|22),

from which and by (2.4), we obtain

‖y‖2
Y ≤ C(‖v‖2

L2(0,T ;H) + ‖aI,K‖2 + ‖yII,K(0)‖2) ≤ C(‖v‖2
L2(0,T ;H) + λK|aI,K|22).

This completes the proof of Theorem 2.1.
Next, we shall study the existence of K-approximate periodic solutions for some

semilinear parabolic equations. Consider the following semilinear parabolic equation:⎧⎪⎨⎪⎩
yt − Δy + f(x, t, y) = v in Q,

y = 0 on Σ,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) in Ω,

(2.10)

where K is a nonnegative integer, aI,K is an element in the space HI,K, and v is a
function in the space L2(0, T ;H).

Theorem 2.2. Suppose that (Hf ) holds. Then, for each positive number M ,
there exists a nonnegative integer K ≡ K(M) such that, for each function v in the
space L2(0, T ;H) and each element aI,K in the space HI,K satisfying the estimate

‖v‖2
L2(0,T ;H) + (1 + λK)|aI,K|22 ≤ 2M2,

(2.10) has at least one solution y in Y satisfying ‖y‖2
Y ≤ C(M), where C(M) is a

positive constant depending on M .
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Proof of Theorem 2.2. Let ρ be a positive number. We write Aρ for the set
{z ∈ Y ; ‖z‖Y ≤ ρ}. It is clear that Aρ is a compact and convex subset in L2(Q). We
define a function g : Ω × (0, T ) × R → R by setting

g(x, t, ξ) =

{
f(x,t,ξ)

ξ , ξ �= 0,

limξ→0
f(x,t,ξ)

ξ , ξ = 0.

Since Y ↪→ L∞(0, T ;V ) ↪→ L∞(0, T ;L
2n

n−2 (Ω)), it follows from the assumption (Hf )
that, for each element z in the set Aρ, we have

esssup0≤t≤T

∫
Ω

|g(x, t, z)|ndx ≤ Cesssup0≤t≤T

∫
Ω

(1 + |z|β)ndx

≤ Cesssup0≤t≤T

∫
Ω

(1 + |z|2)dx ≤ C(1 + ρ2).

Here and throughout the proof of this theorem, C stands for a positive constant
independent of ρ, K, v, and aI,K, which may be different in different contexts. Then
by Theorem 2.1, there exists a nonnegative integer K0 ≡ K0(ρ,−Δ,Ω, T ) such that,
for each integer K with K ≥ K0, each element z in the set Aρ, each function v in the
space L2(0, T ;H), and each element aI,K in the space HI,K, the equation⎧⎨⎩

yt − Δy + g(x, t, z)y = v in Q,
y = 0 on Σ,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) in Ω

(2.11)

has a unique solution y ≡ y(t; z, v, aI,K) ∈ Y satisfying

‖y‖2
Y ≤ C(ρ,−Δ,Ω, T )(‖v‖2

L2(Q) + λK|aI,K|22).

Now we fix such an integer K and such a pair (aI,K, v) in the space HI,K × L2(Q)
and then define a map Φ ≡ Φρ,K,v,aI,K : Aρ → L2(Q) by setting Φ(z) = y.

We shall prove that the map Φ has a fixed point, and then (2.10) has a solution
in Y . To this end, we first claim that the map Φ is continuous from Aρ with the
topology induced by the L2(Q)-norm to L2(Q). Let {zm} be a sequence in the set
Aρ such that zm → z̃ strongly in L2(Q) as m → ∞. Then one can easily show that
z̃ ∈ Aρ. Write ym, m = 1, 2, . . . , for the solutions of (2.11) with z being replaced by
zm. It suffices to show that ym → ỹ strongly in L2(Q), as m → ∞, and that ỹ is the
solution of (2.11) with z being replaced by z̃. Here is the argument: Since {ym} and
{zm} are bounded in Y , there exist subsequences {ymk

} ⊂ {ym} and {zmk
} ⊂ {zm}

such that, as mk → ∞,

ymk
→ y weakly in Y,

strongly in L2(Q),
a.e. in Q

(2.12)

and

zmk
→ z̃ weakly in Y,

strongly in L2(Q),
a.e. in Q.

(2.13)
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Moreover,

(ymk
(0), ymk

(T )) → (y(0), y(T )) strongly in H ×H as mk → ∞.(2.14)

(Indeed, by the Ascoli–Arzela theorem, we can choose {zmk
} and {ymk

} such that
ymk

→ y and zmk
→ z̃ strongly in C([0, T ];H).) Now, by the continuity of g in the

third variable and by (2.12) and (2.13), we obtain

g(x, t, zmk
(x, t))ymk

(x, t) → g(x, t, z̃(x, t))y(x, t) a.e. in L2(Q) as mk → ∞.

On the other hand, by (Hf ) and by making use of the Hölder inequality and the
Sobolev embedding theorem, we have

‖g(x, t, zmk
)ymk

‖2
L2(Q) ≤ C‖ymk

‖2
Y ‖zmk

‖2
Y ≤ C.

Thus it holds that

g(x, t, zmk
(x, t))ymk

(x, t) → g(x, t, z̃(x, t))y(x, t) weakly in L2(Q) as mk → ∞.

Then by (2.12), (2.13), (2.14), and the above, we can pass to the limit, as mk → ∞,
in the equation satisfied by ymk

and zmk
to get ỹ = y. Hence, we have proved that

ym → ỹ strongly in L2(Q), as m → ∞, and therefore Φ is continuous.
Next we claim that, for any z in the set Aρ, the function y ≡ Φ(z) satisfies the

following estimate:

‖y‖2
Y ≤ C̃(1 + ρ2β)(‖v‖2

L2(Q) + (1 + λK)|aI,K|22),(2.15)

where C̃ is a positive constant independent of ρ, K, v, and aI,K.
By (i) of (Hf ), we obtain

g(x, t, ξ) ≥ μ− λ1 ∀ ξ ∈ R and for almost all (x, t) ∈ Q.(2.16)

Multiplying the first equation of (2.11) by y and making use of (2.16), we get

1

2

d

dt
|y(t)|22 + μ|y(t)|22 ≤ |〈v(t), y(t)〉| ∀ t ∈ [0, T ],

from which it follows that

d

dt
|y(t)|22 + μ|y(t)|22 ≤ 1

μ
|v(t)|22 ∀ t ∈ [0, T ].

Integrating the above over (0, T ), we get

eμT |y(T )|22 ≤ 1

μ
eμT

∫ T

0

|v(t)|22dt + |y(0)|22.

Hence, it holds that

eμT |yII,K(T )|22 ≤ 1

μ
eμT

∫ T

0

|v(t)|22dt + |yII,K(0)|22 + |aI,K|22.

Since yII,K(0) = yII,K(T ), we have

|yII,K(0)|22 ≤ (eμT − 1)−1

(
1

μ
eμT

∫ T

0

|v(t)|22dt
)

+ (eμT − 1)−1|aI,K|22

≤ C(‖v‖2
L2(Q) + |aI,K|22),
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from which it follows that

|y(0)|22 ≤ C(‖v‖2
L2(Q) + |aI,K|22).

Then by (2.11) and (2.16) and by making use of the standard energy estimate argu-
ment for linear parabolic equations, we can easily have

‖y‖2
V2(Q) ≡ esssup0≤t≤T |y(t)|22 +

∫ T

0

‖y(t)‖2dt ≤ C(‖v‖2
L2(Q) + |y(0)|22)

≤ C(‖v‖2
L2(Q) + |aI,K|22).

(2.17)

On the other hand, we let q = n+2
n−2 · 1

β . Then q > n+2
2 for 0 < β ≤ 2

n . By (Hf )
and by making use of the Hölder inequality and the Sobolev embedding theorem

(Y ↪→ L
2(n+2)
n−2 (Q)), we get

‖(g(x, t, z))2‖Lq(Q) ≤ C

{∫
Q

(|z|β + 1)2qdxdt

} 1
q

≤ C

{
1 +

(∫
Q

|z|
2(n+2)
n−2 dxdt

) 1
q

}

≤ C

(
1 + ‖z‖2β

L
2(n+2)
n−2 (Q)

)
≤ C(1 + ‖z‖2β

Y ) ≤ C(1 + ρ2β).

(2.18)
By (2.17) and (2.18), and by the estimate in [3] (see p. 50 in [3]), we get∫

Q

(g(x, t, z))2y2dxdt ≤ C‖(g(x, t, z))2‖Lq(Q) · ‖y‖2
V2(Q)

≤ C(1 + ρ2β)(‖v‖2
L2(Q) + |aI,K|22).

(2.19)

Now let F = v − g(x, t, z)y ∈ L2(Q). Then y ∈ Y satisfies the following heat
equation: ⎧⎨⎩

yt − Δy = F in Q,
y = 0 on Σ,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) in Ω.

(2.20)

Moreover, by (2.19), it is clear that∫
Q

(F (x, t))2dxdt ≤ C(1 + ρ2β)(‖v‖2
L2(Q) + |aI,K|22).(2.21)

Multiplying the first equation of (2.20) by t(−Δy(t)), we get

d

dt
(t‖y(t)‖2) + t|Δy(t)|22 ≤ ‖y(t)‖2 + t|F (t)|22.

Integrating the above over (0, T ), by (2.17) and (2.21), we get

T‖y(T )‖2 ≤
∫ T

0

‖y(t)‖2dt + T

∫ T

0

|F (t)|22dt ≤ C(1 + ρ2β)(‖v‖2
L2(Q) + |aI,K|22),

from which it follows that

‖yII,K(0)‖2 = ‖yII,K(T )‖2 ≤ C(1 + ρ2β)(‖v‖2
L2(Q) + |aI,K|22).
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Hence,

‖y(0)‖2 = ‖yI,K(0)‖2 + ‖yII,K(0)‖2 ≤ C(1 + ρ2β)(‖v‖2
L2(Q) + |aI,K|22) + ‖aI,K‖2

≤ C(1 + ρ2β)(‖v‖2
L2(Q) + (1 + λK)|aI,K|22).

Then by (2.20) and (2.21) and by making use of the standard energy estimate argu-
ment for the heat equation, we can get (2.15) easily.

Notice that β ≤ 2
n < 1. Thus for a given M > 0, we can take a ρ > 0 large

enough such that 2C̃M2(1 + ρ2β) ≤ ρ2, where the constant C̃ is the one appearing in
(2.15). Then we fix an integer K ≡ K(ρ) such that (2.11) has a unique solution in Y
for each triplet (v, aI,K, z) ∈ L2(Q) ×HI,K ×Aρ. Hence, it follows from (2.15) that,
for any pair (v, aI,K) ∈ L2(Q) × HI,K with ‖v‖2

L2(Q) + (1 + λK)|aI,K|22 ≤ 2M2, the
map Φ ≡ Φρ,K,v,aI,K satisfies

‖Φ(z)‖2
Y ≤ 2C̃M2(1 + ρ2β) ≤ ρ2 for any z ∈ Aρ, namely, Φ(Aρ) ⊂ Aρ.

Since Aρ is convex and compact in L2(Q) and Φ is continuous, we conclude that Φ
has a fixed point y ∈ Y which is a solution to (2.10). This completes the proof of
Theorem 2.2.

Next, we shall give some examples to show how to estimate the integers K0 and
K in Theorems 2.1 and 2.2 in certain particular cases.

Example 2.3. Consider the following equation:{
yt(x, t) − Δy(x, t) − e(x, t)y(x, t) = v(x, t) 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
y(0, t) = y(1, t) = 0 0 ≤ t ≤ 1.

(2.22)

Here e ∈ L∞((0, 1)× (0, 1)) and v ∈ L2((0, 1)× (0, 1)). Notice that {
√

2 sin(jπx)}∞j=1

forms an orthonormal basis of L2(0, 1). We write v(x, t) =
∑∞

j=1 vj(t) sin(jπx) and

y(x, t) =
∑∞

j=1 wj(t) sin(jπx). We assume first that e(x, t) ≡ a for all (x, t) in [0, 1]×
[0, 1], where a is a real number. Then we have

w′
j(t) = −(jπ)2wj(t) + awj(t) + vj(t), j = 1, 2, . . . .

Thus, it holds that, for all j = 1, 2, . . . ,

wj(1) exp{−a + (jπ)2} − wj(0) =

∫ 1

0

vj(t) exp{−a + (jπ)2}dt.(2.23)

Now, for a given natural number N , we choose a = (Nπ)2 and choose v(x, t) such

that
∫ 1

0
vN (t)dt �= 0; then, by (2.23), we see that (2.22) can never have a solution

y(x, t) =
∑∞

j=1 wj(t) sin(jπx) such that wN (0) = wN (1). Namely, (2.22) can never
have a K-approximate periodic solution with K = N − 1. However, in the case that
a = (Nπ)2, for each aI,K =

∑N
j=1 aj sin(jπx), v ∈ L2((0, 1) × (0, 1)), (2.22) does

have a unique solution y satisfying yI,K(0) = aI,K, yII,K(0) = yII,K(1). Namely,
(2.22) has a unique K-approximate periodic solution y with K = N , which satisfies
yI,K(0) = aI,K. Moreover, we can easily see from (2.23) that, for each real number a,
if we take K0 such that

(K0π)2 ≥ a,(2.24)

then it holds that, for each integer K ≥ K0, v ∈ L2((0, 1) × (0, 1), and aI,K =∑N
j=1 aj sin(jπx), (2.22) has a unique solution y satisfying yI,K(0) = aI,K, yII,K(0) =
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yII,K(1). Thus, the inequality (2.24) gives a way to calculate the integer K0 in The-
orem 2.1 in this case.

Next, we consider (2.22) where e is a function in the subset {e ∈ L∞((0, 1) ×
(0, 1)); ‖e‖L∞((0,1)×(0,1)) ≤ M} for a fixed positive number M . In this case, the
integer K0 in Theorem 2.1 can be estimated as follows. Notice first that the constant
C in the inequality (2.8) can be obtained from the embedding inequalities (2.6) and

(2.7). Now in (2.8) we take ε = 1
5C < 1

4C and C(ε,M) = M2

ε = 5CM2. Then the
integer K0 can be calculated from the following inequalities:

exp{−2((K0 + 1)π)2} <
1

4
,

5C2M2

2((K0 + 1)π)2
(1 − exp{−2((K0 + 1)π)2}) < 1

4
.

(2.25)

Finally, we consider the following semilinear equation:{
yt(x, t) − Δy(x, t) + f(y(x, t)) = v(x, t) 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,
y(0, t) = y(1, t) = 0 0 ≤ t ≤ 1.

(2.26)

Here the function f : R → R is continuously differentiable and has the following
properties: f(0) = 0, f(ξ)ξ ≥ 0 for all ξ ∈ R, and there exists a positive constant C0

such that |f ′(ξ)| ≤ C0 for all ξ ∈ R. Then the function g(ξ) defined by

g(ξ) =

{
f(ξ)
ξ , ξ �= 0,

limξ→0
f(ξ)
ξ , ξ = 0

satisfies |g(ξ)| ≤ C0 for all ξ ∈ R. Hence, it holds that, for each z ∈ Y,

|g(z(x, t))| ≤ C0, a.e. (x, t) ∈ (0, 1) × (0, 1).(2.27)

Then, by Theorem 2.1, we obtain that there exists a nonnegative integer K0 ≡
K0(−�, C0) such that for each K ≥ K0, z ∈ Y, v ∈ L2((0, 1)×(0, 1)), and aI,K ∈ HI,K,
the linearized equation⎧⎪⎨⎪⎩

yt − Δy + g(z)y = v 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

y(0, t) = y(1, t) = 0 0 ≤ t ≤ 1,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) 0 ≤ x ≤ 1

has a unique solution y ∈ Y satisfying

‖y‖2
Y ≤ C(C0,−�)(‖v‖2

L2((0,1)×(0,1)) + λK|aI,K|22).(2.28)

Moreover, the aforementioned integer K0 can be estimated by (2.25) with M being
replaced by C0. Notice that, in this case, both the integer K0 and the constant
C(C0,−Δ) in (2.28) are independent of ρ, which is the positive number given in the
proof of Theorem 2.2. Then, by (2.27) and (2.28), after carefully checking the proof
of Theorem 2.2, we can obtain that, in this case, the integer K in Theorem 2.2 can be
taken as the aforementioned integer K0. Hence, in this case, the integer K in Theorem
2.2 can be estimated by (2.25).
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3. Pontryagin’s maximum principle of optimal controls for the problem
(PK,r). In this section, we shall prove Theorem 1.1, namely, the Pontryagin max-
imum principle for the optimal control problem (PK,r). The basic idea to be used
here is to construct a well-posed approximate optimization problem to approach the
non-well-posed problem (PK,r). This idea has been used in [10], [12], [13]. However,
in the current work, the approximation problem is to ask the infimum of a penalty
functional over a suitable subset of the space Y ×L2(Q). Moreover, this construction
works well due to Theorem 2.1, namely, the results of existence and uniqueness of
K-approximate periodic solutions for the linear parabolic equations. Throughout this
section, we assume that (Af ) holds.

3.1. Formulation of an approximate problem. Let (y∗, u∗) ∈ Y ×L2(Q) be
optimal for problem (PK,r). By the property (Af ) and by making use of the Sobolev
embedding theorem and the Hölder inequality, we see that there exists a positive
constant C0 such that the following holds:

‖f ′
y(x, t, y)‖L∞(0,T ;Ln(Ω)) ≤ C0(1 + ‖y‖

2
n−2

Y ) ∀ y ∈ Y.(3.1)

Set

M = C0(1 + ‖y∗‖
2

n−2

Y ) + 1.(3.2)

Then by Theorem 2.1, there exists an integer K0 ≡ K0(M,Ω,−Δ, T ), with K0 > K,
such that for each function e in the space L∞(0, T ;Ln(Ω)) satisfying the estimate
‖e‖L∞(0,T ;Ln(Ω)) ≤ M , each function g in the space L2(Q), and each element bI,K0 in
the space HI,K0 , the following equation has a unique solution y in the space Y :⎧⎨⎩

yt − Δy + ey = g in Q,
y = 0 on Σ,
yI,K0(0) = bI,K0 , yII,K0(0) = yII,K0(T ) in Ω.

(3.3)

Write HII,K = HII,K,1 ⊕ HII,K,2, where HII,K,1 = span{Xi}K0

i=K+1, HII,K,2 =

span{Xi}∞i=K0+1 ≡ HII,K0 . Then, for each y(t) =
∑∞

i=1 yi(t)Xi ∈ L2(0, T ;H) and for
each h =

∑∞
i=1 hiXi ∈ H, we have

y(t) = yI,K(t) + yII,K,1(t) + yII,K,2(t) ≡
K∑
i=1

yi(t)Xi +

K0∑
i=K+1

yi(t)Xi +

∞∑
i=K0+1

yi(t)Xi

and

h = hI,K + hII,K,1 + hII,K,2 ≡
K∑
i=1

hiXi +

K0∑
i=K+1

hiXi +

∞∑
i=K0+1

hiXi.

Now, for each ε > 0, we define a functional Jε : Y × L2(Q) → R by setting

Jε(y, u) = J(y, u) +
n− 2

2n

∫
Q

(y − y∗)
2n

n−2 dxdt +
1

2

∫
Q

(u− u∗)2dxdt

+
1

2ε
|yII,K,1(T ) − yII,K,1(0)|22 +

1

2ε
(dB(yI,K(T )) + ε)2

+
1

2ε

∫
Q

(yt − Δy + f(x, t, y) − χωu)2dxdt,

(3.4)
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where dB(·) denotes the distance function of · to the set BI,K(0, r) in the space HI,K.
One can easily check that the functional Jε is well-defined. Set

Ỹ = {y ∈ Y ; yI,K(0) = aI,K, yII,K,2(0) = yII,K,2(T )},

and consider the following optimization problem:

(Pε
K,r) : InfJε(y, u) over all (y, u) ∈ Ỹ × L2(Q).

We shall use the well-posed approximate problem (Pε
K,r) to approach the original

optimal control problem (PK,r) and finally derive the Pontryagin maximum principle
in a qualified form for the problem (PK,r).

3.2. Properties of the approximate problem (Pε
K,r). First of all, we shall

derive a prior estimate for the solutions to the following equation, which will be used
later: ⎧⎪⎪⎨⎪⎪⎩

yt − Δy = g in Q,
y = 0 on Σ,
yI,K(0) = bI,K, yII,K,1(0) = yII,K,1(T ) + ξII,K,1 in Ω,
yII,K,2(0) = yII,K,2(T ) in Ω.

(3.5)

Lemma 3.1. Let g ∈ L2(Q), bI,K ∈ HI,K, ξII,K,1 ∈ HII,K,1, and y ∈ Y satisfy
(3.5). Then there exists a positive constant C ≡ C(Ω,−Δ, T ) depending only on T,Ω,
and the operator (−Δ) such that

‖y‖2
Y ≤ C(‖g‖2

L2(Q) + |bI,K|22 + |ξII,K,1|22).(3.6)

Proof of Lemma 3.1. We write y(x, t) =
∑∞

i=1 yi(t)Xi, g(x, t) =
∑∞

i=1 gi(t)Xi,

bI,K =
∑K

i=1 biXi, ξ
II,K,1 =

∑K0

i=K+1 ξiXi, where bi, ξi ∈ R. Then it holds that

d

dt
yi(t) + λiyi(t) = gi(t), i = 1, 2, . . . ,

from which we get

yi(t) = e−λityi(0) +

∫ t

0

e−λi(t−s)gi(s)ds, i = 1, 2, . . . .

Then by (3.5), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yi(0) = bi, i = 1, 2, . . . ,K,

yi(0) =
1

1 − e−λiT

{∫ T

0

e−λi(T−s)gi(s)ds + ξi

}
, i = K + 1,K + 2, . . . ,K0,

yi(0) =
1

1 − e−λiT

∫ T

0

e−λi(T−s)gi(s)ds, i = K0 + 1,K0 + 2, . . . .

(3.7)
Notice that 0 < λ1 < λ2 ≤ · · · → +∞. A simple computation, together with (3.7),
then leads us to

‖y(·, 0)‖2 =

∞∑
i=1

λiy
2
i (0) ≤ C

( K∑
i=1

b2i +

K0∑
i=K+1

ξ2
i +

∞∑
i=1

∫ T

0

g2
i (t)dt

)
= C(|bI,K|22 + |ξII,K,1|22 + ‖g‖2

L2(Q)).
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Then, by the standard energy estimate for the heat equation, we get (3.6). This
completes the proof of Lemma 3.1.

Remark 3.1. Lemma 3.1 holds for all integers K,K0, with 0 ≤ K < K0.
Lemma 3.2. Problem (Pε

K,r) has at least one solution.

Proof of Lemma 3.2. Set d = Inf{Jε(y, u); (y, u) ∈ Ỹ ×L2(Q)}, and let {(ym, um)}
be a sequence in the space Ỹ × L2(Q) such that

d ≤ Jε(ym, um) ≤ d +
1

m
.(3.8)

By (3.4) and (3.8), it follows that the sequence {um} is bounded in L2(Q), the sequence
{(ym)t − Δym + f(x, t, ym) − χωum} is bounded in L2(Q), and the sequence {ym} is

bounded in L
2n

n−2 (Q). From the latter and by making use of the assumption (Af ), we
see easily that the sequence {f(x, t, ym)} is bounded in L2(Q). Applying (3.4) and
(3.8) again, we obtain also that the sequence {yII,K,1

m (T )−yII,K,1
m (0)} is bounded in H.

Set gm = (ym)t−Δym and ξII,K,1
m = yII,K,1

m (0)−yII,K,1
m (T ). Then the sequences {gm}

and {ξII,K,1
m } are bounded in the spaces L2(Q) and H, respectively. Since {ym} ⊂ Ỹ ,

we have yI,Km (0) = aI,K and yII,K,2
m (0) = yII,K,2

m (T ). Thus we can apply Lemma 3.1
to get

‖ym‖2
Y ≤ C(‖gm‖2

L2(Q) + |aI,K|22 + |ξII,K,1
m |22).

Hence, {ym} is bounded in Y . Then by the Aubin compactness theorem and the
Ascoli–Arzela theorem, we can extract a subsequence of {ym}, which, for simplicity
of notation, is still denoted by itself such that as m → ∞

ym → ỹ weakly in Y,(3.9)

ym → ỹ strongly in L2(0, T ;V ) ∩ C([0, T ];H),(3.10)

ym → ỹ a.e. in Q.(3.11)

In particular, it follows from (3.10) that

(yII,K,1
m (T ), yII,K,1

m (0)) → (ỹII,K,1(T ), ỹII,K,1(0)) strongly in H×H as m → ∞(3.12)

and

dB(yI,Km (T )) → dB(ỹI,K(T )) as m → ∞.(3.13)

On the other hand, since the sequence {um} is bounded in the space L2(Q), we can
assume, without loss of generality, that

um → ũ weakly in L2(Q) as m → ∞.(3.14)

Since {ym} ⊂ Ỹ , it follows from (3.10) that ỹI,K(0) = aI,K, ỹII,K,2(0) = ỹII,K,2(T ).

Hence, ỹ ∈ Ỹ .
Now we claim that

f(x, t, ym) → f(x, t, ỹ) weakly in L2(Q) as m → ∞.(3.15)

Indeed, by (3.11) and (Af ), we obtain

f(x, t, ym) → f(x, t, ỹ) a.e. in Q as m → ∞.
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On the other hand, the sequence {f(x, t, ym)} is bounded in L2(Q). Then (3.15)
follows immediately. Now, by (3.9), (3.14), and (3.15), we see that as m → ∞

(ym)t−Δym+f(x, t, ym)−χωum → ỹt−Δỹ+f(x, t, ỹ)−χωũ weakly in L2(Q).(3.16)

Then by (3.9), from which it follows that ym → ỹ weakly in L
2n

n−2 (Q) as m → ∞, and
by (3.12), (3.13), (3.14), (3.16), and (3.4), we can easily get that

lim
m→∞

Jε(ym, um) ≥ Jε(ỹ, ũ) ≥ d.

This together with (3.8) implies Jε(ỹ, ũ) = d. Since (ỹ, ũ) ∈ Ỹ × L2(Q), (ỹ, ũ) is a
solution to problem (Pε

K,r). This completes the proof of Lemma 3.2.

Lemma 3.3. Let (yε, uε) be optimal for problem (Pε
K,r). Then when ε → 0+,

uε → u∗ strongly in L2(Q), yε → y∗ strongly in Y.

Proof of Lemma 3.3. It is clear that y∗ ∈ Ỹ . By the optimality of (yε, uε) to
problem (Pε

K,r), it follows that

Jε(yε, uε) ≤ Jε(y
∗, u∗) = J(y∗, u∗) +

ε

2
,

which implies

lim
ε→0+

Jε(yε, uε) ≤ J(y∗, u∗).(3.17)

By (3.4) and (3.17), we see that the sequence {yε} is bounded in L
2n

n−2 (Q), the se-
quence {uε} is bounded in L2(Q), the sequence {yII,K,1

ε (T ) − yII,K,1
ε (0)} is bounded

in H, and the sequence {(yε)t−Δyε +f(x, t, yε)−χωuε} is bounded in L2(Q). Then,
by the same argument as that in the proof of Lemma 3.2, we can extract a generalized
subsequence of {ε}, which, for simplicity of notation, is still denoted in the same way
such that as ε → 0+

uε → ũ weakly in L2(Q),
yε → ỹ weakly in Y,

a.e. in Q,
strongly in C([0, T ];H) ∩ L2(0, T ;V ),

(3.18)

(yε)t − Δyε + f(x, t, yε) − χωuε → ỹt − Δỹ + f(x, t, ỹ) − χωũ weakly in L2(Q).
(3.19)

Since {yε} ⊂ Ỹ , it follows from (3.18) that ỹ ∈ Ỹ .
Applying (3.4) and (3.17) again, we obtain

dB(yI,Kε (T )) → 0 as ε → 0+,(3.20)

yII,K,1
ε (T ) − yII,K,1

ε (0) → 0 strongly in HII,K,1 as ε → 0+,(3.21)

and

(yε)t − Δyε + f(x, t, yε) − χωuε → 0 strongly in L2(Q) as ε → 0+.(3.22)

By (3.18) and (3.20), we have ỹI,K(T ) ∈ BI,K(0, r). By (3.18) and (3.21), we obtain

ỹII,K,1(T ) = ỹII,K,1(0). Then by (3.19) and (3.22) and noticing that ỹ ∈ Ỹ , we see
that (ỹ, ũ) satisfies the following:⎧⎪⎪⎨⎪⎪⎩

ỹt − Δỹ + f(x, t, ỹ) = χωũ in Q,
ỹ = 0 on Σ,
ỹI,K(0) = aI,K, ỹII,K(0) = ỹII,K(T ) in Ω,
ỹI,K(T ) ∈ BI,K(0, r).
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Hence, (ỹ, ũ) ∈ Y × L2(Q) is admissible for problem (PK,r), and therefore

J(ỹ, ũ) ≥ J(y∗, u∗).(3.23)

On the other hand, it follows, from (3.4) and (3.18), that

lim
ε→0+

Jε(yε, uε) ≥ lim
ε→0+

J(yε, uε) ≥ J(ỹ, ũ),

which, together with (3.17), (3.18), (3.23), and (3.4), implies that (ỹ, ũ) = (y∗, u∗)
and that as ε → 0+

uε → u∗ strongly in L2(Q),(3.24)

yε → y∗ strongly in L
2n

n−2 (Q) ∩ C([0, T ];H) ∩ L2(0, T ;V ),
weakly in Y.

(3.25)

In particular,

(yε(0), yε(T )) → (y∗(0), y∗(T )) strongly in H ×H as ε → 0+.(3.26)

Next, we shall prove that yε → y∗ strongly in Y as ε → 0+. To this end, we first
claim that

f(x, t, yε) → f(x, t, y∗) strongly in L2(Q) as ε → 0+.(3.27)

Notice that

|f(x, t, yε) − f(x, t, y∗)| = |bε(x, t)| · |yε − y∗|,

where bε(x, t) =
∫ 1

0
f ′
y(x, t, y

∗ + θ(yε − y∗))dθ. By assumption (Af ), we have |bε|2 ≤
C(1 + |y∗| + |yε|)2(α−1) for some positive constant C independent of ε. Then by the
Sobolev embedding theorem and the Hölder inequality, we see that the sequence {b2ε}
is bounded in L

n
2 (Q). By (3.25) and by making use of Hölder’s inequality, we obtain∫

Q

|f(x, t, yε) − f(x, t, y∗)|2dxdt ≤
(∫

Q

|bε|ndxdt
) 2

n
(∫

Q

|yε − y∗| 2n
n−2 dxdt

)n−2
n

→ 0

as ε → 0+.

Thus we have proved (3.27).
Now we set gε = (yε)t − Δyε + f(x, t, yε) − χωuε. Then it follows immediately

from (3.22) that gε → 0 strongly in L2(Q) as ε → 0+. Set ϕε = yε − y∗ and
Fε = χω(uε − u∗) + f(x, t, y∗) − f(x, t, yε). Then by (3.24) and (3.27), Fε → 0
strongly in L2(Q) as ε → 0+. Moreover, it holds that{

(ϕε)t − Δϕε = Fε in Q,
ϕε = 0 on Σ.

(3.28)

Since yε ∈ Ỹ , we have

ϕI,K
ε (0) = 0, ϕII,K,2

ε (0) = ϕII,K,2
ε (T ).(3.29)

By (3.21), it follows that

ϕII,K,1
ε (0) − ϕII,K,1

ε (T ) ≡ ξII,K,1
ε → 0 strongly in H as ε → 0+.(3.30)
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Then by (3.28), (3.29), and (3.30), we can apply Lemma 3.1 to get

‖ϕε‖2
Y ≤ C(‖Fε‖2

L2(Q) + |ξII,K,1
ε |22) → 0 as ε → 0+.

This completes the proof of Lemma 3.3.
Lemma 3.4. Let (yε, uε) ∈ Ỹ × L2(Q) be optimal for problem (Pε

K,r). Then
there exists an ε0 > 0 such that, for any ε with 0 < ε ≤ ε0, there exist a pair
(με, a

I,K
ε ) ∈ R ×HI,K and a function pε ∈ Y satisfying

1 ≤ μ2
ε + |aI,Kε |22 ≤ 2,(3.31)

με(2uε − u∗) = χωpε, a.e. in Q,(3.32) ⎧⎨⎩ (pε)t + Δpε − f ′
y(x, t, yε)pε = με{yε + (yε − y∗)

n+2
n−2 } in Q,

pε = 0 on Σ,
pI,Kε (T ) = −aI,Kε , pII,Kε (T ) = pII,Kε (0) in Ω.

(3.33)

Proof of Lemma 3.4. Write Z for the set {z ∈ Y ; zI,K(0) = 0, zII,K,2(0) =
zII,K,2(T )}. Let (z, v) be an arbitrary but fixed pair in the set Z × L2(Q). Write

yε,λ = yε+λz and uε,λ = uε+λv, λ > 0. Then it holds that yε,λ ∈ Ỹ and uε,λ ∈ L2(Q).
Moreover, we have

yε,λ → yε strongly in Y, uε,λ → uε strongly in L2(Q) as λ → 0+.

By the optimality of (yε, uε) for problem (Pε
K,r), we see that

0 ≤ Jε(yε,λ, uε,λ) − Jε(yε, uε)

λ
.(3.34)

Notice that, as λ → 0+,

1
2ε{(ε + dB(yI,Kε,λ (T )))2 − (ε + dB(yI,Kε (T )))2}

λ
→ dB(yI,Kε (T )) + ε

ε
〈aI,Kε , zI,K(T )〉,

(3.35)
where

aI,Kε ∈ ∂dB(yI,Kε (T )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if yI,Kε (T ) ∈ Int(BI,K(0, r)),{
syI,Kε (T )

|yI,Kε (T )|2

}
1≥s≥0

if yI,Kε (T ) ∈ ∂BI,K(0, r),

yI,Kε (T )

|yI,Kε (T )|2
if yI,Kε (T ) /∈ BI,K(0, r).

(3.36)

Here ∂dB(·) denotes the subdifferential of dB(·). (See [1] or [2].) Now we claim that
the following holds:

f(x, t, yε,λ) − f(x, t, yε)

λ
→ f ′

y(yε)z strongly in L2(Q) as λ → 0+.(3.37)

Indeed, we can write

f(x, t, yε,λ) − f(x, t, yε)

λ
= bε,λ(x, t)z,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1772 LING LEI AND GENGSHENG WANG

where bε,λ =
∫ 1

0
f ′
y(x, t, yε + θλz)dθ. It is clear that

{(bε,λ − f ′
y(x, t, yε))z}2 → 0 a.e. in Q as λ → 0+.

By the assumption in (Af ), we have

{(bε,λ − f ′
y(x, t, yε))z}2 ≤ C(1 + (|yε| + |z|)2(α−1))z2

for a certain positive constant C independent of ε and λ. Then by the Sobolev em-
bedding theorem and the Hölder inequality, we see that the function (1 + (|yε| +
|z|)2(α−1))z2 is in the space L1(Q). Then we can use the Lebesgue dominated conver-
gence theorem to get (3.37). Thus, it holds that, as λ → 0+,

1

2ελ

∫
Q

{|(yε,λ)t − Δyε,λ + f(x, t, yε,λ) − χωuε,λ|2

− |(yε)t − Δyε + f(x, t, yε) − χωuε|2}dxdt
→ 1

ε

∫
Q

((yε)t − Δyε + f(x, t, yε) − χωuε)(zt − Δz + f ′
y(x, t, yε)z − χωv)dxdt.

(3.38)

Write με for the term ε

dB(yI,K
ε (T ))+ε

. Then by (3.36), the estimate (3.31) follows

immediately.
Set

pε =
με

ε
{(yε)t − Δyε + f(x, t, yε) − χωuε} ∈ L2(Q).

Then by (3.35) and (3.38) and after some simple computation, we can pass to the
limit, as λ → 0+, in (3.34) to get

0 ≤ με

{∫
Q

(2uε − u∗)vdxdt +

∫
Q

(yε + (yε − y∗)
n+2
n−2 )zdxdt

+

〈
yII,K,1
ε (T ) − yII,K,1

ε (0)

ε
, zII,K,1(T ) − zII,K,1(0)

〉}
+ 〈aI,Kε , zI,K(T )〉

+

∫
Q

pε(zt − Δz + f ′
y(x, t, yε)z − χωv)dxdt.(3.39)

Since the pair (z, v) was arbitrarily taken from the set Z×L2(Q), the inequality (3.39)
holds for any pair (z, v) in the set Z × L2(Q).

By taking z = 0 ∈ Z in (3.39), we get

0 ≤ με

∫
Q

(2uε − u∗)vdxdt−
∫
Q

pεχωvdxdt ∀ v ∈ L2(Q),

from which (3.32) follows easily.
By taking v = 0 in (3.39), we get

0 ≤ με

{∫
Q

(yε + (yε − y∗)
n+2
n−2 )zdxdt +

〈
yII,K,1
ε (T ) − yII,K,1

ε (0)

ε
,

zII,K,1(T ) − zII,K,1(0)

〉}
+ 〈aI,Kε , zI,K(T )〉 +

∫
Q

pε(zt − Δz + f(x, t, yε)z)dxdt ∀ z ∈ Z.

(3.40)
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On the other hand, it follows from Lemma 3.3 that yε → y∗ strongly in Y as ε → 0+.
Thus by (3.1) and (3.2), there exists a positive number ε0 such that, for each number
ε with 0 < ε ≤ ε0,

‖f ′
y(x, t, yε)‖L∞(0,T ;Ln(Ω)) ≤ M.(3.41)

Then, for each number ε with 0 < ε ≤ ε0, the following equation has a unique solution
qε ∈ Y (see (3.3) and notice that HII,K0 = HII,K,2):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(qε)t + Δqε − f ′
y(x, t, yε)qε = −με(yε + (yε − y∗)

n+2
n−2 ) in Q,

qε = 0 on Σ,

qI,Kε (T ) = aI,Kε , qII,K,1
ε (T ) = με(

yII,K,1
ε (T )−yII,K,1

ε (0)
ε ) in Ω,

qII,K,2
ε (T ) = qII,K,2

ε (0) in Ω.

(3.42)

Multiplying the first equation of (3.42) by z ∈ Z and integrating over Q, noticing
that, for each z in the set Z, zI,K(0) = 0, zII,K,2(0) = zII,K,2(T ), we obtain that, for
each ε with 0 < ε ≤ ε0,

με

∫
Q

(yε + (yε − y∗)
n+2
n−2 )zdxdt +

〈
με

yII,K,1
ε (T ) − yII,K,1

ε (0)

ε
, zII,K,1(T )

〉
+ 〈zI,K(T ), aI,Kε 〉

= 〈zII,K,1(0), qII,K,1
ε (0)〉 +

∫
Q

qε(zt − Δz + f ′
y(x, t, yε)z)dxdt,

which together with (3.40) implies that, for each number ε with 0 < ε ≤ ε0,

0 ≤
∫
Q

(pε + qε)(zt − Δz + f ′
y(x, t, yε)z)dxdt

+

〈
zII,K,1(0), qII,K,1

ε (0) − με

(
yII,K,1
ε (T ) − yII,K,1

ε (0)

ε

)〉
∀ z ∈ Z.

(3.43)

However, for each function g in the space L2(Q) and for each number ε with 0 < ε ≤
ε0, the following equation has a unique solution zg ∈ Y (see (3.3)):⎧⎨⎩

zt − Δz + f ′
y(x, t, yε)z = g in Q,

z = 0 on Σ,
zI,K(0) = 0, zII,K,1(0) = 0, zII,K,2(0) = zII,K,2(T ) in Ω.

It is clear that this solution zg is in the set Z. Thus, we can take z = zg in (3.43)
to get 0 ≤

∫
Q

(pε + qε)gdxdt. Since the function g is arbitrary in the space L2(Q), it
holds that, for each number ε with 0 < ε ≤ ε0,

pε = −qε over Q.(3.44)

Now the inequality (3.43) is simplified as follows:

0 ≤
〈
zII,K,1(0), qII,K,1

ε (0) − με

(
yII,K,1
ε (T ) − yII,K,1

ε (0)

ε

)〉
∀ z ∈ Z.(3.45)

Recall that Z ≡ {z ∈ Y ; zI,K(0) = 0, zII,K,2(0) = zII,K,2(T )}. Thus, we can take
zII,K,1(0) to be any element in HII,K,1 in (3.45), which implies that, for each number
ε with 0 < ε ≤ ε0,

qII,K,1
ε (0) = με

(
yII,K,1
ε (T ) − yII,K,1

ε (0)

ε

)
= qII,K,1

ε (T ).
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From this and by (3.42) and (3.44), we can easily obtain (3.33). This completes the
proof of Lemma 3.4.

3.3. The proof of Theorem 1.1. Now we are ready to give the proof of The-
orem 1.1.

Proof of Theorem 1.1. By (3.31), we can assume, without loss of generality, that
as ε → 0+

με → μ0 in R,

aI,Kε → aI,K0 strongly in HI,K.
(3.46)

We next claim that for any ε with 0 < ε ≤ ε0, where ε0 was given in Lemma 3.4, it
holds that

‖pε‖Y ≤ C.(3.47)

Here and in what follows, C stands for a positive constant independent of ε, which
may be different in different contexts. It should be mentioned that we cannot directly
apply Theorem 2.1 to get (3.47). (See Remark 3.2 following the proof of Theorem
1.1.)

By (3.41), the sequence {f ′
y(x, t, yε)}0<ε≤ε0 is bounded in the space

L∞(0, T ;Ln(Ω)). Then, by the observability inequality for linear parabolic equa-
tions based on the Carleman inequality for linear parabolic equations (see [14]), we
see that, for any ε with 0 < ε ≤ ε0,

|pε(0)|22 ≤ C

(
‖με(yε + (yε − y∗)

n+2
n−2 )‖2

L2(Q) +

∫ T

0

∫
ω

p2
εdxdt

)
.

Since the sequence {yε} is bounded in the space Y , which is continuously embedded

into the space L
2(n+2)
n−2 (Q), it follows that the sequence {(yε − y∗)

n+2
n−2 } is bounded in

the space L2(Q). Hence, it holds that

|pε(0)|22 ≤ C

(
1 +

∫ T

0

∫
ω

p2
εdxdt

)
.

Notice that the sequence {uε} is bounded in the space L2(Q). Then, by (3.31) and
(3.32), we get ∫ T

0

∫
ω

p2
εdxdt ≤ C.

Thus it holds that |pε(0)|22 ≤ C for any ε with 0 < ε ≤ ε0, from which we see that,
for any ε with 0 < ε ≤ ε0, the following holds:

|pε(T )|22 = |pI,Kε (T )|22 + |pII,Kε (T )|22 = |aI,Kε |22 + |pII,Kε (0)|22 ≤ C.(3.48)

On the other hand, by the Hölder inequality and the Sobolev embedding theorem,
we have that, for any ε with 0 < ε ≤ ε0,∫ t

0

∫
Ω

|f ′
y(x, τ, yε)p

2
ε|dxdτ ≤

∫ t

0

{(∫
Ω

|f ′
y(x, τ, yε)|ndx

)
1
n

(∫
Ω

p
2n

n−2
ε dx

)
n−2
2n

(∫
Ω

p2
εdx

)1
2

}
dτ

≤ ‖f ′
y(x, τ, yε)‖L∞(0,T ;Ln(Ω))

∫ t

0

‖pε(τ)‖|pε(τ)|2dτ

≤ C

∫ t

0

‖pε(τ)‖|pε(τ)|2dτ.(3.49)
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Then multiplying the first equation of (3.33) by pε, integrating over Ω × (0, t), and
making use of (3.48), (3.49), and Gronwall’s inequality, we get that, for any ε with
0 < ε ≤ ε0,

‖pε‖2
C([0,T ];H) + ‖pε‖2

L2(0,T ;V ) ≤ C.(3.50)

By (3.50) and applying the Hölder inequality and the Sobolev embedding theorem
again, we see that, for any ε with 0 < ε ≤ ε0, the following holds:∫ T

0

∫
Ω

f ′
y(x, t, yε)

2p2
εdxdt ≤

∫ T

0

{(∫
Ω

|f ′
y(x, t, yε|2·

n
2 dx)

2
n

)

×
(∫

Ω

|pε|
2n

n−2 dx

)n−2
2n

(∫
Ω

|pε|
2n

n−2 dx

)n−2
2n

}

≤ ‖f ′
y(x, t, yε)‖2

L∞(0,T ;Ln(Ω))

∫ T

0

‖pε(t)‖2dt ≤ C.

Now we can use Lemma 3.1 to get that, for any ε with 0 < ε ≤ ε0,

‖pε‖2
Y ≤ C(‖f ′

y(x, t, yε)pε‖2
L2(Q) + ‖με(yε + (yε − y∗)

n+2
n−2 )‖2

L2(Q) + |aI,Kε |22) ≤ C.

This proves (3.47).
Next, by (3.47) and by making use of the Aubin compactness theorem and the

Ascoli–Arzela theorem, we can extract a generalized subsequence of {ε}0<ε≤ε0 , which,
for simplicity of notation, is still denoted in the same way, such that as ε → 0+

pε → p weakly in Y,
a.e. in Q,
strongly in L2(0, T ;V ) ∩ C([0, T ];H).

(3.51)

By (3.51) and the assumption in (Af ), and by making use of Lemma 3.3, one can
easily get that

f ′
y(x, t, yε)pε → f ′

y(x, t, y
∗)p weakly in L2(Q) as ε → 0+.(3.52)

Then by (3.46), (3.51), and (3.52), we can pass to the limit, as ε → 0+, in (3.33) to
get ⎧⎨⎩

pt + Δp− f ′
y(x, t, y

∗)p = μ0y
∗ in Q,

p = 0 on Σ,

pI,K(T ) = −aI,K0 , pII,K(T ) = pII,K(0) in Ω.

(3.53)

By Lemma 3.3 and by (3.51), we can pass to the limit, as ε → 0+, in (3.32) to get

χωp = μ0u
∗ a.e. in Q.(3.54)

Next, we prove that μ0 �= 0. Notice that the number μ0 appears only in the
case that K > 0. (In the case K = 0, namely, in the periodic case, H = HII,K and
both aI,K and BI,K(0, r) do not appear. Hence μ0 does not appear.) Now we seek
a contradiction, supposing that μ0 = 0. Then, by (3.31), we get |aI,Kε |22 ≥ δ > 0 for

some δ > 0 independent of ε. Since HI,K is a finite dimensional space, aI,K0 �= 0. On
the other hand, it follows from (3.54) that

p = 0 a.e. in ω × (0, T ).
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Then, by the unique continuation of solutions to the linear parabolic equations based
on the Carleman inequality for the linear parabolic equations (see [14]), we get

p = 0 a.e. in Ω × (0, T ),

which leads us to a contradiction since pI,K(T ) = −aI,K0 �= 0. Hence we have proved
μ0 �= 0. The proof of Theorem 1.1 is completed.

Remark 3.2. The boundedness of {pε}ε0≥ε>0 in Y cannot be obtained by just
making use of Theorem 2.1. In the problem (PK,r), the nonnegative integer K is
arbitrarily given. However, the integer K in Theorem 2.1 must be sufficiently large.

Remark 3.3. By a very similar method, we can obtain the Pontryagin maximum
principle for optimal controls for the problem (PK,r) even if the cost functional J(y, u)
has the following more general form:

J(y, u) =

∫ T

0

[g(t, y) + h(u)]dt,

where g : [0, T ] ×H → R+ is measurable in t and locally Lipschitzian in the second
variable, g(·, 0) ∈ L∞(0, T ), and h : H → R ≡ (−∞,+∞] is a lower semicontinuous
and convex functional satisfying h(u) ≥ C1|u|22 + C2. Here C1 > 0 and C2 ∈ R. In
this case, the only modification for the proof that we need is to use suitable smooth
functionals gε and hε to approach g and h, respectively. (The reader is referred to [1],
[13] for the construction of such smooth approximations.)

4. The existence of optimal controls for the problem (PK,r). In this sec-
tion, we shall prove Theorem 1.2; namely, we prove the existence of optimal solutions
for the problem (PK,r).

Proof of Theorem 1.2. Let M > 0 be given. By Theorem 2.2, there exists an
integer K ≡ K(M) ≥ 0 such that, for each aI,K ∈ HI,K with (1 + λK)|aI,K|22 ≤ M2,
there exists a control u ∈ L2(Q) with ‖u‖2

L2(Q) ≤ M2 such that the equation⎧⎨⎩
yt − Δy + f(x, t, y) = χωu in Q,
y = 0 on Σ,
yI,K(0) = aI,K, yII,K(0) = yII,K(T ) in Ω

(4.1)

has a solution y ∈ Y with the estimate:

|y(T )|22 ≤ C‖y‖2
Y ≤ C(M),

which implies |yI,K(T )|22 ≤ C(M). Here C(M) denotes a positive constant depending
on M .

Now we fix an integer K as above, an element aI,K ∈ HI,K with (1+λK)|aI,K|22 ≤
M2, and fix a number r such that r ≥ C(M). Then problem (PK,r) has a nonempty
admissible set; namely, there exists at least one pair (y, u) ∈ Y × L2(Q) (4.1) and
yI,K(T ) ∈ BI,K(0, r).

Set d = Inf{J(y, u); (y, u) ∈ Y × L2(Q) satisfying (1.1) and (1.2)}, and let
{(ym, um)} ⊂ Y × L2(Q) be a minimization sequence of problem (PK,r), namely,

d ≤ 1

2

∫
Q

(y2
m + u2

m)dxdt ≤ d +
1

m
, m = 1, 2, . . . ,(4.2)

and (ym, um) satisfies (4.1) and yI,Km (T ) ∈ BI,K(0, r). By (4.2), we see that the
sequence {um} is bounded in the space L2(Q).
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Multiplying the first equation of (4.1), where (y, u) is replaced by (ym, um), by
ym and then integrating over Ω×(0, T ), by making use of (i) of (Hf ) and the property
that yII,Km (0) = yII,Km (T ), we can easily derive

|ym(0)|22 ≤ C(‖um‖2
L2(Q) + |aI,K|22).

Here and in what follows, C denotes a positive constant independent of m, which
may be different in different contexts. From the above, using (4.1) with (y, u) being
replaced by (ym, um) and (i) of (Hf ) again, we obtain

‖ym‖2
V2(Q) ≤ C(‖um‖2

L2(Q) + |aI,K|22).(4.3)

Then by (ii) of (Hf ) and by making use of the Hölder inequality and the Sobolev

embedding theorem (V2(Q) ↪→ L
2(n+2)

n (Q)), we get∫
Q

f(x, t, ym)2dxdt ≤ C

∫
Q

|ym|(1 + |ym|β)2dxdt

≤ C

(
‖ym‖2

L2(Q) + ‖ym‖
2(n+2)

n

L
2(n+2)

n (Q)

)
≤ C

(
‖ym‖2

L2(Q) + ‖ym‖
2(n+2)

n

V2(Q)

)
≤ C.

(4.4)

Now by Lemma 3.1, where ξII,K,1 = 0, we conclude that

‖ym‖2
Y ≤ C(‖um‖2

L2(Q) + ‖f(x, t, ym)‖2
L2(Q) + |aI,K|22) ≤ C.

Hence, we can extract subsequences of {ym} and {um}, which, for simplicity of nota-
tion, are still denoted by themselves, such that as m → ∞

ym → ỹ weakly in Y,
strongly in L2(0, T ;V ) ∩ C([0, T ];H),
a.e. in Q,

(4.5)

um → ũ weakly in L2(Q).(4.6)

Now by (Hf ), we obtain

f(x, t, ym) → f(x, t, ỹ) a.e. in Q as m → ∞,

which together with (4.4) implies

f(x, t, ym) → f(x, t, ỹ) weakly in L2(Q) as m → ∞.(4.7)

Then by (4.5), (4.6), and (4.7), we can pass to the limit, as m → ∞, in (4.1) with
(y, u) being replaced by (ym, um) to get that (ỹ, ũ) satisfies (4.1). Moreover, it follows
from (4.5) that

yI,Km (T ) → ỹI,K(T ) strongly in H as m → ∞.

Hence,

|ỹI,K(T )|22 = lim
m→∞

|yI,Km (T )|22 ≤ r2.

Therefore (ỹ, ũ) is admissible for the problem (PK,r).
Finally, by passing to the limit, as m → ∞, in (4.2), we get d = 1

2

∫
Q

(ỹ2+ũ2)dxdt.

Hence, (ỹ, ũ) is an optimal solution for the problem (PK,r). This completes the proof
of Theorem 1.2.
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THE DYNAMIC PROGRAMMING EQUATION FOR THE PROBLEM
OF OPTIMAL INVESTMENT UNDER CAPITAL GAINS TAXES∗

IMEN BEN TAHAR† , H. METE SONER‡ , AND NIZAR TOUZI§

Abstract. This paper considers an extension of the Merton optimal investment problem to the
case where the risky asset is subject to transaction costs and capital gains taxes. We derive the
dynamic programming equation in the sense of constrained viscosity solutions. We next introduce a
family of functions (Vε)ε>0, which converges to our value function uniformly on compact subsets, and
which is characterized as the unique constrained viscosity solution of an approximation of our dynamic
programming equation. In particular, this result justifies the numerical results reported in the accom-
panying paper [I. Ben Tahar, H. M. Soner, and N. Touzi (2005), Modeling Continuous-Time Financial
Markets with Capital Gains Taxes, preprint, http://www.cmap.polytechnique.fr/∼touzi/bst06.pdf].

Key words. optimal consumption and investment in continuous time, transaction costs, capital
gains taxes, viscosity solutions
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1. Introduction. The problem of optimal investment and consumption in finan-
cial markets has been introduced by Merton [20, 21]. The explicit solution derived
in these papers is widely used among fund managers in practical financial markets.
Moreover, this problem became very quickly one of the classical examples of applica-
tion of the verification theorem in stochastic control theory. Indeed, by direct financial
considerations, it is easily seen that the value function of the problem satisfies some
homogeneity property, which completely determines its dependence on the wealth
state variable. Plugging this information into the corresponding dynamic program-
ming equation (DPE) leads to an ordinary differential equation (ODE) which can be
solved explicitly, thus providing a candidate smooth solution to the DPE.

In this paper, we consider the extension of the Merton problem to the case where
the risky asset is subject to capital gains taxes. For technical reasons, we also assume
that the risky asset is subject to proportional transaction costs. This problem is
formulated in the accompanying paper [5]. In contrast with the Merton frictionless
model, no explicit solution is available in this context. The main result of [5] is the
derivation of an explicit first order expansion of the value function for small tax and
interest rate parameters. The numerical results reported in [5] show that the relative
error induced by this approximation is of the order of 4%. These numerical results
are obtained by comparing the explicit first order expansion to the finite differences
approximation of the solution of the corresponding DPE.

The literature on the optimal investment problem under capital gains taxes is
not very expanded and is mainly developed in discrete-time binomial models; see
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[7, 10, 11, 12, 17, 18, 15, 19].
The main purpose of this paper is to justify the approximation of the value func-

tion by means of the finite differences scheme applied to the corresponding DPE. Since
our optimal control problem is singular, the DPE takes the form of a variational in-
equality:

min
{
−Lv, gb ·Dv, gs ·Dv

}
= 0 on S̄, v = 0 on ∂zS,

where L is a second order differential operator defined in (2.13) gb,gs are two vector
fields defined in (2.15) corresponding to the purchase and sale decisions, S is the state
space, and ∂zS is part of the boundary of S. The main difficulty comes from the
fact that the vector field gs is not locally Lipschitz. Then the standard techniques to
prove a uniqueness result for the above partial differential equation (PDE) fail. We
then introduce a convenient locally Lipschitz approximation gs

ε of gs, and we consider
the approximating PDE

min
{
−Lv, gb ·Dv, gs

ε ·Dv
}

= 0 on S̄, v = 0 on ∂zS.

The main result of this paper states that the above approximating PDE has a unique
continuous viscosity solution Vε which converges uniformly on compact subsets to-
wards the value function V of our optimal investment problem under capital gains
taxes. Applying the general results of Barles and Souganidis [4], we see that this
justifies the convergence of the numerical scheme implemented in the accompanying
paper [5] towards this unique solution of the approximating PDE.

The paper is organized as follows. Section 2 provides a quick review of the problem
of optimal investment under capital gains taxes. The main approximation result is
stated in section 3. In section 4, we prove a comparison result for the approximating
PDE, which implies the required uniqueness claim. In section 5 we prove the existence
of a solution of the approximating PDE by introducing a family of control problems
obtained by modifying conveniently our original problem. Finally, section 6 reports
the proof of convergence of Vε towards V uniformly on compact subsets.

Notation. For a domain D in R
n, we denote by USC(D) (resp., LSC(D)) the

collection of all upper semicontinuous (resp., lower semicontinuous) functions from
D to R. The set of continuous functions from D to R is denoted by C0(D) :=
USC(D) ∩ LSC(D). For a parameter δ > 0, we say that a function f : D −→ R has
δ-polynomial growth if

sup
x∈D

|f(x)|
1 + |x|δ < ∞.

We finally denote USCδ(D) := {f ∈ USC(D) : f has δ-polynomial growth}. The
sets LSCδ(D) and C0

δ(D) are defined similarly.

2. Optimal investment under capital gains taxes.

2.1. Problem formulation. In this section, we quickly review the formulation
of the problem of optimal investment under capital gains taxes. We refer the interested
reader to the accompanying paper [5] for more details. The financial market consists
of a tax-free bank account with constant interest rate r > 0 and a risky asset subject
to proportional transaction costs and to capital gains taxes. The price process of the
risky asset evolves according to the Black–Scholes model:

dPt = Pt (ρdt + σdWt) , t ≥ 0,(2.1)
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where ρ > 0 is a constant instantaneous return of the asset, and σ > 0 is a constant
volatility parameter. The process W = {Wt, t ≥ 0} is a standard Brownian motion
with values in R

1 defined on an underlying complete probability space (Ω,F ,P). We
shall denote by F the P-completion of the natural filtration of the Brownian motion.

For technical reasons (see section 4), we assume that the risky asset is also subject
to proportional transaction costs defined by the coefficients λ, μ ∈ [0, 1), so that the
bid and ask prices at time t of the risky asset are given by (1 − μ)Pt and (1 + λ)Pt.

A control process is a triple of F-adapted processes ν = (C,L,M), where

C ≥ 0 and

∫ T

0

Ctdt < ∞ P-a.s. for all T > 0 ,(2.2)

L and M are nondecreasing right-continuous, L0− = M0− = 0, and the jumps of M
satisfy

ΔMt ≤ 1 for t ≥ 0 P-a.s.(2.3)

Here Ct is the consumption rate at time t, dLt ≥ 0 is the amount invested between
times t and t + dt to purchase risky assets, and dMt ≥ 0 is the proportion of risky
assets in the portfolio which is sold between times t and t + dt. Then, the amount of
wealth Y = {Yt, t ≥ 0} on the risky asset account is defined by the dynamics

dYt = Yt
dPt

Pt
+ dLt − Yt−dMt , t ≥ 0.(2.4)

Since ΔMt ≤ 1, the no short-sales constraint Y ≥ 0 holds. Capital gains are taxed
only when the investor sells the risky asset. The amount of capital gains (or losses) is
evaluated by comparing the actual price Pt to a tax basis Bt specified by the taxation
code. In our framework the tax basis is defined as the weighted average of past
purchase prices,

Bt :=
Kt

Yt
Pt if Yt > 0 and Bt := Pt otherwise, t ≥ 0 ,

where

dKt = dLt −Kt−dMt , t ≥ 0.(2.5)

The natural initial condition for the process K is zero, as initially there are no prior
stocks bought. However, the method of dynamic programming always forces us to
consider all possible initial data. Hence we consider the K-equation with general
initial data K0 = k. Also a more detailed derivation of this tax basis and its place in
actual tax codes is given in subsection 2.2 of the accompanying paper [5].

Finally, we consider a linear taxation rule, with constant tax rate parameter
α ∈ [0, 1], so that the after-tax and after-transaction costs induced by selling the
amount Yt−dMt between times t and t + dt are given by

(1 − μ)Yt−dMt − α(1 − μ)

[
Yt−dMt −

Yt−dMt

Pt
Bt−

]
= (1 − μ) [(1 − α)Yt− + αKt−] dMt.

This justifies the following dynamics for the nonrisky asset component of the wealth
process:

dXt = (rXt − Ct)dt− (1 + λ)dLt + (1 − μ) [(1 − α)Yt− + αKt−] dMt, t ≥ 0.(2.6)
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We denote by A the set of all control processes and by S = (X,Y,K) the corresponding
state process defined by (2.4), (2.5), (2.6). A control process ν is said to be admissible
if the no bankruptcy condition

Zt := Xt + (1 − μ) [(1 − α)Yt + αKt] ≥ 0, t ≥ 0, P-a.s.(2.7)

holds. Here Zt is the after-tax and after-transaction costs liquidation value of the
portfolio at time t. Given an initial condition S0− = s, we shall denote by A(s) the
collection of all admissible controls.

The problem of optimal consumption and investment under capital gains taxes is
defined by the value function

V (s) := sup
ν∈A(s)

E

[∫ ∞

0

e−βtU(Ct)dt

]
, where U(x) :=

xp

p
, x ≥ 0,(2.8)

and β > 0, p ∈ (0, 1) are two given constant parameters.
Throughout this paper, we assume that the coefficients of the model satisfy the

condition

β

p
− r − (δ − r)2

2(1 − p)σ2
> 0,(2.9)

which ensures that the value function of the Merton optimal consumption-investment
problem (the case λ = μ = α = 0) is finite. In particular, the value function V is
finite under condition (2.9).

2.2. The DPE. For an admissible control ν ∈ A(s), the induced state process
Sν = (Xν , Y ν ,Kν) defined by (2.4), (2.5), (2.6) together with some initial data Sν

0 = s
is valued in the state space

S̄ := {(x, y, k) ∈ R × R+ × R+ : z = x + (1 − μ)[(1 − α)y + αk] ≥ 0} .(2.10)

We denote by S := int(S̄) the interior of S̄, and we decompose the boundary of this
state space into ∂S = ∂yS ∪ ∂kS ∪ ∂zS, where

∂yS = {s ∈ S : y = 0} , ∂kS = {s ∈ S : k = 0} , and ∂zS = {s ∈ S : z = 0} .

Observe that the value function is not known on the entire boundary of the state
space S. It is shown in [5] that the only boundary information is

V (s) = 0 for all s ∈ ∂zS.(2.11)

The main result of this section states that the value function V defined in (2.8) solves
the corresponding DPE

F (s, v,Dv,D2v) := min
{
−Lv, gb ·Dv, gs ·Dv

}
= 0 on S̄ \ ∂zS,(2.12)

where L is the second order differential operator

Lϕ (s) := −βϕ (s) + rxϕx (s) + ρyϕy (s) +
1

2
σ2y2ϕyy (s) + Ũ (ϕx (s)) ,(2.13)

Ũ is the Fenchel dual defined by

Ũ(ξ) := sup
c>0

(U(c) − cξ) for all ξ > 0,(2.14)
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and gb, gs are the vector fields defined by

gb :=

⎛⎝ 1 + λ
−1
−1

⎞⎠, gs(s) :=

⎛⎝ −(1 − μ)
1

1−α

0

⎞⎠+

⎛⎝ 0
−α
1−α

1

⎞⎠ k 1(y,k) �=0

(1 − α) y + αk
.(2.15)

The DPE can be written in different forms by taking other vector fields which are
parallel to our choices gb,gs. Since our choice for gs is discontinuous and this fact
is central to many of the technicalities, one may propose to choose a parallel vector
field which is continuous. However, in singular stochastic control, if the vector fields
appearing in the equation vanish (which is the case here if we choose continuous vector
fields), then the first order part of the equation (i.e., the part gs · Dv in the above
particular case) becomes degenerate. Indeed, this degeneracy is equivalent to the
technical difficulties related to the discontinuity of the vector fields. For this reason,
it is standard in singular control to choose these vector fields as nondegenerate and
close to unit vector fields.

Since we have no knowledge of any a priori regularity of the value function V , we
will use the theory of viscosity solutions. This notion allows for a weak formulation
of solutions to second order parabolic PDEs and boundary conditions; see [23, 9].

In what follows, we use the following classical notation from viscosity theory. For
a locally bounded function v : S̄ −→ R, we denote the corresponding upper and lower
semicontinuous envelopes by

v∗(s) := lim sup
S�s′→s

v(s′) and v∗(s) := lim inf
S�s′→s

v(s′).

The notation F∗ in the subsequent definition is defined similarly. Observe that F = F∗
outside the axis {(x, 0, 0) : x ≥ 0}.

Definition 2.1. (i) A locally bounded function v is a constrained viscosity sub-
solution of (2.11)–(2.12) if v∗ ≤ 0 on ∂zS, and for all s ∈ S̄ \ ∂zS and ϕ ∈ C2(S̄)
with (v∗ − ϕ)(s) = maxS̄(v∗ − ϕ) we have F∗

(
s, v(s), Dϕ(s), D2ϕ(s)

)
≤ 0.

(ii) A locally bounded function v is a viscosity supersolution of (2.11)–(2.12) if
v∗ ≥ 0 on ∂zS, and for all s ∈ S and ϕ ∈ C2(S) with (v∗ − ϕ)(s) = minS(v∗ − ϕ)
we have F

(
s, v(s), Dϕ(s), D2ϕ(s)

)
≥ 0.

(iii) A locally bounded function v is a constrained viscosity solution of (2.11)–
(2.12) if it is a constrained viscosity subsolution and supersolution.

In the above definition, observe that there is no boundary value assigned to the
value function on ∂yS∪∂kS. Instead, the subsolution property holds on this boundary.
Notice that the supersolution property is satisfied only in the interior of the domain
S.

Proposition 2.2. The value function V is a constrained viscosity solution of
(2.11)–(2.12).

The proof is reported in section 5 for the case ε = 0. In the accompanying
paper [5] a numerical scheme based on the finite differences approximation of the
DPE (2.11)–(2.12) is implemented. In order for us to justify this algorithm, we need
a uniqueness result for this DPE. As it is usually the case for parabolic second order
equations, uniqueness follows as a consequence of a comparison result. At this point,
a chief difficulty is encountered: the vector field gs is not locally Lipschitz on the axis
{(x, 0, 0), x ≥ 0}. Because of this problem, the standard techniques for the derivation
of a comparison result for the DPE (2.11)–(2.12) fail.
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Remark 1. Consider the Lipschitz vector field Gs := (−(1 − μ)[(1 − α)y + αk],
y, k) = [(1 − α)y + αk]gs. Then, the supersolutions of (2.11)–(2.12) coincide with
those of

min
{
−Lv, gb ·Dv, Gs ·Dv

}
≥ 0 on S̄ \ ∂zS and v = 0 on ∂zS.(2.16)

However, these two equations do not have the same set of subsolutions. The reason
for this is that the subsolution property must hold also on the boundary ∂yS ∪ ∂kS.
Since Gs(x, 0, 0) = 0 for every x ≥ 0, (2.16) provides no information on this axis.
Notice, however, that limn→∞ gs(sn) exists for some sequences sn → (x, 0, 0), and
might be nonzero, so that (2.12) bears more information on this axis.

This remark justifies that the above mentioned difficulty can be avoided if a priori
comparison on the axis {(x, 0, 0) : x ≥ 0} is available.

Proposition 2.3. Let λ + μ > 0. Let u be an upper semicontinuous con-
strained viscosity subsolution of (2.11)–(2.12) and v be a lower semicontinuous vis-
cosity supersolution of (2.11)–(2.12) with (u − v)+ ∈ USCp(S̄). Assume further that
(u− v)(x, 0, 0) ≤ 0 for all x ≥ 0. Then u ≤ v on S̄.

The proof of this comparison result is given at the end of section 4. Unfortunately,
this result does not provide uniqueness of a constrained viscosity solution for the DPE
(2.11)–(2.12), as we have no a priori comparison of two possible solutions on the axis
{(x, 0, 0) : x ≥ 0}.

The chief goal of this paper is to obtain an alternative characterization of V by
considering a convenient approximating PDE which has a unique solution converging
to our value function V . Before turning to this issue, we report the following continuity
property from [5] which follows from Proposition 2.3.

Proposition 2.4 (see [5]). Let λ + μ > 0. For s = (x, y, k) ∈ S̄ and z :=
x + (1 − μ)[(1 − α)y + αk], we have V (s) = zp V

(
y
z ,

k
z

)
, where V is a Lipschitz-

continuous function on R
2
+.

3. The main results. For every ε > 0 and s = (x, y, k) ∈ S̄, we define

fε(s) := h

(
k

εz

)+

, where z := x + (1 − μ) [(1 − α)y + αk] ,(3.1)

and h is a nondecreasing C2 (R+)-function with

h = 0 on [0, 1] and h = 1 on [2,∞).

For ε = 0, we set f0(s) = 1.
We next introduce, for all ε ≥ 0, the approximation gs

ε of gs,

gs
ε(s) := gs (x, y, kfε(s)) for s = (x, y, k) ∈ S̄,(3.2)

and the corresponding approximation of the DPE (2.11)–(2.12):

min
{
−Lv, gb ·Dv, gs

ε ·Dv
}

= 0 on S̄ \ ∂zS and v = 0 on ∂zS.(3.3)

A constrained viscosity solution of this equation is defined exactly as in Definition
2.1, replacing gs by gs

ε. For each ε > 0 the approximation gs
ε is Lipschitz-continuous

on S̄ \ ∂zS, and this property is sufficient to obtain the following comparison result.
Theorem 3.1. Let λ + μ > 0 and ε > 0. Let u be an upper semicontinuous

constrained viscosity subsolution of (3.3) and v be a lower semicontinuous viscosity
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supersolution of (3.3) with (u− v)+ ∈ USCp(S̄). Assume further that u ≤ v on ∂zS.
Then u ≤ v on S̄.

This result is proved in section 4 and implies, as usual, a uniqueness result for the
approximating PDE (3.3) for every ε > 0. We can now state our main DPE charac-
terization of the value function V which justifies the numerical scheme implemented
in the accompanying paper [5].

Theorem 3.2. For every ε > 0, there exists a unique constrained viscosity
solution Vε for the nonlinear parabolic PDE (3.3) in the class C0

p. Moreover, the
family (Vε)ε>0 is nondecreasing and converges to the value function V uniformly on
compact subsets of S̄ as ε ↘ 0.

The existence of a solution for the approximating PDE (3.3) is proved in section 5
by conveniently modifying the optimal investment problem under capital gains taxes,
and showing that the induced value function Vε is a constrained viscosity solution of
(3.3). Moreover, we will prove in Proposition 6.2 that 0 ≤ Vε ≤ V , so that Vε inherits
the p-polynomial growth of V stated in [5]. Together with the comparison result of
Theorem (3.1), this shows that V ε is the unique constrained viscosity solution in C0

p .
The convergence result is proved in section 6.

4. The comparison result. We adapt the standard argument based on the
Ishii technique; see Theorem 3.2 and Lemma 3.1 in [9]. The subsequent proof is
also inspired from [1]. In comparison to the latter paper, we have the additional
difficulty implied by the state constraint (y, k) ∈ R

2
+. We use the idea of Theorem

7.9 in [9] to account for this avoidance of the continuity assumptions of this theorem.
We mention that comparison results for second order PDEs with state constraints
have been obtained for specific control problems in [2] and [3] but do not apply to
our context. In the subsequent analysis, the key result to avoid the continuity is the
observation that

for each s ∈ S̄ \ ∂zS, there exists some ζs > 0 such that

s− ζgb ∈ S for every 0 < ζ < ζs,(4.1)

together with the following.
Lemma 4.1. Let v ∈ LSC(S̄) be such that v(s0) = lim infS�s→s0 v(s) for s0 ∈ ∂S.

Assume that gb ·Dv ≥ 0 on S in the viscosity sense. Then

lim
�↘0

v(s− �gb) = v(s) for any s ∈ S̄ \ ∂zS.

Proof. Since v is a viscosity supersolution of gb · Dv ≥ 0 on S and (4.1) holds,
we deduce that, for any s ∈ S, the function � 
−→ v(s − �gb) is well defined and
nonincreasing on a neighborhood of 0. In particular, v(s− �gb) ≤ v(s) for any s ∈ S,
and � ≥ 0 sufficiently small. For s0 ∈ ∂S, it follows from the assumption of the lemma
that v(s0) = lim infS�s→s0 v(s) ≥ lim infS�s→s0 v(s′ − �gb) ≥ v(s0 − �gb). Hence

v(s− �gb) ≤ v(s) for any s ∈ S̄ \ ∂zS and � ≥ 0.

This implies that, for any s ∈ S̄ \ ∂zS,

v(s) ≥ lim sup
�↘0

v(s− �gb) ≥ lim inf
�↘0

v(s− �gb) ≥ lim inf
S�s′→s

v(s′) ≥ v(s),

completing the proof.
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Another important ingredient of our comparison result is the use of a strict su-
persolution of the equation

min{gb ·Dv, gs
ε ·Dv} = 0 on S̄ \ ∂zS.(4.2)

This is the only place where the presence of transaction costs is crucial.
Lemma 4.2. Let λ + μ > 0 and assume that condition (2.9) holds. Then, there

exist two positive parameters

0 < η̄ <
λ + μ

2
and δ ∈ (p, 1) with

β

δ
− r − θ2

2(1 − δ)
> 0

such that the function

Φ(s) := (x + (1 − μ) [(1 − α + η̄)y + (α + η̄)k])
δ

for s ∈ S̄

is a classical strict supersolution of (4.2).
Proof. We show only that gs

ε ·DΦ > 0, as the other strict inequalities are easily
seen to hold. Setting z̃ := x + (1 − μ) [(1 − α + η̄)y + (α + η̄)k], we directly compute
that

(gs
ε ·DΦ) (s) =

(1 − μ)η̄

1 − α
z̃δ−1

[
1 + (1 − 2α)

kfε(s)

(1 − α)y + αkfε(s)

]
.

If y = k = 0 or 1 − 2α ≥ 0, the required inequality is trivial. We next assume that
(y, k) �= 0 and 1 − 2α < 0. Then using the fact that fε(s) ≤ 1, it follows that

(gs
ε ·DΦ) (s) ≥ (1 − μ)η̄

1 − α
z̃δ−1

[
1 + (1 − 2α)

k

(1 − α)y + αk

]
=

(1 − μ)η̄

1 − α
z̃δ−1 (1 − α)(y + k)

(1 − α)y + αk
> 0.

We are now ready for the following proof.
Proof of Theorem 3.1. We start by setting a new notation. We denote by L̃ the

operator

L̃(s, u, q,Q) := −βu + rxq1 + ρyq2 +
1

2
σ2Q22

for s = (x, y, k) ∈ S̄, u ∈ R, q = (qi)1≤i≤3 ∈ R
3, and Q = (Qi,j)1≤i≤3

1≤j≤3
∈ S(3), so that

the second order operator L can be written as

Lϕ(s) = L̃
(
s, ϕ(s), Dϕ(s), D2ϕ(s)

)
+ Ũ(ϕx(s)).

Let u and v be as in the statement of Theorem 3.1, and let us prove that u ≤ v in S̄.
We first observe that we can assume, without loss of generality, that

v(s) = lim inf {v(s′) : s′ ∈ S and s′ �= s} for every s ∈ ∂yS ∪ ∂kS.(4.3)

Indeed, we may define the function v := v on S ∪ ∂zS and v(s) := lim infs �=s′→s v(s
′)

for s ∈ ∂yS ∪ ∂kS. Then, v satisfies the same conditions as v, and if we succeed in
proving that u ≤ v, we deduce immediately that u ≤ v since the inequality v ≤ v is
trivial.
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We now start the proof of the comparison result with the additional condition
(4.3). Assume to the contrary that

(u− v) (s∗) > 0 for some s∗ ∈ S̄.(4.4)

Step 1. Let Φ be the strict supersolution of (4.2) defined in Lemma 4.2, and η > 0,
ζ > 0 be some fixed parameters such that

m0 := (u− v)(s0) − 2ηΦ(s0) − ζ|gb|2 = max
s∈S̄

(u− v − 2ηΦ) − ζ|gb|2 > 0(4.5)

by (4.4), where the maximum is attained thanks to the p-polynomial growth condition
on (u− v)+ and the fact that δ > p. In particular, it follows from (4.5), together with
Φ ≥ 0, u ≤ v on ∂zS and (4.1), that

s0 ∈ S̄ \ ∂zS and s0 − ζgb ∈ S for small ζ > 0.(4.6)

We next define the mappings on S̄ × S̄ by

Ψn(s, s′) := (u− ηΦ)(s) − (v + ηΦ)(s′) − ψn(s, s′),

ψn(s, s′) :=
∣∣n(s− s′) − ζgb

∣∣2 + ζ|s− s0|2 .

Here, ζ ∈ (0, 1) is some given constant. From the p-polynomial growth condition
on (u − v)+ and the fact that δ > p in the definition of Φ, we see that the upper
semicontinuous function Ψn attains its maximum at some (sn, s

′
n) in S̄ × S̄, so that

by (4.5),

mn := Ψn(sn, s
′
n) = max

(s,s′)∈S̄×S̄
Ψn(s, s′) ≥ m0 > 0.

By (4.6) and the definition of Ψn, we have the inequality Ψn(sn, s
′
n) ≥ Ψn(s0, s0− ζ

ngb)
which, together with the p-polynomial growth condition on u and v, provides∣∣n(sn − s′n) − ζgb

∣∣2 + ζ |sn − s0|2 ≤ (u− ηΦ)(sn) − (v + ηΦ)(s′n)

−(u− ηΦ)(s0) + (v + ηΦ)

(
s0 −

ζ

n
gb

)
(4.7)

≤ Ã
(
1 + |sn|p + |s′n|p + η|sn|δ + η|s′n|δ

)
for some positive constant Ã. We deduce from the last inequality that the sequences
(sn)n≥1 and (s′n)n≥1 are bounded, and we can assume, without loss of generality,
that sn, s

′
n −→ ŝ ∈ S̄ as n → ∞. We now use Lemma 4.1, together with the upper

semicontinuity of u and the lower semicontinuity of v, to pass to the limit as n → ∞
in (4.7). This provides

lim sup
n→∞

(∣∣n(sn − s′n) − ζgb
∣∣2 + ζ |sn − s0|2

)
≤ (u− ηΦ)(ŝ) − (v + ηΦ)(ŝ)

− ((u− ηΦ)(s0) − (v − ηΦ)(s0))

≤ 0,

where the last inequality follows from (4.5). Consequently∣∣n(sn − s′n) − ζgb
∣∣2 −→ 0 and sn, s

′
n −→ s0 as n → ∞.
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In particular, it follows from (4.6) that

s′n = sn − ζgb + o(1)

n
∈ S and sn ∈ S̄ \ ∂zS for large n.(4.8)

Step 2. For each n ≥ 1, (sn, s
′
n) is a maximum point of

Ψn : (s, s′) 
−→ (u− ηΦ) (s) − (v + ηΦ) (s′) − ψn(s, s′).

Then applying Theorem 3.2 in [9] to the upper semicontinuous functions u−ηΦ and to
the lower semicontinuous function v+ηΦ, we deduce that there exist 3×3 symmetric
matrices Ξn and Υn, with Ξn ≤ Υn such that

jn :=
(
qn := D1ψ(sn, s

′
n) + ηDΦ(sn);Qn := Ξn + ηD2Φ(sn)

)
∈ J̄2,+

S̄\∂zSu(sn),(4.9)

j′n :=
(
q′n := −D2ψ(sn, s

′
n) − ηDΦ(s′n);Q′

n := Υn − ηD2Φ(s′n)
)

∈ J̄2,−
S v(s′n),(4.10)

and

−
(
2n2 + ||Mn||

)
I ≤

(
Ξn 0
0 −Υn

)
≤ Mn +

1

2n2
M − n2,(4.11)

where

Mn := D2ψ(sn, s
′
n) = 2n2

(
I −I
−I I

)
+ 2ζ

(
I 0
0 0

)
,

D1ψ(s, s′) = 2n
(
n (s− s′) − ζgb

)
+2ζ(s−s0), −D2ψ(s, s′) = 2n

(
n (s− s′) − ζgb

)
.

Here the norm of a symmetric matrix M is defined as ‖M‖ = sup{Mξ · ξ : |ξ| ≤ 1 }.
By (4.8) and for large n ≥ 1, the subsolution property of u holds at jn and the

supersolution property of v holds at j′n, i.e.,

min
{
βu(sn) − L̃(sn, qn, Qn) − Ũ(qn 1), gb · qn, gs

ε(sn) · qn
}
≤ 0,(4.12)

min
{
βv(s′n) − L̃(s′n, q

′
n, Q

′
n) − Ũ(q′n 1), gb · q′n, gs

ε(s
′
n) · q′n

}
≥ 0.(4.13)

Step 3. For each n ≥ 1,

gb · qn − gb · q′n = ηgb · (DΦ(sn) + DΦ(s′n)) + 2ζgb · (sn − s0) .

Recall that sn, s
′
n −→ s0 ∈ S̄ \ ∂zS, and gb · Φ > 0 on S̄ \ ∂zS; then

lim
n→∞

(
gb · qn − gb · q′n

)
= 2ηgb ·DΦ(s0) > 0.(4.14)

We also compute for all n ≥ 1 that

gs
ε(sn) · qn − gs

ε(s
′
n) · q′n = η (gs

ε(sn) ·DΦ(sn) + gs
ε(s

′
n) ·DΦ(s′n)) + 2ζgs

ε(sn) · (sn − s0)

+ (gs
ε(sn) − gs

ε(s
′
n)) · 2n

[
n(sn − s′n) − ζgb

]
.

By the local Lipschitz continuity of the function gs
ε at s0, there exists some positive

constant C0 such that for large n,

|gs
ε(sn) · qn − gs

ε(s
′
n) · q′n − η (gs

ε(sn) ·DΦ(sn) + gs
ε(s

′
n) ·DΦ(s′n))|

≤ 2ζ |gs
ε(sn)| |sn − s0|C0 |sn − s′n| 2n

∣∣n (sn − s′n) − ζgb
∣∣

≤ 2ζ |gs
ε(sn)| |sn − s0| 2C0

∣∣n (sn − s′n) − ζgb
∣∣2 + 2C0ζ|gb|

∣∣n (sn − s′n) − ζgb
∣∣ .
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Since sn −→ s0 and |n(sn − s′n) − ζgb| −→ 0, we get

lim
n→∞

(gs
ε(sn) · qn − gs

ε(s
′
n) · q′n) = 2ηgs

ε ·DΦ(s0) > 0.(4.15)

We deduce from (4.13), (4.14), and (4.15), together with Lemma 4.2, that for large n,

min
{
gb · qn, gs

ε(sn) · qn
}
≥ 2 min

{
gb ·DΦ(s0), gs

ε(sn) ·DΦ(s0)
]
+ o(1) > 0.

Consequently (4.12) implies that for large n,

βu(sn) − L̃(sn, qn, Qn) − Ũ(qn 1) ≤ 0.(4.16)

Step 4. From (4.13) and (4.16), it follows that for large n,

βu(sn) − L̃(sn, qn, Qn) − Ũ(qn 1) ≤ 0 ≤ βv(s′n) − L̃(s′n, q
′
n, Q

′
n) − Ũ(q′n 1).

Using the local Lipschitz continuity property of the function Ũ , a direct calculation
shows that for some positive constant C and for large n,

β(u(sn) − v(s′n)) ≤ L̃(sn, qn, Qn) − L̃(s′n, q
′
n, Q

′
n) + Ũ(qn 1) − Ũ(q′n 1)

≤ C
(
|sn|ζ|sn − s0| + |n(sn − s′n) − ζgb|2 + |DΦ(sn) −DΦ(s′n)|

)
+

σ2

2

(
y2
n(Qn)22 − (y′n)2(Q′

n)22
)

+ η
{
L̃(sn, DΦ(sn), D2Φ(sn)) + L̃(s′n, DΦ(s′n), D2Φ(s′n))

}
.

From (4.11), we have that

(
y2
n(Qn)22 − (y′n)2(Q′

n)22
)
≤ 4ζyn(un − y′n) +

ζ2

n2
yn.

Moreover, the mapping Φ satisfies βΦ(.) − L̃(., DΦ, D2Φ) on S̄ \ ∂zS, and hence for
some positive constant C̃ and for large n,

β[u(sn) − v(s′n)] − ηΦ(sn) − ηΦ(s′n)

≤ L̃(sn, qn, Qn) − L̃(s′n, q
′
n, Q

′
n) + Ũ(qn 1) − Ũ(q′n 1)

≤ C̃

{
1

n2
+ |sn|ζ|sn − s0| + |n(sn − s′n) − ζgb|2 + |DΦ(sn) −DΦ(s′n)|

}
,

where the right-hand side of the inequality goes to zero as n → ∞. This implies

β[u(s0) − v(s0)] − 2ηΦ(s0) = lim sup
n→∞

(β[u(sn) − v(s′n)] − ηΦ(sn) − ηΦ(s′n)) ≤ 0,

contradicting (4.5).
We conclude this section with the following proof.
Proof of Proposition 2.3. We use the same arguments as in the proof of Theorem

3.1, but this time substituting gs for gs
ε. The only difference is the following. The

maximizer s0 in (4.5) is now known to be in S̄ \ (∂zS ∪ {(x, 0, 0) : x ≥ 0}), as it is
assumed in the statement of the proposition that u ≤ v on ∂zS ∪ {(x, 0, 0) : x ≥ 0}.
Then, the sequences (sn)n and (s′n)n, defined in Step 1, are valued in a ball around
s0 which does not intersect the axis {(x, 0, 0) : x ≥ 0}. Since gs is locally Lipschitz
on S̄ \ {(x, 0, 0) : x ≥ 0}, we just follow along the lines of the previous proof.
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5. An approximating control problem. Let s = (x, y, k) be an initial con-
dition in the state space S̄, and consider a control process ν ∈ A, i.e., a triple of
F-adapted processes ν = (C,L,M), with nondecreasing right-continuous processes
L,M , L0− = M0− = 0 and satisfying conditions (2.2) and (2.3). For every parameter
ε ≥ 0, we denote by Sε,s,ν = (Xε,s,ν , Y ε,s,ν ,Kε,s,ν) the unique strong solution of

dXε
t = (rXε

t − Ct)dt− (1 + λ)dLt + (1 − μ)
[
(1 − α)Y ε

t− + αfε(Sε
t−)Kε

t−
]
dMt,(5.1)

dY ε
t = Y ε

t [ρdt + σdWt] + dLt − Y ε
t−dMt,(5.2)

dKε
t = dLt − fε(Sε

t−)Kε
t−dMt(5.3)

with initial condition Sε,s,ν
0− = s. With this definition, observe that the jumps of the

state processes Sε,s,ν are given by

ΔSε,s,ν
t = −ΔLt gb − ΔMt

[
(1 − α)Y ε,s,ν

t− + αfε(Sε,s,ν
t− )Kε,s,ν

t−
]

gs
ε

(
Sε,s,ν
t−

)
,

where the vector fields gb and gs
ε are defined as in (2.15) and (3.2).

A control process ν = (C,L,M) is said to be (s, ε)-admissible if the corresponding
state process Sε,s,ν is valued in S̄. We shall denote by Aε(s) the collection of all (s, ε)-
admissible controls.

For every initial condition s ∈ S̄, ε ≥ 0, and (s, ε)-admissible control ν =
(C,L,M), we introduce the criterion

Jε
T (s, ν) := E

[∫ T

0

e−βtU(Ct)dt + e−βTU(Zε,s,ν
T )1T<∞

]
, T ∈ R+ ∪ {∞},(5.4)

where U is the power utility function defined in (2.8). The value function Vε is then
defined by

Vε(s) := sup
ν∈Aε(s)

Jε
∞(s, ν).(5.5)

Remark 2. When ε = 0, the above problem reduces to the optimal investment
problem under capital gains taxes reviewed in section 2, in particular V0 = V . For
positive ε, the control problem (5.5) can be interpreted as a utility maximization
problem with a modified taxation rule. Under this new taxation rule, the tax basis
used to evaluate the capital gains is equal to the relative weighted average purchase
price as long as the ratio K/Z is larger than 2ε, but it is set to zero when K/Z < ε.
Roughly speaking, for ε > 0, the investor pays more taxes than in the original market
when the ratio K/Z < ε. Consequently, we expect that Vε increases towards V as ε
goes to zero. This will be proved in Proposition 6.2 below.

The main objective of this section is to prove that the function Vε is a con-
strained viscosity solution of the approximating PDE (3.3), thus proving the existence
statement in Theorem 3.2. The arguments of this section hold for every ε ≥ 0. In
particular, the proof of Proposition 2.2 corresponds to the special case ε = 0.

As usual, the key ingredient for deriving the DPE is a dynamic programming
principle. We state it here without proof, and we refer the reader to [6, 13, 14].

Theorem 5.1. Let ε ≥ 0, s ∈ S̄, and let τ be some P-a.s. finite F-stopping time.
Then

Vε(s) = sup
ν=(C,L,M)∈Aε(s)

E

[∫ τ

0

e−βtU(Ct)dt + e−βτVε (Sε,s,ν
τ )

]
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL INVESTMENT UNDER CAPITAL GAINS 1791

Before turning to the derivation of the DPE for the problem Vε, we introduce
a notation which will be used frequently in what follows. Let ε ≥ 0, s ∈ S̄, ν =
(C,L,M) ∈ A(s), and consider some stopping time τ such that Sε,s,ν

τ− ∈ S̄. Then, it
is easy to verify that the strategy ν(τ) defined by

ν(τ)t :=
(
C̄, L̄, M̄

)
:= νt1[0,τ [(t) + (0, Lτ−,Mτ− + (1 − ΔMτ ))1[τ,∞)(t)(5.6)

is in Aε(s), and that

E

[∫ ∞

0

e−βtU
(
C̄t

)
dt

]
= E

[∫ τ

0

e−βtU
(
C̄t

)
dt

]
.(5.7)

5.1. Supersolution property. In this section, we prove that the value function
Vε is a viscosity supersolution of (3.3) on S for every ε ≥ 0.

Step 1. Fix some ε ≥ 0. Recall that Vε ≥ 0 by definition, and in particular
(Vε)∗(0) ≥ 0. So it remains to show that, for s0 in S and ϕ in C2(S̄) such that

0 = ((Vε)∗ − ϕ) (s0) = min
S

((Vε)∗ − ϕ) ,

the test function ϕ must satisfy, at the point s0,

min
{
−Lϕ, gb ·Dϕ, gs

ε ·Dϕ
}

(s0) ≥ 0.

Step 2.1. Let η > 0 be such that B(s0, η) ⊂ S, and consider some sequence
(sn)n≥1 satisfying

(i)B(s0, η) � sn −→
n→∞

s0,

(ii) ξn := Vε(sn) − ϕ(sn) −→ 0 as n → 0.

Fix some (c, �,m) in (0,∞)
3
, define the strategy ν ∈ A by

νt = (Ct = c, Lt = � t,Mt = mt) ,

and let (τn)n≥0 be the stopping times

τn := inf {t ≥ 0 : Sε,sn,ν
t /∈ S}n ≥ 0.

Given that for each n ≥ 0, sn /∈ ∂zS, and that the strategy ν is continuous, we have

τn > 0 for all n ≥ 0 and τn −−−−→
n→∞

τ0
P-a.s.(5.8)

Step 2.2. To each n ≥ 1 we associate the (ε, sn)-admissible strategy ν(τn) =
(Cn, Ln,Mn) ∈ Aε(sn) defined in (5.6). To simplify the notation, we set Sn :=
Sε,sn,ν(ε,sn). For any P-a.s. finite stopping time θn, the dynamic programming prin-
ciple of Theorem 5.1 provides

Vε(sn) ≥ E

[∫ θn∧τn/2

0

e−βtU(Cn
t )dt + e−β θn∧τn/2Vε

(
Sn
θn∧τn/2

)]
.

Notice that Sn
θn∧τn/2 ∈ S; we then deduce from the inequalities ϕ ≤ (Vε)∗ ≤ Vε on S

that

ξn + ϕ(sn) ≥ E

[∫ θn∧τn/2

0

e−βtU(Cn
t )dt + e−βθn∧τn/2ϕ

(
Sn
θn∧τn/2

)]
.
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By the definition of the strategy ν(τn), jumps of the process Sn may occur only
at the stopping time τn, and by definition of the stopping time τn, the process{
Sn
t 1[0,τn](t), t ≥ 0

}
is uniformly bounded. Hence, using the Itô formula we get

−ξn ≤ E

[∫ θn∧τn/2

0

e−βt
{
−Lϕ + Ũ(ϕx) − (U(Cn

t ) − Cn
t ϕx)

}
(Sn

t )dt

]

+ � E

[∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]
(5.9)

+m E

[∫ θn∧τn/2

0

e−βt [(1 − α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
.

Step 2.3. Set

θn =

{ √
ξn if ξn > 0,

n−1 if ξn = 0.

Since θn −→ 0 and τn −→ τ0 > 0 P-a.s. as n → ∞, it follows that for P-a.s.,
θn ∧ τn/2 = θn for large n. Rewriting (5.9), and taking the limits as n → ∞, we
obtain

0 = lim
n→∞

− ξn
θn

,

≤ lim inf
n→∞

E

[
1

θn

∫ θn∧τn/2

0

e−βt
{
−Lϕ + Ũ(ϕx) − (U(Cn

t ) − Cn
t ϕx)

}
(Sn

t )dt

]

+ � E

[
1

θn

∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]

+m E

[
1

θn

∫ θn∧τn/2

0

e−βt [(1 − α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
.(5.10)

Since ϕ ∈ C2
(
S̄
)
, and the process

{
Sn
t 1[0,τn/2](t), t ≥ 0

}
is continuous and uniformly

bounded, we get by dominated convergence

lim inf
n→∞

E

[
1

θn

∫ θn∧τn/2

0

e−βt
{
−Lϕ + Ũ(ϕx) − (U(Cn

t ) − Cn
t ϕx)

}
(Sn

t )dt

]

+ � E

[
1

θn

∫ θn∧τn/2

0

e−βtgb ·Dϕ(Sn
t )dt

]

+m E

[
1

θn

∫ θn∧τn/2

0

e−βt [(1 − α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dt

]
= −Lϕ(s0) + Ũ(ϕx(s0)) − (U(c) − c ϕx(s0))

+ � gb ·Dϕ(s0) + m [(1 − α)y0 + αfε(s0)k0]g
s
ε(s0) ·Dϕ(s0).

Recall (5.10); then

0 ≤ −Lϕ(s0) + Ũ(ϕx(s0)) − (U(c) − c ϕx(s0))

+ � gb ·Dϕ(s0) + m [(1 − α)y0 + αfε(s0)k0]g
s
ε(s0) ·Dϕ(s0).(5.11)
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Step 2.4. Observe that s0 ∈ S implies that [(1 − α)y0 + αfε(s0)k0] > 0. Since
(c, �,m) ∈ (0,∞)3, (5.11) provides

0 ≤ min
{
−Lϕ, gb ·Dϕ, gs

ε ·Dϕ
}

(s0).

5.2. Subsolution property. In this section, we prove that the value function
Vε is a constrained viscosity subsolution of (3.3) for every ε ≥ 0. In preparation for
this proof, we state some intermediate results.

Lemma 5.2. Let ϕ be a mapping in C2(S̄), and let s0 ∈ S̄ such that ϕx(s0) > 0.
Then there exist η > 0, γ > 0, and c0 > 0 such that

Ũ (ϕx(s)) − [U(c) − cϕx(s)] ≥ γ (c− c0)
+
for all c ≥ 0 and s ∈ B (s0, η) ∩ S̄.

Proof. Since ϕx(s0) > 0, we can find some η, δ > 0 such that ϕx > δ on
B(s0, η) ∩ S̄. The mapping s 
−→ I (ϕx(s)) := (U ′)−1 (ϕx(s)) is then bounded on
B(s0, η) ∩ S̄, and since U ′ is a decreasing function, we can find c0 > 0 such that

c0 > max
B(s0,η)∩S̄

I (ϕx) and γ := min
B(s0,η)∩S̄

(ϕx − U ′ (c0)) > 0.

For all s ∈ B(s0, η) ∩ S̄, using the nonnegativity and the convexity of the function
c ∈ R+ 
−→ Ũ(ϕx(s)) − (U(c) − c ϕx(s)), we get

Ũ(ϕx(s)) − (U(c) − c ϕx(s)) ≥ Ũ(ϕx(s)) − (U(c) − c ϕx(s))

− Ũ(ϕx(s)) + (U(c0) − c0 ϕx(s))

≥ (ϕx(s) − U ′ (c0)) (c− c0)
+

≥ γ (c− c0)
+
.

Lemma 5.3. Let ϕ ∈ C1(S̄) and s0 ∈ S̄ \ ∂zS. Assume that

min
{
gb ·Dϕ, gs

ε ·Dϕ
}

(s0) > 0.

Then, there exist η, γ > 0 such that for s = (x, y, k) ∈ B(s0, η) ∩ S̄ and s′ := s −
�gbη −m[(1 − α)y + αfε(s)k]gs

ε ∈ B(s0, η) ∩ S̄ with �,m ≥ 0,

ϕ(s) − ϕ(s′) ≥ γ� + γm [(1 − α)y + αfε(s)k] .

Proof. We first observe that ‖gs
ε‖∞ < ∞. In view of the definition of gs

ε, this
follows from

0 ≤ kfε(s)

(1 − α)y + αkfε(s)
≤ k

(1 − α)y + αk
≤ 1

α
,

where we used the inequality fε ≤ 1. Set

4γ := min
{
gb ·Dϕ ; gs

ε ·Dϕ
}

(s0) > 0.

Since gs
ε and Dϕ are continuous on S̄ \ ∂zS, there exists some η > 0 such that for all

s, s′ ∈ B(s0, η) ∩ S̄,

(i) min
{
gb ·Dϕ, gs

ε ·Dϕ
}

(s) > 2γ,

(ii) |Dϕ(s) −Dϕ(s′)| ≤ γ

‖gs
ε‖∞

.
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Let s and s′ be as in the statement of the lemma. By the mean value theorem, there
exists some s∗ ∈ [s, s′] ⊂ B(s0, η) ∩ S̄ such that

ϕ(s) − ϕ(s′) = (s− s′) ·Dϕ(s∗)

= �gb ·Dϕ(s∗) + m [(1 − α)y + αfε(s)k] gs
ε(s) ·Dϕ(s∗)

= �gb ·Dϕ(s∗) + m [(1 − α)y + αfε(s)k] gs
ε(s) ·Dϕ(s)

−m [(1 − α)y + αfε(s)k] gs
ε(s) · [Dϕ(s) −Dϕ(s∗)]

≥ �gb ·Dϕ(s∗) + m [(1 − α)y + αfε(s)k] gs
ε(s) ·Dϕ(s)

−m [(1 − α)y + αfε(s)k] ‖gs
ε‖∞|Dϕ(s) −Dϕ(s∗)|.

≥ � 2γ + m [(1 − α)y + αfε(s)k] (2γ − γ)

≥ γ � + γ m [(1 − α)y + αfε(s)k] .

Proof of the subsolution property.
Step 1. For each ε ≥ 0, the value function Vε is bounded from above by V ;

see Proposition 6.2 below. We also recall from Proposition 4.5 in [5] that for every
s = (x, y, k) ∈ S̄,

V (s) ≤ V 0(x + (1 − μ)αk, (1 − α)y),

where the function V 0, defined in [5], is continuous and satisfies

V 0(x̄, ȳ) = 0 for all (x̄, ȳ) ∈ R
2 such that x̄ + (1 − μ)ȳ = 0.

It then follows that for each ε ≥ 0, the lower semicontinuous envelope of Vε satisfies
(Vε)∗ ≤ 0 on ∂zS.

Let s0 ∈ S̄ \ ∂zS and ϕ ∈ C2
(
S̄
)

be such that

0 = (V ∗
ε − ϕ)(s0) = max

S̄
(V ∗

ε − ϕ) ,

and assume to the contrary that

F∗
(
s0, ϕ(s0), Dϕ(s0), D

2ϕ(s0)
)
> 0.

Observe that the last inequality implies that Ũ (ϕx(s0)) < ∞ and therefore ϕx(s0) >
0. Since ϕ ∈ C2(S̄), we deduce from Lemmas 5.2 and 5.3 the existence of η, γ, c0 >
0, with B(s0, η) ⊂ S̄ \ ∂zS, such that

min
{
−Lϕ, gb ·Dϕ, gs

ε ·Dϕ
}

(s) ∧ ϕx(s) > 0,(5.12)

Ũ (ϕx(s)) − (U(c) − cϕx(s)) ≥ γ (c− c0) ,(5.13)

ϕ(s) − ϕ(s′) ≥ γl + γm [(1 − α)y + αfε(s)k](5.14)

for all s ∈ B(s0, η) ∩ S̄, and s′ = s− �gbη −mgs
ε ∈ B(s0, η) ∩ S̄ for some �,m ≥ 0.

Step 2. Let (sn = (xn, yn, kn))n≥1 be some sequence such that

(i) sn ∈ B
(
s0,

η

2

)
,

(ii) sn −→
n→∞

s0,

(iii) ξn := |Vε(sn) − V ∗
ε (s0)| −→

n→∞
0.
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For each n ≥ 1, there exists a strategy νn = (Cn, Ln,Mn) ∈ Aε(sn) such that

Vε(sn) ≤ ξn + E

[∫ ∞

0

e−βtU(Cn
t )dt

]
.

Set Sn = (Xn, Y n,Kn) := Sε,sn,ν
n

for n ≥ 1, and fix some finite positive time horizon
T > 0. By the dynamic programming principle of Theorem 5.1,

Vε(sn) ≤ ξn + E

[∫ T∧θn

0

e−βtU(Cn
t )dt

]
+ E

[
e−βT∧θn

Vε (Sn
T∧θn)

]
,

where θn := inf {t ≥ 0 : Sn
t �∈ B(s0, η)}. Since Vε ≤ V ∗

ε ≤ ϕ on S̄ \ ∂zS, and
ξn = |Vε(sn) − V ∗

ε (s0)| = |Vε(sn) − ϕ(s0)|, it follows that for all n ≥ 1,

ϕ(s0) − E

[
e−βT∧θn

ϕ (Sn
T∧θn)

]
≤ 2ξn + E

[∫ T∧θn

0

e−βtU(Cn
t )dt

]
.

Notice that for all n ≥ 1, the process
{
Sn
t 1[0,T∧θn)(t), t ≥ 0

}
is uniformly bounded;

then the Itô formula provides

2 ξn ≥ E

[∫ T∧θn

0

e−βt
[
−Lϕ + Ũ(ϕx) − (U(Cn

t ) − Cn
t ϕx)

]
(Sn

t )dt

]

+ E

[∫ T∧θn

0

e−βtgb ·Dϕ(Sn
t )dLnc

t

]

+ E

[∫ T∧θn

0

e−βt [(1 − α)Y n
t + αfε(Sn

t )Kn
t ] (gs

ε ·Dϕ) (Sn
t )dMnc

t

]

+ E

⎡⎣ ∑
0≤t<T∧θn

e−βt
(
ϕ(Sn

t−) − ϕ(Sn
t )
)⎤⎦ ,

where Lnc and Mnc denote the continuous part of Ln and Mn. Recall that ϕ satisfies
(5.12), (5.13), and (5.14); then it follows from the previous inequality that

2 ξn ≥ γ e−βT
E

[
(T ∧ θn) + Lnc

T∧θn +

∫ T∧θn

0

[(1 − α)Y n
t + αfε (Sn

t )Kn
t ] dMnc

t

]

+ γe−βT
E

⎡⎣ ∑
0≤t<T∧θn

ΔLn
t +

[
(1 − α)Y n

t− + αfε
(
Sn
t−
)
Kn

t−
]
ΔMn

t

⎤⎦
+ e−βT γE

[∫ T∧θn

0

(Cn
t − c0)

+
dt

]
,

≥ E[hn(T ∧ θn)],

where

hn(T ∧ θn) = γe−βT

{
(T ∧ θn) + Ln

T∧θn +

∫ T∧θn

0

[
(1 − α)Y n

t− + αfε
(
Sn
t−
)
Kn

t−
]
dMn

t

+

∫ T∧θn

0

(Cn
t − c0)

+
dt

}
.
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Step 3. To obtain a contradiction, we show that for a sufficiently small T , there
is some constant m∗ such that for large n ≥ 1, E [hn(T ∧ θn)] ≥ m∗. The following
argument is largely inspired from [22].

Step 3.1. We start by providing estimates for |Xn−x0|, |Y n−y0|, and |Kn−k0|.
Fix some n ≥ 1, and assume that n is sufficiently large so that ξn ≤ η/2 holds. Let

Λ be the process defined by: Λt := (ρ− σ2

2 )t + σWt, and set

Λ�
t :=

∣∣∣∣ρ− σ2

2

∣∣∣∣ t + σ (W �
t −W�t) , where W �

t := max
u∈[0,t]

Wu and W�t := min
u∈[0,t]

Wu.

Since d
[
Y n
t e−Λt

]
= e−ΛtdLn

t − e−ΛtY n
t−dM

n
t , we deduce by a direct calculation that

|Y n
t − y0| ≤ |y0 − yn| + yn|1 − eΛt | + eΛ�

tLn
t + eΛ�

t

∫ t

0

Y n
u−dM

n
u .(5.15)

The dynamics of the processes Kn and Xn are such that

|Kn
t − k0| ≤ |k0 − kn| + Ln

t +

∫ t

0

fε(Sn
u−)Kn

u−dM
n
u ,(5.16)

|Xn
t − x0| ≤ |xn − x0| + |xn|

(
ert − 1

)
+ ert

∫ t

0

e−ruCn
udu + ert (1 + λ)

∫ t

0

e−rudLn
u

+ ert
∫ t

0

e−ru(1 − μ)
[
(1 − α)Y n

u− + αfε(Sn
u−)Kn

u−
]
dMn

u .(5.17)

Step 3.2. We have |1 − eΛT | ≤ max
[
eΛ�

T − 1; 1 − e−Λ�
T

]
. Define the set

FT :=

{
ω ∈ Ω : max

[
eΛ�

T − 1; 1 − e−Λ�
T

]
≤ min

[
1,

η

4(y0 + 1)

]}
.

We claim that it is possible to choose the parameter T > 0 such that

P(FT ) ≥ 1

2
, erT − 1 ≤ η

4(1 + |x0|)
, and erT ≤ 2.(5.18)

Indeed, Doob’s maximal Martingale inequalities provide, for δ > 0,

P{W �
T ≥ δ} ≤ 1

δ2
E[W �

T ]2 ≤ 4

δ2
E[WT ]2 =

4 T

δ2
; similarly P{W�T ≤ δ} ≤ 4 T

δ2
.

Hence for all δ > 0,

P{W �
T −W�T ≥ δ} ≤ P

{
W �

T ≥ δ

2

}
+ P

{
W�T ≤ δ

2

}
≤ 32 T

δ2
.

We now return to the estimates (5.15), (5.16), (5.17) and recall that ξn ≤ η/2. Since
T satisfies (5.18), the following inequalities (where A denotes some positive constant
depending on (x0, y0, k0)) hold P-a.s. on the set FT :

|Xn
T − x0| ≤ η/2 + η/4 + 2

∫ T

0

Cn
t dt + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t ,(5.19)

|Y n
T − y0| ≤ η/2 + η/4 + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t ,(5.20)

|Kn
T − k0| ≤ η/2 + ALn

T + A

∫ T

0

Gε(Sn
t−)dMn

t ,(5.21)
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where

Gε(s) := (1 − α)y + αfε(s)k for s = (x, y, k) ∈ S̄ .

Step 3.3. For ω in FT , we consider the following cases.
Case 1. θn(ω) ≥ T . Then, by the definition of hn(T ∧ θn), we have hn(T ∧ θn) ≥

γ e−βTT .
Case 2. θn(ω) < T . Recall that Sn is càdlag̀; then, by the definition of the

stopping time θn, this happens when Sn
θn(w) /∈ B(s0, η], i.e.,

max
[
|Xn

θn(ω)(ω) − x0|; |Y n
θn(ω)(ω) − y0|; |Kn

θn(ω)(ω) − k0|
]

≥ η.

Subcase 2.1. |Xn
θn(ω)(ω) − x0| ≥ η. It follows from (5.19) that at least one of the

following inequalities holds:

(i)

∫ θn(ω)

0

Cn
t dt ≥ η/16 or (ii) Ln

θn +

∫ θn(ω)

0

Gε(Sn
t−)dMn

t ≥ η

8A
.

In inequality (i),

η

16
≤
∫ θn(ω)

0

Cn
t dt ≤ c0T +

∫ θn(ω)

0

(Cn
t − c0) dt.

Since it is possible to choose T such that c0T ≤ η
32 , it follows that

η

16
≤ η

32
+

∫ θn(ω)

0

(Cn
t − c0)

+
dt;

then η/32 ≤
∫ θn(ω)

0
(Cn

t − c0)
+
dt, and it follows that

hn(T ∧ θn) ≥ γe−βT

∫ θn(ω)

0

(Cn
t − c0)

+
dt ≥ γe−βT η

32
.

In inequality (ii), it immediately follows that hn(T ∧ θn) ≥ γe−βT η
8A .

Subcase 2.2. |Y n
θn(ω) − y0| ≥ η. Then, it follows from inequality (5.20) that

η

4
≤ A

(
Ln
θn(ω) +

∫ θn

0

Gε(Sn
t−)dMn

t

)
,

and hence, hn(T ∧ θn(ω)) ≥ γe−βT η
4A .

Subcase 2.3. |Kn
θn(ω) − k0| ≥ η. By inequality (5.21) we see that in this case,

η

2
≤ A

(
Ln
θn(ω) +

∫ θn

0

Gε(Sn
t−)dMn

t

)
,

and hence, hn(T ∧ θn(ω)) ≥ γe−βT η
2A .

From the several cases discussed above, it follows that for P-a.e. ω in FT ,

hn(T ∧ θn(ω)) ≥ m� := γ min
[
T,

η

32
,
η

8A

]
,
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and therefore, for T sufficiently small and large n,

E [hn(T ∧ θn)] ≥ E [1FT
hn(T ∧ θn)] ≥ m�P(FT ) =

m�

2
.

Remark 3. Let A0(s) be the subset of A(s) consisting of all controls ν = (C,L,M)
with a Lebesgue absolutely continuous component M . Then, it is clear that the above
derivation of the DPE is not altered by this additional restriction. Hence, the value
problem of this new control problem coincides with Vε by the comparison result of
Theorem 3.1. The same comment holds if the component L is, or both components
L and M are, restricted to be Lebesgue absolutely continuous.

6. The convergence result. We first derive a useful estimate.
Lemma 6.1. Let s be in S̄. Then for any ε ≥ 0, Aε(s) ⊂ A(s), and for all

ν ∈ A(s) and t ≥ 0,

0 ≤ Z0,s,ν
t − Zε,s,ν

t ≤ 4εr Z0,s,ν �
T ert, where Z0,s,ν �

t := sup
u∈[0,t]

|Z0,s,ν
u |.

Proof. Clearly the inclusion Aε(s) ⊂ A(s) follows from the inequality Z0,s,ν ≥
Zε,s,ν .

Step 1. We first prove that Zε,s,ν ≤ Z0,ε,ν
P-a.s. To see this, we consider a

sequence of stopping times (τn)n≥0 exhausting the jumps of the càdlàg process M ,

with τ0 = 0. The dynamics of the processes Kε,s,ν and K0,s,ν are such that

d
(
Kε,s,ν −K0,s,ν

)
t
= −

(
Kε,s,ν −K0,s,ν

)
t− dMt +

[
1 − fε

(
Sε,s,ν
t−

)]
Kε,s,ν

t− dMt.

Then, for all n ≥ 0, we have P-a.s. for t ∈ [τn, τn+1),

(6.1)

Kε,s,ν
t −K0,s,ν

t

= e−(Mc
t −Mc

τn
)

(
Kε,s,ν

τn −K0,s,ν
τn +

∫ t

τn

eM
c
u−Mc

τn

[
1 − fε(Sε,s,ν

u− )
]
Kε,s,ν

u− dMu

)
.

Since 1 − fε ≥ 0, this implies that

Kε,s,ν
t −K0,s,ν

t ≥ e−(Mc
t −Mc

τn
)(Kε,s,ν

τn −K0,s,ν
τn )

= e−(Mc
t −Mc

τn
)((Kε,s,ν

τn− −K0,s,ν
τn− )(1 − ΔMτn)(6.2)

+[1 − fε(Sε,s,ν
τn− )]Kε,s,ν

τn− ΔMτn) ≥ 0.

Clearly, Y ε,s,ν = Y 0,s,ν . Then

d
(
Zε,s,ν − Z0,s,ν

)
t
= r

(
Zε,s,ν − Z0,s,ν

)
t
dt− r(1 − μ)α

(
Kε,s,ν −K0,s,ν

)
dt.

Since Zε,s,ν
0 − Z0,s,ν

0 = 0 and Kε,s,ν ≥ K0,s,ν , this implies that

Zε,s,ν
t − Z0,s,ν

t = −r(1 − μ)αert
∫ t

0

e−ru
(
Kε,s,ν

u −K0,s,ν
u

)
du ≤ 0.(6.3)

Step 2. We next prove the second inequality. Observe that [1 − fε(s)] k ≤ 2εz
for s = (x, y, k) ∈ S̄, where z := x + (1 − μ) [(1 − α)y + αk]. Together with (6.2) and
(6.2) this shows that, for all n ≥ 0 and t ∈ [τn, τn+1),

Kε,s,ν
t −K0,s,ν

t ≤ 2ε e−(Mc
t −Mc

τn
)

(
Zε,s,nu
τn− +

∫ t

τn

eM
c
u−Mc

τnZε,s,ν
u− dMu

)
.
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Using the increase of M together with the fact that Zε,s,ν ≤ Z0,s,ν , as shown in the
first step of this proof, this provides

Kε,s,ν
t −K0,s,ν

t ≤ 2εZ0,s,ν�
t e−(Mc

t −Mc
τn

)

(
1 +

∫ t

τn

eM
c
u−Mc

τndMu

)
≤ 4εZ0,s,ν�

t .

The required inequality is obtained by plugging this estimate into (6.3).
Proposition 6.2. The sequence (Vε)ε>0 is nonincreasing and Vε ≤ V .
Proof. The inequality Vε ≤ V follows immediately from the fact that Aε(s) ⊂

A(s), as stated in Lemma 6.1. To prove that the sequence (Vε)ε>0 is nonincreasing,
we shall prove that Aε1(s) ⊂ Aε2(s) whenever ε1 ≥ ε2. To do this, it is sufficient
to prove that for any control ν = (C,L,M) ∈ Aε(s), the associated process Zε :=
Xε,s,ν + (1 − μ) [(1 − α)Y ε,s,ν + αKε,s,ν ] is nonincreasing with respect to ε. Recall
that

fε(s) = h

(
k

εz

)
, where z = x + (1 − μ)[(1 − αy + αz],

and h is a smooth function. From Remark 3, we may restrict the process M to be
absolutely continuous with respect to the Lebesgue measure, i.e., Mt =

∫ t

0
mudu for

some F-adapted process {mt, t ≥ 0}, as the restriction of the control M to this class
produces the same value function Vε.

Then, by classical results on the regularity of flows of stochastic differential equa-
tions (see, e.g., [16]), the processes Zε, Y ε := Y ε,s,ν and Kε := Kε,s,ν are differentiable
in ε, and the processes

zεt := e−rt ∂Z
ε
t

∂ε
, yεt :=

∂Y ε
t

∂ε
, kεt := e−rt ∂K

ε
t

∂ε

satisfy yεt = 0 for all t ≥ 0, zε0 = kε0 = 0, and solve the system of ODEs

żεt = −rαkt and k̇εt = at + btzt − ctkt,

where

at :=
(Kε

t )
2

εZε
t

h′
(

Kε
t

εZε
t

)
, bt :=

(Kε
t )

2

ε(Zε
t )

2
h′
(

Kε
t

εZε
t

)
,

and

e−rtct := r + mt

[
h

(
Kε

t

εZε
t

)
+

Kε
t

εZε
t

h′
(

Kε
t

εZε
t

)]
.

Differentiating once more with respect to the t-variable, we obtain the following second
order differential equation for zε:

−z̈εt − ct ż
ε
t − rαbt z

ε
t − rαat = 0 and żε0 = z0 = 0.(6.4)

We now consider the function

ẑt := −rα

ε

∫ t

0

∫ u

0

(Kε
t )

2

εZε
t

h′
(

Kε
t

εZε
t

)
du dt for t ≥ 0.

Since ẑt ≤ 0, ˙̂zt ≤ 0, bt ≥ 0, and c ≥ 0, it follows that ẑt is a supersolution of (6.4).
By a standard comparison result, we deduce that zεt ≤ ẑt, and therefore zεt ≤ 0 for all
t ≥ 0. This completes the proof.
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Our final result states the convergence of Vε towards V .

Proposition 6.3. The sequence (Vε)ε>0 is nonincreasing and converges towards
V , as ε ↘ 0, uniformly on compact subsets of S̄.

Proof. Let (νn = (Cn, Ln,Mn))n≥1 be a maximizing sequence of controls for
V (s):

V (s) − 1

n
≤ E

[∫ ∞

0

e−βtU(Cn
t )dt

]
for all n ≥ 1.

By the monotone convergence theorem, we verify that

E

[∫ ∞

0

e−βtU(Cn
t )dt

]
= lim

T→∞
E

[∫ T

0

e−βtU(Cn
t )dt

]
.

Then V (s) − 1
2n ≤ E[

∫ Tn

0
e−βtU(Cn

t )dt] for some Tn > 0. By Lemma 6.1 we have

Z0,s,ν
t∧Tn ≥ Zε,s,ν

t∧Tn ≥ Z0,s,ν
t∧Tn − 4rεZ0,s,ν�

Tn P-a.s. for all t ≥ 0. Then, the stopping times
τ(ε, s, n) := inf {t ≥ 0 : Zε,s,ν

t ≤ 0}, ε ≥ 0, satisfy

τ(0, s, n) ∧ Tn ≥ τ(ε, s, n) ∧ Tn and lim
ε→0

τ(ε, s, n) ∧ Tn = τ(0, s, n) ∧ Tn
P-a.s.

Hence, by the monotone convergence theorem,

lim
ε→0

E

[∫ τ(ε,s,n)∧Tn

0

e−βtU(Cn
t )dt

]
= E

[∫ τ(0,s,n)∧Tn

0

e−βuU(Cn
t )dt

]
.

Recall from (5.6) and (5.7) that

Vε(s) ≥ E

[∫ τ(ε,s,n)∧Tn

0

e−βtU(Cn
t )dt

]
and

E

[∫ τ(0,s,n)∧Tn

0

e−βtU(Cn
t )dt

]
= E

[∫ Tn

0

e−βuU(Cn
u )du

]
.

Then

lim inf
ε→0

Vε(s) ≥ E

[∫ Tn

0

e−βtU(Cn
t )dt

]
≥ V (s) − 1

2n
.

By arbitrariness of n ≥ 1, this provides lim infε→0 Vε(s) ≥ V (s). Together with
Proposition 6.2, this shows that Vε(s) −→ V (s) as ε ↘ 0 for every s ∈ S̄.

We finally recall from Proposition 2.4 that the limit function V is continuous.
Since (Vε)ε>0 is a monotonic sequence of continuous functions, it follows from the
Dini theorem that the convergence holds uniformly on compact subsets of S̄.
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Abstract. In this paper we establish the local exact internal controllability for the two-
dimensional magnetohydrodynamic equations. The needed Carleman estimate for the adjoint lin-
earized magnetohydrodynamic equations is also obtained here.
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1. Introduction. In this paper we study the internal controllability for the mag-
netohydrodynamic (MHD) equations in two-dimensional bounded domains. We show
that the final value (state) of any sufficiently smooth solution (evolution) of the MHD
system can be attained by starting from initial states which are “close” enough to the
initial state of the target solution and acting in both fluid and magnetic parts of the
MHD equations by appropriate locally distributed internal controls. The correspond-
ing three-dimensional result was established by the authors in [7]. The first but less
general controllability result for the MHD equations in three-dimensional domains
was obtained in [2] (see also [3]). We emphasize here that despite their similarities
the two-dimensional and three-dimensional cases are different; they are not particular
cases of a more general situation.

As in the three-dimensional case, we shall reduce the local controllability problem
for the MHD equations to the global controllability problem for the linearized MHD
equations by means of an infinite-dimensional version of the implicit function theorem.
This approach is inspired from [9] (see also [5] and [8]), where the related but simpler
case of the internal controllability of the Navier–Stokes equations is studied.

To solve the global controllability problem, we approximate it by a family of ad
hoc optimal control problems for the same linearized MHD system. The estimates
that we need to prove the convergence of the approximation procedure are obtained
by using an observability inequality for the adjoint linearized MHD equations. Such
an inequality is usually derived from a Carleman inequality for the same equations.
For this reason, the main effort here will be directed toward obtaining the required
Carleman inequality for the adjoint linearized MHD system. The strategy described
here is nothing more than that used in [9] for the case of the Navier–Stokes equations.

Let us mention that two new Carleman inequalities—one for elliptic equations
with nonhomogeneous Dirichlet boundary conditions and the other for the Stokes
equations, established in [10] and [4], respectively—suggest that our controllability
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result for the MHD system can still be improved. More specifically, it is expected
to be able to prove that less regular target solutions for the MHD equations can
be attained by local internal action if we use the main result in [10] and adapt the
approach in [4] to our situation.

2. Functional framework and main result. Let Ω be a bounded multi-
connected open set in R

2 whose boundary ∂Ω is a finite union of mutually disjoint
closed curves of class C2. Such a set can be made simply connected with a finite num-
ber of smooth cuts. This means that there exist p mutually disjoint curves Γ1, . . . ,Γp

of class C2 which are not tangent to ∂Ω such that Ω \ (∪p
i=1Γi) is simply connected.

Let T > 0 be fixed. We set Q = Ω × (0, T ). We also fix an open subset ω of Ω. The
controlled MHD equations (with boundary and initial conditions) we consider are the
following:

∂y

∂t
− νΔy + (y · ∇)y + ∇p + ∇

(
1

2
B2

)
− (B · ∇)B

= f + χωu in Q,

∂B

∂t
+ η c̃url(curlB) + (y · ∇)B − (B · ∇)y = P (χωv) in Q,

div y = 0, divB = 0 in Q,

y = 0, B ·N = 0, curlB = 0 on Σ = ∂Ω × (0, T ),

y(·, 0) = y0, B(·, 0) = B0 in Ω.

(2.1)

Here y = (y1, y2) : Ω × [0, T ] −→ R
2 is the velocity vector field, p : Ω × [0, T ] −→ R

is the pressure, and B = (B1, B2) : Ω × [0, T ] −→ R
2 is the magnetic field. System

(2.1) is controlled through the vector functions u = (u1, u2) : Ω × [0, T ] −→ R
2 and

v = (v1, v2) : Ω × [0, T ] −→ R
2. The variables of the functions (fields) y, p,B, u, and

v are denoted by x = (x1, x2) and t (belonging to Ω and [0, T ], respectively). The
other symbols in (2.1) denote known (given) quantities (or objects). So, ν and η are
the kinematic viscosity and magnetic resistivity, which are supposed to be positive.
From now on, for the sake of simplicity and without loss of generality, ν and η will
be assumed to be 1. Further, f = (f1, f2) : Ω × [0, T ] −→ R

2 is the density of the
external forces, χω is the characteristic function of ω, P is the Leray projector (put
there to “kill” the gradient part of χωv), and y0 : Ω −→ R

2 and B0 : Ω −→ R
2 are

the initial velocity and magnetic fields. The operators curl and c̃url are defined as
follows:

curlB =
∂B2

∂x1
− ∂B1

∂x2
for every vector function B = (B1, B2),

c̃urlw =

(
∂w

∂x2
,− ∂w

∂x1

)
for every scalar function w.

It is well known that c̃url(curlB) = −ΔB + grad(divB). Finally, N is the unit outer
normal to ∂Ω.

When Ω is not simply connected (but it remains multiconnected), to assure the
well-posedness of problem (2.1), we have to impose the following additional conditions
on B on the cuts Γi: ∫

Γi

B ·N dσ = 0 in (0, T ), i = 1, . . . , p,(2.2)
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where N is the unit outer normal to Γi’s. (See Appendix I of [11] for an equivalent
form of (2.2).) When Ω is simply connected, conditions (2.2) are no longer necessary.

For the statement of our results and the considerations which follow, some func-
tion spaces are required. For each positive integer m and p > 1, or p = +∞, we
denote (as usual) by Wm,p(Ω) the Sobolev space of functions in Lp(Ω) whose weak
derivatives of order less than or equal to m are also in Lp(Ω). When p = 2, we set
H1(Ω) = W 1,2(Ω). In a similar way, H2,1(Q) is the space of all functions in L2(Q)
whose first and second order weak derivatives with respect to x1 and x2, and first order
weak derivative with respect to t, are all in L2(Q), too. The fractional order Sobolev
space H1/2(Ω) will also be required by a certain argument. Since all the functions
involved in equations (2.1) (except p) are actually vector functions (fields), we mostly
use some product function spaces: (L2(Q))2, (H1(Ω))2, (W 1,∞(Ω))2, (W 2,p(Ω))2,
(H2,1(Q))2, etc., all endowed with the product norms. The time-dependent function
space L2(0, T ;H1(Ω)) contains all (equivalence classes of) measurable functions from
(0, T ) to H1(Ω) having the square of their H1(Ω) norm integrable over (0, T ). The
spaces L∞(0, T ; (W 1,∞(Ω))2) and L∞(0, T ; (W 2,p(Ω))2) are defined similarly. Finally,
we need the corresponding Sobolev spaces W 1,∞(0, T ; (W 1,∞(Ω))2) and W 1,∞(0, T ;
(W 2,p(Ω))2) containing the functions in L∞(0, T ; (W 1,∞(Ω))2) and L∞(0, T ; (W 2,p

(Ω))2) whose first order weak derivatives are in L∞(0, T ; (W 1,∞(Ω))2) and L∞(0, T ;
(W 2,p(Ω))2), respectively. The norms of all the considered spaces are denoted in the
same manner: | · |(L2(Q))2 , | · |(H1(Ω))2 , | · |(H2,1(Q))2 , etc.

The natural functional framework for the MHD equations (2.1) is given by the
space H of all weakly divergence-free vector functions in (L2(Ω))2 which are tangential
to the boundary in a weak sense, endowed with the (L2(Ω))2 norm. Our considerations
here require the following two (H1(Ω))2 versions (subspaces) of H:

V1 = {y ∈ (H1(Ω))2 : div y = 0 in Ω and y = 0 on ∂Ω}

and

V2 = {B ∈ (H1(Ω))2 : divB = 0 in Ω and B ·N = 0 on ∂Ω}

if Ω is simply connected, or

V2 = {B ∈ (H1(Ω))2 : divB = 0 in Ω, B ·N = 0 on ∂Ω,

and

∫
Γi

B ·N dσ = 0, i = 1, . . . , p}

if Ω is not simply connected (but it is multiconnected).
A specific feature of the MHD system (which distinguishes it from the Navier–

Stokes equations) is the fact that the left-hand side of the second equation in (2.1)
is in H (as a function of x) if (y,B, p) is a strong solution of (2.1), that is, if y,B ∈
(H2,1(Q))2, y ∈ V1, B ∈ V2 (as functions of x), and curlB = 0 on Σ. Indeed, let
φ ∈ H1(Ω), arbitrary. Using a Green-type formula, we have∫

Ω

c̃url(curlB) · ∇φdx

=

∫
Ω

curlB curl∇φdx−
∫
∂Ω

curlB(∇φ · T)dσ = 0,
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because curl∇φ = 0 in Ω and curlB = 0 on ∂Ω. Here T represents the unit tangent
vector (−N2, N1) to ∂Ω, where (N1, N2) = N . Integrating by parts, we also have∫

Ω

((y · ∇)B − (B · ∇)y) · ∇φdx

= −
2∑

i,j=1

∫
Ω

∂yi
∂xj

∂Bj

∂xi
φdx−

∫
Ω

y · ∇(divB)dx +

∫
∂Ω

φ((y · ∇)B) ·N dσ

+

2∑
i,j=1

∫
Ω

∂Bi

∂xj

∂yj
∂xi

φdx +

∫
Ω

B · ∇(div y)dx−
2∑

j=1

∫
∂Ω

φNjB · ∇yj dσ = 0,

because y ∈ V1 and B ∈ V2. (As y = 0 on ∂Ω, the vectors ∇y1(x),∇y2(x), and N(x)
have the same directions for those x ∈ ∂Ω at which ∇y1(x) and ∇y2(x) are different
from the vector 0.) Since the left-hand side of (2.1) is in H, the right-hand side must
be in H, too. This is the reason of the presence of the Leray projector P before
the control parameter χωv. So, the gradient-type term which is generally associated
with an equation like divB = 0 is zero in the second equation in (2.1). For more
information about the mathematical setting and analysis of the MHD equations one
can consult the bibliography in [2].

Let us fix ỹ, p̃, and B̃ that satisfy both MHD equations and boundary conditions
in (2.1):

∂ỹ

∂t
− Δỹ + (ỹ · ∇)ỹ + ∇p̃ + ∇

(
1

2
B̃2

)
− (B̃ · ∇)B̃ = f in Q,

∂B̃

∂t
+ c̃url(curl B̃) + (ỹ · ∇)B̃ − (B̃ · ∇)ỹ = 0 in Q,

div ỹ = 0, div B̃ = 0 in Q,

ỹ = 0, B̃ ·N = 0, curl B̃ = 0 on Σ.

(2.3)

Now we can state the controllability result we have described before.
Theorem 2.1. Let Ω be an open, bounded, and multiconnected subset of R

2 whose
boundary ∂Ω is a finite union of mutually disjoint closed curves of class C2, and let ω
be an open subset of Ω. Let f ∈ (L2(Q))2 and let ỹ, B̃ ∈ W 1,∞(0, T ; (W 2,p(Ω))2), with
p > 2, satisfy equations (2.3). Then there is η > 0 such that for any (y0, B0) ∈ V1×V2

which satisfy

|y0 − ỹ(·, 0)|(H1(Ω))2 + |B0 − B̃(·, 0)|(H1(Ω))2 ≤ η

there exist (u, v) ∈ (L2(Q))4 and (y,B, p) ∈ (H2,1(Q))4 ×L2(0, T ;H1(Ω)) that satisfy
(2.1), (2.2), and

y(x, T ) = ỹ(x, T ), B(x, T ) = B̃(x, T ) a.e. x ∈ Ω.

The proof of Theorem 2.1 follows the same lines as the proof of the corresponding
three-dimensional result (Theorem 2.1 in [7]). For this reason, we only outline it
(see [7] and [2] for details) but emphasize those points where some differences (caused
by the different boundary conditions for B and the lower dimension) appear.
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3. Carleman inequality for the adjoint linearized MHD equations. Let
ỹ and B̃ satisfy (2.3). The adjoint linearized (around ỹ and B̃) MHD equations are
the following:

∂z

∂t
+ Δz + (ỹ · ∇)z − z · (∇ỹ)

− (B̃ · ∇)C − C · (∇B̃) + ∇q = h in Q,

∂C

∂t
− c̃url(curlC) + P ((ỹ · ∇)C + C · (∇ỹ)

− (B̃ · ∇)z + z · (∇B̃)) = H in Q,

div z = 0, divC = 0 in Q,

z = 0, C ·N = 0, curlC = 0 on Σ.

(3.1)

Here h : Ω × [0, T ] −→ R
2 and H : Ω × [0, T ] −→ R

2 are two given vector functions,

and z · (∇ỹ) is the vector field of components z · ∂ỹ/∂xi, i = 1, 2; C · (∇B̃), C · (∇ỹ),

and z · (∇B̃) are defined in the same way.
The presence of the Leray projector P in (3.1) comes from the fact that the sum

(ỹ · ∇)C + C · (∇ỹ) − (B̃ · ∇)z + z · (∇B̃) is not generally in the space H (defined
in the preceding section) but the other terms in the second equation in (3.1) are
there (see Theorem 3.1). The Leray projector can be replaced by the gradient of a
pseudopressure r in the following way: For any solution (z, q, C) of (3.1) there exists
some function r : Ω × [0, T ] −→ R such that

(ỹ · ∇)C + C · (∇ỹ) − (B̃ · ∇)z + z · (∇B̃)

= P ((ỹ · ∇)C + C · (∇ỹ) − (B̃ · ∇)z + z · (∇B̃)) + ∇r.
(3.2)

To express the Carleman inequality for equations (3.1), some suitable weight
functions are needed. Let us fix an open subset ω0 of ω such that ω0 ⊂⊂ ω. Since Ω
is bounded and connected, there exist functions ψ ∈ C2(Ω) such that

ψ > 0 in Ω, ψ = 0 on ∂Ω, and |∇ψ| > 0 in Ω \ ω0.

Let us fix such a function ψ, too. We set

ϕ(x, t) =
eλψ(x)

(t(T − t))8
and α(x, t) =

eλψ(x) − e2λ|ψ|C(Ω)

(t(T − t))8

for λ > 0. We denote by ϕ̂ and α̂ the values taken by ϕ and α on the boundary ∂Ω
(where ψ = 0):

ϕ̂(t) =
1

(t(T − t))8
and α̂(t) =

1 − e2λ|ψ|C(Ω)

(t(T − t))8
·

For establishing the Carleman inequality two variants of ϕ and α are also needed:

ϕ(x, t) =
e−λψ(x)

(t(T − t))8
and α(x, t) =

e−λψ(x) − e2λ|ψ|C(Ω)

(t(T − t))8
·
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We set Qω = ω × (0, T ) and Qω0
= ω0 × (0, T ). Now we are prepared to present the

Carleman inequality for equations (3.1).
Theorem 3.1. Let Ω be an open, bounded, and multiconnected subset of R

2 whose
boundary ∂Ω is a finite union of mutually disjoint closed curves of class C2, and let ω,
ω0, and ω1 be open subsets of Ω such that ω0 ⊂⊂ ω1 ⊂⊂ ω. We set Qω1 = ω1×(0, T ).

Let ỹ, B̃ ∈ L∞(0, T ; (W 2,p(Ω))2) with p > 2. Then there exists λ0 > 0 such that for
any λ > λ0 one can find s0(λ) > 0 and c(λ) > 0 that for s > s0(λ) the following
inequality holds:

∫
Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂z∂t
∣∣∣∣2 +

∣∣∣∣∂C∂t
∣∣∣∣2 +

2∑
i,j=1

(∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣2 +

∣∣∣∣ ∂2C

∂xi∂xj

∣∣∣∣2
)⎞⎠

+ sϕ(|∇z|2 + |∇C|2) + s3ϕ3(|z|2 + |C|2)

⎞⎠ dx dt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3(|z|2 + |C|2)dx dt +

∫
Qω1

e2sαs
11
4 ϕ̂

11
4 (q2 + r2)dx dt

+

∫
Q(e2sα + e2sα̂s

3
4 ϕ̂

3
4 )(|h|2 + |H|2)dx dt

)
(3.3)

for all h,H ∈ (L2(Q))2 which satisfy div h = divH = 0 in Q and H ·N = 0 on Σ, and
all corresponding solutions (z, C, q) ∈ (H2,1(Q))4 × L2(0, T ;H1(Ω)) of system (3.1)
and r ∈ L2(0, T ;H1(Ω)) which satisfy (3.2).

To make the proof of Theorem 3.1 easier to follow for the reader, we divide it into
several intermediate statements, which will be taken under consideration by turns and
then put together at the end. First we present two Carleman-type inequalities for the
adjoint Stokes equations with the null Dirichlet boundary condition, that is,

∂z

∂t
+ Δz + ∇q = g in Q,

div z = 0 in Q,

z = 0 on Σ,

(3.4)

and for the adjoint equations of certain dynamo-type equations with solutions having
null curl at the boundary,

∂C

∂t
− c̃url(curlC) = PG in Q,

divC = 0 in Q,

C ·N = 0, curlC = 0 on Σ.

(3.5)

Here g : Ω × [0, T ] −→ R
2 and G : Ω × [0, T ] −→ R

2 are two given vector functions.
Theorem 3.2. Let Ω, ω, ω0, and ω1 be open subsets of R

2 as in the statement
of Theorem 3.1. Then there exists λ0 > 0 such that for any λ > λ0 one can find
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s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ) we have

∫
Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂z∂t
∣∣∣∣2 +

2∑
i,j=1

∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣2
⎞⎠ + sϕ|∇z|2 + s3ϕ3|z|2

⎞⎠ dx dt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3|z|2dx dt +

∫
Qω1

e2sαs
11
4 ϕ̂

11
4 q2dx dt

+

∫
Q

(e2sα + e2sα̂s
3
4 ϕ̂

3
4 )|g|2dx dt +

∫
Q

e2sαs
1
2 ϕ̂

1
2 |div g|2dx dt

)
(3.6)

for all g ∈ L2(0, T ;(H1(Ω))2) and all corresponding solutions (z, q) ∈ (H2,1(Q))2

× L2(0, T ;H1(Ω)) of system (3.4).
The analogous result for equations (3.5) is as follows.
Theorem 3.3. Let Ω, ω, ω0, and ω1 be open subsets of R

2 as in the statement
of Theorem 3.1. Then there exists λ0 > 0 such that for any λ > λ0 one can find
s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ) we have

∫
Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂C∂t
∣∣∣∣2+ 2∑

i,j=1

∣∣∣∣ ∂2C

∂xi∂xj

∣∣∣∣2
⎞⎠+ sϕ|∇C|2+ s3ϕ3|C|2

⎞⎠dx dt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3|C|2dx dt +

∫
Qω1

e2sαs
11
4 ϕ̂

11
4 r2dx dt

+

∫
Q

(e2sα+e2sα̂s
3
4 ϕ̂

3
4 )|G|2dx dt+

∫
Q

e2sαs
1
2 ϕ̂

1
2 |divG|2dx dt

)
(3.7)

for all G ∈ L2(0, T ; (H1(Ω))2) and all corresponding solutions C ∈ (H2,1(Q))2 of
system (3.5) and r ∈ L2(0, T ;H1(Ω)) which satisfy

G = PG + ∇r.(3.8)

To prove Theorems 3.2 and 3.3, we shall couple two kinds of estimates. First
we establish Carleman inequalities for (3.4) and (3.5), viewed as parabolic systems
in the unknowns z and C, respectively (so, ∇q and ∇r are passed in the right-hand
side near g and G). Since q and r satisfy Poisson equations (obtained by applying
the divergence operator to both sides of (3.4) and (3.5)), the needed estimates for ∇q
and ∇r are derived by using an adequate Carleman inequality for elliptic equations
with nonhomogeneous Dirichlet boundary conditions (obtained by Imanuvilov in [9]).
So, let us begin by presenting the Carleman estimates for (3.4) and (3.5), viewed as
parabolic systems in z and C.

Lemma 3.1. Let Ω be an open, bounded, and connected subset of R
2 having the

boundary ∂Ω of class C2, and let ω be an open subset of Ω. Then there exists λ0 > 0
such that for any λ > λ0 one can find s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ)
we have∫

Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂z∂t
∣∣∣∣2 +

2∑
i,j=1

∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣2
⎞⎠ + sϕ|∇z|2 + s3ϕ3|z|2

⎞⎠ dx dt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3|z|2dx dt +

∫
Q

e2sα|∇q|2dx dt +

∫
Q

e2sα|g|2dx dt
)(3.9)
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for all g∈(L2(Q))2 and all corresponding solutions (z, q)∈(H2,1(Q))2×L2(0, T ;H1(Ω))
of system (3.4).

Estimate (3.9) was essentially obtained by Imanuvilov in [8]. (We refer the reader
to Lemma 2.2 in [9] or Lemma 3.1 in [6], too.)

The analogous estimate for equations (3.5) is contained in the following statement.
Lemma 3.2. Let Ω and ω be open subsets of R

2 as in the statement of Lemma
3.1. Then there exists λ0 > 0 such that for any λ > λ0 one can find s0(λ) > 0 and
c(λ) > 0 such that for s > s0(λ) we have∫

Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂C∂t
∣∣∣∣2+ 2∑

i,j=1

∣∣∣∣ ∂2C

∂xi∂xj

∣∣∣∣2
⎞⎠ + sϕ|∇C|2 + s3ϕ3|C|2

⎞⎠ dx dt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3|C|2dx dt +

∫
Q

e2sα|∇r|2dx dt +

∫
Q

e2sα|G|2dx dt
)(3.10)

for all G ∈ (L2(Q))2 and all corresponding solutions C ∈ (H2,1(Q))2 of system (3.5)
and r ∈ L2(0, T ;H1(Ω)) which satisfy (3.8).

Proof. Inequality (3.10) can be established in almost the same way as its three-
dimensional analogue. (See inequality (3.58) in [2] together with its proof.) However,
because of the different (though similar) boundary conditions here, and for the reader’s
convenience, we shall sketch the proof, emphasizing the points where some differences
appear.

Let us first describe in a few words the idea behind the proof. The part of the
solutions of equations (3.5) outside Qω can be removed in the right-hand side of the
estimates by varying (increasing) two parameters s and λ introduced into equations by
performing a suitable change of unknown function. So, let us set D = esαC. Passing
to D in (3.5), we obtain the following system:

∂D

∂t
+ ΔD + s2λ2ϕ2|∇ψ|2D − 2sλϕ(∇ψ · ∇)D

− sλ2ϕ|∇ψ|2D − sλϕΔψD − s
∂α

∂t
D = esαPG in Q,

divD = sλϕ(∇ψ ·D) in Q,

D ·N = 0, curlD = sλϕ|∇ψ|D · T on Σ,

D(·, 0) = D(·, T ) = 0 in Ω,

(3.11)

where T is the unit tangent vector (−N2, N1) to ∂Ω.
If we set

P (x, t)D = −ΔD − s2λ2ϕ2|∇ψ|2D − sλ2ϕ|∇ψ|2D + sλϕΔψD + s
∂α

∂t
D,

R(x, t)D = −2sλϕ(∇ψ · ∇)D − 2sλ2ϕ|∇ψ|2D,

we may write equations (3.11) as

∂D

∂t
+ R(x, t)D − P (x, t)D = esαPG in Q.(3.12)

Multiplying (3.12) by itself, integrating over Q, and neglecting some nonnegative
terms, we obtain the inequality

I ≤ J +
1

2

∫
Q

e2sα|PG|2dx dt,(3.13)
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where

I = −
∫
Q

P (x, t)D ·R(x, t)Ddxdt, J =

∫
Q

∂D

∂t
· P (x, t)Ddxdt.

Multiplication of the five terms of P (x, t)D by the two terms of R(x, t)D in (3.13)

produces ten terms (integrals): I =
∑10

i=1 Ii. Eight of them (I3 through I10) can be
estimated identically as the corresponding terms in the three-dimensional case. We
refer the reader to [2] (see also [6]) for the expression of those estimates and for other
details. So, let us examine the other two terms (which contain ΔD).

Integrating by parts twice and using the fact that N = (−1/|∇ψ|)∇ψ, we obtain

I1 =−2sλ

∫
Q

ϕ(∇ψ · ∇)D · ΔDdxdt

≥−sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt− csλ

∫
Q

ϕ|∇D|2dx dt

+ 2sλ

∫
Σ

ϕ|∇ψ|
2∑

i=1

(
∂Di

∂N

)2

dσ dt− sλ

∫
Σ

ϕ|∇ψ| |∇D|2dσ dt,

(3.14)

where c (here and throughout this proof) denotes a positive constant depending on
ψ only.

Using Green’s formula, we have (after some calculation)

I2 = −2sλ2

∫
Q

ϕ|∇ψ|2D · ΔDdxdt

≥ 3

2
sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt− csλ4

∫
Q

ϕ|D|2dx dt

− 2sλ2

∫
Σ

ϕ|∇ψ|2
2∑

i,j=1

Di
∂Di

∂xj
Nj dσ dt for λ ≥ 1.

(3.15)

(See [2] or [6] for more details.) Let us now estimate the surface integral in (3.15).
Using first the second boundary condition in (3.11) and then observing that D ·∇(D ·
∇ψ) = 0 on Σ (thanks to the first boundary condition there), we obtain

−
2∑

i,j=1

Di
∂Di

∂xj
Nj = (curlD)D·T−

2∑
i,j=1

Di
∂Dj

∂xi
Nj

= sλϕ|∇ψ|(D·T)2−|∇ψ|−1

2∑
i,j=1

DiDj
∂2ψ

∂xi∂xj
on Σ.

(3.16)

Thus, we have

−2sλ2

∫
Σ

ϕ|∇ψ|2
2∑

i,j=1

Di
∂Di

∂xj
Nj dσ dt

≥ 2s2λ3

∫
Σ

ϕ2|∇ψ|3|D|2dσ dt− csλ2
2∑

i=1

∫ T

0

ϕ̂(t)

(∫
∂Ω

D2
i dσ

)
dt.

(3.17)
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To estimate the integral over ∂Ω in (3.17), we apply the trace theorem and an inter-
polation inequality:

sλ2

∫
∂Ω

D2
i dσ ≤ c1sλ

2|Di|2
H

1
2 (Ω)

≤ c2sλ
2|Di|L2(Ω)|Di|H1(Ω)

≤ c3

(
s

3
2λ3|Di|2L2(Ω) + s

1
2λ|Di|2L2(Ω) + s

1
2λ|∇Di|2L2(Ω)

)
.

(3.18)

Now, inserting first (3.18) into (3.17) and then (3.17) into (3.15), we obtain

I2 ≥
3

2
sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt

− c

(
sλ4

∫
Q

ϕ|D|2dx dt+s
3
2λ3

∫
Q

ϕ|D|2dx dt+s
1
2λ

∫
Q

ϕ|∇D|2dx dt
)

+ 2s2λ3

∫
Σ

ϕ2|∇ψ|3|D|2dσ dt for λ ≥ 1 and s ≥ 1.

(3.19)

We next estimate J . Using successively two Green-type formulas, the initial, final,
and boundary conditions in (3.11), and, finally, performing an integration by parts
with respect to t, we have

−
∫
Q

ΔD · ∂D
∂t

dx dt

=

∫
Q

c̃url(curlD) · ∂D
∂t

dx dt−
∫
Q

∇(divD) · ∂D
∂t

dx dt

=
1

2

∫
Q

∂

∂t
(curlD)2dx dt−

∫
Σ

curlD
∂D

∂t
· T dσ dt

+
1

2

∫
Q

∂

∂t
(divD)2dx dt−

∫
Σ

divD
∂

∂t
(D ·N)dσ dt

= sλ

∫
Σ

ϕ|∇ψ|(D · T) ∂

∂t
(D · T)dσ dt = −1

2
sλ

∫
Σ

ϕ̂′|∇ψ| |D|2dσ dt.

Putting this last form of −
∫
Q

ΔD · (∂D/∂t)dx dt into the expression of J , we obtain

J ≤ −1

2
sλ

∫
Σ

ϕ̂′|∇ψ| |D|2dσ dt + c(λ)s2

∫
Q

ϕ
17
8 |D|2dx dt for λ ≥ 1, s ≥ 1,(3.20)

where c(λ) is a positive parameter depending on ψ, T , and λ (see [2] or [6] for more
details).

To be able to eliminate the surface integrals in (3.14), (3.19), and (3.20), as well as
those in the estimates for I3, . . . , I10, we need to repeat all the previous considerations
for D = esαC. Changing C by D in (3.5), we obtain (3.11) where, in all places, λ is
replaced by −λ. So, we have

∂D

∂t
+ R(x, t)D − P (x, t)D = esαPG in Q,

where the operators P and Q are defined as P and Q but with −λ instead of λ;
consequently, ϕ and α now replace ϕ and α there. In the same way as before, we have

I ≤ J +
1

2

∫
Q

e2sα|PG|2dx dt,(3.21)
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where

I = −
∫
Q

P (x, t)D ·R(x, t)Ddxdt, J =

∫
Q

∂D

∂t
· P (x, t)Ddxdt.

We write I as a sum of ten terms, too: I =
∑10

i=1 Ii. Each of these terms can be
estimated in the same way as its corresponding Ii. For I1 and I2 we obtain the
inequalities

I1 ≥−sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt− csλ

∫
Q

ϕ|∇D|2dx dt

− 2sλ

∫
Σ

ϕ|∇ψ|
2∑

i=1

(
∂Di

∂N

)2

dσ dt− sλ

∫
Σ

ϕ|∇ψ| |∇D|2dσ dt,

(3.22)

I2 ≥ 3

2
sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt

− c

(
sλ4

∫
Q

ϕ|D|2dx dt+s
3
2λ3

∫
Q

ϕ|D|2dx dt+s
1
2λ

∫
Q

ϕ|∇D|2dx dt
)

− 2s2λ3

∫
Σ

ϕ2|∇ψ|2|D|2dσ dt

(3.23)

for all λ ≥ 1 and s ≥ 1. Notice that we have taken into account the fact that ϕ = ϕ
and D = D on Σ (because ψ = 0 on ∂Ω). In the same way as the estimate for J was
derived, we obtain

J ≤ 1

2
sλ

∫
Σ

ϕ̂′|∇ψ| |D|2dσ dt + c(λ)s2

∫
Q

ϕ
17
8 |D|2dx dt for λ ≥ 1, s ≥ 1.(3.24)

Now we add inequalities (3.13) and (3.21). Because of the different signs before
the corresponding surface integrals in I2, I2, I3, I3, I5, I5, I9, and I9 (see [2] or [6] for
the definition of the other quantities), all those surface integrals are canceled. (The
different signs come from the odd exponents of the powers of λ.) It remains to see how
the four surface integrals in I1 + I1 can be removed. By careful calculations involving
both (3.16) and (3.18), we obtain

2sλ

∫
Σ

ϕ|∇ψ|
2∑

i=1

(
∂Di

∂N

)2

dσ dt− sλ

∫
Σ

ϕ|∇ψ| |∇D|2dσ dt

− 2sλ

∫
Σ

ϕ|∇ψ|
2∑

i=1

(
∂Di

∂N

)2

dσ dt + sλ

∫
Σ

ϕ|∇ψ| |∇D|2dσ dt

= −4s2λ2

∫
Σ

ϕ2|∇ψ|
2∑

i,j=1

∂2ψ

∂xi∂xj
DiDj dσ dt

≥ −c

(
s3λ3

∫
Q

ϕ3|D|2dx dt + sλ

∫
Q

ϕ|∇D|2dx dt
)
.

(3.25)

(We refer the reader to [2] or [6] for all the details.) So, adding (3.13) and (3.21)
and using the estimates (3.14), (3.19), (3.20), and (3.22) through (3.25), as well as
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the estimates for I3, . . . , I10 and I3, . . . , I10 (which can be taken from [2] or [6]), we
obtain

sλ2

∫
Q

ϕ|∇ψ|2|∇D|2dx dt + s3λ4

∫
Q

ϕ3|∇ψ|4|D|2dx dt

≤ csλ

∫
Q

ϕ|∇D|2dx dt + cs3λ3

∫
Q

ϕ3|D|2dx dt

+ c(λ)s2

∫
Q

ϕ3|D|2dx dt +

∫
Q

e2sα|PG|2dx dt

for λ ≥ 1, s ≥ 1.

(3.26)

The key point is now coming. Since, by the third property of ψ, |∇ψ| ≥ ρ in
Ω \ ω0 for some ρ > 0, from (3.26), we have

ρ2sλ2

∫
Q\Qω0

ϕ|∇D|2dx dt + ρ4s3λ4

∫
Q\Qω0

|D|2dx dt

≤ csλ

∫
Q

ϕ|∇D|2dx dt + cs3λ3

∫
Q

ϕ3|D|2dx dt

+ c(λ)s2

∫
Q

ϕ3|D|2dx dt +

∫
Q

e2sα|PG|2dx dt

for λ ≥ 1, s ≥ 1.

(3.27)

As the powers of s and λ before integrals of ϕ|∇D|2 and ϕ3|D|2 are greater in the
left-hand side of (3.27) than in the right-hand side, we can remove the part of ϕ|∇D|2
and ϕ3|D|2 outside Qω0 in the right-hand side by simply increasing the parameters
λ and s. So, taking first λ > λ0 = (c + 1) max(ρ−2, ρ−4) and then s > s0(λ) =
c(λ)λ−3(ρ4λ− c− 1)−1, where c and c(λ) are those in (3.27), we obtain

sλ

∫
Q

ϕ|∇D|2dx dt + s3λ3

∫
Q

ϕ3|D|2dx dt

≤ c(λ)

(
s

∫
Qω0

ϕ|∇D|2dx dt + s3

∫
Qω0

ϕ3|D|2dx dt +

∫
Q

e2sα|PG|2dx dt
)

for λ > λ0, s > s0(λ).

Coming back to C (D = esαC), we can rewrite the above inequality as

sλ

∫
Q

e2sαϕ|∇C|2dx dt + s3λ3

∫
Q

e2sαϕ3|C|2dx dt

≤ c(λ)

(
s

∫
Qω0

e2sαϕ|∇C|2dx dt+s3

∫
Qω0

e2sαϕ3|C|2dx dt+
∫
Q

e2sα|PG|2dx dt
)

for λ > λ0 and s > s0(λ),

(3.28)

where λ0 is possibly greater than that before.
The integral of e2sαϕ|∇C|2 in the right-hand side of (3.28) can be eliminated as
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in [2]. So, we have

sλ

∫
Q

e2sαϕ|∇C|2dx dt + s3λ3

∫
Q

e2sαϕ3|C|2dx dt

≤ c(λ)

(
s3

∫
Qω1

e2sαϕ3|C|2dx dt +

∫
Q

e2sα|PG|2dx dt
)

for λ > λ0 and s > s0(λ),

(3.29)

where ω1 is an open subset of ω such that ω0 ⊂⊂ ω1 ⊂⊂ ω.
It remains to show how estimates such as (3.29) can also be obtained for the

first and second order derivatives of C with respect to time and space variables,
respectively. To be able to estimate the weighted L2 norm of ∂C/∂t in (3.10), we
scalarly multiply (3.5) by e2sαϕ−1∂C/∂t. Thus, the desired estimate is reduced to

that of the integral of e2sαϕ−1∂C/∂t · c̃url(curlC) over Q. Using a version of Green’s
formula together with the boundary conditions in (3.5) and then integrating by parts
with respect to t, we obtain

−
∫
Q

e2sαϕ−1 ∂C

∂t
· c̃url(curlC)dx dt

= −
∫
Q

curl

(
e2sαϕ−1 ∂C

∂t

)
curlC dxdt +

∫
Σ

e2sαϕ−1curlC
∂C

∂t
· T dσ dt

=
1

2

∫
Q

e2sα

(
2sϕ−1 ∂α

∂t
− ϕ−2 ∂ϕ

∂t

)
|curlC|2dx dt

+λ

∫
Q

e2sα(2s− ϕ−1) curlC c̃urlψ · ∂C
∂t

dx dt.

Since |curlC|2 ≤ 2|∇C|2, the last relation leads to the inequality∫
Q

e2sα(sϕ)−1

∣∣∣∣∂C∂t
∣∣∣∣2 dx dt ≤ c(λ)

(
s

∫
Q

e2sαϕ|∇C|2dx dt +

∫
Q

e2sα|PG|2dx dt
)

for s ≥ 1.

This together with (3.29) yields∫
Q

e2sα(sϕ)−1

∣∣∣∣∂C∂t
∣∣∣∣2 dx dt

≤ c(λ)

(
s3

∫
Qω1

e2sαϕ3|C|2dx dt +

∫
Q

e2sα|PG|2dx dt
)

for λ > λ0 and s > s0(λ).

(3.30)

Now multiplying (3.5) by e2sαϕ−1ΔC and integrating over Q, after some arrange-
ments involving (3.30), we obtain∫

Q

e2sα(sϕ)−1|ΔC|2dx dt

≤ c(λ)

(
s3

∫
Qω1

e2sαϕ3|C|2dx dt +

∫
Q

e2sα|PG|2dx dt
)

for λ > λ0 and s > s0(λ).

(3.31)
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An estimate similar to (3.31) (whose derivation is based on it) can be obtained

for
∑2

i,j=1

∣∣∂2C/∂xi∂xj

∣∣2 , too. (We refer the reader to [2] for more details.) Taking
this last estimate together with (3.30) and (3.31), we obtain (3.10), which finishes the
proof.

As we have already mentioned, q in (3.4) and r satisfying (3.8) are solutions to
some Poisson equations. Indeed, applying the divergence operator to both sides of
(3.4) and (3.5), we see that q and r satisfy

Δq = div g and Δr = divG in Q.(3.32)

So, to estimate the involved weighted L2 norms of ∇q and ∇r, we may use Imanuvilov’s
Carleman inequality for second order uniformly elliptic equations with nonhomoge-
neous Dirichlet boundary conditions (obtained in [9]). Applying this inequality for
the first Poisson equation in (3.32) twice and using the energy a priori estimate for
the Stokes equations, too, we can establish the following estimate for q.

Lemma 3.3. Let Ω, ω, ω0, and ω1 be open subsets of R
2 as in the statement

of Theorem 3.1. Then there exists λ0 > 0 such that for any λ > λ0 one can find
s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ) we have∫

Q

e2sα|∇q|2dx dt

≤ c(λ)

(∫
Q

e2sα̂s
11
4 ϕ̂3|z|2dx dt +

∫
Qω1

e2sαs
11
4 ϕ̂

11
4 q2dx dt

+

∫
Q

e2sα̂s
3
4 ϕ̂

3
4 |g|2dx dt +

∫
Q

e2sαs
1
2 ϕ̂

1
2 (div g)2dx dt

)(3.33)

for all g ∈ L2(0, T ;(H1(Ω))2) and all corresponding solutions (z, q) ∈ (H2,1(Q))2

× L2(0, T ;H1(Ω)) of system (3.4).
The proof of the above lemma is identical to that of its three-dimensional version

(see [6] or [7]). In a completely similar way (we may follow the proof of Lemma 3.3

in [6] step by step, because −c̃url(curlC) = ΔC when divC = 0) we can obtain the
corresponding estimate for ∇r. (See [7] for the three-dimensional variant.)

Lemma 3.4. Let Ω, ω, ω0, and ω1 be open subsets of R
2 as in the statement

of Theorem 3.1. Then there exists λ0 > 0 such that for any λ > λ0 one can find
s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ) we have∫

Q

e2sα|∇r|2dx dt

≤ c(λ)

(∫
Q

e2sα̂s
11
4 ϕ̂3|C|2dx dt +

∫
Qω1

e2sαs
11
4 ϕ̂

11
4 r2dx dt

+

∫
Q

e2sα̂s
3
4 ϕ̂

3
4 |G|2dx dt +

∫
Q

e2sαs
1
2 ϕ̂

1
2 (divG)2dx dt

)(3.34)

for all G ∈ L2(0, T ; (H1(Ω))2) and all corresponding solutions C ∈ (H2,1(Q))2 of
system (3.5) and r ∈ L2(0, T ;H1(Ω)) which satisfy (3.8).

The proofs of Theorems 3.2 and 3.3 come to an end by simply coupling (3.9) with
(3.33) and (3.10) with (3.34).
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Proof of Theorem 3.1. To finish the proof, we have to take inequalities (3.6) and
(3.7) together with g and G given by

g = −(ỹ · ∇)z + z · (∇ỹ) + (B̃ · ∇)C + C · (∇B̃) + h,

G = −(ỹ · ∇)C − C · (∇ỹ) + (B̃ · ∇)z − z · (∇B̃) + H.

We have

div g = −
2∑

i,j=1

∂ỹj
∂xi

∂zi
∂xj

+∇z·∇ỹ + z·Δỹ +

2∑
i,j=1

∂B̃j

∂xi

∂Ci

∂xj
+∇C·∇B̃ + C·ΔB̃,

divG = −
2∑

i,j=1

∂ỹj
∂xi

∂Ci

∂xj
−∇C·∇ỹ − C·Δỹ +

2∑
i,j=1

∂B̃j

∂xi

∂zi
∂xj

−∇z·∇B̃ − z·ΔB̃.

(Here one has taken into account the fact that z, C, h, and H are divergence-free.) As

ỹ, B̃ ∈ L∞(0, T ; (W 2,p(Ω))2) with p > 2, by the Sobolev imbedding theorem we also

have ỹ, B̃ ∈ L∞(0, T ; (W 1,∞(Ω))2), so a.e. in Q we can obtain

|g| ≤ c(|∇z| + |∇C| + |z| + |C|) + |h|,(3.35)

|G| ≤ c(|∇z| + |∇C| + |z| + |C|) + |H|,(3.36)

|div g| ≤ c(|∇z| + |∇C|) + |Δỹ| |z| + |ΔB̃| |C|,(3.37)

|divG| ≤ c(|∇z| + |∇C|) + |Δỹ| |C| + |ΔB̃| |z|.(3.38)

By (3.35) and (3.36), we have∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
|g|2dx dt

≤ c

∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
(|∇z|2 + |∇C|2 + |z|2 + |C|2)dx dt

+

∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
|h|2dx dt,

(3.39)

∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
|G|2dx dt

≤ c

∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
(|∇z|2 + |∇C|2 + |z|2 + |C|2)dx dt

+

∫
Q

(
e2sα + e2sα̂s

3
4 ϕ̂

3
4

)
|H|2dx dt.

(3.40)

By (3.37), we can write∫
Q

e2sαs
1
2 ϕ̂

1
2 |div g|2dx dt ≤ c

∫
Q

e2sαs
1
2 ϕ̂

1
2 (|∇z|2 + |∇C|2)dx dt

+ c

∫
Q

e2sαs
1
2 ϕ̂

1
2 (|Δỹ|2|z|2 + |ΔB̃|2|C|2)dx dt.

(3.41)
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Using Hölder’s inequality, the fact that ỹ, B̃ ∈ L∞(0, T ; (W 2,p(Ω))2) with p > 2, and
the continuity of the inclusion (H1(Ω))2 ⊂ (L2p/(p−2)(Ω))2, we derive∫

Q

e2sαϕ̂
1
2 |Δỹ|2|z|2dx dt

≤
∫ T

0

ϕ̂
1
2 |Δỹ|2(Lp(Ω))2 |esαz|2

(L
2p

p−2 (Ω))2
dt

≤ c1

∫ T

0

ϕ̂
1
2 |esαz|2(H1(Ω))2dt

≤ c2(λ)

∫
Q

e2sαϕ̂
1
2 (|∇z|2 + s2ϕ2|z|2)dx dt

(3.42)

and ∫
Q

e2sαϕ̂
1
2 |ΔB̃|2|C|2dx dt

≤ c(λ)

∫
Q

e2sαϕ̂
1
2 (|∇C|2 + s2ϕ2|C|2)dx dt.

(3.43)

Putting inequalities (3.41) through (3.43) together, we obtain∫
Q

e2sαs
1
2 ϕ̂

1
2 |div g|2dx dt

≤ c(λ)

∫
Q

e2sα
(
s

1
2ϕ

1
2

(
|∇z|2 + |∇C|2

)
+ s

5
2ϕ

5
2

(
|z|2 + |C|2

))
dx dt.

(3.44)

In a similar way, using (3.38), we have∫
Q

e2sαs
1
2 ϕ̂

1
2 |divG|2dx dt

≤ c(λ)

∫
Q

e2sα
(
s

1
2ϕ

1
2

(
|∇z|2 + |∇C|2

)
+ s

5
2ϕ

5
2

(
|z|2 + |C|2

))
dx dt.

(3.45)

Now, we add inequalities (3.6) and (3.7), and take estimates (3.39), (3.40), (3.44),
and (3.45) into account. Thus, we obtain inequality (3.3) by simply taking s suffi-
ciently large. This finishes the proof of Theorem 3.1.

4. Observability inequalities for the adjoint linearized MHD equations.
Using the Carleman inequality (3.3), one can estimate weighted L2 norms of solutions
(z, C) of equations (3.1) taken over the entire Q by weighted L2 norms of their values
taken over Qω only. Such estimates are called observability inequalities. We shall
express the needed weights by means of the following version of function α (which is
no longer +∞ at t = 0):

β(x, t) =
eλψ(x) − e2λ|ψ|C(Ω)

(θ(t)(T − t))8
,

where λ > 0 and θ is an increasing C∞ function such that θ(0) > 0 and θ(t) = t for

t ∈ [T/2, T ]. The restriction of β on ∂Ω is denoted by β̂:

β̂(t) =
1 − e2λ|ψ|C(Ω)

(θ(t)(T − t))8
·
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1818 T. HAVÂRNEANU, C. POPA, AND S. S. SRITHARAN

The first observability inequality we need can be expressed as follows.
Theorem 4.1. Let Ω be an open subset of R

2 as in the statement of Theorem
3.1 and let ω be an open subset of Ω. Let ỹ, B̃ ∈ W 1,∞(0, T ; (W 2,p(Ω))2) with p > 2.
Then there exists λ0 > 0 such that for any λ > λ0 one can find s0(λ) > 0 and δ0(λ) ∈
(1/2, 1) such that for s > s0(λ) and 1/2 < δ < δ0(λ) there is some c(λ, s, δ) > 0 such
that the following inequality holds:∫

Q

e2sβ̂(T − t)8
(
|z|2 + |C|2

)
dx dt

≤ c(λ, s, δ)

(∫
Qω

e2sδβ̂
(
|z|2+|C|2

)
dx dt +

∫
Q

e2sδβ̂
(
|h|2+|H|2

)
dx dt

)(4.1)

for all h,H ∈ (L2(Q))2 which satisfy div h = divH = 0 in Q and H ·N = 0 on Σ, and
all corresponding solutions (z, C, q) ∈ (H2,1(Q))4 × L2(0, T ;H1(Ω)) of system (3.1).

Proof. The complete proof is quite long and can be found in [7]. (See also [6] for
a related situation.) We emphasize that there is no significant difference between the
two-dimensional and three-dimensional cases. However, for the reader’s convenience,
we shall provide an outline of the proof, referring the reader to [7] (or [6]) for details.

The main objective of the proof is to remove q and r in (3.3). To be able to do
it, we are forced to pass from z, q, h, C, r, and H to their primitives with respect to
t. The new functions satisfy parabolic equations similar to (3.1) (which enables us
to apply Carleman inequality (3.3) to them, too) but also certain stationary Stokes
equations, which taken under consideration will lead us to the elimination of q and r.

So, for t ∈ [0, T ], we consider the auxiliary functions

z(x, t) =

∫ t

T
2

z(x, τ)dτ, q(x, t) =

∫ t

T
2

q(x, τ)dτ, h(x, t) =

∫ t

T
2

h(x, τ)dτ,

C(x, t) =

∫ t

T
2

C(x, τ)dτ, r(x, t) =

∫ t

T
2

r(x, τ)dτ, H(x, t) =

∫ t

T
2

H(x, τ)dτ.

Integrating equations (3.1) from T/2 to t and taking (3.2) into account, one easily
sees that z, q, h and c, r,H satisfy

∂z

∂t
+ Δz + (ỹ · ∇)z − z · (∇ỹ) − (B̃ · ∇)C − C · (∇B̃) + ∇q

= h +

∫ t

T
2

(
∂ỹ

∂τ
· ∇

)
z dτ −

∫ t

T
2

z ·
(
∇∂ỹ

∂τ

)
dτ

−
∫ t

T
2

(
∂B̃

∂τ
·∇

)
Cdτ −

∫ t

T
2

C·
(
∇∂B̃

∂τ

)
dτ + z

(
·, T

2

)
in Q,

∂C

∂t
−c̃url(curlC)+(ỹ·∇)C + C·(∇ỹ) − (B̃·∇)z+z·(∇B̃)+∇r

= H +

∫ t

T
2

(
∂ỹ

∂τ
·∇

)
C dτ +

∫ t

T
2

C·
(
∇∂ỹ

∂τ

)
dτ

−
∫ t

T
2

(
∂B̃

∂τ
·∇

)
z dτ +

∫ t

T
2

z·
(
∇∂B̃

∂τ

)
dτ + C

(
·, T

2

)
in Q,

div z = 0, div C = 0 in Q,

z = 0, C·N = 0, curl C = 0 on Σ.

(4.2)
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(We have also used the fact that z = ∂z/∂t and C = ∂C/∂t.)
Since equations (4.2) are similar to equations (3.1) (taken together with (3.2)),

we can argue as in the proof of Theorem 3.1 to derive a Carleman inequality like (3.3)
for the solutions of (4.2). Indeed, it is enough to treat the eight integral terms in (4.2)
in the same way in which the corresponding terms in g and G have been treated in
the proof of Theorem 3.1 to obtain estimates as (3.39), (3.40), (3.44), and (3.45) for
them. Thus we can assert that there exists λ0 > 0 such that for any λ > λ0 one can
find s0(λ) > 0 and c(λ) > 0 such that for s > s0(λ) one has

∫
Q

e2sα

⎛⎝ 1

sϕ

⎛⎝∣∣∣∣∂z∂t
∣∣∣∣2 +

∣∣∣∣∂C∂t
∣∣∣∣2 +

2∑
i,j=1

(∣∣∣∣ ∂2z

∂xi∂xj

∣∣∣∣2 +

∣∣∣∣ ∂2C

∂xi∂xj

∣∣∣∣2
)⎞⎠

+ sϕ(|∇z|2 + |∇C|2) + s3ϕ3(|z|2 + |C|2)

⎞⎠ dxdt

≤ c(λ)

(∫
Qω

e2sαs3ϕ3(|z|2+|C|2)dxdt+
∫
Qω1

e2sαs
11
4 ϕ̂

11
4 (q2+r2) dxdt

+

∫
Q

(
e2sα+e2sα̂s

3
4 ϕ̂

3
4

)(
|h|2+|H|2+

∣∣∣∣z(·, T2
)∣∣∣∣2+

∣∣∣∣C(
·, T

2

)∣∣∣∣2
)
dxdt

)
.

(4.3)

The next step is to eliminate the local terms containing q and r in the right-hand
side of (4.3). To do so, we shall try to estimate those terms by local expressions of
z, C, z, C, h, and H.

Clearly we may assume that q and r satisfy∫
ω1

q(x, t)dx = 0 and

∫
ω1

r(x, t)dx = 0 for all t ∈ [0, T ]

(because, otherwise, we can pass from q and r to q − (measω1)
−1

∫
ω1

q dx and r −
(measω1)

−1
∫
ω1

r dx). So we may apply Proposition 1.2 in [11] and obtain∫ T

0

∫
ω1

e2sαs
11
4 ϕ̂

11
4 (q2 + r2)dxdt

≤ c1(δ)

∫ T

0

∫
ω1

e2sδα̂(q2 + r2)dxdt

≤ c2(δ)

∫ T

0

e2sδα̂
(
|∇q|2((H1

0 (ω1))2)′
+ |∇r|2((H1

0 (ω1))2)′

)
dt

for
1

2
< δ < δ0(λ) < 1,

(4.4)

where

δ0(λ) =
e2λ|ψ|C(Ω) − eλ|ψ|C(Ω)

e2λ|ψ|C(Ω) − 1
·

(Obviously δ0(λ) < 1 for any λ > 0, and taking λ > log 2/|ψ|C(Ω), we have δ0(λ) > 1/2
as well.)
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To estimate the ((H1
0 (ω1))

2)′ norms of ∇q and ∇r in (4.4), we shall use equations
(4.2) again, but this time regarded as an elliptic system. In fact we separately consider
two elliptic systems, one for z, q, h and another one for C, r,H, namely,

Δz + ∇q=h− (ỹ · ∇)z + z · (∇ỹ) + (B̃ · ∇)C + C · (∇B̃)

+

∫ t

T
2

(
∂ỹ

∂τ
· ∇

)
z dτ −

∫ t

T
2

z ·
(
∇∂ỹ

∂τ

)
dτ

−
∫ t

T
2

(
∂B̃

∂τ
· ∇

)
C dτ −

∫ t

T
2

C ·
(
∇∂B̃

∂τ

)
dτ

− z + z

(
·, T

2

)
in Q,

div z = 0 in Q

(4.5)

and

ΔC + ∇r = H − (ỹ · ∇)C − C · (∇ỹ) + (B̃ · ∇)z − z · (∇B̃)

+

∫ t

T
2

(
∂ỹ

∂τ
· ∇

)
C dτ +

∫ t

T
2

C ·
(
∇∂ỹ

∂τ

)
dτ

−
∫ t

T
2

(
∂B̃

∂τ
· ∇

)
z dτ +

∫ t

T
2

z ·
(
∇∂B̃

∂τ

)
dτ

−C + C

(
·, T

2

)
in Q,

div C = 0 in Q.

(4.6)

(We recall that −c̃url(curlC) = ΔC when divC = 0.)
To be able to estimate the ((H1

0 (ω1))
2)′ norm of ∇q, we need to split the solutions

(z, q) of (4.5), considered in ω, into two components. Let (z1, q1) be the solution of
the following steady state Stokes equations with homogeneous Dirichlet boundary
condition:

Δz1 + ∇q1 = h− (ỹ · ∇)z + z · (∇ỹ) + (B̃ · ∇)C + C · (∇B̃)

+

∫ t

T
2

(
∂ỹ

∂τ
· ∇

)
z dτ −

∫ t

T
2

z ·
(
∇∂ỹ

∂τ

)
dτ

−
∫ t

T
2

(
∂B̃

∂τ
· ∇

)
C dτ −

∫ t

T
2

C·
(
∇∂B̃

∂τ

)
dτ

− z + z

(
·, T

2

)
in ω,

div z1 = 0 in ω,

z1 = 0 on ∂ω.

(4.7)

Subtracting (4.5) and (4.7), one sees that z2 = z − z1 and q2 = q − q1 satisfy the
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homogeneous Stokes equations,

Δz2 + ∇q2 = 0 in ω,

div z2 = 0 in ω.
(4.8)

From (4.7), using the well-known estimate for the weak solution of the steady
state Stokes equations with null boundary conditions as well, it follows that

|∇q1|((H1
0 (ω1))2)′

≤ c

(
|h|(L2(ω))2 + |z|(L2(ω))2 + |−(ỹ·∇)z+z·(∇ỹ)+(B̃·∇)C+C·(∇B̃)|((H1

0 (ω))2)′

+

∣∣∣∣ ∫ t

T
2

∣∣∣∣ (∂ỹ

∂τ
·∇
)
z − z ·

(
∇∂ỹ

∂τ

)
−
(
∂B̃

∂τ
·∇
)
C − C·

(
∇∂B̃

∂τ

)∣∣∣∣
((H1

0 (ω))2)′
dτ

∣∣∣∣
+

∣∣∣∣ z(·, T2
)∣∣∣∣

(L2(ω))2

)
.

Estimating the ((H1
0 (ω))2)′ norms of all the products in the right-hand side of the

above inequality in the usual way (recalling that ỹ, B̃ ∈ W 1,∞(0, T ; (W 2,p(Ω))2) with
p > 2), we can write

|∇q1|((H1
0 (ω1))2)′

≤ c

(
|h|(L2(ω))2 + |z|(L2(ω))2 + |C|(L2(ω))2

+

∣∣∣∣ ∫ t

T
2

(
|z|(L2(ω))2 + |C|(L2(ω))2

)
dτ

∣∣∣∣
+ |z|(L2(ω))2 +

∣∣∣∣z(·, T2
)∣∣∣∣

(L2(ω))2

)
.

(4.9)

To estimate the ((H1
0 (ω1))

2)′ norm of ∇q2, we first remark that q2 is harmonic in
ω (because, by (4.8), Δq2 = −Δ div z2 = 0 in ω). So, applying the Laplace operator
to (4.8), we obtain

Δ2z2 = 0 in ω.

A standard interior estimate for the solutions of homogeneous elliptic equations then
gives

|z2|(H2(ω1))2 ≤ c|z2|(L2(ω))2 ≤ c
(
|z|(L2(ω))2 + |z1|(L2(ω))2

)
.(4.10)

Now using the estimate for the weak solution of (4.7) (interpreted as a stationary
Stokes system) once again, in the same way as before, we obtain

|z1|(L2(ω))2

≤ c

(
|h|(L2(ω))2 + |z|(L2(ω))2 + |C|(L2(ω))2

+

∣∣∣∣ ∫ t

T
2

(
|z|(L2(ω))2 + |C|(L2(ω))2

)
dτ

∣∣∣∣
+ |z|(L2(ω))2 +

∣∣∣∣z(·, T2
)∣∣∣∣

(L2(ω))2

)
.

(4.11)
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From (4.8) it follows that

|∇q2|((H1
0 (ω1))2)′ ≤ |z2|(H1(ω1))2 .

This last inequality taken together with (4.10) and (4.11) yields

|∇q2|((H1
0 (ω1))2)′

≤ c

(
|h|(L2(ω))2 + |z|(L2(ω))2 + |C|(L2(ω))2

+

∣∣∣∣ ∫ t

T
2

(
|z|(L2(ω))2 + |C|(L2(ω))2

)
dτ

∣∣∣∣
+ |z|(L2(ω))2 +

∣∣∣∣z(·, T2
)∣∣∣∣

(L2(ω))2

)
.

(4.12)

Since q = q1 + q2, inequalities (4.9) and (4.12) give

|∇q|((H1
0 (ω1))2)′

≤ c

(
|h|(L2(ω))2 + |z|(L2(ω))2 + |C|(L2(ω))2

+

∣∣∣∣ ∫ t

T
2

(
|z|(L2(ω))2 + |C|(L2(ω))2

)
dτ

∣∣∣∣
+ |z|(L2(ω))2 +

∣∣∣∣z(·, T2
)∣∣∣∣

(L2(ω))2

)
.

(4.13)

Treating equations (4.6) in the same way as equations (4.5) we obtain

|∇r|((H1
0 (ω1))2)′

≤ c

(
|H|(L2(ω))2 + |z|(L2(ω))2 + |C|(L2(ω))2

+

∣∣∣∣ ∫ t

T
2

(
|z|(L2(ω))2 + |C|(L2(ω))2

)
dτ

∣∣∣∣
+ |C|(L2(ω))2 +

∣∣∣∣C (
·, T

2

)∣∣∣∣
(L2(ω))2

)
.

(4.14)

Now we take inequalities (4.4), (4.13), and (4.14) together to obtain∫
Qω1

e2sαs
11
4 ϕ̂

11
4 (q2 + r2)dxdt

≤ c(λ, s, δ)

(∫
Qω

e2sδα̂(|z|2 + |C|2)dxdt +

∫
Qω

e2sδα̂(|h|2 + |H|2)dxdt

+

∣∣∣∣z(·, T2
)∣∣∣∣2

(L2(ω))2
+

∣∣∣∣C (
·, T

2

)∣∣∣∣2
(L2(ω))2

)
for

1

2
< δ < δ0(λ).(4.15)
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Next inserting (4.15) into the Carleman-type inequality (4.3), we obtain∫
Q

e2sα 1

ϕ
(|z|2 + |C|2)dxdt

≤ c(λ, s, δ)

(∫
Qω

e2sδα̂(|z|2 + |C|2)dxdt +

∫
Q

e2sδα̂(|h|2 + |H|2)dxdt

+

∣∣∣∣z(·, T2
)∣∣∣∣2

(L2(Ω))2
+

∣∣∣∣C (
·, T

2

)∣∣∣∣2
(L2(Ω))2

)
for λ > λ0, s > s0(λ), and

1

2
< δ < δ0(λ).

(4.16)

In a standard way (see [9], [6], or [7] for details) we can convert inequality (4.16) into

a similar one in which the new weight functions e2sβ̂ , (T − t)8, and e2sδβ̂ replace e2sα,
1/ϕ, and e2sδα̂, respectively, namely,∫

Q

e2sβ̂(T − t)8(|z|2 + |C|2)dxdt

≤ c(λ, s, δ)

(∫
Qω

e2sδβ̂(|z|2 + |C|2)dxdt +

∫
Q

e2sδβ̂(|h|2 + |H|2)dxdt

+

∣∣∣∣z(·, T2
)∣∣∣∣2

(L2(Ω))2
+

∣∣∣∣C (
·, T

2

)∣∣∣∣2
(L2(Ω))2

)
for λ > λ0, s > s0(λ), and

1

2
< δ < δ0(λ).

(4.17)

Arguing by contradiction one can eliminate the (L2(Ω))2 norms of z(·, T/2) and
C(·, T/2) in (4.17) and show that (4.1) is true for suitable constants c(λ, s, δ). (We
again refer the reader to [9], [6], or [7] for details.) So the proof is complete.

From the observability inequality (4.1), one can derive the next one, which is in
fact an L2 estimate of z and C taken on Ω at the moment t = 0 by their values taken
on ω but at all the moments t ∈ [0, T ]. (We refer the reader to [7] or [6] for the proof.)

Theorem 4.2. Under the hypotheses of Theorem 4.1 there exists λ0 > 0 such that
for any λ > λ0 one can find s0(λ) > 0 and δ0(λ) ∈ (1/2, 1) such that for s > s0(λ)
and 1/2 < δ < δ0(λ) there is some c(λ, s, δ) > 0 such that the following inequality
holds: ∫

Ω

(
|z(x, 0)|2 + |C(x, 0)|2

)
dx

≤ c(λ, s, δ)

(∫
Qω

e2sδβ̂
(
|z|2+|C|2

)
dx dt +

∫
Q

e2sδβ̂
(
|h|2+|H|2

)
dx dt

)(4.18)

for all h,H ∈ (L2(Q))2 which satisfy div h = divH = 0 in Q and H ·N = 0 on Σ, and
all corresponding solutions (z, C, q) ∈ (H2,1(Q))4 × L2(0, T ;H1(Ω)) of system (3.1).

Thus, we have the appropriate tools to approach the controllability problem we
are dealing with.

Let us also remark that, as we have already mentioned in the introduction, the
results contained in Theorems 4.1 and 4.2 could be substantially improved if we should
use the more general Carleman inequality for weak solutions of elliptic equations
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with H−1(Ω) right-hand side in [10] instead of the Carleman inequality for strong
solutions of elliptic equations with L2(Ω) right-hand side in [9]. Indeed, it seems that
applying the new Carleman inequality but keeping the approach here (that is, the use
of the primitives with respect to t of the solutions of (3.1)), one could show that the

observability inequalities (4.1) and (4.18) (with slightly modified β̂) are still valid for ỹ

and B̃ in (L∞(Q))2 with ∂ỹ/∂t and ∂B̃/∂t in L2(0, T ; (L∞(Ω))2∩(Hγ(Ω))2), where γ
may be any positive exponent. But we can expect even more than this: If we should
use the Carleman inequality in [10] but follow the approach in [4], then we could
obtain observability inequalities like (4.1) and (4.18) (with modified weight functions)

for ỹ and B̃ in (L∞(Q))2 with ∂ỹ/∂t and ∂B̃/∂t in L2(0, T ; (Lσ(Ω))2) only, where σ
is larger than 1. (See [4] for the analogous result for the Navier–Stokes equations.)

5. Global exact null controllability for the linearized MHD equations.
The linearization of the controlled MHD equations (2.1) with ν = η = 1 around (ỹ, B̃)
is the following:

∂y

∂t
− Δy + (ỹ · ∇)y + (y · ∇)ỹ − (B̃ · ∇)B − (B · ∇)B̃

+∇(B̃ ·B) + ∇p = f + χωu in Q,

∂B

∂t
+ c̃url(curlB) + (ỹ · ∇)B + (y · ∇)B̃

− (B̃ · ∇)y − (B · ∇)ỹ = F + P (χωv) in Q,

div y = 0, divB = 0 in Q,

y = 0, B ·N = 0, curlB = 0 on Σ,

y(·, 0) = y0, B(·, 0) = B0 in Ω,

(5.1)

where (ỹ, B̃) (together with p̃) is a solution of (2.3). We also associate condition (2.2)
to (5.1).

It is known that if ỹ, B̃ ∈ W 1,∞(0, T ; (W 1,∞(Ω))2), f, F, u, v ∈ (L2(Q))2 with
divF = 0 in Q and F ·N = 0 on Σ, and (y0, B0) ∈ V1×V2, then the boundary initial-
value problem (5.1) has a unique solution (y,B, p) ∈ (H2,1(Q))4 ×L2(0, T ;H1(Ω)) (p
is unique up to a constant). In addition, the solution satisfies the following estimate:

|y|(H2,1(Q))2 + |B|(H2,1(Q))2 + |∇p|(L2(Q))2

≤ c
(
|y0|(H1(Ω))2 + |B0|(H1(Ω))2 + |f |(L2(Q))2 + |F |(L2(Q))2

+ |u|(L2(Q))2 + |v|(L2(Q))2
)
.

(5.2)

Two weighted L2 spaces are needed to formulate the global controllability result

for the linear equations (5.1). The space L2(Q, (T − t)−8e−2sβ̂) consists of all (equiv-

alence classes of) measurable functions f : Q −→ R with (T − t)−4e−sβ̂f ∈ L2(Q),
that is, ∫

Q

1

(T − t)8
e−2sβ̂ |f |2dx dt < ∞.

The space L2(Q, e−2sδβ̂) is defined similarly.
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Theorem 5.1. Let Ω and ω be as in the statement of Theorem 2.1 and let ỹ, B̃ ∈
W 1,∞(0, T ; (W 2,p(Ω))2) with p > 2. Then there are λ > 0, s > 0, and δ ∈ (1/2, 1)

such that for any f, F ∈ (L2(Q, (T − t)−8e−2sβ̂))2 with divF = 0 in Q and F ·N = 0
on Σ, (y0, B0) ∈ V1 × V2, and δ′ ∈ (1/2, δ), there exists (u, v, y,B, p) ∈ (L2(Q))4 ×
(H2,1(Q))4 × L2(0, T ;H1(Ω)) which satisfies (5.1), (2.2) and the final conditions

y(x, T ) = 0 and B(x, T ) = 0 a.e. x ∈ Ω

and which has the following decay at t = T :

u, v, y,B ∈ (L2(Q, e−2sδβ̂))2,

e−sδ′β̂y, e−sδ′β̂B ∈ (H2,1(Q))2.

Proof. We need an approximation of the function β̂ which should take a finite
value at t = T , too. For instance, for ε > 0 we could define β̂ε as

β̂ε(t) =
1 − e2λ|ψ|C(Ω)

(θ(t)(T − t + ε))8
·

Let us now fix λ > 0, s > 0, and δ ∈ (1/2, δ0(λ)) such that inequalities (4.1) and (4.2)
hold. Then for ε > 0 we consider the corresponding auxiliary optimal control problem:

Minimize

(Pε)

1

2

∫
Q

e−2sδβ̂
(
|u|2 + |v|2

)
dx dt +

1

2

∫
Q

e−2sδβ̂ε
(
|y|2 + |B|2

)
dx dt

+
1

2ε

∫
Ω

(
|y(x, T )|2 + |B(x, T )|2

)
dx

over all (u, v) ∈ (L2(Q))4, where (y,B) satisfies (5.1) and (2.2) (together with
some p).

It is known that problem (Pε) has a unique solution (uε, vε, yε, Bε, pε) for any ε > 0.
The idea of the proof is to regard the limit of (uε, vε, yε, Bε, pε) when ε −→ 0

as a possible solution of the controllability problem for system (5.1). To prove the
convergence of (uε, vε, yε, Bε, pε) we need to obtain L2 estimates for uε and vε. To
achieve this, we shall combine Pontryagin’s maximum principle, applied to problems
(Pε), with the observability inequalities (4.1) and (4.2), applied to the adjoint system.

Let (uε, vε, yε, Bε, pε) be the solution of problem (Pε). Pontryagin’s maximum
principle asserts that there exists a dual process (zε, Cε, qε) which, together with
(uε, vε, yε, Bε, pε), satisfies the adjoint equations

∂zε
∂t

+ Δzε + (ỹ · ∇)zε − zε · (∇ỹ)

− (B̃ · ∇)Cε − Cε · (∇B̃) + ∇qε = e−2sδβ̂εyε in Q,

∂Cε

∂t
− c̃url(curlCε) + P ((ỹ · ∇)Cε + Cε · (∇ỹ)

− (B̃·∇)zε + zε·(∇B̃))=e−2sδβ̂εBε in Q,

div zε = 0, divCε = 0 in Q,

zε = 0, Cε ·N = 0, curlCε = 0 on Σ,

zε(·, T ) = −1

ε
yε(·, T ), Cε(·, T ) = −1

ε
Bε(·, T ) in Ω

(5.3)
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and the following maximum conditions:

uε = χωe
2sδβ̂zε, vε = χωe

2sδβ̂Cε a.e. in Q.(5.4)

We notice that system (5.3) has the form (3.1) with h = e−2sδβ̂εyε and H = e−2sδβ̂εBε.
Let us integrate the derivative

d

dt

∫
Ω

(yε · zε + Bε · Cε)dx

from 0 to T and then use (5.1), (5.3), and (5.4). We obtain∫
Qω

e2sδβ̂
(
|zε|2 + |Cε|2

)
dx dt +

∫
Q

e−2sδβ̂ε
(
|yε|2 + |Bε|2

)
dx dt

+
1

ε

∫
Ω

(
|yε(x, T )|2 + |Bε(x, T )|2

)
dx

= −
∫
Q

(f ·zε+F ·Cε)dx dt−
∫

Ω

(y0(x)·zε(x, 0)+B0(x)·Cε(x, 0))dx

≤
(∫

Q

e−2sβ̂ 1

(T − t)8
(|f |2 + |F |2)dx dt

) 1
2

×
(∫

Q

e2sβ̂(T − t)8(|zε|2 + |Cε|2)dx dt
) 1

2

+
(
|y0|2(L2(Ω))2+|B0|2(L2(Ω))2

)1
2

(∫
Ω

(|zε(x, 0)|2 + |Cε(x, 0)|2)dx
)1

2

.

(5.5)

Taking inequality (5.5) together with the observability inequalities (4.1) and (4.18)
applied to system (5.3), we have∫

Qω

e2sδβ̂
(
|zε|2 + |Cε|2

)
dx dt +

∫
Q

e−2sδβ̂ε
(
|yε|2 + |Bε|2

)
dx dt

≤ c

(
|y0|2(L2(Ω))2+|B0|2(L2(Ω))2+

∫
Q

e−2sβ̂ 1

(T−t)8
(
|f |2+|F |2

)
dx dt

)
,

(5.6)

where c is a positive parameter depending on λ, s, and δ. Passing from zε and Cε to
uε and vε in (5.6) by using (5.4), we obtain∫

Qω

e−2sδβ̂
(
|uε|2 + |vε|2

)
dx dt +

∫
Q

e−2sδβ̂ε
(
|yε|2 + |Bε|2

)
dx dt

≤ c

(
|y0|2(L2(Ω))2+|B0|2(L2(Ω))2+

∫
Q

e−2sβ̂ 1

(T−t)8
(
|f |2+|F |2

)
dx dt

)
,

(5.7)

where the positive constant c is independent of ε. Moreover, now putting (5.5), (4.1),
(4.2), and (5.6) together, we have∫

Ω

(|yε(x, T )|2 + |Bε(x, T )|2)dx ≤ cε(5.8)

for some positive constant c independent of ε.
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By virtue of (5.7) and (5.2), there exists (u, v, y,B, p) ∈ (L2(Q))4 × (H2,1(Q))4 ×
L2(0, T ;H1(Ω)) such that, on a subsequence of {ε}, as ε −→ 0,

uε −→ u, vε −→ v weakly in (L2(Q))2,

yε −→ y, Bε −→ B weakly in (H2,1(Q))2,

pε −→ p weakly in L2(0, T ;H1(Ω)).

Thus, letting ε −→ 0 in (5.1), where u, v, y, B, and p are replaced by uε, vε, yε, Bε,
and pε, we see that u, v, y, B, and p satisfy (5.1), too. In addition, by (5.8), we have

y(x, T ) = 0 and B(x, T ) = 0 a.e. x ∈ Ω.

Finally, the indicated decay of u, v, y, and B at t = T is obtained as in [6]. So,
the proof of Theorem 5.1 is complete.

6. Proof of Theorem 2.1. We shall reduce the controllability of the solution
(ỹ, B̃) of the MHD equations (2.3) to the controllability of the null solution of a certain

version of (2.3) by subtracting (2.1) and (2.3). The differences y− ỹ, B−B̃, and p− p̃,
also denoted by y, B, and p, satisfy

∂y

∂t
− Δy + (y·∇)y + (ỹ·∇)y + (y·∇)ỹ

− (B·∇)B − (B̃·∇)B − (B·∇)B̃

+∇
(

1

2
B2

)
+ ∇(B̃·B) + ∇p = χωu in Q,

∂B

∂t
+c̃url(curlB)+(y·∇)B+(ỹ·∇)B+(y·∇)B̃

− (B·∇)y−(B̃·∇)y−(B·∇)ỹ=P (χωv) in Q,

div y = 0, divB = 0 in Q,

y = 0, B·N = 0, curlB = 0 onΣ,

y(·, 0) = y0, B(·, 0) = B0 in Ω.

(6.1)

The differences y0− ỹ(·, 0) and B0−B̃(·, 0) have been denoted here by y0 and B0, too.
In this way, the original controllability problem can be replaced by that of finding
(u, v, y,B, p), which satisfies (6.1) but also y(·, T ) = 0 and B(·, T ) = 0 a.e. in Ω.

The null controllability problem for (6.1) can be reformulated as an invertibility
property for a certain nonlinear map. Let us define this map in what follows after
introducing the needed function spaces.

We take λ > 0, s > 0, and δ ∈ (1/2, 1) as in the statement of Theorem 5.1.
Let 1/2 < δ′ < δ. We denote by X(Q) the space of all (u, v, y,B, p) ∈ (L2(Q))4 ×
(H2,1(Q))4 ×L2(0, T ;H1(Ω)) which satisfy (e−sδ′β̂y, e−sδ′β̂B) ∈ (H2,1(Q))4, ∂y/∂t−
Δy + (ỹ · ∇)y + (y · ∇)ỹ− (B̃ · ∇)B− (B · ∇)B̃ +∇(B̃ ·B) +∇p−χωu ∈ (L2(Q, (T −
t)−8e−2sβ̂))2, ∂B/∂t+c̃url (curlB)+(ỹ ·∇)B+(y ·∇)B̃−(B̃ ·∇)y−(B ·∇)ỹ−P (χωv) ∈
(L2(Q, (T − t)−8e−2sβ̂))2, and

div y = 0, divB = 0 in Q,

y = 0, B ·N = 0, curlB = 0 on Σ,

y(·, T ) = 0, B(·, T ) = 0 a.e. in Ω.
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The space X(Q) becomes a Banach space if we endow it with the norm

|(u, v, y,B, p)|X(Q) =

(
|u|2(L2(Q))2 + |v|2(L2(Q))2

+ |e−sδ′β̂y|2(H2,1(Q))2 + |e−sδ′β̂B|2(H2,1(Q))2 + |p|2L2(0,T ;H1(Ω))

+

∫
Q

e−2sβ̂ 1

(T − t)8

(∣∣∣∣∂y∂t − Δy + (ỹ · ∇)y + (y · ∇)ỹ

− (B̃·∇)B−(B·∇)B̃+∇(B̃·B)+∇p−χωu

∣∣∣∣2

+

∣∣∣∣∂B∂t + c̃url (curlB) + (ỹ · ∇)B + (y · ∇)B̃

−(B̃·∇)y−(B·∇)ỹ−P (χωv)

∣∣∣∣2
)
dx dt

)1
2

.

We denote by Y (Q) the space of all (f, F, y0, B0) ∈ (L2(Q, (T − t)−8e−2sβ̂))4×V1×V2

such that divF = 0 in Q and F ·N = 0 on Σ, which becomes a Banach space, too, if
we endow it with the product norm

|(f, F, y0, B0)|Y (Q)

=

(∫
Q

e−2sβ̂ 1

(T − t)8
(|f |2 + |F |2)dx dt + |y0|2(H1(Ω))2 + |B0|2(H1(Ω))2

)1/2

.

Now the nonlinear map A : X(Q) −→ Y (Q) is defined as follows: for (u, v, y,B, p) ∈
X(Q),

A(u, v, y,B, p)

=

(
∂y

∂t
− Δy + (y · ∇)y + (ỹ · ∇)y + (y · ∇)ỹ

− (B · ∇)B − (B̃ · ∇)B − (B · ∇)B̃

+∇
(

1

2
B2

)
+ ∇(B̃ ·B) + ∇p− χωu,

∂B

∂t
+ c̃url (curlB) + (y · ∇)B + (ỹ · ∇)B + (y · ∇)B̃

− (B · ∇)y − (B̃ · ∇)y − (B · ∇)ỹ − P (χωv),

y(·, 0), B(·, 0)

)
.

One can show (see [7] or [6]) that if δ′ > 1/2, then A(u, v, y,B, p) ∈ Y (Q) for
(u, v, y,B, p) ∈ X(Q).
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It is easy to calculate the differential of A:

((dA)(u, v, y,B, p))(u, v, y,B, p)

=

(
∂y

∂t
− Δy + (y · ∇)y + (y · ∇)y + (ỹ · ∇)y + (y · ∇)ỹ

− (B · ∇)B − (B · ∇)B − (B̃ · ∇)B − (B · ∇)B̃

+∇(B ·B) + ∇(B̃ ·B) + ∇p− χωu,

∂B

∂t
+ c̃url (curlB) + (y · ∇)B + (y · ∇)B + (ỹ · ∇)B + (y · ∇)B̃

− (B·∇)y − (B·∇)y − (B̃·∇)y − (B·∇)ỹ − P (χωv),

y(·, 0), B(·, 0)

)
.

This differential is continuous (see [7]).
Moreover, A(0, 0, 0, 0, 0) = (0, 0, 0, 0). So, we have to show that there exists η > 0

such that for any (f, F, y0, B0) ∈ Y (Q) satisfying

|(f, F, y0, B0)|Y (Q) < η

one can find (u, v, y,B, p) ∈ X(Q) such that

A(u, v, y,B, p) = (f, F, y0, B0).

(In fact, here it suffices to take f = F = 0.) According to an infinite-dimensional
version of the implicit function theorem (see [1, p. 101]), a sufficient condition assuring
such a local invertibility property for A around (0, 0, 0, 0, 0) is that (dA)(0, 0, 0, 0, 0) :
X(Q) −→ Y (Q) should be an epimorphism. But this expresses nothing else than the
global null controllability property for system (5.1) stated by Theorem 5.1. Thus, the
proof of Theorem 2.1 is finished.
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LQG BALANCING FOR CONTINUOUS-TIME
INFINITE-DIMENSIONAL SYSTEMS∗

MARK R. OPMEER†

Abstract. In this paper we study the existence of linear quadratic Gaussian (LQG)-balanced
realizations for continuous-time infinite-dimensional systems. LQG-balanced realizations are those
for which the optimal cost operator for the system and its dual system are equal (and diagonal). The
class of systems we consider is that of distributional resolvent linear systems which includes well-posed
linear systems as a subclass. We prove the existence of LQG-balanced realizations under a finite cost
condition for both the system and its dual system. We also show that an LQG-balanced realization
of a well-posed transfer function is well-posed. We further show that approximately controllable
and observable LQG-balanced realizations are unique up to a unitary state-space transformation.
Finally, we show that the spectrum of the product of the optimal cost operator of a system and its
dual system is independent of the particular realization. Our method of proof shows the connections
with coprime factorizations, Lyapunov-balanced realizations, and discrete-time systems. The main
reason for studying LQG-balanced realizations is that truncated LQG-balanced realizations provide
a good approximation of the original system. We show that, under certain conditions, this is also
true in the infinite-dimensional case by proving an error bound in the gap-metric.

Key words. balanced realization, infinite-dimensional system, LQG-balanced realization, co-
prime factorization, Riccati equation

AMS subject classifications. 47A48, 47N70, 93B28, 93C55

DOI. 10.1137/050638229

1. Introduction. Simple models are normally preferred over complex ones in
control systems design. Sometimes it is obvious how to construct a simple model for
a physical system, but sometimes it is not obvious what the characteristics essential
to the controller design of a physical system are. One way of obtaining a simple
model in the latter case is to first obtain a sophisticated model that takes every
aspect of possible interest into account and then perform model reduction on this
sophisticated model. A simple model reduction procedure was introduced by Moore
[9] and is now a textbook subject (see, e.g., Zhou and Doyle [24, Chapter 7]). The
method proposed by Moore consists of truncating a balanced realization. A balanced
realization (also called Lyapunov- or internally balanced) is a realization for which
the controllability and observability gramians are equal and diagonal. Lyapunov-
balanced realizations are popular because they are relatively easy to compute and
there exists an error bound in the H-infinity norm on the basis of which one can show
that compensators based on the reduced order model have a certain performance
when applied to the full order system. The Lyapunov-balanced realization method
is applicable only to stable systems. Alternatively for unstable systems one can use
truncations of a linear quadratic Gaussian (LQG)-balanced realization, which for
rational transfer functions always exists. An LQG-balanced realization is a realization
for which the optimal cost operator for the system and its dual system (with respect
to the standard quadratic cost functional) are equal and diagonal. This method was
proposed by Verriest [20], [21] and further developed by Jonckheere and Silverman [7].
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For an alternative treatment see Mustafa and Glover [10], and for the discrete-time
case see Hoffmann, Prätzel-Wolters, and Zerz [6]. The computation of an LQG-
balanced realization can also be performed reasonably efficiently, and there exists
an error bound in the gap-metric which provides advantages similar to those of the
H-infinity error bound for the truncated Lyapunov-balanced realization.

In the case that the system is infinite-dimensional, the model/controller approxi-
mation becomes essential. One would like to use the methods of balanced truncation
and LQG-balanced truncation in this case, too.

The existence of Lyapunov-balanced and LQG-balanced realizations for irrational
transfer functions is nontrivial. A necessary and sufficient condition for the existence
of Lyapunov-balanced realizations in discrete time was given by Young [23], [22] (see
[19, section 9.5] for the continuous-time case). A necessary and sufficient condition
for the existence of LQG-balanced realizations for discrete-time systems was given in
[16]. The first of the main results of the present article shows the analogous result for
the continuous-time case.

As in the finite-dimensional case it is essential for controller design to have conver-
gence in the H-infinity norm (for Lyapunov-balanced realizations) or the gap-metric
(for LQG-balanced realizations); see [2]. Additional assumptions need to be made to
ensure this. Under appropriate additional assumptions, a priori error bounds ensuring
such convergence were given in [5] for continuous-time Lyapunov-balanced realizations
and in [1] for discrete-time Lyapunov-balanced realizations. The second of the main
aims of the present article is to provide a priori error bounds in the gap-metric for
LQG-balanced realizations in both discrete and continuous time.

The class of continuous-time systems we consider is very general: it includes
virtually all causal time-invariant linear systems studied in the literature. Details on
this class of systems are given in section 4.

The proofs of our results are based on the discrete-time case [16] supplemented
by recent results on coprime factorizations [3] and on the Cayley transform and the
linear quadratic regulator (LQR) problem [15], [12].

2. LQG-balanced realizations: The finite-dimensional case. In this sec-
tion we review some of the results on finite-dimensional LQG-balanced realizations.
We consider systems of the form

(1) ẋ(t) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t) + Du(t),

where A,B,C,D are matrices of compatible dimensions. We consider the linear
quadratic regulator (LQR) problem for the cost functional

J(x0, u) :=

∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt,

where y is given in terms of x0 and u by (1). The LQR problem consists of finding
for a given x0 that u for which J(x0, u) is minimal. As is well known, this problem
has a unique solution when the system is minimal: the optimal input uopt is given by
the state feedback uopt(t) = −(I +D∗D)−1(D∗C +B∗Q)x(t), where Q is the unique
nonnegative solution of the Riccati equation

A∗Q + QA + C∗C = (C∗D + QB)(I + D∗D)−1(D∗C + B∗Q),

and the optimal cost is given by J(x0, u
opt) = 〈x0, Qx0〉. By duality the “optimal

filter cost” is given by 〈x0, Px0〉, where P is the unique nonnegative solution of the
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Riccati equation

PA∗ −AP + BB∗ = (BD∗ + PC∗)(I + DD∗)−1(DB∗ + CP ).

The quantity 〈x0, Px0〉 can be interpreted as a measure of the difficulty of reconstruct-
ing the initial state x0 from noisy measurements. The eigenvalues of the product PQ
are similarity invariants; their square roots are called the LQG-characteristic values
of the system. These invariants can be interpreted as a measure of how important the
subspace generated by the eigenvector is for the compensator design. This can be seen
from the LQG-balanced realization. An LQG-balanced realization is a realization such
that P = Q = Λ, where Λ is the diagonal matrix containing the LQG-characteristic
values. Let λi be the square root of an eigenvalue of PQ with eigenvector xi of length
one. Then, in the LQG-balanced realization, the optimal cost with initial condition
xi is λi and the difficulty of reconstructing this initial state from noisy measurements
is also λi. The idea behind LQG-balanced truncation is to restrict the system to
the subspace generated by the eigenvectors corresponding to the largest eigenvalues.
Since this subspace is most important for compensator design, the system obtained
by LQG-balanced truncation seems to be a reasonable approximation. As mentioned
in the introduction there is also an error bound which justifies the above heuristics.
Let δg denote the gap-metric (see Zhou and Doyle [24, Chapter 7]), Σ the original
(n-dimensional) system, and Σk the k-dimensional LQG-balanced truncation. Then

δg(Σ,Σk) ≤ 2

n∑
i=k+1

λi√
1 + λ2

i

;

see Mustafa and Glover [10, section 8.4.5].

3. Discrete-time systems. In this section we review the results in [16] on
discrete-time infinite-dimensional LQG-balanced realizations and give some exten-
sions. The discrete-time case is a key ingredient for the proof in continuous time.

Let U , X , Y be separable Hilbert spaces and[
A B
C D

]
∈ L

([
X
U

]
,

[
X
Y

])
.

Such a block operator will be called a discrete-time system. We will also denote such
a block operator using the notation [A,B;C,D] (we denote a block row of operators
by [X,Y ] and a block column by [X;Y ]). We denote the set of nonnegative integers
by Z

+. For a given initial state x0 ∈ X and input u : Z
+ → U define the state

x : Z
+ → X and output y : Z

+ → Y by

(2) xn+1 = Axn + Bun, x0 = x0, yn = Cxn + Dun.

A sequence h : Z
+ → H is called Z-transformable if the power series

∞∑
i=0

hiz
i

has a positive radius of convergence. The Z-transform of a Z-transformable sequence
h is defined to be the sum of this series and is denoted by ĥ. For operators A, B, C,
D as above define the transfer function G : Dr → L(U ,Y) by

G(z) = D +

∞∑
i=0

CAiBzi+1,
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where Dr is defined to be the largest disc centered at the origin for which the above
sum converges (note that it definitely converges on the disc centered at the origin
with radius 1/r(A), where r(A) is the spectral radius of the operator A). If the input
sequence u is Z-transformable, then the output sequence y is also Z-transformable,
and if x0 = 0, then the Z-transform of the output is given by

ŷ(z) = G(z)û(z)

on some neighborhood of the origin. The function D + Cz(I − zA)−1B is called the
characteristic function of the discrete-time system. Note that the transfer function
and the characteristic function are equal on some neighborhood of the origin but may
not be identically equal. A discrete-time system is called a realization of the function
G if G(z) = D + Cz(I − zA)−1B on some neighborhood of the origin. Any L(U ,Y)-
valued function that is holomorphic at the origin can be realized as the transfer
function of some discrete-time system. This discrete-time system is far from unique.

3.1. Lyapunov-balanced realizations in discrete time. Although we are
studying LQG-balanced realizations, we do this by relating them to Lyapunov-balanced
realizations. In this subsection we review some results on Lyapunov-balanced real-
izations that are needed in what follows. To define what we exactly mean by a
Lyapunov-balanced realization we first have to define the input and output maps and
the gramians of a discrete-time system.

The input map of a discrete-time system is defined for finitely nonzero u : Z
− → U

by (here Z
− is the set of negative integers)

Bu :=

∞∑
i=0

AiBu−i−1.

A discrete-time system is called approximately controllable if the range of B is dense
in X , and it is called input stable if B extends to a bounded operator from l2(Z−;U)
to X . For an input stable discrete-time system we define the controllability gramian
LB ∈ L(X ) by LB := BB∗.

The output map of a discrete-time system is defined for x ∈ X by

(Cx)k := CAkx, k ∈ Z
+.

A discrete-time system is called approximately observable if C is one-to-one, and it is
called output stable if C is a bounded operator from X to l2(Z+;Y). For an output
stable discrete-time system we define the observability gramian LC ∈ L(X ) by LC :=
C∗C. A discrete-time system is called minimal if it is both approximately controllable
and approximately observable.

The Hankel operator H of a discrete-time system is defined for finitely nonzero
u : Z

− → U by

(Hu)k =

∞∑
i=0

CAiBuk−i−1, k ∈ Z
+.

Note that H = CB and that H depends only on the transfer function of the system.
Definition 3.1. A discrete-time system is called Lyapunov-balanced if it is

input and output stable and LB = LC , and it is called compact Lyapunov-balanced
if, in addition, LB = LC is compact.
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Young [23], [22] proved that every holomorphic uniformly bounded function on the
unit disc (i.e., every element of H∞(D,L(U ,Y))) has a minimal Lyapunov-balanced
realization. He also noted that if the Hankel operator that has this given function as
symbol is compact then there exists a minimal compact Lyapunov-balanced realiza-
tion. A simplification of the proof of Young can be found in Peller [17, section 11.2]
and an alternative proof can be found in Staffans [19, section 9.5]. Young [23], [22]
has also shown that minimal Lyapunov-balanced realizations are unique up to a uni-
tary transformation in the state space. Let [A,B;C,D] be a compact Lyapunov-
balanced realization and denote by P : X → X the projection onto the subspace
spanned by the eigenvectors of LB = LC corresponding to the largest n eigenvalues
(eigenvalues are counted with multiplicity and it is assumed here that the n + 1st
eigenvalue is different from the nth eigenvalue). Then [PAP,PB;CP,D] is called the
n-dimensional truncated Lyapunov-balanced realization. Note that the n-dimensional
truncated Lyapunov-balanced realization may not be defined for every n ∈ Z

+ due to
repeated eigenvalues. Since eigenvalues of compact operators have finite multiplicity
it is defined for infinitely many values of n. When we mention n-dimensional trun-
cated Lyapunov-balanced realizations in what follows we will implictely assume that
n is such that this notion is well defined. A truncated Lyapunov-balanced realization
is not unique, since the Lyapunov-balanced realization is not. However, since two
minimal Lyapunov-balanced realizations of the same transfer function are unitarily
equivalent, so are all n-dimensional truncated balanced realizations. Consequently
the transfer function of an n-dimensional truncated balanced realization Gn is well
defined. The whole idea of Lyapunov-balanced realizations is that Gn is a good ap-
proximation of G. That this is indeed the case under certain conditions was proven
by Bonnet [1]. The result of Bonnet is the discrete-time version of the continuous-
time result in [5]. We summarize the results of Young and Bonnet in the following
theorem. We note that the singular values of a compact operator T are the square
roots of the eigenvalues of T ∗T and that an operator is called nuclear if it is compact
and its singular values form a summable sequence. The Hankel singular values of a
system are the singular values of its Hankel operator.

Theorem 3.2. 1. Every function in H∞(D,L(U ,Y)) has a minimal Lyapunov-
balanced realization. If the Hankel operator of the function is compact, then it has a
minimal compact Lyapunov-balanced realization.

2. If, in addition, the Hankel operator of the function is nuclear and the input
and output spaces are finite-dimensional, then

‖G−Gn‖∞ ≤ 2

∞∑
i=n+1

σi,

where Gn is the transfer function of a truncated compact Lyapunov-balanced realiza-
tion of G and the σi are the Hankel singular values.

Part 2 of the above theorem was proven in [1], following the continuous-time
version in [5], only for the case where the Hankel singular values are distinct. As
indicated in [5] the generalization to the case of possibly repeating Hankel singular
values is not difficult, except notationally. Details may be found in [14, Chapter 10].

3.2. LQG-balanced realizations in discrete time. In this subsection we
summarize the results obtained in [16] on LQG-balanced realizations in discrete time.
We also extend these by obtaining an error bound on truncated compact LQG-
balanced realizations.
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To exactly define the concept of an LQG-balanced discrete-time system we first
consider the LQR problem. This problem is as follows: for given x0 ∈ X find an input
u that minimizes

(3) J(x0, u) :=

∞∑
n=0

‖un‖2 + ‖yn‖2,

where y is given in terms of x0 and u by (2). We introduce the following concept: a
discrete-time system satisfies the finite cost condition if for every x0 ∈ X there exists
a u ∈ l2(Z+;U) such that the corresponding output y ∈ l2(Z+;Y). It is well known
(see, e.g., [4]) that if the finite cost condition is satisfied, then for every x0 ∈ X there
exists a unique uopt ∈ l2(Z+;U) that minimizes the cost function (3) and there exists
a bounded nonnegative operator Q such that the minimal cost is given by 〈Qx0, x0〉.
This operator Q is called the optimal cost operator. Similarly, if for the dual system[

A B
C D

]∗
=

[
A∗ C∗

B∗ D∗

]
the finite cost condition is satisfied, then there exists an optimal cost operator P for
this dual system. This operator P is called the dual optimal cost operator of the
original system.

Definition 3.3. A discrete-time system is called LQG-balanced if it and its
dual both satisfy the finite cost condition and P = Q, and it is called compact LQG-
balanced if, in addition, P = Q is compact.

Below we state not only the main results obtained in [16], but also some main steps
in the proof. These intermediate results are also necessary to obtain the continuous-
time analogues.

The optimal cost operator satisfies the following Riccati equation:

A∗QA−Q + C∗C = (C∗D + A∗QB)(I + D∗D + B∗QB)−1(B∗QA + D∗C).

The optimal input uopt can be given by a state feedback. To explain this we consider
the concept of an admissible state feedback pair.

Definition 3.4. An admissible state feedback pair for a discrete-time system is
a pair [K,F ] ∈ L([X ,U ],U) such that I − F is boundedly invertible. The closed-loop
system is given by

Acl := A + B(I − F )−1K, Bcl := B(I − F )−1,

Ccl :=

[
(I − F )−1K

C + D(I − F )−1K

]
, Dcl :=

[
(I − F )−1

D(I − F )−1

]
.

This closed-loop system is obtained by adding the equation un = Kxn+Fun+rn
to (2), considering [u; y] as the new output and r as the new input, and solving. The
state feedback pair

K := −(I + D∗D + B∗QB)−1/2(D∗C + B∗QA), F := I − (I + D∗D + B∗QB)−1/2

is admissible and with zero input and initial condition x0 the output of the closed-loop
system is exactly [uopt; yopt], the optimal input and output for the system [A,B;C,D].
The closed-loop system with this specific admissible state feedback pair will be called
the optimal closed-loop system corresponding to the system [A,B;C,D].
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We give some properties of the optimal closed-loop system that were proven in
[16] and some that follow from results in [3]. To formulate these we first recall the
concept of a (normalized) right coprime factor.

Definition 3.5. A function [M ;N ] ∈ H∞(D,L(U , [U ;Y])) is called a right factor
of a function G if M is invertible on some neighborhood of the origin and G = NM−1

on this region. M and N as above are called right coprime if there exists [X̃, Ỹ ] ∈
H∞(D,L([U ,Y],U)) such that X̃M − Ỹ N = I on the unit disc. [M ;N ] as above is
called normalized if M∗M + N∗N = I almost everywhere on the unit circle.

We note that normalized right coprime factors are unique up to a unitary trans-
formation in L(U). The following theorem relates factorizations to the optimal closed-
loop system.

Theorem 3.6. If the system [A,B;C,D] satisfies the finite cost condition, then
the transfer function of its optimal closed-loop system is a normalized right factor
of its transfer function. If, in addition, the dual system also satisfies the finite cost
condition, then this factor is right coprime.

Proof. The first part of the proof follows from Corollary 5.8 of [16]. The
second part follows from Lemma 6.7 of [16] and the discrete-time version of [3, Corol-
lary 7.2].

Given a realization [Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] of a factor [M ;N ], we can obtain a
realization

(4) A := Ǎ− B̌Ď−1
1 Č1, B := B̌Ď−1

1 , C := Č2 − Ď2Ď
−1
1 Č1, D := Ď2Ď

−1
1

of NM−1. This follows from [16, Lemma 5.7]. The next result shows how one can
obtain an LQG-balanced realization from a Lyapunov-balanced realization of a nor-
malized right coprime factor.

Theorem 3.7. Suppose that G has a normalized right coprime factor [M ;N ].
Let [Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] be a minimal Lyapunov-balanced realization of this nor-
malized right coprime factor. Define [A,B;C,D] by (4). Then [A,B;C,D] and its
dual both satisfy the finite cost condition; its optimal cost operator is L, and its dual
optimal cost operator is L(I−L2)−1, where L is the (controllability and observability)
gramian of the Lyapunov-balanced realization.

Proof. That [M ;N ] has a minimal Lyapunov-balanced realization follows
from Theorem 3.2. The rest follows from the first lines of the proof of [16,
Theorem 8.2].

We note that I − L has a bounded inverse since the Hankel singular values of
the optimal closed-loop system are all strictly smaller than one. This last fact follows
from the coprimeness of the factorization as in [3, Corollary 7.2].

From the system [A,B;C,D] in Theorem 3.7 we obtain the LQG-balanced re-
alization [SAS−1, SB;CS−1, D], where S := (I − L2)−1/4. The following theorem
summarizes some properties of LQG-balanced realizations.

Theorem 3.8. 1. Let [Ai, Bi;Ci, Di] with i = 1, 2 be discrete-time systems that
satisfy the finite cost condition and whose duals also satisfy the finite cost condition.
If these two systems have the same transfer function, then the nonzero elements of
σ(P1Q1) equal the nonzero elements of σ(P2Q2).

2. If [A,B;C,D] and its dual both satisfy the finite cost condition, then its transfer
function has an LQG-balanced realization.

3. If [Ai, Bi;Ci, Di] with i = 1, 2 are two minimal LQG-balanced realizations of the
same transfer function, then there exists a unitary U ∈ L(X ) such that [A1, B1;C1, D1]
= [UA2U

−1, UB2;C2U
−1, D2].
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Proof. 1. This is [16, Lemma 7.2] up to an additional assumption that was made
there. There it was assumed that the systems were approximately observable. The
reason for this was that in [16, Lemma 6.9] this assumption was needed. It was shown
in [3, Lemma 4.9] how this assumption can be removed from [16, Lemma 6.9] and this
implies that it can also be removed from [16, Lemma 7.2].

2. This is [16, Theorem 8.2].
3. This is [16, Lemma 8.3].
The square roots of the nonzero elements of σ(PQ) are called the LQG-characteri-

stic values. According to part 1 of Theorem 3.8 they do not depend on the realization
but only on the transfer function.

We now introduce the metric in which LQG-balanced approximations converge
under suitable assumptions. Assume both G1 and G2 have normalized right co-
prime factors [M1;N1] and [M2;N2], respectively. Define for i = 1, 2 the set Zi ⊂
H2(D, [U ;Y ]) by Zi = {(Miv;Niv) : v ∈ H2(D;U)}, and let Pi be the orthogonal
projection from H2(D, [U ;Y ]) onto Zi. Further define

δg(G1, G2) = ‖P1 − P2‖.

Note that this does not depend on the particular normalized right coprime factors
chosen. The function δg is called the gap-metric. More information on the gap-metric
can be found in [24, Chapter 17] and for nonrational functions in [25]. What is
important for us is that

(5) δg(G1, G2) ≤
∥∥∥∥[ M1

N1

]
−
[

M2

N2

]∥∥∥∥
∞

.

We define truncated LQG-balanced realizations similarly to truncated Lyapunov-
balanced realizations. The following new result provides an a priori error bound
in the gap-metric for truncated compact LQG-balanced realizations.

Theorem 3.9. Suppose a discrete-time system satisfies the following assump-
tions:

• the finite cost condition is satisfied,
• the finite cost condition for the dual system is satisfied,
• the product PQ of the optimal cost operator and the dual optimal cost operator

is nuclear, and
• the input and output spaces are finite-dimensional.

Then the transfer function G has a compact LQG-balanced realization and

(6) δg(G,Gn) ≤ 2

∞∑
i=n+1

μi√
1 + μ2

i

,

where Gn is the transfer function of an n-dimensional truncated LQG-balanced real-
ization of G.

Proof. From Theorem 3.6 it follows that the transfer function of the given system
has a normalized right coprime factor. We show that the Hankel operator of this
normalized right coprime factor is nuclear. It follows from [16, Lemmas 5.1 and 6.9]
that LBLC = (I +PQ)−1PQ, where LB is the controllability gramian of the optimal
closed-loop system and LC is its observability gramian. Since the product PQ is
assumed compact, this shows that the product LBLC is compact. The eigenvalues
are related by

μi =
σi√

1 − σ2
i

, σi =
μi√

1 + μ2
i

,(7)
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where the μi are the square roots of the eigenvalues of PQ and the σi are the square
roots of the eigenvalues of LBLC . This shows that the square roots of the eigenvalues
of LBLC are summable. Denote the Hankel operator of the normalized right coprime
factor by Γ. As in [16, Lemma 7.2] it follows that the spectrum of Γ∗Γ equals the
spectrum of LBLC and the point spectrum of Γ∗Γ equals the point spectrum of
LBLC (both with the possible exception of zero). This shows that Γ∗Γ has only
point spectrum (with the possible exception of zero) and that the square roots of the
eigenvalues are summable. This shows that the Hankel operator is nuclear.

Denote the normalized eigenvectors of the gramian L of the Lyapunov-balanced
realization of the normalized coprime factor by en. Since for the optimal control op-
erators of the LQG-balanced realization we have P bal = Qbal = L(I − L2)−1/2 from
Theorem 3.7 we see that this LQG-balanced realization is actually compact LQG-
balanced, and the corresponding orthonormal basis is {en}. We note that the projec-
tions associated to Lyapunov-balanced truncation and to LQG-balanced truncation
are equal, since the orthonormal bases (including order) are identical. We conclude
that the system obtained by applying (4) to the truncated Lyapunov-balanced real-
ization is the truncated LQG-balanced realization. From Theorem 3.2, (5), and (7)
we now obtain the estimate (6).

4. Resolvent linear systems. In this section we recall the concept of a distri-
butional resolvent linear system introduced in [12].

A finite-dimensional linear system is usually described by specifying four ma-
trices A,B,C,D and defining for a given initial state x0 and an input function
u ∈ L2

loc(0,∞; Cm) the state x ∈ C(0,∞; Cn) and the output y ∈ L2
loc(0,∞; Cp)

as the unique solutions of

(8) ẋ(t) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t) + Du(t).

As is well known, these unique solutions are given explicitly by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds,(9)

y(t) = CeAtx0 +

∫ t

0

CeA(t−s)Bu(s) ds + Du(t).

If we Laplace-transform (8) and solve for x and y, we obtain

x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s),(10)

ŷ(s) = C(sI −A)−1x0 +
(
C(sI −A)−1B + D

)
û(s).

Our approach to infinite-dimensional systems will be to generalize situation (10) rather
than situation (8) or (9).

We first study the generalizations of the matrix-valued functions (sI − A)−1,
(sI −A)−1B, C(sI −A)−1, and C(sI −A)−1B + D.

Definition 4.1. A resolvent linear system on a triple of Hilbert spaces (U ,X ,Y)
consists of a nonempty connected open subset Λ of the complex plane and four operator
valued functions a, b, c, d satisfying

a : Λ → L(X ) satisfies

(11) a(β) − a(α) = (α− β)a(β)a(α) for all α, β ∈ Λ;
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b : Λ → L(U ,X ) satisfies

(12) b(β) − b(α) = (α− β)a(β)b(α) for all α, β ∈ Λ;

c : Λ → L(X ,Y) satisfies

(13) c(β) − c(α) = (α− β)c(α)a(β) for all α, β ∈ Λ;

d : Λ → L(U ,Y) satisfies

(14) d(β) − d(α) = (α− β)c(β)b(α) for all α, β ∈ Λ.

The function a is called the pseudoresolvent, b is the incoming wave function, c is
the outgoing wave function, and d is the characteristic function of the resolvent linear
system.

The motivation for introducing this class of systems is the following connection
with discrete-time systems.

Definition 4.2. Let α > 0. The Cayley transform with parameter α of a
resolvent linear system with α ∈ Λ is the discrete-time system

Ad := −I + 2α a(α), Bd :=
√

2α b(α),(15)

Cd :=
√

2α c(α), Dd := d(α).(16)

Remark 4.3. The Cayley transform with parameter α gives a one-to-one cor-
respondence between the set of resolvent linear systems with α ∈ Λ and the set of
discrete-time systems.

The following relation between the characteristic function of a resolvent linear
system and that of its Cayley transform is easily proven: G(s) = Gd(z), where z :=
(α− s)/(α + s).

We define two subclasses of resolvent linear systems for which one can make sense
of the dynamical system (10).

Definition 4.4. A distributional resolvent linear system is a resolvent linear sys-
tem with the additional property that there exist constants α, β > 0 and a polynomial
p such that

(17) ΛE := {s ∈ C : Re s ≥ β, |Im s| ≤ eαRe s} ⊂ Λ

and

(18) ‖a(s)‖ ≤ p(|s|) for all s ∈ ΛE .

A region ΛE as above is called an exponential region (see Figure 1 for a sketch of
the boundary of such a region).

It is easily seen using the functional equations from Definition 4.1 that the func-
tions b, c, and d of a distributional resolvent linear system are also bounded in norm
by a polynomial on the exponential region ΛE .

Definition 4.5. A distributional resolvent linear system is called exponentially
bounded if there exist a constant γ > 0 and a polynomial p such that

(19) ΛH := {s ∈ C : Re s ≥ γ} ⊂ Λ

and

(20) ‖a(s)‖ ≤ p(|s|) for all s ∈ ΛH .
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Fig. 1. A typical example of the boundary of an exponential region.

Note that the difference between Definitions 4.4 and 4.5 is in the region considered.
Remark 4.6. The term “exponentially bounded” stems from time-domain prop-

erties of this subclass. In [12] exponentially bounded distributional resolvent linear
systems were called integrated resolvent linear systems. In view of the time-domain
results in [13] the term exponentially bounded distributional resolvent linear system,
however, seems to be more appropriate.

Remark 4.7. In what follows we will need the following well-known characteri-
zation of Laplace transformable Banach space valued distributions by Schwartz. The
image of the Schwartz–Laplace transformable Banach space valued distributions is
exactly the set of polynomially bounded analytic functions defined on some right
half-plane. For details see [18]. A generalization of this Laplace transform was given
by Kunstmann. He defined the Laplace transform in such a way that the image of
the set of Laplace transformable distributions is exactly the set of functions that are
analytic and polynomially bounded on an exponential region (see Kunstmann [8]).

Definition 4.8. The state x and output y of a distributional resolvent linear sys-
tem corresponding to the initial state x0 ∈ X and the input u (a U-valued Kunstmann–
Laplace transformable distribution) are defined through their Kunstmann–Laplace
transforms as

(21) x̂(s) := a(s)x0 + b(s)û(s), ŷ(s) := c(s)x0 + d(s)û(s).

For the case of exponentially bounded distributional resolvent linear systems, if we
restrict u to be Schwartz–Laplace transformable, then x and y are Schwartz–Laplace
transformable.

For a distributional resolvent linear system we define the set of stable input-output
pairs

V(x0) :=

{[
u
y

]
∈
[

L2(R+;U)
L2(R+;Y)

]
: y satisfies (21)

}
.

Definition 4.9. We say that a distributional resolvent linear system satisfies
the finite cost condition if for every x0 ∈ X the set V(x0) is nonempty.

For α > 0 the mapping Hd : H2(C+
0 ;H) → H2(D;H), where H is a Hilbert space,

is unitary. Here Hd is defined by

(22) (Hdg)(z) =

√
2α

1 + z
g

(
α

1 − z

1 + z

)
,
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with its inverse given by

(23) (H−1
d f)(s) =

√
2α

α + s
f

(
α− s

α + s

)
.

C
+
0 is the right half-plane and H2 is a Hardy space. The following theorem shows

that, for a suitably chosen parameter α, there is a one-to-one relationship between
the stable input-output pairs of a distributional resolvent linear system and those of
its Cayley transform.

Theorem 4.10. Let (a, b, c, d) be a distributional resolvent linear system with
α ∈ ΛE, where α > 0. Let [Ad, Bd;Cd, Dd] be its Cayley transform with parameter α.
Then (u; y) ∈ V(x0) if and only if (Hdu;Hdy) ∈ Vd(x0).

The following is [12, Lemma 9].
Lemma 4.11. For a distributional resolvent linear system on a triple of Hilbert

spaces for which the finite cost condition is satisfied there exists a nonnegative operator
Q ∈ L(X ) such that the optimal cost for the cost function

(24)

∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt

is given by 〈Qx0, x0〉. This Q satisfies the Riccati equation

−a(α)∗Q−Qa(α) + 2αa(α)∗Qa(α) + c(α)∗c(α)

= (c(α)∗d(α) −Qb(α) + 2αa(α)∗Qb(α))

(I + d(α)∗d(α) + 2αb(α)∗Qb(α))−1

(d(α)∗c(α) − b(α)∗Q + 2αb(α)∗Qa(α))

for all α ∈ ΛE.
The operator Q mentioned above is called the optimal cost operator of the distri-

butional resolvent linear system. We now study admissible state feedbacks.
Definition 4.12. An admissible state feedback pair for a distributional resol-

vent linear system is a pair [k, f] : ΛE → L(X × U ,U) that satisfies

k(β) − k(α) = (α− β)k(α)a(β),

f(β) − f(α) = (α− β)k(β)b(α),

and such that (I − f(s))−1 exists and is polynomially bounded on some exponential
region.

The closed-loop system of a distributional resolvent linear system with an admis-
sible state feedback pair is the distributional resolvent linear system

a
cl := a + b(I − f)−1

k, b
cl := b(I − f)−1,

c
cl :=

[
(I − f)−1k

c + d(I − f)−1k

]
, d

cl :=

[
(I − f)−1

d(I − f)−1

]
.

It can be easily checked that this is indeed a distributional resolvent linear system.
The exponential region on which this closed-loop system is defined is the largest
exponential region contained in the intersection of the exponential region on which
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the original system was defined and the exponential region on which (I − f)−1 exists
and is polynomially bounded.

The following is [12, Lemma 8].

Lemma 4.13. For a distributional resolvent linear system on a triple of Hilbert
spaces for which the finite cost condition is satisfied there exists an admissible state
feedback pair such that the optimal control uopt for the cost function (24) is given by
ûopt(s) = (I − f(s))−1k(s)x0 for s ∈ ΛE.

Remark 4.14. A proper proof of Lemma 4.13 is given in [12, Lemma 8]. We do
want to mention the main idea of the proof. First, one Cayley-transforms the system
with a suitable parameter α. One then defines k(α) and f(α) in terms of the optimal
admissible state feedback pair [K,F ] of the Cayley-transformed system. The functions
k and f are then extended to ΛE using the functional equations from Definition 4.12.
In the specific case of the optimal state feedback it is simple to prove that (I − f)−1

exists and is polynomially bounded on an exponential region: its Cayley transform
equals the denominator Md of the normalized right factor mentioned in Theorem 3.6.
So the Cayley transform of (I − f)−1 is in H∞ of the unit disc, from which it follows
that (I − f)−1 is in H∞ of the right half-plane.

Definition 4.15. An admissible state feedback pair for an exponentially bounded
distributional resolvent linear system is a pair [k, f] : ΛH → L(X ×U ,U) that satisfies

k(β) − k(α) = (α− β)k(α)a(β),

f(β) − f(α) = (α− β)k(β)b(α),

and such that (I−f(s))−1 exists and is polynomially bounded on some right half-plane.

The closed-loop system of an exponentially bounded distributional resolvent lin-
ear system and an admissible state feedback pair in the sense of Definition 4.15 is
easily seen to be an exponentially bounded distributional resolvent linear system.
Theorem 4.13 holds for exponentially bounded distributional resolvent linear systems
with admissible state feedback operator now understood in the stronger sense of Def-
inition 4.15.

Definition 4.16. The dual of a resolvent linear system a, b, c, d is the resolvent
linear system

a
d(s) := a(s̄)∗, b

d(s) := c(s̄)∗, c
d(s) := b(s̄)∗, d

d(s) := d(s̄)∗.

Note that the dual of a distributional resolvent linear system is a distributional
resolvent linear system and that the dual of an exponentially bounded distributional
resolvent linear system is an exponentially bounded distributional resolvent linear
system.

The concept of approximate observability has a natural generalization to distri-
butional resolvent linear systems.

Definition 4.17. A distributional resolvent linear system is said to be approxi-
mately observable if for zero input the output is zero if and only if the initial state is
zero.

Note that a distributional resolvent linear system is approximately observable if
and only if c(s)x0 = 0 for all s ∈ ΛE implies x0 = 0.

Definition 4.18. A distributional resolvent linear system is said to be approxi-
mately controllable if its dual system is approximately observable. It is called minimal
if it is both approximately controllable and approximately observable.
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It is easily seen that a distributional resolvent linear system is approximately
controllable (observable) if and only if its Cayley transform with a parameter α ∈ ΛE

is.
We denote by H∞(C+

0 , E) the Hardy space of uniformly bounded E-valued analytic
functions defined on the right half-plane, where E is a Banach space.

Definition 4.19. Let ΛE be an exponential region. A function G : ΛE →
L(U ,Y), is said to have a right factorization if there exist N ∈ H∞(C+

0 ,L(U ,Y)) and
M ∈ H∞(C+

0 ,L(U)) such that M(s)−1 exists for all s ∈ ΛE and G = NM−1 on ΛE.
This factorization is called normalized if [M ;N ] is inner, i.e., if for almost all

ω ∈ R we have

Mb(iω)∗Mb(iω) + Nb(iω)∗Nb(iω) = I,

where Mb and Nb are the boundary functions of M and N , respectively.
This factorization is called right coprime if there exist X̃ ∈ H∞(C+

0 ,L(U)), Ỹ ∈
H∞(C+

0 ,L(Y,U)) such that

(25) X̃M − Ỹ N = I on C
+
0 .

Using the Cayley transform, we obtain from Theorem 3.6 the following theorem.
Theorem 4.20. If a distributional resolvent linear system satisfies the finite

cost condition, then its characteristic function has a normalized right factor. If, in
addition, the dual finite cost condition is satisfied, then this factor is right coprime.

The above theorem is a slight generalization of [3, Theorem 8.9]. The proof is
almost identical; one simply replaces the reciprocal transform used there by the Cayley
transform with a suitable parameter (i.e., positive and in ΛE). The relation between
characteristic functions mentioned in Remark 4.3 is of course essential.

5. Well-posed linear systems. We now show how the well-known class of
well-posed linear systems fits into our framework.

Definition 5.1. A resolvent linear system is called well-posed if
1. the pseudoresolvent is the resolvent of the generator of a strongly continuous

semigroup T ;
2. for every x ∈ X the function cx restricts to a function in H2(C+

ω ;Y), where
ω is some real number strictly larger than the growth bound of T ;

3. for every x ∈ X the function bdx restricts to a function in H2(C+
ω ;U), where

ω is some real number strictly larger than the growth bound of T ; and
4. d restricts to a function in H∞(C+

ω ;L(U ,Y)), where ω is some real number
strictly larger than the growth bound of T .

The above definition is equivalent to the usual time-domain definition.
Definition 5.2. An admissible state feedback pair for a well-posed linear system

is a pair [k, f] : C
+
ω → L(X × U ,U) that satisfies

k(β) − k(α) = (α− β)k(α)a(β),

f(β) − f(α) = (α− β)k(β)b(α),

and such that for every x ∈ X the function kx restricts to a function in H2(C+
ω ;U),

the function f restricts to a function in H∞(C+
ω ;L(U)), and (I − f(s))−1 exists and is

uniformly bounded on some right half-plane.
The above definition is equivalent to the time-domain definition in [19]. In [19] it

is shown that the closed-loop system of a well-posed linear system with an admissible
state feedback in the sense of Definition 5.2 is a well-posed linear system.
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6. LQG-balanced realizations. In this section we prove the continuous-time
analogues of the discrete-time results of section 3.2.

Definition 6.1. For a distributional resolvent linear system that satisfies both
the finite cost condition and the dual finite cost condition the nonzero elements of the
set

√
σ(PQ), where Q is the optimal cost operator of the system and P is the optimal

cost operator of the dual system, are called LQG-characteristic values.
The following theorem shows that the LQG-characteristic values depend only on

the characteristic function.
Theorem 6.2. Two distributional resolvent linear systems that both satisfy both

the finite cost condition and the dual finite cost condition and whose characteristic
functions are equal on an exponential region have the same set of LQG-characteristic
values.

Proof. Cayley-transform both distributional resolvent linear systems with a pa-
rameter which is in the exponential region of both. The transfer functions of the
Cayley-transformed systems then agree in some neighborhood of zero. It follows from
Theorem 3.8 that the LQG-characteristic values of these Cayley-transformed systems
are equal. The LQG-characteristic values of a distributional resolvent linear system
and its Cayley transform are equal, since the optimal cost operators are equal (which
follows from Theorem 4.10). Hence it follows that the LQG-characteristic values of
the two distributional resolvent linear systems are equal.

Definition 6.3. A distributional resolvent linear system is called LQG-balanced
if it and its dual both satisfy the finite cost condition and if the optimal cost operators
of the system and that of its dual are equal. It is called compact LQG-balanced if, in
addition, this operator is compact.

The following theorem gives a necessary and sufficient condition for the existence
of LQG-balanced realizations.

Theorem 6.4. An L(U ,Y)-valued holomorphic function, defined and polynomi-
ally bounded on an exponential region, has a normalized right coprime factor if and
only if it has an LQG-balanced realization.

Proof. Assume the given function d has a normalized right coprime factor [M ;N ].
It follows from [11] or [19, section 9.5] that [M ;N ] has a minimal well-posed Lyapunov-
balanced realization aL, bL, [c1L; c2L], [M ;N ]. Consider the well-posed linear system
aL, bL, c2L, N and the feedback pair [k, f] := [−c1L, I−M ]. This feedback pair is admis-
sible for the given system: the algebraic relations easily follow from the fact that the
Lyapunov-balanced system is a resolvent linear system (even a well-posed linear sys-
tem). Since (I−f(s))−1 = M−1 it remains to show that M−1 is polynomially bounded
on some exponential region. This follows from the equation M−1 = X − Y d on ΛE ,
which follows from the Bezout equation (25). The closed-loop system of the above sys-
tem with the given feedback pair is aL−bLM

−1c1L, bLM
−1, [−M−1c1L; c2L−NM−1c1L],

[M−1;NM−1]. It follows that this is a distributional resolvent linear system. We drop
one of the components and obtain the following distributional resolvent linear system:

(26) as := aL − bLM
−1

c
1
L, bs := bLM

−1, cs := c
2
L −NM−1

c
1
L, ds := NM−1.

Now choose α > 0 in the intersection of the exponential regions of all the systems
considered above and Cayley-transform these systems with this parameter. It is ob-
vious from the constructions and Theorem 3.7 that the system (26) has L as its
optimal cost operator and L(I − L2)−1 as its dual optimal cost operator, where L
is the gramian of the Lyapunov-balanced realization. Define S := (I − L2)−1/4, and
define al := SasS

−1, bl := Sb, cl := cS−1, dl = ds. We conclude that al, bl, cl, dl is
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LQG-balanced. Since dl = NM−1 = d this distributional resolvent linear system is
an LQG-balanced realization of d.

The converse trivially follows from Theorem 4.20.

Theorem 6.4 can be rephrased in terms of realizations as follows. Here Theo-
rem 4.20 is used.

Corollary 6.5. For a distributional resolvent linear system that satisfies both
the finite cost condition and the dual finite cost condition there exists an LQG-balanced
distributional resolvent linear system such that the characteristic functions of these
two systems are equal on some exponential region.

The following two corollaries show that in the special cases of exponentially
bounded distributional resolvent linear systems and well-posed linear systems the
LQG-balanced realization belongs to the same class.

Corollary 6.6. For an exponentially bounded distributional resolvent linear sys-
tem that satisfies both the finite cost condition and the dual finite cost condition there
exists an LQG-balanced exponentially bounded distributional resolvent linear system
such that the characteristic functions of these two systems are equal on some right
half-plane.

Proof. This follows from the proof of Theorem 6.4 noting that the Bezout equation
now shows that the feedback is admissible in the sense of Definition 4.15.

Corollary 6.7. For a well-posed linear system that satisfies both the finite cost
condition and the dual finite cost condition there exists an LQG-balanced well-posed
linear system such that the characteristic functions of these two systems are equal on
some right half-plane.

Proof. This follows from the proof of Theorem 6.4 noting that the Bezout equation
now shows that the feedback is admissible in the sense of Definition 5.2.

Let a, b, c, d be an LQG-balanced distributional resolvent linear system, and let
U ∈ L(X ) be unitary. Then obviously UaU∗, Ub, cU∗, d is also an LQG-balanced
distributional resolvent linear system. The next theorem shows that these are all
LQG-balanced distributional resolvent linear systems with characteristic function d if
we assume a minimality assumption on the state space.

Theorem 6.8. If two distributional resolvent linear systems whose characteristic
functions agree on some exponential region are both LQG-balanced, approximately con-
trollable, and approximately observable, then there exists a unitary state-space trans-
formation between them.

Proof. Choose a parameter that is in the exponential region of both systems,
and Cayley-transform both systems with this parameter. The resulting systems are
LQG-balanced, approximately controllable, and approximately observable and have
the same transfer function. It follows from part 3 of Theorem 3.8 that these discrete-
time systems are unitarily equivalent. From this it follows that the distributional
resolvent linear systems are unitarily equivalent.

The gap-metric in continuous time is defined in exactly the same way as was done
in discrete time in section 3.2, but with the unit disc D replaced by the right half-
plane C

+
0 . It is easily seen that the distance between two systems equals the distance

between their Cayley transforms (taken with the same parameter, obviously).

Using the Cayley transform, the following theorem follows immediately from The-
orem 3.9.

Theorem 6.9. Suppose a distributional resolvent linear system satisfies the fol-
lowing assumptions:

• the finite cost condition is satisfied,
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• the finite cost condition for the dual system is satisfied,
• the product PQ of the optimal cost operator and the dual optimal cost operator

is nuclear, and
• the input and output spaces are finite-dimensional.

Then there exists a compact LQG-balanced distributional resolvent linear system whose
characteristic function equals the characteristic function of the original system on
some exponential region and

(27) δg(d, G
n) ≤ 2

∞∑
i=n+1

μi√
1 + μ2

i

,

where Gn is the transfer function of an n-dimensional truncated LQG-balanced real-
ization.

7. Conclusions. In this article we have obtained existence and uniqueness re-
sults for LQG-balanced realizations for continuous-time infinite-dimensional systems.
We also obtained a priori error bounds in the gap-metric for both the continuous-time
and the discrete-time cases.
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STABILITY OF DISCONTINUOUS DIFFUSION COEFFICIENTS
AND INITIAL CONDITIONS IN AN INVERSE PROBLEM FOR THE

HEAT EQUATION∗
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Abstract. We consider the heat equation with a discontinuous diffusion coefficient and give
uniqueness and stability results for both the diffusion coefficient and the initial condition from a
measurement of the solution on an arbitrary part of the boundary and at some arbitrary positive
time. The key ingredient is the derivation of a Carleman-type estimate. The diffusion coefficient is
assumed to be discontinuous across an interface with a monotonicity condition.

Key words. parabolic equations, Carleman estimates, inverse problem, stability estimate,
discontinuous coefficients
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1. Introduction. This article is devoted to the question of the identification of
a diffusion coefficient, c, for a heat transfer problem in a bounded domain, with the
main particularity that c is discontinuous. Such regularity can be encountered in the
case of embedded materials.

Let Ω ⊂ R
n be a bounded connected open set. The set Ω is assumed to be a C 2

submanifold with boundary in R
n (see, e.g., [12, Definition 1.2.1.2]). We set Γ = ∂Ω.

Let Ω0 and Ω1 be two nonempty open subsets of Ω such that

Ω0 � Ω and Ω1 = Ω \ Ω0.

We denote by S = Ω0 ∩ Ω1 the interface, which is assumed to be C 2. We shall use
the notation Ω′ = Ω0 ∪ Ω1. It should be emphasized here that the position of the
interface itself is not assumed to be known.

Let T > 0. We consider the following transmission problem for the heat equation:

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ty −∇ · (c∇y) = 0 in (0, T ) × Ω′,

y(t, x) = h(t, x) on (0, T ) × Γ,

transmission conditions (TC1) on (0, T ) × S,

y(0, x) = y0(x), in Ω,

with

(TC1) y|[0,T ]×S0
= y|[0,T ]×S1

, c0∂ny|[0,T ]×S0
= c1∂ny|[0,T ]×S1

,

where f|Si
is the trace on S of f|Ωi

and where

c =

{
c0 in Ω0,

c1 in Ω1,
c̃ =

{
c̃0 in Ω0,

c̃1 in Ω1.
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The boundary condition h(t, x) shall be kept fixed. The diffusion coefficient c shall
be kept independent of time, t. If we change the diffusion coefficient c into c̃, we let
ỹ be the solution of (1.1) associated with c̃ and ỹ0 for the initial condition. In the
case studied here, the interface remains unchanged when changing coefficients. Its
position is, however, not known.

We assume that we can measure both the normal flux ∂n∂ty on γ ⊂ ∂Ω on the
time interval (t0, T ) for some t0 ∈ (0, T ) and Δy in Ω at time T ′ ∈ (t0, T ). In the case
of piecewise-constant diffusion coefficients, i.e., c|Ωi

, i = 0, 1, is constant, our main
results are (i) the injectivity of the map

L∞(Ω) × L2(Ω) → L2((t0, T ) × γ) × L2(Ω),

(c, y0) �→ (∂n∂ty,Δy(T ′))

(uniqueness); (ii) the stability for the diffusion coefficient, c (Theorem 3.9): there
exists C > 0 such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′);

and (iii) the stability for the initial condition, y0 (Theorem 5.5): there exists C > 0
such that

|y0 − ỹ0|L2(Ω) ≤ C/
∣∣∣ln(|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)∣∣∣
for |(y− ỹ)(T ′)|H2(Ω′) + |∂n(∂ty−∂tỹ)|2L2((0,T )×γ) sufficiently small. At the end of sec-
tion 3 we shall observe that we may require only that the difference of the coefficients,
c− c̃, be piecewise-constant.

The key ingredient to these stability results is a global Carleman estimate for the
operator ∂t −∇ · (c∇(.)) and the open set Ω.

The use of Carleman estimates to achieve uniqueness and stability results in
inverse problems is now well established. Some authors make use of local Carleman
inequalities and deduce uniqueness and Hölder estimates (see [19], [18], and references
cited therein). Others make use of global Carleman inequalities and deduce Lipschitz
stability results (and hence uniqueness results). We shall follow this second approach.
To our knowledge, this method was first used in [16] and then by others, e.g., [2]. We
refer the reader to [13, Chapter 8], [14, section 28.2–3] for discussion of local Carleman
estimates, and [17] for the parabolic case. For global estimates we refer the reader to
[11] and [10].

Stability results for parabolic equations are recent, to our knowledge (see [19],
[9]). Apart from [16] there are few results on Lipschitz stability, even for linear cases.

One of the main difficulties in the present problem is to deal with discontinuous
diffusion coefficients. Controllability for such parabolic equations has been studied
by [8]. A null-controllability property is proved via an observability inequality for the
adjoint system, which is deduced in [8] from a global Carleman estimate, yet assuming
a monotonicity on the coefficients c in connection to the observation location: roughly
speaking, the observation zone has to be located in the region where the diffusion coef-
ficient is the smallest. Here, to achieve a stability result we have to derive a Carleman
estimate for the difference of the two solutions, y, ỹ. This difference is the solution
of a nonhomogeneous parabolic equation (with discontinuous coefficient); because of
the discontinuity of the diffusion coefficients it does not satisfy the appropriate trans-
mission conditions (TC1), on the interfaces S, defined above. For this reason, under
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the same monotonicity assumption as in [8], we derive a peculiar Carleman estimate
which includes additional interface terms (see Theorem 2.2).

To obtain a stability result, one has to “manage” the dependence of some con-
stants with respect to (w.r.t.) the parameters, s and λ, that appear in the weight
functions used in the Carleman estimate (see (2.4) in section 2). The interface terms
require some careful treatment. In particular, a stationary-phase argument is used
to obtain a sufficiently sharp asymptotic estimate of these terms for s and λ large.
Usually, stability estimates are obtained by letting the parameter s become large.
Here we also make use of the second parameter λ (see section 4).

As we are concerned with parabolic equations, we have to assume that the obser-
vation of the solution occurs at some positive time, T ′ > 0. The suppression of this
assumption remains an open problem, and it appears in all articles deriving Lipschitz
stability estimates from global Carleman inequalities (see the discussion in the intro-
duction of [16]). However, at the end of section 3 we show that if the position of the
interface S is known, we can localize in space the observation at time T ′.

The article is organized as follows. In section 2 we derive a Carleman estimate
adapted to our problem. In section 3 we prove a stability result for the piecewise-
constant diffusion coefficient c when one of the solutions, say ỹ, is in a particular class
of solutions. In section 4 we prove that this class is nonempty. As mentioned above
we also slightly relax the piecewise-constant condition by imposing solely that the
difference of the coefficients be piecewise-constant. In section 5 we prove a stability
result for the initial condition under some additional assumptions, particularly on the
initial condition itself. The appendix provides some basic regularity properties for the
solutions to parabolic equation with nonsmooth coefficients and provides a technical
lemma.

We now give some notation and important assumptions. We denote by n the
outward unit normal to Ω1 on S and also the outward unit normal to Ω on Γ. Let S0

(resp., S1) be the side of the interface S corresponding to the positive (resp., negative)
direction of the normal n.

Note that we do not assume that either Ω0 or Ω1 is a connected open set. We
shall, however, assume that they are formed with a finite number of connected open
sets, say Ω0,1, . . . ,Ω0,p0 and Ω1,1, . . . ,Ω1,p1 , p0, p1 ∈ N. We shall then denote by Sij

the interface (possibly empty) between Ω0,i and Ω1,j .

We make the following assumption.

Assumption 1.1. The diffusion coefficient satisfies ci = c|Ωi
∈ C 1(Ωi), i = 0, 1,

and is independent of time t.

Assumption 1.2. c0|S ≥ c1|S and 0 < cmin ≤ c(x) ≤ cmax, x ∈ Ω′.

Remark 1.3. Assumption 1.1 will be significantly strengthened in section 3 to
obtain a stability result. Yet, for some of the results such as the Carleman estimate
proved in section 2 and the regularity properties proved in section 4, which can be of
some use elsewhere, Assumption 1.1 is sufficient.

We let γ be a subset of the boundary Γ satisfying the following.

Assumption 1.4. The interior of γ is nonempty w.r.t. the topology on Γ induced
by the Euclidean topology on R

n. Each component of Ω1 contains part of the interior
of γ in its boundary.

Examples of situations in which Assumption 1.4 is satisfied are given in Figure 1.

To obtain a Carleman estimate we introduce a geometric assumption, following
[8].

Assumption 1.5. Geometric condition (GC). We assume that there exist two
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Γ

Ω1

Ω0

S

γ

n

Ω0,1
Ω0,2

S2,1S2,2

Ω1,1

S1,1

Ω1,2

Γ

Γ

γ

γ

n

Fig. 1. Geometric situations in which Assumption 1.4 and the geometric condition (GC) are
satisfied. Shaded is Ω1. Arrows represent the normal unit vector n.

disjoint open subsets, O(1), O(2) � Ω0, and two vector fields, ζ(i) ∈ C 1(Ω0,R
2),

i = 1, 2, such that

ζ(i)(x) · n(x) > 0 ∀x ∈ S, i = 1, 2,

ζ(i)(x) · n(x) > 0 ∀x ∈ ∂O(i), i = 1, 2,

ζ(i)(x) �= 0 ∀x ∈ Ω0 \ O(i), i = 1, 2

(n is the outward unit normal to Ω1 on S and the inward unit normal to O(i) on
∂O(i), i = 1, 2). Let x(i) be the integral curves of ζ(i), i.e.,{

dx(i)(t)
dt = ζ(i)(x(i)(t)), t > 0,

x(i)(0) = x0, x0 ∈ S.

We also assume that there exists T > 0 such that for all x0 ∈ S there exists t(i)(x0) <
T satisfying

x(i)(t) ∈ Ω0 \ O(i) for 0 < t < t(i)(x0), x0 ∈ S, i = 1, 2,
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x(i)(t(i)(x0)) ∈ ∂O(i) for x0 ∈ S, i = 1, 2.

Note that in Assumption 1.5, there is no restriction to having Ω0 composed of p0

components. The examples given in Figure 1 satisfy Assumption 1.5.
We denote by Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, the usual Sobolev space defined by

Wm,p = {u ∈ Lp(Ω); ∂αu ∈ Lp(Ω) for |α| ≤ m},

where α = (α1, . . . , αn) is a multi-index and differentiation is to be understood in the
weak sense. As usual we write Hm(Ω) = Wm,2(Ω). For the definition of W r,p for
r ∈ R \ N we refer, for instance, to [1].

2. A Carleman estimate. We prove here a Carleman-type estimate with a
boundary term on γ in the right-hand side (r.h.s.) of the estimate. For this purpose
we shall first introduce a particular type of weight functions, which are constructed
using the following lemma.

Lemma 2.1. Assume that there exist two disjoint open subsets, O(1), O(2) � Ω0,
satisfying Assumption 1.5. Let γ be a subset of Γ = ∂Ω satisfying Assumption 1.4,
and B(i) and B̃(i), i = 1, 2, be open balls such that B(1) � B̃(1) � O(1) and B(2) �
B̃(2) � O(2). Then there exist two functions β̃(1) and β̃(2) such that

β̃(1)(x) =

{
β̃

(1)
0 in Ω0,

β̃1 in Ω1,
β̃(2)(x) =

{
β̃

(2)
0 in Ω0,

β̃1 in Ω1,

and the functions β̃
(1)
0 , β̃

(2)
0 , and β̃1 satisfy the following properties: β̃1 ∈ C 2(Ω1),

β̃1 > 0 in Ω1, and

β̃1 = 0 on Γ \ γ, ∂nβ̃1 < 0 on Γ \ γ,

β̃1 = 2 on S, ∂nβ̃1 < 0 on S,

and

|∇β̃1| > 0 in Ω1;

for i = 1, 2, β̃
(i)
0 ∈ C 2(Ω0), β̃

(i)
0 > 0 in Ω0,

β̃
(i)
0 = β̃1 = 2 on S, i = 1, 2,

c0∂nβ̃
(i)
0 = c1∂nβ̃1 on S, i = 1, 2,

(2.1) β̃
(1)
0 ≥ 2β̃

(2)
0 in B̃(2),

(2.2) β̃
(2)
0 ≥ 2β̃

(1)
0 in B̃(1),

and

(2.3) |∇β̃
(i)
0 | > 0 in Ω0 \B(i), i = 1, 2.
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Γ

n

Ω1

Ω0Oi

n

n
S

γ̌

ω
Γ̌

Ω̌1

x0

γ

Fig. 2. Geometrical situation for the proof Lemma 2.1. The shaded area represents Ω̌1 \ Ω1 =
Ω̌ \ Ω.

Proof. For the construction of β̃
(i)
0 , i = 1, 2, supported in the connected com-

ponents of Ω0, we refer to [8, Lemma 3.2]. We briefly show how the function β̃1 is
constructed. In actuality, the procedure described here has to be performed in each
connected component of Ω1, which is possible since each component contains part of
the interior of γ in its boundary by Assumption 1.4.

Let x0 be in the interior of γ. We can enlarge the open set Ω1 locally around x0

while preserving the C 2 regularity of the boundary. Such a procedure is performed
in a neighborhood U of x0 such that U ∩ Γ ⊂ γ. (This can be done by locally
straightening out the boundary γ, as Ω is assumed to be a C 2 submanifold with
boundary in R

n [12, Definition 1.2.1.2].) This enlarging procedure affects only γ and
leaves Γ \ γ untouched. We call the new boundary Γ̌. We denote by Ω̌1 the extension
of Ω1 and Ω̌ that of Ω (Ω1 ⊂ Ω̌1, Ω ⊂ Ω̌, and Γ̌ = ∂Ω̌). Let ω be an open subset such
that ω � Ω̌1 \Ω1. The geometry we describe here is illustrated in Figure 2. Following

[8, 11], there exists μ ∈ C 2(Ω̌) that satisfies

μ = 0, ∂nμ < 0 on Γ̌,

μ = 2, c0∂nβ̃
(i)
0 = c1∂nμ < 0 on S,

|∇μ| > 0 in Ω̌1 \ ω.

The function β̃1 := μ|Ω1
satisfies the required properties.

Choosing two functions β̃(i), i = 1, 2, as in the previous lemma, we introduce
β(i) = β̃(i) + K with K = m‖β̃(1)‖∞ = m‖β̃(2)‖∞ and m > 1. For λ > 0 and
t ∈ (t0, T ), we define the following weight functions:

(2.4) ϕ(i)(t, x) =
eλβ

(i)(x)

(t− t0)(T − t)
, η(i)(t, x) =

eλβ − eλβ
(i)(x)

(t− t0)(T − t)
, i = 1, 2,
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with β = 2m‖β̃(i)‖∞, i = 1, 2 (see [8], [10]). We let t0 ∈ (0, T ), and we set Q =
(t0, T ) × Ω, Q′ = (t0, T ) × Ω′ and recall that Ω′ = Ω0 ∪ Ω1.

Let g ∈ H1([t0, T ], H
1
2 (S)). We introduce transmission conditions (TC2) on the

interval [t0, T ],

(TC2)
q|[t0,T ]×S0

= q|[t0,T ]×S1
,

c0∂nq|[t0,T ]×S0
= c1∂nq|[t0,T ]×S1

+ g(t, x),

for a function q which is H2 in each open set Ωi, i = 0, 1.
We introduce

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×Ωi

∈ L2(t0, T,H
2(Ωi)), i = 0, 1,

and q satisfies (TC2) a.e. w.r.t. t
}
.

Theorem 2.2. Let γ be a subset of the boundary Γ of an open set Ω of R
n that sat-

isfies Assumption 1.5, and let γ satisfy Assumption 1.4. Let c satisfy Assumptions 1.1
and 1.2. Assume further that c0|S − c1|S ≥ Δ > 0. Let g ∈ H1(t0, T,H

1
2 (S)). There

exists λ1 = λ1(Ω, γ,O(1),O(2), cmin, cmax,Δ) > 0, s1 = s1(λ1) > 0, and a positive
constant C = C(Ω, γ,O(1),O(2), cmin, cmax,Δ) so that the following estimate holds:

|M (1)
1 (e−sη(1)

q)|2L2(Q′) + |M (2)
1 (e−sη(2)

q)|2L2(Q′)(2.5)

+ |M (1)
2 (e−sη(1)

q)|2L2(Q′) + |M (2)
2 (e−sη(2)

q)|2L2(Q′)

+ sλ2

∫∫
Q

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∇q|2 dx dt

+ s3λ4

∫∫
Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫
γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nq|2 dσ dt

+

∫∫
Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tq ±∇ · (c∇q)|2 dx dt

+ sλ

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+ s−2

∫ T

t0

∫
S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

]

for s ≥ s1, λ ≥ λ1, and all q ∈ ℵg, with M1 and M2 to be defined in (2.9)–(2.10).
We recall that Ω′ = Ω0 ∪Ω1 and Q′ = Ω′ × (t0, T ). For a function ρ with a trace

on the interface S, from both sides, defined in some sense, we shall denote by ρi the
trace of ρ|Ωi

on S, i = 0, 1, when there is no ambiguity; in the case ρ0 = ρ1 we shall
simply write ρ. We shall use the notation [ρ]S = ρ0 − ρ1 for the jump of ρ across the
interface S. We shall adopt Einstein’s summation convention for repeated indices.

Proof. We consider s > 0 and q ∈ ℵg. Let us set f = ∂tq+∇· (c∇q) (we treat the
case of the operator ∂t+∇·(c∇) in the proof; the other case can be treated similarly).
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Then f ∈ L2(Q′) (because of transmission conditions (TC2), observe that q is not in
the domain of the operator ∇ · (c∇)).

In the first part of the proof we shall write η, ϕ, M1, etc., in place of η(i), ϕ(i),

M
(i)
1 , etc., i = 1, 2, and treat the two cases at once. We set ψ = e−sηq. We observe

that ψ(t0) = ψ(T ) = 0 and since q satisfies transmission conditions (TC2) (and
q(t, .)|Ωi

∈ H2(Ωi) a.e. w.r.t. t), we have (a.e. w.r.t. t)

c0∂nψ0|S (t, .) = c1∂nψ1|S (t, .) + gs(t, .) on S,(2.6)

∇τψ0|S (t, .) = ∇τψ1|S (t, .) on S,(2.7)

ψ0|S (t, .) = ψ1|S (t, .) on S,(2.8)

where gs = e−sηg and ∇τ denotes the component of the gradient that is tangential
to S.

The function ψ satisfies in each Ωi, i = 0, 1,

M1ψ + M2ψ = fs

with

M1ψ = ∇ · (c∇ψ) + s2λ2ϕ2|∇β|2cψ + s(∂tη)ψ,(2.9)

M2ψ = ∂tψ − 2sλϕc∇β · ∇ψ − 2sλ2ϕc|∇β|2ψ,(2.10)

fs = e−sηf + sλϕ∇ · (c∇β)ψ − sλ2ϕc|∇β|2ψ.(2.11)

We have

|M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 2(M1ψ,M2ψ)L2(Q′) = |fs|2L2(Q′).

With the same notation as in [8, Theorem 3.3], we write (M1ψ,M2ψ)L2(Q′) as a sum
of nine terms Iij , 1 ≤ i, j ≤ 3, where Iij is the inner product of the ith term in the
expression of M1ψ and the jth term in the expression of M2ψ.

As compared to the proof of the Carleman estimate in [8, Theorem 3.3] we only
need to adjust the computation of I11, I12, and I13 to the present case. In fact the
other terms do not involve transmission conditions (2.6) in their computation and
thus remain unchanged from the terms obtained in [8].

The term I11 follows as

I11 =

∫∫
Q′

∇ · (c∇ψ) ∂tψ dxdt = −
∫∫

Q′
c∇ψ · ∂t(∇ψ) dxdt

+
∑
i=0,1

(−1)i+1

∫ T

t0

∫
S

ci∂nψi ∂tψ dσdt,

by integration by parts; the surface integral on Γ vanishes since ∂tψ = 0 there. Noting
that ∇ψ · ∂t(∇ψ) = 1

2∂t(|∇ψ|2), the first term vanishes since ψ, and thus ∇ψ, vanish
at t = t0 and t = T and c is independent of t. For the remaining surface terms we use
(2.6), which yields

I11 = −
∫ T

t0

∫
S

gs ∂tψ dσdt =

∫ T

t0

∫
S

∂t(gs) ψ dσdt,
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since gs ∈ H1(t0, T,H
1
2 (S)).

The term I12 is given by

I12 = −2sλ

∫∫
Q′

ϕ∇ · (c∇ψ)c∇β · ∇ψ dxdt = 2sλ

∫∫
Q′

c∇ψ · ∇(ϕc∇β · ∇ψ) dxdt

− 2sλ

∫ T

t0

∫
Γ

ϕc2(∇β·∇ψ)(∂nψ) dσdt+ 2sλ
∑
i=0,1

(−1)i
∫ T

t0

∫
S

ϕc2i (∇βi·∇ψi)(∂nψi) dσdt.

This integration by parts is justified since ψ(t, .) is in H2 in each Ωi, i = 0, 1. Denoting
by I ′12 the remaining volume integral, we obtain

I ′12 = 2sλ2

∫∫
Q′

ϕc2|∇ψ · ∇β|2 dxdt + 2sλ

∫∫
Q′

ϕc ∂xi
(c∂xj

β)∂xi
ψ∂xj

ψ dxdt

+ sλ

∫∫
Q′

ϕc2∂xjβ∂xj |∇ψ|2 dxdt.

We further compute the last volume integral, denoted by I ′′12. Observe that |∇ψ|2|Ωi

is in W 1,1(Ωi) since ψ|Ωi
(t, .) ∈ H2(Ωi), i = 0, 1. This allows us to further integrate

by parts, since (c2ϕ∂xj
β)|Ωi

∈ C 1(Ωi), i = 0, 1, and yields

I ′′12 = −sλ

∫∫
Q′

∂xj (ϕc
2∂xjβ)|∇ψ|2 dxdt + sλ

∫ T

t0

∫
Γ

ϕc2∂nβ|∇ψ|2 dσdt

+ sλ
∑
i=0,1

(−1)i+1

∫ T

t0

∫
S

ϕc2i ∂nβi|∇ψi|2 dσdt.

The remaining volume integral can be further expanded into

I ′′′12 = −sλ

∫∫
Q′

ϕ∂xj
(c2∂xj

β)|∇ψ|2 dxdt− sλ2

∫∫
Q′

ϕc2|∇β|2|∇ψ|2 dxdt.

Collecting the surface integrals in a term denoted by J12, we find

I12 = −sλ2

∫∫
Q′

ϕc2|∇β|2|∇ψ|2 dxdt + 2sλ2

∫∫
Q′

c2ϕ|∇ψ · ∇β|2 dxdt + X1 + J12,

where

X1 = 2sλ

∫∫
Q′

ϕc ∂xi(c∂xjβ)∂xiψ∂xjψ dxdt− sλ

∫∫
Q′

ϕ∂xj (c
2∂xjβ)|∇ψ|2 dxdt.

We now observe that since β is constant on S we have

(∇β · ∇ψi)|S = (∂nβ∂nψi)|S , i = 0, 1.

Writing |∇ψ|2 = |∇τψ|2 + |∂nψ|2, we find

J12 = sλ
∑
i=0,1

(−1)i
∫ T

t0

∫
S

ϕc2i ∂nβi|∂nψi|2 dσdt

− sλ
∑
i=0,1

(−1)i
∫ T

t0

∫
S

ϕc2i ∂nβi|∇τψi|2 dσdt− sλ

∫ T

t0

∫
Γ

ϕc2∂nβ|∂nψ|2 dσdt,
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where we have used that ψ|Σ is constant. Recall that ∇τψ0 = ∇τψ1 and that c0∂nβ0 =
c1∂nβ1 on S. From transmission conditions (TC2) we have

|c0∂nψ0|2 = |c1∂nψ1|2 + |gs|2 + 2(c1(∂nψ1)gs) on S.

We thus obtain

J12 = sλ

∫ T

t0

∫
S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt + sλ

∫ T

t0

∫
S

ϕ∂nβ0|gs|2 dσdt

− sλ

∫ T

t0

∫
S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt− sλ

∫ T

t0

∫
Γ

ϕc2∂nβ|∂nψ|2 dσdt + Y1,

with

Y1 = 2sλ

∫ T

t0

∫
S

ϕc1∂nψ1 ∂nβ0 gs dσdt.(2.12)

We thus have

I12 = −sλ2

∫∫
Q′

ϕc2|∇β|2|∇ψ|2 dxdt + 2sλ2

∫∫
Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ sλ

∫ T

t0

∫
S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt + sλ

∫ T

t0

∫
S

ϕ∂nβ0|gs|2 dσdt

− sλ

∫ T

t0

∫
S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt− sλ

∫ T

t0

∫
Γ

ϕc2∂nβ|∂nψ|2 dσdt

+ X1 + Y1.

The term I13 is given by

I13 = −2sλ2

∫∫
Q′

ϕ∇ · (c∇ψ)c|∇β|2ψ dxdt = 2sλ2

∫∫
Q′

c∇ψ · ∇(ϕc|∇β|2ψ) dxdt

+ 2sλ2
∑
i=0,1

(−1)i
∫ T

t0

∫
S

ϕ(ci∂nψi)ci|∇βi|2ψ dσdt,

where we have used that ψ|Γ = 0. Expanding the integrand in the volume integral
and using (TC2) in the surface term, we obtain

I13 = 2sλ2

∫∫
Q′

ϕc2|∇β|2|∇ψ|2 dxdt + X2 + Y2,

where

X2 = 2sλ2

∫∫
Q′

ϕc∇ψ · ∇(c|∇β|2)ψ dxdt + 2sλ3

∫∫
Q′

ϕc2∇ψ · ∇β|∇β|2ψ dxdt

+ 2sλ2

∫ T

t0

∫
S

ϕ(c∂nβ)[∂nβ]S(c1∂nψ1)ψ dσdt,

since ∇τβ|S = 0 and

Y2 = 2sλ2

∫ T

t0

∫
S

ϕc0(∂nβ0)
2gsψ dσdt.
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Following the proof of Theorem 3.3 in [8], we find

I21 =
1

2
s2λ2

∫∫
Q′

ϕ2c|∇β|2∂t|ψ|2 dxdt = −1

2
s2λ2

∫∫
Q′

∂t(ϕ
2)c|∇β|2|ψ|2 dxdt

and

I22 = −s3λ3

∫∫
Q′

ϕ3c2|∇β|2∇β · ∇(|ψ|2) dxdt

= 3s3λ4

∫∫
Q′

ϕ3c2|∇β|4|ψ|2 dxdt + s3λ3

∫ T

t0

∫
S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt + X3,

with X3 given by

X3 = s3λ3

∫∫
Q′

ϕ3∇ · (c2|∇β|2∇β)|ψ|2 dxdt.

The terms I23, I31 are given by

I23 = −2s3λ4

∫∫
Q′

ϕ3c2|∇β|4|ψ|2 dxdt,

I31 =
1

2
s

∫∫
Q′

∂tη∂t(|ψ|2) dxdt = −1

2
s

∫∫
Q′

∂2
t η|ψ|2 dxdt.

The term I32 is given by

I32 = −s2λ

∫∫
Q′

ϕ(∂tη)c∇β · ∇(|ψ|2) dxdt = s2λ2

∫∫
Q′

ϕ(∂tη)c|∇β|2|ψ|2 dxdt

+ s2λ

∫∫
Q′

ϕ∇ · ((∂tη)c∇β)|ψ|2 dxdt,

since ψ|S0
= ψ|S1

. Finally, the term I33 is given by

I33 = −2s2λ2

∫∫
Q′

ϕc(∂tη)|∇β|2|ψ|2 dxdt.

Collecting the terms Iij just computed, we obtain

(2.13) |M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 4sλ2

∫∫
Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ 2sλ2

∫∫
Q′

ϕc2|∇β|2|∇ψ|2 dxdt + 2s3λ4

∫∫
Q′

ϕ3c2|∇β|4|ψ|2 dxdt

+ 2sλ

∫ T

t0

∫
S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt− 2sλ

∫ T

t0

∫
Γ

ϕc2∂nβ|∂nψ|2 dσdt

− 2sλ

∫ T

t0

∫
S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt + 2s3λ3

∫ T

t0

∫
S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

+ 2sλ

∫ T

t0

∫
S

ϕ∂nβ0|gs|2 dσdt

= |fs|2L2(Q′) − 2(I11 + X1 + Y1 + X2 + Y2 + I21 + X3 + I31 + I32 + I33).
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We now consider the surface terms I11, Y1, Y2 involving the function gs and write

|I11| =

∣∣∣∣∣
∫ T

t0

∫
S

∂t(gs) ψ dσdt

∣∣∣∣∣ ≤ Cs−2

∫ T

t0

∫
S

|∂tgs|2 dσdt + Cs2

∫ T

t0

∫
S

|ψ|2 dσdt.(2.14)

In the proof of Lemma 2.1 we are free to choose β such that ∂nβ1/c0 ≤ −1. Since we
assume c0 − c1 ≥ Δ we obtain

[∂nβ]S = ∂nβ0 − ∂nβ1 =
∂nβ1

c0
(c1 − c0) ≥ Δ > 0.(2.15)

The second term in (2.14) can thus be absorbed by the term

2s3λ3

∫ T

t0

∫
S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (2.13) for s sufficiently large.
The term Y1 in (2.12) can be estimated by

(2.16) |Y1| =

∣∣∣∣∣2sλ
∫ T

t0

∫
S

ϕc1∂nψ1 ∂nβ0 gs dσdt

∣∣∣∣∣
≤ Cεsλ

∫ T

t0

∫
S

ϕ|gs|2 dσdt + εsλ

∫ T

t0

∫
S

ϕ|c1∂nψ1|2(∂nβ0)
2 dσdt, ε > 0.

For ε sufficiently small, the second surface term in (2.16) can be “absorbed” by the
term

2sλ

∫ T

t0

∫
S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt

in (2.13) by (2.15).
The term Y2 can be estimated by

|Y2| =

∣∣∣∣∣2sλ2

∫ T

t0

∫
S

ϕc0(∂nβ0)
2gsψ dσdt

∣∣∣∣∣ ≤ Csλ

∫ T

t0

∫
S

ϕ|gs|2 dσdt

+ Csλ3

∫ T

t0

∫
S

ϕc20(∂nβ0)
4|ψ|2 dσdt.

Observing that ϕ ≤ CT 4ϕ3, the second surface term can be absorbed by the term

2s3λ3

∫ T

t0

∫
S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (2.13) for s sufficiently large by (2.15). The two previous “absorption processes”
are the points in the proof where the hypothesis c0 − c1 ≥ Δ > 0 is needed.

Note also that

s−2|∂tgs|2 ≤ Cs−2e−2sη|∂tg|2 + C(∂tη)
2e−2sη|g|2

≤ Cs−2e−2sη|∂tg|2 + CT 2ϕ4e−2sη|g|2,
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where we have used that |∂tη| ≤ CTϕ2 [8, equation (90)] (which makes use of the
particular choices made above for K and β, which implies that β ≤ 2β).

Applying the technique presented in the proof of Theorem 3.3 in [8], the previous
observations yield the following Carleman estimate (we use the notation η(i) instead
of η):

(2.17)

|M (i)
1 (e−sη(i)

q)|2L2(Q′) + |M (i)
2 (e−sη(i)

q)|2L2(Q′) + sλ2

∫∫
Q

e−2sη(i)

ϕ(i)|∇q|2 dx dt

+ s3λ4

∫∫
Q

e−2sη(i)

ϕ(i)3|q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫
γ

e−2sη(i)

ϕ(i)|∂nq|2 dσ dt + s3λ4

∫ T

t0

∫
B̃(i)

e−2sη(i)

ϕ(i)3|q|2dxdt

+

∫∫
Q′

e−2sη(i) |∂tq −∇ · (c∇q)|2 dx dt + s−2

∫ T

t0

∫
S

e−2sη(i) |∂tg|2dσ dt

+

∫ T

t0

∫
S

e−2sη(i)

ϕ(i)4|g|2 dσ dt + sλ

∫ T

t0

∫
S

e−2sη(i)

ϕ(i)|g|2 dσ dt

]
,

for i = 1, 2, and for λ ≥ λ0(Ω, γ,O(1),O(2), cmin, cmax,Δ) and s ≥ s0(λ0) (the sets

B̃(i) were introduced in Lemma 2.1). Note that the condition [c]s ≥ 0 is needed to
obtain the previous estimate.

Adding (2.17) for i = 1, 2, we deduce (2.5) with the same argumentation as in the

proof of Theorem 3.4 in [8]. The terms integrated over (t0, T )× B̃(i) are absorbed by

other terms using properties (2.1)–(2.3) of β̃(i), i = 1, 2.
Remark 2.3. The Carleman estimate that was just derived is peculiar because of

the presence of terms integrated on the interface S. In particular, two terms involve
the function g with different powers for the parameters s and λ and for the weight
functions ϕ(i), i = 1, 2. This Carleman estimate is the key ingredient in the subsequent
analysis. The interface terms will require some special treatment. The two parameters
s and λ will also have an important role to play in the next section.

Remark 2.4. In the case g = 0, the previous Carleman estimate simplifies. By
inspection of the proof of Theorem 2.2, observe that in the case g = 0, the condition
c0|S − c1|S ≥ 0 is sufficient to obtain the Carleman estimate [8]. The case of c0|S −
c1|S < 0 remains open in the case of a dimension greater than or equal to 2. (In
the one-dimensional case a Carleman estimate for the heat operator, ∂t ± ∂x(c∂x), in
arbitrary situations, can be found in [3, 4].)

3. Uniqueness and stability estimate for the diffusion coefficients. In
this section we establish a uniqueness result for the discontinuous diffusion coefficient
c as well as a stability inequality. This inequality estimates the discrepancy in the
coefficients c and c̃ of two materials (with the same geometry) with an upper bound
given by some Sobolev norms of the difference between the solutions y and ỹ to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tỹ −∇ · (c̃∇ỹ) = 0 in (0, T ) × Ω,

ỹ(t, x) = h(t, x) on (0, T ) × Γ,

transmission conditions (T̃C1) on [0, T ] × S,

ỹ(0) = ỹ0,

(3.1)
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with

(T̃C1) ỹ|[0,T ]×S0
= ỹ|[0,T ]×S1

, c̃0∂nỹ|[0,T ]×S0
= c̃1∂nỹ|[0,T ]×S1

,

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ty −∇ · (c∇y) = 0 in (0, T ) × Ω,

y(t, x) = h(t, x) on (0, T ) × Γ,

transmission conditions (TC1) on [0, T ] × S,

y(0) = y0.

(3.2)

The Carleman estimate proved in the previous section will be the key ingredient in
the proof of such a stability estimate.

We introduce

ξ = c− c̃ =

{
ξ0 = c0 − c̃0 in Ω0,

ξ1 = c1 − c̃1 in Ω1.

We set u = y − ỹ and v = ∂tu. Then v is solution to the following problem:⎧⎪⎨⎪⎩
∂tv −∇ · (c∇v) = ∇ · (ξ∇∂tỹ) in (0, T ) × Ω′,

v = 0 on (0, T ) × Γ,

transmission conditions (TC2) on [0, T ] × S,

(3.3)

with

(TC2)

{
v|[0,T ]×S0

= v|[0,T ]×S1
,

c0∂nv|[0,T ]×S0
= c1∂nv|[0,T ]×S1

+ g(t, x),

where

g(t, x) = ξ1∂n∂tỹ|[0,T ]×S1
− ξ0∂n∂tỹ|[0,T ]×S0

= α∂n∂tỹ|[0,T ]×S0
,

with α = ξ1|S1

c̃0|S0

c̃1|S1

− ξ0|S0
.

Let T ′ = 1
2 (T + t0). We make the following assumption.

Assumption 3.1. The solutions ỹ and y belong to H2(t0, T,H
1(Ω)) and are

such that y|Ωi
∈ H1(t0, T,H

2(Ωi)), ỹ|Ωi
∈ H2(t0, T,H

2(Ωi)), i = 0, 1. Furthermore,
ỹ satisfies the following:

1. Let r > 0. The solution ỹ is such that |Δỹ(T ′)| ≥ r > 0 in Ω′.
2. ỹ|Ωi

is in a bounded domain of W 2,∞(t0, T,H
2(Ωi)), i = 0, 1: there exists

M > 0 such that

|ỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂tỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂2
t ỹ|Ωi

(t, .)|2H2(Ωi)
≤ M, i = 0, 1,

a.e. for t ∈ (t0, T ).
3. Δ∂tỹ|Ωi

is in a bounded domain of L2(t0, T, L
∞(Ωi)), i = 0, 1: there exists

K > 0 such that∫ T

t0

|Δ∂tỹ|Ωi
(t, .)|2L∞(Ωi)

dt ≤ K2, i = 0, 1.
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In section 4 we shall show that for any initial conditions y0, ỹ0 in L2(Ω) we can
achieve the properties listed in Assumption 3.1 by using some particular boundary
conditions h(t, x).

From Assumption 3.1, the functions ỹ and v are such that ỹ|Ωi
, v|Ωi

∈ H2(Ωi),

i = 0, 1. Then g ∈ H1(t0, T,H
1
2 (S)). The second equality in transmission condition

(TC2) thus takes place in the space H
1
2 (S). Observe that v = ∂t(y − ỹ) ∈ ℵg from

the above assumption. We can thus apply Carleman estimate (2.5) to v.

We shall use the notation of the proof of Theorem 2.2. We set ψ(i) = e−sη(i)

v,

i = 1, 2. With the operator M
(i)
2 defined in (2.10) we introduce, following [2],

I(i) =

∫ T ′

t0

∫
Ω′

M
(i)
2 ψ(i) ϕ(i)

3
2ψ(i) dxdt, i = 1, 2, and I =

1

2
(I(1) + I(2)).

Note the additional ϕ(i)
3
2 factor as compared to [2]. This will be of importance below.

We have the following estimates.

Lemma 3.2. Let λ ≥ λ1 and s ≥ s1; then

|I| ≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫
γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫
Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tv −∇ · (c∇v)|2 dx dt

+ sλ

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+ s−2

∫ T

t0

∫
S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

]
.

Proof. Observe that

|I(i)| ≤ 1

2
s−3/2λ−2

(
|M (i)

2 ψ(i)|2L2(Q′) + s3λ4

∫∫
Q

ϕ(i)3e−2sη(i) |v|2dxdt
)
, i = 1, 2.

(We recall that Q′ = (t0, T ) × Ω′.) Thus

|I| ≤ 1

2
s−3/2λ−2

(
|M (1)

2 ψ(1)|2L2(Q′) + |M (2)
2 ψ(2)|2L2(Q′)

+ s3λ4

∫∫
Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |v|2 dx dt

)
,

which yields the result from Carleman estimate (2.5).
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Lemma 3.3. Let λ ≥ λ1 and s ≥ s1; then∫
Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx

≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫
γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫
Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+ s−2

∫ T

t0

∫
S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

]
.

Proof. We evaluate integral I(i), i = 1, 2, using (2.10),

I(i) =

∫ T ′

t0

∫
Ω′

(
∂tψ

(i) − 2sλϕ(i)c∇β(i) · ∇ψ(i) − 2sλ2ϕ(i)c|∇β(i)|2ψ(i)
)
ϕ(i)

3
2ψ(i) dxdt

=
1

2

∫ T ′

t0

∫
Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt− sλ

∫ T ′

t0

∫
Ω′

ϕ(i)
5
2 c∇β(i) · ∇|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫
Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

=
1

2

∫ T ′

t0

∫
Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt + sλ

∫ T ′

t0

∫
Ω′

∇ · (ϕ(i)
5
2 c∇β(i))|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫
Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt,

by integration by parts, without any remaining integral over (t0, T
′)×S by condition

transmission (2.8). With an integration by parts w.r.t. t in the first integral, we then
obtain

(3.4)
1

2

∫
Ω′

ϕ(i)
3
2 |ψ(i)(T ′, .)|2 dx = I(i) +

1

2
sλ2

∫ T ′

t0

∫
Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

− sλ

∫ T ′

t0

∫
Ω′

ϕ(i)
5
2∇ · (c∇β(i))|ψ(i)|2 dxdt +

3

4

∫ T ′

t0

∫
Ω′

(∂tϕ
(i))ϕ(i)

1
2 |ψ(i)|2 dxdt,

i = 1, 2,

since ϕ(i)
3
2ψ(i)(t0, .) = 0. Adding (3.4) for i = 1, 2, we obtain

(3.5)

∫
Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx

≤ 4|I| + C(sλ2 + sλ + 1)

∫ T ′

t0

∫
Ω′

(
e−2sη(1)(t,x)ϕ(1)

5
2 + e−2sη(2)(t,x)ϕ(2)

5
2

)
|v|2dxdt,
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observing that |∂tϕ(i)| ≤ CTϕ(i)2, i = 1, 2. We use Carleman estimate (2.5) to obtain
an upper bound for the last term in (3.5), which yields the result by Lemma 3.2.

We shall now assume the following.
Assumption 3.4. The diffusion coefficients c and c̃ are piecewise-constant, in the

sense that c|Ωi
(resp., c̃|Ωi

) are constant in each connected component of Ωi, i = 0, 1.
We define

c0,j = c|Ω0,j
, j = 1, . . . , p0, c1,j = c|Ω1,j

, j = 1, . . . , p1,

with similar notation for c̃ and ξ.
In this case observe that, in Ω′,

v(T ′, x) = cΔu(T ′, x)+ξΔỹ(T ′, x) =

p0∑
j=1

c0,jΔu(T ′, x)χΩ0,j +

p1∑
j=1

c1,jΔu(T ′, x)χΩ1,j

+

p0∑
j=1

ξ0,jΔỹ(T ′, x)χΩ0,j +

p1∑
j=1

ξ1,jΔỹ(T ′, x)χΩ1,j ,

from the equation satisfied by u expressed at time T ′ and the definition of v above.
From Lemma 3.3, we obtain∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|ξΔỹ(T ′, x)|2dx

≤ C

∫
Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|cΔu(T ′, x)|2dx

+Cs−3/2λ−2

[
sλ

∫ T

t0

∫
γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫
Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+ s−2

∫ T

t0

∫
S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

]
.(3.6)

From Assumption 3.1 we find that

|Δ∂tỹ(t, x)|2 ≤ k2(t)|Δỹ(T ′, x)|2 in each (t0, T ) × Ωi, i = 0, 1,

for

k(t) =
1

r
sup
i=0,1

|Δ∂tỹ|Ωi
(t, .)|L∞(Ωi).

From Assumption 3.1, k ∈ L2(t0, T ) and |k|L2(t0,T ) ≤ K ′ = 1
rK. These observations

yield the following estimation of the third term in the r.h.s. of (3.6):

(3.7)

∫ T

t0

∫
Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξΔ∂tỹ|2 dx dt

≤ K ′2
∑
i=0,1

pi∑
j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)(T ′,x) + e−2sη(2)(T ′,x)

)
|Δỹ(T ′, x)|2dx,
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where we have used that

e−2sη(i)(t,x) ≤ e−2sη(i)(T ′,x), x ∈ Ω, t ∈ (t0, T ), i = 1, 2.

Observing that 0 < C ≤ ϕ(i), i = 1, 2, since β(i) ≥ 0 and 1
(T−t)(t−t0)

≥ C > 0, we

obtain∫ T

t0

∫
Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξΔ∂tỹ|2 dx dt

≤ K ′2
∑
i=0,1

pi∑
j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)(T ′,x)ϕ(2)

3
2

)
(T ′, x)|Δỹ(T ′, x)|2dx.

We now treat the interface terms that appear in the r.h.s. of the Carleman esti-
mate. Recall that

g(t, x) = α∂n∂tỹ|[0,T ]×S0
, α = ξ1

c̃0
c̃1

− ξ0.

Note that η(t, .) is constant on S. We denote this constant by η(t, S). More generally
we shall denote by ρ(S) the value on S of a function ρ which is constant on S. We
obtain∫ T

t0

∫
S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt ≤
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))

∫
S

|∂tg|2dσ dt

≤ M ′|ξ|2
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))dt,

from trace inequalities and from Assumption 3.1, for M ′ = CTr(1 + cmax

cmin
)2M , where

|ξ| =
√
ξ2
0 + ξ2

1 , since |α| ≤ (1 + cmax

cmin
)|ξ| from Assumption 1.2. The constant CTr is

the constant found in the trace estimates∫
S

|∂nρ̃|2 ≤ CTr|ρ|2H2(Ωi)
, i = 0, 1,

if ρ|Ωi
∈ H2(Ωi), i = 0, 1. Similarly, since ϕ(i), i = 1, 2, are constant on S, we have

∫ T

t0

∫
S

(e−2sη(1)

ϕ(1)j + e−2sη(2)

ϕ(2)j) |g|2 dσ dt

≤ M ′|ξ|2
∫ T

t0

(e−2sη(1)

ϕ(1)j + e−2sη(2)

ϕ(2)j)(t, S) dt, j ∈ N.

With

wk(s, λ) :=

∫ T

t0

(e−2sη(1)

ϕ(1)k + e−2sη(2)

ϕ(2)k)(t, S) dt, k ∈ N,

and

Wi,j(s, λ) :=

∫
Ωi,j

(e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2 )(T ′, x)|Δỹ(T ′, x)|2dx,
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i = 0, 1, j = 1, . . . , pi, we thus obtain, for λ ≥ λ1 and s ≥ s1,∑
i=0,1

pi∑
j=1

|ξi,j |2
{

(1 − CK ′2s−
3
2λ−2)Wi,j(s, λ)

−CM ′[s−
1
2λ−1w1(s, λ) + s−

3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)]

}
≤ C

∫
Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|cΔu(T ′, .)|2dx

+Cs−
1
2λ−1

∫ T

t0

∫
γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt.(3.8)

To obtain a stability result we need to prove that the coefficients for |ξi,j |2, i = 0, 1,
j = 1, . . . , pi, can be made positive. To do so we need to understand the behavior of
the integrals wk(s, λ) and Wi,j(s, λ) as s and λ become large.

We first establish the asymptotic behavior of wk(s, λ). We set

w
(i)
k (s, λ) :=

∫ T

t0

e−2sη(i)(t,S)ϕ(i)k(t, S) dt, k ∈ N.

Lemma 3.5. The following estimates holds:

w
(i)
k (s, λ) = e−2sη(i)(T ′,S) ϕ(i)k(T ′, S)

⎧⎨⎩
√
πs−

1
2√

φ′′(T ′)
√
eλβ − eλβ(i)(S)

+O
(

s−
3
2

(eλβ − eλβ(i)(S))
3
2

)⎫⎬⎭ ,(3.9)

with φ(t) = 1
(T−t)(t−t0)

, for s > s2 > 0 and λ > λ2 > 0.

Proof. Let T (2) and T (3) be such that t0 < T (2) < T ′ < T (3) < T . We choose
χ1 ∈ C ∞

c ([t0, T
(2))), χ2 ∈ C ∞

c ((t0, T )), and χ3 ∈ C ∞
c ((T (3), T ]), all three nonnegative,

such that χ1 + χ2 + χ3 = 1 and χ1 = 1 in a neighborhood of t0, χ2 = 1 in a
neighborhood of T ′, and χ3 = 1 in a neighborhood of T . With this partition of unity

we break w
(i)
k into three pieces: w

(i)
k = w

(i,1)
k + w

(i,2)
k + w

(i,3)
k with

w
(i,j)
k (s, λ) :=

∫ T

t0

e−2sη(i)(t,S)ϕ(i)k(t, S) χj(t) dt, j = 1, 2, 3.

The first and the third term are treated similarly. Let s2 > 0 and λ2 > 0. We set

τ(s, λ, S) = s(eλβ − eλβ
(i)(S)). We observe

w
(i,1)
k (s, λ) = ekλβ

(i)(S)

∫ T

t0

e−2sη(i)(t,S)φk(t) χ1(t) dt

≤ ekλβ
(i)(S)e−2(s−s2)η

(i)(T (2),S)

∫ T

t0

e−2s2η
(i)(t,S)φk(t) χ1(t) dt

≤ C(s2, λ2)e
kλβ(i)(S)e−2(s−s2)η

(i)(T (2),S)

≤ Cekλβ
(i)(S)e−2sη(i)(T ′,S)e−2s(η(i)(T (2),S)−η(i)(T ′,S))

= ekλβ
(i)(S)e−2sη(i)(T ′,S)O(τ(s, λ, S)−l),
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for all l ∈ N, if s > s2 and λ > λ2, since

s(η(i)(T (2), S) − η(i)(T ′, S)) = τ(s, λ, S)(φ(T (2)) − φ(T ′)),

and φ(T (2)) − φ(T ′) > 0.

For the second term w
(i,2)
k we write

w
(i,2)
k (s, λ) := ekλβ

(i)(S)

∫ T

t0

e−2τ(s,λ,S)φ(t)φk(t) χ2(t) dt

= ekλβ
(i)(S)e−2τ(s,λ,S)φ(T ′)

∫ T

t0

e−2τ(s,λ,S)(φ(t)−φ(T ′))φk(t) χ2(t) dt.

We then apply the following stationary phase formula [15, Theorem 7.7.5] in one
dimension: ∣∣∣∣∣

∫
u(y)eiωf(y)dy − eiωf(y0)

(
ωf ′′(y0)

2πi

)− 1
2 ∑
l<l1

ω−lLlu

∣∣∣∣∣
≤ Cω−l1− 1

2

∑
|α|≤2l1

sup |∂αu|, ω > 0, u ∈ C ∞
c ,

where Ll is a differential operator of order 2l evaluated at T ′, L0u = u(T ′). (To
obtain the additional factor − 1

2 in the r.h.s. as compared to the formula given in [15,
Theorem 7.7.5], simply write the formula to the order l1 + 1.) This formula is valid
if Im(f) ≥ 0, Im(f(y0)) = 0, f ′(y0) = 0, f ′′(y0) �= 0, and f ′(y) �= 0 in supp(u) \ {y0}.
Here the phase function f(t) = i(φ(t) − φ(T ′)) is imaginary (note that φ′′(T ′) > 0),
ω = 2τ(s, λ, S), and u = φkχ2. The stationary point is t = T ′. With l1 = 1, we
obtain∣∣∣∣∣
∫ T

t0

e−2τ(s,S)(φ(t)−φ(T ′))φk(t) χ2(t) dt− φk(T ′)

√
π

φ′′(T ′)
τ(s, λ, S)−

1
2

∣∣∣∣∣
≤ Cτ(s, λ, S)−3/2.

This yields (3.9).
To achieve our goal we also need an estimation from below for the terms Wi,j(s, λ).

We set

W
(i)
k,j(s, λ) :=

∫
Ωk,j

e−2sη(i)(T ′,x)ϕ(i)
3
2 (T ′, x) |Δỹ(T ′, x)|2dx,

k = 0, 1, j = 1, . . . , pk, i = 1, 2. For the terms W
(i)
0,j (s, λ), we have the following.

Lemma 3.6. Let ε > 0. We have

W
(i)
0,j (s, λ) ≥ Cs2,i,j

r2|Sj |
sλ

e−2sη(i)(T ′,S)(ϕ(i)(T ′, S))
1
2 e−λε, i = 1, 2, j = 1, . . . , p0,

for s ≥ s2 > 0, λ > 0, and where Sj =
⋃

k=1,...,p1
Sjk.

Proof. In the proof, we shall write β in place of β(i), etc. Taking δ sufficiently
small, we start by choosing a small neighborhood W of Sj in Ω0 globally parametrized
by (σ, y) ∈ [0, δ] × Sj (see the proof of Lemma A.6 in the appendix). In fact, we
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can choose the coordinates and the small neighborhood of Sj such that σ = cst
corresponds to level sets for the function β (use ∇β for the vector field v in the proof
of Lemma A.6). Note that in the neighborhood W the function β decreases with σ.

Estimating from below the Jacobian1 originating from the change of variables and
observing that the integrand is constant w.r.t. y, we obtain

W0,j(s, λ) ≥ Cr2|Sj |
∫ δ

0

e−2sη(T ′,σ)ϕ
3
2 (T ′, σ)dσ

= Cr2|Sj |e−2sη(T ′,S)

∫ δ

0

e−2s(η(T ′,σ)−η(T ′,S))ϕ
3
2 (T ′, σ)dσ.

We now use the change of variables σ′ = η(T ′, σ) − η(T ′, S) ≥ 0, which yields

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)

∫ δ′

0

e−2sσ′
ϕ

1
2 (T ′, σ)|∂σβ|−1dσ′,

where δ′ = η(T ′, δ) − η(T ′, S). We can find in W a positive lower bound for (∂σβ)−1

independent of δ, i.e., the size of W . We thus obtain

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ δ′

0

e−2sσ′
dσ′

≥ Cr2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ sδ′

0

e−2σ′
dσ′

≥ C ′(s)r2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ),

with C ′(s) increasing with s. Observe now that

ϕ(T ′, δ) =
eλβ(δ)

(T − T ′)(T ′ − t0)
=

eλβ(S)

(T − T ′)(T ′ − t0)
eλ(β(δ)−β(S))

= ϕ(T ′, S)eλ(β(δ)−β(S)).

Choosing δ sufficiently small such that 1
2 (β(S) − β(δ)) ≤ ε thus yields the desired

result.
With the previous lemmas we can now prove that the coefficient of |ξ0,j |2, j =

1, . . . , p0, in (3.8) can be made positive. This requires taking both λ and s sufficiently
large.

Proposition 3.7. Let 1 ≤ j ≤ p0. There exists λ2,j ≥ λ1 such that if λ ≥ λ2,j,
then for s sufficiently large

A0,j = (1 − CK ′2s−
3
2λ−2)W0,j(s, λ)

−CM ′[s−
1
2λ−1w1(s, λ) + s−

3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0,

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin, j).

Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
0,j (s, λ). We shall write β

in place of β(i), etc. We take s sufficiently large such that (1−CK ′2s−
3
2λ−2) ≥ c0 > 0.

1Note that the estimation from below of the Jacobian is independent from the size of the neigh-
borhood W .
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From Lemmas 3.9 and 3.6, for ε > 0 we obtain, for s sufficiently large,

(3.10) A0,j ≥ −s−2ν(λ)C1e
−2sη(T ′,S)

+
1

sλ
e−2sη(T ′,S)

⎡⎣C0

2
Cεr

2|Sj |(ϕ(T ′, S))
1
2 e−λε − CM ′

√
πϕ(T ′, S)√

φ′′(T ′)
√
eλβ − eλβ(S)

⎤⎦,
where ν is a bounded function. We first treat the second term in the previous expres-

sion. Note that this term originates from the estimate from below for W
(i)
0,j and the

estimate of s−
1
2λ−1w

(i)
1 by Lemma 3.5. The other terms in A0,j and the remaining

part of the estimation of s−
1
2λ−1w

(i)
1 are lumped into the first term of (3.10).

Now choose ε < 1
2 (β − β(S)) (recall that β > β(S) because m > 1). Then since

β > β(S) we have

ϕ(T ′, S)√
eλβ − eλβ(S)

= o((ϕ(T ′, S))
1
2 e−λε)

for λ large. Thus the second term can be made positive for λ, say λ = λ2,j , sufficiently
large.

Once λ is fixed larger than λ2,j , the first term in (3.10) can be made positive by
taking s sufficiently large.

We now prove that the coefficient of |ξ1,j |2, j = 1, . . . , p1, in (3.8) can be made
positive. Here, the parameter λ is not of use.

Proposition 3.8. Let 1 ≤ j ≤ p1. Let λ ≥ λ1. Then for s sufficiently large

A1,j = (1 − CK ′2s−
3
2λ−2)W1,j(s, λ)

− CM ′[s−
1
2λ−1w1(s, λ) + s−

3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0,

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin).

Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
1,j (s, λ). We shall write β

in place of β(i), etc. We take s sufficiently large such that (1−CK ′2s−
3
2λ−2) ≥ C0 > 0.

We first write

e−2sη(t,S) = e−2sη(T ′,S)e−2s(η(t,S)−η(T ′,S))

and observe that for s ≥ s0 > 0∫ T

t0

e−2s(η(t,S)−η(T ′,S))ϕk(t, S)dt ≤ L(s0, λ, k),

for some positive L(s0, λ, k). From Lemma 2.1, there exists V � Ω1,j such that
infx∈V β > β(S). Then with

ηT
′,V

max = sup
x∈V

e2λK(i) − eλβ
(i)(x)

(T ′ − t0)(T − T ′)

we have −η(T ′, x) ≥ −ηT
′,V

max > −η(T ′, S), for x ∈ V and s > 0. These observations
yield

W1,j(s) ≥ r2

∫
V

e−2sη(T ′,x)ϕ
3
2 (T ′, x)dx ≥ C(λ)r2|V |e−2sηT ′,V

max
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and

wk(s) ≤ L(s0, λ, k)e−2sη(T ′,S),

which implies the result.
With (3.8) and Propositions 3.7 and 3.8, recalling that v = ut = ∂t(y − ỹ), we

have thus obtained the following stability result.
Theorem 3.9. Let γ be a subset of the boundary Γ of an open set Ω of R

n

that satisfies Assumption 1.5, and let γ satisfy Assumption 1.4. We assume that the
diffusion coefficients c and c̃ satisfy Assumptions 1.2 and 3.4 and c0 − c1 ≥ Δ > 0.
Let y0, ỹ0 in L2(Ω) and let y, ỹ be solutions to (3.1)–(3.2) satisfying Assumption 3.1.
Then there exists a constant C,

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,Δ),

such that

∑
i=0,1

pi∑
j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′).

(3.11)

We shall see in Proposition 4.5 below that we can achieve the regularity properties
and estimates of Assumption 3.1.

Remark 3.10. Observe than in the statement of Theorem 3.9 the initial condition
y0 and ỹ0 need not be equal (see systems (3.1)–(3.2)).

Remark 3.11. If the position of the interface S is known, we can improve the
result of Theorem 3.9 by locally observing the solutions y and ỹ at time T ′. Let
ω = ω0 ∪ ω1, with ω1 a neighborhood of γ in Ω1 and ω0 a neighborhood of S in Ω0.
We can, in fact, relax Assumption 3.1 with the following: Let r > 0; then the solution
ỹ is such that |Δỹ(T ′)| ≥ r > 0 in ω. Then, we obtain a stability estimate by solely
observing y and ỹ at time T ′ on ω in place of Ω:

∑
i=0,1

pi∑
j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(ω).

(3.12)

We briefly sketch the proof, as it closely follows the exposition of the proof of esti-
mate (3.11) in this section. It relies on the following lemma.

Lemma 3.12. Let s3 > 0 and λ3 > 0. There exists C > 0 such that for all s ≥ s3

and λ ≥ λ3 we have∫
Ωi

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)(T ′,x)ϕ(2)

3
2

)
(T ′, x)dx

≤ C

∫
ωi

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)(T ′,x)ϕ(2)

3
2

)
(T ′, x)dx, i = 0, 1.

Proof. Note that β reaches its maximum in Ω1 on γ. Set A = supΩ1\ω1
β, let

ε > 0 be sufficiently small such that B = A + ε < supΩ1
β, and define ω̃1 = {x ∈

Ω1; A + ε < β(x)}. Then ω̃1 ⊂ ω1, with nonempty interior, and we set K = |Ω1\ω̃1|
|ω̃1| .
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We define η
(i)
B and ϕ

(i)
B to be equal to η(i) and ϕ(i) at time T ′ and β(x) replaced by

B. Then for all s ≥ s3 and λ ≥ λ3 we have∫
Ω1\ω̃1

e−2sη
(i)
B ϕ

(i)
B

3
2
dx ≤ K

∫
ω̃1

e−2sη
(i)
B ϕ

(i)
B

3
2
dx, i = 1, 2.

We conclude by observing that, for i = 1, 2,

e−2sη
(i)
B ≤ e−2sη(i)(T ′,x), ϕ

(i)
B ≤ ϕ(i)(T ′, x), x ∈ ω̃1,

e−2sη(i)(T ′,x) ≤ e−2sη
(i)
B , ϕ(i)(T ′, x) ≤ ϕ

(i)
B , x ∈ Ω1 \ ω̃1.

The same method can be applied for the second set of integrals on Ω0 and ω0.
Continuation of Remark 3.11. In the statement of Lemma 3.3 we can replace the

integration domain, Ω′, in the l.h.s. of the estimate by ω.
To reach an equation of the form of (3.8) with the volume integrals computed2

over ω in place of Ω we write the following counterpart to (3.7):

∑
i=0,1

∫ T

t0

∫
Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξΔ∂tỹ|2 dx dt

≤ K ′2
∑
i=0,1

pi∑
j=1

|ξi,j |2
∫

Ωi,j∩ω

(
e−2sη(1)(T ′,x) + e−2sη(2)(T ′,x)

)
|Δỹ(T ′, x)|2dx

by Lemma 3.12. The result of Lemma 3.6 remain unchanged as ω0 is a neighborhood
of S in Ω0. In the proof of Proposition 3.8 we can choose the open set V to be in ω1.

Remark 3.13. Note that if we assume that y(T ′, .) = ỹ(T ′, .), then the stability
estimate becomes∑

i=0,1

pi∑
j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ).

Such an additional assumption is sometimes made, e.g., in [16].
With Theorem 3.9 we have the following uniqueness result.
Corollary 3.14. Under the same assumptions as in Theorem 3.9 and if

∂n(∂t(y − ỹ))(t, x) = 0 in (t0, T ) × γ,

Δy(T ′, x) − Δỹ(T ′, x) = 0 in Ω′,

then c = c̃. Furthermore, y0 = ỹ0.
Proof. The second assertion remains to be proved. If c = c̃, then u = y− ỹ ∈ DA,

with A = ∇ · (c∇(.)) (see the appendix), is the solution to⎧⎪⎨⎪⎩
∂tu−∇ · (c∇u) = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × Γ,

u(0, x) = u0(x) in Ω,

with u0 = y0 − ỹ0. Thus u = S(t)u0. We have Δ(u)(T ′) = 0 in Ω′. Thus ∇ ·
(c∇u)|Ω′ (T

′) = 0. Since u(T ′) ∈ DA we have u(T ′) = 0. Since the semigroup S(t)

2Including the definition of Wi,j , i = 0, 1, j = 1, . . . , pi.
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generated by −∇ · (c∇(.)) is analytic by Proposition 5, we obtain that S(t)u0 = 0 for
all t > 0. The continuity in t = 0+ yields u0 = 0.

If we make further assumptions on the initial conditions y0 and ỹ0, we can in
fact obtain a stability result for these initial conditions as well. This is the subject of
section 5.

Remark 3.15. In the stability result obtained here, we have made the choice
to make some of the measurements on part of the boundary (0, T ) × Γ. Derivation
of a Carleman estimate, as in [8], with an r.h.s. with an “observation” in an inner
volume (0, T ) × ω of (0, T ) × Ω1 would yield a stability estimate like (3.11) with
|∂ty − ∂tỹ|L2((t0,T )×ω) in the r.h.s.

Remark 3.16. Observe that in place of Assumption 3.4 we could have assumed
solely that the difference ξ = c− c̃ is piecewise-constant. Then, we would replace cΔu
by ∇ · (c∇u) in the r.h.s. of (3.8). This would yield a stability estimate of the form∑
i=0,1

pi∑
j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∇y(T ′, .) −∇ỹ(T ′, .)|2(L2(Ω′))n

+ C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′).(3.13)

In Remark 4.7, we show that Assumption 3.1 can be fulfilled, in the case where ξ is
piecewise-constant, if |∇c̃| is sufficiently small and c̃ sufficiently regular.

Remark 3.17. Here we have set the r.h.s. of the parabolic equations in (3.1) and
(3.2) to zero. With a nonvanishing r.h.s., say f(t, x), the same stability result holds
once the hypotheses of Assumption 3.1 are fulfilled, since (3.3) is preserved. Assuming
that the function f(t, x) is bounded and sufficiently regular, say of class C k, with k
sufficiently large, we can obtain the same results as in Proposition 4.5 of section 4, by
a slight modification of the argumentation. In this case also, the class of solutions y
and ỹ satisfying Assumption 3.1 is nonempty.

Remark 3.18. The stability result obtained here can be extended to a more
complicated geometry, for instance in the case of three or more embedded materials.
We can consider some open sets V0, . . . , Vm such that

V0 � V1 � · · · � Vm = Ω

and then set Ωi := Vi\V i−1, i = 1, . . . ,m, and Ω0 = V0. We then assume the diffusion
coefficient to be piecewise-constant, constant on each connected component of Ωi, and
assume a monotony condition across interfaces as in Assumption 1.2. With geometric
conditions on the open sets Ωi, i = 0, . . . ,m, similar to those made on Ω0 and Ω1

here we can then prove a Carleman estimate of the form (2.5). The method exposed
in this section then yields a stability result as in Theorem 3.9. For more details see
our complete preprint [5]. The results of section 5 can be extended similarly.

4. Existence of solutions y, ỹ satisfying Assumption 3.1. We propose a
possible choice of boundary condition h and of initial condition ỹ0 to achieve the
particular properties for the solutions y and ỹ listed in Assumption 3.1 needed in the
proof of Theorem 3.9.

We shall denote by S(t) (resp., S̃(t)) the analytic semigroup generated by un-

bounded operator A (resp., Ã) formally defined by −∇ · (c∇(.)) (resp., −∇ · (c̃∇(.)))
on L2(Ω) with domain (see the appendix)

DA = {u ∈ H1
0 (Ω); ∇ · (c∇u) ∈ L2(Ω)}

(resp., DÃ = {u ∈ H1
0 (Ω); ∇ · (c̃∇u) ∈ L2(Ω)}).
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The convention we use here is S(t) = e−tA.
Lemma 4.1. Let r > 0 and let c̃ ∈ L∞(Ω). There exist ỹ0 ∈ DÃ and χ : [0, T ] → R

such that the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tỹ −∇ · (c̃∇ỹ) = 0 in (0, T ) × Ω,

ỹ(t, x) = χ(t) on (0, T ) × Γ,

ỹ(t, .) − χ(t) ∈ DÃ, 0 < t ≤ T,

ỹ(0) = ỹ0

(4.1)

satisfies |∇ · (c̃∇ỹ)(T ′)| ≥ r > 0 a.e. The function χ can be chosen such that χ′ is a
positive constant.

Proof. Observe that p(t, x) = ỹ(t, x) − χ(t) is the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tp−∇ · (c̃∇p) = −χ′(t) in (0, T ) × Ω,

p(t, x) = 0 on (0, T ) × Γ,

p(t, .) ∈ DÃ, 0 < t ≤ T,

p(0, x) = ỹ0(x) − χ(0) = p0 ∈ L2(Ω)

(4.2)

and is thus given by Duhamel’s formula [21]

p(t) = S̃(t)p0 −
∫ t

0

S̃(t− s)χ′(s)ds.(4.3)

In fact, we choose χ of the form χ(t) = −ρt, where ρ is a negative constant. We
also choose ỹ0 such that p0 = ỹ0 ∈ DÃ and ∇ · (c̃∇ỹ0) ≥ r0 > r a.e. in Ω (choose
f ∈ L2(Ω) such that f > r0, and solve the elliptic problem ∇ · (c̃∇ỹ0) = f for ỹ0 in
H1

0 (Ω)). We choose ρ such that −r0 < ρ ≤ −r < 0.
The solution p to (4.2) is unique in C 1([0, T ], L2(Ω)) ∩ C 0([0, T ],DÃ) and given

by (4.3) [7, Theorem 3 and following Remark 2, section XVII B.1]. Denoting by 1
the function identically equal to 1 on Ω, we find

p(t) = S̃(t)p0 + ρ

∫ t

0

S̃(s)1ds,

which yields q := −Ãp + ρ1 := S̃(t)(∇ · (c̃∇p0) + ρ1) [21, Theorem 1.2.4]. Hence q is
the solution to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tq −∇ · (c̃∇q) = 0 in (0, T ) × Ω,

q(t, x) = 0 on (0, T ) × Γ,

q(t, .) ∈ DÃ, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.

We now apply the maximum principle (which is valid for L∞ diffusion coefficients)
[6, proof of Theorem IX.3], which reads for the time interval [0, T ′]

ess inf
QT′

q ≥ min(0, ess inf
Ω

q0) = 0, QT′ = (0,T′) × Ω.

This yields ∇ · (c̃∇p)(T ′, x) ≥ −ρ ≥ r > 0 a.e.
Lemma 4.2. Let l > n/2 and l ≥ 2. Let c̃ ∈ L∞(Ω) be such that c̃|Ωi

is C l−1(Ωi),

i = 0, 1. Let Ω be such that S and ∂Ω are of class C l. Let ỹ0 ∈ DÃ and the function
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χ : [0.T ] → R, such that χ′ is constant, both be chosen according to Lemma 4.1. Then
∇·(c̃∇ỹ)|Ωi

∈ C k((0, T ], L∞(Ωi)), i = 0, 1, for all k ∈ N. Let ε > 0; then ∇·(c̃∇ỹ)|Ωi
,

i = 0, 1, remain in a bounded domain of C k([ε, T ], L∞(Ωi)) for all k ∈ N, uniformly
w.r.t. c̃ and ỹ0, for 0 < cmin ≤ c̃ ≤ cmax and ∇ · (c̃∇ỹ0) in a bounded domain of
L2(Ω).

Proof. We use the notation of the proof of Lemma 4.1. We set p(t, x) = ỹ(t, x)−
χ(t) and observe that q := −Ãp + ρ1 is the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tq −∇ · (c̃∇q) = 0 in (0, T ) × Ω,

q(t, x) = 0 on (0, T ) × Γ,

q(t, .) ∈ DÃ, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.

From Corollary 5 we have that q|(0,T ]×Ωi
∈ C k((0, T ];H l(Ωi)), i = 0, 1, for all k ∈ N.

Since l > n/2, the space H l(Ωi) is continuously embedded in L∞(Ωi), which yields
the result. The last statement follows from Remark 5.

Remark 4.3. In the case of n = 2, 3, which concerns most of the applications,
we choose m = 2. The condition on S, ∂Ω and the coefficients c̃|Ωi

in the previous
lemma are then the default ones assumed in the introduction.

Let the function χ, such that ρ = −χ′ is constant, be chosen according to
Lemma 4.1. We then have the following regularity property.

Lemma 4.4. Let c, c̃ ∈ L∞(Ω) be such that c|Ωi
, c̃|Ωi

are C 1(Ωi), i = 0, 1; 0 <

cmin ≤ c, c̃ ≤ cmax; and y0, ỹ0 ∈ L2(Ω) remain in a bounded domain of L2(Ω). The
solutions ỹ and y to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tỹ −∇ · (c̃∇ỹ) = 0 in (0, T ) × Ω,

ỹ(t, x) = χ(t) on (0, T ) × Γ,

transmission conditions (TC1),

ỹ(0) = ỹ0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ty −∇ · (c∇y) = 0 in (0, T ) × Ω,

y(t, x) = χ(t) on (0, T ) × Γ,

transmission conditions (TC1),

y(0) = y0

belong to C k((0, T ], H1(Ω)) and are such that ỹ|Ωi
, y|Ωi

∈ C k((0, T ], H2(Ωi)), i = 0, 1,
for all k ∈ N. Let ε > 0; then for all k ∈ N, ỹ|Ωi

, y|Ωi
remain in a bounded domain of

C k((ε, T ], H2(Ωi)), i = 0, 1, uniformly w.r.t. c̃, y0, and ỹ0.
Proof. We work out the proof for y. We define p(t, x) = y(t, x) − χ(t). The

function p is the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tp−∇ · (c∇p) = ρ in (0, T ) × Ω,

p(t, x) = 0 on (0, T ) × Γ,

p(t, .) ∈ DA, 0 < t ≤ T,

p(0) = p0 = y0 − χ(0) ∈ L2(Ω).

(4.4)

It suffices to prove the result for p. Since ρ is constant, the (mild) solution to (4.4)
is a classical solution [21, Theorem 4.3.2]. We prove below that p ∈ C k((0, T ],DA),
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k > 0. Thus p ∈ C k((0, T ], L2(Ω)). Since DA ⊂ H1
0 with continuous injection, then

p ∈ C k((0, T ], H1
0 (Ω)). By Proposition 5 the maps p �→ p|Ωi

, i = 0, 1, are continuous

from DA into H2(Ωi). Thus p|Ωi
∈ C k((0, T ], H2(Ωi)).

The solution p is given by

p(t) = S(t)p0 + ρ

∫ t

0

S(s)1ds,

where 1 is the function identically equal to 1 on Ω. The first term p1 = S(t)p0

in C k((0, T ],DAl) for all k, l > 0 by Proposition 5. For the second term p2 =

ρ
∫ t
0
S(s)1ds we have (see [21, Theorem 1.2.4]) −Ap2 = ρ(S(t)1 − 1). Thus Ap2 ∈

C k((0, T ], L2(Ω)), i.e., p2 ∈ C k((0, T ],DA), for all k > 0. The boundedness statement
follows from Remark 5.

With the proposed initial condition ỹ0 and boundary condition h(t, x) = χ(t), we
have thus obtained the following regularity and boundedness properties.

Proposition 4.5. Let r > 0. Let y0 ∈ L2(Ω). Let Ω be such that S and Γ = ∂Ω
are of class C l, and let c̃ ∈ L∞(Ω) be such that c̃|Ωi

is C l−1(Ωi), i = 0, 1, with > n/2,
l ≥ 2. There exists h(t, x) ∈ C ([0, T ] × Γ) and an initial condition ỹ0 ∈ DÃ such that
the solutions y, ỹ to systems (3.1)–(3.2) satisfy the following:

1. ∇ · (c̃∇ỹ)(T ′) ≥ r > 0;
2. ∇ · (c̃∇ỹ)|Ωi

∈ C k([t0, T ], L∞(Ωi)), i = 0, 1, for all k ∈ N;

3. y, ỹ ∈ C k([t0, T ], L2(Ω)) ∩ C k((t0, T ], H1(Ω)) for all k ∈ N;
4. y|Ωi

, ỹ|Ωi
∈ C k([t0, T ], H2(Ωi)), i = 0, 1, for all k ∈ N.

The restrictions ỹ|Ωi
remain in a bounded domain of C k([t0, T ], H2(Ωi)) and ∇ ·

(c̃∇ỹ)|Ωi
in a bounded domain of C k([t0, T ], L∞(Ωi)), uniformly w.r.t. c̃ and ỹ0 if

0 < cmin ≤ c̃ ≤ cmax and ∇ · (c̃∇ỹ0) remain in a bounded domain of L2(Ω).
With Proposition 4.5 we observe that Assumption 3.1 can be fulfilled in the

framework of Assumption 3.4 when cmin ≤ c̃ ≤ cmax and ỹ0 ∈ DÃ such that ∇·(c̃∇ỹ0)
remain in a bounded domain of L2(Ω) for properly chosen boundary conditions h(t, x).

Remark 4.6. Observe that we could simply assume that ỹ0 ∈ L2(Ω) and design
the boundary condition h(t, x) to reach a proper state in DÃ in a finite time t1 < t0.
This can be achieved as the parabolic equation we study here is null-controllable, i.e.,
exactly controllable to the trajectories [8].

Remark 4.7. In the case where we assume only that ξ is piecewise-constant,
then from Proposition 4.5.1, we can obtain Assumption 3.1.1, in the case where |∇c̃|
is sufficiently small, since, from the proof of Lemma 4.2, we also find that ∇ỹ|Ωi

,

i = 0, 1, remain in bounded domains of C k([ε, T ], (L∞(Ωi))
n). Note that we need to

assume a sufficiently large regularity on the coefficient c̃ in the proof of Lemma 4.2.

5. Uniqueness and stability estimate for the initial conditions. In this
section we closely follow the method of [22]. We shall assume the following.

Assumption 5.1. Let r0 > 0. The initial conditions y0 and ỹ0 satisfy
1. y0 is in a bounded domain of DA;
2. ỹ0 is in a bounded domain of DÃ;
3. ∇ · (c̃∇ỹ0) ≥ r0;
4. y, ỹ are in a bounded domain of C 1([0, T ], L2(Ω)), where y and ỹ are the

solutions to (3.1)–(3.2).
Observe that Assumption 5.1.4 implies that ỹ|Ωi

, y|Ωi
are in a bounded domain of

C ([0, T ], H2(Ωi)), i = 0, 1, by Proposition A.3.
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We define z̃ = ∂tỹ ∈ C ([0, T ], L2(Ω)), and thus z̃(0) is well defined in L2(Ω). We
introduce w the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tw −∇ · (c∇w) = 0 in (0, T ) × Ω,

w(t, x) = ∂th(t, x) on (0, T ) × Γ,

transmission conditions (TC1) on (0, T ) × S,

w(0) = z̃(0),

(5.1)

and we further assume the following.
Assumption 5.2. The functions z̃, w are in a bounded domain of L2(0, T,H1(Ω)).
We also assume that the diffusion coefficients c and c̃ are piecewise-constant (As-

sumption 3.4).
Observe that if we choose the boundary condition h(t, x) = −ρt for 0 < t ≤ T

according to the proof of Lemma 4.1 (with 0 < r < r0), then the above assumption are
fulfilled. In fact, the results of section 4 show that Assumption 3.1 is then satisfied.
In addition, Assumptions 5.1.4 and 5.2 are fulfilled by the following lemma.

Lemma 5.3. If h(t, x) = −ρt, then the solutions y, ỹ to (3.1)–(3.2) and w to
(5.1) satisfy Assumptions 5.1.4 and 5.2.

Proof. We prove w ∈ L2(0, T,H1(Ω)). The proof is the same for z̃. Let p(t, x) =
w(t, x) − ∂th(t, x) = w(t, x) + ρ. Then p satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tp−∇ · (c∇p) = 0 in (0, T ) × Ω,

p(t, x) = 0 on (0, T ) × Γ,

transmission conditions (TC1) on (0, T ) × S,

p(0) = z̃(0) + ρ ∈ L2(Ω).

We thus have the usual energy estimate

1

2
|p(t)|2L2(Ω) +

∫ t

0

∫
Ω

c|∇p|2dtdx =
1

2
|p(0)|2L2(Ω),

and p, and thus w, is in L2(0, T,H1(Ω)) and remains in a bounded domain of this
space if cmin ≤ c ≤ cmax and ỹ0 remains in a bounded domain of DÃ.

To prove that y is in a bounded domain of C 1([0, T ], L2(Ω)) (the proof is the same
for ỹ), we set p(t, x) = y(t, x)+ ρt and observe that q := −Ap+ ρ1 is C ([0, T ], L2(Ω))
and thus p ∈ C ([0, T ],DA). Then p ∈ C 1([0, T ], L2(Ω)).

Define v1 and v2 that satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tv1 −∇ · (c∇v1) = ∇ · ((c− c̃)∇∂tỹ) in (0, T ) × Ω′,

v1 = 0 on (0, T ) × Γ,

transmission conditions (TC2) on (0, T ) × S,

v1(0) = 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tv2 −∇ · (c∇v2) = 0 in (0, T ) × Ω′,

v2 = 0 on (0, T ) × Γ,

transmission conditions (TC1) on (0, T ) × S,

v2(0) = ∂t(y − ỹ)(0).

Observe that ∂t(y − ỹ)(0) is well defined and in a bounded domain of L2(Ω) by
Assumption 5.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1878 A. BENABDALLAH, P. GAITAN, AND J. LE ROUSSEAU

With an argument of logarithmic convexity we have

|v2(t)|L2(Ω) ≤ K1−t/T ′ |v2(T
′)|t/T

′

L2(Ω), 0 ≤ t ≤ T ′.(5.2)

Such an estimate makes use of the convexity of F (t) = ln(|v2(t)|2L2(Ω)) and |v2(0)|L2(Ω)

≤ K (see [20, section 2.3] for further details).

We now prove the following lemma.

Lemma 5.4. There exists C > 0 such that

|v1(t)|L2(Ω) ≤ C|c− c̃|
1
2

L∞(Ω), 0 ≤ t ≤ T.

Note that v1 satisfies transmission condition (TC2) and thus does not belong to
DA. We thus cannot use some argument of regularity w.r.t. the source term from
parabolic theory for v1.

Proof. First observe that v1 = w − z̃. From Assumption 5.2, w and z̃ remain in
a bounded domain of L2(0, T,H1(Ω)). Now ∂t(w − z̃) −∇ · (c∇w − c̃∇z̃) = 0, which
after multiplication by w − z̃, integration over Ω, and an integration by parts, yields

0 =
1

2
∂t

∫
Ω

|w − z̃|2 dx +

∫
Ω

(c∇w − c̃∇z̃) · (∇w −∇z̃) dx

=
1

2
∂t

∫
Ω

|w − z̃|2 dx +

∫
Ω

(c− c̃)∇w · (∇w −∇z̃) dx +

∫
Ω

c̃|∇w −∇z̃|2 dx

since ∇ · (c∇w − c̃∇z̃) ∈ L2(Ω) by the definitions of DA and DÃ (see the appendix).
We thus obtain

1

2
∂t

∫
Ω

|w − z̃|2 dx ≤
∣∣∣∣∫

Ω

(c− c̃)∇w · (∇w −∇z̃) dx

∣∣∣∣
≤ |c− c̃|L∞(Ω) |∇w|L2(Ω) |∇w −∇z̃|L2(Ω).

Integrating over (0, t) yields the result.

As in section 3, we define v = ∂t(y − ỹ) and observe that v = v1 + v2. We thus
have

|v(t)|L2(Ω) ≤ |v1(t)|L2(Ω) + |v2(t)|L2(Ω) ≤ C(|c− c̃|
1
2

L∞(Ω) + |v2(T
′)|t/T

′

L2(Ω)), 0 ≤ t ≤ T ′,

and

|v2(T
′)|L2(Ω) ≤ |v(T ′)|L2(Ω) + |v1(T

′)|L2(Ω)

≤ C(|(Δy − Δỹ)(T ′)|L2(Ω) + |c− c̃|L∞(Ω) + |c− c̃|
1
2

L∞(Ω)),

making use of

v = ∇ · (c∇u) + ∇((c− c̃) · ∇ỹ) = c(Δy − Δỹ) + (c− c̃)Δỹ in Ω′,

where Assumption 3.4 was applied. This yields

|v(t)|L2(Ω) ≤ C
(
|c− c̃|

1
2

L∞(Ω) + νt/T
′
)
, 0 ≤ t ≤ T ′,
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with ν = |(y − ỹ)(T ′)|H2(Ω′) + |c − c̃|L∞(Ω) + |c − c̃|
1
2

L∞(Ω). Because of the regularity

of v w.r.t. time t we now have

|y0 − ỹ0|L2(Ω) = |u0|L2(Ω) =

∣∣∣∣∣
∫ T ′

0

v(t)dt− u(T ′)

∣∣∣∣∣
L2(Ω)

≤
∫ T ′

0

|v(t)|L2(Ω)dt + |y(T ′) − ỹ(T ′)|L2(Ω),

which gives

|y0 − ỹ0|L2(Ω) ≤ C

(
T ′ ν − 1

ln(ν)
+ T ′|c− c̃|

1
2

L∞(Ω)

)
+ |y(T ′) − ỹ(T ′)|L2(Ω).

We thus have

|y0 − ỹ0|L2(Ω) ≤ C

(
ν − 1

ln(ν)
+ C ′ν

)
.

Observing that x < x−1
ln(x) for x ∈ (0, 1), we obtain

|y0 − ỹ0|L2(Ω) ≤ C
ν − 1

ln(ν)
if ν < 1.

With Theorem 3.9 we obtain

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′).(5.3)

When the r.h.s. of (5.3) is sufficiently small, we obtain

0 < ν ≤ C
(
|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + |Δy(T ′, .) − Δỹ(T ′, .)|2L2(Ω′)

) 1
4

< 1.

In that case

ln(ν) ≤ C ′ ln(C|(y − ỹ)(T ′)|2H2(Ω′) + C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)) < 0,

and thus

ν − 1

ln(ν)
≤ C ′(ν − 1)/ ln(C|(y − ỹ)(T ′)|2H2(Ω′) + C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)).

We thus obtain the following stability theorem for the initial conditions.
Theorem 5.5. Under the hypothesis of Theorem 3.9, in addition to Assump-

tions 5.1 and 5.2 there exist some constants C,C ′ > 0,

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,Δ),

C ′ = C ′(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,Δ),

such that

|y0 − ỹ0|L2(Ω) ≤ C ′/
∣∣ln (C|(y − ỹ)(T ′)|H2(Ω′) + C|∂n(∂ty − ∂tỹ)|L2((0,T )×γ)

)∣∣
for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|L2((0,T )×γ) sufficiently small.
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Appendix. Basic regularity properties. Let A be formally defined by −∇ ·
(c∇(.)) on L2(Ω). The diffusion coefficient c is first assumed to be in L∞(Ω) and
such that c(x) ≥ α > 0 for all x ∈ Ω. We denote by A the unbounded operator with
domain

DA = {u ∈ H1
0 (Ω); ∇ · (c∇u) ∈ L2(Ω)},

defined by A(u) = −∇ · (c∇(u)) for u ∈ DA.
Proposition A.1. Let u0 ∈ L2(Ω). There exists a unique u such that

u ∈ C ([0, T ];L2(Ω)) ∩ C 1(]0, T ];L2(Ω)) ∩ C (]0, T ];DA)

and {
∂tu−∇ · (c∇(u)) = 0, t ∈ ]0, T ],

u(0) = u0,
(A.1)

for T > 0 (T can be chosen to be ∞). Furthermore, u ∈ L2(0, T ;H1
0 (Ω)) and u ∈

C k(]0, T ];DAl) for all k, l ∈ N.
If u0 ∈ DA, then

u ∈ C 1([0, T ];L2(Ω)) ∩ C ([0, T ];DA).

Proposition A.2. The semigroup S(t) generated by the unbounded operator A
on L2(Ω) is analytic.

We now give further regularity properties when placed in the geometrical situa-
tion studied in this article, that is, if the diffusion coefficient c is piecewise C 1 and
discontinuous across some C 2 interface S. We use the notation set in the main text
of the article.

Proposition A.3. Let the diffusion coefficient, c, be such that c|Ωi
∈ C 1(Ωi),

i = 0, 1. If p ∈ DA, then p|Ωi
∈ H2(Ωi), i = 0, 1. Furthermore |p|Ωi

|H2(Ωi) ≤
C|∇ · (c∇p)|L2(Ω).

Corollary A.4. Let m ∈ N, and let c|Ωi
∈ C m+1(Ωi), i = 0, 1, and S and

∂Ω be of class C m+2. Then if u0 ∈ L2(Ω), the solution u to (A.1) is such that
u|Ωi

∈ C k((0, T ], Hm+2(Ωi)), i = 0, 1, for all k ∈ N.
Remark A.5. Let ε > 0. With the notation of the above corollary, observe that

the map

Lε,i : L2(Ω) → C k([ε, T ], Hm+2(Ωi)),

u0 �→ (t �→ u|Ωi
(t)),

is continuous for i = 0, 1, since [6, Theorem VII.7]

|u(t)|L2(Ω) ≤ |u0|L2(Ω),

|∂tu(t)|L2(Ω) = |∇ · (c∇u(t))|L2(Ω) ≤
∣∣∣∣1t
∣∣∣∣u0|L2(Ω).

We finish with the following lemma, which is needed in section 3.
Lemma A.6. There exists a neighborhood W of S globally parametrized with

(σ, y) ∈ ]− ε, ε[ × S.
Proof. In a small neighborhood of S we can extend the unit normal vector n to

S into a C 2 vector field v. In an even smaller neighborhood U of S we can assume
that v is such that |v| ≥ a > 0. If we integrate this vector field, we find that there is
ε > 0 such that the flow χσ of this C 2 vector field over the interval ]− ε, ε[ is confined
in U , since S is compact. For y ∈ S, the orientation of the unit normal (see above)
is such that χσ(y) ∈ Ω1 for σ ∈ ]− ε, 0[, and χ0(y) = y and χσ(y) ∈ Ω0 for σ ∈ ]0, ε[.
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Now set

W = {χσ(y); y ∈ S and σ ∈ ]− ε, ε[ },

which is an open neighborhood of S. Note that if x is in W , then there exist a unique
y ∈ S and a unique σ ∈ ]− ε, ε[ such that x = χσ(y).
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Abstract. This papers analyzes a class of nonlinear additive-increase multiplicative-decrease
(AIMD) protocols that are widely deployed in communication networks. It is demonstrated that the
use of these protocols guarantees that the system has a unique stable outcome to which it converges
geometrically under all starting points. The development is based on a contraction argument and the
derivation of explicit bounds on the contraction coefficient of corresponding operators in terms of the
network parameters. In particular, bounds on the corresponding rate of convergence are obtained,
improving upon known bounds for standard (linear) AIMD networks.
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1. Introduction. Traffic generated by the transmission control protocol (TCP)
accounts for 85%–95% of all traffic on today’s Internet [8]. TCP, in congestion avoid-
ance mode, is based primarily on Chiu and Jain’s [6] additive-increase multiplicative-
decrease (AIMD) paradigm for decentralized allocation of a shared resource (e.g.,
bandwidth) among competing users. The AIMD paradigm is based upon a net-
work of users competing for the available resource by using two basic strategies;
they probe for their share of the available resource by utilizing more and more of
the resource (the additive-increase (AI) stage) and then instantaneously downscale
their utilization-rates in a multiplicative fashion when notified (simultaneously) that
capacity was reached (the multiplicative-decrease stage). With some minor modifica-
tions, the AIMD algorithm has served the networking community well over the past
two decades and it continues to provide the basic building block upon which today’s
Internet communication is built.

From a mathematical perspective, the dynamics of networks in which the AIMD
algorithm is deployed have been studied extensively in the networking, computer sci-
ence, and mathematics literature; for example, see [5, 10, 19, 24, 25, 26, 27, 29] and
references therein. In these papers, some fundamental properties have been estab-
lished for systems that are controlled by the AIMD algorithm, both in a determin-
istic and in a stochastic setting; see, for example, [1, 2, 3]. In particular, it has
been shown that (with a fixed number of users) such networks possess unique sta-
ble equilibria to which the system converges geometrically under all starting points.
However, recently in the context of designing high-speed communication networks,
several authors have suggested basic modifications to the AIMD algorithm; for exam-
ple, see [7, 9, 11, 13, 14, 20, 28]. One idea underlying these modifications is to allow
the employment of more aggressive probing for available bandwidth by replacing the
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linear-in-time increase of probing that is a feature of TCP with nonlinear growth. We
refer to the resulting algorithms as nonlinear AIMD (NAIMD) algorithms. While the
modifications appear minor from an algorithmic viewpoint, they result in networks
with dynamic properties different than those employing the basic (linear) AIMD; see
[4]. Remarkably, despite increasing deployment of these algorithms (e.g., a high-speed
TCP algorithm is implemented as part of the Linux operating system), many basic
questions pertaining to the behavior of such networks have not yet been addressed
(with the notable exception of [20, 21]). Our contribution here is to use contraction
arguments to prove convergence of a large class of congestion control protocols that
are currently being explored for deployment on the Internet. These include HTCP,
High-speed TCP, and many others [7, 13, 14]. In doing this, we model the network
of TCP flows not by using a fluid approximation, or by placing assumptions of the
distribution of times between congestion notifications, but rather as a system of in-
teracting agents that are coupled together via a capacity constraint. This approach is
in contrast to much of the prior work on the topic [15, 16, 17, 18], a large amount of
which makes use of either a fluid assumption or assumptions on the stochastic nature
of the drop process. A key advantage of modeling the interactions between the AIMD
flows in this manner is that we capture not only the network asymptotics, but also
the dynamic properties of the network, such as network convergence rate, using only
standard linear algebraic arguments.

The objective of the current paper is to examine and study a class of NAIMD
algorithms. Under the assumption of user-synchronization, we show that the cor-
responding networks always possess a unique equilibrium to which the system con-
verges geometrically. Specifically, we observe resource-utilizations at instances when
the system becomes saturated (congested) and demonstrate that the transition be-
tween consecutive saturation instances is governed by a contraction transformation.
The aforementioned properties of equilibria then follow from standard results about
contractions (see section 3). Our development is based on the derivation of explicit
bounds on the contraction coefficient in terms of the network parameters, yielding
bounds on the corresponding rate of convergence; in particular, we improve previ-
ously obtained bounds for standard AIMD algorithms.

Our results are important for a number of reasons. Network congestion control
represents one of the most important problems in decentralized control, both from a
practical and a theoretical perspective. Networks in which AIMD-like algorithms are
deployed form the backbone of today’s Internet; yet surprisingly, many properties of
such networks remain unexplored. In particular, the manner in which the NAIMD
parameters of each of the users affect the existence and uniqueness of the network
equilibria, the nature of the network equilibria, and the rate of convergence to the
equilibrium state, as well as the sensitivity of the equilibrium state to changes in
network parameters (the ability to control the network fairness), is a very important
issues that has yet to be adequately addressed by the research community in a general
setting. An equally important consideration in the design of networks is whether new
protocols can co-exist with standard AIMD networks without completely starving
standard AIMD sources of the available resource. Our results in this paper present
a partial solution to many of these questions and represent a first step in addressing
these basic system-theoretic issues.

The outline of the paper is as follows. We describe standard and nonlinear variants
of AIMD in section 2. In section 3 we introduce preliminaries, in particular about
contractions. We use operators to formulate the evolution of the resource-utilization



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1884 URIEL G. ROTHBLUM AND ROBERT SHORTEN

)(
1

tx

)(
2

tx

)(txn

Fig. 1. n-player system.

in section 4 and prove our main results in section 5. Section 6 is devoted to final
conclusions.

2. Preamble: AIMD congestion control. In their original paper [6], Chiu
and Jain consider a system in which n-users compete for a resource having limited
availability per unit time, e.g., bandwidth in communication networks. The users’
actions consist of (continuously) probing the availability of the resource by submit-
ting requests for its use—these requests are satisfied whenever global capacity is not
exceeded. The situation is depicted in Figure 1, with xi(t) representing the number of
units of the resource that user i = 1, . . . , n is using at time t ≥ 0. A key assumption
in the model formulated by Chiu and Jain is the assertion that the users do not com-
municate directly with each other. Further, users are provided information about the
availability of the resource only when the collective utilization of the resource exceeds
some capacity constraint. At such time-instances, referred to as congestion events, all
users are instantly and simultaneously informed through a binary feedback. The users
are assumed to respond instantly to these notifications of congestion by decentralized
downscaling of their individual utilization-rates. Given this basic setting, the problem
is then to develop an algorithm that produces probing strategies for the users so that
each user will infer his or her “fair” share of the shared resource in a decentralized
manner.

Comment. In the current paper we focus on the synchronized problem, referring
to simultaneous notification of congestion to all users to which they all respond. In
unsynchronized systems, the signal about system-saturation is not transmitted simul-
taneously to all users. While synchronization is not valid in many real communication
networks, the study of such systems is important for two reasons. First, it represents
an important first step towards the understanding of more general systems. Second,
synchronization appears to be a common feature of high-speed communication net-
works [28], and consequently the understanding of the behavior of such networks may
be of merit in some practical situations.

Linear AIMD congestion control. The AIMD algorithm of Chiu and Jain
describes probing strategies that evolve in cycles, each cycle having two phases. The
first phase of the cycles is instantaneous. It occurs when capacity is reached, users are
notified, and each user responds by downscaling his or her utilization-rate (abruptly)
by a multiplicative factor. This phase is called the multiplicative-decrease (MD) phase.
During the second phase of a cycle, each user increases the utilization-rate linearly
until congestion is reached again, at which point the first phase of the next cycle is
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entered. The second phase is called the additive-increase (AI) phase. The utilization-
rate at the end of the AI phase is then the initial transmission-rate for the next cycle.
(The expression AIMD, rather than MDAI, is used because of historic reasons.)

Denote the share of the collective resource allocated to player i at time t by xi(t)
and let x(t) = [x1(t), . . . , xn(t)]T . The capacity constraint requires that

∑n
i=1 xi(t) <

C, with C as the total capacity of the resource available to the entire system. Without
loss of generality, we may and will assume that units of the resource are normalized
so that C = 1.

The kth cycle begins at a time tk at which the global utilization of the resource
reaches capacity. The instantaneous decrease of the utilization-rate of player i during
the MD phase of the kth cycle is expressed by

xi(t
k
+) = βixi(t

k),(1)

where tk+ is an instance after tk and βi is a constant in the open interval (0, 1). During
the AI phase of the kth cycle, the utilization-rate of user i evolves according to

xi(t) = xi(t
k
+) + αi(t− tk),(2)

where tk+ is as before and αi is a positive constant. The (k+1)st cycle begins at time
tk+1, which equals the time t at which the right-hand side of (2) reaches capacity.

A typical trajectory of the utilization-rates in a system with two users that apply
AIMD with β1 = 0.25, β2 = 0.5, and α1 = α2 = 1 is depicted in Figure 2. In this
figure, points on the line {x ∈ R

2 : x1, x2 ≥ 0 , x1 + x2 = 1} represent the utilization-
rates at congestion events.
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Fig. 2. Utilization-rates under AIMD.

Motivated by trajectories of the form illustrated in Figure 2, we find that a con-
venient framework in which to study the implication of the AIMD algorithm is to
consider the utilization-rates at congestion events that occur at times t1, t2, . . . .
Combining (1) and (2), we see that the evolution of the utilization-rate of user i
between the kth and (k + 1)st congestion points is given by

xi(t
k+1) = βixi(t

k) + αi(t
k+1 − tk).(3)
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This avenue of investigation is explored in [5, 26], where it is shown that the transfor-
mation of the utilization-rates between consecutive congestion points is linear. Specif-
ically, as

∑n
i=1 xi(t

k) =
∑n

i=1 xi(t
k+1) = 1, we have that

1 =

n∑
i=1

xi(t
k+1) =

n∑
i=1

βixi(t
k) +

(
n∑

i=1

αi

)
(tk+1 − tk)

and

tk+1 − tk =
1 −

∑n
i=1 βixi(t

k)∑n
i=1 αi

=

∑n
i=1(1 − βi)xi(t

k)∑n
i=1 αi

;

substituting this expression into (3), we have that

x(tk+1) = Ax(tk),(4)

where

A =

⎡⎢⎢⎢⎣
β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βn

⎤⎥⎥⎥⎦ +
1∑n

j=1 αi

⎡⎢⎣ α1

...
αn

⎤⎥⎦ [
1 − β1, . . . , 1 − βn

]
.(5)

The following facts are deducible from the above explicit form of A (see [5]):
(a) (Synchronized) AIMD systems have a unique fixed point.
(b) The vector x(tk) asymptotically approaches the ray generated by the vector

[ α1

1−β1
, . . . , αn

1−βn
]T ; convergence is geometric at a rate that equals the second

largest modulus of an eigenvalue of the matrix A.
(c) By renumbering the users in decreasing order of their multiplicative factor

βi, that is, having 0 < βn ≤ · · · ≤ β2 ≤ β1 < 1, the second largest eigenvalue
of A is bounded below by β2 and above by β1.

Nonlinear AIMD congestion control. We next describe a nonlinear variant of
the basic AIMD algorithm, which we call the NAIMD. Specifically, NAIMD coincides
with the standard (linear) AIMD, except that in the AI phase the increase in the
utilization-rate of each user i is dictated by a nonlinear function of time that we
denote by ai(.). So, (2) has to be modified by replacing the (multiplying constant) αi

by (the function) ai, while (1) remains unchanged. The evolution of the utilization-
rate of user i between the kth and (k + 1)st congestion points is then given by

xi(t
k+1) = βixi(t

k) + ai(t
k+1 − tk),(6)

which replaces (3).
It has been recently shown by several authors that some choices of the ai(·) lead

to poor dynamic properties, including the lack of stable utilization-rates; see [4, 11]).
The analysis presented here, together with the analysis and modeling framework in
[12], constitutes an important first step in modeling high-speed networks that em-
ploy AIMD-like protocols. In [12] the authors use a “product of matrices” approach
to establish conditions that guarantee the stability of the network where the growth
functions are functions of the current state. Here we use contraction mapping argu-
ments to establish the important result of unconditional stability of the network when
the growth functions are functions of time since the last notification of congestion.
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In particular, in the current paper we restrict our attention to the application of
NAIMD with functions ai(.) that are nondecreasing. A number of authors have al-
ready shown that corresponding strategies offer an attractive framework for designing
congestion control that is suitable for deployment in high-speed networks [13]. As in
the linear case, one may consider the NAIMD only at the congestion points over which
it defines an operator that maps the utilization-rates between consecutive points. Our
principal contribution is the introduction of a contraction mapping approach to show
that this class of operators is well behaved and has properties that are parallel to
those of standard (linear) AIMD.

The next example illustrates the evolution of the utilization-rates in a 2-user
system in which NAIMD is applied and to which our forthcoming results apply.

Example 1. Consider a system with two users that apply NAIMD with β1 =
0.25, β2 = 0.5, a1(t) = t, and a2(t) = t2 for all t ≥ 0. The trajectory of the utilization-
rates in this system is depicted in Figure 3.
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Fig. 3. Utilization-rates under NAIMD.

3. Notation and preliminaries. Throughout, we use notation R for the set
of real numbers, R

n for the n-dimensional real Euclidean space, and R
n×n for the

space of n × n matrices with real entries. As usual, subscripts are used to denote
coordinates of vectors and matrices, the notation ≤ and < is used, respectively, for
the coordinatewise weak and strict order over vectors and matrices, and || . ||1 denotes
the �1 norm on R

n. Given a vector β in R
n, we use the notation Dβ for the diagonal

n× n matrix, whose diagonal elements are β1, . . . , βn. Given two vectors u and v in
R

n, their Hadamard product (u1v1, . . . , unvn)T = Duv ∈ R
n will be denoted u ◦ v.

Given a convex set C ⊆ R
n, its tangential hull {α(x − y) : x, y ∈ C and α ∈ R}

will be denoted tng(C) (it is the smallest hyperplane containing C, translated to the
origin).

With n as a given positive integer, we let ei denote the ith unit vector and we
let e denote the vector (1, . . . , 1)T ∈ R

n. Also, we let S denote the unit simplex
{x ∈ R

n : x ≥ 0 ,
∑n

i=1 xi = 1}; in particular, tng (S) = {z ∈ R
n : eT z = 0}.

Given an operator A on a compact subset C of R
n, we denote the �1 operator
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norm of A on C by ||A||C1 , that is,

||A||C1 = max
x,y∈C,x �=y

||A(x) −A(y)||1
||x− y||1

.(7)

When C is convex and A is a linear operator represented by a matrix A (that is,
A(x) = Ax for each x ∈ C), we have that

||A||C1 = max
z∈tng(C),z �=0

||Az||1
||z||1

= max
z∈tng(C),||z||1=1

||Az||1.(8)

We say that A is a contraction on C with respect to the �1 norm if ||A||C1 < 1. In
this case, the Banach fixed point theorem assures us that A has a unique fixed point,
say, x∗, and that the iterates of A on any arbitrarily selected point x ∈ C converge
geometrically to x∗ at a rate that is bounded by γ ≡ ||A||C1 ; specifically, we have that

||An(x) − x∗||1 ≤ γn

1 − γ
||x−Ax||1 for n = 0, 1, . . . .(9)

To verify (9) with n = 0 observe that ||x − x∗||1 ≤ ||x − Ax||1 + ||Ax − Ax∗||1 ≤
||x−Ax||1 +γ||x−x∗||1, implying that ||x−x∗||1 ≤ (1−γ)−1||x−Ax||1. For arbitrary
n ≥ 0, we then have that ||An(x) − x∗||1 = ||An(x) − An(x∗)||1 ≤ γn||x − x∗||1 ≤
γn

1−γ ||x− Ax||1. The significance of (9) is in the fact that it allows one to bound the
proximity to the unique fixed point of iterates of A on an arbitrary point in terms of
the computable quantity (1 − γ)−1||x− Ax||1 and the geometrically decreasing term
γn.

4. Operator-formulation. As stated in the preamble, we assume throughout
that the capacity of the resource is normalized to 1. Our first undertaking is to for-
mally model the evolution of the utilization-rates in an n-user system that is governed
by the nonstandard (that is, not necessarily linear) variant of AIMD with transition
over each cycle expressed by (6). The data we have at hand is then a vector β ∈ R

n

and functions ai(·) : [0,∞) → [0,∞) for i = 1, . . . , n that are assumed to have the
following properties:

(i) 0 < β < e.
(ii) For i = 1, . . . , n, ai(·) is nondecreasing and continuous and has ai(0) = 0.
(iii)

∑
i ai(·) is strictly increasing and its range includes [0, 1].

For each t ∈ [0,∞), let a(t) = [a1(t), . . . , an(t)]T . Also, let g(·) : [0,∞) → [0,∞)
be the function that maps each 0 ≤ t < ∞ into g(t) = eTa(t). The assumptions
about the ai(·)’s assure us that the function g(·) is strictly increasing and continuous
and that its range includes [0, 1]. These properties of g(·) assure us that it has a
continuous, strictly increasing inverse on [0, 1], which we denote g−1(·).

Consider a cycle k in which the initial utilization-rates of the users are x1, . . . , xn,
respectively, and let x = (x1, . . . , xn)T . As the total resource capacity is normalized
to 1, we have that x ∈ S. Let tx be the duration of a phase in which the initial
utilization-rates are given by x. It then follows that, with

xi = xi(t
k) and tx = tk+1 − tk,

by (6) the transition of the utilization-rate over a cycle which starts with utilization-
rates represented by x ∈ S is expressed by

A(x) = (β ◦ x) + a(tx).(10)
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Notification of congestion is transmitted when the cumulative transmission-rate reaches
the unit capacity, implying that

1 =

n∑
i=1

A(x)i = eT (β ◦ x) + eTa(tx).

So,

tx = g−1[1 − eT (β ◦ x)](11)

(the expression g−1[1−eT (β ◦x)] is well defined because 0 < eT (β ◦x) =
∑n

i=1 βixi <
1). Substituting (11) into (10), we conclude that

A(x) = (β ◦ x) + a
(
g−1[1 − eT (β ◦ x)]

)
.(12)

Observing that for x ∈ S, A(x) ≥ (β ◦ x) ≥ 0 and

eTA(x) = eT (β ◦ x) + eTa
(
g−1[1 − eT (β ◦ x)]

)
= eT (β ◦ x) + [1 − eT (β ◦ x)] = 1,

we have that A maps S into S; that is, A is an operator on S.
The operator A expresses the transitions of the utilization-rates over the phases

AIMD. Specifically, denote the vector of utilization-rates at the beginning of phase
k = 1, 2, . . . by xk. We then have from (6) and the above derivation that

xk+1 = A(xk).(13)

We next study the operator A with the goal of understanding the evolution of the
utilization-rate when NAIMD is followed. In particular, we will establish that A is a
contraction with respect to the �1 norm on S, ensuring that A has a stable unique
fixed point and that iterates of A applied to an arbitrary initial point converge to
that fixed point.

5. Main results.

5.1. Existence and uniqueness of fixed points. Our first result shows that
the operator A has a unique fixed point.

Theorem 5.1. There exists a unique t∗ > 0 satisfying eT (I −Dβ)−1a(t∗) = 1;
further, for this t∗,

(14) x∗ ≡ (I −Dβ)−1a(t∗)

is a unique fixed point of the operator A.
Proof. Evidently, a vector x̄ ∈ S is a fixed point of the operator A defined by (10)

if and only if

(I −Dβ)x̄ = x̄− (β ◦ x̄) = a(tx̄)(15)

(with tx̄ defined by (11)). As 0 < β < e, I − Dβ is invertible and its inverse is the
diagonal matrix whose diagonal elements are (1−β1)

−1, . . . , (1−βn)−1; in particular,
(I −Dβ)−1 =

∑∞
k=0 D

k
β ≥ I and (15) is equivalent to

x̄ = (I −Dβ)−1a(tx̄).(16)
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As eTx = 1 for each x ∈ S, we conclude that if x̄ is a fixed point of A, then x̄ must
satisfy (16) and

eT (I −Dβ)−1a(tx̄) = 1.(17)

We next construct a point x∗ ∈ S that uniquely satisfies (16); it will then follow
from the above paragraph that x∗ is a unique fixed point of A. Our construction is
motivated by (17).

Let h(·) : [0,∞) → [0,∞) be the real-valued function mapping each t ≥ 0 into
h(t) = eT (I − Dβ)−1a(t). The properties of a(·) assure us that h(·) is continuous,
h(0) = 0, and for all t > t′ > 0, h(t) = eT (I − Dβ)−1a(t) ≥ eTa(t) = g(t) > 0 and
h(t)− h(t′) = eT (I −Dβ)−1[a(t)− a(t′)] ≥ eT [a(t)− a(t′)] > 0. So, h(·) is continuous
and strictly increasing and its domain includes [0, 1] (recall that the domain of g(·)
includes [0, 1]). These properties of h(·) assure us that there is a unique t∗ > 0
satisfying h(t∗) = 1. With x∗ given by (14), we then have that x∗ = (I−Dβ)−1a(t∗) ≥
a(t∗) ≥ 0 and eTx∗ = eT (I −Dβ)−1a(t∗) = 1, so x∗ ∈ S. Further,

g(t∗) = eTa(t∗) = eT (I −Dβ)x∗ = eTx∗ − eTDβx
∗ = 1 − eT (β ◦ x∗),

implying that t∗ = g−1[1 − eT (β ◦ x∗)] = tx∗ . Substituting t∗ = tx∗ into (14) implies
that x∗ = (I −Dβ)−1a(tx∗), verifying that x∗ ∈ S satisfies (16)—the characterizing
condition for fixed points of A. We conclude that x∗ is a fixed point of A. Further,
(17) shows that any fixed point x̄ of A must satisfy h(tx̄) = 1 = h(t∗); as h(·) is strictly
increasing, we then have that tx̄ = t∗ and (16) implies that x̄ = (I − Dβ)−1a(tx̄) =
(I −Dβ)−1a(t∗) = x∗.

Theorem 5.1 and its proof do not show that the operator A is a contraction;
consequently, they do not imply that the unique fixed point of A has the useful
properties of fixed points of contractions, i.e., successive approximation and stabil-
ity. However, (14) provides an explicit representation of the unique fixed point of
A in terms of a (unique) solution of the equation eT (I − Dβ)−1a(t) = 1, generally
not available from contraction arguments. Further, we observe that as the function
mapping each nonnegative t into eT (I − Dβ)−1a(t) is strictly increasing, a solution
to eT (I − Dβ)−1a(t) = 1 can be approximated by bisection, yielding an efficient
computational method to approximate x∗.

We next illustrate the unique fixed point of the system described in Example 1.
Example 1 (continued). For the data of Example 1, eT (I −Dβ)−1a(t) = 4

3 t+ 2t2

for each t ≥ 0, t∗ = .45, and x(t∗)T = ( 4
3 t

∗, 2(t∗)2) = (.6, .4); the latter is consistent
with Figure 3.

5.2. Contractions.
A. The linear case. In the linear case we have a vector a ∈ R

n \ {0} satisfying
a ≥ 0 such that a(t) = at for all t ≥ 0. In this case, g(t) = eTat for each t ≥ 0 and
g−1(y) = y/eTa for each 0 ≤ y ≤ 1, so (12) yields the following representation for the
operation of A on x ∈ S:

A(x) = β ◦ x + a
1 − eT (β ◦ x)

eTa
= Dβx + a

eTx− eTDβx

eTa

=

[
Dβ +

aeT (I −Dβ)

eTa

]
x(18)

(in addition to (12), the above uses the facts that β ◦ x = Dβx and eTx = 1 for each
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x ∈ S). Equation (18) shows that A is linear on S, represented by the matrix [Dβ +
aeT (I−Dβ)

eT a
] ∈ R

n×n. In particular, we see that A is invariant under the multiplication
of a by a positive scalar. Thus, without loss of generality, we can and will assume
that eTa = 1, in which case (18) simplifies to

A(x) = [Dβ + aeT (I −Dβ)]x.(19)

Let

A = [Dβ + aeT (I −Dβ)].(20)

As eTa = 1,

eTA = eT [Dβ + aeT (I −Dβ)] = eTDβ + eTaeT − eTaeTDβ = eT ,

and as 0 < β < e, A is nonnegative. So, A is column-stochastic. In particular, its
Perron–Frobenius eigenvalue is 1 with eT as a corresponding left-eigenvector.

Our next goal is to show that A is a contraction on S with respect to the �1
norm; in fact, we derive an explicit bound on the �1 operator norm of A. It will be
convenient to enumerate the indices so that

1 > β1 ≥ β2 ≥ · · · ≥ βn > 0.(21)

Theorem 5.2. Let a ∈ S and β ∈ R
n satisfy (21). Then

||A||S1 = β1(1 − a1) + β2a1 ≤ β1 < 1.(22)

Proof. As A is linear with representing n × n matrix [Dβ + aeT (I − Dβ)] (see
(19)), we have from (8) that

||A||S1 = max
z∈tng(S),||z||1=1

||[Dβ + aeT (I −Dβ)]z||1.(23)

The right-hand side of (23) is the maximum of a convex function of z over the polytope
{z ∈ R

n : eT z = 0, ||z||1 = 1} and is attained at one of the vertices of that polytope;
these vertices have the representation 1

2 (ei − ej), where i, j = 1, . . . , n and i 
= j.
Thus,

||A||S1 = max
1≤j<i≤n

1

2
||[Dβ + aeT (I −Dβ)](ei − ej)||1.(24)

We observe that for s, u = 1, . . . , n,

{
[Dβ + aeT (I −Dβ)]es

}
u

=

⎧⎨⎩ βs + as(1 − βs) if u = s,

au(1 − βs) if u 
= s .

Recalling (21) and the normalization condition eTa = 1, we conclude that for
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i, j = 1, . . . , n and i > j we have that βj ≥ βi and∥∥∥∥[Dβ + aeT (I −Dβ)]
(ei − ej

2

)∥∥∥∥
1

=
1

2

(
|βi + ai(1 − βi) − ai(1 − βj)| + |βj + aj(1 − βj) − aj(1 − βi)|

+
∑
u �=i,j

|au(1 − βi) − au(1 − βj)|
)

=
1

2

(
|βi + ai(βj − βi)| + |βj(1 − aj) + ajβi| +

∑
u �=i,j

|au(βj − βi)|
)
.

=
1

2

(
[βi + ai(βj − βi)] + [βj(1 − aj) + ajβi] +

∑
u �=i,j

au(βj − βi)
)

=
1

2

(
βi + (1 − aj)(βj − βi) + [βj(1 − aj) + ajβi]

)
= βj(1 − aj) + βiaj .(25)

In particular, the right-hand side of (25) lies between βj and βi. It now follows
from (21) that the maximum on the right-hand side of (24) equals β1(1− a1) + β2a1,
attained when j = 1 and i = 2. Finally, the inequalities on the right-hand side of (22)
are immediate from (21).

The following immediate corollary of Theorem 5.2 demonstrates that (synchro-
nized) AIMD results in a unique stable point to which the system converges geomet-
rically from all potential starting points.

Corollary 5.3. In the linear case, A has a unique fixed point x∗ to which
the iterates of A on any arbitrarily selected point in S converge geometrically; in
particular, (9) is satisfied for every x ∈ S.

Proof. The conclusions follow from Theorem 5.2 and the standard properties of
contractions.

Let τ(A) denote the second largest modulus of A’s eigenvalues. Theorem 5.2
yields the following bound on τ(A).

Corollary 5.4.

τ(A) ≤ ||A||S1 = β1(1 − a1) + β2a1 ≤ β1 < 1.(26)

Proof. As the matrix A defined by (20) is column-stochastic, the main result of
[23] implies that for every norm || · ||, the matrix norm of A over the intersection of
the || · ||-unit ball and the hyperplane {z ∈ Rn : eT z = 0} is an upper bound on
τ(A). As tng(S) = {z ∈ Rn : eT z = 0}, we have that the right-hand side of (23) is a
specification of this bound when || · || is the �1 norm, yielding the first inequality of
(26). The remaining parts of (26) follow from Theorem 5.2.

The dynamics of network-transmission under the (synchronized) linear version of
AIMD was studied in [5]. The principal contribution of that paper was showing that

the matrix A′ ≡ [Dβ +
aeT (I−Dβ)

eT a
] is diagonally similar to the sum of a real symmetric

matrix and a real rank-1 perturbation. The following facts are then easily deduced:
(a) A′ is diagonally similar to a (real) positive diagonal matrix.
(b) Except for the Perron eigenvalue, all of the eigenvalues of A′ lie in the interval

[βn, β1].
(c) If all the βi’s are distinct and λ1, . . . , λn are the eigenvalues of A′, then

0 < βn < λn−1 < βn−2 < · · · < λ2 < β1 < λ1 = 1.
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(d) β2 ≤ τ(A) ≤ β1 (and in the inequalities are strict when the βi’s are distinct).
Corollary 5.4 established that τ(A) ≤ β1(1 − a1) + β2a1; when β1 
= β2, this is

a tighter upper bound on τ(A) than is available from (d). The following example
demonstrates the fact that we derive an improved bound.

Example 2. Consider a system with three users that are governed by standard
(linear) AIMD with β1 = 0.8, β2 = 0.7, β3 = 0.2, and α1 = α2 = α2 = 1. From (5),
the matrix A is then given by

A =

⎡⎣ 0.8 0 0
0 0.7 0
0 0 0.5

⎤⎦ +
1

3

⎡⎣ 1
1
1

⎤⎦ [0.2 0.3 0.8].

From the results in [5] stated in (d) we have that the eigenvalue of A with the
second largest modulus, say λ2, satisfies 0.7 ≤ λ2 ≤ 0.8. From Corollary 5.4 we have
the sharper upper bound:

λ2 ≤ β1(1 − a1) + β2a1 = 0.7667.

The eigenvalues of A are 1.0000, 0.7549, and 0.5785, respectively, demonstrating the
virtue of the bound on λ2 derived in Theorem 5.2 over the bound from (d).

We conclude the discussion of the linear version of AIMD with a specification of
Theorem 5.2 to the case where the vector a is a unit vector—a case that will prove
useful in analyzing networks under the nonlinear variant of AIMD.

Corollary 5.5. If a = ei for some i = 1, . . . , n and β ∈ R
n satisfies (21), then

||A||S1 = β1 when i = 1 and ||A||S1 = β1 when i 
= 1.
B. The general (nonlinear) case. We next consider the general AIMD case in

which a(·) is not necessarily linear, and we use our earlier results for the linear case
to demonstrate that, in the more general case as well, the operator A is a contraction
on S.

Given a vector a ∈ R
n, we will use the notation Aa for the linear operator

corresponding to the case where a(t) = at for each t ≥ 0.
Theorem 5.6. The operator A satisfies

||A||S1 ≤ max
i=1,...,n

||Aei ||S1 = β1 < 1.(27)

Proof. Consider any two points x, y ∈ S. Without loss of generality, assume that
eT (β ◦ x) ≤ eT (β ◦ y). As g−1 is (strictly) increasing, it follows that

tx = g−1[1 − eT (β ◦ x)] ≥ g−1[1 − eT (β ◦ y)] = ty.(28)

As a(·) is nondecreasing, we conclude that a(tx) ≥ a(ty), and therefore

||a(tx) − a(ty)||1 = eT [a(tx) − a(ty)] = g(tx) − g(ty) = eT (β ◦ y) − eT (β ◦ x).(29)

We next observe (from (10)) that

A(x) −A(y) = β ◦ (x− y) + a(tx) − a(ty).(30)

From (30) and (29) we conclude that

||A(x) −A(y)||1 ≤ ||β ◦ (x− y)||1 + ||a(tx) − a(ty)||1
= ||β ◦ (x− y)||1 + eT (β ◦ y) − eT (β ◦ x).(31)
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As
∑

i xi =
∑

i yi = 1, there exists an index i∗ with xi∗ ≥ yi∗ . We next
consider the linear case determined by the vector a = ei

∗
and the vector β un-

changed. Specifically, we let Aei
∗

be the linear operator that corresponds to the
matrix [Dβ + ei

∗
eT (I − Dβ)]. Let t∗x and t∗y be defined by (11) with respect to this

(linear) case. As eT ei
∗

= 1, we have that t∗x = 1 − eT (β ◦ x), t∗y = 1 − eT (β ◦ y), and

t∗x − t∗y = eT (β ◦ y) − eT (β ◦ x) ≥ 0.(32)

Similar to the derivation of (30), we get that

A∗(x) −A∗(y) = β ◦ (x− y) + ei
∗
(t∗x − t∗y).(33)

As xi∗ ≥ yi∗ and t∗x ≥ t∗y, we conclude from (33), (32), and (31) that

||A∗(x) −A∗(y)||1 = [βi∗(xi∗ − yi∗) + (t∗x − t∗y)] +
∑
u �=i∗

|βu(xu − yu)|

=
∑
u

|βu(xu − yu)| + (t∗x − t∗y)

= ||β ◦ (x− y)||1 + eT (β ◦ y) − eT (β ◦ x)

≥ ||A(x) −A(y)||1,(34)

implying that

||A(x) −A(y)||S1 ≤ max
i

||Aei ||S1 = β1(35)

(the last equality following from Corollary 5.5).
Equation (27) demonstrates that β1 is a bound on the contraction coefficient of

A—it is remarkable that this bound is independent of the ai(·)’s.
As for the linear case, we get the following immediate corollary of Theorem 5.6—

it demonstrates that (synchronized) NAIMD results is a unique stable point to which
the system converges geometrically from every potential starting point.

Corollary 5.7. In the general (nonlinear) case, A has a unique fixed point x∗

to which the iterates of A on any potential starting point converge geometrically; in
particular, (9) is satisfied for every x ∈ S.

Proof. The conclusions follow from Theorem 5.6 and the standard properties of
contractions.

6. Conclusions. In this paper we have presented, for the first time, a proof of
stability for a class of NAIMD algorithms. Bounds on the rate of convergence are
given for these algorithms and simulation results are given to illustrate the efficacy of
our results. Future work will report on the behavior of unsynchronized networks. In
this context the recent results presented in [30, 31] are likely to prove useful.
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BOLZA PROBLEMS WITH DISCONTINUOUS LAGRANGIANS
AND LIPSCHITZ-CONTINUITY OF THE VALUE FUNCTION∗

ANDREA DAVINI†

Abstract. We study the local Lipschitz-continuity of the value function v associated with a
Bolza problem in the presence of a Lagrangian L(x, q), convex and uniformly superlinear in q, but
only Borel-measurable in x. Under these assumptions, the associated integral functional is not lower
semicontinuous with respect to the suitable topology which ensures the existence of minimizers, so
all results known in the literature fail to apply. Yet, the Lipschitz regularity of v does not depend on
the existence of minimizers. In fact, it is enough to control the derivatives of quasi-minimal curves,
but the problem is nontrivial due to the general growth conditions assumed here on L(x, ·). We
propose a new approach, based on suitable reparameterization arguments, to obtain suitable a priori
estimates on the Lipschitz constants of quasi minimizers. As a consequence of our analysis, we derive
the Lipschitz-continuity of v and a compactness result for value functions associated with sequences
of locally equibounded discontinuous Lagrangians.

Key words. Bolza problems, value function, Hamilton–Jacobi equations
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1. Introduction.

1.1. Description of the problem and main results. A typical issue in partial
differential equations is that of proving the local Lipschitz-continuity in (0,+∞)×R

N

of the value function

v(t, x) := inf

{
u(γ(0)) +

∫ t

0

L(s, γ(s), γ̇(s)) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(t) = x

}
associated with a Lagrangian L : [0,+∞)×R

N ×R
N → (−∞,+∞] and to a possibly

discontinuous initial cost u : R
N → (−∞,+∞]. This is an important step when one

is interested in showing that v is a solution, in a suitable generalized sense, of the
equation

(1) ∂tu + H(x,Du) = 0 in (0,+∞) × R
N ,

where H is the Hamiltonian associated with L through the Fenchel transform. When L
is continuous, it is well known that v is a solution of (1) in the viscosity sense (see, e.g.,
[3, 4, 26]). For discontinuous (and autonomous) Lagrangians, a PDE interpretation
of the value function has been provided by Dal Maso and Frankowska in [18, 19]. By
making use of the so-called contingent derivatives, these authors prove that v satisfies
the Hamilton–Jacobi equation, in a suitable generalized sense, and characterize it as
the unique solution of the associated Cauchy problem with initial datum u when the
latter is lower semicontinuous.

The study of discontinuous Hamilton–Jacobi equations is a field which is gaining
attention from the viewpoints of both theory and applications; see [6, 8, 10, 11, 12,
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13, 28, 30, 33, 34]. It is related to the study of geodesic distances, some discontinuous
control problems, combustion phenomena in nonhomogeneous media, and geometric
optic propagation in the presence of layers; see [5, 23, 27]. The analysis we will develop
here supplies the tools for proving representation formulas for generalized solutions
of time-dependent measurable Hamilton–Jacobi equations in the spirit of [12]. This
issue will be discussed in the forthcoming paper [9].

The Lipschitz-continuity of v is strictly related to the regularity of solutions to
the Bolza problem,

(2) min

{
u(γ(0)) +

∫ t

0

L(s, γ(s), γ̇(s)) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(t) = x

}
,

and to the possibility of finding some a priori estimates on the Lipschitz constants of
minimizers. Clearly, any solution of (2) is also a Lagrangian minimizer with respect
to its boundary conditions.

The study of regularity properties of Lagrangian minimizers is a classical topic
in the calculus of variations; see, for instance, [7, 15]. The first results were obtained
by Tonelli in 1915 [35] and the early 1920s [36] for real-valued smooth Lagrangians
L(s, x, q), coercive and strictly convex in q. More recently, Tonelli’s results have been
generalized by Clarke and Vinter [17] to the case of measurable, locally bounded inte-
grands L(s, x, q) which are locally Lipschitz in x, convex, and uniformly superlinear in
q. By using the tools of nonsmooth analysis, the classical Euler–Lagrange necessary
condition is expressed in terms of a differential inclusion.

The autonomous case has been widely studied. The results of [17] have been
extended by Ambrosio, Ascenzi, and Buttazzo in [2] to the case of a locally bounded
Lagrangian L(x, q), convex and uniformly superlinear in q. In [18], Dal Maso and
Frankowska succeeded in proving the same results without assuming any convexity
in q. They also obtained some uniform estimates on the Lipschitz constant of the
minimizers, which are used to prove that the associated value function v is locally
Lipschitz in (0,+∞) × R

N , provided problem (2) admits solutions for every (t, x) ∈
(0,+∞) × R

N .
Here we will be concerned with the case of a Borel-measurable Lagrangian L :

R
N × R

N → R, locally bounded with respect to (x, q), convex, and uniformly super-
linear in q. The growth conditions assumed on L can be restated in the following
equivalent form:

α(|q|) ≤ L(x, q) ≤ β(x, |q|) for every (x, q) ∈ R
N × R

N ,

where α(·) and β(x, ·) are superlinear functions from [0,+∞) to R, with β locally
bounded on R

N × [0,+∞) (cf. Lemma 2.3). The model example of Lagrangians
included in this class are of the form

L(x, q) = F (q) + n(x),

with F (·) convex and superlinear, and n(·) Borel-measurable and bounded.
The main result we prove is the local Lipschitz-continuity of the value function v

in (0,+∞)×R
N . Several Lipschitz-regularity results for the value function associated

with a discontinuous Lagrangian, depending on the continuity properties enjoyed by
the initial cost, are given in section 4. Moreover, a compactness result holding for
sequences of value functions is derived in subsection 4.2 as a consequence of what was
proved in [20] (cf. Theorem 3.21). This kind of result essentially relies on the fact that
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all the Lipschitz estimates we provide do not depend explicitly on the Lagrangian but
only on the way L(x, q) grows when |q| → +∞, i.e., on the functions α, β.

We remark that all results of the paper hold, with the obvious changes of notation,
if R

N is replaced by a connected, smooth Riemannian manifold M without boundary.
Proofs can be rephrased by using local coordinates. When M is compact, some
additional information on the Lipschitz continuity of the value function is deduced.

With respect to the literature quoted above, the key new point in this paper
consists of dealing with a case when the minimizers of the Bolza problem do not
exist in general. This gives rise to serious technical difficulties, since all arguments
known in the literature exploit the existence of minimizers to derive information on
their Lipschitz constants, and this in turn gives the desired regularity of v via a
rather standard argument. The same reasoning, however, works as soon as we provide
suitable integral estimates on the derivatives of quasi-optimal curves for v(t, x) (i.e.,
curves that realize the value v(t, x) in (2), up to an addition of a suitably small positive
constant) depending with some uniformity on (t, x) ∈ (0,+∞) × R

N . The problem
is, however, nontrivial due to the general growth conditions assumed here on L(x, ·),
in particular to the fact that functions α(·), β(x, ·) may have different growths for
|q| → +∞.

The novelty of our approach relies on an unusual way of employing the DuBois–
Raymond condition, which motivates the introduction of a distinct family of Lipschitz
curves parameterized in a special way (cf. Definition 3.12). The core of our arguments
consists of proving that, in the formula defining v(t, x), it is not restrictive to consider
only curves belonging to this family (see section 3). Once this is established, it is rather
easy to obtain the a priori estimates on the Lipschitz constants of quasi-optimal curves
for v(t, x) that are needed to derive the desired regularity of the value function.

The analysis outlined above is carried out through suitable reparameterization
techniques which use, in an essential way, the fact that L is autonomous and convex
in q. The argument on which they are based was originally introduced in [22] and
subsequently developed in [21] in the case of a continuous Lagrangian, but its use for
the kind of problems studied herein seems new. A substantial effort is furthermore
made to extend the techniques to the measurable setting and to gather the necessary
information needed in the case at hand.

We end this discussion by mentioning that a possible alternative way to attack
the problem would be to find a relaxed formulation of (2) in order to apply the
results of [18]. The difficulty here is proving that the relaxation of the functional

γ �→
∫ t

0
L(γ, γ̇) ds admits an integral representation on W 1,1

(
[0, t],RN

)
. The results

proved in [1] ensure that this approach actually works if the Lagrangian enjoys the
following growth conditions in q:

|q|p ≤ L(x, q) ≤ Λ (1 + |q|p) for every (x, q) ∈ R
N × R

N

for some p > 1 and Λ > 0. If we were to extend such results to the more general
cases considered here, we would encounter difficulties similar to the ones previously
described. As a matter of fact, a technical adaptation of the arguments here employed
allows us to generalize the results of [1] to a wider class of abstract and integral
functionals of autonomous type that includes, in particular, the ones considered in
this paper. This issue is specifically studied in [20].
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1.2. Strategy of the proof. To study the problem, we find it convenient to
introduce the function

(3) S(y, x, t) := inf

{∫ t

0

L(γ, γ̇) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(0) = y, γ(t) = x

}
defined for every (y, x, t) ∈ R

N × R
N × (0,+∞), and to express v in the following

equivalent form:

v(t, x) = inf
y∈RN

(
u(y) + S(y, x, t)

)
for every (t, x) ∈ (0,+∞) × R

N ,

where u is a function from R
N to (−∞,+∞] which is either uniformly continuous or

bounded from below. To get the required regularity of v, it is enough to prove that S
is locally Lipschitz in R

N × R
N × (0,+∞). This would immediately follow from [18]

if we were able to prove that minimizing curves for S(y, x, t) exist for every (y, x, t) ∈
R

N × R
N × (0,+∞). Unfortunately, this need not be true in our case. In fact, the

superlinearity of L(x, ·) and the Dunford–Pettis theorem (see [7, Chapter 2]) actually
imply that every minimizing sequence for S(y, x, t) admits a subsequence uniformly
converging to some limit curve, but the lack of continuity of L does not guarantee that
the associated integral functional is lower semicontinuous for the convergence at hand
(classical results by Olech [29] and Ioffe [25] ensure that this is true if the Lagrangian
is lower semicontinuous in x and convex in q), so the standard direct method of the
calculus of variations fails to apply (see [7]).

Yet, existence of minimizers is not necessary to derive the desired regularity for
S. Indeed, a fairly standard argument (see, for instance, [18, Proof of Theorem 4.4])
shows that S is locally Lipschitz as soon as we provide some a priori estimates on
the Lipschitz constants of quasi minimizers for S(y, x, t), with some uniformity with
respect to (y, x, t) ∈ R

N × R
N × (0,+∞).1 When the existence of a minimizer γ

is postulated, as in [18], or ensured by the assumptions made on L, as in [17, 19],
these can be derived from the fact that γ satisfies the DuBois–Raymond necessary
condition, namely, that there exists a constant a ∈ R such that

(4) L(γ(s), γ̇(s)) = 〈γ̇(s), p〉 − a for every p ∈ ∂qL(γ(s), γ̇(s))

for almost every s ∈ [0, t]. Using the superlinearity of L(x, ·), it is then easy to show
that a is locally bounded with respect to (y, x, t), and this provides the desired control
on the Lipschitz constant of γ.

Even if this reasoning cannot be applied in our case, we nevertheless notice that
condition (4), which is crucial for obtaining the desired estimates, only provides in-
formation on the parameterization of the curve: When γ is action-minimizing, its
parameterization must obey an optimality condition.

The idea we develop here is to separate the issue of parameterization from that of
minimizing the action. This is achieved by first considering a minimization problem

1An ε-minimizer for S(y, x, t) is a curve γ ∈ W 1,1
(
[0, t],RN

)
with γ(0) = y, γ(t) = x such that∫ t

0
L(γ(s), γ̇(s)) ds < S(y, x, t) + ε.

We say that γ is a quasi minimizer or it is quasi optimal for S(y, x, t) if it is an ε-minimizer with
ε > 0 suitably small.
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with fixed support as follows: We fix a Lipschitz curve γ : [0, �] → R
N parameterized

by the arc-length, the support, and we try to solve the problem

(5) min

{∫ t

0

L(ξ, ξ̇) ds : ξ ∈ [γ]t

}
for every t > 0, where [γ]t denotes the family of absolutely continuous curves ξ :
[0, t] → R

N obtained through a reparameterization of γ.2 Here, the crucial remark is
the following: Any solution of (5) satisfies (4) for some a ∈ R; conversely, any ξ ∈ [γ]t
satisfying (4) for some a ∈ R is a solution to (5) (cf. the proof of Theorem 3.16).

However, the existence of minimizers of (5) is not clear. The idea exploited
here is to introduce the notion of a-Lagrangian parameterization for a curve ξ (cf.
Definition 3.12), which amounts to requiring that ξ satisfy (4). Then we consider the
multifunction Tγ(·) defined on R by

Tγ(a) := {t > 0 : [γ]�(a, t) is nonempty} for every a ∈ R,

where [γ]�(a, t) denotes the subset of [γ]t consisting of a-Lagrangian bi-Lipschitz repa-
rameterizations of γ, and we remark that, by what we previously observed, the relation
t ∈ Tγ(a) implies that problem (5) admits a solution in [γ]�(a, t). Our attention is
then addressed to establishing the relevant properties of the multifunction Tγ(·), with
particular interest in its range

⋃
a∈R

Tγ(a) (see Proposition 3.13). When this coincides
with (0,+∞), we conclude that problem (5) is solvable for every t > 0. In particular,
(5) has a minimizer belonging to [γ]�(a, t) for some a ∈ R, and its Lipschitz constant
can be estimated by some κa ∈ R only depending on a and on the kind of growth
conditions assumed on L. However, our analysis reveals that the range of Tγ(·) may
actually be a bounded interval of the form (0, T ). In this instance, a solution to (5)
exists if t ≤ T . For t > T , the minimum in (5) is only an infimum, in general; never-
theless, we are able to prove that this value can be obtained by minimizing the action
over the family of κcγ -Lipschitzian reparameterizations of γ, where κcγ is a positive
constant that can be estimated in terms of the growth conditions assumed on L (see
Theorem 3.16).

This information is used to obtain the needed priori estimates on the Lipschitz
constants of quasi minimizers (see Lemma 3.2): Since any absolutely continuous curve
from [0, t] to R

N belongs to [γ]t for a suitable choice of the Lipschitz curve γ : [0, �] →
R

N (cf. Lemma 3.11), we can always assume that a quasi minimizer for S(y, x, t) is
κa-Lipschitz continuous for some a ∈ R. By using the superlinearity of L(x, ·), we see
that the constant a is last estimated with some uniformity with respect to (y, x, t).

1.3. Plan of the article. Section 2 contains the main notation and assumptions,
together with some well-known propositions that will be needed in the rest of the
paper.

The properties of the function S are studied in section 3. In subsection 3.1 some
preliminary results are collected. The definition of a-Lagrangian reparameterization
and the reparameterization arguments are presented in subsection 3.2. Here, the
main properties of the multifunction Tγ(·) are established and used to study an action-
minimization problem with fixed support. The information gathered is then exploited
to derive the required priori estimates on the Lipschitz constants of quasi minimizers

2That is, ξ = γ◦ϕ on [0, t] for some absolutely continuous map ϕ : [0, t] → [0, �] surjective and
nondecreasing (cf. Definition 3.9).
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(cf. Lemma 3.2), which is all we need to prove Theorem 3.1. To simplify the ex-
position, the Lagrangian L is initially assumed locally bounded in q, uniformly with
respect to x. The consequent extension to the case of Lagrangians locally bounded
in (x, q) is easily derived in subsection 3.3 via a localization argument (see Theorem
3.19). Here a sequential compactness result for locally equibounded discontinuous
Lagrangians, established in [20], is recalled for later use.

The main results of the paper are derived in section 4 as a simple application
of the preceding analysis. Subsection 4.1 contains several Lipschitz-regularity results
for the value function associated with a discontinuous Lagrangian, depending on the
continuity properties assumed on the initial cost. An extension to the case when R

N

is replaced by a compact and connected smooth Riemannian manifold M without
boundary is also provided. Lastly, subsection 4.2 contains a compactness result for
the value functions associated with sequences of locally equibounded discontinuous
Lagrangians.

2. Notation and standing assumptions. We list below the symbols used
throughout this paper:

N an integer number
Br(x) the open ball in R

N of radius r centered at x
Br the open ball in R

N of radius r centered at 0
S
N−1 the (N − 1)-dimensional unitary sphere of R

N

Hk the k-dimensional Hausdorff measure
〈 ·, ·〉 the scalar product in R

N

[u] the integer part of u ∈ R

R+ the set of nonnegative real numbers
P(R+) the family of subsets of R+

UC(RN ) the space of uniformly continuous real functions on R
N

Lip(RN ) the space of Lipschitz-continuous real functions on R
N

Given a subset U of R
k, we denote by U its closure. We furthermore say that U

is compactly contained in a subset V of R
k if U is compact and contained in V . If E

is a Lebesgue measurable subset of R
k, we denote by |E| its k-dimensional Lebesgue

measure, and we say that E is negligible whenever |E| = 0. The characteristic function
of E is denoted by χE . We say that a property holds almost everywhere (a.e.) on R

k

if it holds up to a negligible subset of R
k. The Euclidean norm of u ∈ R

k is denoted
by |u|. Given a measurable vector-valued function f : E → R

m, we write ‖f‖∞ to

mean (
∑k

i=1 ‖fi‖2
L∞(E))

1/2, where fi and ‖fi‖L∞(E) denote the ith component of f

and the L∞-norm of fi, respectively. Given X ⊆ R
k, we will denote by B(X) the

family of all Borel subsets of X. A multifunction Γ from X to compact subsets of R

is said to be Borel-measurable (cf. [14]) if

{x ∈ X : Γ(x) ∩ U �= ∅} ∈ B for every open set U ⊆ R.

We say that Γ is upper semicontinuous at x if, for any ε > 0, there exists δ > 0 such
that

Γ(z) ⊆ Γ(x) + (−ε, ε) for all z ∈ Bδ(x) ∩X.

When k = 1, we say that Γ is nondecreasing on X if

sup Γ(x) ≤ inf Γ(y) for every x, y ∈ X with x < y.
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We say that Γ is nonincreasing on X if the multifunction −Γ(·) is nondecreasing on
X. A function g : R

k → (−∞,+∞] will be called superlinear if

lim
|x|→+∞

g(x)

|x| = +∞.

For a convex function f from R
k to R, we will denote by ∂f(x) the subdifferential

of f at x, defined as

∂f(x) := {p ∈ R
k : f(y) ≥ f(x) + 〈p, y − x〉 for every y ∈ R

k}.

The set ∂f(x) is closed and convex, and the multifunction x �→ ∂f(x) is upper semi-
continuous on R

k. We furthermore have the following (see [31]).
Proposition 2.1. Let f : R

k → R be convex. Then f is locally Lipschitz in R
k.

More precisely, for every x0 ∈ R
k and r, δ > 0, we have

|f(x) − f(y)| ≤ |x− y| 2

δ
sup

Br+δ(x0)

|f | for every x, y ∈ Br(x0).

In particular, ∂f(x) ⊂ (2 supBr+1
|f |)B1 for every x ∈ Br.

Given a function f : R
k → R, we define its conjugate f∗ : R

k → (−∞,+∞] as
follows:

f∗(x) := sup
y∈Rk

{〈x, y〉 − f(y)} for every x ∈ R
k.

We record for later use the following well-known facts (cf. [31, Theorem 23.5]).
Proposition 2.2. Let f : R

k → R be superlinear and convex. Then f∗ is locally
bounded and convex on R

k. Moreover,

f(x) = f∗∗(x) := sup
y∈Rk

{〈x, y〉 − f∗(y)} for every x ∈ R
k.

The following conditions on x, x∗ ∈ R
k are equivalent to each other:

(i) f(x) + f∗(x∗) ≤ 〈x, x∗〉;
(ii) f(x) + f∗(x∗) = 〈x, x∗〉;
(iii) x∗ ∈ ∂f(x);
(iv) x ∈ ∂f∗(x∗).
By a modulus we mean a nondecreasing function from R+ to R+, vanishing and

continuous at 0. We denote by W 1,1
(
[0, t],RN

)
the space of absolutely continuous

curves from the interval [0, t] to R
N . We recall that a curve γ : [a, b] → R

N is
said to be parameterized by the arc-length if |γ̇(s)| = 1 for almost every s ∈ (a, b).
Throughout the paper, α, β always denote two functions from R+ to R+ that are
convex, nondecreasing, and superlinear.

We will denote by L a function from R
N ×R

N to R so as to satisfy the following
assumptions:

(L1) L is Borel-measurable on R
N × R

N ;
(L2) α (|q|) ≤ L(x, q) ≤ β (|q|) for all (x, q) ∈ R

N × R
N ;

(L3) L(x, ·) is convex for every x ∈ R
N .

By (L2), it is not restrictive to assume, up to adding a constant to it, that L is
positive. This will be systematically done in what follows. We also point out that the
second inequality in (L2) is equivalent to requiring that

sup {L(x, q) : (x, q) ∈ R
N ×BR} < +∞ for any R > 0.
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In fact, the following holds.
Lemma 2.3. Let U be an open subset of R

k and L : U × R
k → R+ such that

sup {L(x, q) : x ∈ U, |q| ≤ n} < +∞ for every n ∈ N.

Then there exists a function β : R+ → R+, convex and nondecreasing, such that

L(x, q) ≤ β(|q|) for every (x, q) ∈ U × R
k.

Proof. Set

an := sup {L(x, q) : x ∈ U, |q| ≤ n} for each n ∈ N,

and

f(h) :=
∞∑

n=1

anχ[n−1,n)(h) for every h ≥ 0.

As L(x, q) ≤ f(|q|) for every (x, q) ∈ U ×R
k, it will be enough to prove the statement

for f . For each n ∈ N, choose mn := max{2an/(n− 1), an − an−1} and set

β(h) := sup
n∈N

{ an+1 + mn+1(h− n)} for every h ≥ 0.

By definition, each map h �→ an+1 + mn+1(h − n) is greater than or equal to f on
[n− 1, n) and less than 0 on [0, n/2), and hence

f(h) ≤ β(h) < +∞ for every h ≥ 0.

The remainder of the assertion follows, as β is the supremum of a family of convex
and increasing functions.

To any L satisfying assumptions (L1)–(L3) we associate the function S(y, x, t),
defined in (3), for every (y, x, t) ∈ R

N × R
N × (0,+∞). It is easy to check that the

function S enjoys the following inequalities:

(6) t α

(
|y − x|

t

)
≤ S(y, x, t) ≤ t β

(
|y − x|

t

)
on R

N × R
N × (0,+∞).

Later on in the paper, condition (L2) will be relaxed to cover the case of a
Lagrangian L locally bounded with respect to (x, q), i.e., such that

sup {L(x, q) : (x, q) ∈ BR ×BR} < +∞ for any R > 0.

By Lemma 2.3, this amounts to replacing condition (L2) with the following:
(L2) ′ α (|q|) ≤ L(x, q) ≤ βn (|q|) for all (x, q) ∈ Bn × R

N and n ∈ N, where (βn)n∈N

is a family of convex, nondecreasing, and superlinear functions from R+ to
R+.

3. The key results. The goal of our analysis is to prove the local Lipschitz con-
tinuity of the function S associated via (3) with a Lagrangian satisfying assumptions
(L1), (L2), (L3). As previously noticed, condition (L2) amounts to requiring that the
function L(x, ·) be superlinear and locally bounded on R

N , uniformly with respect to
x. The precise statement of the result that we will establish is the following.
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Theorem 3.1. Let L : R
N ×R

N → R+ be an autonomous Lagrangian satisfying
conditions (L1)–(L3). Then the associated function S defined in (3) is locally Lipschitz
in R

N ×R
N × (0,+∞). More precisely, for every M > 0 there exists K = K(M,α, β)

such that

S is K-Lipschitz continuous in CM ,

where CM := {(y, x, t) ∈ R
N × R

N × (0,+∞) : |x− y| < M t}.
The consequent extension to the case of Lagrangians locally bounded with respect

to (x, q) will be easily derived via a localization argument at the end of this section;
see Theorem 3.19.

Theorem 3.1 can be proved via a rather standard argument as soon as we derive
some a priori estimates on the Lipschitz constant of quasi-optimal curves parameter-
ized in [0, t] and connecting y to x for every (y, x, t) ∈ CM . This information can be
derived from the following lemma.

Lemma 3.2. Let x, y ∈ R
N and t > 0 such that S(y, x, t) < M t. Then there

exists a constant κ = κ(M,α, β) such that

S(y, x, t) = inf

{∫ t

0

L(ξ, ξ̇) ds : ξ(0) = y, ξ(t) = x, ‖ξ̇‖∞ ≤ κ

}
.

The proof of Lemma 3.2 is quite delicate and relies on a careful analysis of the
role played by reparameterizations. It will be carried out in the next two subsections.
Before that, let us show how Lemma 3.2 can be used to prove Theorem 3.1.

Proof of Theorem 3.1. For a fixed M > 0, choose (y1, t1, x1) and (y2, t2, x2) in
CM , and set

h := |t1 − t2| + |x1 − x2| + |y1 − y2|, s0 :=
t1 − t2

2
+ h.

Since CM is convex, it suffices to prove the statement locally, namely for small values
of h. Choose h < t2/2 so that s0 < t1/2. Fix ε > 0 and let γ1 ∈ W 1,1

(
[0, t1],R

N
)

be an ε-minimizer connecting y1 to x1. As S(y1, x1, t1) < t1 β(M), by Lemma 3.2 we
can assume ‖γ̇‖∞ ≤ κ for some constant κ = κ(M,α, β). Choose u1, v1 ∈ R

N so that

γ1(s0) = y2 + hu1, γ1(t1 − s0) = x2 + hv1,

and note that |u1|, |v1| < 1 + 2κ. Define a curve γ2 : [0, t2] → R
N connecting y2 to x2

by setting

γ2(s) :=

⎧⎨⎩
y2 + su1 if s ∈ [0, h],
γ1(s0 + s− h) if s ∈ [h, t2 − h],
x2 + (t2 − s)v1 if s ∈ [t2 − h, t2].

Recalling that L is positive, we get

S(y2, x2, t2) − S(y1, x1, t1) ≤
∫ t2

0

L(γ2, γ̇2) ds−
∫ t1

0

L(γ1, γ̇1) ds + ε

≤
∫ h

0

L(γ2, u1) ds +

∫ t2

t2−h

L(γ2, u2) ds + ε ≤ 2β(1 + 2κ)h + ε,

so, setting K̃ := 2β(1 + 2κ), we obtain

S(y2, x2, t2) − S(y1, x1, t1) ≤ K̃ (|t1 − t2| + |x1 − x2| + |y1 − y2|) + ε.

As ε is arbitrary, the conclusion follows at once by interchanging the roles of (y1, t1, x1)

and (y2, t2, x2) and by setting K :=
√

2N + 1 K̃.
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3.1. Preliminary tools. Let H : R
N ×R

N → R be the Hamiltonian associated
with L through the Fenchel transform, namely,

H(x, p) := max
q∈RN

{〈p, q〉 − L(x, q)} .

The function H is Borel-measurable, and H(x, ·) is convex and superlinear for every
x ∈ R

N . For every a ∈ R, set

σa(x, q) := max{〈q, p〉 : H(x, p) ≤ a} for every q ∈ R
N , a ∈ R,

where we agree that σa(x, q) = −∞ whenever a < −L(x, 0) = minRN H(x, ·).
Proposition 3.3. For any a ∈ R, the following properties hold:
(i) σa(x, λ q) = λσa(x, q) for every (x, q) ∈ R

N × R
N and λ > 0;

(ii) L(x, q) ≥ σa(x, q) − a for every (x, q) ∈ R
N × R

N .
Proof. Assertion (i) is clear by definition. To prove (ii), we recall that L is the

Fenchel transform of H (cf. Proposition 2.2), and hence

(7) L(x, q) = max
p∈RN

{〈p, q〉 −H(x, p) } ≥ max
H(x,p)≤a

{〈p, q〉 −H(x, p) } ≥ σa(x, q) − a,

as claimed.
For any (x, q) ∈ R

N × R
N and a ∈ R, we set

(8) Λa(x, q) := {λ ∈ [0,+∞) : L(x, λ q) = σa(x, λ q) − a}

and

λ a(x, q) := inf Λa(x, q), λa(x, q) := sup Λa(x, q).

We agree that λ a(x, q) = λ a(x, q) = 0 whenever Λa(x, q) = ∅, that is, when a <
−L(x, 0).

We define the following functions:

α∗(u) := max
λ∈R

{uλ− α(|λ|)} , β∗(u) := max
λ∈R

{uλ− β(|λ|)} for every u ∈ R,

and we remark that they are convex and superlinear as α(| · |) and β(| · |) are also.
For every a ∈ R, set

(9) Ra := max {|u| : β∗(u) ≤ a }

and

(10) κa := 2 max {α∗(u) : |u| ≤ Ra + 1 } .

The following compactness result holds.
Lemma 3.4. Λa(x, q) ⊆ [0, κa] for every (x, q) ∈ R

N × S
N−1.

Proof. From the definition of α∗ and β∗, we obtain

(11) β∗ (|p|) ≤ H(x, p) ≤ α∗ (|p|) for all (x, p) ∈ R
N × R

N ;

in particular,

(12) {p ∈ R
N : H(x, p) ≤ a} ⊆ BRa for every x ∈ R

N .
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Pick up (x, q) ∈ R
N ×S

N−1. From (7) and Proposition 2.2 we derive that λ ∈ Λa(x, q)
if and only if λ q ∈ ∂pH(x, p) for some H(x, p) ≤ a. In particular,

Λa(x, q) ⊆
{
|v| : v ∈ ∂pH(x, p) for some p ∈ BRa

}
,

and the conclusion follows at once in view of (11) and Proposition 2.1.
We now fix (x, q) ∈ R

N × S
N−1 and examine the properties of the multifunction

a �→ Λa(x, q). Proposition 2.2 yields that

(13) L(x, λ q) = 〈p, λ q〉 −H(x, p) for any p ∈ ∂qL(x, λ q)

for any given λ ∈ R. In view of Proposition 3.3(ii), we infer that λ ∈ Λa(x, q) if and
only if a ∈ H(x, ∂qL(x, λ q)).

We start by considering the set-valued map A(λ) := H(x, ∂qL(x, λ q)) on [0,+∞),
which is the inverse of a �→ Λa(x, q), in the sense of set-valued analysis (see [32,
Chapter 5]). Indeed, note that

(14) Λa(x, q) = {λ ∈ [0,+∞) : a ∈ H(x, ∂qL(x, λ q))}.

Proposition 3.5. Let A(·) as above. The following facts hold:
(i) For any λ ∈ R,

A(λ) = [a(λ), a(λ)] for some −L(x, 0) ≤ a(λ) ≤ a(λ) < +∞.

Moreover,

A(0) = {−L(x, 0)}, lim
λ→+∞

a(λ) = +∞.

(ii) The set-valued map A(·) is upper semicontinuous on [0,+∞). In particular,
a(·) is lower semicontinuous and a(·) is upper semicontinuous on [0,+∞).

(iii) The set-valued map λ �→ A(λ) is nondecreasing on [0,+∞).
(iv)

⋃
λ≥0 A(λ) = [−L(x, 0),+∞).

Proof. The function f(λ) := L(x, λ q) is convex and superlinear, and hence so
is its conjugate f∗. We claim that A(λ) = f∗(∂f(λ)) for every λ ≥ 0. Indeed, by
Proposition 2.2 we know that

f∗(∂f(λ)) = λ∂f(λ) − f(λ) for any λ ≥ 0.

By classical results of nonsmooth analysis (cf. [16, Theorem 2.3.10]), we also know
that ∂f(λ) = 〈∂qL(x, λ q), q〉, and hence the above equality becomes

f∗(∂f(λ)) = 〈∂qL(x, λ q), λ q〉 − L(x, λ q) for any λ ≥ 0,

and the right-hand side term coincides with A(λ) by (13), as claimed.
Let us now prove the above stated properties of A(·). As f is convex, its subdif-

ferential ∂f(λ) is a compact interval of R, so the same is true for A(λ). The equality
A(0) = {−L(x, 0)} is an immediate consequence of (13), while the other assertion
follows by the superlinearity of f∗ and f . That proves (i). The upper semicontinuity
of A(·) comes from the fact that the multifunction λ �→ ∂f(λ) is upper semicontinuous
and f∗ is continuous. The remainder of (ii) follows by definition of a(·), a(·).

Let us prove (iii). Since f∗ and f are convex, the multimappings u �→ ∂f∗(u) and
λ �→ ∂f(λ) are nondecreasing on R. By superlinearity, we get, in particular,⋃

λ≥0

∂f(λ) = [u(0),+∞) with u(0) ∈ ∂f(0).
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By duality (cf. Proposition 2.2), 0 ∈ ∂f∗(u(0)), so the monotonicity of ∂f∗(·) yields
that f∗ is nondecreasing on [u(0),+∞). Item (iv) comes from (ii) and (iii).

Example 3.6. Take a Lagrangian of the form L(x, q) = F (q) + n(x) for every
(x, q) ∈ R

N × R
N , with F (·) convex and superlinear, and n(·) Borel-measurable and

bounded. We have

A(λ) = F ∗ (∂F (λ q)) − n(x) for every λ ≥ 0

for any fixed (x, q) ∈ R
N × S

N−1. When, for instance, F (q) = |q|2/2, it reduces to

A(λ) = |λ q|2/2 − n(x).

We use this information to prove a result that will be crucial in our future analysis.
Proposition 3.7. Let (x, q) ∈ R

N × S
N−1. The following facts hold:

(i) For any a ≥ −L(x, 0), we have

Λa(x, q) = [λ a(x, q), λa(x, q)] for some 0 ≤ λ a(x, q) ≤ λa(x, q) < +∞.

Moreover,

λ−L(x,0)(x, q) = 0, lim
a→+∞

λ a(x, q) = +∞.

(ii) The set-valued map a �→ Λa(x, q) is upper semicontinuous and nondecreasing
on [−L(x, 0),+∞).

(iii) λ a(x, q) = supb<a λ b(x, q) for any a > −L(x, 0)
and λ a(x, q) = infb>a λ b(x, q) for any a ≥ −L(x, 0).

(iv) λ a(x, q) ≥
a+L(x,0)

2Ra
for any a > −L(x, 0), with Ra defined by (9).

Proof. We recall that Λa(x, q) = {λ ≥ 0 : a ∈ A(λ) } . The monotonicity and
coercivity properties of the set-valued map a �→ Λa(x, q) are consequences of Propo-
sition 3.5, while the equality λ−L(x,0)(x, q) = 0 is apparent by definition of (8). In
particular, Λa(x, q) is a bounded interval for any a ≥ −L(x, 0).

To prove the upper semicontinuity of a �→ Λa(x, q), we need to show that, for
each pair of sequences (an)n and (λn)n such that an → a ∈ R, λn → λ ∈ R, and
λn ∈ Λan(x, q) for every n ∈ N, we have λ ∈ Λa(x, q). This easily follows by the upper
semicontinuity of A(·) (in fact, it is equivalent; cf. [32, Theorem 5.7]). In particular,
this implies that Λa(x, q) is closed for any a ≥ −L(x, 0).

Assertion (iii) immediately follows from the monotone and semicontinuous char-
acter of the map a �→ Λa(x, q).

Let us prove (iv). Choose a > −L(x, 0) and set λ := λ a(x, q). By Proposition
3.3(ii) we get

σa(x, λq) = L(x, λq) + a ≥ σ−L(x,0)(x, λq) + a + L(x, 0),

and hence by (12),

a + L(x, 0) ≤ λ
(
σa(x, q) − σ−L(x,0)(x, q)

)
≤ λ

(
Ra + R−L(x,0)

)
|q|,

and the statement follows as R−L(x,0) < Ra by definition.
Example 3.8. Let L(x, q) := |q|2/2 + n(x) for every (x, q) ∈ R

N × R
N , with n(·)

Borel-measurable and bounded. For any fixed (x, q) ∈ R
N × S

N−1, we have

Λa(x, q) =

{
1

|q|
√

2 (a + n(x))

}
for every a ≥ −n(x).
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3.2. Optimal reparameterizations. Let us now consider a Lipschitz curve γ
defined on a bounded interval J := [0, �].

Definition 3.9. A curve ξ defined on a bounded interval [0, t] is said to be a
reparameterization of γ if there exists an absolutely continuous map ϕ : [0, t] → [0, �],
surjective and nondecreasing, such that

ξ = γ◦ϕ on [0, t].

We furthermore say that ξ is a (bi)-Lipschitz reparameterization of γ if ϕ is a (bi)-
Lipschitz homeomorphism.

Remark 3.10. For reasons that will be clear soon, we want to allow a reparame-
terization to remain stopped at a point for a specific amount of time. This accounts
for the choice of the unusual definition given above.

We introduce the following notation:

[γ]t := {ξ ∈ W 1,1
(
[0, t],RN

)
: ξ is a reparameterization of γ}

[γ]�t := {ξ ∈ W 1,1
(
[0, t],RN

)
: ξ is a bi-Lipschitz reparameterization of γ}.

The following lemma comes from classical results of analysis in metric spaces (see,
e.g., [24, section VII.2]). We give a proof for the reader’s convenience.

Lemma 3.11. Let ξ ∈ W 1,1
(
[0, t],RN

)
. Then there exists a Lipschitz curve γ,

defined on a bounded interval [0, �], such that ξ ∈ [γ]t. We can furthermore assume
that γ is parameterized by the arc-length.

Proof. Let ϕ(s) :=
∫ s

0
|ξ̇(ς)|dς for every s ∈ [0, t], and set � := ϕ(t). Clearly,

the map ϕ : [0, t] → [0, �] is absolutely continuous, surjective, and nondecreasing. We
claim that the statement holds true with γ(s) := ξ(ϕ−1(s)) for every s ∈ [0, �].

Indeed, it is easy to see that γ is well defined. Now choose a pair of points a, b
in [0, �] with a < b. By the monotone character of ϕ, we have ϕ−1(a) = [A−, A+],
ϕ−1(b) = [B−, B+] for some A− ≤ A+ < B− ≤ B+. Moreover,

|γ(b) − γ(a)| ≤ H1
(
γ([a, b])

)
= H1

(
ξ([A−, B+])

)
=

∫ B+

A−

|ξ̇(ς)|dς = b− a,

which yields that γ is 1-Lipschitz continuous. From the fact that
∫ �

0
|γ̇(ς)|dς =

H1
(
γ([0, �])

)
= �, we finally get that γ is parameterized by the arc-length.

A further step in the analysis is carried out by picking up some special reparam-
eterizations of the curve γ.

Definition 3.12. Let ξ be a curve defined on a bounded interval [0, t] and a ∈ R.
We say that ξ has an a-Lagrangian parameterization if

L(ξ(s), ξ̇(s)) = σa(ξ(s), ξ̇(s)) − a for a.e. s ∈ [0, t].

For any a ∈ R and t > 0, we define

[γ](a, t) := {ξ ∈ [γ]t : ξ has an a-Lagrangian parameterization},
[γ]�(a, t) := {ξ ∈ [γ]�t : ξ has an a-Lagrangian parameterization}.

Now assume γ is parameterized by the arc-length, and let

cγ := ess sups∈J − L (γ(s), 0).
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We define a multifunction Tγ : (cγ ,+∞) → P(R+) by setting

Tγ(a) := {t > 0 : [γ]�(a, t) is nonempty}.

The properties of the multifunction Tγ(·) are stated below.
Proposition 3.13. Let γ and T (·) := Tγ(·) as above. The following facts hold:
(i) For any a > cγ , T (a) is a compact interval in (0,+∞), namely,

T (a) := [T (a), T (a)] for some T (a) ≥ T (a) > 0.

(ii) The multifunction T (·) is nondecreasing and upper semicontinuous on (cγ ,+∞).
Moreover, infa>cγ T (a) = 0.

(iii) Let T (cγ) := supa>cγ T (a). If T (cγ) is finite, then [γ](cγ , T (cγ)) �= ∅.
In particular, for any 0 < t ≤ T (cγ) with t < +∞, there exists a ≥ cγ such that

γ admits an a-Lagrangian Lipschitz reparameterization on [0, t].
We first prove an auxiliary lemma.
Lemma 3.14. Let γ : [0, �] → R

N be a Lipschitz curve parameterized by the
arc-length and a ∈ R. The following facts hold:

(i) For every t > 0 and ξ ∈ [γ]t, the map σa(ξ(·), ξ̇(·)) is Lebesgue-measurable on
[0, t], and

(15)

∫ t

0

σa(ξ(s), ξ̇(s)) ds =

∫ �

0

σa(γ(s), γ̇(s)) ds.

(ii) The maps λ a(γ(·), γ̇(·)), λ a(γ(·), γ̇(·)) are Lebesgue-measurable on [0, �].
Proof. Take t > 0 and ξ ∈ [γ]t. Since the map s �→ (ξ(s), ξ̇(s)) is Lebesgue-

measurable, in order to prove (i) it is enough to show that the function σa is Borel-
measurable on R

N ×R
N . To this aim, let (pn)n and (λn)n be dense sequences in R

N

and (0,+∞), respectively. The Borel-measurable character of σa follows at once as
we have

σa(x, q) = inf
k

(
sup
n

{
〈pn, q〉ϑEk

n
(x)

})
for every (x, q) ∈ R

N × R
N ,

where Ek
n := {x ∈ R

N : H(x, pn) ≤ a + 1/k} and ϑEk
n
(·) denotes the function

identically 1 on Ek
n and −∞ elsewhere. Equality (15) is a consequence of the fact

that σa(x, ·) is positively 1-homogeneous.
Let us prove (ii). Since the map s �→ (γ(s), γ̇(s)) takes values in R

N × S
N−1 for

a.e. s ∈ [0, �], it suffices to show that the functions λ a, λ a are Borel-measurable on
R

N × S
N−1. Let us show the statement for λ a. For each n ∈ N, set

Fn := {(x, q) ∈ R
N × S

N−1 : H(x, ∂qL(x, λn q)) ∩ (−∞, a) �= ∅},

which is Borel-measurable for the multifunction (x, q) �→ H(x, ∂qL(x, λn q)) that is
also. The assertion follows for we have λ a(x, q) = supn λnχFn

(x, q) on R
N × S

N−1,

in view of (14) and Proposition 3.7. The analogous statement for λa can be proved
in a similar way.

Proof of Proposition 3.13. (i) Fix a > cγ and set

λ a(ς) := λ a(γ(ς), γ̇(ς)), λ a(ς) := λ a(γ(ς), γ̇(ς)) for a.e. ς ∈ [0, �].
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Let

T (a) :=

∫ �

0

1

λ a(ς)
dς, T (a) :=

∫ �

0

1

λ a(ς)
dς.

Such quantities are well-defined, positive real values, thanks to Proposition 3.7(iv)
and to the measurable character of λ a(·), λ a(·). To show that they belong to T (a),
we will prove the existence of two curves γ

a
, γa, defined on

[
0, T (a)

]
and

[
0, T (a)

]
,

respectively, which are a-Lagrangian bi-Lipschitz reparameterizations of γ. To this
aim, let us define

f
a
(s) :=

∫ s

0

1

λ a(ς)
dς, fa(s) :=

∫ s

0

1

λ a(ς)
dς for any s ∈ [0, �]

and set

ϕ
a

:= (f
a
)−1, ϕa :=

(
fa

)−1
,

defined on
[
0, T (a)

]
and

[
0, T (a)

]
, respectively. As

ϕ̇
a
(τ) = λ a(ϕ a

(τ)), ϕ̇a(τ) = λa(ϕa(τ)) for a.e. τ ,

we immediately derive that ϕ
a

and ϕa are order-preserving bi-Lipschitz diffeomor-
phisms. Let us set

γ
a

:= γ ◦ϕ
a

on
[
0, T (a)

]
, γa := γ ◦ϕa on

[
0, T (a)

]
.

Since

γ̇
a
(·) := λ a(ϕ a

(·)) γ̇(ϕ
a
(·)) a.e. on

[
0, T (a)

]
and

γ̇a(·) := λ a(ϕa(·)) γ̇(ϕa(·)) a.e. on
[
0, T (a)

]
,

we conclude that the curves γ
a

and γa have an a-Lagrangian parameterization by the

very definition of λa and λ a.
In order to prove that [T (a), T (a)] ⊆ T (a), we will show that

(16) δ T (a) + (1 − δ)T (a) ∈ T (a) for any δ ∈ (0, 1).

Fix δ ∈ (0, 1) and set

δ(ς) :=
δ λ a(ς)

δ λ a(ς) + (1 − δ)λ a(ς)
, λ(ς) := δ(ς)λ a(ς) + (1 − δ(ς))λ a(ς)

for almost every ς ∈ [0, �], and

f(s) :=

∫ s

0

1

λ(ς)
dς for s ∈ [0, �], ϕ := f−1 on [0, f(�)].

Since δ(ς) ∈ [0, 1] for almost every ς ∈ [0, �], we get that λa(ς) ∈ Λa(γ(ς), γ̇(ς)) for
almost every ς ∈ [0, �]; in particular, ϕ is an order-preserving bi-Lipschitz diffeo-
morphism. Arguing as above, we see that the curve γa := γ ◦ϕ is an a-Lagrangian
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bi-Lipschitz reparameterization of γ on
[
0, f(�)

]
, so f(�) ∈ T (a). Now it is easy to

check, by definition of δ(·), that f(�) = δ T (a) + (1 − δ)T (a). That proves (16) as δ
was arbitrarily chosen in (0, 1).

Let us now prove that T (a) ⊆ [T (a), T (a)]. Let T ∈ T (a) and γ̃ := γ ◦ϕ be an
a-Lagrangian reparameterization of γ for some order-preserving bi-Lipschitz diffeo-
morphism ϕ : [0, T ] → [0, �]. Then

ϕ̇(τ) ∈ Λa (γ(ϕ(τ)), γ̇(ϕ(τ))) for a.e. τ ∈ [0, T ].

Let f := ϕ−1. We have

T = f(�) =

∫ �

0

ḟ(ς) dς =

∫ �

0

1

ϕ̇(f(ς))
dς,

and since ϕ̇(f(ς)) ∈ Λa(γ(ς), γ̇(ς)) = [λ a(ς), λa(ς)] for a.e. ς ∈ [0, �], we clearly get
T ∈ [T (a), T (a)].

(ii) Let b > a > cγ . Then λ b(ς) ≥ λa(ς) for almost every ς ∈ [0, �], and hence
T (b) ≤ T (a). This proves that T (·) is a nonincreasing multifunction. To prove that
T (·) is upper semicontinuous on (cγ ,+∞), it will be enough to show that

T (a) = sup
b>a

T (b), T (a) = inf
b<a

T (b) for any a > cγ .

This actually follows as a simple application of the monotone convergence theorem and
by the monotonicity properties of λ a, λa (cf. Proposition 3.7(iii)). The last assertion
holds by definition of T (a) since supa>cγ λa(ς) = +∞ for almost every ς ∈ [0, �].

(iii) Let T (cγ) be finite. Arguing as in (i), we may find a nonincreasing sequence
of Borel-measurable maps λn : [0, �] → [0,+∞) such that, for each n ∈ N,

Tn =

∫ �

0

1

λn(ς)
dς and λn(ς) ∈ Λcγ+1/n(γ(ς), γ̇(ς)) for a.e. ς ∈ [0, �],

with supn Tn = T (cγ). Set

λ(ς) = inf
n

λn(ς) for every ς ∈ [0, �].

Then λ(·) is measurable and λ(ς) ∈ Λcγ (γ(ς), γ̇(ς)) for almost every ς ∈ [0, �]. More-
over, the monotone convergence theorem yields

T (cγ) = sup
n∈N

Tn = sup
n∈N

∫ �

0

1

λn(ς)
dς =

∫ �

0

1

λ(ς)
dς;

in particular, the map

f(s) :=

∫ s

0

1

λ(ς)
dς

is increasing and absolutely continuous on [0, �]. A cγ-Lagrangian Lipschitz repara-
metrization of γ defined on [0, T (cγ)] can now be obtained by setting γ̃ := γ ◦ϕ with
ϕ := (f)−1 on [0, T (cγ)]. Lastly, the fact that the multifunction is upper semicontin-
uous, monotone, and convex-set-valued implies that⋃

a>cγ

T (a) =
(
0, T (cγ)

)
,
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and this is enough to obtain the remainder of the statement.
Example 3.15. Let L(x, q) := |q|2/2 +n(x) for every (x, q) ∈ R

N ×R
N , with n(·)

Borel-measurable and bounded. Let γ : [0, �] → R
N be a curve parameterized by the

arc-length. Then cγ = ess sups∈[0,�] −n(γ(s)) and (cf. Example 3.8)

Tγ(a) =

∫ �

0

1√
2 (a + n(γ(s)))

ds for every a > cγ .

We now seek an optimal reparameterization of γ on the interval [0, t] for any given
t ∈ (0,+∞). For that, it suffices that T γ(cγ) = +∞ by Proposition 3.13, but this
need not be true in general, not even in the simple case considered in Example 3.15.
However, even in the case T γ(cγ) < +∞ we are able to derive an estimate on the
Lipschitz constants of quasi-optimal reparameterizations. This is a crucial step in our
study.

Theorem 3.16. Let γ : [0, �] → R
N be a Lipschitz curve parameterized by the

arc-length. Then, for every t ∈ (0,+∞), there exists a ≥ cγ such that

inf
ξ∈[γ]t

∫ t

0

L(ξ, ξ̇) ds = inf
ξ∈[γ]t

{∫ t

0

L(ξ, ξ̇) ds : ‖ξ̇‖∞ ≤ κa

}
=

∫ �

0

σa(γ, γ̇) ds− a t,

with κa given by (10). The above infimum is a minimum whenever t ≤ T γ(cγ) and

is, in particular, attained by some curve belonging to [γ]�(a, t) with a > cγ when
t < T γ(cγ).

Proof. By Proposition 3.3 and Lemma 3.14, we get

(17)

∫ t

0

L(ξ, ξ̇) ds ≥
∫ t

0

(
σa(ξ, ξ̇) − a

)
ds =

∫ �

0

σa(γ, γ̇) ds− a t

for any a ≥ cγ and ξ ∈ [γ]t, and (17) is an equality whenever ξ ∈ [γ](a, t). The
assertion for t ≤ T γ(cγ) follows by Proposition 3.13 and Lemma 3.4.

Let us now assume t > T γ(cγ) and set h := t − T γ(cγ). Let ξ ∈ [γ](cγ , T γ(cγ)).

By definition of cγ , there exists, for each n ∈ N, sn ∈
(
0, T γ(cγ)

)
such that

cγ + L(ξ(sn), 0) <
1

n
.

To ease notation, we will write cn in place of −L(ξ(sn), 0). We define

ξn(s) :=

⎧⎨⎩
ξ(s) if s ∈ (0, sn],
ξ(sn) if s ∈ [sn, sn + h],
ξ(s− h) if s ∈ [sn + h, t).

We have∫ t

0

L(ξn, ξ̇n) ds =

∫ Tγ(cγ)

0

L(ξ, ξ̇) ds− h cn =

∫ Tγ(cγ)

0

σcγ (ξ, ξ̇) ds− T γ(cγ) cγ

−h cn =

∫ �

0

σcγ (γ, γ̇) ds− cγ t + h
(
cγ − cn

)
<

∫ �

0

σcγ (γ, γ̇) ds− cγ t +
h

n
.

Taking (17) into account, we derive∫ �

0

σcγ (γ, γ̇) ds− cγ t ≤
∫ t

0

L(ξn, ξ̇n) ds <

∫ �

0

σcγ (γ, γ̇) ds− cγ t +
h

n
,
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and we conclude by letting n → +∞.
Remark 3.17. If in Theorem 3.16 the Lagrangian is assumed lower semicontinuous

in x, we can furthermore say that, for every t > 0,

(18) inf
ξ∈[γ]t

∫ t

0

L(ξ, ξ̇) ds = min

{∫ t

0

L(ξ, ξ̇) ds : ξ ∈ [γ](a, t)

}
for some constant a ≥ cγ . This can be proved by considering, in place of Tγ(·), the
set-valued map defined as

T ∗
γ (a) := {t > 0 : [γ](a, t) is nonempty}

for every a ≥ c∗γ := sups∈J −L (γ(s), 0). The multifunction T ∗
γ (·) agrees with Tγ(·) on

(c∗γ ,+∞). Indeed, the inequality

λ a(γ(s), γ̇(s)) ≥
a− c∗γ
2Ra

for a.e. s ∈ [0, �],

which holds by Proposition 3.7, implies that [γ](a, t) = [γ]�(a, t) for every a > c∗γ and

t > 0 (cf. the argument that T (a) ⊆ [T (a), T (a)] in the proof of Proposition 3.13).
On the other hand, we always have

(19) T ∗
γ (c∗γ) = [T γ(c∗γ),+∞)

when T (c∗γ) is finite, and that is enough to get the statement in view of (17).
To prove (19), let ξ be a curve belonging to [γ](c∗γ , T (c∗γ)) (which does exist by

Proposition 3.13) and take s0 ∈ [0, T γ(c∗γ)] such that L(ξ(s0), 0) = −c∗γ . Such an s0

always exists by the upper semicontinuity of −L(γ(·), 0) on [0, �]. For every h > 0,
define ξh : [0, T (c∗γ) + h] → R

N as

ξh(s) :=

⎧⎨⎩
ξ(s) if s ∈ [0, s0],
ξ(s0) if s ∈ [s0, s0 + h],
ξ(s− h) if s ∈ [s0 + h, T γ(c∗γ) + h].

It is easily seen that ξh is a c∗γ-Lagrangian reparameterization of γ. This shows that

T γ(c∗γ) + h ∈ T ∗
γ (c∗γ) for every h > 0,

as claimed.
Remark 3.18. The argument described in Remark 3.17 above actually shows that

(18) holds whenever the map s �→ L(γ(s), 0) attains its infimum on [0, �], for instance,
when it is lower semicontinuous.

With the aid of the results obtained so far, we can now prove Lemma 3.2.
Proof of Lemma 3.2. Choose n ∈ N such that M/α(n) < 1/2 and set

A = A(n) := max{α∗(u) : |u| ≤ 2β(n + 1)},

where α∗(u) := maxλ∈R{λu−α(|λ|)}. We claim that the statement holds with κ := κA

defined according to (10). Indeed, pick a curve ξ ∈ W 1,1
(
[0, t],RN

)
such that∫ t

0

L(ξ, ξ̇) ds < M t,
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and let γ : [0, �] → R
N be a Lipschitz curve, parameterized by the arc-length, such

that ξ ∈ [γ]t, according to Lemma 3.11. In view of Theorem 3.16, up to choosing
a different ξ in [γ]t without increasing the action, we can always assume that either
‖ξ̇‖∞ ≤ κcγ or ξ ∈ [γ]�(a, t) for some a > cγ . In the first case, we note that

cγ ≤ α∗(0)

for −L(x, 0) ≤ −α(0) ≤ α∗(0) for every x ∈ R
N . The claim follows by the definition

of κA as α∗(0) ≤ A.
Let us instead assume that ξ belongs to [γ]�(a, t) for some a > cγ . In particular,

|ξ̇(s)| �= 0 a.e. on [0, t]. Set J := {s ∈ [0, t] : 0 < |ξ̇(s)| < n}. We have

M t >

∫ t

0

L(ξ, ξ̇) ds ≥
∫ t

0

α(|ξ̇|) ds ≥ α(n)
∣∣[0, t] \ J ∣∣,

and hence |J | > t/2. Pick up a differentiability point s ∈ J for ξ. By the fact that ξ
has an a-Lagrangian parameterization, we derive that

a ∈ H
(
ξ(s), ∂qL(ξ(s), ξ̇(s))

)
;

in particular, a ≤ A by Proposition 2.1. As |ξ̇(s)| ∈ Λa(ξ(s), ξ̇(s)/|ξ̇(s)|) for a.e.
s ∈ [0, t], the claim follows by Lemma 3.4 since κa ≤ κA by definition (10).

3.3. Further extensions. Let us now consider a Lagrangian L : R
N×R

N → R+

which satisfies in place of (L2), condition (L2)′ for some family (βn)n∈N of convex,
nondecreasing, and superlinear functions from R+ to R+; i.e., which is uniformly
superlinear in q and locally bounded in R

N × R
N . It is easy to generalize Theorem

3.1 as follows.
Theorem 3.19. Let L : R

N ×R
N → R+ be an autonomous Lagrangian satisfying

conditions (L1), (L2)′, (L3). Then the associated function S defined through (3) is
locally Lipschitz in R

N × R
N × (0,+∞). More precisely, for every M, r > 0 there

exists a constant K = K
(
M, r, α, (βn)n

)
such that

S is K-Lipschitz continuous in CM (r),

where CM (r) := {(y, t, x) ∈ Br ×Br × (0, r) : |x− y| < M t}.
Proof. For every n ∈ N, let us denote by Sn the function associated with the

Lagrangian Ln(x, q) := L(x, q)χBn
(x) + βn(|q|)χ

RN\Bn
(x) through (3). We claim

that, for every M, r > 0, there exists an index k = k
(
M, r, α, (βn)n

)
such that

(20) S = Sk on CM (r).

Clearly, that is enough to conclude by Theorem 3.1.
Let us fix M, r > 0. We first notice that

(21) S(y, x, t) < r βm (M) for any (y, t, x) ∈ CM (r),

where m := [r] + 1. Let γ be a curve in W 1,1
(
[0, t],RN

)
connecting y to x such that

γ is quasi optimal for S(y, x, t). By (21), it is not restrictive to assume that∫ t

0

L(γ, γ̇) ds < r βm (M) ,
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in particular, ∫ t

0

|γ̇|ds < r
(
α1 + βm(M)

)
,

with α1 > 0 such that α(|q|) ≥ |q| − α1 for any q ∈ R
N . As γ has end-points lying in

Br, we deduce that γ is entirely contained in the open ball Bk with

k :=
[
r
(
1 + α1 + βm(M)

)]
+ 1.

Thus

S(y, x, t) = inf

{∫ t

0

L(γ, γ̇) ds : γ(0) = y, γ(t) = x, γ([0, t]) ⊂ Bk

}
for every (y, t, x) ∈ CM (r), and claim (20) follows at once as L coincides with Lk on
Bk × R

N .

Remark 3.20. Theorem 3.19 still holds if, in place of condition (L3), L satisfies
the following weaker convexity assumption:

(L3)′ For every t1 < t2 in R and γ ∈ W 1,∞(
(t1, t2),R

N
)
,

λ �→ L(γ(s), λ γ̇(s)) is convex on R for a.e. s ∈ (t1, t2).

The reparameterization techniques and the approach described above can be in fact
adapted to this setting. The lack of convexity of L in q gives rise to some technical
difficulties. For instance, it is no longer true that L is the Fenchel transform of H.
These obstructions can be overcome by computing the Fenchel transform of L along
straight lines of any fixed direction, and by accordingly modifying the definition of
σa. For the details, see [20].

We conclude this section by recording a result proved in [20] that we will need
later. Let us denote by L = L

(
α, (βn)n

)
the family of Lagrangians satisfying assump-

tions (L1), (L2)′, (L3)′, where α and βn, n ∈ N, are fixed, convex, nondecreasing, and
superlinear functions from R+ to R+. Let Σ = Σ

(
α, (βn)n

)
be the space of functions

S on R
N × R

N × (0,+∞) associated via (3) with Lagrangians belonging to L. We
endow Σ with the metric induced by the uniform convergence on the compact subset
of R

N × R
N × (0,+∞). The following result holds (see [20]).

Theorem 3.21. The space of functions Σ is compact; i.e., every sequence (Sk)k
in Σ admits a subsequence which converges to some element S of Σ, locally uniformly
in R

N × R
N × (0,+∞).

Remark 3.22. The Lagrangian L associated with the limit function S via (3) can
be obtained by “differentiation” as follows:

(22) L(x, q) = lim
h→0+

S(x, x + hq, h)

h
for every (x, q) ∈ R

N × R
N .

As proved in [20], L is continuous in q for every x and convex for almost every
x. However, the convexity of L(x, ·) for every x ∈ R

N is not ensured, even if the
approximating functions Sk are associated with Lagrangians convex in q.
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4. Main theorems.

4.1. Lipschitz-regularity of the value function. We now use the information
gathered so far to prove some regularity properties of the value function v : (0,+∞)×
R

N → R defined as

(23) v(t, x) := inf

{
u(γ(0)) +

∫ t

0

L(γ, γ̇) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(t) = x

}
,

where u : R
N → (−∞,+∞], u �≡ +∞, and L is a Lagrangian satisfying assumptions

(L1)–(L3). The above formula can be equivalently restated as

(24) v(t, x) = inf
y∈RN

(
u(y) + Sy(t, x)

)
,

where Sy(t, x) stands for the function S(y, x, t) associated with L via (3). In what
follows, dom g will denote the effective domain of the function g : R

N → [−∞,+∞],
i.e., the subset of R

N where g is finite valued; g+ will denote the positive part of
g, namely, g+(x) := max{g(x), 0} for every x ∈ R

N . We will also use the following
notation:

‖g‖�∞(E) := sup
x∈E

|g(x)|, E ⊆ R
N ,

or, more simply, ‖g‖�∞ when E = R
N .

Theorem 4.1. Let v be defined by (23) for some L : R
N × R

N → R+ satisfying
conditions (L1)–(L3). The following facts hold:

(i) If u �≡ +∞, then

(25) lim
t→0+

‖ (v(t, ·) − u)
+ ‖�∞(domu) = 0,

in particular, limt→0+ v(t, x) ≤ u(x) for every x ∈ R
N ;

(ii) if u is bounded from below, then v(t, x) is locally Lipschitz in (0,+∞) × R
N ;

(iii) if u is either bounded or in UC(RN ), then, for any t0 > 0, there exists a
constant Kt0 = K(t0, u, α, β) such that

v(t, x) is Kt0-Lipschitz in [t0,+∞) × R
N ;

(iv) if u ∈ Lip(RN ), then there exists a constant K = K(u, α, β) such that

v(t, x) is K-Lipschitz in [0,+∞) × R
N .

Proof. Pick a point x0 ∈ dom(u) and plug y = x0 into the expression on the
right-hand side of (24). We get

(26) v(t, x) ≤ u(x0) + t β

(
|x− x0|

t

)
.

Inequality (26) with x0 = x immediately gives (25) whenever x ∈ dom(u).
Let us now assume that u is bounded from below. By inequality (26), any y ∈ R

N

which is t-optimal for v(t, x) satisfies

u(y) + Sy(t, x) ≤ u(x0) + t

(
β

(
|x− x0|

t

)
+ 1

)
,
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and that yields, for y �= x,

(27)
α
(

|x−y|
t

)
|x−y|

t

≤ u(x0) − u(y)

|x− y| +

(
β

(
|x− x0|

t

)
+ 1

)
t

|x− y| .

When (t, x) varies in an open set U compactly contained in (0,+∞)×R
N , inequality

(27) is certainly false if (y, t, x) �∈ CM for a suitably large M = M(U, ‖(−u)+‖�∞ , α, β).
Hence

v(t, x) = inf
y

{
u(y) + Sy(t, x) : (y, t, x) ∈ CM

}
for every (t, x) ∈ U,

and assertion (ii) follows, as v is the infimum of a family of equi-Lipschitz functions,
by Theorem 3.1.

Items (iii) and (iv) can be proved analogously by replacing x0 with x in (27) and
by choosing as U the sets (t0,+∞) × R

N and (0,+∞) × R
N , respectively. For the

case u ∈ UC(RN ), we also use the fact that, for any such u, there exists ε > 0 such
that

|u(x) − u(y)| < |x− y|
ε

for every x, y ∈ R
N with |x− y| > ε.

Let us now assume that the Lagrangian L satisfies, in place of (L2), condition
(L2)′ for some family (βn)n∈N of convex, nondecreasing, and superlinear functions
from R+ to R+. We provide the following generalization of Theorem 4.1.

Theorem 4.2. Let v be defined by (23) for some L : R
N × R

N → R+ satisfying
conditions (L1), (L2)′, (L3). The following facts hold:

(i) If u �≡ +∞, then

lim
t→0+

‖ (v(t, ·) − u)
+ ‖�∞(Br∩domu) = 0 for every r > 0,

in particular, limt→0+ v(t, x) ≤ u(x) for every x ∈ R
N ;

(ii) if u is either bounded from below or in UC(RN ), then v(t, x) is locally Lipschitz
in (0,+∞) × R

N . More precisely, for every open set U compactly contained
in (0,+∞) × R

N , there exists a constant K = K
(
U, u, α, (βn)n

)
such that

v(t, x) is K-Lipschitz in U.

The proof is omitted, for it can be easily recovered by arguing as above and by
using Theorem 3.19 in place of Theorem 3.1.

Lastly, we want to point out that all results of this paper can be easily extended
to the case when R

N is replaced by a connected smooth Riemannian manifold M
without boundary. In this case, the Lagrangian L is defined on the tangent bundle
TM of M and satisfies assumptions (L1), (L2) or (L2)′, (L3), with TM, ‖ · ‖x, and
M in place of R

N × R
N , | · | and R

N , respectively.3 When M is compact, Theorem
4.1 can be partially improved as follows.

Proposition 4.3. Let M be a compact and connected smooth Riemannian man-
ifold without boundary and L : TM → R+ an autonomous Lagrangian satisfying
conditions (L1)–(L3), with TM, ‖ · ‖x, and M in place of R

N × R
N , | · |, and R

N ,

3 ‖ · ‖x denotes the Riemannian norm on TxM for every x ∈ M.
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respectively. Let v be defined by (23) with u �≡ +∞ and bounded from below. Then,
for any t0 > 0, there exists a constant Kt0 = K(t0, α, β) such that

v(t, x) is Kt0-Lipschitz in [t0,+∞) ×M.

Remark 4.4. Our point is that the constant Kt0 appearing above is independent
of the initial cost u, provided v is a well-defined real function on (0,+∞) ×M. This
is actually guaranteed by the conditions u �≡ +∞ and infM u > −∞.

Proof. Let us denote by δM the distance on M induced by its Riemannian metric.
For any M > 0, set

CM := {(y, x, t) ∈ M×M× (0,+∞) : δM(x, y) < M t}.

Since M is compact, for any t0 > 0 there exists Mt0 , depending on t0 and on the
diameter of M only, such that M×M× [t0,+∞) ⊂ CMt0

. Hence

v(t, x) = inf
y

{
u(y) + Sy(t, x) : (y, x, t) ∈ CMt0

}
for any (t, x) ∈ [t0,+∞) ×M,

and the assertion follows, as v is the infimum of a family of equi-Lipschitz functions
by Theorem 3.1.

4.2. A compactness result for value functions. Let L = L
(
α, (βn)n) be

defined as in subsection 3.3, and let (Lk)k be a sequence of Lagrangians belonging to
L and convex in q. For each k ∈ N, let

vk(t, x) := inf

{
uk(γ(0)) +

∫ t

0

Lk(γ(s), γ̇(s)) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(t) = x

}
for every (t, x) ∈ (0,+∞) × R

N , where uk is a function from R
N to (−∞,+∞] with

uk �≡ +∞. With the aid of Theorem 3.21, we can prove the following result.
Theorem 4.5. Let (vk)k be defined as above, and suppose one of the following

conditions holds:
(a) The functions uk are equibounded from below on R

N ;
(b) the functions uk are equiuniformly continuous on R

N .
Then, up to subsequences, (vk)k locally uniformly converges on (0,+∞) × R

N to the
function v defined as

v(t, x) := inf

{
u∗(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds : γ ∈ W 1,1
(
[0, t],RN

)
, γ(t) = x

}
,

where L is a Lagrangian belonging to L and u∗ is the function defined as

u∗(x) := inf

{
lim inf

k
uk(xk) : xk → x

}
for every x ∈ R

N .

Proof. Let us denote by Sk the function associated with Lk via (3). By Theorem
3.21 we know that, up to subsequences, Sk converge to S, locally uniformly on R

N ×
R

N × (0,+∞). Let L be the element of L derived from S via (22). For every M, r >
0, the functions Sk are equi-Lipschitz continuous. Moreover, for every open set U
compactly contained in (0,+∞) × R

N there exists a constant M independent of k
such that

vk(t, x) = inf
y

{
uk(y) + Sk(y, x, t) : (y, t, x) ∈ CM (r)

}
for every (t, x) ∈ U,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1920 ANDREA DAVINI

where r is a sufficiently large positive number such that U ⊂ (0, r)×Br. To see this,
argue as in the proof of Theorem 4.1 and note that M can be estimated in terms
of supk ‖(−uk)

+‖�∞ or of the continuity modulus shared by the functions (uk)k. In
particular, the functions vk are equi-Lipschitz continuous on U . By the Ascoli–Arzelà
theorem, the proof then reduces to showing that

lim
k

vk(t, x) = v(t, x) for every (t, x) ∈ U .

Let us first prove that

(28) v(t, x) ≥ lim sup
k

vk(t, x) for every (t, x) ∈ U .

Choose y ∈ R
N and let yk → y such that uk(yk) converge to u∗(y). We have

u∗(y) + S(y, x, t) = lim
k

uk(yk) + Sk(yk, x, t) ≥ lim sup
k

vk(t, x),

and (28) follows by taking the infimum of the above inequality for all y ∈ R
N . Next,

let us prove that

(29) lim inf
k

vk(t, x) ≥ v(t, x) for every (t, x) ∈ U .

For each k ∈ N, take yk such that (yk, t, x) ∈ CM (r) and

vk(t, x) +
1

k
≥ uk(yk) + Sk(yk, x, t).

By possibly considering a subsequence, we can assume that (yk)k converges to some
point y ∈ R

N . We infer that

lim inf
k

vk(t, x) ≥ lim inf
k

uk(yk) + S(y, x, t) ≥ u∗(y) + S(y, x, t),

and (29) follows.
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[35] L. Tonelli, Sur une méthode directe du calcul des variations, Rend. Circ. Mat. Palermo, 39

(1915), pp. 223–264.
[36] L. Tonelli, Fondamenti di Calcolo delle Variazioni, Vols. 1 & 2, Zanichelli, Bologna, 1921,

1923.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 6, pp. 1923–1941

EXISTENCE AND NONEXISTENCE RESULTS OF AN OPTIMAL
CONTROL PROBLEM BY USING RELAXED CONTROL∗

HONGWEI LOU†

Abstract. Relaxed controls have proved to be very useful in studying the existence of optimal
controls in optimal control theory. Many positive results have been obtained in the literature.
However, negative results have also made their rare appearances. The optimal control problem
considered in this paper looks quite simple. Yet, by treating such a problem, we can get interesting
results, substantiating our idea as to whether an optimal control exists or not. In our opinion, the
method used in the paper can be applied to more generalized cases.

Key words. optimal control, existence, nonexistence, relaxed control
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1. Introduction. Since the introduction by Young [37] and McShane [25] in the
late 1930s, generalized curves have been widely used in existence theories for calculus
of variations and optimal control theory, especially for problems that lack convex
conditions.

In optimal control theory, generalized curves were transformed as relaxed controls
by Gamkrelidze [15], McShane [26], and Warga [35]; see also Warga [36]. Thanks
to the useful Filippov lemma (see [13] and Corollary 2.26 in Chapter 3 of [18]), it
becomes quite convenient to prove that, under some proper conditions, there exists a
(classical) control which has the same effect as an optimal relaxed control, leading to
the existence of an optimal (classical) control. It is our opinion that relaxed control is
the most important tool for studying the existence of optimal controls when a convex
condition such as Cesari’s condition (see [18], for example) is not assumed.

To the best of our knowledge, the first result on the existence of optimal classical
controls without assuming convexity conditions was established by Neustadt [28] for
(finite-dimensional) linear systems. Various later results in finite-dimensional spaces
were obtained by Artstein [2], Balder [3], [4], [5], [6], Berliocchi and Lasry [8], Cellina
and Colombo [9], Cesari [10], Colombo and Goncharov [11], Marcellini [23], Mari-
conda [24], Olech [29], and Raymond [31], [32], to mention a few. On the other hand,
in infinite-dimensional cases, fewer results can be found in the literature. The readers
are referred to Flores-Bazán and Perrotta [14] and Suryanarayana [34] for hyperbolic
equations and to Lou [19], [20], [22] and Raymond [33] for elliptic and parabolic cases.

For general results concerning the existence of optimal relaxed controls, see [1],
[12], and [30] and the references cited therein.

Concerning the nonexistence results, the following is a typical counterexample
which has been mentioned in many books; see, for example, [36, Ch. 3, p. 246]. Other
similar examples can be found in [10, Ch. 9, p. 321] and [12, Ch. 2, p. 51].
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Example 1.1. Let U = [−1, 1] (or U = {−1, 1}),

U =
{
v(·) : [0, 1] → U

∣∣∣ v(·) measurable
}
,

dy(t)

dt
= u(t), t ∈ [0, 1],

and

I(u(·)) =

∫ 1

0

(
y2(t) − u2(t)

)
dt.

Then it is easy to see that

(1.1) I(u(·)) > −1 = inf
v(·)∈U

I(v(·)) ∀u(·) ∈ U .

Thus

I(ū(·)) = inf
v(·)∈U

I(v(·))

has no solution. That is, optimal control does not exist.
We point out that, in the literature, rare general results were found concerning

the nonexistence of optimal controls by using relaxed control.
Now, we would like to state the problems that we are going to study in this paper.

To this end, let Ω ⊂ R
n be a bounded domain with a smooth boundary ∂Ω, let M > 0

be a given constant, and let1

U =
{
v(·) : Ω → [0,M ]

∣∣∣ v(·) measurable
}
.

For a positive integer m and p ∈ [1,+∞), denote by Wm,p(Ω) the usual Sobolev
space, i.e.,

Wm,p(Ω) =
{
f ∈ Lp(Ω)

∣∣ ∀ |ρ| ≤ m, ∂ρf ∈ Lp(Ω)
}

endowed with norm

‖f‖Wm,p(Ω) =
∑

|ρ|≤m

‖∂ρf‖Lp(Ω),

where ρ = (ρ1, ρ2, . . . , ρn) is called a multi-index, which is an n-tuple of nonnegative
integers ρi, |ρ| =

∑n
i=1 ρi, and the derivatives ∂ρf = ∂ρ1

x1
. . . ∂ρn

xn
f are taken in a weak

sense. Denote by Wm,p
0 (Ω) the closure of C∞

0 (Ω) in Wm,p(Ω). In this paper, we
consider the following controlled system:

(1.2)

{
−	 y(x) = u(x) in Ω,

y|∂Ω = 0,

1Naturally, U is in fact a set of equivalence classes. Two measurable functions u(·), v(·) : Ω →
[0,M ] will appear as the same element of U if u(x) = v(x) a.e. Ω. The definition of R(Ω, U) in
section 2 is similar.
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where the control u(·) belongs to U and the corresponding state y(·) is the solution
of (1.2). Throughout this paper, by a solution y(·) of (1.2) corresponding to control
u(·), we mean y(·) ∈ W 1,2

0 (Ω) and∫
Ω

∇y(x) · ∇ϕ(x) dx =

∫
Ω

u(x)ϕ(x) dx ∀ϕ ∈ C∞
0 (Ω).

We would like to mention that under the assumptions of this paper, any weak solution
y(·) must be in W 2,2(Ω), and therefore, it is necessarily a strong solution.

Next, we introduce the following cost functional:

(1.3) J(u(·)) =

∫
Ω

F
(
y(x), u(x)

)
dx.

Then our optimal control problem can be stated as follows.
Problem (C). Find a ū(·) ∈ U such that

(1.4) J(ū(·)) = inf
u(·)∈U

J(u(·)).

Any control ū(·) ∈ U satisfying (1.4) is called an optimal (classical) control.
In the rest of this paper, some general existence and nonexistence results for

optimal controls will be presented by means of relaxed controls.

2. Relaxation. In this section, we would like to introduce and study the relax-
ation of our Problem (C). To begin with, let U = [0,M ], denote by M1

+(U) the set
of all probability measures in U , and denote by R(Ω, U) the set of all measurable
M1

+(U)-valued functions on Ω. Clearly, σ(·) ∈ R(Ω, U) if and only if

σ(x) ∈ M1
+(U) a.e. x ∈ Ω,

and

x �→
∫
U

h(v)σ(x)(dv) is measurable ∀h ∈ C(U),

where C(U) denotes the space of continuous functions on U . Let C(U)∗ and L1(Ω;C(U))∗

be the dual spaces of C(U) and L1(Ω;C(U)) with the weak star topology, respec-
tively. We regard M1

+(U) and R(Ω, U) as subspaces of C(U)∗ and L1(Ω;C(U))∗,
respectively, by setting

(2.1) θ(h)
�
=

∫
U

h(v)θ(dv) ∀ θ ∈ M1
+(U), h ∈ C(U)

and

σ(g)
�
=

∫
Ω

dx

∫
U

g(x, v)σ(x)(dv)(2.2)

∀σ ∈ R(Ω, U), g ∈ L1(Ω;C(U)),

where (2.2) is well defined by [36, Theorem IV.1.6, p. 266]. Thus,

σk → σ in R(Ω, U)
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means that ∫
Ω

dx

∫
U

h(x, v)σk(x)(dv) →
∫

Ω

dx

∫
U

h(x, v)σ(x)(dv)

∀h ∈ L1(Ω;C(U)).

Now, we state our optimal relaxed control problem corresponding to Problem (C)
as follows.

Problem (R). Find a σ̄(·) ∈ R(Ω, U) such that

(2.3) J(σ̄(·)) = inf
σ(·)∈R(Ω,U)

J(σ(·)),

where

(2.4) J(σ(·)) �
=

∫
Ω

dx

∫
U

F
(
y(x), v

)
σ(x)(dv),

and y(·) is the state corresponding to relaxed control σ(·) ∈ R(Ω, U); namely, it is
the solution of the following:

(2.5)

⎧⎨⎩ −	 y(x) =

∫
U

vσ(x)(dv) in Ω,

y|∂Ω = 0.

Note that U can be imbedded into R(Ω, U) by identifying each u(·) ∈ U with the
Dirac measure-valued function δu(·) ∈ R(Ω, U). Moreover, J(δu(·)) defined by (2.4)
coincides with J(u(·)) defined by (1.3). Thus, notation J(σ(·)) would not cause any
confusion. On the other hand, it is known that U is dense in R(Ω, U); i.e., for any
σ(·) ∈ R(Ω, U), there exists a sequence uk(·) in U such that

δuk(·) → σ(·) in R(Ω, U);

see, for example, Lemma 2.4 in [21] (where the result is more general); see also [36].
By the density of U in R(Ω, U), one can easily get that, under some weak as-

sumptions (for example, when F (·, ·) is continuous),

(2.6) inf
σ(·)∈R(Ω,U)

J(σ(·)) = inf
u(·)∈U

J(u(·)).

Thus, an optimal control of Problem (C) must be an optimal relaxed control of Prob-
lem (R). Furthermore, for an optimal relaxed control σ̄(·), if there exists a ū : Ω → U
such that

σ̄(x) = δū(x) a.e. x ∈ Ω,

then ū(·) must be measurable, that is, ū(·) ∈ U (we simply say that σ̄(·) ∈ U in
this case). Thus, ū(·) must be an optimal control of Problem (C). In other words,
if Problem (R) has an optimal relaxed control σ̄(·) ∈ R(Ω, U) such that supp σ̄(x)
(the support of σ̄(x)) is a singleton of U for almost all x ∈ Ω, then Problem (C)
admits at least one optimal classical control, whereas, if every optimal relaxed control
of Problem (R) is not an element of U , then Problem (C) admits no optimal control.

Now, we recall that for (1.2)–(1.3), if F (·, ·) is continuous on R×U , then Cesari’s
condition is equivalent to F (y, ·) being convex. For a general system, the definition
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of Cesari’s condition is a little bit more complicated, and we refer the readers to [7],
[10], and [18]. As an example, we consider a system governed by ordinary differential
equations:

(2.7)
dy

dt
= f(t, y(t), u(t)).

The cost functional has the form

I(u(·)) =

∫ T

t0

f0(t, y(t), u(t)) dt,

where y(t) ∈ R
m and

u(·) ∈ U =
{
v(·) : [t0, T ] → U

∣∣∣ v(·) measurable
}
.

Then the definition of Cesari’s condition2 is that for almost all t ∈ [t0, T ], the set

E(t, y)
�
=
⋃
u∈U

{
(z, z0) ∈ R

m × R

∣∣∣ z = f(t, y, u), z0 ≥ f0(t, y, u)
}

has the Cesari property at every y ∈ R
m:

E(t, y) =
⋂
δ>0

co

( ⋃
|ỹ−y|<δ

E(t, ỹ)

)
.

For the characterization of the above condition, see Lemma 4.1 of [4], Proposition 2.18
of [5], and Chapter 3 of [18].

One of the most important advantages of relaxed control is that optimal relaxed
control exists under relatively weaker conditions. The following lemma is crucial in
deriving existence of optimal relaxed controls.

Lemma 2.1. Suppose U is a compact metric space. Then R(Ω, U) is convex and
sequentially compact.

For a proof of the above lemma, see Warga [36, Theorem IV.2.1, p. 272].
Now we will state the existence and necessary condition for an optimal relaxed

control. It is a corollary of Theorems 3.2 and 4.1 in [19].
Proposition 2.2. Let M > 0 and U = [0,M ]. Suppose that F ∈ C1(R × U).

Then Problem (R) admits at least one optimal relaxed control. Let σ̄(·) be an optimal
relaxed control and ȳ(·) be the state corresponding to σ̄(·), i.e.,

(2.8)

⎧⎨⎩ −	 ȳ(x) =

∫
U

vσ̄(x)(dv) in Ω,

ȳ|∂Ω = 0.

Define ψ̄(·) to be the solution of

(2.9)

⎧⎨⎩ −	 ψ̄(x) = −
∫
U

Fy

(
ȳ(x), v

)
σ̄(x)(dv) in Ω,

ψ̄|∂Ω = 0

2Generally, we can define Cesari’s condition for a general metric set U .
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and

(2.10) H(y, w, ψ)
�
= wψ − F (y, w).

Then

supp σ̄(x) ⊆
{
w ∈ U

∣∣∣ H(ȳ(x), w, ψ̄(x)
)

= max
v∈U

H
(
ȳ(x), v, ψ̄(x)

)}
(2.11)

a.e. x ∈ Ω.

We mention that when σ̄(·) is a classical control, i.e., σ̄(·) = δū(·) with ū(·) ∈ U ,
(2.11) becomes

(2.12) H
(
ȳ(x), ū(x), ψ̄(x)

)
= max

v∈U
H
(
ȳ(x), v, ψ̄(x)

)
a.e. x ∈ Ω.

This is just the usual maximum condition.
Now we conclude this section by presenting a useful lemma. The set {x ∈ Ω |

ϕ(x) ∈ E} will be denoted by {ϕ ∈ E} for simplicity.
Lemma 2.3. Let C be a constant. If ϕ ∈ Wm,1(Ω), m ≥ 1, then

∂ρϕ(x) = 0 a.e. on {ϕ = C} ∀ 1 ≤ |ρ| ≤ m.

For the case m = 1, the above result can be found in Morrey, Jr. [27, p. 69]. See
also Kinderlehrer and Stampacchia [17, Ch. 2]. The remaining cases can be obtained
easily by induction.

By Lemma 2.3, if ϕ(·) ∈ W 2,1(Ω), then we have

(2.13) −	ϕ(x) = 0 a.e. on {ϕ = C}

for any constant C.

3. Main results. In this section, we will present our main results. The proofs
are based on careful analysis of the necessary conditions of the optimal relaxed pairs
(ȳ(·), σ̄(·)). We introduce the following standing assumptions.

(P1) The function F ∈ C3(R × [0,M ]) such that

Fyy(y, u) ≤ 0, Fyu(y, u) ≥ 0, Fuu(y, u) < 0

Fyyy(y, u) ≥ 0, Fyyu(y, u) ≥ 0
∀ y ∈ R, u ∈ [0,M ].

(P2)

F (0,M) − F (0, 0) < 0, Fy(0, 0) ≤ 0.

It is possible to set other conditions different from (P1)–(P2). We will see that
the case we choose is nontrivial and interesting.

We now state our main result.
Theorem 3.1. Let M > 0 and (P1)–(P2) hold. Define (z(·), ζ(·)) to be the

solution of

(3.1)

⎧⎪⎨⎪⎩
−	 z(x) = M in Ω,

−	 ζ(x) = −Fy

(
z(x),M

)
in Ω,

z|∂Ω = ζ|∂Ω = 0,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXISTENCE AND NONEXISTENCE OF OPTIMAL CONTROL 1929

and let

(3.2) 
 = inf
x∈Ω

[
ζ(x) −

F
(
z(x),M

)
− F

(
z(x), 0

)
M

]
.

Then
(i) if 
 ≥ 0, Problem (C) admits at least one optimal control;
(ii) if 
 < 0 and

(3.3) Fyy(y, u) < 0 ∀ y ∈ R, u ∈ [0,M ],

Problem (C) admits no optimal control.
Proof. Consider Problem (R) corresponding to Problem (C). By Proposition 2.2,

there exists a σ̄(·) ∈ R(Ω, U) satisfying (2.3). Moreover, let ȳ(·), ψ̄(·), and H(·, ·, ·)
be defined by (2.8), (2.9), and (2.10), respectively. Then we have (2.11). Further, it
follows from (2.8), the Lp-estimate of the elliptic equation, and∣∣∣∣∫

U

vσ̄(x)(dv)

∣∣∣∣ ≤ M

that

(3.4) ȳ(·) ∈ W 2,p(Ω) ∀ p ∈ [1,+∞).

Thus,

(3.5) ȳ(·) ∈ C1,α(Ω) ∀α ∈ (0, 1)

by the Sobolev imbedding theorem (see [16, Ch. 7], for example). Consequently, by
the continuity of Fy, we have∣∣Fy(ȳ(x), v)

∣∣ ≤ C ∀x ∈ Ω, v ∈ U,

for some constant C > 0. In particular,∣∣∣∣∫
U

Fy(ȳ(x), v)σ̄(x)(dv)

∣∣∣∣ ≤ C.

Therefore, similarly to (3.4)–(3.5), we can get

(3.6) ψ̄(·) ∈ W 2,p(Ω) ∩ C1,α(Ω) ∀ p ∈ [1,+∞), α ∈ (0, 1).

Now, let us make an observation on (2.11). By (P1),

(3.7)
∂2

∂u2
H(y, u, ψ) = −Fuu(y, u) > 0 ∀ (y, u, ψ) ∈ R × U × R.

Thus, it follows from (2.11) that

supp σ̄(x) ⊆

⎧⎨⎩
{M} if H(ȳ(x),M, ψ̄(x)) > H(ȳ(x), 0, ψ̄(x)),
{0} if H(ȳ(x),M, ψ̄(x)) < H(ȳ(x), 0, ψ̄(x)),
{0,M} if H(ȳ(x),M, ψ̄(x)) = H(ȳ(x), 0, ψ̄(x))

(3.8)

=

⎧⎨⎩
{M} if ϕ̄(x) > h
{0} if ϕ̄(x) < h
{0,M} if ϕ̄(x) = h

a.e. x ∈ Ω,
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where

(3.9) h =
F (0,M) − F (0, 0)

M

and

(3.10) ϕ̄(x) = ψ̄(x) −
F
(
ȳ(x),M

)
− F

(
ȳ(x), 0

)
M

+ h.

We have

(3.11) ϕ̄|∂Ω = 0,

and by (P2),

(3.12) h < 0.

Moreover, by (3.4), (3.6), and (P1), one has

(3.13) ϕ̄(·) ∈ W 2,p(Ω) ∩ C1,α(Ω) ∀ p ∈ [1,+∞), α ∈ (0, 1).

By (3.11)–(3.12), {ϕ̄ > h} has a positive measure. Since∫
U

vσ̄(x)(dv) ≥ 0 in Ω

and (3.8) implies ∫
U

vσ̄(x)(dv) = M > 0 a.e. x ∈ {ϕ̄ > h},

we must have

(3.14) ȳ(x) > 0 in Ω

by the strong maximum principle for elliptic partial differential equations (see [16,
Ch. 3]).

On the other hand, (3.8) implies

(3.15) supp σ̄(x) = {0} a.e. x ∈ {ϕ̄ < h}.

A crucial property of ϕ̄(·) is that Ω1 ≡ {ϕ̄ < h} has a zero measure. Otherwise,
suppose that Ω1 has a positive measure. Then it is an open set since ϕ̄(·) is continuous
by (3.13). Then (3.11) and h < 0 lead to

(3.16) ϕ̄|∂Ω1
= h.

Consequently, by (2.8)–(2.9), (3.15), and (P1)–(P2), we obtain
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−	 ϕ̄(x) = −	 ψ̄(x) + 	
F
(
ȳ(x),M

)
− F

(
ȳ(x), 0

)
M

(3.17)

= −
∫
U

Fy

(
ȳ(x), v

)
σ̄(x)(dv) +

Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

	 ȳ(x)

+
Fyy

(
ȳ(x),M

)
− Fyy

(
ȳ(x), 0

)
M

|∇ȳ(x)|2

= −Fy

(
ȳ(x), 0

)
+

Fyy

(
ȳ(x),M

)
− Fyy

(
ȳ(x), 0

)
M

|∇ȳ(x)|2

≥ −Fy

(
ȳ(x), 0

)
≥ −Fy(0, 0) ≥ 0 a.e. x ∈ Ω1.

Combining the above with (3.16) and the weak maximum principle for elliptic partial
differential equations, we get that

ϕ̄(x) ≥ h a.e. x ∈ Ω1.

This is a contradiction. Therefore, Ω1 must be of zero measure, and

(3.18) ϕ̄(x) ≥ h a.e. x ∈ Ω.

With the above preparation, we are now ready to prove our main results.
(i) Let 
 ≥ 0. It is enough to prove that there is a classical control ū(·) ∈ U such

that

(3.19) J(ū(·)) ≤ J(σ̄(·)).
In fact, by (3.7) and (3.18), one has

H(ȳ(x),M, ψ̄(x)) = max
v∈U

H(ȳ(x), v, ψ̄(x)) a.e. x ∈ Ω.

Combining the above with (2.10)–(2.11), we see that for almost all x ∈ Ω,

wψ̄(x) − F
(
ȳ(x), w

)
= Mψ̄(x) − F

(
ȳ(x),M

)
∀w ∈ supp σ̄(x).

Thus,

J(σ̄(·)) =
1

2

∫
Ω

dx

∫
U

2F
(
ȳ(x), v

)
σ̄(x)(dv)(3.20)

=
1

2

∫
Ω

dx

∫
U

[
(v −M)ψ̄(x) + F

(
ȳ(x),M

)
+ F

(
ȳ(x), v

)]
σ̄(x)(dv)

=
1

2

∫
Ω

dx

∫
U

[
−ȳ(x)Fy

(
ȳ(x), v

)
−Mψ̄(x) + F

(
ȳ(x),M

)
+ F

(
ȳ(x), v

)]
σ̄(x)(dv);

here we have used the equality∫
Ω

dx

∫
U

vψ̄(x) σ̄(x)(dv)

=

∫
Ω

(−	ȳ(x))ψ̄(x) dx

=

∫
Ω

ȳ(x)(−	ψ̄(x)) dx

= −
∫

Ω

dx

∫
U

ȳ(x)Fy

(
ȳ(x), v

)
σ̄(x)(dv).
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Now, let V = {0,M} and R(Ω, V ) be defined similarly to R(Ω, U). Consider the
relaxed system

(3.21)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−	 y(x) =

∫
V

vσ(x)(dv) in Ω,

−	ψ(x) = −
∫
V

Fy

(
y(x), v

)
σ(x)(dv) in Ω,

y|∂Ω = ψ|∂Ω = 0

and the cost functional

J∗(σ(·)) =
1

2

∫
Ω

dx

∫
V

[
−y(x)Fy

(
y(x), v

)
(3.22)

−Mψ(x) + F
(
y(x),M

)
+ F

(
y(x), v

)]
σ(x)(dv).

Thus σ̄(·) ∈ R(Ω, V ) and

(3.23) J∗(σ̄(·)) = J(σ̄(·)).

Since 
 ≥ 0, by Lemma 3.3, which will be proved below, we have

J∗(δū(·)) ≤ J∗(σ(·)) ∀σ(·) ∈ R(Ω, V )

with

ū(·) ≡ M.

In particular,

J(ū(·)) = J∗(δū(·)) ≤ J∗(σ̄(·)) = J(σ̄(·)).

The first equality in the above can be verified directly, almost by following the same
idea for proving (3.23).

Thus, we have proved that ū(·) is an optimal classical control for Problem (C).
As a matter of fact, the proof of Lemma 3.3 will show that

σ̄(x) = δū(x) a.e. x ∈ Ω.

(ii) Let 
 < 0. We will prove that supp σ̄(x) is not a singleton in a positive
measure set. By (3.8), supp σ̄ ⊆ {0,M} for almost all x ∈ Ω. Thus, we need to show
that

{
supp σ̄ = {0,M}

}
has positive measure, which can be proved if we prove that

EM ≡
{
supp σ̄ �= {M}

}
has positive measure and E0 ≡

{
supp σ̄ = {0}

}
has zero

measure.
If EM has zero measure, by (2.8)–(2.9) and (3.1), we have

ψ̄(x) = ζ(x) in Ω.

Thus, it follows from (3.2) and (3.10) that

inf
x∈Ω

ϕ̄(x) = 
 + h < h.

This contradicts (3.18). Therefore, EM has a positive measure.
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By (3.8) and (3.18), it holds that

ϕ̄(x) = h a.e. x ∈ E0.

Thus, by (2.13) and (3.13),

−	 ϕ̄(x) = 0 a.e. x ∈ E0.

On the other hand, noting that (3.17) holds on E0, we get

−	 ϕ̄(x) ≥ −Fy

(
ȳ(x), 0

)
> −Fy(0, 0) ≥ 0 a.e. x ∈ E0

by (3.3), (3.14), and (P2).
Thus, we see that 0 > 0 a.e. on E0. That is, E0 has a zero measure.
To summarize, we have that

{
supp σ̄ = {0,M}

}
has a positive measure. In

other words, an optimal relaxed control of Problem (R) will not be an element of U .
Therefore, Problem (C) does not have optimal controls.

Now we present a lemma used in the proof of the above theorem. Let

(3.24) f(·) =

(
f1(·)
f2(·)

)
, y(·) =

(
y1(·)
y2(·)

)
.

Consider the relaxed system

(3.25)

⎧⎨⎩ −	y =

∫
V

f(y(x), v)σ(x)(dv) in Ω,

y|∂Ω = 0

and the corresponding cost functional

(3.26) Ĵ(σ(·)) =

∫
Ω

dx

∫
V

f0(y(x), v)σ(x)(dv).

We have the following proposition.
Proposition 3.2. Let V = {0,M} and f i(·) ∈ C1(R3) (i = 0, 1, 2). Consider

(3.25)–(3.26). If

(3.27)
∂f1

∂y1
(y1, y2, v) ≤ 0,

∂f1

∂y2
(y1, y2, v) = 0,

∂f2

∂y2
(y1, y2, v) ≤ 0,

then there exists at least one relaxed control σ̄(·) minimizing Ĵ(·) over R(Ω, V ). More-
over, let ȳ(·) be the solution of (3.25) with σ(·) replaced by σ̄(·), and let Ψ(·) be the
solution of

(3.28)

⎧⎨⎩ −	Ψ(x) =

∫
V

{
fy
(
ȳ(x), v

)
Ψ(x) − f0

y

(
ȳ(x), v

)}
σ̄(x)(dv) in Ω,

Ψ|∂Ω = 0,

where

fy =

(
∂f1

∂y1
∂f2

∂y1

∂f1

∂y2
∂f2

∂y2

)
.
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Then

(3.29) supp σ̄(x) ⊆
{
w ∈ V

∣∣∣ Ĥ(x,w) = max
v∈V

Ĥ(x, v)
}

a.e. x ∈ Ω,

where

Ĥ(x, v) = 〈Ψ(x), f(ȳ(x), v)〉 − f0(ȳ(x), v).

The above proposition still holds if V is replaced by a compact subset of R. It can
be proved similarly to Theorems 3.2 and 4.1 in [19]. We omit the proof here. Note
that (3.27) is mainly used to guarantee the existence and uniqueness of a solution to
(3.25), while Proposition 2.2 can be regarded as a special case of Proposition 3.2.

Lemma 3.3. Let V = {0,M} and (P1)–(P2) hold. Consider the relaxed system
(3.21)–(3.22). Let 
 be defined by (3.1)–(3.2) and 
 ≥ 0. Then

J∗(δū(·)) ≤ J∗(σ(·)) ∀σ(·) ∈ R(Ω, V ),

where

ū(x) ≡ M.

Proof. By Proposition 3.2, one can find a relaxed control σ̄(·) minimizing J∗(·)
over R(Ω, V ). Moreover,

(3.30) supp σ̄(x) ⊆
{
w ∈ V

∣∣∣ H∗(x,w) = max
v∈V

H∗(x, v)
}

a.e. x ∈ Ω,

where

H∗(x, u) = Ψ(x)u−
(
z(x) − ȳ(x)

)
Fy

(
ȳ(x), u

)
− F

(
ȳ(x), u

)
+ Mψ̄(x) − F

(
ȳ(x),M

)
with ȳ(·) solving the following equation:

(3.31)

⎧⎪⎪⎨⎪⎪⎩
−	 ȳ(x) =

∫
V

vσ̄(x)(dv) in Ω,

−	 ψ̄(x) = −Fy

(
ȳ(x), v

)
σ̄(x)(dv) in Ω,

ȳ|∂Ω = ψ̄|∂Ω = 0,

where z(·) is defined by (3.1) and Ψ(·) is the solution of

(3.32)

⎧⎪⎪⎨⎪⎪⎩
−	Ψ(x) =

∫
V

Fyy

(
ȳ(x), v

)
σ̄(x)(dv)

(
ȳ(x) − z(x)

)
− Fy

(
ȳ(x),M

)
in Ω,

Ψ|∂Ω = 0.

We claim that

(3.33) supp σ̄(x) = {M} a.e. x ∈ Ω.

Otherwise, both

Ẽ
�
=

{
x ∈ Ω

∣∣∣∣ ∫
V

vσ̄(x)(dv) < M

}
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and

E
�
=
{
x ∈ Ω

∣∣∣ H∗(x,M) ≤ H∗(x, 0)
}

=
{
x ∈ Ω

∣∣∣ Ψ(x) ≤ Φ(x)
}

have positive measures (see (3.30)), where

Φ(x)
�
=

Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

(
z(x) − ȳ(x)

)
(3.34)

+
F
(
ȳ(x),M

)
− F

(
ȳ(x), 0

)
M

.

Since ∫
V

vσ̄(x)(dv) ≤ M in Ω,

while the strict inequality holds on Ẽ, by the strong maximum principle for elliptic
equations we obtain (see (3.1) and (3.31))

(3.35) ȳ(x) < z(x) a.e. x ∈ Ω.

Thus, by (P1) it holds that (see (3.1) and (3.32))

−	 (Ψ − ζ)

(3.36)

=

∫
V

Fyy(ȳ, v)σ̄(x)(dv) (ȳ − z) − Fy(ȳ,M) + Fy(z,M)

=

[∫
V

Fyy(ȳ, v)σ̄(x)(dv) −
∫ 1

0

Fyy(ȳ + t(z − ȳ),M) dt

]
(ȳ − z)

=

∫
V

σ̄(x)(dv)

∫ 1

0

dt

∫ 1

0

[
Fyyy

(
ȳ + st(z − ȳ), v + s(M − v)

)
(z − ȳ)2

+ Fyyu

(
ȳ + st(z − ȳ), v + s(M − v)

)
(M − v)(z − ȳ)

]
ds

≥ 0.

Therefore,

(3.37) Ψ(x) ≥ ζ(x) a.e. x ∈ Ω.

On the other hand (note (3.34)),

F
(
z(x),M

)
− F

(
z(x), 0

)
M

− Φ(x)

=
(
z(x) − ȳ(x)

)2 ∫ 1

0

dt

∫ 1

0

ds

∫ 1

0

Fyu

(
ȳ(x) + αt(z(x) − ȳ(x)), sM

)
dα

≥ 0.

Thus, it follows from (3.2) and 
 ≥ 0 that

Ψ(x) ≥ ζ(x) ≥ ζ(x) − 


≥
F
(
z(x),M

)
− F

(
z(x), 0

)
M

≥ Φ(x) in Ω.
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Consequently,

E ⊆
{
x ∈ Ω

∣∣∣ Ψ(x) = ζ(x)
} �

= E0

and

E ⊆
{
x ∈ Ω

∣∣∣∣∣ ζ(x) =
F
(
z(x),M

)
− F

(
z(x), 0

)
M

}
�
= E1.

Since E has a positive measure, so do E0 and E1.
By (3.36) and the strong maximum principle for elliptic equations, E0 has a

positive measure, which means that

(3.38) Ψ(x) ≡ ζ(x) in Ω.

Thus, by (3.38), we can get from (3.36) and (3.35) that, for almost all x ∈ Ω,

Fyyy

(
ȳ(x) + st(z(x) − ȳ(x)), v + s(M − v)

)
= 0

Fyyu

(
ȳ(x) + st(z(x) − ȳ(x)), v + s(M − v)

)
= 0

∀ s, t ∈ [0, 1], v ∈ supp σ̄(x)

since in (3.36), both of the two terms before the symbol “≥” are nonnegative.
Noting that

Ẽ =
{
x
∣∣∣ supp σ̄(x) ⊇ {0}

}
and that it has a positive measure, one must have

(3.39) Fyyy(y, u) = 0, Fyyu(y, u) = 0 ∀ y ∈ [0,max z], u ∈ [0,M ].

On the other hand, for any σ(·) ∈ R(Ω, V ), the corresponding solution y(·;σ(·)) of
(3.21) satisfies

0 ≤ y(x;σ(·)) ≤ z(x) ∀x ∈ Ω.

Thus, combining the above with (3.39), we can suppose that

(3.40) Fyyy(y, u) = 0, Fyyu(y, u) = 0 ∀ y ∈ R, u ∈ [0,M ],

without loss of generality. Therefore,

F (y, u) = Ay2 + g(u)y + h(u) ∀ y ∈ R, u ∈ [0,M ],

where A is a constant and g(·), h(·) ∈ C3[0,M ]. Thus, by (3.1)

−	 ζ(x)(3.41)

= −Fy(z(x),M)

= −2Az(x) − g(M) in Ω.

Further, it follows from Lemma 2.3 that

−	 ζ(x)

= −	
F
(
z(x),M

)
− F

(
z(x), 0

)
M

= −	
[
g(M) − g(0)

M
z(x) +

h(M) − h(0)

M

]
= g(M) − g(0) a.e. x ∈ E1.
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Therefore,

(3.42) −2Az(x) = 2g(M) − g(0) a.e. x ∈ E1.

Case 1. A �= 0. We have

z(x) =
g(0) − 2g(M)

2A
a.e. x ∈ E1.

Consequently, by (2.13) and z ∈ W 2,2(Ω), it holds that

−	 z(x) = 0 a.e. x ∈ E1.

Thus, combining the above with (3.1), we get

M = 0 a.e. x ∈ E1.

This contradicts that E1 has a positive measure.
Case 2. A = 0. In this case, (3.41) and (3.42) imply

−	 ζ(x) = −g(M) in Ω

and

(3.43) g(0) = 2g(M).

Thus,

ζ(x) = −g(M)

M
z(x) in Ω.

Therefore, by (3.43) and the definition of E1,

−g(M)

M
z(x) = ζ(x)

=
F
(
z(x),M

)
− F

(
z(x), 0

)
M

=
g(M) − g(0)

M
z(x) +

h(M) − h(0)

M

= −g(M)

M
z(x) +

h(M) − h(0)

M
a.e. x ∈ E1.

Consequently,

h(M) − h(0) = 0,

since E1 has a positive measure. This contradicts

h(M) − h(0) = F (0,M) − F (0, 0) < 0.

The above two cases show that no matter what A is, we always end up with a
contradiction. Hence, (3.33) must hold, namely,

σ̄(x) = δM = δū(x) a.e. x ∈ Ω,
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proving our lemma.
Next, for the case that FyyFyu ≥ 0, we have the following result.
Theorem 3.4. Let M > 0, F ∈ C3(R × [0,M ]), and

Fuu(y, u) < 0 ∀ y ∈ R, u ∈ [0,M ].

Moreover, suppose that one of the following conditions holds:
(Q1) Fy(0, 0) ≤ 0 and ∀ y ≥ 0, u ∈ [0,M ],

Fyy(y, u) ≤ 0, Fyu(y, u) ≤ 0, Fyyu(y, u) ≥ 0,

Fyy(y, u) + Fyu(y, u) < 0.

(Q2) Fy(0, 0) ≥ 0 and ∀ y ≥ 0, u ∈ [0,M ],

Fyy(y, u) ≥ 0, Fyu(y, u) ≥ 0, Fyyu(y, u) ≤ 0,

Fyy(y, u) + Fyu(y, u) > 0.

Then Problem (C) admits at least one optimal control. In fact, any optimal relaxed
control of Problem (R) is an optimal classical control of Problem (C).

Proof. Without loss of generality, we suppose that (Q1) holds.
Similar to that in the proof of Theorem 3.1, the relaxed problem (R) admits an

optimal relaxed control σ̄(·) ∈ R(Ω, U). What we need to prove is that for almost all
x ∈ Ω, supp σ̄(x) is a singleton. To this end, let ȳ(·), ψ̄(·), ϕ̄(·), and h be defined as
in the proof of Theorem 3.1 (see (2.8)–(2.9) and (3.9)–(3.10)). Then (3.8) holds and
thus we need only prove that for almost all x ∈ {ϕ̄ = h}, supp σ̄(x) is a singleton.

We claim that for almost all x ∈ {ϕ̄ = h},

(3.44) supp σ̄(x) = {0}.

If it is not the case, then

E
�
=
{
x
∣∣ supp σ̄(x) �= {0}

}
∩ {ϕ̄ = h}

has a positive measure, and consequently,

ȳ(x) > 0 ∀x ∈ Ω.

By (2.13), for almost all x ∈ E, it holds that

0 = −	 ϕ̄(x) = −	 ψ̄(x) + 	
F
(
ȳ(x),M

)
− F

(
ȳ(x), 0

)
M

(3.45)

= −
∫
U

Fy

(
ȳ(x), v

)
σ̄(x)(dv) +

Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

	 ȳ(x)

+
Fyy

(
ȳ(x),M

)
− Fyy

(
ȳ(x), 0

)
M

|∇ȳ(x)|2.

Since (Q1) implies that all three terms in (3.45) are nonnegative, we get that for
almost all x ∈ E, ∫

U

Fy

(
ȳ(x), v

)
σ̄(x)(dv) = 0,(3.46)

Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

∫
U

v σ̄(x)(dv) = 0.(3.47)
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Let x ∈ E be a point satisfying (3.46)–(3.47). Then we have the following cases.
Case 1.

(3.48)
Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

�= 0;

then ∫
U

v σ̄(x)(dv) = 0,

and (3.44) follows.
Case 2.

(3.49)
Fy

(
ȳ(x),M

)
− Fy

(
ȳ(x), 0

)
M

= 0.

By (Q1), we must have

Fyu

(
ȳ(x), u

)
= 0 ∀u ∈ [0,M ]

and consequently,

Fyy(ȳ(x), 0) < 0.

Therefore, by (Q1) and the continuity of Fyy, we get

Fy

(
ȳ(x), v

)
≤ Fy

(
ȳ(x), 0

)
=

∫ 1

0

Fyy

(
tȳ(x), 0

)
ȳ(x) dt + Fy(0, 0)

< 0 ∀ v ∈ [0,M ].

Combining the above with (3.46), we get (3.44).
Thus, (3.44) holds for almost all x ∈ E. This is a contradiction. Consequently,

(3.44) holds for almost all {ϕ̄ = h} and we conclude the proof.
Now, let us look at the case that (y, u) �→ F (y, u) is quadratic, i.e.,

F (y, u) = ay2 + byu + cu2.

The following is a summary of what we have obtained in the above for this special
case:

(i) If c ≥ 0, then Cesari’s condition holds and Problem (C) admits at least one
optimal control.

(ii) If c < 0, a < 0, b > 0, then (P1)–(P2) and (3.3) hold. Thus, we can solve
Problem (C) by using Theorem 3.1. More precisely, let{

−	 ξ(x) = 1 in Ω,

ξ|∂Ω = 0.

Then Problem (C) admits at least one optimal control if and only if

max
x∈Ω

ξ(x) ≤ − c

2b
.
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(iii) If c < 0 and a = b = 0, then Problem (C) is trivial. It admits an optimal
control ū(·) ≡ M .

(iv) If c < 0 and ab ≥ 0, a+ b �= 0, then F satisfies the conditions of Theorem 3.4.
Thus, any optimal relaxed control σ̄(·) is in fact a classical control. Therefore, Prob-
lem (C) admits at least one optimal control in this case.

From the above, one can see how our results apply to the quadratic functional
case.

Note that in establishing existence results without convexity conditions, most au-
thors assumed that the state and the control are separated in the cost functional,
i.e., the functionals take the form g(x, y(x)) + h(x, u(x)). On the other hand, Mari-
conda [24] considered the case when the state variable y and the control variable u are
not separated in the integrand of the cost functional, but he assumed that the inte-
grand is concave in the state variable y. As we have seen from our Theorems 3.1 and
3.4, such a concavity is neither sufficient nor necessary for guaranteeing the existence
of an optimal control.

Finally, we point out that in some cases, conditions that we presented for guar-
anteeing the existence of an optimal control are not only sufficient but also necessary.
(Consider the cases when M > 0, (P1)–(P2), and (3.3) hold. Then, Theorem 3.1
shows that Problem (C) admits at least one optimal control if and only if 
 ≥ 0.)

Acknowledgment. The author would like to thank the anonymous referees for
their helpful comments.
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variazioni senza ipotesi di convessità, Rend. Mat. (6), 13 (1980), pp. 271–281.

[24] C. Mariconda, A generalization of the Cellina–Colombo theorem for a class of non-convex
variational problems, J. Math. Anal. Appl., 175 (1993), pp. 514–552.

[25] E. J. McShane, Generalized curves, Duke Math. J., 6 (1940), pp. 513–536.
[26] E. J. McShane, Relaxed controls and variational problems, SIAM J. Control, 5 (1967), pp.

438–485.
[27] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin,

1966.
[28] L. W. Neustadt, The existence of optimal controls in the absence of convexity conditions, J.

Math. Anal. Appl., 7 (1963), pp. 110–117.
[29] C. Olech, Integrals of set-valued functions and linear optimal control problems, in Colloque
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NUMERICAL APPROXIMATIONS FOR NONZERO-SUM
STOCHASTIC DIFFERENTIAL GAMES∗

HAROLD J. KUSHNER†

Abstract. The Markov chain approximation method is a widely used and efficient family of
methods for the numerical solution of many types of stochastic control problems in continuous time for
reflected-jump-diffusion–type models. It converges under broad conditions, and it has been extended
to zero-sum stochastic differential games. We apply the method to a class of nonzero stochastic
differential games with a diffusion system model where the controls for the two players are separated
in the dynamics and cost function. There have been successful applications of the algorithms, but
convergence proofs have been lacking. It is shown that equilibrium values for the approximating
chain converge to equilibrium values for the original process and that any equilibrium value for the
original process can be approximated by an ε-equilibrium for the chain for arbitrarily small ε > 0.
The numerical method solves a stochastic game for a finite-state Markov chain.

Key words. stochastic differential games, nonzero-sum games, numerical methods, Markov
chain approximations

AMS subject classifications. 60F17, 65C30, 65C40, 91A15, 91A23, 93E25
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1. Introduction. The aim of this paper is to extend the Markov chain appro-
ximation method to numerically solve nonzero-sum stochastic differential games. The
method is widely used, robust, and relatively easy to implement. It covers the
majority of stochastic control problems in continuous time, for controlled reflected-
jump-diffusion–type models of recent interest, and converges under broad conditions.
The method was extended to zero-sum stochastic differential games in [16, 17, 18],
with the last two references concerned with the ergodic cost case, extending partial
prior results such as those of [1, 22, 23]. There has been successful numerical work
done on nonzero-sum differential games [12, 13], based on this procedure, but there
do not seem to exist results concerning convergence. Works such as [5] are concerned
with approximations to nonzero-sum games in normal form and do not apply to the
system models or to the type of approximations that appear in our numerical approx-
imations.

We will consider a discounted cost problem for a diffusion model in a compact set
G with absorption on the boundary. The state space G and the boundary absorption
are selected only to simplify the development so that we can concentrate on the issues
that are unique to the nonzero-sum case. One can replace the boundary absorption by
boundary reflection if the reflection directions satisfy the conditions in [19] or in [16].
We will work with two-player games. Any number of players can be dealt with, but we
stick to two for notational simplicity. The nonzero-sum game is difficult because, as
opposed to the zero-sum case, its players are not strictly competitive and have their
own value functions, and the methods of proof used previously need considerable
modification.
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The idea of the Markov chain approximation method is to first approximate the
controlled diffusion dynamics by a suitable Markov chain on a finite state space with
a discretization parameter h, then approximate the cost functions. One solves the
game problem for the simpler chain model, and then proves that the value functions
associated with equilibrium or ε-equilibrium strategies for the chain converge to the
value functions associated with equilibrium or ε1-equilibrium strategies for the diffu-
sion model, where ε1 → 0 as ε → 0. The methods of proof are purely probabilistic;
i.e., no PDE techniques are required, so knowledge of whatever PDEs yield the equi-
librium values is not needed. The essential condition is a natural “local consistency”
condition. Getting approximations that satisfy this condition is usually straightfor-
ward. Many methods are discussed in [19] and all of them are applicable to the game
problem of interest here. Furthermore, the numerical approximations are represented
as processes which are close to the original, which gives the method intuitive meaning.
We are not concerned with algorithms for numerically solving the game for the chain
model, but rather show only convergence of the solutions to the desired values as the
discretization parameter goes to zero.

Let us comment briefly on some of the particular difficulties posed by the nonzero-
sum problem. The convergence proof for the single-player case works roughly as
follows. One solves for the optimal (cost minimizing) controls for the approximating
chain, with optimal value function V h(x) for approximation parameter h and initial
condition x. Then one interpolates the corresponding chain into a continuous-time
process and shows that the weak-sense limit is a controlled diffusion. The limit value
function lim inf V h(x) cannot be better than the optimal value V (x) for the diffusion.
To show that lim supV h(x) cannot be greater than V (x), one uses a particular 0 < ε-
optimal control for the original process that can be applied to the chain for each
value of h, and such that the weak-sense limit (process, control) is just the ε-optimal
(process, control) for the original model. Since the cost values for the chain under
this control are no less than V h(x), the limit is the ε-optimal diffusion process. Since
ε is arbitrary, we have that lim supV h(x) ≤ V (x). Hence V h(x) → V (x).

The proof for the two-person zero-sum game in [16] is much harder, but the
essential goal is similar. One has the advantages that the controls are determined
by a minmax operation and that there is a single cost function, so that one player’s
gain is another’s loss—properties that the nonzero-sum game does not have. One
gets an ε-optimal strategy for player 2 (resp., for player 1), the maximizing (resp.,
minimizing) player, that is designed such that it can be applied to the approximating
chain, no matter what the other players policy is, and such that in the limit, one has
this strategy for player 2 (resp., for player 1) and some arbitrary control for player
1 (resp., for player 2). One uses these and the minmax relations to show that the
lim inf of the sequence of upper values and lim sup of the sequence of lower values
for the chain must be between the lower and upper values for the original problem.
Then the uniqueness of the value (proved in [16]) for the original problem yields the
desired result.1

Such an approach cannot be applied to the nonzero-sum game, where each player
has its own value function and one seeks Nash equilibria instead of minmax = maxmin
solutions. Furthermore, unique equilibria are not too common, and we are forced to
look much more closely at the structure of the chain and (for the purposes of the proof,
not for the numerics) try to approximate it so that it has a “diffusion” form with a

1The papers [17, 18] concern the ergodic cost function and use quite different methods and relaxed
feedback controls.
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driving process that does not heavily depend on the control, with minimal change in
the values. This requires that we work with strong-sense solutions, rather than with
the weak-sense solutions that were used in [19]. Unlike in the single-player problem,
one must work with strategies and not simply controls, at least for one player at a
time.

In section 2, the model and the cost functions for the players are defined, the
boundary conditions are discussed, and a review of some background material is
given. We also give a “uniform in the controls” discrete-time approximation that will
be used in what follows. The convergence proof heavily depends on the fact that the
players’ strategies for the original diffusion process can be simplified (uniformly in the
controls), with various approximations to the controls and with some players’ controls
delayed. The necessary results are developed in section 3. A particular representation
of an ε-equilibrium strategy, in terms of a “smooth” conditional probability, depending
only on selected samples of the driving Wiener process (and not on the entire Wiener
process), is given in section 4. This representation of the strategy will be crucial to
the proof. Various facts concerning the Markov chain approximation are collected in
subsection 5.1. The reader is referred to [19] for a fuller treatment.

The numerical algorithms use the approximating Markov chain. But the proof of
convergence requires that we approximate (uniformly in the controls or strategies) this
approximating chain by a process that is driven by a particular martingale difference
process which allows us to get analogues of the various approximation results (in
section 3); i.e., to show that the probability law of the chain and the costs change
little if the control process is approximated in various ways. These results are new
and should be of broad use in dealing with numerical approximations. Theorem 6.1
in section 6 shows that an “approximate” equilibrium (value or strategy) for the
diffusion is an “approximate” equilibrium (value or strategy) for the chain for a small
discretization parameter h. If the ε-equilibrium value for the chain is unique for small
ε > 0, then the convergence proof is complete since an approximate equilibrium value
for the chain is also one for the diffusion. If the value is not unique, then the proof
of this last fact is more difficult, and we restrict our attention to the case where
the diffusion coefficient does not depend on the state. This is done in Theorem 6.2,
which is a consequence of Theorem 5.6, which, in turn, applies a strong approximation
theorem to show that the discrete-time approximation to the diffusion and that for
the interpolated chain are very close, uniformly in the controls.

2. The model. We consider systems of the following form where x(t) ∈ R
v,

Euclidean v-space,

(2.1) x(t) = x(0) +

∫ t

0

2∑
i=1

bi(x(s), ui(s))ds +

∫ t

0

σ(x(s))dw(s),

where player i, i = 1, 2, has control ui(·), and w(·) is a standard vector-valued Wiener
process. The control stops at the first time τ that the boundary of a set G is hit (it
equals infinity if the boundary is never reached). More will be said about G following
Condition A2.1 and in Condition A2.2. Let β > 0 and let Eu

x denote the expectation
given the use of control u(·) = (u1(·), u2(·)) and initial condition x. Then the cost
function for player i is

(2.2) Wi(u) = Eu
x

∫ τ

0

e−βtki(x(s), ui(s))ds + Eu
xe

−βτgi(x(τ)).
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Fig. 1. Continuity of first exit times.

Define b(·) = b1(·) + b2(·), k(·) = k1(·) + k2(·). The following condition is assumed
to hold.

Condition A2.1.The functions bi(·) and σ(·) are bounded, continuous, and Lip-
schitz continuous in x, uniformly in u. The controls ui(·) for player i take values
in Ui, a compact set in some Euclidean space, and the functions ki(·) and gi(·) are
bounded and continuous.

A control ui(·) is said to be in Ui, the set of admissible controls for player i, if
it is measurable, nonanticipative with respect to w(·), and Ui-valued. Later we will
introduce strategies and admissible relaxed controls. Part of the proof uses a weak
convergence analysis as in [19], and to the extent possible we use the results of that
reference. For S a topological space, let D[S; 0,∞) denote the S-valued functions on
[0,∞) that are right-continuous and have left-hand limits, and with the Skorkohod
topology [7, 19] used. If S = R

v, then we write D[S; 0,∞) = Dv[0,∞).

The first hitting time τ . Getting numerical solutions requires working in a bounded
state space. Often the physics of the problem provide both a bounded state space
and the proper boundary conditions. Otherwise, “numerical” boundaries are added.
In any case, one needs to provide the necessary boundary conditions. These will be
equivalent to either reflection or absorption at the boundary. Both are covered in
[19]. Here, we chose boundary absorption, but the details that are unique to the
nonzero-sum game problem would be the same in both cases.

The nature of the hitting time τ of the boundary of the set G poses a particular
concern from the point of view of the convergence of the numerical algorithm. The
proof of convergence generates a sequence of process approximations (continuous-time
interpolations of the approximating chain), and the exit or boundary hitting time of
this sequence has to converge, in an appropriate probabilistic sense, to the exit time
of (2.1). In fact, no matter what the numerical procedure, something analogous must
take place. In order to see the problem, refer to Figure 1. In the figure, the sequence of
functions φn(·) converges to the limit function φ0(·), but the sequence of first contact
times (τn) of φn(·) converges to a time τ0, which is not the moment τ of first contact
of φ0(·) with the boundary line ∂G of G. The problem in this case is that the limit
function φ0(·) is tangent to ∂G at the time of first contact.

For our control problem, if the approximating costs are to converge to the costs
for (2.1), (2.2), then we need to ensure, at least with probability one (w.p.1), that the
paths of the limit x(·) are not “tangent” to ∂G at the moment τ of first
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hitting the boundary. For φ(·) in Dv[0,∞) (with the Skorokhod topology used),

define the function τ̂(φ) with values in the compactified infinite interval R
+

= [0,∞]
by τ̂(φ) = ∞ if φ(t) ∈ G0, the interior of G, for all t < ∞; otherwise use

τ̂(φ) = inf{t : φ(t) �∈ G0}.

In the example of Figure 1, τ̂(·) is not continuous at the path φ0(·).
If the φ0(·) in the figure were a sample path of a Wiener process w(·), then the

probability would be zero that it is “tangent” to the boundary of G at the point of first
contact. Indeed, w.p.1, the path would cross the line infinitely often in any small time
interval after first contact. Hence, w.p.1, the first hitting times of any approximating
sequence would converge to the first hitting time of w(·). The situation is similar if
the Wiener process were replaced by the solution to a stochastic differential equation
with a uniformly positive definite covariance matrix a(x) = σ(x)σ′(x) if the boundary
∂G of G is “smooth.” The following condition will be used. Note that the condition
on the stopping time can be assured to hold if the randomized stopping approximation
discussed below is used.

Condition A2.2. For a continuous real-valued function Φ(·) on R
v, define G =

{x : Φ(x) ≤ 0}, and suppose that it is the closure of its interior {x : Φ(x) < 0}.
For each initial condition and control, the function τ̂(·) is continuous (as a map from
Dv[0,∞) to the compactified interval [0,∞]) w.p.1 relative to the measure induced by
the solution to (2.1).

The tangency problem would be a concern with any numerical method, since they
all depend on some sort of approximation. For example, the convergence theorems for
the classical finite difference methods for elliptic and parabolic equations generally use
a nondegeneracy condition on a(x) in order to (implicitly) guarantee Condition A2.2.

The verification of Condition A2.2 for the case where a(x) is degenerate is more
complicated, and one needs to work with the particular structure of the individual
case. The boundary can often be divided into several pieces, where we are able to treat
each piece separately. For example, there might be a segment where a “directional
nondegeneracy” of a(x) guarantees the almost sure continuity of the exit times of the
paths which exit on that segment, plus a segment where the direction of the drift
gives a similar guarantee, plus a segment on which escape is not possible, and finally
a “remaining” segment. Frequently, the last “complementary” set is a finite set of
points or a curve of dimension lower than that of the boundary. Special considerations
concerning these points can often resolve the issue there. An important class of such a
degenerate example is illustrated in [14, pp. 64–66]. In that two-dimensional example,
G is the symmetric square box centered about the origin, the system is (x = (x1, x2))

dx1 = x2dt,
dx2 = udt + dw,

and the control u(·) is bounded. The above cited “complementary set” is just the two
points which are the intersections of the horizontal axis with the boundary, and these
points can be taken care of by a test such as that in Theorem 6.1 of [21].2

Randomized stopping. An alternative to Condition A2.2. The boundaries in con-
trol problems are often not fixed precisely. For example, they might be introduced
simply to bound the state space. The original control problem might be defined in

2See also [19, p. 280], where it is shown that the Girsanov transformation can play a useful role
in the verification of Condition A2.2.
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an unbounded space, but the space is then truncated for numerical reasons. Even if
there is a given “target set,” it is often not necessary to fix it too precisely. Such
considerations give us some freedom to slightly vary the boundary. The “randomized
stopping” alternative discussed next exploits these ideas and ensures Condition A2.2.
Under randomized stopping, the probability of stopping at time t (if the process has
not yet been stopped) goes to unity at that time as x(t) approaches ∂G. This can be
formalized as follows [19].

For some small ε > 0, let λ̄(·) > 0 be a continuous function on the set Nε(∂G)∩G0,
where Nε(∂G) is the ε-neighborhood of the boundary and G0 is the interior of G. Let
λ̄(x) → ∞ as x converges to ∂G. Then stop x(·) at time t with stopping rate λ̄(x(t))
and stopping cost gi(x(t)) for player i. Randomized stopping is equivalent to adding
an additional (and state-dependent) discount factor which is active near the boundary.

Relaxed controls ri(·). In control theory, when working with problems concerning
convergence of sequences or approximations, it is usual to use the so-called relaxed
controls in lieu of ordinary controls. They are used for theoretical purposes only,
i.e., to get approximation and convergence proofs. Suppose that for some filtration
{Ft, t < ∞}, standard vector-valued Ft-Wiener process w(·), and for i = 1, 2, ri(·)
is a measure on the Borel sets of Ui × [0,∞) such that ri(Ui × [0, t]) = t and the
process ri(A × [0, ·]) is measurable and nonanticipative for each Borel set A ⊂ Ui.
Then ri(·) is said to be an admissible relaxed control for player i with respect to w(·)
[8, 19]. Abusing notation slightly, we use Ui for the set of admissible relaxed controls
as well as for the set of admissible ordinary controls ui(·). If the Wiener process
and filtration are obvious or unimportant, we simply say that ri(·) is an admissible
relaxed control or a relaxed control for player i. For Borel sets A ⊂ Ui, we will write
ri(A× [t0, t1]) = ri(A, [t0, t1]), and write ri(A, t1) if t0 = 0. Define U = U1 × U2 and
U = U1×U2. Henceforth {Ft} will denote a filtration such that w(·) is an Ft-standard
Wiener process and r(·) is admissible for the r(·) of concern.

For almost all (ω, t) and each Borel A ⊂ Ui, one can define the left derivative3

r′i(A, t) = lim
δ→0

ri(A, t) − ri(A, t− δ)

δ
.

Without loss of generality, we can suppose that the limit exists for all (ω, t). Then for
all (ω, t), r′i(·, t) is a probability measure on the Borel sets of Ui, and for any bounded
Borel set B in Ui × [0,∞),

ri(B) =

∫ ∞

0

∫
Ui

I{(αi,t)∈B}r
′
i(dαi, t)dt.

An ordinary control ui(·) can be represented in terms of the relaxed control ri(·) that
is defined by its derivative, which takes the form r′i(A, t) = IA(ui(t)), where IA(ui)
is unity if ui ∈ A and is zero otherwise. The weak topology [19] will be used on the
space of admissible relaxed controls. Relaxed controls are commonly used in control
theory to prove existence and approximation theorems, since any sequence of relaxed
controls has a weakly convergent subsequence. The use of relaxed controls does not
change the range of values of the cost functions.

Define the “product” relaxed control r(·) by its derivative r′(·, t) = r′1(·, t)×r′2(·, t).
Thus r(·) is a product measure, with marginals ri(·), i = 1, 2. We will usually write
r(·) = (r1(·), r2(·)) without ambiguity. The pair (w(·), r(·)) is called an admissible

3“Left” is used because we need the derivative to be nonanticipative.
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pair if each ri(·) is admissible with respect to w(·). In relaxed control terminology,
(2.1) and (2.2) are written as

(2.3)

x(t) = x(0) +

2∑
i=1

∫ t

0

∫
Ui

bi(x(s), αi)r
′
i(dαi, s)ds +

∫ t

0

σ(x(s))dw(s)

= x(0) +

∫ t

0

∫
Ui

b(x(s), αi)r
′(dαi, s)ds +

∫ t

0

σ(x(s))dw(s),

(2.4) Wi(x, r) = Er
x

∫ τ

0

e−βt

∫
Ui

ki(x(s), αi)r
′
i(dαi, s)ds + Er

xe
−βτgi(x(τ)).

The drift terms can be written as, e.g.,
∫ t

0

∫
U
b(x(s), α)r′(dα, s)ds.

A discrete-time system. We will also need the discrete-time form

(2.5)
xΔ(nΔ + Δ) = xΔ(nΔ) +

∫ nΔ+Δ

nΔ

∫
U

b(xΔ(nΔ), α)r′(dα, s)ds

+σ(xΔ(nΔ))[w(nΔ + Δ) − w(Δ)].

We can define the continuous-time interpolation xΔ(·) either by xΔ(t) = xΔ(nΔ) for
t ∈ [nΔ, nΔ + Δ), or as (on the same interval)

(2.6) xΔ(t) = xΔ(nΔ) +

∫ t

nΔ

∫
U

b(xΔ(nΔ), α)r′(dα, s)ds +

∫ t

nΔ

σ(xΔ(nΔ))dw(t),

where it is assumed that r(t, ·) is adapted to FnΔ− for t ∈ [nΔ, nΔ + Δ). The
associated cost function WΔ

i (x, r) is (2.4) with xΔ(·) replacing x(·). Let rΔ(·), r(·) be
admissible relaxed controls with respect to w(·) with rΔ(·) → r(·) w.p.1 (in the weak
topology) and rΔ(·) adapted as above. Then, as Δ → 0, the sequence of solutions
{xΔ(·)} also converges w.p.1, uniformly on any bounded time interval, and the limit
(x(·), r(·), w(·)) solves (2.3). By Condition A2.2, the first hitting times of the boundary
also converge w.p.1 to that of the limit. The costs converge as well. The analogous
result holds if the randomized stopping alternative is used.

Randomized and relaxed controls. For the discrete-time system (2.5) or (2.6),
the relaxed control can be approximated by a randomized ordinary control (which
relates the relaxed control to randomized strategies) as follows. Let r(·) be a relaxed
control that is admissible with respect to w(·). Let ũΔ

i,n be a random variable with

the distribution rΔ
i,n(·) = EnΔ [ri (·, [nΔ, nΔ + Δ])] /Δ, where EnΔ denotes the con-

ditional expectation given FnΔ−. Set ũΔ
n = (ũΔ

1,n, ũ
Δ
2,n), define its continuous-time

interpolation (with intervals Δ) ũΔ(·), and define x̃Δ(0) = xΔ(0) = x(0) and

(2.7) x̃Δ(nΔ+Δ) = x̃Δ(nΔ)+Δb(x̃Δ(nΔ), ũΔ
n )+σ(x̃Δ(nΔ))[w(nΔ+Δ)−w(nΔ)].

Let x̃Δ(t) denote the continuous-time interpolation. Define rΔ
n (·) = rΔ

1,n(·)rΔ
2,n(·), and

let rΔ(·) be the relaxed control with derivative rΔ
n (·) on [nΔ, nΔ+Δ). Then we have

the following result, where rΔ(·) is used for xΔ(·) in (2.6). The theorem implies that
in the continuous limit, randomized controls turn into relaxed controls.

Theorem 2.1. Assume Condition A2.1 and use rΔ
n (·) in (2.5) and (2.6). Then

for any T < ∞,

lim
Δ→0

sup
x(0)∈G

sup
r∈U

E sup
t≤T

∣∣xΔ(t) − x(t)
∣∣2 = 0,(2.8a)

lim
Δ→0

sup
x(0)∈G

sup
r∈U

E sup
t≤T

∣∣xΔ(t) − x̃Δ(t)
∣∣2 = 0.(2.8b)
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Under the additional Condition A2.2, the costs for (2.5) and (2.7) converge (uniformly
in x(0), r(·)) to those for (2.3) as well.

Comment on the proof. Define δxΔ
n = xΔ(nΔ) − x̃Δ(nΔ). Then

δxΔ
n+1 = δxΔ

n + Δ

∫
U

[
b(xΔ(nΔ), α) − b(x̃Δ(nΔ), α)

]
rΔ
n (dα)

+
[
σ(xΔ(nΔ)) − σ(x̃Δ(nΔ))

]
[w(nΔ + Δ) − w(nΔ)] + NΔ

n ,

where

NΔ
n = Δ

[∫
U

b(x̃Δ(nΔ), α)rΔ
n (dα) − b(x̃Δ(nΔ), ũΔ

n )

]
is an FnΔ- martingale difference by the definition of ũΔ

n (·) via the conditional distribu-
tion given FnΔ. Also EnΔ|NΔ

n |2 = O(Δ2). The proof of the uniform (in the control
and initial condition) convergence to zero of |xΔ(·) − x̃Δ(·)| and of the differences
between the integrals

E

∫ t

0

e−βtk(x̃Δ(s), ũΔ(s))ds, E

∫ t

0

∫
U

e−βtk(xΔ(s), α)rΔ,′(dα, s)ds

can then be completed by using the Lipschitz condition and this martingale and
conditional variance property. This implies (2.8b). An analogous argument can be
used to get (2.8a) for each r(·) and x(0). The facts that Condition A2.2 holds for
(2.3) and that (2.8) holds imply that the stopping times for xΔ(·), x̃Δ(·) converge to
those for (2.3) as well, for each x(0) and r(·).

The uniformity in (2.8b) and in the convergence of the costs can be proved by
an argument by contradiction that goes roughly as follows. Suppose, for example,
that the uniformity in (2.8b) does not hold. Then, for intervals Δm and relaxed
controls rm(·),m = 1, 2, . . ., define rm,Δm

n (·) as rΔ
n (·) was, but based on rm(·), and let

rm,Δm(·) denote the interpolation of the associated relaxed control. Let Δm → 0. Let
xm(·) solve (2.3) and xm,Δm(·) solve (2.6), both under rm(·). Let x̃m,Δm(·) solve (2.7)
under rm,Δm(·). Suppose that, for some T < ∞, lim supm→∞ E supt≤T |xm,Δm(t) −
x̃m,Δm(t)|2 > 0.

Take an arbitrary weakly convergent subsequence of xm(·), xm,Δm(·), x̃m,Δm(·),
rm(·), rm,Δm(·), w(·), also indexed by m and with the (weak-sense) limit denoted
by x(·), x̂(·), x̃(·), r(·), r̂(·), ŵ(·). Then it is easy to show that x(·) = x̂(·) = x̃(·)
and r(·) = r̂(·), that ŵ(·) is a standard Wiener process, that x(·), x̂(·), x̃(·), r̂(·) are
nonanticipative with respect to ŵ(·), and that the limit set satisfies (2.3). Assume,
without loss of generality, that Skorokhod representation is used [7, 19] so that we can
suppose that the original and limit processes are all defined on the same probability
space and that convergence is w.p.1 in the Skorokhod topology. Then

lim
m→∞

E sup
t≤T

∣∣x̃m,Δm(t) − x̂(t)
∣∣2 = 0

and

lim
m→∞

E sup
t≤T

∣∣xm,Δm(t) − x̂(t)
∣∣2 = 0,

a contradiction to the assertion that the uniformity in x(0) and r(·) in (2.8b) does
not hold.
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3. Approximating the controls. The convergence proofs will require the use
of special approximations to the general ordinary or relaxed controls, and the neces-
sary approximations are developed in this section and in Theorem 4.1.

For each admissible relaxed control r(·) and ε > 0, let rεi (·) be admissible relaxed
controls with respect to the same filtration and Wiener process w(·), with derivatives
rε,′i (·), and that satisfy

(3.1) lim
ε→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣∫ t

0

∫
Ui

φi(αi)
[
r′i(dαi, s) − rε,′i (dαi, s)

]
ds

∣∣∣∣ = 0, i = 1, 2,

for each bounded and continuous real-valued nonrandom function φi(·) and each T <
∞. Let x(·) and xε(·) denote the solutions to (2.3) corresponding to r(·) and rε(·),
resp., with the same w(·) used, but perhaps different initial conditions. In particular,
define xε(·) by

(3.2) xε(t) = xε(0) +

∫ t

0

∫
U

b(xε(s), α)rε,′(dα, s)ds +

∫ t

0

σ(xε(s))dw(s).

The processes x(·) and xε(·) depend on r(·) and rε(·), resp., but this dependence
is suppressed in the notation. The next theorem shows that the solution x(·) is
continuous in the controls in the sense that (3.3) below holds, and that the costs
corresponding to r(·) and rε(·) are arbitrarily close for small ε, uniformly in r(·).

Theorem 3.1. Assume Condition A2.1. Let (r(·), rε(·)) satisfy (3.1) for each
bounded and continuous φi(·), i = 1, 2, and T < ∞. Define δxε(t) = xε(t) − x(t).
Then for each t,

(3.3) lim
ε→0

sup
x(0),xε(0):|xε(0)−x(0)|→0

sup
r∈U

E sup
s≤t

|δxε(s)|2 = 0.

Under the additional Condition A2.2,

(3.4) lim
ε→0

sup
x(0),xε(0):|xε(0)−x(0)|→0

sup
r∈U

|Wi(x, r) −Wi(x, r
ε)| = 0, i = 1, 2.

Comments on the proof. The proof is very similar to that of Theorem 2.1, and
we comment only on the use of (3.1). We can write

(3.5)

δxε(t) = δxε(0) +

∫ t

0

∫
U

[b(xε(s), α) − b(x(s), α)] r′(dα, s)ds

+

∫ t

0

[σ(xε(s)) − σ(x(s))] dw(s)

+

∫ t

0

∫
U

b(xε(s), α) [rε,′(dα, s) − r′(dα, s)] ds.

It will be seen that the sup over any finite time interval of the absolute value of the
last term of (3.5) goes to zero in mean square, by virtue of (3.1). For small λ > 0,
that term can be rewritten as (modulo O(λ))

(3.6)

[t/λ]−1∑
l=0

∫ lλ+λ

lλ

∫
U

b(xε(lλ), α) [rε,′(dα, s) − r′(dα, s)] ds

+

[t/λ]−1∑
l=0

∫ lλ+λ

lλ

[b(xε(s), α) − b(xε(lλ), α)] [rε,′(dα, s) − r′(dα, s)] ds.
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Here [t/λ] denotes the integer part of t/λ. As λ → 0 the expectation of the square of
the sup over any finite interval of the last term goes to zero, uniformly in r(·), rε(·), x(0),
xε(0), whether or not (3.1) holds, since

(3.7) lim
λ→0

sup
r

sup
ε

sup
lλ≤t

E sup
s≤λ

|xε(lλ + s) − xε(lλ)|2 = 0.

Assumption (3.1) can be used to show that the same uniform limit in mean square
holds for the first term of (3.6) for any λ, as ε → 0. The proof of (3.3) is a consequence
of these facts and the Lipschitz condition. The convergence of the costs is a conse-
quence of the convergence of the paths and controls, and an argument concerning the
convergence of the stopping times such as used in Theorem 2.1.

Finite-valued and piecewise-constant approximations rε(·) in (3.1). Now some
approximations of subsequent interest will be described. It will be seen that we can
confine our attention to control processes that are just piecewise-constant and finite-
valued ordinary admissible controls. Consider the following discretization of the Ui.
Let Ui ∈ R

ci , Euclidean ci-space. Given μ > 0, partition R
ci into disjoint (hyper)cubes

{Rμ,l
i } with diameters μ. The boundaries can be assigned to the subsets in any way.

Define Uμ,l
i = Ui ∩Rμ,l

i for the finite number (pμi ) of nonempty intersections. Choose

a point αμ,l
i ∈ Uμ,l

i . Now, given admissible (r1(·), r2(·)), define the approximating

admissible relaxed control rμi (·) on the control value space Uμ
i = {αμ,l

i , l ≤ pμi } by

its derivative as rμ,′i (αμ,l
i , t) = r′i(U

μ,l
i , t). Denote the set of such controls by Ui(μ).

The following theorem is a consequence of Theorem 3.1. A version can also be found
in [16].

Theorem 3.2. Assume Conditions A2.1–A2.2, and the above approximation of
ri(·) by rμi (·) ∈ Ui(μ), i = 1, 2. Then (3.1) and Theorem 3.1 hold for μ replacing ε, no

matter what the {Uμ,l
i , αμ,l

i } are. The same result holds if we approximate only one
of the ri(·).

Finite-valued, piecewise-constant, and “delayed” approximations. The proofs of
convergence depend on showing that the cost changes little if the control actions
of any player are discretized in time and are slightly delayed. Let rμi (·) ∈ Ui(μ),
where the control value space for player i is Uμ

i . Let Δ > 0. Define the “backward”

differences Δμ,l
i,k = rμi (αμ,l

i , kΔ) − rμi (αμ,l
i , kΔ − Δ), l ≤ pμi , k = 1, . . .. Define the

piecewise-constant ordinary controls uμ,Δ
i (·) ∈ Ui(μ) on the interval [kΔ, kΔ + Δ) by

(3.8) uμ,Δ
i (t) = αμ,l

i for t ∈
[
kΔ +

l−1∑
ν=1

Δμ,ν
i,k , kΔ +

l∑
ν=1

Δμ,ν
i,k

)
.

Note that on [kΔ, kΔ + Δ), uμ,Δ
i (·) takes the value αμ,l

i on a time interval of length

Δμ,l
i,k . Note also that the uμ,Δ

i (·) are “delayed,” in that the values of ri(·) on [kΔ −
Δ, kΔ) determine the values of uμ,Δ

i (·) on [kΔ, kΔ+Δ). Thus uμ,Δ
i (t), t ∈ [kΔ, kΔ+

Δ), is FkΔ−-measurable. Let rμ,Δi (·) denote the relaxed control representation of

uμ,Δ
i (·), with time derivative rμ,Δ,′

i (·). Let Ui(μ, δ) denote the subset of Ui(μ) that
are ordinary controls that are constant on the intervals [lδ, lδ + δ), l = 0, 1, . . ..

The intervals Δμ,l
i,k in (3.8) are just real numbers. For later use, it is important to

have them be some multiple of some small δ > 0, where Δ/δ is an integer. Consider
one method of doing this. Divide [kΔ, kΔ+Δ) into Δ/δ subintervals of length δ each.

Working in order l = 1, 2 . . ., to each value αμ,l
i first assign (the integer part) [Δμ,l

i,k/δ]
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successive subintervals of length δ. The total fraction of time that is unassigned on any
bounded time interval will go to zero as δ → 0, and how control values are assigned
to them will have little effect. However, for specificity for future use consider the
following method. The unassigned length for value αμ,l

i is Lμ,δ,l
i,k = Δμ,l

i,k − [Δμ,l
i,k/δ]δ,

i ≤ pμi . Define the sum Sμ,δ
i,k =

∑
l L

μ,δ,l
i,k , which must be an integral multiple of δ. Then

assign each unassigned δ-interval at random with value αμ,l
i,k chosen with probability

Lμ,δ,l
i,k /Sμ,δ

i,k . By Theorem 2.1, this assignment and randomization approximates the
original relaxed control.

Let Ui(μ, δ,Δ) denote the set of such controls. If uμ,δ,Δ
i (·) is obtained from ri(·) in

this way, then it is a function of ri(·), but this functional dependence will be omitted

in the notation. Let rμ,Δ,δ,′
i (·) denote the time derivative of rμ,Δ,δ

i (·). As stated in the

next theorem, which is a consequence of Theorem 3.1, for fixed μ and small δ, uμ,δ,Δ
i (·)

well approximates the effects of uμ,Δ
i (·) and ri(·), uniformly in ri(·) and {αμ,l

i }. In
particular, (3.1) holds in the sense that for each μ > 0, Δ > 0, and bounded and
continuous φi(·), for i = 1, 2,

(3.9) lim
δ→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣∫ t

0

∫
Ui

φi(αi)
[
rμ,δ,Δ,′
i (dαi, s) − rμ,Δ,′

i (dαi, s)
]
ds

∣∣∣∣ = 0.

Theorem 3.3. Assume Conditions A2.1–A2.2. Let ri(·) ∈ Ui, i = 1, 2. Given

(μ, δ,Δ) > 0, approximate as discussed above the theorem to get rμ,δ,Δi (·) ∈ Ui(μ, δ,Δ).

Then (3.1) holds for rμ,δ,Δi (·) and (μ, δ,Δ) replacing rεi (·) and ε, respectively. Also,
(3.9) holds. In particular, given ε > 0, there are με > 0, δε > 0,Δε > 0, and κε > 0,
such that for μ ≤ με, δ ≤ δε,Δ ≤ Δε, and δ/Δ ≤ κε,

(3.10) sup
x

sup
r1

sup
r2

∣∣∣Wi(x, r1, r2) −Wi(x, r1, u
μ,δ,Δ
2 )

∣∣∣ ≤ ε.

The expression (3.10) holds with the indices 1 and 2 interchanged or if both controls
are approximated.

Consider the discrete-time system (2.5) with either the interpolation that is
piecewise-constant or (2.6). Then the με > 0, δε > 0,Δε > 0, and κε > 0, can be
defined so that

(3.11) sup
x

sup
r1

sup
r2

∣∣∣Wi(x, r1, r2) −WΔ
i (x, r1, u

μ,δ,Δ
2 )

∣∣∣ ≤ ε.

The expression (3.11) holds with the indices 1 and 2 interchanged or if both controls
are approximated and/or further delayed by Δ.

Note on the initial values of the controls. Since the controls are delayed by Δ,
we can assign the values on the initial interval [0,Δ] in any way. Let the values
ui(lδ), lδ ≤ Δ, be in Uμ

i and fixed for i = 1, 2.

4. Equilibria and approximations. Elliott–Kalton strategies. The classical
definition of strategy as used in differential games for models such as (2.1) or (2.3)
is that of Elliott and Kalton [6, 9]. A strategy c1(·) for player 1 is a mapping from
U2 to U1 with the following property. If admissible controls r2(·) and r̃2(·) satisfy
r2(s) = r̃2(s) for s ≤ t, then c1(r2)(s) = c1(r̃2)(s), s ≤ t, and with an analogous
definition for player 2 strategies. Let Ci denote the set of such strategies or mappings
for player i. An Elliott–Kalton strategy is a generalization of a feedback control.
The current control action that it yields for any player is a function only of the past
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control actions and does not otherwise depend on the form of the strategy of the other
player.

A pair c̄i(·) ∈ Ci, i = 1, 2, is said to be an ε-equilibrium strategy pair if for all
admissible controls ri(·), i = 1, 2,4

(4.1)
W1(x, c̄1, c̄2) ≥ W1(x, r1, c̄2) − ε,

W2(x, c̄1, c̄2) ≥ W2(x, c̄1, r2) − ε.

The notation W1(x, c1, c2) implies that each player i uses its strategy ci(·). When
writing Wi(x, c1, c2), it is assumed that the associated process is well defined. This
will be the case here, since Theorem 3.3 implies that it is sufficient to restrict attention
to strategies whose control functions are piecewise-constant and finite-valued and can
depend only on slightly delayed values of the other players’ control realizations. If
(4.1) holds with ε = 0, then we have an equilibrium strategy pair. The controls can
be either ordinary or relaxed. The notation W2(x, c1, r2) implies that player 1 uses
its strategy c1(·) and player 2 uses the relaxed control r2(·).

The above definition of strategy does not properly allow for randomized controls,
where the realized responses given by the strategy of a player to a fixed control process
of the other player might differ, depending on the random choices that it makes. So we
also allow randomized strategies that have the form of the second line in (4.2) below
for either one or both of the players. Theorem 2.1 shows the connection between
relaxed and randomized controls.

We will require the following assumption.5

Assumption A4.1. For each small ε > 0 there is an ε-equilibrium Elliott–Kalton
strategy (c̄ε1(·), c̄ε2(·)) under which the solution to (2.1) or (2.3) is well defined.

The following approximation theorem will be a key item in the development.
Theorem 4.1. Assume Conditions A2.1 and A2.2. Given ε1 > 0, there are

positive numbers μ, δ,Δ, where Δ/δ is an integer, such that the values for any strategy
pair (c1(·), c2(·)) with ci(·) ∈ Ci, and under which the solution to (2.3) is well defined,6

can be approximated within ε1 by strategy pairs cμ,δ,Δi (·), i = 1, 2, of the following form.

The realizations of cμ,δ,Δi (·) (which depend on the other player’s strategy or control)

are ordinary controls in Ui(μ, δ,Δ), and we denote them by uμ,δ,Δ
i (·). For integers

n, k, and kδ ∈ [nΔ, nΔ + Δ), and αi taking values in Uμ
i ,

(4.2)

P

{
uμ,δ,Δ
i (kδ) = αi

∣∣∣∣w(s), s ≤ kδ;uμ,δ,Δ
j (lδ), j = 1, 2, l < k

}
= P

{
uμ,δ,Δ
i (kδ) = αi

∣∣∣∣w(lΔ), l ≤ n;uμ,δ,Δ
j (lδ), j = 1, 2, lδ < nΔ

}
= pi,k

(
αi; w(lΔ), l ≤ n;uμ,δ,Δ

j (lδ), j = 1, 2, lδ < nΔ
)
,

4The definition in [6] requires that the controls ri(A, ·) be progressively measurable, and not
simply measurable and adapted, for each Borel set A. But due to the approximation results of
Theorems 3.1–3.3, this added requirement is unnecessary in our case.

5As noted above, one need only restrict attention to strategies that yield control processes that
are piecewise-constant, finite-valued, and slightly delayed, or, indeed, to discrete-time systems with
such controls. This moderates the assumption considerably. Assumption A4.1 is the weakest possible
assumption concerning equilibria. If it does not hold, then there is no numerical problem, since there
is no solution. Numerical analysis starts with whatever assumptions are needed to ensure that there
is a solution. Criteria for the existence of equilibria are in [2, 4, 11]. See also the seminal work [10]
and the review and references for stochastic differential games in general in [20].

6One or both of them might be simply fixed relaxed feedback controls.
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which defines the functions pi,k(·). For each positive value of μ, δ,Δ, the functions
pi,k(·) can be taken to be continuous in the w-arguments for each value of the other
arguments.

Suppose that the control process realizations for player i are in Ui(μ, δ,Δ), but
those of the other player are general relaxed controls. Then we interpret (4.2), ap-
plied to that control, as being based on its discretized approximation, as derived above
Theorem 3.3.

A convenient representation of the values in (4.2). It will be useful for the con-
vergence proofs if the random selections implied by the conditional probabilities in
(4.2) are systematized as follows. Let {θk} be random variables that are mutually
independent and uniformly distributed on [0, 1]. The {θk, k ≥ l} will be independent
of all system data before time lδ. For each i, n, k, divide [0, 1] into (random) subinter-

vals whose lengths are proportional to the conditional probability of the αμ,l
i as given

by (4.2), and select uμ,δ,Δ
i (kδ) = αμ,l

i if the random selection of θk on [0, 1] falls into
that subinterval. The same random variables {θk} are used for both players, and for
all conditional probability rules of the form (4.2). This representation is used only for
theoretical purposes.

Proof. By Theorem 3.3, it is sufficient to work with strategies cμ,δ,Δi (·), i = 1, 2,
whose control process realizations are in Ui(μ, δ,Δ), and that in any interval [nΔ, nΔ+
Δ) depend only on the control process values of the other player up to time nΔ−Δ.
So we start with such strategies. However, we need to consider the response of such
a strategy if the other player uses controls that are not already discretized. Since, for
small μ, δ,Δ, a discretization of the other player’s control realizations would have a
negligible effect on the costs, uniformly in the control policy realizations of the first
player, it is sufficient for the first player to act as though the controls of the other
player were already discretized, by computing the discretization.

Continuing, let uμ,δ,Δ
i (·), i = 1, 2, denote the policy realizations under the strate-

gies cμ,δ,Δi (·), i = 1, 2. The probability law of (uμ,δ,Δ
1 (·), uμ,δ,Δ

2 (·), w(·)) determines the
law of the corresponding solution to (2.1). The law of evolution of the controls can
be written in recursive form, for i = 1, 2, and kδ ∈ [nΔ, nΔ + Δ),

(4.3) P

{
uμ,δ,Δ
i (kδ) = αi

∣∣∣∣w(s), s ≤ nΔ;uμ,δ,Δ
j (lδ), j = 1, 2, lδ < nΔ

}
.

This yields a “randomized” Elliott–Kalton strategy pair.

Now apply the control rule (4.3) to the piecewise-constant interpolation of the
discrete-time system (2.5). The probability law of the solution on [0, t] is deter-

mined by the law of
(
uμ,δ,Δ

1 (lδ), uμ,δ,Δ
2 (lδ), lδ < t;w(nΔ), nΔ ≤ t

)
. Hence, for kδ ∈

[nΔ, nΔ + Δ), the probability law of the controls and paths for xΔ(·) can be deter-
mined from the formula

(4.4) P

{
uμ,δ,Δ
i (kδ) = αi

∣∣∣∣w(lΔ), l ≤ n;uμ,δ,Δ
j (lδ), j = 1, 2, lδ < nΔ

}
.

By Theorem 3.3, for small enough δ,Δ the paths xΔ(·) and x(·) and the associated

costs are arbitrarily close, uniformly in the controls uμ,δ,Δ
i (·), i = 1, 2, where we can

suppose (without loss of generality) that the law of evolution of the controls takes the
form (4.4). This argument implies that we can restrict the conditioning on w(·) in
(4.3) to the samples w(lΔ).
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Now turn to the assertion concerning continuity in the w-arguments. (See also [19,
Theorem 10.3.1] on this point.) For ρ > 0, consider the smoothed conditional proba-
bility defined by

pρi,k

(
αi; w(lΔ), l ≤ n;uμ,δ,Δ

j (lδ), j = 1, 2, lδ < nΔ
)

= N(ρ)

∫
e−|z−w|2/2ρpi,k

(
αi; z;u

μ,δ,Δ
j (lδ), j = 1, 2, lδ < nΔ

)
dz,

where N(ρ) is a normalizing constant and w = {w(lΔ), l ≤ n}. The variable z has
the same dimension as w. The integral is continuous in the w-variables, uniformly in
the others. Also it converges to

pi,k

(
αi; w(lΔ), l ≤ n;uμ,δ,Δ

j (lδ), j = 1, 2, lδ < nΔ
)

for almost all {w(lΔ), l ≤ n} values as ρ → 0. Hence, by Egoroff’s theorem, it
converges almost uniformly in any compact set of {w(lΔ), l ≤ n} values. For almost
all {w(lΔ), l ≤ n} values the smoothed conditional probability will choose the same
control values as would the original rule defined by (4.4) with a probability that goes
to unity as ρ → 0. Hence, without loss of generality we can suppose that the pi,k(·)
are smooth in the w-variables, as asserted.

5. The Markov chain approximation: Brief review and approximations.

5.1. The Markov chain approximation method. We will start by giving
a quick overview of the Markov chain approximation method of [14, 15, 19], start-
ing with some comments for the case where there is only one player. We will then
develop some approximation results for the chains that are analogous to those in
Theorem 3.3, and which will be crucial for the convergence theorems in section 6.
The method consists of two steps. Let h > 0 be an approximation parameter. The
first step is the determination of a finite-state controlled Markov chain ξhn that has
a continuous-time interpolation that is an “approximation” of the process x(·). The
second step solves the optimization problem for the chain and a cost function that
approximates the one used for x(·). Under a natural “local consistency” condition,
the minimal cost function for the chain converges to the minimal cost function for
the original problem. In applications, the optimal control for the original problem is
also approximated. The approximating chain and local consistency conditions are the
same for the game problem. The reference [19] contains a comprehensive discussion
of many automatic and simple methods for getting the transition probabilities of the
chain. The approximations “stay close” to the physical model and can be adjusted to
exploit local features.

The simplest state space for the chain for our model (and the one that we will
use for simplicity in the discussion) is based on the regular h-grid Sh in R

v. Define
Gh = Sh ∩G and G0

h = Sh ∩G0. On G0
h the chain “approximates” the diffusion part

of (2.1) or (2.3). Let ∂Gh denote the points in Sh − G0
h that can be reached in one

step from G0
h under some control. These are the boundary points, and the process

stops on first reaching them. It is only the points in G0
h ∪ ∂Gh that are of interest.

Next we define the basic condition of local consistency. Let uh
n = (uh

1,n, u
h
2,n)

denote the controls that are used at step n. Define Δξhn = ξhn+1 − ξhn and let Eh,α
x,n

denote the expectation given the data to step n (when ξhn has just been computed)
with ξhn = x and control value α = uh

n to be used in the next step. For the game
problem, α = (α1, α2) with αi ∈ Ui. Define a(x) = σ(x)σ′(x). Suppose that there is a
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function Δth(·) (this is obtained automatically when the transition probabilities are
calculated; see [19] and the example below) such that (this defines the functions bh(·)
and ah(·))

Eh,α
x,nΔξhn ≡ bh(x, α)Δth(x, α) = b(x, α)Δth(x, α) + o(Δth(x, α)),

covh,α
x,n [Δξhn − Eh,α

x,nΔξhn] ≡ ah(x, α)Δth(x, α) = a(x)Δth(x, α) + o(Δth(x, α)),

lim
h→0

sup
x∈G,α∈U

Δth(x, α) = 0.

(5.1)

It can be seen that the chain has the “local properties” (conditional mean change and
conditional covariance) of the diffusion process.7 One can always select the transition
probabilities such that the intervals Δth(x, α) do not depend on the control variable,
although the general theory in [19] does not require it. Such a simplification is often
done in applications to simplify the coding. Let ph(x, y|α) denote the probability that
the next state is y given that the current state is x and control pair α = (a1, α2) is
used.

Under our condition that the controls are separated in b(·), in that b(x, α) =
v1(x, α1) + b2(x, α2), if desired one can construct the chain so that the controls are
“separated” in which the one-step transition probability has the form

(5.2) ph(x, y|α) = ph1 (x, y|α1) + ph2 (x, y|α2).

A useful representation of the transition probabilities. For the convergence proof,
it is useful to have the chains for each h defined on the same probability space, no
matter what the controls.8 This is done as follows. Let {χn} be a sequence of mutually
independent random variables, uniformly distributed on the interval [0, 1] and such
that {χl, l ≥ n} is independent of {ξhl , uh

l , l ≤ n}. For each value of x = ξhn, α = uh
n,

arrange the finite number of possible next states y in some order and divide the interval
[0, 1] into successive subintervals whose lengths are ph(x, y|α). Then for x = ξhn, α =
uh
n, select the next state according to where the (uniformly distributed) random choice

for χn falls. The same random variables {χn} will be used in all cases, for all controls
and values of h. This representation is used only for theoretical purposes.

An example of an approximating chain. The simplest case for illustrative purposes
is one-dimensional, and where h is small enough so that h|b(α, x)| ≤ σ2(x). Then we
can use the transition probabilities and interval, for x ∈ G0

h [19, Chapter 5],

(5.3) ph(x, x± h|α) =
σ2(x) ± hb(x, α)

2σ2(x)
, Δth(x, α) =

h2

σ2(x)
, Δthn =

h2

σ2(ξhn)
.

Admissible controls. Let Fh
n denote the minimal σ-algebra that measures the

control and state data to step n, and let Eh
n denote the expectation conditioned

on Fh
n . An admissible control for player i at step n is a Ui-valued random variable

that is Fh
n -measurable. Let Uh

i denote the set of the admissible control processes for
player i.

A relaxed control for the chain can be defined as follows. Let rhi,n(·) be a proba-

bility distribution on the Borel sets of Ui such that rhi,n(A) is Fh
n -measurable for each

7Whether the chain is Markovian or not depends on the form of the control that is applied. But
the transition probability will always be locally consistent.

8This representation of the chain is not needed and was not used for the single player problem or
for the zero-sum game. For the nonzero-sum game, it provides a way of dealing with the difficulties
in the convergence proof that were described in the introduction.
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Borel set A ∈ Ui. Then the rhi,n(·) are said to be relaxed controls for player i at step
n. As for the model (2.3), an ordinary control at step n can be represented by the
relaxed control at step n defined by rhi,n(A) = I{uh

i,n∈A} for each Borel set A ⊂ Ui.

Define rhn(·) by rhn(A1 × A2) = rh1,n(A1)r
h
2,n(A2), where the Ai are Borel sets in Ui.

The associated transition probability is
∫
U
ph(x, y|a)rhn(dα). If rhi,n(A) can be written

as a measurable function of ξhn for each Borel set A, then the control is said to be
relaxed feedback. Under any feedback (or relaxed feedback or randomized feedback)
control, the process ξhn is a Markov chain. More general controls, under which there
is more “past” dependence and the chain is not Markovian, will be used as well. Let
Ch
i denote the set of control strategies for ξhn.

The cost function. Discretize the costs as follows. The cost functions are the
analogs of (2.2) or (2.4). The cost rate for player i is ki(x, αi)Δth(x, α). The stop-
ping costs are gi(·), and τh denotes the first time that the set G0

h is exited. Let
Wh

i (x, uh
1 , u

h
2 ) denote the expected cost for player i under the control sequences

uh
i = {uh

i,n, n ≥ 0}, i = 1, 2. The numerical problem is to solve the game problem
for the approximating chain.

Continuous-time interpolations. The discrete-time chain ξhn is used for the numer-
ical computations. However, for the proofs of convergence, we use a continuous-time
interpolation ξh(·) of {ξhn} that will approximate x(·). This will be a continuous-time

process that is constructed as follows. Define Δthn = Δth(ξhn, u
h
n) and thn =

∑n−1
i=0 Δthi .

Define ξh(t) = ξhn on [thn, t
h
n+1). Define the continuous-time interpolations uh

i (·) of the
control actions for player i by uh

i (t) = uh
i,n, t

h
n ≤ t < thn+1, and let its (continuous-

time) relaxed control representation be denoted by rhi (·). Define rh(·) = (rh1 (·), rh2 (·)),
with time derivative rh,′(·). We use Uh

i for the set of continuous-time interpolations
of the control for player i as well.

An alternative interpolation. In [19] an interpolation called ψh(·) was used as well,
and had some advantages in simplifying the proofs there. We describe it briefly so
that the convergence results of [19] can be used where needed. For each h, let νhn , n =
0, 1, . . . , be mutually independent and exponentially distributed random variables
with unit mean and that are independent of {ξhn, uh

n, n ≥ 0}. Define Δτhn = νhnΔthn,

and τhn =
∑n−1

i=0 Δτhi . Define ψh(t) = ξhn and uh
ψ(t) = uh

n on [τhn , τ
h
n+1). Now decompose

ψh(·) in terms of the continuous-time compensator and martingale. Since the intervals
between jumps are Δthnν

h
n , where νhn is exponentially distributed and independent of

Fh
n , the jump rate of ψh(·) when in state x and under control value α is 1/Δth(x, α).

Given a jump, the distribution of the next state is given by the ph(x, y|α), and the
conditional mean change is bh(x, α)Δth(x, α). So we can write

(5.4) ψh(t) = x(0) +

∫ t

0

bh(ψh(s), uh
ψ(s))ds + Mh(t),

where the martingale Mh(t) has quadratic variation process
∫ t

0
ah(ψh(s), uh

ψ(s))ds.

Under any feedback (or randomized feedback) control, the process ψh(·) is a continuous-
time Markov chain.

It can be shown that [19, sections 5.7.3 and 10.4.1] there is a martingale ŵh(·)
(with respect to the filtration generated by the state and control processes possibly
augmented by an “independent” Wiener process) such that

(5.5) Mh(t) =

∫ t

0

σh(ψh(s), uh
ψ(s))dŵh(s) =

∫ t

0

σ(ψh(s))dŵh(s) + εh(t),
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where σh(·)[σh(·)]′ = ah(·) (recall the definition of ah(·) in (5.1)), and where ŵh(·)
has quadratic variation It and converges weakly to a standard Wiener process. The
martingale εh(·) is due to the difference between σ(x) and σh(x) (recall the o(Δth)
terms in (5.1)) and

(5.6) lim
h→0

sup
uh

E sup
s≤t

|εh(s)|2 = 0

for each t. Thus, where rhψ(·) is the relaxed control representation of uh
ψ(·),

(5.7) ψh(t) = x(0) +

∫ t

0

∫
U

bh(ψh(s), α)rh,′ψ (dα, s)ds +

∫ t

0

σ(ψh(s))dŵh(s) + εh(t).

The interpolations ξh(·) and ψh(·) are asymptotically equivalent, as seen in the
following theorem, so that any asymptotic results for one are also asymptotic results
for the other. We will use ξh(·).

Theorem 5.1. Assume the local consistency (5.1). Then the time scales with
intervals Δthn and Δτhn are asymptotically equivalent.

Proof. Let fh(t) = min{n : thn ≥ t}. Write Δτhn−Δthn = (νhn−1)Δthn, a martingale
difference. By the martingale property we have

E sup
n<fh(t)

|thn − τhn |2 = E sup
n<fh(t)

∣∣∣∣∣
n∑

i=0

Δthi (vhn − 1)

∣∣∣∣∣ ≤ 4E

fh(t)∑
i=0

[Δthi ]2E(vhi − 1)2,

which goes to zero as h → 0 by the last line of (5.1). The result is the same if we
define fh(t) = min{n : τhn ≥ t}.

A representation of the approximating chain. By (5.1), we can write

ξhn+1 = ξhn + bh(ξhn, u
h
n)Δthn + βh

n,

where βh
n is a martingale difference with Eh

n[βh
n][βh

n]′ = ah(ξhn, u
h
n)Δthn. There are

martingale differences δwh
n with conditional (given Fh

n ) covariance ΔthnI such that
βh
n = σh(ξhn, u

h
n)δwh

n [19, section 10.4.1], [14, section 6.6]. Let wh(·) denote the

continuous-time interpolation of
∑n−1

i=0 δwh
n with intervals Δthn. Then, abusing no-

tation, we can write

(5.8)
ξh(t) = x(0) +

∫ t

0

bh(ξh(s), uh(s))ds +

∫ t

0

σh(ξh(s))dwh(s) + εh(t),∫ t

0

σh(ξh(s), uh(s))dwh(s) =

∫ t

0

σ(ξh(s))dwh(s) + εh(t),

where εh(·) satisfies (5.6) and is due to the O(Δth) approximation of ah(x, α) by
σ(x)σ(x)′.

Note on convergence. For any subsequence h → 0, there is a further subsequence
(also indexed by h for simplicity) such that (ξh(·), rh1 (·), rh2 (·), wh(·), τh) converges
weakly to random processes (x(·), r1(·), r2(·), w(·), τ), where ri(·) is a relaxed con-
trol for player i, (x(·), r1(·), r2(·), w(·), I{τh≤·}) is nonanticipative with respect to the
standard vector-valued Wiener process w(·), and, writing r(·) = (r1(·), r2(·)), the set
satisfies

x(t) = x(0) +

∫ t

0

∫
U

b(x(s), α)r′(dα, s)ds +

∫ t

0

σ(x(s))dw(s).
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Also, Wh
i (x, rh1 , r

h
2 ) → Wi(x, r1, r2). The proofs of these facts are the same as for the

one-player control case in [19, Chapter 10].
On the construction of δwh(·). A special case. Full details for the general method

of constructing wh(·) are in [19, section 10.4.1], [14, section 6.6]. To illustrate the
idea, we will consider a very common case that will be needed in Theorems 5.2, 5.3,
5.4, 5.6, and 6.2. Suppose that σ(·) = σ is a constant. Suppose that the components
of x can be partitioned as x = (x1, x2), and σ can be partitioned as σ = [ σ1 0

0 0 ], where
the dimension of x1 is d1, and σ1 is a square and invertible matrix of dimension d1.
Partition the ah(·) in the second line of (5.1) as

ah(x, α) =

[
ah1 (x, α) ah1,2(x, α)
ah2,1(x, α) ah2 (x, α)

]
.

As h → 0, ah1 (·) → σ1[σ1]
′ and all other components go to zero, all uniformly in (x, α).

Write the analogous partition wh(·) = (wh
1 (·), wh

2 (·)). For any Wiener process w2(·)
that is independent of the other random variables, we can let wh

2 (·) = w2(·). The only
important component of wh(·) is wh

1 (·), and we can write

(5.9)

δwh
1,n ≡ wh

1 (thn+1) − wh
1 (thn)

= [ah1 (ξhn, u
h
n)]−1/2

[
ξh1,n+1 − ξh1,n −

∫ thn+1

thn

∫
U

bh1 (ξhn, α)rh,′(s, dα)ds

]

= [σ1]
−1

[
ξh1,n+1 − ξh1,n −

∫ thn+1

thn

∫
U

bh1 (ξhn, α)rh,′(s, dα)ds

]
+ δε1,hn ,

where δε1,hn is due to the approximation of ah1 (·) by σ1[σ1]
′, and its continuous-time

interpolation satisfies (5.6). If an ordinary control is used, then the double integral is
just b1(ξ

h
n, u

h
n)Δthn.

5.2. First approximations to the chain. Approximation results analogous
to those of Theorems 3.1–3.3 can be proved and will be used in the next section.
These approximations are of independent interest and should be quite useful for other
convergence and approximation analyses for numerical approximations. Theorem 5.2
concerns an approximation to (5.8) that is based on the same wh(·) process and will
be used in Theorem 6.1. The wh(·) process depends on the control. For the constant
σ-case, Theorem 5.3 shows that this control dependence is small and can be factored
out, and (uniform in the control) approximations in terms of an independently and
identically distributed (i.i.d.) driving sequence are developed. Once this control
dependence is factored out, more convenient approximations to the chain can be
obtained. This is done in Theorem 5.4, and the results will be used in Theorem 6.2.

Consider the representation (5.8), and for μ, δ,Δ as used in Theorem 3.3 and the

rh(·) = (rh1 (·), rh2 (·)) in (5.8), define the approximation uμ,δ,Δ,h
i (·), i = 1, 2, analogously

to what was done above Theorem 3.3. For the process wh(·) that appears in (5.8)
under the original control rh(·), define the process

(5.10) ξμ,δ,Δ,h(t) = x(0)+

∫ t

0

b(ξμ,δ,Δ,h(s), uμ,δ,Δ,h(s))ds+

∫ t

0

σ(ξμ,δ,Δ,h(s))dwh(s).

Let rμ,δ,Δ,h
i (·) denote the relaxed control representation of uμ,δ,Δ,h

i (·). The process
defined by (5.10) is not a Markov chain even if the controls are feedback, since the
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wh(·) is obtained from the process (5.8) under rh(·) and not under the rμ,δ,Δ,h
i (·), i =

1, 2. Let Wμ,δ,Δ,h
i (x, rμ,δ,Δ,h

1 , rμ,δ,Δ,h
2 ) denote the cost for the process (5.10). Define

the discrete-time system

(5.11)

ξ̃μ,δ,Δ,h(nΔ + Δ) = ξ̃μ,δ,Δ,h(nΔ) +

∫ nΔ+Δ

nΔ

b(ξ̃μ,δ,Δ,h(nΔ), uμ,δ,Δ,h(s))ds

+σ(ξ̃μ,δ,Δ,h(nΔ))[wh(nΔ + Δ) − wh(nΔ)],

with initial condition x(0) and piecewise-constant continuous-time interpolation de-

noted by ξ̃μ,δ,Δ,h(·). Let W̃μ,δ,Δ,h
i (x, rμ,δ,Δ,h

1 , rμ,δ,Δ,h
2 ) denote the associated cost. We

have the following analogue of Theorem 3.3.
Theorem 5.2. Assume Condition A2.1. Given (μ, δ,Δ) > 0, approximate rhi (·)

as noted above to get rμ,δ,Δ,h
i (·). Given ε > 0 and t < ∞, there are με > 0, δε > 0,

Δε > 0, and κε > 0 such that, for μ ≤ με, δ ≤ δε,Δ ≤ Δε and δ/Δ ≤ κε,

(5.12) lim suph→0 sup
x,rh1 ,r

h
2

E sup
s≤t

∣∣ξμ,δ,Δ,h(s) − ξh(s)
∣∣ ≤ ε,

and if Condition A2.2 holds in addition, then

(5.13) lim suph→0 sup
x,rh1 ,r

h
2

∣∣∣Wμ,δ,Δ,h
i (x, rμ,δ,Δ,h

1 , rμ,δ,Δ,h
2 ) −Wh

i (x, rh1 , r
h
2 )
∣∣∣ ≤ ε.

The expressions (5.12) and (5.13) hold if only one of the controls is approximated and

also if ξμ,δ,Δ,h(·) and Wμ,δ,Δ,h
i (·) are replaced by ξ̃μ,δ,Δ,h(·) and W̃μ,δ,Δ,h

i (·), respec-
tively.

Comments on the proof. For notational simplicity in the proof, drop the su-
perscripts μ, δ. Define δξΔ,h(t) = ξ̃Δ,h(t) − ξh(t). Then, following the procedure of
Theorem 3.1, write

δξΔ,h(t) =

∫ t

0

∫
U

[
b(ξΔ,h(s), α) − bh(ξh(s), α)

]
rh,′(dα, s)ds

+

∫ t

0

[
σ(ξΔ,h(s)) − σ(ξh(s))

]
dwh(s)

+

∫ t

0

∫
U

b(ξΔ,h(s), α)
[
rΔ,h,′(dα, s) − rh,′(dα, s)

]
ds + εh1 (t).

The wh(·), εh1 (·) are martingales with respect to the filtration induced by the data
(ξh(·), rh(·), wh(·)), the martingale wh(·) has quadratic variation9 It, and εh1 (·) satisfies
(5.6). Partition the last integral analogously to what was done in (3.6), with intervals
λ. The process ξΔ,h(·) satisfies the following version of (3.7):

sup
μ,δ,Δ

sup
rh

sup
lλ≤t

E sup
s≤λ

∣∣ξΔ,h(lλ + s) − ξΔ,h(lλ)
∣∣2 = O(λ) + sup Δth(x, α).

Now, using the martingale property and the Lipschitz condition, one proceeds
in the same way that would be used for approximations to (2.3) in Theorem 3.1.

9Actually, they are martingales only when evaluated at the time points thn, but the difference is
unimportant, since they are constant between such times.
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For example, for some constant K (which depends on t), we have the inequality

E sup
s≤t

∣∣δξΔ,h(s)
∣∣2 ≤ K

∫ t

0

E
∣∣δξΔ,h(s)

∣∣2 ds + κλ,h(t) + O(λ)

+KE

∣∣∣∣∣∣
[t/λ]−1∑
l=0

∫ (l+1)λ

lλ

b(ξΔ,h(lλ), α)
[
rΔ,h,′(dα, s) − rh,′(dα, s)

]
ds

∣∣∣∣∣∣
2

,

where κλ,h(t) is due to the εh1 (·) and to the use of ξΔ,h(lλ) in the second line, and
sups≤t |κλ,h(s)| → 0 as λ → 0, h → 0. For each small λ, the last term in the above ex-
pression goes to zero uniformly in h as (μ, δ,Δ) → 0, by the method of approximation
of the controls. Then (5.12) follows from the resulting inequality and the Bellman–
Gronwall lemma. The inequality (5.13) follows from (5.12) and Condition A2.2.

5.3. Representations and approximations of the chain with control-
independent driving noise. The driving noise wh(·) depends on the path and
control. In section 6 it will be useful to have approximations to ξh(·) (uniform in
the control and initial condition), where the driving noise increments are independent
of the path and control. To accomplish this we will need to factor wh(·) as wh(·) =
w̄h(·)+ζh(·), where w̄h(·) does not depend on the control and ζh(·) is “asymptotically
negligible.” We will work with the model described at the end of subsection 5.1,
where σ = [ σ1 0

0 0 ], the dimension of x1 is d1, and σ1 is a square and invertible matrix
of dimension d1. The approximation and representation results of Theorems 5.3, 5.4,
and 5.6 below will hold for such a form. But to simplify the notation and development,
we will work with two specific forms, each of which is typical of a large class of models
and numerical algorithms. Case 1 below arises when one uses the so-called central-
difference approximation to get the transition probabilities. Case 2 arises when one
uses a central-difference approximation for the nondegenerate part and a one-sided
or “upwind” approximation for the degenerate part [19, Chapter 5]. Both forms are
locally consistent. Let bi(·) denote the ith component of b(·).

Case 1. Suppose that d1 = v, so that σ is invertible. For a = σσ′, suppose
that ai,i −

∑
j:j 	=i |ai,j | ≥ 0. The condition can be weakened if the approximation

intervals can depend on the coordinate direction, or if a linear transformation of the
state space is used to diagonalize σσ′ [19, Chapter 5]. Let ei denote the unit vector
in the ith coordinate direction. A central-difference version of the canonical form of
the transition probabilities and interpolation interval in [19, equation (3.15), Chapter
5] is10

(5.14)

ph(x, x± eih|α) =
qi,i ± hbi(x, α)/2

Q
, Δth(x, α) = Δth =

h2

Q
,

ph(x, x + eih + ejh|α) = ph(x, x− eih− ejh|α) =
a+
i,j

2Q
,

ph(x, x + eih− ejh|α) = ph(x, x− eih + ejh|α) =
a−i,j
2Q

,

Q =
∑
i

ai,i −
∑

i,j:i 	=j

|ai,j | /2, qii = ai,i/2 −
∑
j:j 	=i

|ai,j |/2.

10The form (5.14) and Cases 1 and 2 are selected for specificity in the constructions to follow.
Any of the approximations in [19, Chapter 5] could be used, provided that σ(·) is constant.
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We suppose that qi,i − h|bi(x, α)| ≥ 0. A simple computation using (5.14) shows
that bh(x, α) = b(x, α) and ah(x, α) = σσ′ + O(Δth). Also, by (5.14) we can write
Δthn = Δth. In one dimension, (5.14) reduces to (5.3), where q1,1 = σ2/2.

Case 2. Suppose that σ can be partitioned as in the last paragraph of subsec-
tion 5.1; i.e., σ = [ σ1 0

0 0 ] where the dimension of x1 is d1, and σ1 is a square and
invertible matrix of dimension d1. The problem concerns the effect of the degener-
ate part. The following canonical model for such cases is motivated by the general
model of [19, Chapter 5]. Define b̄ = supx,α

∑v
i=d1+1 |bi(x, α)|. For this case, redefine

Δth = Δth(x, α) = h2/[Q + hb̄]. Use the form (5.14) for i ≤ d1, with Q replaced by
Qh = Q + hb̄. For i = d1 + 1, . . . , v, use

ph(x, x± eih|α) =
hb±i (x, α)

Qh
,

and use

ph(x, x|α) =
hb̄− h

∑v
i=d1+1 |bi(x, α)|
Qh

.

We still have ah(x, α) = σσ′ + O(Δth) and bh(x, α) = b(x, α). Let Eh
n denote the

expectation given all the data up to step n.
Theorem 5.3. Use either of the models from Case 1 or Case 2. Then we can

write δwh
n = δw̄h

n + δζhn , where the components are martingale differences. The δw̄h
n

are i.i.d., {δw̄h
l , l ≥ n} is independent of {ξhl , uh

l , l ≤ n}, and the components have
values O(h). Also, for either case, Eh

nδw̄
h
n[δw̄h

n]′ = Δth, and Eh
nδζ

h
n [δζhn ]′ = O(hΔth),

Eh
nδζ

h
n [δw̄h

n]′ = O(hΔth).
Proof. The proof is a simple construction. The basic approach is to first define

δwh
n as though b(·) = 0 and ah(x, α) = σσ′. The result will define δw̄h

n. Then
δζhn is defined to make up the difference. The facts that the dominant terms in the
transition probabilities in (5.14) do not depend on h and that the contributions due
to the drift (hence control and state) are proportional to h make this possible. To
avoid excessive notation and concentrate on the essential ideas, we start with Case 1
in one dimension. The treatment of the higher-dimensional model follows the same
pattern and is illustrated via a two-dimensional case. Then the minor modifications
that are required for Case 2 are discussed. The procedure in the general case should
be apparent from the three examples.

Case 1, one dimension. We can write the double integral term in (5.9) as
b(ξhn, u

h
n)Δth, since bh(·) = b(·). To construct the state transitions, we will use the

representation in terms of the random variables χn described in the paragraph below
(5.2). In one dimension (5.14) is (5.3) and ph(x, x ± h|α) = 0.5 ± hb(x, α)/[2σ2],
Δth = h2/σ2. Now, define ξhn+1 − ξhn by setting it equal to h if the random sample of
χn falls in [0, .5+hb(ξhn, u

h
n)/2σ2], and set it equal to −h otherwise. The “conditional

mean” change is 2h[hb(ξhn, u
h
n)/2σ2] = b(ξhn, u

h
n)Δth, which is just what is required by

the local consistency condition (5.1).
Define the martingale difference term δw̄h

n as follows. Divide [0, 1] into the two
segments [0, .5], [.5, 1]. If the random sample of χn falls in [0, .5], set δw̄h

n = h/σ;
otherwise set it equal to −h/σ. It is what δwh

n would be if b(·) = 0 and ah(ξhn, u
h
n) = σ2.

Now define δζhn to make up for the difference. There are two components to δζhn . One
component is due to the use of σ in lieu of [ah(ξhn, u

h
n)]1/2 as in the last line of (5.9).

Since ah(x, α)−σ2 = O(h2), we have [ah(x, α)]1/2−σ = O(h2), and the corresponding
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error in computing the sample values of δwh
n is O(h3). The associated interpolated

error process clearly satisfies (5.6).
The second component of δζhn is due to the neglect of the term b(·) in constructing

δw̄h
n. We handle this as follows. Suppose that b(ξhn, u

h
n) ≥ 0 (the computation is

analogous if b(ξhn, u
h
n) < 0). Then, for this second component,11

δζhn = (2h− b(ξhn, u
h
n)Δth)/σ if χn ∈ [.5, .5 + hb(ξhn, u

h
n)/2σ2],

and it equals −b(ξhn, u
h
n)Δth/σ otherwise. The conditional variance of δζhn is

Eh
n

[
2h− b(ξhn, u

h
n)Δth/σ

]2 hb(ξhn, u
h
n)

2σ2

+Eh
n

[
b(ξhn, u

h
n)Δth/σ

]2 (
1 − hb(ξhn, u

h
n)

2σ2

)
= O(h)Δth,

uniformly in the controls. The δζhn term depends on the control, but the δw̄h
n term does

not. It is simply a Bernoulli sequence, with {δw̄h
l , l ≥ n} independent of the data up

to step n. Also, Eh
n[δw̄h

n]2 = Δth, Eh
nδw̄

h
nδζ

h
n = O(h)Δth, and Eh

n[δζhn ]2 = O(h)Δth,
uniformly in the controls.

Now, construct the continuous-time martingales w̄h(t), ζh(t) by interpolating the

sums
∑n−1

i=0 δw̄h
i and

∑n−1
i=0 δζhi with intervals Δth. Write wh(t) = w̄h(t)+ ζh(t). The

w̄h(·) does not depend on the control, has quadratic variation It, and w̄h(s), s ≥ t, is
independent of ξh(s), uh(s), s ≤ t. The quadratic variation of ζh(·) (and its quadratic
covariation with w̄h(·)) is O(h), uniformly in the controls and initial condition.

Comment on the two-dimensional problem for Case 1. The following compu-
tation illustrates the procedure in higher dimensions. Now σ is a 2 × 2 nonsingu-
lar matrix. Let a1,2 ≥ 0, bi(ξ

h
n, u

h
n) ≥ 0, for specificity. Divide the unit interval

into successive subintervals of lengths q1,1/Q, q1,1/Q, q2,2/Q, q2,2/Q, a1,2/2Q, a1,2/2Q.
Again, the goal is to reproduce the transition probabilities (5.14). If χn falls in
[0, (q1,1 + hb1(ξ

h
n, u

h
n))/Q], set ξh1,n+1 − ξh1,n = h, and ξh2,n+1 − ξh2,n = 0. If χn falls in

[(q1,1+hb1(ξ
h
n, u

h
n))/Q, 2q1,1/Q], then set ξh1,n+1−ξh1,n = −h, and ξh2,n+1−ξh2,n = 0. Do

the analogous computation for the second component, using the two intervals of length
q2,2/Q. If χn falls in the next to last of the six subintervals, then set ξhn+1−ξhn = (h, h),
and set it equal to (−h,−h) if χn falls in the last of the six subintervals. Define δw̄h

n

by repeating the above with b(x, α) = 0 and premultiplying by σ−1 as follows: For
χn in the six successive subintervals, define

δw̄h
n = σ−1

{(
h
0

)
,

(
−h
0

)
,

(
0
h

)
,

(
0
−h

)
,

(
h
h

)
,

(
−h
−h

)}
.

The procedure is analogous in any dimension.
Comment on Case 2. For ease of presentation, let us work in two dimensions,

where only the first component of x(·) has a Wiener process driving term. Then
b̄ = maxx,α |b2(x, α)|, Q = 2q1,1 = [σ1]

2, and Qh = Q + hb̄. Slightly modifying
the procedure used for Case 1, divide the unit interval into successive subintervals of
lengths

q1,1/2

Qh
,
q1,1/2

Qh
,
hb̄

Qh
,

11The 2h in the formula is due to the fact that on the interval χn ∈ [.5, .5 + hb(ξhn, u
h
n)/2σ2], the

difference ξhn+1 − ξhn was implicitly assigned a value −h when δw̄h
n was constructed, when it should

have been assigned the value +h.
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and divide the last subinterval into two further subintervals of lengths

h|b2(x, α)|/Qh, h[b̄− |b2(x, α)|]/Qh,

so that there are now four subintervals. First let us construct δξhn = ξhn+1 − ξhn.
Analogously to what was done in the one-dimensional example of Case 1, set δξh2,n = 0

if χn ∈ [0, Q/Qh]. If χn ∈ (Q/Qh, 1], set δξh1,n = 0 and δw̄h
1,n = 0. If the random

sample of χn falls into the fourth subinterval, set δξh2,n = 0. If it falls into the third

subinterval, set δξh2,n = h sign(b2(ξ
h
n, u

h
n)). If χn ∈ [0, (q11 + hb1(ξ

h
n, u

h
n))/Qh], set

δξh1,n = h, and set it equal to −h if χn ∈ [(q11 + hb1(ξ
h
n, u

h
n))/Qh, 2q11/Q

h].

To complete the construction of δw̄h
1,n, repeat the procedure with b(·) = 0 and

divide by σ1. In particular, δw̄h
1,n = h/σ1 if χn ∈ [0, q1,1/Q

h]. It is −h/σ1 if χn ∈
(q1,1/Q

h, 2q1,1/Q
h], and it is zero otherwise. The variance is h2/Qh, which is the

current value of Δth. The value of the second component δw̄h
2,n is unimportant since

it is eventually multiplied by zero. So, let us use an independent Bernoulli sequence
with values ±h/

√
Qh, each taken with probability 1/2.

These constructions yield (5.14) with Δth = h2/Qh. The error terms ζhn for this
and the previous example are computed using a procedure that is analogous to that
in Case 1.

In the next theorem, σ(·) is just the constant σ. The theorem implies that ξh(·)
can be written in the form

(5.15) ξh(t) = x(0) +

∫ t

0

∫
U

b(ξh(s), α)rh,′(dα, s)ds +

∫ t

0

σdw̄h(s) + εh2 (t),

where εh2 (·) equals εh1 (·) plus a stochastic integral with respect to ζh(·), and satisfies
(5.6). Since the martingale w̄h(·) does not depend on the control and is essentially
the sum of i.i.d. zero mean random variables of size O(h), the form (5.15) can be used
to obtain approximation theorems of the type in Theorems 3.1–3.3. The controls can
be space and time discretized with arbitrarily small change in the costs, just as in the
cited theorems. The quadratic variation process of w̄h(·) is It.

Theorem 5.4. Assume Condition A2.1 and the models of Theorem 5.3. Define

(5.16) ξ̄h(t) = x(0) +

∫ t

0

∫
U

b(ξ̄h(s), α)rh,′(dα, s)ds +

∫ t

0

σdw̄h(s).

Then, for each t > 0,

(5.17) lim
h→0

sup
x(0),rh

E sup
s≤t

∣∣ξh(s) − ξ̄h(s)
∣∣2 = 0.

If Condition A2.2 is assumed as well, then the costs for the two processes are arbitrarily
close, uniformly in the control and initial condition.

Now, given (μ, δ,Δ) > 0, let uμ,δ,Δ,h
i (·) be the delayed and discretized approxi-

mation of rhi (·) that would be defined by the procedure described above Theorem 3.3,
with the relaxed control representation of the pair (i = 1, 2) of approximations being
rμ,δ,Δ,h(·). Define the system

(5.18)
ξ̄μ,δ,Δ,h(t) = x(0) +

∫ t

0

∫
U

b(ξ̄μ,δ,Δ,h(s), α)rμ,δ,Δ,h,′(dα, s)ds

+

∫ t

0

σdw̄h(s).
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Then for t > 0 and γ > 0 there are positive numbers μγ , δγ ,Δγ , hγ , κγ , such that for
μ ≤ μγ , δ ≤ δγ , Δ ≤ Δγ , h ≤ hγ , δ/Δ ≤ κγ we have

(5.19) sup
rh,x(0)

E sup
s≤t

∣∣ξ̄μ,δ,Δ,h(s) − ξ̄h(s)
∣∣2 ≤ γ.

If Condition A2.2 is assumed as well, then for small (μ, δ,Δ, h) the costs are arbitrarily
close, uniformly in the control and initial condition.

Comment on the proof. The proof of the various assertions follows the lines of
the arguments used in Theorem 5.2, exploiting the martingale properties and the
Lipschitz condition. The details are very similar and are omitted.

The terms [w̄h(nΔ + Δ) − w̄h(nΔ)], n = 0, 1, . . ., are i.i.d. and have orthogonal
components. The covariance is Δ times the identity matrix, and the processes con-
verge to normally distributed random variables as h → 0. It will be useful to quantify
this closeness for use in the next section. This will be done in Theorem 5.6, which
requires the following strong approximation theorem for i.i.d. random variables.

Lemma 5.5 (see [3, Theorem 3]). Let {φn} be a sequence of R
d-valued i.i.d.

random variables with zero mean and bounded (2 + δ)th moment, where 0 < δ ≤ 1.
Suppose that the covariance matrix Γ is nonsingular. Then without changing the
distribution, one can redefine the sequence on a richer probability space together with
a Wiener process B(·) with covariance matrix Γ such that

(5.20)

∣∣∣∣∣∣
∑
i≤n

φi −B(n)

∣∣∣∣∣∣ = o(n0.5−c)

w.p.1 for large n, for some 0 < c < 0.5.
The following theorem asserts that if σ(·) is constant, then the process defined by

(5.18) can be written essentially as the discrete-time system (2.5), which we now write
as xμ,δ,Δ,h(·), since the discretized controls are used. Keep in mind that the controls
in (5.18) are obtained from the discretization of the relaxed control representation of
the interpolation of {uh

n}, the original controls for the chain.
Theorem 5.6. Assume Conditions A2.1 and A2.2 and the models used in The-

orem 5.3. Then we can define the probability space such that w̄h(t) = w(t) + ρh(t),
where w(·) is a vector-valued Wiener process whose covariance matrix is the identity.
For each t > 0, E sups≤t |ρh(s)|2 → 0 as h → 0. Let xμ,δ,Δ,h(·) be the solution to
(2.5) with the same Wiener process w(·) and with the controls that are used in (5.18).
Then, for any t > 0,

(5.21) lim
h→0

sup
rh,x(0)

E sup
s≤t

∣∣xμ,δ,Δ,h(s) − ξ̄μ,δ,Δ,h(s)
∣∣2 = 0.

Proof. Since we have assumed that the same controls are used for both systems
(2.5) and (5.18), some explanation is needed. Consider Case 1 and define random
variables φn by δw̄h

n = φn

√
h2/Q. (For Case 2, the development is the same, but

with the normalization factor Qh replacing the normalization factor Q.) This can
be done since the parameter h is only a linear scale factor in the construction of the
δw̄h

n. Then {φn} satisfies the conditions of Lemma 5.5, and we can suppose that
the probability space is such that (5.20) holds for some Wiener process B(·), whose
covariance matrix will be the identity. In fact, instead of starting with {φn}, we can
start with the pair {φn, χn}, with the same law as used originally. Let us do this,
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but consider only the approximation of the sums of the φn by B(·) as in Lemma 5.5.
Then, on this probability space define δw̄h

n in terms of the φn, as above. Without loss
of generality, we can suppose that ξh0 is also defined on this space. The next step is
to define uh

0 , which is just a function of ξh0 , on this space. For convenience we use
the same notation for the controls and states as on the original space. Continuing,
define ξh1 on the space by constructing it from ξh0 , u

h
0 , χ

h
0 as done in Theorem 5.3.

This procedure can be continued so that all of {ξhn, uh
n, δw̄

h
n} is defined on the space,

and with the same law as used originally. Now, given the control sequence {uh
n}, the

continuous-time interpolation can be time and space discretized and delayed as in
Theorem 5.4.12

From Lemma 5.5, we have, w.p.1 for large n,

(5.22)

∣∣∣∣∣
n∑

i=0

hφi − hB(n)

∣∣∣∣∣ = h o(n0.5−c).

The process w(·) = hB(·/Δth)/
√
Q is a Wiener process whose covariance is the iden-

tity. By the above arguments and (5.22), there is a constant c > 0 and a th → 0 as
h → 0 such that

(5.23)

∣∣∣∣∣∣
t/Δth∑
i=0

δw̄h
i − w(t)

∣∣∣∣∣∣ = o(t[Δth]c)

w.p.1 for t ≥ th and small h. By the above arguments concerning the approximation
of w̄h(·) by w(·), we can write w̄h(t) = w(t) + ρh(t), where the process ρh(·) has
independent increments, and limh→0 E sups≤t |ρh(s)|2 = 0. Rewrite (5.18) as

ξ̄μ,δ,Δ,h(t) = x(0) +

∫ t

0

∫
U

b(ξ̄μ,δ,Δ,h(s), α)rμ,δ,Δ,h,′(dα, s)ds + σdw(t) + σρh(t),

and write (2.5) with the controls rμ,δ,Δ,h(·) as (in interpolated form)

(5.24) xμ,δ,Δ,h(t) = x(0) +

∫ t

0

∫
U

b(xμ,δ,Δ,h(s), α)rμ,δ,Δ,h,′(dα, s)ds + σdw(t).

From this point the proof is standard, using the Lipschitz condition and the martingale
properties.

6. An approximate equilibrium for the diffusion process is an approx-
imate equilibrium for the chain and vice versa.

Representations of the transition probability and controls. In the next two theo-
rems, we will use the representations of the transitions of the Markov chain in terms
of the i.i.d. random variables {χn} discussed in the paragraph after (5.2), and the
similar representation for the realizations of the rule (4.2) in terms of the random
variables {θl} noted in the discussion just below the statement of Theorem 4.1. This
ensures that the sample path of the approximating chain depends only on the selected
control values and that the selected control value in (4.2) depends only on the past
values of the control and Wiener process.

12Actually, it is only required that the controls be approximated and delayed such that the control
applied on [nΔ, nΔ+Δ) is Fh

nΔ−-measurable. The other aspects of the discretization are not needed.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL APPROXIMATIONS FOR GAMES 1967

Theorem 6.1. Assume Conditions A2.1, A2.2, and A4.1. An ε-equil- ibrium
value for (2.1) or (2.3) is an ε1-equilibrium value for the approximating Markov chain,
where ε1 → 0 as ε → 0.

Proof. Let ε > 0 be given. By Condition A4.1, there is an ε-equilibrium strategy
pair for (2.3) under which the solution to (2.3) is well defined. By Theorem 4.1,
without loss of generality, and for small enough μ, δ, and Δ, it can be represented
as in (4.2), where we assume that Δ/δ is an integer, and the pi,k(·) are continuous
in the w-variables. We can suppose without loss of generality that for each n, k, and
i, the rule (4.2) is defined for all possible conditioning u-sequences with values in
Uμ
i , i = 1, 2. Let (c̄Δ1 (·), c̄Δ2 (·)) denote this strategy pair. The strategies c̄Δi (·) depend

on μ and δ as well as on Δ, but for simplicity we suppress that dependence in the
notation.

Recall that when a strategy that is defined by a rule such as (4.2) is applied to
an arbitrary relaxed control, the formula (4.2) is actually applied to the space-time
discretization of that relaxed control, as defined above Theorem 3.3. These strategies
c̄Δi (·) will need to be adapted for use on the chain. To do this, simply replace the
w(·)-samples in (4.2) by samples of the wh(·) process that was used in (5.8) and whose
construction was illustrated in (5.9). Keep in mind that these strategies are used only
for theoretical purposes to prove a convergence theorem. They are not for practical
implementation. For each integer k, the control value uμ,δ,Δ,h

i (kδ) that is obtained
from the rule (4.2) with wh(·) used will be applied to the chain for all steps m such

that thm ∈ [kδ, kδ+δ). The resulting strategies for the chain will be denoted by c̄Δ,h
i (·)

and are in Ch
i .

We want to show that for small enough (μ,Δ, δ), there are ε0 > 0 and h0 > 0,
where ε0 → 0 as ε → 0 such that for h ≤ h0 and any sequence rhi (·) of admissible
relaxed (or ordinary) controls for the chain,

(6.1)
Wh

1 (x, c̄Δ,h
1 , c̄Δ,h

2 ) ≥ Wh
1 (x, rh1 , c̄

Δ,h
2 ) − ε0,

Wh
2 (x, c̄Δ,h

1 , c̄Δ,h
2 ) ≥ Wh

2 (x, c̄Δ,h
1 , rh2 ) − ε0.

The notation Wh
2 (x, c̄Δ,h

1 , rh2 ) implies that player 1 uses strategy c̄Δ,h
1 (·) and player 2

uses relaxed control rh2 (·) (in continuous-time interpolation notation) or an ordinary
control with this relaxed control representation, with the analogous interpretation
when the indices are reversed. The notation Wh

1 (x, c̄Δ,h
1 , c̄Δ,h

2 ) implies that player i

uses strategy c̄Δ,h
i (·), i = 1, 2.

Suppose that the pair c̄Δ,h
i (·), i = 1, 2, is used for the chain. Let r̄μ,δ,Δ,h

i (·), i =
1, 2, denote the (continuous-time interpolation notation) relaxed control represen-
tation of the control actions. Let ξh(·), wh(·), and τh denote the corresponding
continuous-time interpolation of the chain, the “pre-Wiener” process, and the first exit
time, respectively. The sequence (ξh(·), r̄μ,δ,Δ,h

1 (·), r̄μ,δ,Δ,h
2 (·), wh(·), τh) (parametrized

by h for fixed μ, δ,Δ) is tight. Select a weakly convergent subsequence (h → 0) with
the limit denoted by (x(·), r1(·), r2(·), w(·), τ). The set (x(·), r1(·), r2(·), I{τ≤·}) is
nonanticipative with respect to the standard vector-valued Wiener process w(·), and
the set (x(·), r1(·), r2(·), w(·)) solves (2.3). The limit τ is the first hitting time of the
boundary of G by the limit process x(·). The details concerning the tightness, char-
acterization of the limit processes, and boundary hitting times, and that the limit
processes solve (2.3), are the same as for the control problem in [19, Chapters 10, 11].

Henceforth, when weak convergent sequences are dealt with, we will assume (with-
out loss of generality) when needed for simplicity in the argument that the Skorokhod
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representation is used so that all processes are defined on the same probability space
and the weak convergence is equivalent to convergence w.p.1 in the appropriate topol-
ogy [7, Theorem 1.8, Chapter 3].

Under the Skorokhod representation, the rule (4.2) with the wh(·)-samples used
converges w.p.1 to the same rule with the w(·)-samples used, due to the convergence
wh(·) → w(·) and the continuity of the probabilities in (4.2) in the w-variables. Be-
cause of this, the limits ri(·), i = 1, 2, are just realizations of the original ε-equilibrium
strategies c̄Δi (·), i = 1, 2. Since the solution to (2.1) or (2.3) is unique for each admis-
sible pair (control, Wiener process), we can conclude that the probability law of any
limit set (x(·), r1(·), r2(·), w(·)) is the same, no matter what the selected convergent
subsequence. Hence the original set of processes (before the subsequence was taken)
converges weakly to this (unique in the sense of probability law) limit set, where the
control is determined by the rules c̄Δi (·), i = 1, 2.

By the weak convergence,

(6.2) W1(x, c̄
Δ
1 , c̄Δ2 ) ← Wh

1 (x, c̄Δ,h
1 , c̄Δ,h

2 ) ≤ max
r1∈Uh

1

Wh
1 (x, r1, c̄

Δ,h
2 ) = Wh

1 (x, r̂h1 , c̄
Δ,h
2 ),

(6.3) W2(x, c̄
Δ
1 , c̄Δ2 ) ← Wh

2 (x, c̄Δ,h
1 , c̄Δ,h

2 ) ≤ max
r2∈Uh

2

Wh
2 (x, c̄Δ,h

1 , r2) = Wh
1 (x, c̄Δ,h

1 , r̂h2 ).

It can be shown by a weak convergence argument working with the chain for any fixed
h > 0 that the maximizing controls r̂hi (·) exist. But we need only work with control
processes that approximate the maximum values arbitrarily well, and we assume that
the r̂hi (·) are such controls.

It will be shown that

(6.4) lim suph→0W
h
1 (x, r̂h1 , c̄

Δ,h
2 ) ≤ W1(x, c̄

Δ
1 , c̄Δ2 ) + ε + ρ(μ, δ,Δ),

where ρ(μ, δ,Δ) → 0 as (μ, δ,Δ) → 0, with the analogous result for indices 1, 2

interchanged. Inequalities (6.2), (6.3), and (6.4) imply that if player 2 uses c̄Δ,h
2 (·),

then player 1 cannot do better (asymptotically as h → 0 and modulo ρ(μ, δ,Δ) + ε)

than by using c̄Δ,h
1 (·), with the analogous result holding for the other player. This

last fact implies the theorem since (μ, δ,Δ) can be made as small as desired.

Now (6.4) will be shown. Let {uμ,δ,Δ,h
1 (lδ)} denote the values that are obtained

from r̂h1 (·) by the space and time discretization given above Theorem 3.3, and which

are used by the rule c̄Δ,h
2 (·). Let {uμ,δ,Δ,h

2 (lδ)} denote the control choices for player

2, based on the rule c̄Δ,h
2 (·) and the control of player 1. Let rμ,δ,Δ,h

i (·) denote the

(continuous-time) relaxed control representation of {uμ,δ,Δ,h
i (lδ)}. The processes ξh(·)

and wh(·) now denote the interpolation of the chain and the pre-Wiener process, resp.,

under the strategy c̄Δ,h
2 (·) and control r̂h1 (·). This wh(·) process will be fixed for each

h and used in the rest of the proof.
Define the process ξμ,δ,Δ,h(·) by (5.10), driven by {uμ,δ,Δ,h

i (lδ)}, i = 1, 2, and

wh(·). Note that {uμ,δ,Δ,h
2 (lδ)} is the response of c̄Δ,h

2 (·) to any control of player 1

with discretization {uμ,δ,Δ,h
1 (lδ)}. By Theorem 5.2, we have, for small h,

(6.5)
∣∣∣Wh

i (x, r̂h1 , c̄
Δ,h
2 ) −Wμ,δ,Δ,h

i (x, rμ,δ,Δ,h
1 , rμ,δ,Δ,h

2 )
∣∣∣ ≤ ρ1(μ, δ,Δ),

where ρ1(μ, δ,Δ) can be made arbitrarily small, uniformly in r̂h(·), as (μ, δ,Δ, h) → 0

and as Wμ,δ,Δ,h
i (·) was defined above (5.11). Also,

(6.6) Wμ,δ,Δ,h
i (x, rμ,δ,Δ,h

1 , rμ,δ,Δ,h
2 ) = Wμ,δ,Δ,h

i (x, rμ,δ,Δ,h
1 , c̄Δ,h

2 ).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL APPROXIMATIONS FOR GAMES 1969

Let τμ,δ,Δ,h denote the first hitting time of the boundary for ξμ,δ,Δ,h(·).
The set (ξμ,δ,Δ,h(·), r̂h1 (·), rμ,δ,Δ,h

1 (·), rμ,δ,Δ,h
2 (·), wh(·), τμ,δ,Δ,h) is tight. Extract a

weakly convergent subsequence, and index it by h also. Denote the limit of the weakly
convergent subsequence by (x(·), r̂1(·), rμ,δ,Δ1 (·), rμ,δ,Δ2 (·), w(·), τ). Then, as was the

case in an earlier part of the proof, (x(·), r̂1(·), rμ,δ,Δ1 (·), rμ,δ,Δ2 (·), w(·), I{τ≤·}) is

nonanticipative with respect to the standard Wiener process w(·), the set (x(·), rμ,δ,Δ1 (·),
rμ,δ,Δ2 (·), w(·)) satisfies (2.3), and τ is the first hitting time of the boundary. The

rμ,δ,Δi (·) is just the relaxed control that is defined by the weak-sense limit {uμ,δ,Δ
i (lδ)}

of {uμ,δ,Δ,h
i (lδ)}.

We need to show that the limits uμ,δ,Δ
2 (lδ) are chosen by the conditional proba-

bility law that defines c̄Δ2 (·); i.e., that (along the selected subsequence)

(6.7)
p2,k

(
α2; w

h(lΔ), l ≤ n;uμ,δ,Δ,h
j (lδ), j = 1, 2, lδ < nΔ

)
→ p2,k

(
α2; w(lΔ), l ≤ n;uμ,δ,Δ

j (lδ), j = 1, 2, lδ < nΔ
)

for kδ ∈ [nΔ, nΔ + Δ). In (6.7), the wh(·) can be replaced by its limit w(·) due to
the continuity in w. Since there are only a finite number of values for the control,
for any t < ∞ the limit {uμ,δ,Δ

1 (lδ), uμ,δ,Δ
2 (lδ), lδ ≤ t} will be achieved after a finite

number of steps through the convergent subsequence, w.p.1. This implies (6.7). (We
will comment further on this point at the end of the proof.) Thus the policy c̄Δ2 (·)
acting on any relaxed control with discretization {uμ,δ,Δ

1 (lδ)} will yield the sequence

{uμ,δ,Δ
2 (lδ)}. Thus,

Wμ,δ,Δ,h
1 (x, rμ,δ,Δ,h

1 (·), c̄Δ,h
2 ) → W1(x, r

μ,δ,Δ
1 (·), c̄Δ2 ),

and by (6.5) and (6.6), mod ρ1(μ, δ,Δ),

Wh
1 (x, r̂h1 , c̄

Δ,h
2 ) → W1(x, r

μ,δ,Δ
1 , c̄Δ2 ).

We can conclude that

(6.8)
lim
h→0

Wh
1 (x, r̂h1 , c

Δ,h
2 ) ≤ W1(x, r

μ,δ,Δ
1 (·), c̄Δ2 ) + ρ1(μ, δ,Δ)

≤ W1(x, c̄
Δ
1 , c̄Δ2 ) + ρ1(μ, δ,Δ) + ε,

where the ε is due to the fact that (c̄Δ1 (·), c̄Δ2 (·)) is an ε-equilibrium. The arbitrariness
of the subsequence implies (6.4). The same argument is used when the indices 1, 2
are reversed.

Finally, let us comment on (6.7). Recall that the discretizations given above
Theorem 3.3 use fixed (and asymptotically unimportant) values on the initial interval

[0,Δ), so let us use uμ,δ,Δ,h
1 (lδ) = u1(lδ), uμ,δ,Δ,h

2 (lδ) = u2(lδ) for fixed ui(lδ) and
lδ < Δ. For kδ ∈ [Δ, 2Δ), we have the rule

(6.9) p2,k

(
α2;w

h(Δ);u1(lδ), u2(lδ), lδ < Δ
)
,

and the probability of selecting any α2 ∈ Uμ
2 converges as wh(Δ) → w(Δ). Then the

limit in (6.9) must be the law of uμ,δ,Δ
2 (lδ) for Δ ≤ lδ < 2Δ. Using the method of se-

lecting the control values in terms of the θi that was recalled above the theorem state-
ment, we can assume that the convergence uμ,δ,Δ,h

2 (lδ) → uμ,δ,Δ
2 (lδ),Δ ≤ lδ < 2Δ,
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occurs in a finite number of steps w.p.1, as h → 0 through the convergent subsequence,
with the rule (6.9) used. Next, on [2Δ, 2Δ + Δ), we have the rule

p2,k

(
α2;w

h(lΔ), l ≤ 2;ui(lδ), lδ < Δ;uμ,δ,Δ,h
i (lδ),Δ ≤ lδ < 2Δ, i = 1, 2

)
.

The uμ,δ,Δ,h
1 (lδ),Δ ≤ lδ < 2Δ, can be assumed to converge in a finite number of steps

as well, w.p.1, and hence, as above, so do the selected values of uμ,δ,Δ,h
2 (lδ),Δ ≤ lδ <

Δ + 2Δ. Continuing in this way yields the form (6.7).
The converse result. If the ε-equilibrium value for the chain is unique for arbi-

trarily small ε, then the converse result is true, namely, that ε-equilibrium values for
the chain are ε1-equilibrium values for (2.3), where ε1 → 0 as ε → 0, and we are done,
since Theorem 6.1 then implies that the ε-equilibrium values for the diffusion are also
unique for small ε, and that the numerical solutions will converge to the desired value.
If the ε-equilibrium value for the chain is not unique for arbitrarily small ε, then we
will show that this “converse” assertion is true for the models used in Theorem 5.3.
We are not able to show the converse result when σ(·) depends on x, so σ(·) is con-
stant in the next theorem and Theorems 5.3–5.6 are applied. Condition A4.1 is not
needed.

Theorem 6.2. Assume Conditions A2.1 and A2.2 and the models used in The-
orem 5.3, where σ(·) is constant. Then for any ε > 0 there is ε1 > 0, which goes
to zero as ε → 0 such that an ε-equilibrium value for the chain ξhn for small h is an
ε1-equilibrium value for (2.3).

Proof. Theorem 5.4 says that the paths and cost functions for (5.15) (which is
ξh(·) under an arbitrary control), (5.16) (where the control is as in (5.15) but the
driving process is w̄h(·)), and (5.18) (which is (5.16) with discretized controls) are
arbitrarily close, uniformly in the controls, for small (μ, δ,Δ, h). Theorem 5.6 gives
the same result for (5.18) and xμ,δ,Δ,h(·) given by (5.24), which is (2.5) with discretized
controls. Theorem 3.3 implies the same thing for xμ,δ,Δ,h(·) and (2.3). These uniform
closeness results imply that ε-equilibrium values for the chain for small h are ε1-
equilibrium values for the diffusion.
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tions, T. Basar and A. Haurie, eds., Birkhäuser Boston, Boston, MA, 1994, pp. 106–124.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 6, pp. 1972–1994

ON A MODEL FOR THE EFFICIENT OPERATION OF A BANK OR
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Abstract. In this paper the authors study a model for the optimal operation of a bank or
insurance company which was recently introduced by Peura and Keppo. The model generalizes a
previous one of Milne and Robertson by allowing the bank to raise capital as well as to pay out
dividends. Optimal operation of the bank is determined by solving an optimal control problem. In
this paper it is shown that the solution of the optimal control problem proposed by Peura and Keppo
exists for all values of the parameters and is unique.
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1. Introduction. In this paper we study a model for the optimal operation of
a bank or insurance company which was introduced by Peura and Keppo [9]. In this
model capital is invested in a risky asset whose evolution is described by Brownian
motion with drift. Thus if X(t) is the bank’s capital at time t, then

dX(t) = μdt + σdW (t),(1.1)

where W (t) is Brownian motion, μ > 0 is the drift, and σ > 0 the volatility. For an
insurance company model, μ represents the expected premium collection rate minus
the expected claims payment rate.

In addition to investing in the asset described by (1.1), the bank also pays divi-
dends to its owners and raises capital from them. Dividend payments can be imple-
mented instantaneously, but capital issuance is associated with a delay of length Δ
and a fixed cost K. If capital is ordered at time t, it is actually received at time t+Δ.
Since there is a fixed cost K associated with ordering the capital, if an amount s of
capital is ordered, then s−K of that goes to increasing the total capital of the bank.
Furthermore, in this model the owners decide at time t + Δ on the actual amount of
capital to be raised. Hence, while the decision to raise capital is based on information
up to time t, the decision on the amount to be raised is based on information up to
time t + Δ. The fixed cost K is also paid at time t + Δ.

The payment of dividends and the raising of capital is controlled by a policy π.
For t > 0 let Lπ(t) be defined by

Lπ(t) = dividends paid out − capital raised up to time t.(1.2)

It is assumed that capital is raised at a set of discrete times tπ1 < tπ2 < tπ3 < · · · , where
the number Nπ(t) of times capital is raised up to time t is given by the formula

Nπ(t) = sup{i : tπi ≤ t}.(1.3)
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It is also assumed that the time between raising capital is at least Δ and that no
dividends are paid out during the period Δ before a capital raising time. Thus,
assuming Lπ(t) is a right continuous process, Lπ(t) is constant in the interval

(
tπi −

Δ, tπi
)
. At time tπi the bank decides the amount of capital it needs to raise. If its

portfolio has performed particularly well in the previous time period of length Δ,
then it may not raise capital but actually pay out dividends at time tπi . In all cases it
has to pay the capital raising cost K. Since dividend payments are nonnegative the
process Lπ(t) is increasing for t �∈ {tπi : i = 1, 2, . . .}.

Let Xπ(t) be the amount of capital the bank has at time t. Then from (1.1),
(1.2), (1.3) the evolution of Xπ(t) is governed by the equation

dXπ(t) = μdt + σdW (t) − dLπ(t) −KdNπ(t).(1.4)

As is usual in control theory it is assumed that the policy π depends only on infor-
mation up to the present time. Hence one assumes that the process Lπ(t) is right
continuous and measurable with respect to the σ field generated by Xπ(s), s < t.

The main concern of [9] is to determine a policy π which maximizes the expected
payments to the owners of the bank over its lifetime. They therefore define a value
function V π(x), x ≥ 0, by

V π(x) = E

[∫ τπ

0

e−ρtdLπ(t)
∣∣∣Xπ(0) = x

]
,(1.5)

where τπ = sup{t > 0 : Xπ(s) > 0, 0 < s < t} is the lifetime of the bank, and
ρ > 0 is a predetermined discount factor. Assigning a value to ρ is probably the
most problematic part of matching the model to actual data. In [9] they describe
ρ as representing the wedge between debt and equity finance due to capital market
frictions such as taxation and agency costs of equity. With ρ given, the optimal value
function is then given by

V (x) = sup
π

V π(x),(1.6)

where the supremum is taken over all allowable strategies. In [9] an expression for
the function V of (1.6) is obtained and a corresponding strategy to realize it is given.
The function V is characterized by 2 parameters u1,K(Δ), u2,K(Δ) satisfying 0 ≤
u1,K(Δ) < u2,K(Δ) < ∞. If the capital the bank holds is less than u1,K(Δ), then a
capital raising event is initiated. If the capital exceeds u2,K(Δ), then dividends are
paid out. If the capital the bank holds lies between u1,K(Δ) and u2,K(Δ), then it is
fully invested in the risky asset described by (1.1). A notable feature of the model
is that τπ < ∞ with probability 1 for an optimal strategy. Thus maximally efficient
operation of the bank gives rise to zero capital in finite time.

The model of Peura and Keppo generalizes an earlier model of Milne and Robert-
son [8] which allows dividend payments but not the raising of capital (see also [5, 6]).
The Milne–Robertson model can be recaptured from that of Peura and Keppo by sim-
ply taking the cost K of raising capital to be sufficient large. In that case u1,K(Δ) = 0
and u2,K(Δ) = u0, where u0 is the Milne–Robertson threshold for the payment of div-
idends. The value function V of (1.6) now satisfies the equation

(A− ρ)V (x) = 0, 0 < x < u0, V (0) = 0, V ′(u0) = 1,(1.7)

where A is the infinitesimal generator for the process (1.1),

A =
1

2
σ2 d2

dx2
+ μ

d

dx
,(1.8)
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and u0 > 0 is chosen so that the function V , when continued by a linear function for
x > u0, is C2. The complete value function is then this linearly extended function
which satisfies (1.7) for 0 ≤ x ≤ u0.

When K and Δ are small enough then u1,K(Δ) > 0 and it is determined from the
solution of a free boundary problem which is a zero latent heat limit for the Stefan
problem (see [4] for a Stefan problem occurring in finance). The approach in [9] to
obtaining the solution to (1.6) is to study the Bellman inequalities [2, 3] corresponding
to the optimal control problem. These are given as follows:

(a) V (0) = 0,

(b) V (x) ≥ MV (x),

(c) (A− ρ)V (x) ≤ 0,

(d) V ′(x) ≥ 1,

(e) [V (x) −MV (x)][(A− ρ)V (x)][V ′(x) − 1] = 0,

(1.9)

where the operator M in (b) is defined by

Mf(x) = E

[
e−ρΔ sup

s≥0

[
f
(
X(Δ) + s

)
− s−K

]
Iτ>Δ|X(0) = x

]
, x > 0.(1.10)

Here X(t) is the diffusion (1.1) and τ is the first hitting time at 0. In (1.10)
note that the supremum is inside the expectation value. The parameter s denotes the
amount of capital raised, whose value can be determined at time of receipt, which is
time Δ after the decision to raise capital has been made. In view of (d) in (1.9) the
supremum over s ≥ 0 when f = V is attained as s → ∞. Thus one has

MV (x) = lim
s→∞

E
[
e−ρΔ

[
V
(
X(Δ) + s

)
− s−K

]
Iτ>Δ|X(0) = x

]
, x > 0.(1.11)

Evidently a finite limit as s → ∞ in (1.11) exists only if limx→∞[V (x) − x] = β + K
exists. In that case the function MV is given by the formula

MV (x) = β[1 − p(x,Δ)] + h(x,Δ),(1.12)

where

p(x,Δ) = E[Iτ<Δ], h(x,Δ) = E[X(Δ)Iτ>Δ].(1.13)

The determination of the parameter β in (1.12) plays a key role in the analysis
of the Peura–Keppo model. If the cost K of raising capital is so large that the model
reduces to the Milne–Robertson model, with solution V given in (1.7), then β has the
value β = V (u0)−u0−K = μ/ρ−u0−K, which is independent of Δ. As K decreases
there should be some critical value of K, Kcrit(Δ) say, at which it begins to become
optimal for the bank to raise capital in certain circumstances. In section 2 we define a
function β(Δ) which is related to Kcrit(Δ) by the equation β(Δ) = μ/ρ−u0−Kcrit(Δ).
One might reasonably expect Kcrit(Δ) to be a decreasing function of Δ, and hence
β(Δ) to be increasing. We show in section 2 that this in fact turns out to be the case.

Our main theorem is that the Peura–Keppo solution to (1.6) is the unique solution
to the system of inequalities (1.9).

Theorem 1.1. For all K,Δ > 0 there is a unique C1 solution V (x) to the system
of inequalities (1.9). Further, for ε > 0 there is a control policy π = πε such that if Vε

is defined by (1.5), then limε→0 Vε(x) = V (x), x ≥ 0.
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In [9] a formula for the value function V (x) is given once one knows the two
threshold values u1,K(Δ), u2,K(Δ). For 0 < x < u1,K(Δ), V (x) is determined from
equality in (1.9b). For u1,K(Δ) < x < u2,K(Δ), V (x) is determined from equality in
(1.9c). For x > u2,K(Δ), V (x) is determined from equality in (1.9d). The threshold
values u1,K(Δ), u2,K(Δ) are then determined by the requirement that the function
V so constructed is C1 at u1,K(Δ)and C2 at u2,K(Δ). Thus u1,K(Δ), u2,K(Δ) are
solutions of a nonlinear system of two equations, and it is not clear if a solution exists
for all positive Δ and nonnegative K. In [9] it is shown that a solution of these
equations exists for certain ranges of the parameters Δ, K and that the constructed
value function V (x) satisfies most of the conditions of (1.9). There does not, however,
seem to be a proof that (1.9c) holds for 0 < x < u1,K(Δ). In section 2 we construct
the solution to (1.9) for all positive Δ and nonnegative K. The main mathematical
fact needed is that a solution u(x, t), t > 0, of the diffusion equation such that the
initial data u(x, 0) has just one change of sign has at most one sign change for all
t > 0. This property of the diffusion equation has been used previously [1, 7], and a
proof based on probability has been given. In the appendix we give a proof using the
maximum principle [10].

In [9] a limiting formula for the value function as Δ → 0 is given. This formula
has the interesting property that condition (a) of (1.9) no longer holds. It corresponds
to the fact that for Δ → 0 one allows the capital of the bank to drop to an arbitrarily
low value, and then immediately raises capital to avoid default. The final section
of the paper is devoted to establishing this formula and studying the asymptotic
behavior of the thresholds u1,K(Δ), and u2,K(Δ) as Δ → 0. We also show that if
u1,K(Δ) > 0 the optimal function V (x), which is C∞ for x �= u1,K(Δ), u2,K(Δ) and
C2 at x = u2,K(Δ), is not C2 at u1,K(Δ).

In section 3 we construct the policies πε and give the proof of uniqueness of V .
The policy πε consists of paying out an immediate dividend of ε when the capital
x of the bank reaches the upper threshold u2,K(Δ). If 0 < x < u1,K(Δ), sufficient
capital is raised (after time Δ) to bring the capital to the upper threshold u2,K(Δ).
If x > u2,K(Δ), sufficient dividend is immediately paid out to bring the capital down
to u2,K(Δ) − ε. For u1,K(Δ) < x < u2,K(Δ), the bank’s capital is fully invested in
the risky asset described by (1.1). In the proof of uniqueness we need to use the fact
that solutions to u(x, t) = 0 are nondegenerate.

2. Solution to system of Bellman equations. In this section we construct
a solution to the system of inequalities (1.9). To do this we first consider solutions
V (x) to the equation

(A− ρ)V (x) = 0, x ∈ R.(2.1)

For any u0 > 0, there is a unique solution V0 to (2.1) with the initial conditions,

V0(u0) = μ/ρ, V ′
0(u0) = 1.(2.2)

Evidently (2.1), (2.2) imply that V ′′
0 (u0) = 0. Since solutions to (2.1) have just one

point of inflection it follows that the function V0 is concave for x < u0 and convex
for x > u0. Evidently by translation there is a unique u0 such that V0(0) = 0. This
unique u0 is given in [9] by the formula

u0 =
1

r1 + r2
ln

[
ρ + μr2
ρ− μr1

]
,(2.3)
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where r1, r2 are the characteristic roots for (2.1),

r1 =
−μ +

√
μ2 + 2σ2ρ

σ2
, r2 =

μ +
√
μ2 + 2σ2ρ

σ2
.

Note that since V0 is concave for x < u0 and V ′
0(u0) = 1 it follows that u0 of (2.3)

satisfies the inequality

0 < u0 < μ/ρ.(2.4)

Next for the diffusion process with generator A, started at x > 0, let τx be the first
hitting time at 0. We define for x > 0, t > 0 the function p(x, t) by

p(x, t) = P (τx < t).(2.5)

Then p(x, t) is a solution to the equation

∂p

∂t
= Ap, x > 0, t > 0,(2.6)

with boundary and initial conditions

p(0, t) = 1, t > 0; p(x, 0) = 0, x > 0.(2.7)

It is also evident from the representation (2.5) that p(x, t) satisfies the inequalities

∂p

∂t
≥ 0,

∂p

∂x
≤ 0, x > 0, t > 0.(2.8)

It follows from (2.6), (2.8) that for any fixed t > 0 the function p(x, t) is a convex
function of x, x > 0.

Let h(x, t), x > 0, t > 0, be a solution of the equation

∂h

∂t
= Ah, x > 0, t > 0,

with boundary and initial conditions

h(0, t) = 0, t > 0; h(x, 0) = x, x > 0.

It is easy to see that h and p are the same functions as those defined by (1.13), and
that they are related by the formula

h(x, t) = x + μt− μ

∫ t

0

p(x, s)ds.(2.9)

Lemma 2.1. For fixed t > 0 the function h(x, t) is a concave function of x, x > 0.
It also satisfies the inequalities

μ/ρ− u0 + h(x, t) ≤ eρt[x− u0 + μ/ρ], x ≥ u0,(2.10)

h(x, t) ≤ eρtV0(x), x ≥ 0.(2.11)

Proof. The concavity of h follows from (2.9) and the convexity of p. Inequality
(2.10) follows from (2.9). Inequality (2.11) follows from the maximum principle for
the diffusion equation since V0(x) ≥ x, x > 0.
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Proposition 2.1. Suppose u0 is given by (2.3) and the cost K of capital issuance
satisfies K ≥ μ/ρ− u0. Define V (x) by

V (x) = V0(x), 0 ≤ x ≤ u0; V (x) = x− u0 + μ/ρ, x > u0.(2.12)

Then V (x) is a C2 function and satisfies the system of inequalities (1.9).
Proof. It is easy to see that the function V (x) of (2.12) satisfies (1.9a)–(1.9e). To

prove (b) we note from (2.12) that the parameter β in (1.12) is given by the formula
β = μ/ρ− u0 −K, and hence the function MV (x) is given by the expression

MV (x) = e−ρΔ

{[
μ

ρ
− u0 −K

]
{1 − p(x,Δ)} + h(x,Δ)

}
.(2.13)

Now (b) follows from Lemma 2.1 on noting (2.4).
From (2.11) we have that

∂h

∂x
(0, t) ≤ eρtV ′

0(0), t > 0.

Observe also that by the Hopf maximum principle [10] one has ∂p/∂x(0, t) < 0, t > 0.
Hence one may define a smooth function β(t), t > 0, by the formula

β(t) =

[
∂h

∂x
(0, t) − eρtV ′

0(0)

]/∂p

∂x
(0, t).(2.14)

Lemma 2.2. The function β(t) of (2.14) is strictly monotonic increasing and
satisfies

lim
t→0

β(t) = 0, lim
t→∞

β(t) = ∞.

Proof. Observe by the Hopf maximum principle that β(t) > 0, t > 0. To prove
monotonicity let T > 0 and consider the function u(x, t) defined by

u(x, t) = β(T ){1 − p(x, t)} + h(x, t) − eρtV0(x).

Then u(x, t) is a solution of the diffusion equation (2.6) with initial and boundary
conditions

u(x, 0) = β(T ) + x− V0(x), u(0, t) = 0.

Evidently u(x, 0) is a monotonically decreasing function satisfying

lim
x→0

u(x, 0) = β(T ), lim
x→∞

u(x, 0) = −∞.

In particular u(x, 0) has exactly one sign change. It follows therefore by Theorem A.1
of the appendix that u(x, t) has at most one sign change for any fixed t > 0.

Consider now the function u(x, T ). Suppose first that u(x, T ) ≤ 0, x ≥ 0. Then
by the Hopf maximum principle u(x, t) < 0, x > 0, for any t > T and ∂u/∂x(0, t) < 0.
Thus β(t) > β(T ). Alternatively there is an interval (0, α) for which u(x, T ) > 0, x ∈
(0, α). By the Hopf principle one must then have ∂u/∂x(0, T ) > 0, which contradicts
the definition of β(T ). We have shown that β(t) is strictly monotonic increasing.
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To find the limit of β(t) as t → 0 we compute the limits of the numerator and
denominator of (2.14). For the numerator we clearly have that

lim
t→0

[
∂h

∂x
(0, t) − eρtV ′

0(0)

]
= 1 − V ′

0(0) < 0.(2.15)

To find the limit of the denominator we use the Green’s functions G(x, y, t) for the
equation (2.6). Thus by the reflection principle we have that

G(x, y, t) =
1√

2πσ2 t

{
exp

[
− (x− y + μt)2

2σ2t

]

− exp

[
−2μx

σ2
− (x + y − μt)2

2σ2t

] }
, x, y > 0,

is the Dirichlet Green’s function. Hence p(x, t) is given by the formula

p(x, t) = 1 −
∫ ∞

0

G(x, y, t)dy.(2.16)

It is easy to see from this that

lim
t→0

√
2πσ2t

∂p

∂x
(0, t) = −2 ,(2.17)

whence (2.15) and (2.17) imply limt→0 β(t) = 0. Similarly, one can easily see that
limt→∞ β(t) = ∞.

We may use the function β(t) of (2.14) to improve Proposition 2.1.
Proposition 2.2. Let Δ > 0 and β(Δ) > 0 satisfy the inequality K ≥ μ/ρ −

u0−β(Δ). Then the function V (x) of (2.12) satisfies the system of inequalities (1.9).
Proof. From Lemma 2.2 the function MV (x) of (2.13) satisfies the inequality

MV (x) ≤ V0(x), x ≥ 0. To show that (b) of (1.9) holds, we then need to prove

MV (x) ≤ x− u0 + μ/ρ, x > u0.

This follows from Lemma 2.1 since K ≥ 0.
Next we consider situations for which K does not satisfy the conditions of Propo-

sition 2.2. To help us understand this we define a function u2(β, t), β ≥ 0, t > 0, as
follows:

u2(β, t) = u0 if β ≤ β(t).

If β > β(t), then u2(β, t) is the supremum of all z ∈ R such that

β{1 − p(x, t)} + h(x, t) ≤ eρt V0(x− z + u0), x ≥ 0.

It is evident that u2(β, t) is a monotonic decreasing function of β.
Lemma 2.3. The function g(β) = β + u2(β, t), β > 0, is strictly monotone

increasing.
Proof. Suppose β > β(t). Since V ′

0(w) ≥ 1, w ∈ R, we have that for any δ > 0,

eρt V0(x− u2(β, t) + δ + u0) ≥ δeρt + β{1 − p(x, t)} + h(x, t), x ≥ 0.
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Hence,

u2(β + δeρt, t) ≥ u2(β, t) − δ,

whence g(β) is strictly monotonic.
Lemma 2.4. For any β > β(t) there exists a unique point u1(β, t) > 0 such that

β{1 − p(x, t)} + h(x, t) < eρt V0(x− u2(β, t) + u0), x ≥ 0, x �= u1(β, t),

β{1 − p(x, t)} + h(x, t) = eρt V0(x− u2(β, t) + u0), x = u1(β, t).

Proof. Suppose for a given T > 0 we have β > β(T ) and define u(x, t), t > 0, x >
0, by

u(x, t) = β{1 − p(x, t)} + h(x, t) − eρt V0(x− u2(β, T ) + u0).

Then u(x, t) is a solution of the diffusion equation (2.6) with initial and boundary
conditions

u(x, 0) = β + x− V0(x− u2(β, T ) + u0), u(0, t) = −eρt V0(u0 − u2(β, T )).

Evidently u(x, 0) is a monotonic decreasing function and limx→∞ u(x, 0) = −∞.
Hence we must have

β > V0(u0 − u2(β, T )),

since otherwise u(x, T ) < 0, x ≥ 0, which would contradict the definition of u2(β, T ).
We show that for small t the set {x > 0 : u(x, t) > 0} is an open interval(

a(t), b(t)
)

with 0 < a(t) < b(t) < ∞. To see this, first note from (2.9), (2.17) that
since p(x, t) is a convex decreasing function there is the inequality

1 ≤ ∂h

∂x
≤ 1 + 4μ

√
t /

√
2πσ2, x > 0.(2.18)

We can also see from (2.16) that for any δ, 0 < δ < 1, there exist positive
constants C(δ), K(δ) such that for 0 < t < 1,

p(x, t) < δ, x > C(δ)
√
t,(2.19)

∂p

∂x
(x, t) < −K(δ)√

t
, 0 < x < C(δ)

√
t.

Choose now δ > 0 such that

β(1 − 3δ) > V0(u0 − u2(β, T )).

Then from (2.18), (2.19) there exists ε > 0 such that for 0 < t < ε the function u(x, t)
is increasing for 0 < x < C(δ)

√
t and u

(
C(δ)

√
t, t

)
> βδ.

Next we find a region where u(x, t) is decreasing. To see this observe that we may
choose ε > 0 sufficiently small so that for 0 < t < ε, there is the inequality

∂p

∂x
(x, t) > − exp

[
−1/t1/6

]
, x > t1/3.
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It follows then from (2.9) that u(x, t) is decreasing for x > t1/3, provided 0 < t < ε.
One also has that

inf
{
u(x, t) − u(C(δ)

√
t, t) : C(δ)

√
t < x < t1/3

}
≥ −C1 t

1/3

for some constant C1 which depends on δ. If we choose now ε small enough so that
C1ε

1/3 < βδ, then it follows that {x : u(x, t) > 0} consists of an open interval,
provided 0 < t < ε.

We now invoke Theorem A.2 of the appendix. By the definition of u2(β, T ) one has
u(x, T ) ≤ 0, x ≥ 0, and there is a unique x = u1(β, T ) for which u(x, T ) = 0.

Proposition 2.3. Let Δ > 0 and β(Δ) > 0 satisfy the inequality K < μ/ρ −
u0 − β(Δ). Then there is a unique solution β > β(Δ) to the equation

β + u2(β,Δ) = μ/ρ−K.(2.20)

For this value of β put u2 = u2(β,Δ) and u1 = u1(β,Δ). Define the function V (x),
x ≥ 0, by

V (x) = x− u2 + μ/ρ, x > u2,(2.21)

V (x) = V0(x + u0 − u2), u1 < x ≤ u2,

V (x) = e−ρΔ {β[1 − p(x,Δ)] + h(x,Δ)} , 0 ≤ x ≤ u1.

Then the function V (x) satisfies the system of inequalities (1.9).
Proof. Since β(Δ)+u2

(
β(Δ),Δ) = β(Δ)+u0 < μ/ρ−K it follows from Lemma 2.3

that there is a unique β > β(Δ) satisfying (2.20). We can also see that since K ≥ 0
there is the inequality u1 < u2. In fact one has

β[1 − p(x,Δ)] + h(x,Δ) < eρΔV0(x + u0 − u2), x ≥ u2.(2.22)

This follows from (2.9) since the left-hand side of (2.22) is strictly less than

μ/ρ−K − u2 + x + μΔ < eρΔ[μ/ρ + x− u2] ≤ eρΔV0(x + u0 − u2), x ≥ u2,

provided K ≥ 0.
It is clear now that the function V of (2.21) is a C1 function and C2 except

possibly at the point x = u1. It is also concave with slope 1 for x ≥ u2. Hence (a),
(d) of (1.9) hold. Next we prove (b). In view of the concavity of V we have that the
function MV of (1.10) is given by the expression

MV (x) = e−ρΔ

{[
μ

ρ
− u2 −K

]{
1 − p(x,Δ)

}
+ h(x,Δ)

}
.(2.23)

Thus V (x) = MV (x), 0 ≤ x ≤ u1, and by the definition of u1 one has MV (x) ≤
V (x), u1 ≤ x ≤ u2. For x ≥ u2 we also have MV (x) ≤ V (x) by the same argument
used to show (2.22). We have proved (b) and also (e).

We are left to prove (c). It is easy to see that (A − ρ)V (x) ≤ 0, x > u1.
We consider then the case 0 < x < u1. To see this we observe that the function
u1(β

′,Δ), β′ > β(Δ), is continuous and satisfies limβ′→β(Δ) u1(β
′,Δ) = 0. Hence if

0 < x < u1, there exists β′, 0 < β′ < β such that x = u1(β
′,Δ). Let w(z) be the

function

w(z) = β′{1 − p(z,Δ)} + h(z,Δ), z > 0.
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By Lemma 2.4 it follows that (A− ρ)w(z) ≤ 0 at z = u1(β
′,Δ) = x. Since

eρΔ MV (z) = (β − β′){1 − p(z,Δ)} + w(z),

and Ap(z,Δ) = ∂p/∂t(z,Δ) ≥ 0, one has therefore that (A− ρ)V (x) ≤ 0.

3. Uniqueness of the solution. Here we show that the solution to the system
of inequalities (1.9) is unique, provided we make some smoothness assumptions on
the function V (x). Our first goal is to show that a limiting set of strategies realizes
the function V (x) constructed in Propositions 2.1–2.3. In the following we shall use
the convention that if F (t), t > 0, is a right continuous function of time, then at time
τ , F (τ+) denotes the limit of F (t) as t converges to τ from above.

We first consider the situation in Propositions 2.1 and 2.2. Let ε satisfy 0 < ε <
u0. We define a strategy πε for the control process (1.4). Suppose the process begins
at x with 0 < x < u0. For those paths which exit the interval [0, u0] through u0 let τ1
be the exit time. We set L(t) = 0, t ≤ τ1, and L(τ+

1 ) = ε. Thus X(τ+
1 ) = u0 − ε. If

the process begins at x with x ≥ u0, we set τ1 = 0, L(τ+
1 ) = ε+ x− u0, whence again

X(τ+
1 ) = u0 − ε. Next we define τ2 > τ1 as the first time the diffusion process with

X(τ+
1 ) = u0 − ε hits u0 for paths which exit the interval [0, u0] through u0. We put

L(t)−L(τ+
1 ) = 0, τ1 < t < τ2, L(τ+

2 )−L(τ+
1 ) = ε. Thus X(τ+

2 ) = u0−ε. We proceed
in this manner defining a sequence of stopping times τ1, τ2, . . . until the diffusion exits
[0, u0] through 0.

Lemma 3.1. Let Vε be the return function (1.5) for the strategy π = πε. Then
limε→0 Vε(x) = V (x), where V (x) is given by (2.12).

Proof. Evidently we have that

Vε(x) = x− u0 + ε + Vε(u0 − ε), x ≥ u0.(3.1)

For the diffusion process started at x, 0 < x < u0, let τx be the first exit time from
the interval [0, u0]. Then we also have that

Vε(x) = Vε(u0)E [exp(−ρτx);X(τx) = u0](3.2)

= Vε(u0)w(x), 0 < x < u0,

where the function w(x) satisfies

(A− ρ)w(x) = 0, 0 < x < u0, w(0) = 0, w(u0) = 1.

It follows that w(x) = ρ V0(x)/μ. Letting x = u0 − ε in (3.2) and using (3.1), we
conclude that Vε(u0) is given by the formula

Vε(u0) = ε
/

[1 − w(u0 − ε)].

Hence Vε(x), 0 < x < u0, is given by the formula

Vε(x) =

[
V0(u0) − V0(u0 − ε)

ε

]−1

V0(x), 0 < x < u0.

Since V ′
0(u0) = 1 the result follows.

Next we consider the situation in Proposition 2.3. We define a strategy πε for the
control process (1.4) whose limiting return function as ε → 0 yields the function (2.21).
If the process begins at x with x ≥ u2, we set τ1 = 0, L(τ+

1 ) = ε + x − u2, whence
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X(τ+
1 ) = u2 − ε. We require that 0 < ε < u2 − u1, whence u1 < X(τ+

1 ) < u2. If the
process begins at x with u1 < x < u2, we set τ1 to be the first exit time of the diffusion
process from the interval [u1, u2]. If X(τ1) = u2, then we put L(t) = 0, t ≤ τ1, and
L(τ+

1 ) = ε, whence X(τ+
1 ) = u2 − ε. Suppose now X(τ1) = u1. We restrict ourselves

to all paths of the diffusion process X(t), τ1 ≤ t ≤ τ1 + Δ, which satisfy X(t) > 0.
For these paths we set L(t) = 0, t ≤ τ1 + Δ,

L((τ1 + Δ)+) = X(τ1 + Δ) − u2 −K.(3.3)

Note that if Δ is small, the expression in (3.3) is negative. We finally put X((τ1 +
Δ)+) = u2. For 0 < x ≤ u1 we restrict ourselves to all paths of the diffusion process
X(t), t ≤ Δ, which satisfy X(t) > 0. For these paths we set L(t) = 0, t ≤ Δ,

L(Δ+) = X(Δ) − u2 −K.(3.4)

Finally we put X(Δ+) = u2. The process L(t), t > τ1, is defined similarly.
Lemma 3.2. Let Vε be the return function (1.5) for the strategy π = πε. Then

limε→0 Vε(x) = V (x), where V (x) is given by (2.21).
Proof. Arguing as in Lemma 3.1, we have that

Vε(x) = x− u2 + ε + Vε(u2 − ε), x ≥ u2,(3.5)

Vε(x) = Vε(u2)w2(x) + Vε(u1)w1(x), u1 < x < u2,(3.6)

where

w2(x) = E [exp(−ρτx); X(τx) = u2] ,

w1(x) = E [exp(−ρτx); X(τx) = u1] ,

and τx is the exit time from the interval [u1, u2] for the diffusion process started at x.
For 0 < x ≤ u1 we have in addition the identity

Vε(x) = e−ρΔE [X(Δ) − u2 −K ; τx > Δ] + e−ρΔVε(u2)P (τx > Δ),(3.7)

where τx is the first time the diffusion started at x hits 0. From (2.21) we can rewrite
(3.7) as

Vε(x) = V (x) + e−ρΔ
{
Vε(u2) − V (u2)

}
[1 − p(x,Δ)].(3.8)

It is clear that for u1 < x < u2 the function V (x) may be written as

V (x) = V (u2)w2(x) + V (u1)w1(x), u1 < x < u2.

Hence if we put gε(x) = Vε(x) − V (x), we have from (3.6) that

gε(x) = gε(u2)w2(x) + gε(u1)w1(x), u1 < x < u2.(3.9)

Setting x = u1 in (3.8) we also have that

gε(u1) = e−ρΔgε(u2)[1 − p(u1,Δ)].(3.10)

Putting x = u2 in (3.5) yields the identity

gε(u2 − ε) = gε(u2) + [V (u2) − V (u2 − ε) − ε].(3.11)
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If we set x = u2 − ε in (3.9) and use (3.10), (3.11), we obtain a formula for gε(u2),

gε(u2) = −[V (u2)−V (u2−ε)−ε]
/{

1 − w2(u2 − ε) − e−ρΔ[1 − p(u1,Δ)]w1(u2 − ε)
}
.

(3.12)
Since V is concave at u2 the numerator of (3.12) is negative. The denominator is
positive since w1(x) + w2(x) < 1, u1 < x < u2. Hence gε(u2) < 0. It follows
now from (3.5), (3.8), (3.9) that Vε(x) < V (x), x > 0. Since the numerator of
(3.12) is O(ε2) and the denominator is from Hopf’s maximum principle bounded
below by a positive constant times ε, it follows that limε→0 gε(u2) = 0. Hence
limε→0 Vε(x) = V (x), x ≥ 0.

We have shown that certain limiting strategies yield the return functions given
in Propositions 2.1–2.3. Next let V (x) be a C1 solution of the system of inequalities
(1.9). Since V ′(x) ≥ 1, x > 0, the limit

β + K = lim
x→∞

[V (x) − x] exists.(3.13)

This limit must be finite. Otherwise the function MV (x) cannot be finite. Hence
from (1.10) we have

MV (x) = e−ρΔ
{
β[1 − p(x,Δ)] + h(x,Δ)

}
.(3.14)

Lemma 3.3. There exists u2, ε with 0 < ε < u2 such that V (x) = β + K + x for
x ≥ u2, and for u2 − ε < x ≤ u2, V (x) is the solution to the initial value problem

(A− ρ)V (x) = 0, V (u2) = μ/ρ, V ′(u2) = 1.(3.15)

Further, β and u2 are related by the identity

β = μ/ρ−K − u2.(3.16)

Proof. Suppose u2 > 0 is a point which has the property that for some δ > 0
one has V ′(x) = 1 for u2 ≤ x < u2 + δ, and (A − ρ)V (x) = 0 for u2 − δ < x < u2.
Since (A − ρ)V (x) ≤ 0 for u2 ≤ x < u2 + δ it follows that V (u2) ≥ μ/ρ. Using
the fact that V is C1 at u2 and (A − ρ)V (x) = 0, x < u2, we can conclude now
that limx→u2−V

′′(x) ≥ 0. If limx→u2−V
′′(x) > 0, then V ′(x) < 1 for x < u2 with

u2−x sufficiently small, in contradiction to (1.9). Hence limx→u2−V
′′(x) = 0, whence

V (u2) = μ/ρ since V ′(u2) = 1. Thus for u2−δ < x < u2 the function V is the solution
to (3.15).

From (2.9), (3.13), (3.14) we see that there exists u3 > 0 such that MV (x) < V (x)
for x ≥ u3. Hence for each x > u3 the function V must satisfy (A − ρ)V (x) = 0 or
V ′(x) = 1. Observe now that (3.13) implies that {x : (A − ρ)V (x) = 0} does not
include a neighborhood of ∞. Hence by the argument of the previous paragraph
{x : V ′(x) = 1} does include a neighborhood of ∞. We define u2 by

u2 = inf{z : V ′(x) = 1, x ≥ z}.

We show that MV (u2) < V (u2). To see this, first note that from (3.13) one has
V (x) = β + K + x, x > u2, and we also have that V (u2) ≥ μ/ρ. Now V ′(x) ≥ 1,
0 < x < u2, and V (0) = 0. Hence β + K ≥ 0. If β ≤ 0, then (2.9), (3.14) yield the
inequality

MV (u2) < e−ρΔ(u2 + μΔ).
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Since there is also the inequality

eρΔV (u2) ≥
[
eρΔ − 1

]
μ/ρ + β + K + u2 ≥ μΔ + u2,

it follows that MV (u2) < V (u2). If on the other hand β ≥ 0, then

MV (u2) < e−ρΔ[β + u2 + μΔ],

eρΔV (u2) ≥ μΔ + β + K + u2.

Hence again we have MV (u2) < V (u2).
The result of the lemma now easily follows since by the previous paragraph there

exists ε > 0 such that (A− ρ)V (x) = 0 for u2 − ε < x < u2. From the first paragraph
it follows that V is the solution to (3.15). The identity (3.16) follows from the fact
that V (u2) = μ/ρ.

Next we define u1 < u2 by

u1 = inf{z > 0 : (A− ρ)V (x) = 0, z < x < u2}.

Lemma 3.4. If u1 > 0, then u2 < u0, β > 0 and V (x) = MV (x) for 0 < x < u1.
Proof. We proceed as in Lemma 2.4 by considering the function u(x, t) given by

u(x, t) = β{1 − p(x, t)} + h(x, t) − eρtV0(x− u2 + u0).

Then u(x, t) is a solution of the diffusion equation (2.6) with initial and boundary
conditions

u(x, 0) = β + x− V0(x− u2 + u0), u(0, t) = −eρtV0(u0 − u2).

Let us suppose first that u2 ≥ u0. In that case u(0, t) ≥ 0 and u(x, 0) is a monotonic
decreasing function with limx→∞u(x, 0) = −∞. It is easy to see from this that for
small t the function u(x, t) has at most one sign change. Hence by Theorem A.1, u1

is the unique solution to the equation u(x,Δ) = 0. From Theorem A.3 it follows that
∂u/∂x(x,Δ) < 0 at x = u1, but this contradicts the C1 property of the function V (x)
at x = u1. We conclude that u2 < u0.

Assuming u2 < u0, then u(0, t) < 0. Hence β > V0(u0 − u2) > 0 since otherwise
u(x, t) < 0, x ≥ 0, t > 0. By Theorem A.2 the set {x > 0 : u(x,Δ) ≥ 0} is a closed
interval with u1 as one of its end points. Evidently u1 must be the rightmost end
point. If the interior of the interval is nonempty, then ∂u/∂x(x,Δ) < 0 at x = u1

by Theorem A.3 of the appendix. Since this again contradicts the C1 property of V
at u1 we conclude that {x > 0 : u(x,Δ) ≥ 0} = {u1}. It is clear now that in the
notation of section 2 we have β > β(Δ), u2 = u2(β,Δ), and u1 = u1(β,Δ).

Finally we need to show that V (x) = MV (x), 0 < x < u1. Let u3 = inf{z :
0 < z < u1, V (x) = MV (x) for z < x < u1}. Evidently 0 ≤ u3 < u1. Suppose now
u3 > 0. Since V (x) is concave for x > u3 it follows that V ′(u3) > 1, V (u3) < μ/ρ.
Let u4 = inf{z : 0 < z < u3, (A− ρ)V (x) = 0 for z < x < u3}. It is easy to see that
V (x) is concave for u4 < x < u2. Let w(x) = V (x) −MV (x), u4 < x < u3. Then we
must have that w(u4) = w(u3) = 0 and w(x) ≥ 0, u4 < x < u3. By the argument
of Proposition 2.3 we also have that (A − ρ)w(x) ≥ 0, u4 < x < u3. Hence by the
maximum principle it follows that w(x) = 0, u4 < x < u3. Since this contradicts the
definition of u3 we conclude that u3 = 0.

Proposition 3.1. Let V (x), x ≥ 0, be a C1 solution to the set of inequalities
(1.9). Then V is the unique solution given by Propositions 2.1–2.3.
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Proof. This follows from Lemmas 3.3 and 3.4.
We give an alternative proof of Proposition 3.1 which avoids the use of Theorem A.3.

Instead, we shall use the technique of “verification theorem” [2, 3].
Lemma 3.5. With u1, u2 as defined in Lemma 3.4 there is the inequality u2 ≥

u2(β,Δ), where β is the solution to (2.20).
Proof. Let πε be the strategy defined just before Lemma 3.2, where u1, u2 are

as in Lemma 3.4. If Vε is the return function (1.5) corresponding to πε, then by the
argument of Lemma 3.2 we see that limε→0 Vε(x) = V (x) for x ≥ u1, where V (x) is
the function discussed in Lemmas 3.3 and 3.4.

Next let Vopt(x) be the solution to the control problem constructed in Proposi-
tions 2.1–2.3. We shall show that

Vopt(x) ≥ Vε(x), x ≥ u1.(3.17)

To see this first let X(t), t > 0, be the diffusion process with generator A. Assume
X(0) > 0 and τ is the first hitting time at 0. Since Vopt(x) is C1 for x ≥ 0 and C2

for all x ≥ 0 except possibly x = u1(β,Δ) with β satisfying (2.20), it follows that

e−ρtVopt (X(t ∧ τ)) −
∫ t∧τ

0

e−ρs(A− ρ)Vopt (X(s)) ds(3.18)

is a martingale.
Now let X(0) = u2 − ε and let τ1 be the first exit time from the interval [u1, u2].

Evidently τ1 < τ . Since (A− ρ)Vopt(x) ≤ 0, x ≥ 0, it follows from (3.18) that

Vopt(u2 − ε) ≥ E
[
e−ρτ1Vopt (X(τ1))

]
.(3.19)

Since V ′
opt(x) ≥ 1, x ≥ 0, it follows that

E
[
e−ρτ1Vopt (X(τ1)) ;X(τ1) = u2

]
(3.20)

≥ E
[
e−ρτ1Vopt(u2 − ε);X(τ1) = u2

]
+ E

[
e−ρτ1ε;X(τ1) = u2

]
.

On using the fact that MVopt(x) ≤ Vopt(x), x ≥ 0, we also have that

E
[
e−ρτ1Vopt (X(τ1)) ;X(τ1) = u1

]
≥ E

[
e−ρ(τ1+Δ)Vopt(u2);X(τ1) = u1, τ1 + Δ < τ

]
+E

[
e−ρ(τ1+Δ) [X(τ1 + Δ) − u2 −K] ;X(τ1) = u1, τ1 + Δ < τ

]
.

Hence there is the inequality

E
[
e−ρτ1Vopt (X(τ1)) ;X(τ1) = u1

]
(3.21)

≥ E
[
e−ρ(τ1+Δ)Vopt(u2 − ε);X(τ1) = u1, τ1 + Δ < τ

]
+E

[
e−ρ(τ1+Δ)ε;X(τ1) = u1, τ1 + Δ < τ

]
+E

[
e−ρ(τ1+Δ) [X(τ1 + Δ) − u2 −K] ;X(τ1) = u1, τ1 + Δ < τ

]
.
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If we now define τ∗1 as τ∗1 = τ1 if X(τ1) = u2, τ∗1 = τ1 + Δ if X(τ1) = u1, we have
from (3.19), (3.20), (3.21) the inequality

Vopt(u2 − ε) ≥ E
[
e−ρτ∗

1 Vopt(u2 − ε); τ∗1 < τ
]

(3.22)

+E

[∫ τ∗
1

0

e−ρtdL(t); τ∗1 < τ

]
,

where L(t) is the return function associated with the strategy πε. Evidently if we
iterate the inequality (3.22), we obtain (3.17) for x = u2 − ε. The inequality for all
x ≥ u1 follows in a similar way.

If we let ε → 0 in (3.17), we obtain the inequality Vopt(x) ≥ V (x), x ≥ u1, which
implies the result.

Lemma 3.6. With u1, u2 as defined in Lemma 3.4 there is the inequality u2 ≤
u2(β,Δ), where β is the solution to (2.20).

Proof. Let πopt,ε be the strategy of Lemma 3.2 and Vopt,ε the corresponding return
function. Then by Lemma 3.2 we have that limε→0 Vopt,ε(x) = Vopt(x), where Vopt

is the function given by (2.21). We shall show that for V , the function discussed in
Lemmas 3.3 and 3.4, there is the inequality

V (x) ≥ Vopt,ε(x), x ≥ u1(β,Δ),(3.23)

where β is the solution to (2.20). In fact the proof of (3.23) is identical to the proof of
(3.17) since V satisfies the variational inequalities (1.9). The result follows by letting
ε → 0.

Proof of Proposition 3.1. We have shown in Lemmas 3.5 and 3.6 that u2 =
u2(β,Δ) with β satisfying (2.20). Since MV is given by (3.14) and MV (u1) = V (u1)
we must have u1 = u1(β,Δ). The fact that V (x) = MV (x) for 0 < x < u1 follows by
the argument at the end of Lemma 3.4.

4. Properties of the thresholds u1, u2. In this section we shall study the
properties of u1, u2 as defined in Proposition 2.3. Evidently u1, u2 are functions of
K ≥ 0 and Δ > 0. If K ≥ μ/ρ − u0, then u2 = u0, u1 = 0. We shall therefore be
interested in the situation where 0 ≤ K < μ/ρ− u0.

Lemma 4.1. Suppose 0 ≤ K < μ/ρ − u0 and for Δ > 0 let u1,K(Δ), u2,K(Δ)
be the values of u1, u2 determined by K,Δ. Then u1,K , u2,K are continuous functions
satisfying

lim
Δ→0

u1,K(Δ) = 0, lim
Δ→0

u2,K(Δ) = u0 − ûK ,(4.1)

where z = ûK is the unique solution to the equation

V0(z) = z + μ/ρ−K − u0.(4.2)

u1,K(Δ) = 0, u2,K(Δ) = u0, provided Δ ≥ Δ0, where Δ = Δ0 is the unique solution
to the equation

β(Δ) = μ/ρ−K − u0.

Proof. It is easy to see that u1,K(Δ) and u2,K(Δ), Δ > 0, are continuous
functions. Evidently Proposition 2.2 implies that u1,K(Δ) = 0, u2,K(Δ) = u0 if
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Δ ≥ Δ0. We consider the case Δ → 0. Then the function u2(β,Δ) defined just before
Lemma 2.3 satisfies

lim
Δ→0

u2(β,Δ) = u0 − zβ ,

where zβ is the unique solution to the equation V0(zβ) = β. From Proposition 2.3 it
follows therefore that ûK = zβ , where β satisfies β+u0−zβ = μ/ρ−K. This equation
is evidently the same as (4.2). Note that 0 < ûK ≤ u0 since V0(0) = 0, V0(u0) = μ/ρ
and V ′

0(z) > 1, z > 0.
Next we obtain the first order behavior of β(Δ), u1,K(Δ), u2,K(Δ) as Δ → 0. The

first order behavior of β(Δ) can easily be obtained from (2.14), (2.17), (2.18). Thus
we have

lim
Δ→0

β(Δ)/
√

Δ = [V ′
0(0) − 1]

√
πσ2/2 > 0.

To obtain the first order behavior of u1,K(Δ), u2,k(Δ) as Δ → 0 we consider the
behavior of the functions u1(β,Δ), u2(β,Δ) as Δ → 0, where β > 0.

Lemma 4.2. Let u1(β,Δ), u2(β,Δ) be the functions defined in Lemmas 2.3
and 2.4. Then if β > 0 there are the limits

lim
Δ→0

u1(β,Δ)/σ
√

Δ| ln Δ|1/2 = 1,

lim
Δ→0

{u2(β,Δ) − [u0 − ûβ ]}
/
σ
√

Δ| ln Δ|1/2 = 1 − 1/V ′
0(ûβ),

where ûβ is the unique solution z = ûβ to the equation V0(z) = β.
Proof. Just as in the proof of Lemma 4.1 we see that u1(β,Δ), u2(β,Δ) satisfy

lim
Δ→0

u1(β,Δ) = 0, lim
Δ→0

u2(β,Δ) = u0 − ûβ .(4.3)

For Δ > 0 it follows from Lemma 2.4 that u1 = u1(β,Δ) and u2 = u2(β,Δ) are the
unique positive solutions to the system of equations

β{1 − p(u1,Δ)} + h(u1,Δ) = eρΔ V0(u1 − u2 + u0),(4.4)

−β
∂p

∂x
(u1,Δ) +

∂h

∂x
(u1,Δ) = eρΔ V ′

0(u1 − u2 + u0).(4.5)

We shall look for solutions to (4.4), (4.5) which satisfy (4.3). To do this we first note
from (2.16) that ∂p/∂x is given by the formula

− ∂p

∂x
(x, t) =

2√
2πσ2t

{
exp

[
− (x + μt)2

2σ2t

]
(4.6)

+
μ

σ2
exp

[
−2μx

σ2

] ∫ ∞

0

exp

[
− (x + y − μt)2

2σ2t

]
dy

}
.

Let g(z), z > 0, be the function

g(z) =
√

2πσ2Δ

{
−β

∂p

∂x

(
z
√

Δ, Δ
)

(4.7)

+
∂h

∂x

(
z
√

Δ, Δ
)
− eρΔ V ′

0

(
z
√

Δ − u2 + u0

)}
,
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where u2 is a fixed parameter restricted to lie in the region

ûβ/2 < u0 − u2 < (u0 + ûβ)/2.(4.8)

Observe now that in view of (4.8) there are constants Δ0,K0 > 0 such that if 0 <
Δ < Δ0 and a(Δ), b(Δ) > 0 are defined by the identities

a(Δ)2/2σ2 = −1

2
ln Δ −K0,(4.9)

b(Δ)2/2σ2 = −1

2
ln Δ + K0,

then the function g is strictly monotonic decreasing in the interval [a(Δ), b(Δ)] with
g(a(Δ)) > 0, g(b(Δ)) < 0. It follows that there is a unique solution z = zΔ(u2) of
the equation g(z) = 0 in the interval (a(Δ), b(Δ)). We have shown then that (4.5)
gives u1 =

√
Δ zΔ(u2) as a unique function of u2, provided 0 < Δ < Δ0 and u2

satisfies (4.8).
Next we wish to estimate the left-hand side of (4.4) when u1 =

√
Δ z and z ∈

[a(Δ), b(Δ)]. To do this we write

p
(√

Δ z,Δ
)

= −
∫ ∞

√
Δ z

∂p

∂x
(x,Δ)dx

and use the formula (4.6). Observe now that

2√
2πσ2Δ

∫ ∞

√
Δ z

exp

[
− (x + μΔ)2

2σ2Δ

]
dx

= exp

[
− 1

2σ2

(
z + μ

√
Δ
)2

]
2√

2πσ2

∫ ∞

0

dξ exp

[
−ξ(z + μ

√
Δ)

σ2
− ξ2

2σ2

]

≤ exp

[
− 1

2σ2

(
z + μ

√
Δ
)2

]
2σ√

2π(z + μ
√

Δ)
.

We can similarly estimate the contribution to p(
√

Δ z,Δ) from the second term in
(4.6). Thus we have

2√
2πσ2Δ

∫ ∞

0

exp

[
− (x + y − μΔ)2

2σ2Δ

]
dy

≤ 2σ
√

Δ√
2π(x− μΔ)

exp

[
− 1

2σ2Δ
(x− μΔ)2

]
,

∫ ∞

√
Δ z

dx
2σ

√
Δ√

2π(x− μΔ)

μ

σ2
exp

[
−2μx

σ2

]
exp

[
− 1

2σ2Δ
(x− μΔ)2

]

≤ 2σ
√

Δ√
2π(z + μ

√
Δ)

exp

[
− 1

2σ2
(z + μ

√
Δ)2

]
,

provided z ≥ 2μmax(1,
√

Δ0). We conclude then that for Δ0 sufficiently small there
is a constant C such that

0 < p
(√

Δ z,Δ
)
≤ C

√
Δ/| ln Δ|1/2,(4.10)
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provided 0 < Δ ≤ Δ0, z ∈ [a(Δ), b(Δ)], and u2 satisfies (4.8).
Consider now the function F (u2) defined by

F (u2) = eρΔ V0(u1 − u2 + u0) − h(u1,Δ) − β{1 − p(u1,Δ)}, 0 < Δ < Δ0,

for u2 in the region (4.8) and u1 =
√

Δ zΔ(u2) the unique solution of (4.5), zΔ(u2) ∈
(a(Δ), b(Δ)). In view of (4.10) it is clear that

F (u0 − ûβ) > 0, F
(
u0 − ûβ +

√
Δ b(Δ)

)
< 0,

whence there is a solution u2 to the equation F (u2) = 0 in the region u0 − ûβ <

u2 < u0 − ûβ +
√

Δ b(Δ). We have therefore shown the existence of a solution
(u1, u2) to the set of equations (4.4), (4.5), provided 0 < Δ < Δ0. By Lemma 2.4 the
solution is unique. One can now easily derive the asymptotics of u1(β,Δ), u2(β,Δ)
as Δ → 0. In fact the asymptotics of u1(β,Δ) are already a consequence of the fact
that zΔ(u2) ∈ (a(Δ), b(Δ)). To obtain the asymptotics of u2(β,Δ) we do a Taylor
expansion of F (u2) about u2 = u0 − ûβ . Thus we have

F (u2) = eρΔ
{
V0(ûβ) + [u1 − u2 + u0 − ûβ ]V ′

0(ûβ) + O
(
[u1 − u2 + u0 − ûβ ]2

)}
−u1 − β + O

(√
Δ/| ln Δ|1/2

)
.

Hence the asymptotic form of u2 = u2(β,Δ) is obtained from the equation

[u1 − u2 + u0 − ûβ ]V ′
0(ûβ) − u1 = 0,

where u1 = u1(β,Δ) has the asymptotic form u1(β,Δ) = σ
√

Δ| ln Δ|1/2.
Proposition 4.1. Let u1,K(Δ), u2,K(Δ) be the functions of Δ defined in Lem-

ma 4.1. Then there are the limits

lim
Δ→0

u1,K(Δ)/σ
√

Δ | ln Δ|1/2 = 1,(4.11)

lim
Δ→0

{u2,K(Δ) − [u0 − ûK ]} /σ
√

Δ | ln Δ|1/2 = 1,(4.12)

where ûK is as in Lemma 4.1.
Proof. We use Lemma 4.2 and (2.20). Evidently (4.11) follows directly from

Lemma 4.2. To get (4.12) we substitute from Lemma 4.2 the formula for u2(β,Δ)
and solve approximately for ûβ . Thus on writing ûβ = ûK + δ we have to highest
order

V0(ûK + δ) + u0 − ûK − δ

+ [1 − 1/V ′
0(ûK)]σ

√
Δ | ln Δ|1/2 = μ/ρ−K.

Taylor expanding this last identity about δ = 0 and solving for δ yields

δ = −σ
√

Δ | ln Δ|1/2/V ′
0(ûK).

Hence we have to highest order

u2,K(Δ) = [u0 − ûβ ] + σ
√

Δ | ln Δ|1/2{1 − 1/V ′
0(ûβ)}

= [u0 − ûK − δ] + σ
√

Δ | ln Δ|1/2{1 − 1/V ′
0(ûK)}

= u0 − ûK + σ
√

Δ | ln Δ|1/2.
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Finally we wish to show that the function V (x), x ≥ 0, of Proposition 2.3, which
is a C1 function, fails to be twice differentiable at x = u1. To do this let u2 satisfy
0 < u2 < u0 and β > V0(u0 − u2). We consider the function u(x, t) defined by

u(x, t) = β{1 − p(x, t)} + h(x, t) − eρtV0(x− u2 + u0).(4.13)

Evidently u(x, 0) = β + x − V0(x − u2 + u0) and u(0, t) = −eρt V0(u0 − u2), whence
u(0, t) < 0, t > 0.

Lemma 4.3. Let u(x, t) be the function (4.13). Then there exist ε > 0 and
x(t) > 0, 0 < t < ε, such that ∂u/∂x(x, t) > 0 for 0 ≤ x < x(t) and ∂u/∂x(x, t) < 0
for x > x(t).

Proof. We proceed as in Lemma 4.2 observing that the function g of (4.7) is given
by

g(z) =
√

2πσ2Δ ∂u/∂x
(
z
√

Δ, Δ
)
.(4.14)

With a(Δ), b(Δ) defined by (4.9) we have seen that, provided 0 < Δ < Δ0, then
g(z) > 0 for 0 < z ≤ a(Δ), g(z) < 0 for z ≥ b(Δ) and g is strictly monotonic
decreasing in the interval [a(Δ), b(Δ)].

Lemma 4.4. Let u(x, t) be the function (4.13). Then there exist ε > 0 and
a(t), b(t) > 0, 0 < t < ε, such that {x > 0 : ∂2u/∂x2(x, t) > 0} = (a(t), b(t)).

Proof. From (2.9), (4.13) we have that

∂2u/∂x2(x, t) = −β∂2p/∂x2(x, t) − μ

∫ t

0

∂2p/∂x2(x, s)ds− eρt V ′′
0 (x− u2 + u0).

Since p(x, t) is a convex function of x it follows that ∂2u/∂x2(x, t) < 0 for x > u2.
Since V ′′

0 (u0) = 0, V ′′′
0 (u0) = 2ρ/σ2 we conclude that there exist Δ0 > 0 and b(t) >

0, 0 < t < Δ0, with the property that limt→0 b(t) = u2, and ∂2u/∂x2(x, t) < 0 if
x > b(t) and ∂2u/∂x2(x, t) > 0 if t1/3 < x < b(t).

We consider now the interval 0 < x < t1/3. From (4.14) we may consider the
function g′(z) in the region 0 < z < Δ− 1/6 instead of ∂2u/∂x2(x, t), 0 < x < t1/3.
We have that

g′(z) =
−2β(z + μ

√
Δ)

σ2
exp

[
− (z + μ

√
Δ)2

2σ2

]
(4.15)

+G(z,Δ) −
√

2πσ2 eρΔ Δ V ′′
0 (z

√
Δ − u2 + u0).

We can estimate the function G(z,Δ) in the same way we obtained the estimate
(4.10). In fact differentiating (4.6) and estimating as before, we have the inequality

2

[
x

σ2t
+

2μ

σ2

]
exp

[
− (x + μt)2

2σ2t

]
≤

√
2πσ2t

∂2p

∂x2
(x, t)(4.16)

≤ 2

[
x

σ2t
+

4μ

σ2

]
exp

[
− (x + μt)2

2σ2t

]
, x ≥ 2μt.

From (4.16) we can also estimate ∂2h/∂x2 using the identity

− ∂2h

∂x2
(x, t) = μ

∫ t

0

∂2p

∂x2
(x, s)ds.(4.17)
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We can estimate the right-hand side of (4.17) by substituting the right-hand side of
(4.16) and making the change of variable w = (x + μs)/

√
s. Thus we have

− ∂2h

∂x2
(x, t) ≤ 32μ

σ2
√

2πσ2

∫ ∞

(x+μ
√
t)/t

exp

[
− w2

2σ2

]
dw(4.18)

≤ 11√
2πσ2

exp

[
− (x + μt)2

2σ2t

]
, x ≥ 2μt.

The function G(z,Δ) is therefore bounded from the estimates (4.16), (4.18) as

0 ≤ −G(z,Δ) ≤
(

6βμ

σ2
+ 11

)√
Δ exp

[
− (z + μ

√
Δ)2

2σ2

]
, z ≥ 2μ

√
Δ.(4.19)

From (4.15), (4.19) we see that there exists Δ0 > 0 such that for 0 < Δ < Δ0 one
has g′(z) < 0 for 0 < z < σ

√
2| ln Δ| and g′(z) > 0 for σ

√
3| ln Δ| < z < Δ−1/6.

Here there is a solution z = a(Δ)/
√

Δ of the equation g′(z) = 0 in the interval
σ
√

2 ln Δ < z < σ
√

3 ln Δ. Evidently then limΔ→0 a(Δ) = 0.
We complete the proof by showing that g′′(z) > 0 for σ

√
2| ln Δ| < z <

σ
√

3| ln Δ|, provided 0 < Δ < Δ0. This is accomplished by estimating ∂3p/∂x3

in a similar way to how we estimated ∂2p/∂x2.
Lemma 4.5. Let u(x, t) be the function (4.13), and define T > 0 as T = sup{t >

0 : supx>0 u(x, t) > u(0, t)}. Then for 0 < t < T there exists unique x(t) > 0
satisfying limt→0 x(t) = 0, with the property that ∂u/∂x(x, t) > 0 for 0 ≤ x < x(t)
and ∂u/∂x(x, t) < 0 for x > x(t). Furthermore ∂2u/∂x2(x(t), t) < 0.

Proof. By the definition of T one must have ∂u/∂x(x, t) > 0 for some x when
0 < t < T . Since ∂u/∂x(x, t) < 0 for x large it follows from Theorem A.1 that a
unique x(t) exists for 0 < t < T . Now we apply the argument in Theorem A.3, using
Lemma 4.4 to conclude that ∂2u/∂x2(x(t), t) < 0.

Proposition 4.2. The function V (x) defined by (2.21) is C1 but not C2 at
x = u1.

Proof. Let β be as in (2.21) and let u(x, t) be the function (4.13). Then u(u1,Δ) =
∂u/∂x(u1,Δ) = 0, u(0,Δ) < 0, u(x,Δ) → −∞ as x → ∞. Then by Lemma 4.5 we
have ∂2u/∂x2(u1,Δ) < 0, whence V is not C2.

Appendix. Some consequences of the maximum principle. Here we
prove some general results for the heat equation which are used in earlier sections.
Let a(x, t), b(x, t) be uniformly bounded smooth functions in (x, t), x ∈ R, t ≥ 0,
with the property that a is also uniformly bounded from below by a positive constant.
We define the operator L on C2 functions u(x, t) by

Lu(x, t) = a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
− ∂u

∂t
.

Theorem A.1. Suppose u(x, t) is a C2 function in {(x, t) ∈ R2 : x ≥ 0, t ≥ 0}
satisfying Lu ≡ 0. Suppose further that u(0, t) = 0, t ≥ 0, and the set {x > 0 :
u(x, 0) > 0} is a semi-infinite interval. Then for any t > 0 there is at most one point
x(t) > 0 satisfying u(x(t), t) = 0.

Proof. Observe that since the function u(x, 0), x ≥ 0, can be negative only
on a bounded set it follows that u(x, t), x ≥ 0, is uniformly bounded below for all
t ≥ 0. Further, one has lim infx→∞ u(x, t) ≥ 0 for all t ≥ 0. For some T > 0
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suppose there is an x0 > 0 with u(x0, T ) < 0. Let D be the maximal domain
containing (x0, T ) such that u(x, t) < 0 for (x, t) ∈ D. Evidently u(x, t) = 0 for
(x, t) ∈ ∂D ∩R× (0,∞). Hence by the maximum principle the minimum of u occurs
at an interior point unless there exists (x1, 0) ∈ ∂D with u(x1, 0) < 0. We conclude
that there is a path γ(s), 0 ≤ s ≤ T , with γ(T ) = x0 and u(γ(s), s) < 0, 0 ≤ s ≤ T .

Now we define Ω to be the domain Ω = {(x, s) : 0 < x < γ(s), 0 < s < T}.
Then u ≤ 0 on ∂Ω ∩ R × [0, T ) and strictly negative on part of this boundary. The
maximum principle therefore implies that u is strictly negative on ∂Ω ∩ R+ × {T}.
Thus u is strictly negative on the interval (0, x0]. We define now x(t) as x(t) = 0 if
u(x, t) ≥ 0, x > 0; x(t) = ∞ if u(x, t) < 0, x > 0; x(t) = lim sup{x > 0 : u(x, t) < 0}
otherwise. If 0 < x(t) < ∞, then the maximum principle implies that u(x, t) > 0 for
x > x(t).

Theorem A.2. Suppose u(x, t) is a C2 function in {(x, t) ∈ R2 : x ≥ 0, t ≥ 0}
satisfying Lu ≡ 0. Suppose further that u(0, t) < 0, t ≥ 0, and that the set {x > 0 :
u(x, 0) > 0} is an open interval. Then for any t > 0 the set {x > 0 : u(x, t) ≥ 0} is
either empty, a single point, or a closed interval. If the set is a closed interval, then
u is strictly positive on its interior.

Proof. By Theorem A.1 we may assume that the set {x > 0 : u(x, 0) > 0} is a
finite interval. Hence for all t ≥ 0, lim supx→∞ u(x, t) ≤ 0. Now let D = {(x, t) :
x > 0, t > 0, u(x, t) > 0}. Since u is uniformly bounded above it follows by the
maximum principle that D is connected and that {(x, t) : x > 0, u(x, 0) > 0} ⊂ ∂D.
We show that the intersection of D with any line t = constant is either empty or an
open interval. To do this let a(t), b(t) be defined by

a(t) = inf{x > 0 : (x, t) ∈ D},

b(t) = sup{x > 0 : (x, t) ∈ D}.

We define a domain Ω = {(x, t) : t > 0, a(t) < x < b(t)}, whence D ⊂ Ω. For
T > 0 let DT and ΩT be defined by DT = D ∩ [R × (0, T )], ΩT = Ω ∩ [R × (0, T )].
Suppose for some T one has DT �= ΩT . By the maximum principle if the minimum
of u on ΩT is negative, then it must be at a point (x0, T ) with a(T ) < x0 < b(T ).
This contradicts Lemma 3 of Chapter 3, section 2 of [10]. Hence u ≥ 0 on ΩT

and consequently by the maximum principle again u > 0 on ΩT . Applying the
maximum principle to the complement of ΩT in R × (0, T ) we conclude that the set
{x ∈ R : u(x, t) ≥ 0} = [a(t), b(t)].

Finally suppose there is a minimum T such that Ω = ΩT . As before the maximum
principle implies that u is strictly negative on the complement of Ω̄T in R × (0,∞).
This completes the proof.

Next we wish to show that the solution x(t) in Theorem A.1 of the equation
u(x, t) = 0 is nondegenerate. As a consequence it follows that x(t) is a smooth
function of t for t > 0.

Theorem A.3. Suppose u(x, t), x ≥ 0, t ≥ 0, satisfies the assumptions of
Theorem A.1. Let W0 = {x > 0 : ∂u/∂x(x, 0) > 0} and assume that the boundary
∂W0 of W0 has no finite limit points. Then there is the inequality ∂u/∂x(x(t), t) >
0, t > 0.

Proof. For t > 0 let Wt = {x > 0 : ∂u/∂x(x, t) > 0}. Since ∂u/∂x(x, t) also sat-
isfies a diffusion equation it follows that ∂Wt has no finite limit points. Furthermore,
for t small and x �∈ ∂Wt the derivative ∂u/∂x(x, t) is nonzero.

We first show that ∂u/∂x(x(t), t) > 0 for t > 0 sufficiently small. We argue by
contradiction. Suppose tn, n = 1, 2, . . . , is a positive sequence with limn→∞ tn = 0
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such that x(tn) ∈ ∂Wtn , n = 1, 2, . . . . We may assume without loss of generality that
limn→∞ x(tn) = x∞. There is then a possibly nontrivial closed interval [a, b] such
that x∞ ∈ [a, b], ∂u/∂x(x, 0) = 0, x ∈ [a, b], and ∂u/∂x(x, 0) �= 0, x �∈ [a, b], but
sufficiently close to a or b. Suppose now that ∂u/∂x(x, 0) > 0 for x close to a or
close to b. Then by the maximum principle it follows that ∂u/∂x(x, t) > 0 for x in a
neighborhood of [a, b] when t is sufficiently small. In particular ∂u/∂x(x(tn), tn) > 0
for n large, which is a contradiction. Alternatively we can have ∂u/∂x(x, 0) > 0
for x close to a and ∂u/∂x(x, 0) < 0 for x close to b. In that case the maximum
principle implies u(x, t) < 0 for x in a neighborhood of [a, b] when t is small. This
again contradicts the fact that u(x(tn), tn) = 0 as n → ∞. We conclude therefore
that ∂u/∂x(x(t), t) > 0 for t > 0 sufficiently small.

Finally we show that ∂u/∂x(x(t), t) > 0 for all t. To see this consider T > 0 and
suppose that ∂u/∂x(x(t), t) > 0 for all 0 < t < T , limt→T x(t) = xT . If xT = ∞, then
u(x, T ) ≤ 0, x ≥ 0. If xT = 0, then u(x, T ) ≥ 0, x ≥ 0. Suppose now 0 < xT < ∞,
whence u(x, T ), x > 0, takes on both positive and negative values. For 0 < t < T
there exists a(t), b(t) with 0 ≤ a(t) < x(t) < b(t) ≤ ∞ such that ∂u/∂x(x, t) > 0 for
a(t) < x < b(t) and a(t), b(t) ∈ ∂Wt if a(t) > 0 and b(t) < ∞. Since u(0, t) = 0 it
follows that ∂u/∂x(x, t) < 0 for x > 0 small. Hence a(t) > 0.

We show that xT cannot be the limit as t → T of any points in ∂Wt ∩ [0, x(t)].
Suppose first that ∂Wt ∩ [0, x(t)] = {a(t)}. Then ∂u/∂x(x, t), 0 < x < x(t), has
just one sign change, whence ∂u/∂x(x, T ), 0 < x < xT , has also at most one sign
change. Since u(xT , T ) = u(0, T ) = 0 it follows that limt→T a(t) < xT . Alternatively
let a∗(t) ∈ ∂Wt ∩ [0, x(t)] have the property that

u(a∗(t), t) = sup{u(x, t) : x ∈ ∂Wt ∩ [0, x(t)]}.

Evidently u(a∗(t), t) < 0. By the maximum principle it follows that u(a∗(t), t) is a
decreasing function of t. Hence xT cannot be the limit as t → T of any point in
∂Wt ∩ [0, x(t)].

Since we can argue similarly that xT is not the limit as t → T of any point in
∂Wt ∩ [x(t),∞) we conclude that ∂u/∂x(x(T ), T ) > 0. We have shown that the set
{t > 0 : ∂u/∂x(x(t), t) > 0} is both open and closed, whence it must be the interval
(0,∞).
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STABILITY OF NONLINEAR FEEDBACK SYSTEMS: A NEW
SMALL-GAIN THEOREM∗
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Abstract. For the feedback interconnection of general nonlinear systems, the classical small-
gain condition is sufficient but not necessary for robust stability. We introduce a weaker notion of
gain which yields a small-gain condition that is both necessary and sufficient for robust stability.
We also discuss conditions under which the two notions coincide, and we further provide results for
dissipation performance measures that are more general than the classical gain measures.
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1. Introduction. The classical small-gain theorem [28, 4] provides a sufficient
condition for the stability of the feedback interconnection of nonlinear systems, and
it has been studied extensively by many researchers. In [28], Zames derived a suffi-
cient condition for the small-gain theorem for general nonlinear systems by using the
concepts of loop gain and positivity. Willems [24] systematically studied the passivity
theorem, and Anderson proved in [1] the equivalence between the classical small-gain
theorem and the passivity theorem for general feedback systems. In [25], Willems
established a theorem for dissipative systems in the context of finite-dimensional sta-
tionary linear systems with quadratic supply rates, deriving a necessary and sufficient
condition in the frequency domain for dissipativity. Hill and Moylan in [10, 17] estab-
lished conditions for stability and instability for interconnected systems in terms of
the properties of dissipative subsystems. In [2], Chen and Desoer derived a necessary
and sufficient condition for the robust stability of linear distributed feedback systems.
Extensions of these classical results to nonlinear notions of gain appear in [15, 13, 12].

Of course, one may have stability even if the small-gain condition is violated,
but it is of interest to know whether the small-gain condition becomes necessary
when we treat one of the systems as uncertainty and consider the robust stabilization
problem. Positive results are available for the case in which the nominal system is
linear [5, 3, 20]. More recently, Shamma [19] demonstrated the necessity of the small-
gain condition for the robust stability of a class of nonlinear systems with fading
memory. Shamma and Zhao further developed this approach in [21] and gave a
necessary condition for uniform robust invertibility, whereas Gonçalves and Dahleh
provided another necessary condition in [7] for nonlinear systems with fading memory.

Unfortunately, the small-gain condition is not necessary for robust stability for
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more general classes of nonlinear systems (even time-invariant, first-order systems),
as demonstrated by an example in [6]. In this paper, we show how to weaken the
standard notion of gain so that we preserve the sufficiency of the small-gain condition
while recovering its necessity for the robust stability of general nonlinear systems,
even those without fading memory. We call the weakened property conditional gain,1

as it is related to the conditional integral quadratic constraints proposed in [16] (in
fact, for the L2 case, one can develop frequency-domain conditions for conditional
gain using such integral quadratic constraints, but we will not pursue this here). Our
sufficiency result improves upon the classical small-gain theorem by replacing the
gain assumption on one of the subsystems in the loop with the weaker conditional
gain assumption. In our necessity result, we show that it suffices to consider only
time-invariant, second-order uncertainties, even when the nominal system itself is a
distributed and/or time-varying system.

Throughout this paper, we use the behavioral theory of dynamical systems de-
veloped in [27, 18], modified to account for the fact that different trajectories may be
defined on different time intervals (e.g., for systems admitting finite escape times).
We found this behavioral approach to be ideal for our analysis, allowing us to sim-
plify proofs and avoid technicalities associated with other classes of dynamical system
models (such as input/output operator-theoretic models or differential-equation state
models). Other authors have also found this framework useful in the study of dissi-
pative systems [8, 22].

The organization of this paper is as follows. In section 2, we develop the notions
of dissipativity in the context of behavioral dynamical systems. We revisit classical
Lp-gain in this context in section 3, where we also present our definition of conditional
gain along with the main results of this paper. Moreover, in this section, we present
a sufficient condition under which conditional and classical Lp-gains are equivalent
notions; this sufficient condition is in the form of a resetting property related to the
ones used in [19, 21] to prove the necessity of the small-gain theorem for the robust
stability of nonlinear systems with fading memory. This sufficient condition also
implies that the conditional and classical notions of Lp-gain are equivalent for linear
time-invariant systems. Finally, we extend our results to more general dissipation
performance measures in section 4.

2. Dynamical systems, dissipativity, and storage functions. In this sec-
tion we discuss dissipativity in the context of behavioral dynamical systems [27, 18].
We restrict our attention to continuous-time systems for simplicity. A trajectory
on a nonempty set V is a mapping v : I → V on a nonempty interval domain
Dom(v) = I ⊂ R. We use the following notation from [27]: given two trajecto-
ries v1, v2 on V and a time t ∈ Dom(v1)∩Dom(v2), we define the concatenation of v1

and v2 at time t to be the trajectory v1 ∧t v2 on V given by

(2.1) (v1 ∧t v2)(τ) =

{
v1(τ) when τ < t,

v2(τ) when τ � t,

with interval domain Dom(v1 ∧t v2) =
[
(−∞, t] ∩ Dom(v1)

]
∪
[
[t,∞) ∩ Dom(v2)

]
.

A trajectory space on V is a nonempty collection T(V) of trajectories on V which
is closed under concatenations: for any v1, v2 ∈ T(V) with t ∈ Dom(v1) ∩ Dom(v2),

1The term “conditional gain” was also used in [23] to describe the ultimate virtual-dissipativity
performance measure discussed in [9]. In general this system property neither implies nor is implied
by our conditional gain property.
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we have v1 ∧t v2 ∈ T(V). A trajectory space T(V) together with a subset B ⊂ T(V)
is called a dynamical system H = (T(V),B), and the set B is called the behavior of
the system H (cf. [27, 18]). When the underlying trajectory space T(V) is apparent
from context, we will use the terms “system H” and “behavior B” interchangeably.
Note that the trajectory space used in [27] is the set of all mappings from a fixed
time interval T into V; here we instead allow different trajectories of a system to be
defined on different time intervals. We also allow the behavior B to be the empty set
B = ∅ and refer to empty and nonempty systems H accordingly.

Given a trajectory v ∈ T(V) and a time t ∈ R, we let σtv denote the time-shifted
trajectory (σtv)(·) = v(·+ t) with Dom(σtv) = [Dom(v)− t]. We say that a system is
time-invariant when its behavior B satisfies σtB = B for all t ∈ R.

To develop the notion of a state-space system, we introduce a state space X and
a mapping ξ : V → X which assigns a state value ξq � ξ(q) ∈ X to each signal value
q ∈ V. We recall the following from [27].

Definition 2.1. A system H = (T(V),B) satisfies the axiom of state with respect
to a mapping ξ : V → X when the following holds: whenever a pair of trajectories
v1, v2 ∈ B and a time t ∈ Dom(v1) ∩ Dom(v2) are such that ξv1(t) = ξv2(t), then the
concatenation v1 ∧t v2 also belongs to B.

A system H which satisfies the axiom of state is called a state-space system, and
we write H as the triple H = (T(V),B, ξ). Note that the development in [18] requires
the axiom of state to hold only at points of continuity in the state trajectory,2 but
we adopt the original definition in [27], which does not require the state space to be
endowed with a topology.

Given a trajectory v ∈ T(V) and a state mapping ξ : V → X, we let G(v) ⊂ R×X

denote the graph of the state trajectory ξv(·), namely, the set of all pairs (t, ξv(t)) as
t varies over Dom(v). Likewise, given a behavior B ⊂ T(V), we let G(B) denote the
union of all graphs G(v) as v varies over B. In other words, (t0, x0) ∈ G(B) if and
only if there is some trajectory v ∈ B such that ξv(t0) = x0.

One can characterize state-space systems using differential-algebraic equations.
For example, let X = R

n, let V = W×X for some auxiliary signal space W, let ξ be the
natural projection of V onto X, and let T(V) be a trajectory space on V whose members
all have domains with nonempty interiors. Given a mapping F : R×V×R

n → R
m, let

B denote the set of trajectories (w, x) ∈ T(V) such that x(·) is absolutely continuous
on Dom(w, x) and

(2.2) F
(
t, w(t), x(t), ẋ(t)

)
= 0

for almost all t ∈ Dom(w, x). Then the system H = (T(V),B, ξ) is a state-space
system. Here the auxiliary signal w(t) can represent a combination of inputs, outputs,
or other signals, although at this point there is no need to label them as such. Also,
there is no need to assume the existence or uniqueness of solutions to (2.2); whatever
solutions do exist belong to the behavior B. This class of systems (2.2) encompasses
many of the nonlinear state-space systems studied in standard texts [14].

We next introduce the concepts of abstract energy, storage, and dissipation.
Roughly speaking, if a system is dissipative, then it will absorb more energy from
the external world than it supplies. To make this idea precise, we will adopt various
definitions from [25, 26, 9, 10, 8], modifying them as appropriate to fit our particular
behavioral context.

2This weaker version of the axiom of state is called the property of state in [18].
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Definition 2.2. A supply rate S for a trajectory space T(V) is a function
S : R × V → R such that, for every v ∈ T(V), the mapping t 	→ S(t, v(t)) is locally
integrable on Dom(v).

Definition 2.3. Let S be a supply rate for a trajectory space T(V), and let
H = (T(V),B, ξ) be a state-space system. Given (t0, x0) ∈ G(B), we define the
available storage φa(t0, x0) for H (with respect to S) to be the quantity

(2.3) φa(t0, x0) � − inf
v∈B
t�t0

∫ t

t0

S(τ, v(τ)) dτ,

where the infimum is taken over all trajectories v ∈ B and all times t � t0 such that
t0, t ∈ Dom(v) and ξv(t0) = x0. We say that H is dissipative with respect to S when
φa(t0, x0) < ∞ for every (t0, x0) ∈ G(B).

Note that G(B) = ∅ if and only if H is empty, in which case H is trivially
dissipative. Hence, from this point on we will assume that H is nonempty. Also,
because we can take t = t0 to get zero as a possible value of the integral in (2.3), we
see that φa(t0, x0) � 0 for all (t0, x0) ∈ G(B).

Definition 2.4. Let S be a supply rate for a trajectory space T(V), and let
H = (T(V),B, ξ) be a state-space system. A virtual storage function for H (with
respect to S) is a function U : G(B) → R such that the dissipation inequality

(2.4) U(t, ξv(t)) � U(t0, ξv(t0)) +

∫ t

t0

S(τ, v(τ)) dτ

holds for any v ∈ B and any t0, t ∈ Dom(v) with t0 � t. A storage function is a
virtual storage function which is nonnegative everywhere.

We now give a behavioral version of the classical result equating dissipativity
to the existence of a storage function [25, 26, 9, 8] (e.g., Theorem IV-2 in [26] or
Theorem 1 in [8]). Note that the only aspect of the system dynamics needed here
is the axiom of state; there is no need to distinguish between inputs and outputs or
assume any additional structure of these dynamics.

Proposition 2.5. A state-space system H = (T(V),B, ξ) is dissipative with
respect to a supply rate S if and only if it admits a storage function. Furthermore,
if H is dissipative, then φa is a storage function and any other storage function U
satisfies U(t0, x0) � φa(t0, x0) for all (t0, x0) ∈ G(B).

Proof. First suppose that U is a storage function. Then, since U � 0, we have

(2.5) 0 � U(t0, x0) +

∫ t

t0

S(τ, v(τ)) dτ

along all trajectories v ∈ B satisfying the initial condition ξv(t0) = x0. It follows that
φa(t0, x0) in (2.3) is bounded from above by the finite value U(t0, x0).

Conversely, suppose that H is dissipative and that there exist v1 ∈ B and t0, t1 ∈
Dom(v1) with t0 � t1 such that

(2.6) φa(t1, ξv1(t1)) > φa(t0, ξv1(t0)) +

∫ t1

t0

S(τ, v1(τ)) dτ.

Then, from (2.3), there exist v2 ∈ B and t2 � t1 such that t1, t2 ∈ Dom(v2), ξv2(t1) =
ξv1(t1), and

(2.7) −
∫ t2

t1

S(τ, v2(τ)) dτ > φa(t0, ξv1(t0)) +

∫ t1

t0

S(τ, v1(τ)) dτ.
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It follows from the axiom of state that the trajectory v � v1 ∧t1 v2 also belongs to B.
Thus, from (2.7), we have

(2.8) −
∫ t2

t0

S(τ, v(τ)) dτ > φa(t0, ξv(t0)),

which contradicts (2.3).
Note that if U is a storage function for a system H, then so is U − inf U where

the infimum is taken over G(B). Hence, from Proposition 2.5, we have U − inf U � φa

on G(B), which immediately gives us the following.
Proposition 2.6. If H = (T(V),B, ξ) is dissipative, then

(2.9) inf
{
φa(t0, x0) : (t0, x0) ∈ G(B)

}
= 0.

We may interpret Proposition 2.6 as a statement about “bias” in a dissipative sys-
tem H: for any ε > 0, there exists an initial condition (t0, x0) such that φa(t0, x0) � ε,
which implies from (2.3) that

(2.10)

∫ t

t0

S(τ, v(τ)) dτ � −ε

along every trajectory v ∈ B with ξv(t0) = x0. In other words, the “bias” ε can be
made arbitrarily small by choice of initial condition. If the infimum in (2.9) is actually
a minimum, then we can choose ε = 0 and achieve zero bias from some nonempty set
of initial conditions.

3. Dissipativity, Lp-gain, and robust stability. Throughout this section,
we will consider the Lp spaces for 1 � p < ∞; the case p = ∞ is also of interest
but requires a somewhat different formulation [11]. We say that a trajectory y on a
normed linear space (Y, |·|) belongs to Lp when the integral in the norm definition

(3.1) ‖y‖p �
(∫

Dom(y)

|y(τ)|p dτ
)1/p

exists and is finite. If t0, t ∈ Dom(y) with t0 � t, then we let y[t0,t] denote the
restriction of the trajectory y to the domain [t0, t], whereas we let y[t0] denote the
restriction of the trajectory y to the domain [t0,∞)∩Dom(y). We say that y belongs
to the extended space Lpe when y[t0,t] ∈ Lp for every t0, t ∈ Dom(y) with t0 � t.
Likewise, we write y ∈ L+

p when y[t0] ∈ Lp for every t0 ∈ Dom(y). Note that if
y ∈ Lpe, then y ∈ L+

p if and only if y[t0] ∈ Lp for some t0 ∈ Dom(y).
In this section we assume that the signal space V is the product V = E×Y×X of

a normed linear input space (E, |·|), a normed linear output space (Y, |·|), and a state
space X. We also assume that the trajectory space T(V) is the set of all trajectories
(e, y, x) such that e, y ∈ Lpe. Given a nonnegative gain parameter γ, we say that a
state-space system H = (T(V),B, ξ) (with ξ being the natural projection of V onto
X) has Lp-gain � γ when there exists a mapping β : G(B) → R such that, for all
trajectories (e, y, x) ∈ B and all t, t0 ∈ Dom(e, y, x) with t � t0, we have

(3.2) ‖y[t0,t]‖pp � γp‖e[t0,t]‖pp + β
(
t0, x(t0)

)
.

Here β(·) represents a finite bias which depends only on the initial conditions. Note
that we have not defined Lp-gain per se, but only the property of having Lp-gain � γ
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(this will be sufficient for our purposes). We will also say that H has Lp-gain < γ
whenever it has Lp-gain � γ0 for some γ0 < γ.

The classical Lp-gain supply rate for T(V) is

(3.3) S(e, y) = γp|e|p − |y|p,

and it follows from Definition 2.3 that H is dissipative with respect to this supply
rate if and only if, for every initial condition (t0, x0) ∈ G(B),

(3.4) inf
e,y,x
t�t0

∫ t

t0

(
γp|e(τ)|p − |y(τ)|p

)
dτ � −φa(t0, x0) > −∞,

where the infimum is taken over all trajectories (e, y, x) ∈ B and all t � t0 such
that t, t0 ∈ Dom(e, y, x) and ξ(e, y, x)(t0) = x(t0) = x0. Thus it is clear that H is
dissipative with respect to (3.3) if and only if H has Lp-gain � γ. Moreover, we
can choose the bias as β ≡ φa, and it follows from Proposition 2.6 that this bias can
always be made arbitrarily small by choosing appropriate initial conditions.

We will consider these classical notions of Lp-gain and dissipation throughout
this section. To further motivate our analysis, we first recall the example in [6] which
demonstrates that the small-gain condition is not necessary for the robust stability of
general nonlinear feedback interconnections.

3.1. A motivating example. This example is a single-input-single-output,
time-invariant, first-order nonlinear system H which does not have an L2-gain � 1
but for which nevertheless the system obtained by connecting H in feedback with an
uncertain system Δ as shown in Figure 3.1 is stable for any Δ having an L2-gain < 1.

Δ

H

−

e y

Fig. 3.1. Performance versus robust stability.

The system H is described by the following state-space equations:

(3.5) H :

{
ẋ = −φ′(x) + 2e, x ∈ R,

y = φ′(x) − e,

where φ′(x) denotes the derivative of some smooth function φ : R → R. From (3.5),
we find that e2 − y2 = φ′(x)ẋ and, upon integrating both sides,

(3.6) φ(x(t)) = φ(x(t0)) +

∫ t

t0

(
e2(τ) − y2(τ)

)
dτ,

which holds along any trajectory of the system H. It follows from Definition 2.4,
Proposition 2.5, and the controllability of H that H has L2-gain � 1 if and only if
the function φ(·) is bounded from below over R, in which case

(3.7) U(x) = φ(x) − inf
x∈R

φ(x)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEW SMALL-GAIN THEOREM 2001

is a corresponding storage function. Consider now the feedback connection of Fig-
ure 3.1, where the (possibly nonlinear, time-varying) uncertain system Δ has an
L2-gain � γ for some γ ∈ [0, 1]. Let UΔ(t, x

Δ) denote a storage function for Δ which
satisfies the corresponding dissipation inequality,

(3.8) UΔ(t, xΔ(t)) � UΔ(t0, xΔ(t0)) +

∫ t

t0

(
γ2y(τ)2 − e(τ)2

)
dτ,

along trajectories of Δ, where x
Δ

denotes the internal state of Δ. We now define a
quantity W (t, x, x

Δ
):

(3.9) W (t, x, x
Δ) =

1

2

(
1 + γ2

)
φ(x) + U

Δ(t, xΔ).

Using (3.6) and (3.8), we see that trajectories of the closed-loop system are such that

(3.10) W (t, x(t), x
Δ
(t)) � W (t0, x(t0), xΔ

(t0)) −
1

2

(
1 − γ2

) ∫ t

t0

(
e(τ)2 + y(τ)2

)
dτ.

Because U
Δ

is a nonnegative function, it follows from (3.9) and (3.10) that

φ(x(t)) � 2

1 + γ2
W (t0, x(t0), xΔ(t0)) −

1 − γ2

1 + γ2

∫ t

t0

(
e(τ)2 + y(τ)2

)
dτ(3.11)

� 2

1 + γ2
W (t0, x(t0), xΔ(t0))

along trajectories of the closed-loop system. In particular, we see from (3.11) that
φ(x(t)) is bounded from above in forward time. Now suppose that φ satisfies the
following:

(i) inf φ = −∞ (i.e., φ is not bounded from below over R);
(ii) for all a ∈ R, every connected component of the set {φ � a} is compact;
(iii) φ is positive definite in a neighborhood of zero.

An example of such a function is φ(x) = x2 cos(x). Because the state trajectory x(t) is
a continuous function of time, we can conclude from (3.11) and (ii) that |x(t)| and thus
also |φ(x(t))| are bounded in forward time from any initial state of the interconnected
system. Furthermore, from (iii), we observe that we have Lyapunov-like stability of
the point x = 0, namely, for any neighborhood of zero in R, the state x(t) does not
leave this neighborhood in forward time provided that the initial state x(t0) and initial
energy U

Δ(t0, xΔ(t0)) stored in system Δ are sufficiently small. If in addition the gain
parameter γ of system Δ is strictly less than one, then we can conclude further from
(3.11) that the signals e and y belong to L+

2 . Finally, we know from (i) that the system
H does not have an L2-gain � 1. To summarize, the closed-loop system of Figure 3.1
is robustly stable even though the conditions of the classical small-gain theorem are
not satisfied. More precisely, even though H does not have L2-gain � 1, there does
not exist an uncertainty Δ with L2-gain < 1 which causes the interconnection to
exhibit unstable behavior. Even if we allow γ = 1, we cannot cause the internal state
of H to become unbounded or lose the Lyapunov-like stability of its zero equilibrium
value. Notice that this does not contradict the known results for linear systems: the
Jacobi linearization of H about x = 0 indeed has L2-gain � 1; hence the small-gain
condition is satisfied in a neighborhood of the point x = 0.

This example demonstrates that for general nonlinear systems the classical small-
gain condition is not necessary for robust stability. Our goal is to weaken the definition
of gain so that we preserve the sufficiency of the small-gain condition while at the same
time recovering its necessity for robust stability.
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3.2. Conditional Lp-gain. We have seen that a system has Lp-gain � γ if and
only if inequality (3.4) holds for all system trajectories satisfying the initial conditions.
To weaken this definition of gain, we require this inequality to hold not for all such
system trajectories but only for those that satisfy an auxiliary inequality.

Definition 3.1. A state-space system H = (T(V),B, ξ) has conditional Lp-gain
� γ when, for every initial condition (t0, x0) ∈ G(B), every C > 0, and every γ > γ,

(3.12) inf
e,y,x
t�t0

∫ t

t0

(
γp|e(τ)|p − |y(τ)|p

)
dτ > −∞,

where the infimum is taken over all trajectories (e, y, x) ∈ B and all t � t0 such that
t, t0 ∈ Dom(e, y, x), ξ(e, y, x)(t0) = x(t0) = x0, and furthermore

(3.13) sup
t∈Dom(e,y,x)

t�t0

∫ t

t0

(
γp|e(τ)|p − |y(τ)|p

)
dτ < C.

In other words, a system has conditional Lp-gain when it is not possible to extract
arbitrarily large amounts of (abstract) energy from it without pumping arbitrarily
large amounts of energy into it in the process. It is clear that any system having
Lp-gain � γ also has conditional Lp-gain � γ, but the converse need not hold. For
example, the system H in (3.5) with φ(x) = x2 cos(x) has conditional L2-gain � 1
even though the same is not true for the classical, unconditional L2-gain.

If a system H has Lp-gain � γ for some finite γ, then it follows from (3.2) that
H is also Lp-BIBO (bounded-input/bounded-output) stable, namely, that inputs e
belonging to L+

p generate outputs y which also belong to L+
p . Systems having only

the weaker conditional Lp-gain share the following stability property.
Proposition 3.2. If a state-space system H = (T(V),B, ξ) has conditional

Lp-gain � γ for some finite γ, then H is Lp-BIBO stable.
Proof. Fix a trajectory (e, y, x) ∈ B such that the input e belongs to L+

p , choose
any t0 ∈ Dom(e, y, x), and choose any γ > γ. Then there exists C > 0 such that

(3.14) sup
t∈Dom(e,y,x)

t�t0

∫ t

t0

γp|e(τ)|p dτ < C.

It follows from Definition 3.1 that

C − sup
t∈Dom(e,y,x)

t�t0

∫ t

t0

|y(τ)|p dτ > inf
t∈Dom(e,y,x)

t�t0

∫ t

t0

(
γp|e(τ)|p − |y(τ)|p

)
dτ > −∞,

from which we conclude that y[t0] belongs to Lp.
It is of interest to identify classes of systems for which our definitions of Lp-gain

and conditional Lp-gain coincide. One such class is characterized by the following
result, which employs a resetting property related to the ones used in [19, 21] to prove
the necessity of the small-gain theorem for the robust stability of nonlinear systems
with fading memory.

Theorem 3.3. Let H = (T(V),B, ξ) be a time-invariant state-space system. Let
Q ⊂ X be such that H is controllable from Q in the following manner: for every
x0 ∈ X, there exists α > 0 such that, for every q ∈ Q, there exist a trajectory
(e, y, x) ∈ B and a time interval [0, t] ⊂ Dom(e, y, x) such that x(0) = q, x(t) = x0,
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and ‖e[0,t]‖p � α. Suppose also that H has the following resetting property with respect
to Q: there exists β > 0 such that, for all x0 ∈ X, there exist a trajectory (e, y, x) ∈
B and a time interval [0, t] ⊂ Dom(e, y, x) such that x(0) = x0, x(t) ∈ Q, and
‖e[0,t]‖p � β. Then H has Lp-gain � γ if and only if it has conditional Lp-gain � γ.

Proof. Suppose that H does not have Lp-gain � γ; then there exists x0 ∈ X

such that, for any M > 0, there exist a trajectory (e1, y1, x1) ∈ B and a time interval
[0, t1] ⊂ Dom(e1, y1, x1) such that x1(0) = x0 and

(3.15)

∫ t1

0

(
γp|e1(τ)|p − |y1(τ)|p

)
dτ � −M.

Given this state x0, we choose α as in the theorem statement and pick M = γpαp +
γpβp + 1. From the resetting property, there exist a trajectory (e2, y2, x2) ∈ B and
a time interval [t1, t2] ⊂ Dom(e2, y2, x2) such that x2(t1) = x1(t1), x2(t2) ∈ Q,
and ‖e2[t1,t2]‖p � β. From the controllability property, there exist a trajectory
(e3, y3, x3) ∈ B and a time interval [t2, t3] ⊂ Dom(e3, y3, x3) such that x3(t2) = x2(t2),
x3(t3) = x0, and ‖e3[t2,t3]‖p � α. We now concatenate these three trajectories using
the axiom of state to create a periodic trajectory (e, y, x) ∈ B with period t3 which
matches (e1, y1, x1) on the interval [0, t1], matches (e2, y2, x2) on the interval [t1, t2],
and matches (e3, y3, x3) on the interval [t2, t3]. If we now integrate the supply rate
over one period, we obtain the bound

(3.16)

∫ t3

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ � −M + γpβp + γpαp = −1.

If we choose γ > γ such that

(3.17)
(
γp − γp

) ∫ t3

0

|e(τ)|p dτ < 1,

then upon adding inequalities (3.16) and (3.17) we obtain

(3.18)

∫ t3

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ < 0.

With C defined as

(3.19) C = 1 + sup
0�t�t3

∫ t

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ,

it follows from (3.18) and (3.19) that

(3.20) sup
t�0

∫ t

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ = sup

0�t�t3

∫ t

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ < C,

but, from (3.16), we have

(3.21) inf
t�0

∫ t

0

(
γp|e(τ)|p − |y(τ)|p

)
dτ = −∞.

We conclude from (3.20), (3.21), and Definition 3.1 that H does not have conditional
Lp-gain � γ.
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We can use Proposition 3.2 and Theorem 3.3 to show that, for linear, time-
invariant, finite-dimensional, controllable, and observable state-space systems, the
notions of Lp-gain and conditional Lp-gain coincide. Indeed, if such a system H
has conditional Lp-gain � γ, then we conclude from Proposition 3.2 and the observ-
ability of H that all internal modes of H have strictly negative real parts. Hence,
with Q = {0}, the internal stability of H guarantees that the resetting property of
Theorem 3.3 holds.

3.3. A conditional small-gain theorem. The behavioral approach allows us
to consider feedback interconnections like those of Figure 3.2 without having to impose
(or even define) well-posedness. Indeed, let V1 = E × Y × X1 and V2 = Y × E × X2,
let T(V1) be the set of all trajectories (e1, y1, x1) such that e1, y1 ∈ Lpe, let T(V2)
be the set of all trajectories (e2, y2, x2) such that e2, y2 ∈ Lpe, and let ξ1 and ξ2 be
the natural projections of V1 and V2 onto X1 and X2, respectively. Now given two
state-space systems H1 = (T(V1),B1, ξ1) and H2 = (T(V2),B2, ξ2), we can define
the behavior of their interconnection in Figure 3.2 to be simply the collection of all
trajectories (u1, u2, e1, e2, y1, y2, x1, x2) satisfying (e1, y1, x1) ∈ B1, (e2, y2, x2) ∈ B2,
and the interconnection constraints e1 ≡ u1 − y2 and e2 ≡ u2 + y1.

H1

H2

−

e1

e2

u1

u2

y1

y2

Fig. 3.2. Canonical feedback interconnection.

We say that the feedback connection of Figure 3.2 is Lp-stable when, for every
initial state condition (t0, x10, x20) and every input pair u1, u2 ∈ L+

p , there exists a
uniform upper bound on ‖y1[t0]‖p and ‖y2[t0]‖p over all trajectories of the interconnec-
tion which satisfy the initial conditions x1(t0) = x10 and x2(t0) = x20 (in particular,
the trajectories e1, e2, y1, and y2 all belong to L+

p ). Likewise, we say that the feedback
connection is Lp-unstable when it is not Lp-stable. In section 4, we will extend our
results to more general stability measures.

We will present our new small-gain theorem in two parts, the first one strengthen-
ing the classical sufficiency result (see [4], for example) by weakening the assumption
on the system H1, and the second one demonstrating the necessity of conditional gain
for robust stability (treating the system H2 as uncertainty).

Theorem 3.4 (sufficiency). If H1 has conditional Lp-gain � γ1 and H2 has (un-
conditional) Lp-gain � γ2, and if γ1γ2 < 1, then the feedback connection of Figure 3.2
is Lp-stable.

Theorem 3.5 (necessity). If H1 does not have conditional Lp-gain � γ1, then
there exist γ2 < 1/γ1 and a time-invariant state-space system H2 with (unconditional)
Lp-gain � γ2 such that the feedback connection of Figure 3.2 is Lp-unstable.

It is significant that the destabilizing system H2 in Theorem 3.5 can always be
chosen as a time-invariant system, even if H1 is not time-invariant. Moreover, in the
proof of this theorem in section 3.5 below, H2 is constructed as a second-order system,
namely, its state space is X2 = R

2. Thus, to show that a system H1 has conditional
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gain, it suffices to prove the Lp-stability of the feedback connection of Figure 3.2 for
all second-order, time-invariant systems H2. There is an alternative construction of
H2 which is first-order but time-varying.

3.4. Proof of Theorem 3.4. Fix an initial condition (t0, x10, x20) and an input
pair u1, u2 ∈ L+

p , and suppose v = (u1, u2, e1, e2, y1, y2, x1, x2) is a trajectory of the
interconnection. Now H2 has Lp-gain � γ2, which implies that, for any t ∈ Dom(v)
with t � t0, we have

(3.22)

∫ t

t0

|y2(τ)|p dτ � γp
2

∫ t

t0

|e2(τ)|p dτ + β2,

where β2 = β2(t0, x20) is a finite bias. By taking the pth root of both sides of (3.22),
we obtain the estimate

(3.23) ‖y2[t0,t]‖p � γ2‖e2[t0,t]‖p + β
1/p
2 .

Because γ1γ2 < 1, we can fix γ1 > γ1 such that γ1γ2 < 1. We next obtain the
following bounds:

γp
1‖e1[t0,t]‖pp − ‖y1[t0,t]‖pp � γp

1

(
‖u1[t0,t]‖p + ‖y2[t0,t]‖

)p − ‖(e2 − u2)[t0,t]‖pp
� γp

1(‖u1[t0,t]‖p + γ2‖e2[t0,t]‖p + β
1/p
2 )p

− ‖(e2 − u2)[t0,t]‖pp.(3.24)

For the case ‖e2[t0,t]‖p � ‖u2[t0]‖p, we see from (3.24) that

(3.25) γp
1‖e1[t0,t]‖pp − ‖y1[t0,t]‖pp � γp

1(‖u1[t0]‖p + γ2‖u2[t0]‖p + β
1/p
2 )p + 2p‖u2[t0]‖pp.

For the case ‖e2[t0,t]‖p > ‖u2[t0]‖p, it follows from (3.24) that

γp
1‖e1[t0,t]‖pp − ‖y1[t0,t]‖pp �

(
γ1‖u1[t0]‖p + γ1γ2‖e2[t0,t]‖p + γ1β

1/p
2

)p
−
(
‖e2[t0,t]‖p − ‖u2[t0]‖p

)p
.(3.26)

Since γ1γ2 < 1, the right-hand side of (3.26) is bounded from above by a constant
which is independent of e2 or t, but depends only on the fixed quantities t0, ‖ui[t0]‖p,
p, γ1, γ2, and x20. The same is true for the right-hand side of (3.25), and we conclude
that there exists a constant C > 0 depending only on these fixed quantities such that

(3.27) sup
t∈Dom(v)

t�t0

∫ t

t0

(γp
1|e1(τ)|p − |y1(τ)|p) dτ < C.

It now follows from Definition 3.1 that there exists a constant δ > 0, depending only
on the fixed quantities t0, ‖ui[t0]‖p, p, γ1, γ2, and xi0, such that

(3.28) ‖y1[t0,t]‖p � γ1‖e1[t0,t]‖p + δ1/p.

Proceeding from (3.23) and (3.28), the rest of the proof is virtually identical to the
proof of the classical small-gain theorem as presented in [4, p. 41]. For example, we
obtain a bound on ‖y1[t0]‖p as follows:

‖y1[t0,t]‖p � γ1‖u1[t0,t]‖p + γ1‖y2[t0,t]‖p + δ1/p(3.29)

� γ1‖u1[t0,t]‖p + γ1γ2‖e2[t0,t]‖p + γ1β
1/p
2 + δ1/p

� γ1‖u1[t0]‖p + γ1γ2‖u2[t0]‖p + γ1γ2‖y1[t0,t]‖p + γ1β
1/p
2 + δ1/p.
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Upon collecting the ‖y1[t0,t]‖p terms on the right-hand side, we obtain the bound

(3.30) ‖y1[t0,t]‖p � 1

1 − γ1γ2

(
γ1‖u1[t0]‖p + γ1γ2‖u2[t0]‖p + γ1β

1/p
2 + δ1/p

)
.

The left-hand side of (3.30) is independent of t, so this provides a bound on ‖y1[t0]‖p
as desired. The calculation for ‖y2[t0]‖p is analogous.

3.5. Proof of Theorem 3.5. If H1 = (T(V1),B1, ξ1) does not have condi-
tional Lp-gain � γ1, then there exist an initial condition (t0, x10) ∈ G(B1), con-
stants C1 > 0 and γ1 > γ1, a sequence of trajectories (e1n, y1n, x1n) ∈ B1 with
t0 ∈ Dom(e1n, y1n, x1n) and x1n(t0) = x10 for each n � 1, and a sequence of times
tn ∈ Dom(e1n, y1n, x1n) with tn � t0 such that

(3.31)

∫ tn

t0

(
γp
1 |e1n(τ)|p − |y1n(τ)|p

)
dτ < −n

and

(3.32) sup
t∈Dom(e1n,y1n,x1n)

t�t0

∫ t

t0

(
γp

1|e1n(τ)|p − |y1n(τ)|p
)
dτ < C1

for each n � 1. From the axiom of state, the concatenations

(e11, y11, x11) ∧t0 (e1n, y1n, x1n)

also belong to B1 and clearly satisfy (3.31)–(3.32), so we may assume without loss of
generality that these trajectories are identical before time t0, namely, that

Dom(e1n, y1n, x1n) ∩ (−∞, t0) = Dom(e11, y11, x11) ∩ (−∞, t0)

and

(e1n, y1n, x1n)(t) = (e11, y11, x11)(t)

for all n � 1 and all t ∈ Dom(e11, y11, x11) ∩ (−∞, t0). For each n � 1, define

e2n = y1n, y2n = −e1n,

and

(3.33) x2n(t) =

(
tanh(t− t0),

1

n
tanh(t− t0)1(t− t0)

)
∈ R

2

for t ∈ Dom(e1n, y1n, x1n), where 1(s) is the unit step function which is 1 when s � 0
and 0 when s < 0. By construction, the trajectories (e2n, y2n, x2n) for n � 1 are
identical before time t0, so the concatenation of two of these trajectories at a time
before t0 does not yield a new trajectory. We let H2 = (T(V2),B2, ξ2), where B2 is
the collection of all time-shifted versions of these trajectories:

(3.34) B2 =
{
σt(e2n, y2n, x2n) : t ∈ R, n � 1

}
.

Clearly, H2 is time-invariant. To verify the axiom of state, suppose that there exist
t1, t2 ∈ R and n,m � 1 such that (σt1x2n)(t) = (σt2x2m)(t) for some t ∈ R. By
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matching the first state coordinates, we obtain tanh(t + t1 − t0) = tanh(t + t2 − t0),
which implies t1 = t2. By matching the second state coordinates, we then obtain
1
n tanh(t + t1 − t0)1(t + t1 − t0) = 1

m tanh(t + t1 − t0)1(t + t1 − t0), which im-
plies either t + t1 � t0 or n = m. In either case, it is clear that the concatenation
σt1(e2n, y2n, x2n) ∧t σt1(e2m, y2m, x2m) also belongs to B2.

We next verify that H2 has Lp-gain less than or equal to γ2 � 1/γ1 (which clearly
satisfies γ1γ2 < 1). Fix x20 = (a0, b0) ∈ R

2 such that (σtx2n)(0) = x20 for some t ∈ R

and some n � 1. Then we have t = t0+tanh−1(a0) and, if t > t0, then also n = a0/b0.
Fix s � 0 and suppose first that s + t � t0. Because the trajectories (e2n, y2n, x2n)
for n � 1 are identical before time t0, we have

∫ s

0

(
γp
2 |e2n(τ + t)|p − |y2n(τ + t)|p

)
dτ =

∫ s+t

t

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

(3.35)

� min
t�r�t0

∫ r

t

(
γp
2 |e21(τ)|p − |y21(τ)|p

)
dτ,

where the minimum exists because t, t0 ∈ Dom(e21, y21, x21), and the input and output
trajectories belong to Lpe on their domains. Suppose next that t � t0 < s+ t: in this
case, we use (3.32) to obtain

∫ s

0

(
γp
2 |e2n(τ + t)|p − |y2n(τ + t)|p

)
dτ =

∫ t0

t

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

(3.36)

+

∫ s+t

t0

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

=

∫ t0

t

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

− γp
2

∫ s+t

t0

(
γ̄p
1 |e1n(τ)|p − |y1n(τ)|p

)
dτ

�
∫ t0

t

(
γp
2 |e21(τ)|p − |y21(τ)|p

)
dτ − γp

2C1.

Finally, if t > t0, then n = a0/b0 and we obtain again from (3.32) that

∫ s

0

(
γp
2 |e2n(τ + t)|p − |y2n(τ + t)|p

)
dτ = −

∫ t

t0

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

(3.37)

+

∫ s+t

t0

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ

� −
∫ t

t0

(
γp
2 |e2n(τ)|p − |y2n(τ)|p

)
dτ − γp

2C1.

In all three cases, we obtain finite lower bounds (3.35), (3.36), and (3.37) on the
integral of the Lp-gain supply rate which are independent of both n and the upper
integration limit s (the lower bound (3.37) appears to depend on n but, in this third
case, n is fixed at n = a0/b0). We conclude that H2 has Lp-gain � γ2.
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Finally, we need to show that the feedback connection of Figure 3.2 is Lp-unstable.
Choose inputs u1 ≡ 0 and u2 ≡ 0; then, by construction, for each n � 1, the trajectory
(u1, u2, e1n, e2n, y1n, y2n, x1n, x2n) belongs to the behavior of the interconnection and
satisfies the initial condition (x1n(t0), x2n(t0)) = (x10, 0). It follows from (3.31) that,
for this initial condition, there is no upper bound on the Lp-norms ‖y1n[t0]‖p.

4. Conditional dissipativity. In this section we extend our results to general
performance measures characterized by dissipation inequalities, Lp-gain being but
one such measure. We will consider the general interconnection G of systems G1

and G2 as illustrated in Figure 4.1. Here the interconnection signal w might contain
components labeled as inputs and outputs of G1 and G2; however, in this behavioral
context, there is no need to label them as such. To simplify the sufficiency part of our
result, we will assume that the interconnection G is not driven by exogenous signals
such as the inputs u1 and u2 of Figure 3.2. To simplify the necessity part, we will
assume throughout this section that all supply rates are time-invariant, namely, that
they do not depend explicitly on the time variable.

G1 G2

G

w

Fig. 4.1. Behavioral interconnection.

We first make precise our notion of interconnection in Figure 4.1. Let W be a
nonempty signal set, define V1 � W × X1 and V2 � W × X2 for some nonempty
state spaces X1 and X2, and let ξ1 and ξ2 represent the respective projections of
V1 and V2 onto X1 and X2. Given trajectory spaces T(V1) and T(V2), we define
V = W × X1 × X2, we let T(V) denote the collection of trajectories (w, x1, x2)
such that (w, x1) ∈ T(V1) and (w, x2) ∈ T(V2), and we let ξ denote the projec-
tion of V onto X1 × X2. Finally, we let T(W) denote the appropriate projection
of T(V), namely, w1 ∈ T(W) whenever there exists (w, x1, x2) ∈ T(V) such that
w ≡ w1. Note that if S is a supply rate for T(W), then, by simple extension,
we may also consider S to be a supply rate for T(V1), T(V2), or T(V). Now,
given state-space systems G1 = (T(V1),B1, ξ1) and G2 = (T(V2),B2, ξ2), we de-
fine their intersection G = G1 ∩ G2 to be the system G = (T(V),B, ξ) with behav-
ior

(4.1) B =
{
(w, x1, x2) ∈ T(V) : (w, x1) ∈ B1 and (w, x2) ∈ B2

}
.

It is straightforward to verify that G satisfies the axiom of state. We will describe
the desired performance of the interconnection G by means of a supply rate N for
T(W). For example, if W is a normed linear space and we are interested in the Lp-
stability, we would choose N(w) = −|w|p (so that G is dissipative with respect to N
if and only if ‖w[t0]‖p is bounded by a constant depending only on t0 and the initial
states).

Definition 4.1. Given a supply rate N for T(W), we say that supply rates S1

and S2 for T(W) are N -complementary when there exist strictly positive constants a,
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b, c, and d such that

(4.2) aS1(w) + bS2(w) � N(w) � cS1(w) − dS2(w)

for all w ∈ W.
For the Lp-gain scenario considered in section 3, we would assume W = E×Y for

normed linear spaces E and Y, and we would choose the following:

N(w) = −|e|p − |y|p,(4.3)

S1(w) = γp|e|p − |y|p,(4.4)

S2(w) = −γp|e|p + |y|p(4.5)

for nonnegative constants γ and γ. In this case, it is straightforward to show that if
γ < γ, then S1 and S2 are N -complementary with c = d = 1/2 and

(4.6) a =
γp + 1

γp − γp
, b =

γp + 1

γp − γp
.

At this point the classical sufficiency of the small-gain condition can be phrased as
follows: if G1 is dissipative with respect to S1 and G2 is dissipative with respect to
S2, then if γ < γ, the interconnection G is dissipative with respect to N . We will use
such phrasing in our general sufficiency result below.

Another common scenario involves passivity : for example, suppose W = E × Y

for some real inner product space E = Y, and consider the following:

N(w) = −〈e, e〉 − 〈y, y〉,(4.7)

S1(w) = 〈e, y〉 − ε〈e, e〉,(4.8)

S2(w) = −〈e, y〉 − δ〈y, y〉(4.9)

for constants ε and δ. If ε and δ are both strictly positive, then S1 and S2 are
N -complementary with

(4.10) a = b =
1

ε
+

1

δ
, c = d =

1

1 + ε
.

Here the classical result states that the feedback connection of two input (or out-
put) strictly passive systems is L2-stable [14, Lemma 6.8]. In other words, if G1

is dissipative with respect to S1 and G2 is dissipative with respect to S2, then the
interconnection G is dissipative with respect to N .

To strengthen these classical sufficiency results, we introduce the following con-
ditional version of dissipativity.

Definition 4.2. A state-space system G1 = (T(V1),B1, ξ1) is N -conditionally
dissipative with respect to a supply rate S1 when, for every initial (t0, x10) ∈ G(B1),
every C > 0, and every supply rate S2 which is N -complementary to S1,

(4.11) inf
w,x1
t�t0

∫ t

t0

S1(w(τ)) dτ > −∞,

where the infimum is taken over all trajectories (w, x1) ∈ B1 and all t � t0 such that
t, t0 ∈ Dom(w, x1), x1(t0) = x10, and furthermore

(4.12) inf
t∈Dom(w,x1)

t�t0

∫ t

t0

S2(w(τ)) dτ > −C.
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Theorem 4.3 (sufficiency). If G1 is N -conditionally dissipative with respect to
S1, if G2 is dissipative with respect to S2, and if S1 and S2 are N -complementary,
then the intersection G = G1 ∩G2 is dissipative with respect to N .

Proof. Fix (t0, x10, x20) ∈ G(B), and let (w, x1, x2) ∈ B be such that x1(t0) = x10

and x2(t0) = x20. Because G2 is dissipative with respect to S2, there exists C2 > 0,
depending only on the initial condition (t0, x20), such that

(4.13) inf
t∈Dom(w)

t�t0

∫ t

t0

S2(w(τ)) dτ > −C2.

By the N -conditional dissipativity of G1, there exists C1 > 0, depending only on the
initial condition (t0, x10, x20), such that

(4.14) inf
t∈Dom(w)

t�t0

∫ t

t0

S1(w(τ)) dτ > −C1.

It now follows from (4.2), (4.13), and (4.14) that

(4.15) inf
t∈Dom(w)

t�t0

∫ t

t0

N(w(τ)) dτ > −aC1 − bC2,

and we conclude that G is dissipative with respect to N .
As before, the use of conditional dissipativity also allows us to recover the corre-

sponding necessity result.
Theorem 4.4 (necessity). If G1 is not N -conditionally dissipative with respect

to S1, then there exists a supply rate S2 which is N -complementary to S1 and a time-
invariant state-space system G2 which is dissipative with respect to S2 such that the
intersection G = G1 ∩G2 is not dissipative with respect to N .

Proof. Negating Definition 4.2, there exist an initial condition (t0, x10) ∈ G(B1),
a constant C1 > 0, a supply rate S2 which is N -complementary to S1, a sequence of
trajectories (wn, x1n) ∈ B1 with t0 ∈ Dom(wn, x1n) and x1n(t0) = x10 for each n � 1,
and a sequence of times tn ∈ Dom(wn, x1n) with tn � t0 such that

(4.16)

∫ tn

t0

S1(wn(τ)) dτ < −n

and

(4.17) inf
t∈Dom(wn,x1n)

t�t0

∫ t

t0

S2(wn(τ)) dτ > −C1

for each n � 1. As argued in section 3.5, we may assume without loss of generality
that these trajectories are identical before time t0. To construct G2, we define a
sequence of state trajectories x2n as in (3.33), and we let the behavior B2 of G2 be

(4.18) B2 =
{
σt(wn, x2n) : t ∈ R, n � 1

}
.

Using arguments similar to those in section 3.5, we can show that G2 is time-invariant,
satisfies the axiom of state, and is (unconditionally) dissipative with respect to the
supply rate S2. Furthermore, we conclude from (4.2), (4.16), and (4.17) that

(4.19)

∫ tn

t0

N(wn(τ)) dτ � c

∫ tn

t0

S1(wn(τ)) dτ − d

∫ tn

t0

S2(wn(τ)) dτ � −cn + dC1
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for each n � 1. Because the trajectories (wn, x1n, x2n) belong to the behavior (4.1)
of the intersection G, we conclude that G is not dissipative with respect to N .

An example application of Theorem 4.4 is the following. Suppose we can prove
that the feedback connection of a system G1 with any input and output strictly
passive system G2 is L2-stable. Then we cannot conclude in general that G1 is a
passive system, but Theorem 4.4 guarantees that G1 is conditionally passive.

5. Conclusion. It was shown in [6] that the classical definition of Lp-gain is too
strong to provide an equivalence between performance and robust stability. We have
presented a weaker notion of gain which recovers the necessity while preserving the
sufficiency of the small-gain condition. In the necessity proof, the uncertainty can be
chosen to be second-order and time-invariant, even when the plant is time-varying
and/or infinite-dimensional. We have also shown that these two notions of gain are
equivalent for systems having a resetting property (such as fading-memory systems
or linear time-invariant systems). Finally, we extended our results to more general
dissipation performance measures.
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ON WORST-CASE PORTFOLIO OPTIMIZATION∗

RALF KORN† AND MOGENS STEFFENSEN‡

Abstract. We formulate a worst-case portfolio optimization problem that technically appears
as a game where the investor chooses a portfolio and his opponent, the market, chooses some market
crashes. The asymmetry of the opponents’ decision processes leads to a new and delicate gener-
alization of the classical Hamilton–Jacobi–Bellman equation in stochastic control. We characterize
the optimal controls in general and specify them further in the cases of Hara, logarithmic, and
exponential utilities of the investor.

Key words. Hamilton–Jacobi–Bellman equation, stochastic differential games, market crash,
utility optimization
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1. Introduction. The problem of finding an optimal investment strategy for
an investor with a given utility function and a fixed initial endowment—the so-
called portfolio optimization problem—is one of the classical problems in financial
mathematics and its applications in insurance mathematics. The corresponding mod-
ern continuous-time approach was pioneered by Merton [8, 9], who applied classical
stochastic control methods to reduce the portfolio problem to a matter of solving a
Hamilton–Jacobi–Bellman partial differential equation (HJB equation).

Since Merton’s pioneering work, many attempts have been made to solve the
portfolio optimization problem in a framework that allows for more realistic models
of stock prices, in particular for models that can explain large price movements.
Examples where portfolio optimization problems are treated in more general settings
are portfolio optimization in jump-diffusion models (see, e.g., Aase [1]) or in a general
semimartingale framework (see, e.g., Kramkov and Schachermayer [7]).

A different portfolio problem that includes dramatic negative changes of the stock
prices (so-called crashes) has been introduced by Korn and Wilmott [6]. Their main
idea consists of two aspects: the separation between normal times where the stock
price behaves as a geometric Brownian motion and crash times where it jumps down-
wards and the introduction of a worst-case functional that resembles the form of a
game-theoretic max-min approach. While in Korn and Wilmott [6] the problem is
solved only for the choice of the logarithmic utility function, a more general problem of
the worst-case form is treated in Korn and Menkens [5]. At first sight, their approach
seems to be an approach similar to the HJB-equation approach of stochastic control.
However, their arguments are based on equilibrium and indifference considerations,
and they derive differential equations for the optimal portfolio processes and not for
the value function. Even more, they could prove optimality of their proposed portfolio
processes only within the class of (piecewise) deterministic control strategies.
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The main purpose of this paper is to put the worst-case portfolio optimization in
the HJB-equation framework and thus to connect it with the mainstream of stochastic
control theory. This leads us to a type of continuous-time game problem that, to our
knowledge, is new in control theory. It is the asymmetry of the opponents’ decision
processes that makes the game so interesting and challenging from a control theoretical
point of view: The investor decides the portfolio process, whereas the opponent,
the market, decides when the stock market crashes. One could fear that this very
asymmetry prevents solutions to the game problem, but we show that the problem,
indeed, has a solution and that the solution can be characterized by a generalized
HJB equation.

A related financial game problem is approached by Talay and Zheng [10]. They
solve a problem where the opponent of the investor, the market, decides the param-
eters in a diffusion model. Thus, the idea of seeing the market as an opponent is
exactly the same as ours. But since their price processes are continuous, the deci-
sions of both the investor and the market affect only the coefficients of the continuous
portfolio process. Therefore, from a financial modeling point of view their problem is
completely different from ours.

We do not necessarily believe that the investment decision is a part of a game
really played in the sense that the market really tries to hurt the investor. But, on
the other hand, even a rational investor could choose to invest as if this were really
the case. This is exactly what comes out of basing decision on a worst-case scenario.
Thus, when we use the word game throughout, this is mainly because the technical
formulation of the worst-case investment problem conforms with the general idea of
a stochastic differential game.

Our main result is a verification theorem asserting that a system consisting of an
HJB-type inequality, a relation between value functions before and after an action of
the market, final conditions, and a complementarity condition determine the value
function. This result and its consequences are highlighted by some explicit examples.
Note in particular that we do not have to restrict ourselves to (piecewise) determin-
istic controls. Therefore, the existing work on worst-case portfolio optimization is
substantially generalized.

Even more, the explicit form of the optimal portfolio strategy that results from
our worst-case approach closely resembles the form of strategies that—in real life
applications—are suggested for use in pension savings plans. Thus, our model can
also be seen as a theoretical justification of a market practice.

One can imagine other areas where the structure of the problem and its solution
can find applications. For example, an insurance company decides on reinsurance
against large claims, e.g., triggered by a storm or earthquakes. In its battle against
the merciless Mother Earth, the company could adopt a worst-case basis for mak-
ing certain decisions, e.g., the extent of reinsurance protection. The structure of the
HJB equation for such a problem is similar, and the relative explicit characterization
of the optimal decision obtained here holds out every promise of success in other
areas.

2. The model and the preferences. Take as given a probability space (Ω,F ,
P ). Let W be a standard Brownian motion defined on this probability space. Let us
consider an agent over a fixed time interval [0, T ]. At time 0 the agent is endowed
with initial wealth x0, and his problem is to allocate investments over the given
time horizon. We assume that the agent’s investment opportunities are given by the
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following financial market:

dB (t) = rB (t) dt,

B (0) = 1,

dS (t) = S (t−) (αdt + σdW (t) − βdN (t)) ,

S (0) = s0,

where r, α, σ, and β are constants. For N (t) = 0, this market is a classical Black–
Scholes market. We introduce, however, jumps in the Black–Scholes market and let
N be a counting process counting the number of jumps such that

N (t) = # {0 < s ≤ t : S (t) �= S (t−)} .
Remark 1. (a) Referring to Korn and Wilmott [6] our model above can also

be seen as a worst-case approach when downward jumps of arbitrary size from the
interval [0, β] are possible. Since it is shown there that only the extreme jump size
of β enters the following considerations, we have chosen to work only with this jump
size above. Note also that we consider relative jump sizes which means that the jump
size actually depends on the past performance of our stock. However, we have not
yet modeled external market influences on the jump size which would be a possible
extension of our model.

(b) We choose to work with constant coefficients here, but generalizations to,
e.g., N -dependent coefficients should be straightforward. We do believe that gen-
eralizations to markets where the coefficients r, α, σ react on crashes, henceforth
called “crashed coefficients,” are important and that our results carry over to this
situation. Crashed coefficients are considered in Korn [4] and in Korn and Menkens
[5], where, however, weaker optimality results than ours below are given. Here we
focus on the qualitative form of the new HJB-system characterization. With crashed
coefficients the qualitative form of this system will not change, but in the examples
and illustrations one would have to distinguish between several different subcases.

In usual jump-diffusion models the counting process is now assumed to follow
some probability law on (Ω,F , P ). One could, e.g., let N be a Poisson process or
a Cox process. Here, however, we take the counting process to be chosen by the
market, which from the point of view of the agent is considered as an opponent. In
other words, the market decides when the stock jumps, and N is to be considered as
a decision process held by the market. We speak of jumps in N as interventions.

We assume that the market is able to decide on only a limited number of inter-
ventions and denote the maximal number of interventions over [0, T ] by n0. Figure 1
illustrates the process of interventions. The market can, however, also choose not to
exercise its intervention options, so at time T the process of interventions can be in
any of the states in Figure 1. Further, to avoid technical complications, we assume
that the market never intervenes more than once in one time instant (a multiple in-
tervention of the market in one time instant is also not reasonable from an intuitive
point of view).

The investment behavior of the agent is modeled by a predictable portfolio strat-
egy π denoting the proportion of wealth invested in S; i.e., π is a decision variable held
by the agent. Restricting ourselves to self-financing portfolio strategies, the wealth
process follows the differential equation

X (0) = x0,

dX (t) = X (t−) (rdt + π (t) ((α− r) dt + σdW (t) − βdN (t))) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2016 RALF KORN AND MOGENS STEFFENSEN

n0 int. left
N = 0

→ n0 − 1 int. left
N = 1

→ · · · → 1 int. left
N = n0 − 1

→ 0 int. left
N = n0

Fig. 1. Process of interventions.

The differential equation can be considered as a controlled differential equation with a
pair of controls being a pair of portfolio strategies and interventions, i.e., (π,N). The
agent is allowed to choose π ∈ A, and the market is allowed to choose an intervention
N ∈ B such that the pair of controls (π,N) leads to a well-posed optimization problem
below. Even more, we consider A to be the set of all predictable processes (with
respect to the σ-algebra generated by the stock price process and the counting process
and which in particular carries the information about how many jumps can still at
most appear) such that we have

E

∫ T

0

|π (t)|m ds < ∞ for m = 1, 2, . . . ,

π (t)β < 1 for all t ∈ [0, T ] .

These requirements in particular ensure that the wealth process stays nonnegative and
has finite moments of all order. Note that, in a model with jumps, predictability of
strategies becomes very important (in contrast to diffusion models, where predictabil-
ity and adaptedness collapse), since otherwise the investor could choose his position
during a crash after the crash has been observed.

Then, given a pair of controls (π,N), the controlled differential equation describ-
ing the wealth is given by

XπN (0) = x0,(1)

dXπN (t) = XπN (t−) (rdt + π (t) ((α− r) dt + σdW (t) − βdN (t))) .

For a fixed time s and given Xπ,N (s) = xs, if τ is the first intervention time after
s, we can obviously write

XπN (s) = xs,

dXπN (t) = XπN (t) ((r + π (t) (α− r)) dt + π (t)σdW (t)) , s < t < τ,

XπN (τ) = XπN (τ−) (1 − π (τ)β) .

If we only need to consider X until the first intervention time, we can just as well
denote the argument N by τ , and we do so below.

We assume that the investor chooses a portfolio process to maximize worst-case
expected utility of terminal wealth in the sense of the following optimization problem:

sup
π∈A

inf
N∈B

E
[
U
(
XπN (T )

)]
.

For each function v ∈ C1,2 we define the differential operator Lπv by

Lπv (t, x) = vt (t, x) + vx (t, x) (r + π (α− r))x +
1

2
vxx (t, x)π2σ2x2.
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3. The Bellman system and the verification theorem. In this section we
present and prove the Bellman system connected with the control problem described
in the previous section.

We define the value function J n (t, x, π) by

J n (t, x, π) = Et,x,n

[
U
(
XπN (T )

)]
,

where Et,x,n denotes conditional expectation given that X (t) = x and that there are
at most n possible jumps left. We define the optimal value function V n (t, x) by

V n (t, x) = sup
π∈A

inf
N∈B

J n (t, x, π, τ) .

We can now present a Bellman system in a verification theorem, the proof of which
can be found in the appendix.

Theorem 2 (verification theorem). 1. Assume that v0 (t, x) is a classical solution
of

0 = sup
π∈A

[
Lπv0 (t, x)

]
,

v0 (T, x) = U (x) ,

which is polynomially bounded, and that

p0 (t, x) = arg sup
π∈A

[
Lπv0 (t, x)

]
is an admissible control function. Then we have

V 0 (t, x) = v0 (t, x) ,

and the optimal control function exists and is given by

π0∗ (t, x) = p0 (t, x) .

2. For n ∈ N and every function vn ∈ C1,2, define the sets A′
n (t, x) and A′′

n (t, x)
by

A′
n (t, x) = {π : π ∈ A, 0 ≤ Lπvn (t, x)} ,

A′′
n (t, x) =

{
π : π ∈ A, 0 ≤ vn−1 (t, x (1 − βπ)) − vn (t, x)

}
,

respectively. Assume that there exists a polynomially bounded C1,2-solution of

0 ≤ sup
π∈A′′

n(t,x)

[Lπvn (t, x)] ,

0 ≤ sup
π∈A′

n(t,x)

[
vn−1 (t, x (1 − βπ)) − vn (t, x)

]
,

0 = sup
π∈A′′

n(t,x)

[Lπvn (t, x)] sup
π∈A′

n(t,x)

[
vn−1 (t, x (1 − βπ)) − vn (t, x)

]
,

vn (T, x) = U (x)

and that

pn (t, x) = arg sup
π∈A′′

n(t,x)

[Lπvn (t, x)] ,

θn (t, x) = inf
s:s≥t

[
vn−1

(
s,XπN (s) (1 − βπ)

)
− vn

(
s,XπN (s)

)
≤ 0

]
,
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where XπN (t) = x and s is a stopping time, is a pair of admissible control functions.
Then

V n (t, x) = vn (t, x) ,

and the optimal control functions exist and are given by

πn∗ (t, x) = pn (t, x) ,

τn∗ (t, x) = θn (t, x) .

In the proof of the verification theorem, the following lemma, which is also proved
in the appendix, is used.

Lemma 3. The value function can be represented in the following ways:

V n (t, x) = sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
= inf

N
sup
π

Et,x,n

[
U
(
XπN (T )

)]
= sup

π
inf
τ
Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
= inf

τ
sup
π

Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
.

A careful inspection of the proof of Theorem 2 shows that the expectation re-
quirements on the admissible controls and the polynomial growth condition for the
value function are indeed only needed for the expectation of the stochastic integrals
to vanish just before relations (16) and (21). Of course, these requirements are only
sufficient for the proof to go through. The assumption of polynomial growth of the
value function is not satisfied for our examples of the logarithmic utility and the expo-
nential utility function below. However, one can directly check that the above proof
still goes through for those special choices of the utility functions as it can be verified
that the expectations of the two mentioned stochastic integrals vanish.

4. Characterization of the solution. To apply the verification theorem we
are now going to construct (in a heuristic way) general candidates for the value func-
tions V n and the optimal controls along the lines of the theorem. In the following
sections it will be shown that for special choices of the utility function U these heuris-
tically derived candidates indeed satisfy all of the requirements of the verification
theorem and are thus solutions of the control problem. Let us start by considering
the inequality

(2) 0 ≤ sup
π∈A′

n(t,x)

[
V n−1 (t, x (1 − βπ)) − V n (t, x)

]
.

Since for β > 0 and a (strictly) increasing utility function U we have that V n−1(t, x(1−
βπ)) is a decreasing function of π, the supremum in (2) is obtained for the smallest
π with

(3) V n
t (t, x) ≥ −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2.

Under the assumption of a concave V n we have that the supremum in (2) is attained
for the smallest value of π for which (3) holds as an equality. We can now consider
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the obvious choice for the separation of the (t, x)-space into the set M, where the
right-hand side of the inequality (2) is strictly positive, and its complement, i.e.,

M =

{
(t, x) : sup

π∈A′
n(t,x)

[
V n−1 (t, x (1 − βπ)) − V n (t, x)

]
> 0

}
.

Outside M, π and V are determined by the set of equations

V n (t, x) = V n−1 (t, x (1 − βπ)) ,(4)

V n
t (t, x) = −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2.

Note that the first equation has to hold by the complementarity condition in the
verification theorem. The second equation is argued for above.

We now argue that, even at some points (t, x) inside M, the set of equations (4)
determine π and V , which finally leads to an alternative and more relevant separation
of the (t, x)-space. Intuitively, this is due to the constraint on π in A′′. Inside M we
must have supπ∈A′′

n(s)

[
Lπvn

(
s,Xπ,θ (s)

)]
= 0, again by complementarity. Ignoring

the constraint π ∈ A′′
n (t, x) we can compute the usual candidate for an optimal

portfolio process by the first order conditions as:

(5) π = − V n
x (t, x)

V n
xx (t, x)x

α− r

σ2
.

If, for the strategy (5), we have that

V n (t, x) ≤ V n−1 (t, x (1 − βπ)) ,

then (5) indeed satisfies the constraint π ∈ A′′
n (t, x) and can be considered as the

candidate optimal portfolio. If, however, for π as given in (5), we have that

V n (t, x) > V n−1 (t, x (1 − βπ)) ,

then again (under suitable assumptions on U and β as mentioned above) we know
that V n−1 (t, x (1 − βπ)) decreases as a function of π. We further assume that

V n−1 (t, x (1 − βπ)) → ∞

for x → ∞ and βπ < 1 (this always has to be checked for concrete choices of the utility
function U when even more explicit computations are performed in later sections).
Since

V n
x (t, x) (r + π (α− r))x +

1

2
V n
xx (t, x)π2σ2x2

is increasing for π < − V n
x (t,x)

V n
xx(t,x)x

α−r
σ2 , then supπ∈A′′

n(s)

[
Lπv1

(
s,Xπ,θ (s)

)]
is obtained

for the π for which

V n (t, x) = V n−1 (t, x (1 − βπ))

holds, and consequently π and V are determined by the set of equations

V n (t, x) = V n−1 (t, x (1 − βπ)) ,

V n
t (t, x) = −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2.
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Since this is the same case as outside M (see (4)), we realize that M is not the relevant
set that decomposes the state space in an appropriate way. Instead, we consider now
a set N for which it is really (5) that determines the optimal portfolio. Thus, we
separate the (t, x)-space into

π (t, x) = − V n
x (t, x)

V n
xx (t, x)x

α− r

σ2
,(6)

V n
t (t, x) = −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2,

and its complement characterized by (4), i.e.,

V n (t, x) = V n−1 (t, x (1 − βπ)) ,(7)

V n
t (t, x) = −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2.

Formally,

N=

{
(t, x) : π (t, x) = − V n

x (t, x)

V n
xx (t, x)x

α− r

σ2
,

V n
t (t, x) = −V n

x (t, x) (r + π (α− r))x− 1

2
V n
xx (t, x)π2σ2x2

}
.

Note in particular that for n = 0 we have that N typically equals the whole possible
(t, x)-space, while for n > 1 it might be possible that N is empty as we show for the
specific choices of the utility functions below. But there are also examples where N will
not be empty for n > 1. In our examples below, this is so for β < 1, where, however,
the complement of N is empty. Examples where neither N nor its complement are
empty for a given n may require a generalized model, such as, e.g., the case of “crashed
coefficients” where the diffusion coefficients react on crashes.

5. Power utility. In this section we consider the case of power utility

U (x) =
1

γ
xγ , γ < 1, γ �= 0,

and assume α > r. Inspired by the solution of the usual portfolio problem we try a
solution of the form

V n (t, x) =
1

γ
fn (t)

(
x

fn (t)

)γ

leading to

V n
t (t, x) =

1 − γ

γ
fn
t (t)

(
x

fn (t)

)γ

,

V n
x (t, x) =

(
x

fn (t)

)γ−1

,

V n
xx (t, x) = − (1 − γ)

1

fn (t)

(
x

fn (t)

)γ−2

.

With these relations we obtain the optimal portfolio

π∗n =

⎧⎨⎩
1

1−γ
α−r
σ2 , (t, x, n) ∈ N ,

1
β

(
1 −

(
fn(t)

fn−1(t)

) 1−γ
γ

)
, (t, x, n) /∈ N



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON WORST-CASE PORTFOLIO OPTIMIZATION 2021

(here we have again implicitly assumed strict concavity of V n!). The usual solution
in the case of n = 0 is well-known and given by

π∗0 (t, x) =
1

1 − γ

α− r

σ2
,

f0 (t) = e−(r+ 1
2

α−r

σ2
1

1−γ ) (T−t)(1−γ)
γ .

As the investor has a strictly increasing utility function, he would like to choose a
portfolio process as close as possible to π∗0 to obtain a high final expected utility.
On the other hand, if he chooses π∗n (t) = π∗0, then the market could do him most
possible harm by choosing an immediate crash under the assumption of β > 0. In the
case of β > 0, we have thus argued for that N is indeed empty for n > 0; i.e., for
n > 0 we assume that we are always in the situation of

π∗n (t, x) =
1

β

(
1 −

(
fn (t)

fn−1 (t)

) 1−γ
γ

)
,

Lπ∗n
vn (t, x) = 0.

If we now plug in our guess for π∗n (t, x) and for vn (t, x) into the second condition
above and use the final condition of

vn (T, x) = vn−1 (T, x) = · · · = v0 (T, x) =
1

γ
xγ

implying

π∗n (T, x) = 0,

we arrive at the following ordinary differential equation for f (skipping the t-argument
in ordinary differential equations below and throughout):

fn
t = fn

(
− γ

1 − γ
(r + (α− r)π∗n) + γ

1

2
(π∗n)

2
σ2

)
, fn (T ) = 1,

for n = 1, 2, . . . . With the help of this equation and the definition of π∗n we can
derive an ordinary differential equation for π∗n (t) which holds for (t, x, n) /∈ N :

π∗n
t =

1

β
(1 − π∗nβ)

(
(α− r)

(
π∗n − π∗n−1

)
− 1

2
(1 − γ)σ2

(
(π∗n)

2 −
(
π∗n−1

)2))
.

Using this differential equation and its final condition π∗n (T ) = 0, one can show
via induction that its solution satisfies

0 ≤ π∗n (t) ≤ π∗n−1 (t) ≤ · · · ≤ π∗0,

is unique, and for n = 1 can be explicitly given as the solution of a nonlinear equation
(see Korn and Wilmott [6] and Korn and Menkens [5]). A consequence of this is in
particular that the solution of the differential equation for fn (t) is always positive,
which implies that V n of the above form is a concave function in x, as desired. Thus,
all assumptions of the verification theorem are satisfied, and we have indeed computed
the optimal portfolio.
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Fig. 2. π∗n (t) for n = 0, 1, 2, 3, 4 (from top to bottom), parameters: β = 0.05, α = 0.11, r =
0.05, σ = 0.4, T = 2, γ = 0.5.

The form of the optimal portfolio processes is illustrated by Figure 2, where the
maximum number n of crashes that can still occur determines which of the five lines
is relevant for the optimal portfolio process. If there are still four possible crashes,
the investor chooses the portfolio process given by the lowest line in Figure 2. Note
that this is a nonconstant process which decreases with time. After a crash (or if, for
some other reason, the investor now assumes that there are only three possible crashes
left), the investor immediately shifts his portfolio process up to the next line, stays
there until the next crash has happened, then jumps up again, etc. Unless the last
jump possible has occurred, the investor follows the decreasing line until maturity,
and by then he has reduced his fraction of risky investments to zero. This form is
very reasonable, because as long as there is a possibility for a crash, the investor is hit
by it harder and harder as time goes by since he loses his possibility of compensating
by posterior risky investments. It is common advice to pension savers to reduce their
risky investments as time to retirement decreases. Thus, our new worst-case approach
can be seen as a theoretical framework supporting this market practice.

In the case of β < 0 it can easily be verified that it is never optimal for the market
to intervene if the investor uses the portfolio process π∗0 = 1

1−γ
α−r
σ2 . Consequently,

in this setting we have

vn (t, x) = vn−1 (t, x) = · · · = v0 (t, x) ,

and the optimality criteria of the verification theorem can be satisfied only for the
strategy that consists of no intervention before time T at all. This is also intuitively
clear, because this portfolio process leads to the highest expected utility in the stan-
dard market setting on one hand, and on the other hand a jump of positive size (which
is the case for β < 0) would even make the situation of the investor better. Hence, the
infimum over the intervention strategies is attained for the above-mentioned no-jump
strategy.
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6. Log utility. The situation in the case of the logarithmic utility function is
very similar to that of the Hara utility. In fact, it can essentially be solved by using
the results of the foregoing section and setting γ = 0. We therefore shorten its
presentation. Consider

U (x) = log x,

and assume α > r. The main difference to the Hara case is our guess on the form of
the value functions (again inspired by the case n = 0):

V n (t, x) = log x + fn (t) ,

V n
t (t, x) = fn

t (t) ,

V n
x (t, x) =

1

x
,

V n
xx (t, x) = − 1

x2
.

Inside N we obtain the form of π∗n as in the case of n = 0, while outside N the (can-
didate for the) optimal portfolio process is determined by the indifference requirement
V n (t, x) = V n−1 (t, x (1 − βπ)). This leads to

π∗ =

{
α−r
σ2 , (t, x, n) ∈ N ,

1−ef
n(t)−fn+1(t)

β , (t, x, n) /∈ N .

Again, the case of n = 0 is well-known and given by (see, e.g., Korn [3])

π∗0 (t, x) =
α− r

σ2
,

f0 (t) =

(
r +

1

2

α− r

σ2

)
(T − t) .

With the same argument as in the Hara case above, for β > 0 we conclude that
N is empty for n > 0. Then, inserting our resulting guess for the form of the optimal
portfolio into (6) leads to a differential equation for f :

fn
t (t) = − (r + π∗n (α− r)) +

1

2
(π∗n)

2
σ2, f(T ) = 0,

which again leads to an ordinary differential equation for π which holds for (t, x, n) /∈
N :

π∗n
t =

1

β
(1 − π∗nβ)

(
fn+1
t − fn

t

)
=

1

β
(1 − π∗nβ)

(
(α− r)

(
π∗n − π∗n+1

)
− 1

2
σ2

(
(π∗n)

2 −
(
π∗n+1

)2))
.

As shown in Korn and Menkens [5] it has a unique solution which is bounded by

0 from below and by π
∗(n−1)
t from above for n ≥ 1. Also, for numerical examples

which are similar to the one given in the Hara utility section, we refer to Korn and
Menkens [5].

Further, it is obvious that in the case of β < 0 the optimal intervention strategy
consists of never doing a jump at all.
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7. Exponential utility. In this section we consider the case of exponential util-
ity, i.e.,

U (x) = −e−θx,

for some θ > 0. Compared to the foregoing examples of the log-utility and the Hara
case, the situation for the exponential is fundamentally different with respect to two
aspects. First of all, a separation of the t- and the x-variables in the HJB equation is
not possible, a property that is essentially due to the fact that the derivative of the
exponential function is itself the exponential function. It is well known from standard
portfolio optimization (see, e.g., Browne [2]) that it is therefore more suitable to
consider the amount of money invested in the risky stock at a time, in our notation
π (t)X (t), as control variables as opposed to the portfolio process itself. As the
second difference, compared to the two utility functions considered above, note that
the exponential utility function has a finite slope in x = 0, which results in the fact
that the (unconstrained) optimal wealth process can attain negative values. Again,
this is well known (compare again with Browne [2]). To apply our main verification
it would therefore be necessary to refine our definition of an admissible control. This
can be done along the lines of Browne [2], but details are left to the reader. Note that
in contrast to Korn [4] we do not have to restrict to deterministic strategies. Keeping
all of these considerations in mind, we guess the following form of the value function,
inspired by the case n = 0:

V n (t, x) = −e−θf(t)x−gn(t),

leading to

V n
t (t, x) = −e−θf(t)x−gn(t) (−θft (t)x− gnt (t)) ,

V n
x (t, x) = θf (t) e−θf(t)x−gn(t),

V n
xx (t, x) = −θ2f (t)

2
e−θf(t)x−gn(t).

Assuming strict concavity of V n in x—which is given if f is nonvanishing—(suitable)
application of the verification theorem yields the following candidate for the optimal
amount of money invested in the stock:

π∗ (t, x)x =

{ 1
θf(t)

α−r
σ2 , (t, x, n) ∈ N ,

1
θf(t)

gn+1(t)−gn(t)
β , (t, x, n) /∈ N .

In the case of n = 0 it is well known that we have

f (t) = exp (r (T − t)) ,

g0 (t) =
1

2

(
α− r

σ

)2

(T − t) ,

π∗0 (t, x)x =
1

θ

α− r

σ2
e−r(T−t).

Now since N is empty for n > 0 (the argument for this is similar to the preceding two
examples), we use the above derived form of our candidate optimal strategy π∗x and
insert our guesses in (6) to obtain a differential equation for gn:

gnt = −gn+1 − gn

β
(α− r) +

1

2

(
gn+1 − gn

)2
β2

σ2.
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Fig. 3. π∗n (t)x for n = 0, 1, 2, 3, 4 (from top to bottom), parameters: β = 0.05, α = 0.16, r =
0, σ = 0.4, T = 1, θ = 0.01.

This results in an ordinary differential equation for π∗x for (t, x, n) /∈ M:

π∗n
t x = rπ∗nx−

(
π∗n+1x− π∗nx

) α− r

β

+
((

π∗n+1x
)2 − (π∗nx)

2
) 1

2θfσ
2

β
,

π∗n (T )x = 0,

for which we can show with standard arguments that a unique bounded and non-
negative solution exists. Before we illustrate the form of the optimal strategy, let us
remark that, in the case of r = 0, an explicit solution for n = 1 exists which has the
form (see Korn [4] for a different derivation)

π∗1 (t, x)x =
α

θσ2
+

2β

θσ2[(T − t) − 2β
α ]

.

The form of the optimal trading strategies are illustrated in Figure 3. They look very
similar to the optimal portfolio processes of Figure 2, and of course the comments for
their use depending on the maximum number n of crashes remain valid. However,
note that, if we would plot the portfolio processes, we would have very irregular curves
as they are inversely proportional to the actual wealth process curve, and for small
values of the wealth process the portfolio process can grow above all limits (but the
amount of money invested in the stock stays bounded).

8. Conclusion and further aspects. In this paper we have put the worst-
case approach to portfolio optimization as developed by Korn and Wilmott [6] into
a generalized HJB-equation framework. This has the particular advantage that the
restriction to deterministic control processes is no longer required. This framework can
be used for a worst-case approach in other areas than finance. The ideas are generally
applicable to situations, e.g., in insurance or engineering, where risk is managed by
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combining an expectation functional on “normal risks” and a worst-case functional on
“extreme risks.” But even within the portfolio application, there remain many open
problems and generalizations for future research such as

• explicit solution of problems with many stocks (in contrast to the Korn and
Wilmott [6] approach, this should be possible in a more explicit way using
our new approach),

• explicit solution of problems with nonconstant β (this should again be possible
in an easier way in our HJB-equation framework), and

• weakening the regularity assumptions of the verification theorem (maybe via
the use of viscosity solution techniques).

Appendix.
Proof of Lemma 3. Let ε > 0. Then, for a given first intervention time τ , we

can choose a portfolio strategy π∗ which is ε/4-optimal until time τ and a portfolio
strategy π∗∗ which is arbitrary until time τ and ε/4-optimal after time τ in the sense
that the following two inequalities hold (note that we cannot yet assume that V n is
indeed the value function):

sup
π

Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
(8)

≤ Et,x,n

[
V n−1

(
τ,Xπ∗τ (τ−) (1 − βπ∗ (τ))

)]
+ ε/4,

sup
π

inf
N

Eτ,x,n

[
U
(
XπN (T )

)]
(9)

≤ inf
N

Eτ,Xπ∗∗N (τ),n−1

[
U
(
Xπ∗∗N (T )

)]
+ ε/4.

Further, for a given portfolio strategy, introduce an ε/4-optimal strategy for the first
intervention τ∗ and, given an arbitrary first intervention time τ , an ε/4-optimal inter-
vention strategy N∗ after time τ , again in the sense that the following two inequalities
are valid:

inf
τ
Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
(10)

≥ Et,x,n

[
V n−1

(
τ∗ (π) , Xπτ∗

(τ∗ (π)−) (1 − βπ)
)]

− ε/4,

inf
N

Eτ,Xπ(τ),n−1

[
U
(
XπN (T )

)]
(11)

≥ Eτ,XπN∗ (τ),n−1

[
U
(
XπN∗

(T )
)]

− ε/4.

Then we have the following list of inequalities (explanation follows after):

sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
(12)

≥ inf
N

Et,x,n

[
Eτ,Xπ∗∗N (τ),n−1

[
U
(
Xπ∗∗N (T )

)]]
≥ inf

τ
Et,x,n

[
inf
N

Eτ,Xπ∗∗N (τ),n−1

[
U
(
Xπ∗∗N (T )

)]]
≥ inf

τ
Et,x,n

[
sup
π

inf
N

Eτ,XπN (τ),n−1

[
U
(
XπN (T )

)]]
− ε/4

≥ inf
τ
Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
− ε/4

≥ Et,x,n

[
V n−1

(
τ∗, Xπτ∗

(τ∗−) (1 − βπ (τ∗))
)]

− ε/2.
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The first inequality follows from plugging in the portfolio strategy π∗∗ and the tower
property. The second inequality follows from interchanging the first expectation and
the infimum over intervention strategies after the first intervention. The third in-
equality follows from (9). The fourth inequality follows from the definition of V . The
fifth inequality follows from (10). Taking supremum on both sides gives

sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
(13)

≥ sup
π

Et,x,n

[
V n−1

(
τ∗, Xπτ∗

(τ∗−) (1 − βπ (τ∗))
)]

− ε/2.

We also have the following list of inequalities (explanation follows after):

inf
N

sup
π

Et,x,n

[
U
(
XπN (T )

)]
≤ sup

π
Et,x,n

[
Eτ,XπN∗ (τ),n−1

[
U
(
XπN∗

(T )
)]]

≤ sup
π

Et,x,n

[
inf
N

Eτ,XπN (τ),n−1

[
U
(
XπN (T )

)]]
+ ε/4

≤ sup
π

Et,x,n

[
sup
π

inf
N

Eτ,XπN (τ),n−1

[
U
(
XπN (T )

)]]
+ ε/4

≤ sup
π

Et,x,n

[
V n−1

(
τ,XπN (τ−) (1 − βπ (τ))

)]
+ ε/4.

The first inequality follows from plugging in the intervention strategy N∗ and the
tower property. The second inequality follows from (11). The third inequality is
obvious. The fourth inequality follows from the definition of V . Taking infimum on
both sides results in

inf
N

sup
π

Et,x,n

[
U
(
XπN (T )

)]
(14)

≤ inf
τ

sup
π

Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
+ ε/4.

Finally we can gather the inequalities (explanation follows after):

sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
≥ sup

π
Et,x,n

[
V n−1

(
τ∗, Xπτ∗

(τ∗−) (1 − βπ (τ∗))
)]

− ε/2

≥ inf
τ

sup
π

Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
− ε/2

≥ inf
τ
Et,x,n

[
V n−1

(
τ,Xπ∗τ (τ−) (1 − βπ∗ (τ))

)]
− ε/2

≥ inf
τ

sup
π

Et,x,n

[
V n−1 (τ,Xπτ (τ−) (1 − βπ (τ)))

]
− 3ε/4

≥ inf
N

sup
π

Et,x,n

[
U
(
XπN (T )

)]
− ε

≥ sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
− ε.

The first inequality is just (13). The second inequality follows from giving up the
specification of the first intervention. The third inequality follows from plugging in
the portfolio strategy π∗. The fourth inequality follows from (8). The fifth inequality
follows from (14). The sixth inequality is the usual sup inf ≤ inf sup relation.
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The reversed line of arguments (left to the reader) gives that

inf
N

sup
π

Et,x,n

[
U
(
XπN (T )

)]
≤ sup

π
inf
τ
Et,x,n

[
V n−1

(
τ,XπN (τ−) (1 − βπ)

)]
+ ε/2

≤ sup
π

inf
N

Et,x,n

[
U
(
XπN (T )

)]
+ ε

≤ inf
N

sup
π

Et,x,n

[
U
(
XπN (T )

)]
+ ε.

Since all inequalities above hold for any ε, they must hold as equalities, and
consequently the theorem is proved.

Proof of Theorem 2 (verification theorem). The assertions in the first part of the
verification (corresponding to 0 interventions left) are classical and have a proof which
can be found in any textbook on dynamic portfolio optimization, e.g., Korn [3].

The second part is proved by induction. First, we prove the verification theorem
for n = 1. Here the control N and the control τ are equivalent, and we can denote
Xπ,N by Xπ,τ .

Choose an arbitrary control (π, τ), and fix a point (t, x). Let X follow the dy-
namics given in (1) with the time point 0 replaced by the time point t. Inserting Xπ,τ

in v1 and using Ito’s formula we obtain

v1 (t,Xπ,τ (t)) = v1 (t, x) ,

dv1 (s,Xπ,τ (s)) = Lπv1 (s,Xπ,τ (s)) ds + v1
x (s,Xπ,τ (s))σXπ,τ (s) dW (s) , t < s < τ,

dv1 (τ,Xπ,τ (τ)) = v1 (τ,Xπ,τ (τ−) (1 − π (τ)β)) − v1 (τ−, Xπ,τ (τ−))

such that

v1 (τ−, Xπ,τ (τ−)) − v1 (t, x) =

∫ τ

t

Lπv1 (s,Xπ,τ (s)) ds(15)

+

∫ τ

t

v1
x (s,Xπ,τ (s))σXπ,τ (s) dW (s) .

Now fix the investment strategy π (s) = p (s), t ≤ s ≤ τ , where we use the letter
p, sloppily but intuitively clear, for the process p (s,Xπ,τ (s−)) coming from applying
the function p (s, x) on the process Xπ,τ such that the strategy is predictable as it
should be. Then we know from the Bellman system that, for t ≤ s ≤ τ ,

0 ≤ Lpv1 (s,Xp,τ (s)) ,

and, since p (s) ∈ A′′
1 (s), also

0 ≤ v0 (s,Xp,τ (s) (1 − βp (s))) − v1 (s,Xp,τ (s)) .

But this means that inserting p in (15) gives the inequality

v1 (t, x) ≤ v0 (τ,Xp,τ (τ−) (1 − βp (τ))) −
∫ τ

t

v1
x (s,Xp,τ (s))σXp,τ (s) dW (s) .

Due to our requirements on the admissible controls and on the value function, the
stochastic integral vanishes when taking expectation, leaving us with the inequality

(16) v1 (t, x) ≤ Et,x

[
v0 (τ,Xp,τ (τ−) (1 − βp (τ)))

]
.
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Then, on the one hand, we can immediately conclude that

v1 (t, x) ≤ sup
π

Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
such that taking infimum over τ on both sides gives

(17) v1 (t, x) ≤ inf
τ

sup
π

Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
.

On the other hand, taking infimum over τ on both sides of (16) gives

v1 (t, x) ≤ inf
τ
Et,x

[
v0 (τ,Xp,τ (τ−) (1 − βp (τ)))

]
,

and then we can conclude that also

(18) v1 (t, x) ≤ sup
π

inf
τ
Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
.

Consider again (15). Now fix the time τ = θ. Then we know that

v0
(
s,Xπ,θ (s−) (1 − βπ (s))

)
− v1

(
s−, Xπ,θ (s−)

)
> 0, t ≤ s < θ,(19)

v0
(
θ,Xπ,θ (θ−) (1 − βπ (θ))

)
− v1

(
θ,Xπ,θ (θ−)

)
≤ 0.(20)

Now, either 0 > Lπv1(s,Xπ,τ (s)) or 0 ≤ Lπv1(s,Xπ,τ (s)). But if 0 ≤ Lπv1(s,Xπ,τ

(s)), then π ∈ A′
1, and then (19) gives us that

sup
π∈A′

1(s)

[
v0

(
s,Xπ,θ (s−) (1 − βπ (s))

)
− v1

(
s−, Xπ,θ (s−)

)]
> 0.

By complementarity, we then know that

sup
π∈A′′

1 (s)

[
Lπv1

(
s,Xπ,θ (s)

)]
= 0.

But since π (s) ∈ A′′
1 (s) by (19), we then know that

Lπv1
(
s,Xπ,θ (s)

)
≤ 0.

So, in any case, Lπv1
(
s,Xπ,θ (s)

)
≤ 0, s < θ. But this means that inserting θ in (15)

and using (20) gives the inequality

v1 (t, x) ≥ −
∫ θ

t

vx
(
s,Xπ,θ (s)

)
σXπ,θ (s) dW (s) + v0

(
θ,Xπ,θ (θ−) (1 − βπ (θ))

)
.

Due to our requirements on the admissible controls and on the value function, the
stochastic integral vanishes when taking expectation, leaving us with the inequality

(21) v1 (t, x) ≥ Et,x

[
v0

(
θ,Xπ,θ (θ−) (1 − βπ (θ))

)]
.

Then, on the one hand, we can conclude that

v1 (t, x) ≥ inf
τ
Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
such that taking supremum over π on both sides gives

(22) v1 (t, x) ≥ sup
π

inf
τ
Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
.
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On the other hand, taking supremum over π on both sides of (21) gives

v1 (t, x) ≥ sup
π

Et,x

[
v0

(
θ,Xπ,θ (θ−) (1 − βπ (θ))

)]
such that we can conclude that

(23) v1 (t, x) ≥ inf
τ

sup
π

Et,x

[
v0 (τ,Xπ,τ (τ−) (1 − βπ (τ)))

]
.

From (17), (18), (22), and (23), we conclude that

v1 (t, x) = inf
τ

sup
π

Et,x

[
v0 (τ,Xπ (τ−) (1 − βπ (τ)))

]
= sup

π
inf
τ
Et,x

[
v0 (τ,Xπ (τ−) (1 − βπ (τ)))

]
,

and it only remains to be realized that V is characterized by this equation.
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Abstract. A fundamental result due to Rockafellar states that every cyclically monotone oper-
ator A admits an antiderivative f in the sense that the graph of A is contained in the graph of the
subdifferential operator ∂f . Given a method m that assigns every finite cyclically monotone operator
A some antiderivative mA, we say that the method is primal-dual symmetric if m applied to the
inverse of A produces the Fenchel conjugate of mA. Rockafellar’s antiderivatives do not possess this
property. Utilizing Fitzpatrick functions and the proximal average, we present novel primal-dual
symmetric intrinsic methods. The antiderivatives produced by these methods provide a solution to a
problem posed by Rockafellar in 2005. The results leading to this solution are illustrated by various
examples.

Key words. antiderivative, convex function, cyclically monotone operator, Fenchel conjugate,
Fitzpatrick function, maximal monotone operator, n-cyclically monotone operator, proximal average,
Rockafellar’s antiderivative, Rockafellar function, subdifferential operator
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1. Introduction. Suppose that X is a real Banach space with continuous dual
X∗, dual pairing 〈·, ·〉, and norm ‖ · ‖. We start by recalling some known notions and
results concerning (cyclically) monotone operators. These operators play a fundamen-
tal role in modern optimization as well as convex and variational analysis; see, e.g.,
[11, 12, 18, 20, 21, 22, 24] for further information and notation not explicitly defined
here. Let A be a set-valued operator from X to X∗, i.e., (∀x ∈ X) Ax ⊆ X∗; thus,
A is a mapping from X to the power set of X∗. We use the notation A : X ⇒ X∗

and remark that A can be identified with its graph graA :=
{
(x, x∗) ∈ X ×X∗ |

x∗ ∈ Ax
}
. The domain of A is domA :=

{
x ∈ X | Ax �= ∅

}
and the range of A is

ranA := A(X) =
⋃

x∈X Ax. The inverse of A is the operator A−1 : X∗ ⇒ X, defined
by x ∈ A−1x∗ ⇔ x∗ ∈ Ax. Furthermore, let n ∈ {2, 3, . . . }. Then A is n-cyclically
monotone [1, 2, 3, 7, 10, 23] if the implication

(1)

(a1, a
∗
1) ∈ graA,

...
(an, a

∗
n) ∈ graA

an+1 := a1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒
n∑

i=1

〈ai+1 − ai, a
∗
i 〉 ≤ 0
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holds. Note that 2-monotonicity simplifies to

(2)
(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y, x∗ − y∗〉 ≥ 0,

i.e., to ordinary monotonicity. Cyclic monotonicity describes the situation when A
is m-cyclically monotone for every m ∈ {2, 3, . . . }. The operator A is maximal n-
cyclically monotone if A is n-cyclically monotone and no proper extension (in the
sense of inclusion of graphs) of A is n-cyclically monotone. Zorn’s lemma guarantees
that every n-cyclically monotone operator admits a maximal n-cyclically monotone
extension. At one end of the spectrum of maximal n-cyclically monotone operators
are the maximal 2-monotone, i.e., the maximal monotone operators. At the other
end are the maximal cyclically monotone operators, which Rockafellar in a ground-
breaking paper [19] (see Fact 3.4 below) revealed to be precisely the subdifferential
operators of functions that are convex, lower semicontinuous, and proper.

This paper is motivated by the following question posed by Rockafellar in 2005
during open-problem sessions at conferences in Borovets (Bulgaria) and Banff (Canada).

Given a cyclically monotone operator A with a finite graph, find a
method that produces an antiderivative of A that preserves the natural
symmetry induced by convex duality.

One motivation for the above question that we feel will become particularly rele-
vant for applications as numerical convex analysis matures is the efficient storage and
representation of convex functions. This is a surprisingly difficult problem. The per-
haps most natural approach of storing grid points (xi, yi) causes significant problems
because Lagrangian interpolation can fail to recover a convex function [13]. We now
describe three other possible approaches. First, one could solve for subgradients x∗

i

at each point xi, or store such data in the first place, and then recover the function
via f(x) = maxi

(
〈x− xi, x

∗
i 〉 + yi

)
. The resulting function is piecewise linear with a

full domain; thus, its conjugate has a bounded domain. Second, one could restrict the
model of the function to the convex hull of the points xi and set the function equal to
+∞ outside. Third, one could store the points and subgradients (xi, x

∗
i ) along with

a scalar y0 and then recover a function f that satisfies x∗
i ∈ ∂f(xi) and f(x0) = y0.

However, the existing representations in the literature [9, 19] are based on piecewise
linear functions; so, in the finite graph case, one has to unavoidably privilege either
the primal or the dual space in the very model used to recover the function.

In this paper, we provide constructive answers to Rockafellar’s question. In fact,
we shall exhibit methods for constructing antiderivatives that we call primal-dual
symmetric. These methods have the property that, when they are applied to A−1

instead of A, the Fenchel conjugate of the antiderivative of A is obtained. The mere
existence of such methods struck us initially as quite remarkable since antiderivatives
are at best unique up to additive constants. These methods also allow for the design
of models of convex functions that inherit the symmetry induced by convex duality
in the given discrete data. Our constructions are based on Rockafellar’s classical
construction of an antiderivative as well as on recent work on Fitzpatrick functions and
the proximal average operator, which has a close connection to fundamental objects
of optimization such as Moreau envelopes and proximal mappings [4, 6]. Another
pleasant consequence of primal-dual symmetric methods is their “slope 1” property—
we believe that this will aid in efforts to represent convex functions in a numerically
stable way (the “slope 1” property guarantees that the derivatives outside the domain
of interest have slopes that are neither too small nor too large in magnitude). This
is an area of active research that lies beyond the scope of this paper; see [15] for a
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one-dimensional framework that is capable to express such antiderivatives and that
serves as a starting point for further research.

The remainder of this paper can be summarized as follows. In section 2, we
introduce the common ancestor and Fitzpatrick functions [2]. These functions have
turned out to be immensely useful in the study of—and they are intimately tied to—
n-cyclic monotonicity. We provide a recursion formula for the Fitzpatrick functions
(Proposition 2.13) and show that they stabilize when applied to cyclically monotone
operators with a finite graph (Theorem 2.16). In section 3, we revisit Rockafellar’s
classical antiderivative result (Fact 3.4) in the context of Fitzpatrick functions. In
fact, his antiderivative satisfies a certain minimality property (Theorem 3.5), it is
related to the common ancestor function (Corollary 3.11), and a closed form can be
found for some finite-graph operators on R (Theorem 3.14)—parts of these results,
of which we were unaware during the preparation of the originally submitted version
of this paper, were previously obtained by Lambert et al. in their interesting work
[14] in which they focus on finding upper and lower bounds for antiderivatives using
a linear programming formulation. The supremum of all Rockafellar antiderivatives
is expressible in terms of a Fitzpatrick function (Theorem 3.15 and Corollary 3.16).
Section 4 introduces the notion of a primal-dual symmetric method for antideriva-
tives (Definition 4.6). Such methods provide antiderivatives that depend only on the
graph—which makes them intrinsic—and that return the Fenchel conjugate of the
antiderivative when applied to the inverse operator. Neither Rockafellar’s classical an-
tiderivatives nor simple symmetrizations of them have this property (Proposition 4.7).
Based on recent work on the proximal average operator, we proceed to present our
main result which provides a general construction of primal-dual symmetric methods
(Theorem 4.13). Concrete instances are proximal-average-based symmetrizations of
the maximum and of the average of Rockafellar’s antiderivatives (Examples 4.19 and
4.20). We then present a result (Corollary 4.23) that leads to a resolution of Rock-
afellar’s problem (Corollary 4.26 and Remark 4.27). We conclude the paper with a
numerical example (Example 4.28).

Our notation is standard. The subdifferential operator of a convex function f is
denoted by ∂f , its Fenchel conjugate by f∗, and its domain by dom f . For a set S,
we use convS, convS, intS, and S to denote its convex hull, its closed convex hull,
its interior, and its closure, respectively. For a nonempty convex subset C of X and
a point x ∈ C, the tangent and the normal cone of C at x are denoted by TC(x) and
by NC(x), respectively. Finally, the set of all functions from X to ]−∞,+∞] that
are convex, lower semicontinuous, and proper is denoted by Γ(X) or simply by Γ.

2. The common ancestor and Fitzpatrick functions.
Definition 2.1 (see [2, Definition 2.1]). Let A : X ⇒ X∗, and let (a1, a

∗
1) ∈

graA. The common ancestor functions are defined by

(3) CA,2,(a1,a∗
1) : X ×X∗ → ]−∞,+∞] : (x, x∗) �→ 〈x, a∗1〉 + 〈a1, x

∗〉 − 〈a1, a
∗
1〉,

and, for every n ∈ {3, 4, . . . }, by

CA,n,(a1,a∗
1) : X×X∗ → ]−∞,+∞]

(x, x∗) �→ sup
(a2,a

∗
2)∈graA,

...
(an−1,a

∗
n−1)∈graA

(n−2∑
i=1

〈ai+1− ai, a
∗
i 〉
)

+〈x− an−1, a
∗
n−1〉+〈a1, x

∗〉.

(4)
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We also set

(5) CA,∞,(a1,a∗
1) = sup

n∈{2,3,... }
CA,n,(a1,a∗

1).

It is clear that

(6)
(
∀n ∈ {2, 3, . . . }

)
CA,n,(a1,a∗

1) is convex and lower semicontinuous,

that the sequence

(7)
(
CA,n,(a1,a∗

1)

)
n∈{2,3,... } is increasing and pointwise convergent to CA,∞,(a1,a∗

1),

and that CA,∞,(a1,a∗
1) is convex and lower semicontinuous. Moreover,

(8)
graA finite ⇒

(
∀n ∈ {2, 3, . . . }

)
CA,n,(a1,a∗

1) is polyhedral and continuous.

The next result shows that common ancestor functions are closely related to n-cyclic
monotonicity. The proof is straightforward and thus omitted.

Proposition 2.2. Let A : X ⇒ X∗, and let n ∈ {2, 3, . . . }. Then A is n-
cyclically monotone if and only if

(9)
(
∀(a, a∗) ∈ graA

)(
∀(b, b∗) ∈ graA

)
CA,n,(a,a∗)(b, b

∗) ≤ 〈b, b∗〉.

Computationally convenient is the following recursive formula.
Proposition 2.3 (recursion). Let A : X ⇒ X∗, let (a1, a

∗
1) ∈ graA, let n ∈

{2, 3, . . . }, and let (x, x∗) ∈ X ×X∗. Then

(10) CA,n+1,(a1,a∗
1)(x, x

∗) = sup
(a,a∗)∈graA

CA,n,(a1,a∗
1)(a, x

∗) + 〈x− a, a∗〉.

Proof. By definition, CA,n+1,(a1,a∗
1)(x, x

∗) is the supremum of the terms

(11)

( n−1∑
i=1

〈ai+1 − ai, a
∗
i 〉
)

+ 〈x− an, a
∗
n〉 + 〈a1, x

∗〉

=

( n−2∑
i=1

〈ai+1 − ai, a
∗
i 〉
)

+ 〈an − an−1, a
∗
n−1〉 + 〈a1, x

∗〉 + 〈x− an, a
∗
n〉,

where (a2, a
∗
2), . . . , (an, a

∗
n) in graA. Supremizing first over (a2, a

∗
2), . . . , (an−1, a

∗
n−1),

followed by supremizing over (an, a
∗
n), we obtain the conclusion.

Due to their implementability, operators with finite graphs are of particular in-
terest. The next result demonstrates that, if a sufficiently high order of cyclic mono-
tonicity is achieved, the common ancestor functions stabilize.

Theorem 2.4. Let A : X ⇒ X∗, let (a1, a
∗
1) ∈ graA, and let n ∈ {2, 3, . . . }.

Suppose that A is n-cyclically monotone and that graA has at most n points. Then
CA,∞,(a1,a∗

1) = CA,n+1,(a1,a∗
1).

Proof. Take (x, x∗) ∈ X ×X∗, and take m ∈ {n + 2, n + 3, . . . }. It suffices to
show that

(12) CA,m,(a1,a∗
1)(x, x

∗) ≤ CA,m−1,(a1,a∗
1)(x, x

∗),

since this and (7) then imply that CA,n+1,(a1,a∗
1) = CA,n+2,(a1,a∗

1) = · · · = CA,∞,(a1,a∗
1).

Take (a2, a
∗
2), . . . , (am−1, a

∗
m−1) in graA. Since graA contains at most n points and
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since m − 1 ≥ n + 1, there exist integers k and l such that 1 ≤ k < l ≤ m − 1 and
ak = al. Hence

(13)

m−2∑
i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x− am−1, a

∗
m−1〉 + 〈a1, x

∗〉

=

k−1∑
i=1

〈ai+1 − ai, a
∗
i 〉 + σ +

m−2∑
i=l

〈ai+1 − ai, a
∗
i 〉 + 〈x− am−1, a

∗
m−1〉 + 〈a1, x

∗〉,

where

(14) σ =

l−1∑
i=k

〈ai+1 − ai, a
∗
i 〉.

We claim that

(15) σ ≤ 0.

Note that σ contains l − k terms. If l − k ≤ n, then the n-cyclic monotonicity of A
implies that σ ≤ 0. Otherwise, l − k > n, and we may analogously and recursively
split up σ until it is a finite sum of negative terms. This verifies (15). Now (13)
implies (12).

Example 2.5. Suppose that X is a Hilbert space. Let e ∈ X be such that ‖e‖ = 1,
and define A via graA := {(−e,−e), (e, e)}. Then A is (2-cyclically) monotone, and
for every (x, x∗) ∈ X ×X we have

CA,2,(−e,−e)(x, x
∗) = −〈x + x∗, e〉 − 1,(16)

CA,2,(e,e)(x, x
∗) = 〈x + x∗, e〉 − 1,(17)

CA,3,(−e,−e)(x, x
∗) = max

{
− 〈x + x∗, e〉 − 1, 〈x− x∗, e〉 − 3

}
,(18)

CA,3,(e,e)(x, x
∗) = max

{
〈x∗ − x, e〉 − 3, 〈x + x∗, e〉 − 1

}
.(19)

Theorem 2.6. Let A : X ⇒ X∗, and let (a1, a
∗
1) ∈ graA. Suppose that A is not

cyclically monotone. Then CA,∞,(a1,a∗
1) ≡ +∞.

Proof. There exist n points (a2, a
∗
2), . . . , (an+1, a

∗
n+1) in graA, where n ∈ {2, 3, . . . },

such that

(20) σ :=

n+1∑
i=2

〈ai+1 − ai, a
∗
i 〉 > 0, where an+2 := a2.

Take (x, x∗) ∈ X ×X∗. Take k ∈ {2, 3, . . . }, and define

akn+2 := a(k−1)n+2 := · · · := a2,(21)

akn+1 := a(k−1)n+1 := · · · := an+1,(22)

akn := a(k−1)n := · · · := an,(23)

...(24)

a(k−1)n+3 := a(k−2)n+3 := · · · := a3,(25)
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and analogously for a∗n+2, . . . , a
∗
kn+2. Then

CA,kn+3,(a1,a∗
1)(x, x

∗) ≥
kn+1∑
i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x− akn+2, a

∗
kn+2〉 + 〈a1, x

∗〉(26)

= 〈a2 − a1, a
∗
1〉 + kσ + 〈x− a2, a

∗
2〉 + 〈a1, x

∗〉(27)

→ +∞ as k → +∞.(28)

Therefore, limk→+∞ CA,kn+3,(a1,a∗
1)(x, x

∗) = +∞, and the result now follows
from (7).

Example 2.7. Suppose that X is a Hilbert space. Let e ∈ X be such that ‖e‖ = 1,
and define A via graA := {(−e, e), (e,−e)}. Then A is not monotone, and for every
k ∈ {2, 3, . . . } and (x, x∗) ∈ X ×X we have

CA,2,(−e,e)(x, x
∗) = 〈x− x∗, e〉 + 1,(29)

CA,2,(e,−e)(x, x
∗) = 〈x∗ − x, e〉 + 1,(30)

CA,2k−1,(−e,e)(x, x
∗) = 4(k − 1) − 2 + max

{
〈x− x∗, e〉 − 1,−〈x + x∗, e〉 + 1

}
,(31)

CA,2k−1,(e,−e)(x, x
∗) = 4(k − 1) − 2 + max

{
〈x + x∗, e〉 + 1, 〈x∗ − x, e〉 − 1

}
,(32)

CA,2k,(−e,e)(x, x
∗) = 4(k − 1) + max

{
〈x− x∗, e〉 + 1,−〈x + x∗, e〉 − 1

}
,(33)

CA,2k,(e,−e)(x, x
∗) = 4(k − 1) + max

{
〈x + x∗, e〉 − 1, 〈x∗ − x, e〉 + 1

}
,(34)

CA,∞,(−e,e)(x, x
∗) = +∞,(35)

CA,∞,(e,−e)(x, x
∗) = +∞.(36)

We now turn to Fitzpatrick functions.
Definition 2.8 (Fitzpatrick functions [2, Definition 2.2]). Let A : X ⇒ X∗. For

every n ∈ {2, 3, . . . }, the Fitzpatrick function of A of order n is

(37) FA,n := sup
(a,a∗)∈graA

CA,n,(a,a∗).

The Fitzpatrick function of A of infinite order is

(38) FA,∞ := sup
n∈{2,3,... }

FA,n = sup
(a,a∗)∈graA

CA,∞,(a,a∗).

It is clear that each FA,n is convex and lower semicontinuous; moreover, if graA
is finite, then each FA,n is polyhedral and continuous. The sequence (FA,n)n∈{2,3,... }
is increasing and pointwise convergent to FA,∞, which is convex and lower semicon-
tinuous. An immediate consequence of Definition 2.8 is the following result.

Proposition 2.9 ([2, Proposition 2.3]). Let A : X ⇒ X∗, and let n ∈ {2, 3, . . . }.
Then FA,n : X ×X∗ → [−∞,+∞] is convex and lower semicontinuous. At (x, x∗) ∈
X ×X∗, the value of FA,n is given by

(39) sup
(a1,a

∗
1)∈graA,
...

(an−1,a
∗
n−1)∈graA

( n−2∑
i=1

〈ai+1 − ai, a
∗
i 〉
)

+ 〈x− an−1, a
∗
n−1〉 + 〈a1, x

∗〉.

Moreover,

(40) FA,n ≥ 〈·, ·〉 on graA.
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Proposition 2.10. Let A : X ⇒ X∗, let n ∈ {2, 3, . . . }, and let (x, x∗) ∈
X ×X∗. Then FA−1,n(x∗, x) = FA,n(x, x∗) and FA−1,∞(x∗, x) = FA,∞(x, x∗).

Proof. Take (b∗1, b1), . . . , (b
∗
n−1, bn−1) in graA−1 and set

(41)
(
∀i ∈ {1, . . . , n− 1}

)
(ai, a

∗
i ) := (bn−i, b

∗
n−i) ∈ graA.

Then

(42)
n−2∑
i=1

〈bi, b∗i+1 − b∗i 〉 + 〈bn−1, x
∗ − b∗n−1〉 + 〈x, b∗1〉

=

n−2∑
i=1

〈bi, b∗i+1〉 −
n−1∑
i=1

〈bi, b∗i 〉 + 〈bn−1, x
∗〉 + 〈x, b∗1〉

=

n−2∑
i=1

〈ai+1, a
∗
i 〉 −

n−1∑
i=1

〈ai, a∗i 〉 + 〈a1, x
∗〉 + 〈x, a∗n−1〉

=

n−2∑
i=1

〈ai+1 − ai, a
∗
i 〉 + 〈x− an−1, a

∗
n−1〉 + 〈a1, x

∗〉.

The result follows by supremizing.
Fact 2.11 ([2, Proposition 2.4 and Corollary 2.5]). Let A : X ⇒ X∗, and let

n ∈ {2, 3, . . . }. Then

(43) A is n-cyclically monotone ⇔ FA,n ≤ 〈·, ·〉 on graA ⇔ FA,n = 〈·, ·〉 on graA,

and

(44) A is cyclically monotone ⇔ FA,∞ ≤ 〈·, ·〉 on graA ⇔ FA,∞ = 〈·, ·〉 on graA.

Corollary 2.12. Let A : X ⇒ X∗, and let n ∈ {2, 3, . . . }. Then A is n-
cyclically monotone if and only if A−1 is.

The recursion formula for Fitzpatrick functions that we present next is an imme-
diate consequence of Proposition 2.3. (A special case of it was utilized in [3].)

Proposition 2.13 (recursion). Let A : X ⇒ X∗, let n ∈ {2, 3, . . . }, and let
(x, x∗) ∈ X ×X∗. Then

(45) FA,n+1(x, x
∗) = sup

(a,a∗)∈graA

FA,n(a, x∗) + 〈x, a∗〉 − 〈a, a∗〉.

Combining Fact 2.11 and Proposition 2.13, we obtain the following result which
underlines the importance of the values of the Fitzpatrick function on domA× ranA.

Corollary 2.14. Let A : X ⇒ X∗, and let n ∈ {3, 4, . . . }. Then A is n-
cyclically monotone if and only if

(46)
(
∀(a, a∗) ∈ graA

)(
∀(b, b∗) ∈ graA

)
FA,n−1(a, b

∗) − 〈a, b∗〉 ≤ 〈a− b, a∗ − b∗〉.

Example 2.15. Let A : X ⇒ X∗ be monotone such that its graph contains two
points, and let n ∈ {2, 3, . . . }. Then FA,n = 〈·, ·〉 on domA× ranA; consequently, A
is cyclically monotone.

Proof. The fact that FA,n = 〈·, ·〉 is proved readily by induction. The cyclic
monotonicity of A now follows from Corollary 2.14 and from the monotonicity of A.
(Alternatively, use Corollary 2.18 below.)
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Theorem 2.16. Let A : X ⇒ X∗ be such that graA contains at most n points,
where n ∈ {2, 3, . . . }. Suppose that A is n-cyclically monotone. Then A is (n + 1)-
cyclically monotone and

(47) FA,n+1 = FA,n+2 = · · · = FA,∞.

Proof. Take

(48)
{
(b1, b

∗
1), . . . , (bn+1, b

∗
n+1)

}
⊆ graA.

We must show that

(49) σ :=
n+1∑
i=1

〈bi+1 − bi, b
∗
i 〉 ≤ 0, where bn+2 := b1.

Since graA contains no more than n points, there exist integers k and l such that

(50) bk = bl and 1 ≤ k < l ≤ n + 1.

Then

(51) σ = σ1 + σ2,

where

(52) σ1 :=

l−1∑
i=k

〈bi+1 − bi, b
∗
i 〉 and σ2 :=

n+1∑
i=l

〈bi+1 − bi, b
∗
i 〉 +

k−1∑
i=1

〈bi+1 − bi, b
∗
i 〉

are two cyclic sums, each of which contains at least one term and hence at most
n terms. Since A is n-cyclically monotone, we see that σ1 ≤ 0 and that σ2 ≤ 0.
Therefore, σ = σ1 + σ2 ≤ 0. The statement concerning the Fitzpatrick functions
follows from Theorem 2.4 and Definition 2.8.

Example 2.17. Let A : X ⇒ X∗ be such that graA = {(a, a∗)} for some (a, a∗) ∈
X ×X∗. Then A is cyclically monotone, and for every (x, x∗) ∈ X ×X∗ we have

(53) FA,2(x, x
∗) = FA,3(x, x

∗) = · · · = FA,∞(x, x∗) = 〈a, x∗〉 + 〈x, a∗〉 − 〈a, a∗〉.

Corollary 2.18. Let A : X ⇒ X∗ be such that graA contains at most n points,
where n ∈ {2, 3, . . . }. Suppose that A is n-cyclically monotone. Then A is cyclically
monotone.

Proof. By Theorem 2.16, A is (n + 1)-cyclically monotone and

(54) FA,n+1 = FA,∞.

On the other hand, Fact 2.11 yields

(55) FA,n+1 = 〈·, ·〉 on graA.

The result follows by combining (54), (55), and Fact 2.11.
Corollary 2.19. Let A : X ⇒ X∗ be such that graA contains at most n points,

where n ∈ {2, 3, . . . }. Then A is cyclically monotone if and only if

(56)
(
∀(a, a∗) ∈ graA

)
FA,n(a, a∗) = 〈a, a∗〉.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRIMAL-DUAL SYMMETRIC INTRINSIC METHODS 2039

Proof. “⇒”: On graA, we always have 〈·, ·〉 ≤ FA,n ≤ FA,∞. Since A is cyclically
monotone, FA,∞ = 〈·, ·〉 on graA and hence FA,n = 〈·, ·〉 on graA. “⇐”: By Fact 2.11,
A is n-cyclically monotone. The result now follows from Corollary 2.18.

Example 2.20. Suppose that X is a Hilbert space. Let e ∈ X such that ‖e‖ = 1,
and define A via graA = {(−e,−e), (e, e)}. Then A is cyclically monotone but FA,2 �=
FA,3; in fact, for every (x, x∗) ∈ X ×X, we have

(57) FA,2(x, x
∗) = max

{
− 1 ± 〈x + x∗, e〉

}
and

(58) FA,3(x, x
∗) = · · · = FA,∞(x, x∗) = max

{
− 1 ± 〈x + x∗, e〉,−3 ± 〈x− x∗, e〉

}
.

Proof. The operator A is cyclically monotone since graA ⊂ gra Id = gra ∂ 1
2‖ · ‖2.

The formulas for FA,2 and FA,3 follow from Example 2.5. Theorem 2.16 shows
that FA,3 = · · · = FA,∞. Finally, we note that FA,2(2e,−2e) = −1, whereas
FA,3(2e,−2e) = 1.

The next example, which is an immediate consequence of Example 2.7 and Defi-
nition 2.8, illustrates the nonmonotone case.

Example 2.21. Suppose that X is a Hilbert space. Let e ∈ X be such that
‖e‖ = 1, and define A via graA := {(−e, e), (e,−e)}. Then A is not monotone, and
for every k ∈ {2, 3, . . . } and (x, x∗) ∈ X ×X we have

FA,2(x, x
∗) = 1 + max

{
± 〈x− x∗, e〉

}
,(59)

FA,2k−1(x, x
∗) = 4(k − 1) − 2 + max

{
− 1 ± 〈x− x∗, e〉, 1 ± 〈x + x∗, e〉

}
,(60)

FA,2k(x, x
∗) = 4(k − 1) + max

{
1 ± 〈x− x∗, e〉,−1 ± 〈x + x∗, e〉

}
,(61)

FA,∞(x, x∗) = +∞.(62)

3. Rockafellar functions.
Definition 3.1. Let A : X ⇒ X∗, and let f ∈ Γ. Then f is an antiderivative of

A if

(63) graA ⊆ gra ∂f.

The following result will turn out to be useful.
Proposition 3.2. Suppose that X is reflexive. Let A : X ⇒ X∗, let f ∈ Γ,

and suppose that f is an antiderivative of A such that ran ∂f ⊆ conv ranA. Then
dom f∗ = conv ranA.

Proof. On the one hand, since f is an antiderivative of A, we deduce that graA ⊆
gra ∂f ⇔ graA−1 ⊆ gra(∂f)−1 = gra ∂f∗ ⇒ ranA = domA−1 ⊆ dom ∂f∗ ⊆ dom f∗

⇒ conv ranA ⊆ conv dom f∗ = dom f∗. Because ran ∂f ⊆ conv ranA, we see that
dom f∗ ⊆ dom f∗ = dom ∂f∗ = dom(∂f)−1 = ran ∂f ⊆ conv ranA. Altogether,
dom f∗ = conv ranA.

Definition 3.3 (Rockafellar function). Let A : X ⇒ X∗. Then the Rockafellar
functions are defined by

(64)(
∀(a, a∗) ∈ graA

)
RA,(a,a∗) : X → ]−∞,+∞] : x �→ sup

n∈{2,3,... }
CA,n,(a,a∗)(x, 0).

The importance of the Rockafellar functions stems from a fundamental result due
to Rockafellar (see [19] or [24, Proposition 2.4.3, Theorem 3.2.8, and Corollary 3.2.11]),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2040 HEINZ H. BAUSCHKE, YVES LUCET, AND XIANFU WANG

which states that maximal cyclically monotone operators are precisely the subdiffer-
ential operators of convex, lower semicontinuous, and proper functions. The following
part of Rockafellar’s result will be utilized later.

Fact 3.4 (Rockafellar [19] or [24, Proposition 2.4.3 and Corollary 3.2.11]). Let
A : X ⇒ X∗ be cyclically monotone, and let (a, a∗) ∈ graA. Then the following hold:

(i) RA,(a,a∗) is convex, lower semicontinuous, and proper, RA,(a,a∗)(a) = 0, and
RA,(a,a∗) is an antiderivative of A.

(ii) If A is maximal cyclically monotone, then any two antiderivatives of A differ
only by a constant.

Among all antiderivatives, Rockafellar functions have a special status due to the
following minimality property, which was first observed in [14, Theorem 3.4] for cycli-
cally monotone operators with a finite graph.

Theorem 3.5. Let A : X ⇒ X∗ be cyclically monotone, and let a ∈ domA.
Then

(
∀a∗ ∈ Aa

)
RA,(a,a∗) = min

{
f ∈ Γ(X) | f is an antiderivative of A with f(a) ≥ 0

}(65)

= min
{
f ∈ Γ(X) | f is an antiderivative of A with f(a) = 0

}
.(66)

Proof. Suppose that f ∈ Γ is an antiderivative of A with f(a) ≥ 0, and take
a∗ ∈ Aa and x ∈ X. Then, for every x ∈ X, n ∈ {1, 2, . . . }, and (a1, a

∗
1), . . . , (an, a

∗
n)

belonging to graA, we have

f(x) ≥ f(x) − f(an) +

(
n−1∑
i=1

f(ai+1) − f(ai)

)
+ f(a1) − f(a)

≥ 〈x− an, a
∗
n〉 +

(
n−1∑
i=1

〈ai+1 − ai, a
∗
i 〉
)

+ 〈a1 − a, a∗〉.(67)

This implies

(68) f ≥ RA,(a,a∗).

In view of Fact 3.4(i), the proof is complete.
Corollary 3.6. Let A : X ⇒ X∗ be cyclically monotone, let a ∈ domA, let

a∗1 ∈ Aa, and let a∗2 ∈ Aa. Then RA,(a,a∗
1) = RA,(a,a∗

2).
Corollary 3.6 and Theorem 2.6 make the following definition well-defined.
Definition 3.7. Let A : X ⇒ X∗, and let a ∈ domA. Then we set

(69) RA,a := RA,(a,a∗),

where a∗ is an arbitrary point in Aa.
Corollary 3.8. Let A : X ⇒ X∗ be cyclically monotone, and let a ∈ domA.

Set B : X ⇒ X∗ : x �→ conv(Ax). Then B is cyclically monotone, and RB,a = RA,a.
Proof. It is readily verified that B is cyclically monotone. Hence RB,a is an

antiderivative of B and of A such that RB,a(a) = 0. By Theorem 3.5, RB,a ≥ RA,a.
On the other hand, RA,a is also an antiderivative of B; thus, again by Theorem 3.5,
RA,a ≥ RB,a. Altogether, RB,a = RA,a.

Corollary 3.9. Suppose that X is reflexive. Let A : X ⇒ X∗ be cyclically
monotone, and let (a, a∗) ∈ graA. Then

(70) R∗
A,a = max

{
g ∈ Γ(X∗) | g is an antiderivative of A−1 and g(a∗) = 〈a, a∗〉

}
.
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Proof. Take g ∈ Γ(X∗) such that g is an antiderivative of A−1 and g(a∗) = 〈a, a∗〉.
Then g∗(a) = 0, and g∗ is an antiderivative of A. By Theorem 3.5, g∗ ≥ RA,a, and
therefore g∗∗ = g ≤ R∗

A,a.
Corollary 3.9 results in the following interesting counterpart to Theorem 3.5; see

also [14, Proposition 4.2].
Corollary 3.10. Suppose that X is reflexive. Let A : X ⇒ X∗ be cyclically

monotone, and let (a, a∗) ∈ graA. Then

(71)
R∗

A−1,a∗ − 〈a, a∗〉 = max
{
f ∈ Γ(X) | f is an antiderivative of A and f(a) = 0

}
.

The next result will be used later.
Corollary 3.11. Let A : X ⇒ X∗, let (a, a∗) ∈ graA, and let n ∈ {2, 3, . . . }.

Suppose that graA contains at most n points and that A is n-cyclically monotone.
Then A is cyclically monotone, and for every x ∈ X we have

RA,a(x) = CA,n+1,(a,a∗)(x, 0)(72)

= max
(a2,a

∗
2)∈graA,
...

(an,a
∗
n)∈graA

〈x− an, a
∗
n〉 + 〈an − an−1, a

∗
n−1〉 + · · · + 〈a2 − a, a∗〉.(73)

Consequently, RA,a is a polyhedral and continuous antiderivative of A with ran ∂RA,a ⊂
conv ranA.

Proof. This follows from Corollary 2.18, Theorem 2.4, (8), Fact 3.4(i), and the
Ioffe–Tikhomirov theorem (see, e.g., [24, Theorem 2.4.18]).

Fact 3.4(ii) implies that, if A is maximal cyclically monotone, the Rockafellar
functions {RA,a}a∈domA differ only by constants. For finite-graph operators, this is
no longer true as the following consequence of Example 2.5 and Definition 3.3 shows.

Example 3.12. Suppose that X is a Hilbert space. Let e ∈ X be such that
‖e‖ = 1, and define A via graA := {(−e,−e), (e, e)}. Then for every x ∈ X we have

(74) RA,−e(x) = max
{
− 〈x, e〉 − 1, 〈x, e〉 − 3

}
= −2 + |〈x, e〉 − 1|

and

(75) RA,e(x) = max
{
〈x, e〉 − 1,−〈x, e〉 − 3

}
= −2 + |〈x, e〉 + 1|.

Consequently, RA,e �≥ RA,−e and RA,e �≤ RA,−e.
Remark 3.13. Let A : X ⇒ X∗, and suppose that A is not cyclically mono-

tone. Then Theorem 2.6 and Definition 3.3 imply that the Rockafellar functions
{RA,a}a∈domA are all identically equal to +∞. For a concrete example, see Exam-
ple 2.7.

Turning momentarily to the case when X = R, we now present not only a consid-
erable generalization of Example 3.12 but also an explicit formula for any Rockafellar
function and its subdifferential operator of a cyclically monotone operator with a finite
graph. See also [14, section 7].

Theorem 3.14. Let A : R ⇒ R have a finite graph, and suppose that the graph
of B : R ⇒ R : x �→ conv(Ax) is

(76)

n⋃
i=1

(
{ai} × [b−i , b

+
i ]
)
,
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where n ∈ {1, 2, . . . }, a1 < a2 < · · · < an, and b−1 ≤ b+1 ≤ b−2 ≤ · · · ≤ b−n ≤ b+n . Set
a0 := −∞ and an+1 := +∞. Suppose that k ∈ {1, . . . , n}. Then RA,ak

is given by

(77) R → R : x �→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(x− ai)b

−
i +

k∑
j=i+1

(aj−1 − aj)b
−
j if ai−1 < x ≤ ai ≤ ak,

(x− ai)b
+
i +

i−1∑
j=k

(aj+1 − aj)b
+
j if ak ≤ ai ≤ x < ai+1,

and ∂RA,ak
is given by

(78) R ⇒ R : x �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{b−i } if ai−1 < x < ai ≤ ak,

[b−i , b
−
i+1] if x = ai < ak,

[b−k , b
+
k ], if x = ak,

[b+i−1, b
+
i ] if ak < x = ai,

{b+i } if ak ≤ ai < x < ai+1.

Proof. Clearly, A and B are cyclically monotone. Denote the function described
in (77) by R, and observe that R is piecewise linear, continuous everywhere, and
well-defined at ak, with

(79) R(ak) = 0.

Moreover, (77) implies that ∂R is given by (78), which is clearly monotone. Thus

(80) R ∈ Γ(R).

Take i ∈ {1, 2, . . . , n}. If i < k, then Aai ⊆ Bai = [b−i , b
+
i ] ⊆ [b−i , b

−
i+1] = ∂R(ai).

If i = k, then Aai = Aak ⊆ Bak = [b−k , b
+
k ] = ∂R(ak). If k < i, then Aai ⊆ Bai =

[b−i , b
+
i ] ⊆ [b+i−1, b

+
i ] = ∂R(ai). Thus,

(81) R is an antiderivative of A.

Since
⋃n

i=1{(ai, b
−
i ), (ai, b

+
i )} ⊆ graA, we deduce from (73) and (77) that

(82) RA,ak
≥ R.

Hence (79), (80), (81), (82), and Theorem 3.5 imply that R = RA,ak
.

The next result links Rockafellar functions to Fitzpatrick functions.
Theorem 3.15. Let A : X ⇒ X∗. Then

(83)
(
∀(x, x∗) ∈ X ×X∗) FA,∞(x, x∗) = sup

a∈domA
〈a, x∗〉 + RA,a(x).

Proof. (See also the proof of [2, Theorem 3.5] for a variant.) Take (x, x∗) ∈
X ×X∗. Using Definitions 2.8, 2.1, 3.3, and 3.7, we see that

FA,∞(x, x∗) = sup
n∈{2,3,... }

FA,n(x, x∗) = sup
n∈{2,3,... }

sup
(a,a∗)∈graA

CA,n,(a,a∗)(x, x
∗)(84)

= sup
(a,a∗)∈graA

sup
n∈{2,3,... }

CA,n,(a,a∗)(x, 0) + 〈a, x∗〉(85)

= sup
(a,a∗)∈graA

〈a, x∗〉 + RA,(a,a∗)(x)(86)

= sup
a∈domA

〈a, x∗〉 + RA,a(x),(87)

as required.
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We deduce that the Fitzpatrick function of infinite order with the second variable
set to zero is exactly the supremum of all Rockafellar functions.

Corollary 3.16. Let A : X ⇒ X∗. Then

(88) FA,∞(·, 0) = sup
a∈domA

RA,a.

Remark 3.17. Let A : X ⇒ X∗ be maximal cyclically monotone. Rockafellar [19]
(see Fact 3.4) proved that A = ∂f , where f ∈ Γ is uniquely determined up to additive
constants. By [2, Theorem 3.5], FA,∞ = f ⊕ f∗. Thus Corollary 3.16 implies that

(89) sup
a∈domA

RA,a ≡ +∞ ⇔ 0 /∈ dom f∗ ⇔ inf f(X) = −∞.

Corollary 3.18. Let A : X ⇒ X∗ be cyclically monotone with a finite graph,
let x∗ ∈ X∗, and set f := FA,∞( · , x∗). Then f is polyhedral, continuous, with a full
domain, graA ⊂ gra ∂f , and ran ∂f ⊆ conv ranA.

Proof. Since graA is finite, Theorem 3.15 yields

(90) f = max
a∈domA

〈a, x∗〉 + RA,a.

The function f is continuous, polyhedral, with a full domain, as it is the finite maxi-
mum of such functions (see Corollary 3.11). Fix x ∈ X, and set Dx :=

{
a ∈ domA |

f(x) = 〈a, x∗〉 + RA,a(x)
}
. On the one hand, using the Ioffe–Tikhomirov theorem

(see, e.g., [24, Theorem 2.4.18]) and Corollary 3.11, we have

(91) ∂f(x) = conv ∗
⋃

a∈Dx

∂RA,a(x) ⊆ conv ∗
⋃

a∈Dx

conv ranA = conv ranA,

where conv ∗ denotes the weak* closed convex hull operator. Hence ran ∂f ⊆ conv ranA,
and thus ran ∂f ⊆ conv ranA, since conv ranA is compact as a convex hull of finitely
many points. On the other hand, Fact 3.4(i) implies that

(92)
(
∀a ∈ domA

)
graA ⊂ gra ∂RA,a.

Combining (91) and (92), we conclude altogether that graA ⊂ gra ∂f .
Example 3.19. Suppose that X is a Hilbert space. Let e ∈ X such that ‖e‖ = 1,

and define A via graA = {(−e,−e), (e, e)}. Then A is cyclically monotone, and for
every x ∈ X we have

(93) FA,∞(x, 0) = max
{
RA,−e(x), RA,e(x)

}
= max

{
− 1 ± 〈x, e〉

}
= −1 + |〈x, e〉|.

Proof. Combine Example 3.12 and Corollary 3.16.
We conclude this section with a result which illustrates how Fitzpatrick functions

give rise to the smallest nonnegative antiderivative.
Corollary 3.20. Let A : X ⇒ X∗ be cyclically monotone with a finite graph.

Then

(94)
FA,∞(·, 0) = min

{
f ∈ Γ(X) | f is an antiderivative of A such that f ≥ 0 on domA

}
.

Proof. Take f ∈ Γ(X) such that f is an antiderivative of A and f ≥ 0 on domA.
Then Theorem 3.5 implies that (∀a ∈ domA) f ≥ RA,a; hence, by Corollary 3.16,

(95) f ≥ max
a∈domA

RA,a = FA,∞(·, 0).

In view of Corollary 3.18 and Fact 3.4(i), FA,∞(·, 0) is an antiderivative of A that is
nonnegative on domA.
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4. Intrinsic and primal-dual symmetric methods. From now on,

(96)
A is the set of all cyclically monotone operators on X with finite nonempty graphs.

Definition 4.1. An intrinsic method for finding antiderivatives—or simply an
intrinsic method—is a mapping m : A → Γ: A �→ mA such that, for every A ∈ A,
mA is an antiderivative of A.

Example 4.2. Let A : X ⇒ X∗ be cyclically monotone, and let (a, a∗) ∈ graA.
Then the Rockafellar function RA,(a,a∗) = RA,a is an antiderivative (see Fact 3.4)
but—due to the dependency on a and the resulting nonuniqueness of Rockafellar
functions—there is no corresponding intrinsic method m that produces Rockafellar
functions. See Example 3.12 for a concrete example.

Remark 4.3. Given A ∈ A, an intrinsic method m provides an antiderivatives mA

as a mapping depending only on A or, equivalently, only on the (unordered) graph
of A. This key property of intrinsic methods explains why the process of providing
Rockafellar functions considered in Example 4.2 is not intrinsic. Similarly, if a method
computes antiderivatives by using an enumeration of the graph of A and if a different
enumeration may result in a different antiderivative, then such a method cannot be
intrinsic.

We now provide two intrinsic methods.
Example 4.4. Let m : A → Γ: A �→ FA,∞(·, 0) = max(a,a∗)∈graA RA,(a,a∗). Corol-

laries 3.16 and 3.18 imply that m is an intrinsic method. Moreover, for every A ∈ A,
the antiderivative mA has a full domain and ran ∂mA ⊆ conv ranA.

Example 4.5. Let A : X ⇒ X∗ be cyclically monotone such that graA contains
exactly n points, where n ∈ {1, 2, . . . }, and set

(97) mA :=
∑

(a,a∗)∈graA

1

n
RA,(a,a∗).

Then mA is an antiderivative of A that is polyhedral and continuous with a full
domain and ran ∂mA ⊆ conv ranA. Furthermore, the corresponding method m : A →
Γ: A �→ mA is intrinsic.

Proof. Note that mA is continuous and polyhedral with a full domain, as a finite
sum of such functions. The sum rule (see, e.g., [24, Theorem 2.8.7(iii)]) and Fact 3.4
imply that, for every (x, x∗) ∈ graA, we have x∗ ∈ Ax ⊆

∑
(a,a∗)∈graA

1
nAx ⊆∑

(a,a∗)∈graA
1
n∂RA,(a,a∗)(x) = ∂mA(x). Corollary 3.11 shows that, for every x ∈

X, we have ∂mA(x) =
∑

(a,a∗)∈graA
1
n∂RA,(a,a∗)(x) ⊆

∑
(a,a∗)∈graA

1
n conv ranA =

conv ranA. Consequently, ran ∂mA ⊆ conv ranA, and hence ran ∂mA ⊆ conv ranA =
conv ranA. It is clear that m is intrinsic.

We assume from now on that

(98) X is a Hilbert space.

Definition 4.6. An intrinsic method m : A → Γ: A �→ mA is primal-dual sym-
metric if

(99)
(
∀A ∈ A

)
mA−1 = m

∗
A.

Proposition 4.7. While intrinsic, neither

(100) A → Γ: A �→ FA,∞(·, 0) = max
(a,a∗)∈graA

RA,(a,a∗)
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nor

(101)

A → Γ: A �→
∑

(a,a∗)∈graA

1

nA
RA,(a,a∗), where nA is the number of points in graA,

is primal-dual symmetric.
Proof. On the one hand, both methods produce polyhedral continuous functions

with a full domain. On the other hand, the Fenchel conjugates of such functions have
a bounded domain.

Since antiderivatives are only (and at best; see Example 3.12) unique up to a
constant, it is perhaps surprising that primal-dual symmetric methods even exist.
The remainder of this section is devoted to the derivation of such methods. We shall
require several known notions, which we review now.

Let A : X ⇒ X be a monotone operator. The resolvent of A is (the single-
valued, firmly nonexpansive operator) JA := (Id +A)−1, where Id denotes the identity
operator. A classical result due to Minty [16] asserts that JA has a full domain if and
only if A is maximal monotone. The proof of the following result is straightforward
and hence omitted.

Proposition 4.8. Let A : X ⇒ X and B : X ⇒ X be monotone operators. Then
the following are equivalent:

(i) graA ⊆ graB.
(ii) graA−1 ⊆ graB−1.
(iii) JB is an extension of JA; i.e., JB = JA on dom JA = ran(Id +A).
We further recall that, given f ∈ Γ, the proximal mapping [17] of f is Prox(f) :=

J∂f . It is clear from the definition that, for two points x and x∗ in X, one has

(102) x∗ ∈ ∂f(x) ⇔ x = Prox(f)(x + x∗).

Proposition 4.9. Let f ∈ Γ, let (a, a∗) ∈ gra ∂f , and suppose that y ∈
Ndom f (a). Then a = Prox(f)(2y + a + a∗).

Proof. Since Ndom f (a) is a cone, we have 2y ∈ Ndom f (a). Hence 2y + a + a∗ ∈
a + a∗ + ∂ιdom f (a) ⊆ a + ∂f(a) + ∂ιdom f (a) ⊆ a + ∂(f + ιdom f )(a) = a + ∂f(a) =
(Id +∂f)(a), and thus a = Prox(f)(2y + a + a∗).

We need one more notion.
Definition 4.10. Let f0 ∈ Γ, and let f1 ∈ Γ. The proximal midpoint average of

f0 and f1 is the function

(103) P(f0, f1) :=
(

1
2

(
f0 + 1

2‖ · ‖
2
)∗

+ 1
2

(
f1 + 1

2‖ · ‖
2
)∗)∗

− 1
2‖ · ‖

2.

The proximal average, which is a generalization of the proximal midpoint average
with a parameter λ ∈ [0, 1] (the choice λ = 1

2 yields the proximal midpoint average),
was introduced in [6] and further studied in [4, 5, 8].

We require the following properties.
Fact 4.11. Let f0 ∈ Γ, and let f1 ∈ Γ. Then the following hold:
(i) P(f0, f1) = P(f1, f0).
(ii) (P(f0, f1))

∗ = P(f∗
0 , f

∗
1 ).

(iii) P(f0, f1) ∈ Γ.
(iv) Prox(P(f0, f1)) = 1

2 Prox(f0) + 1
2 Prox(f1).

(v) If f0 ≤ f1, then f0 ≤ P(f0, f1) ≤ f1.
(vi) (∀γ ∈ R) P(f0, f0 + γ) = f0 + 1

2γ.
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Proof. (i): This is clear from the definition. (ii): See [6, Theorem 6.1]. (iii): This
follows from (ii). (iv): See [6, Theorem 6.1]. (v) and (vi) follow readily from the
definition. (See also [5, Remark 4.15 and Example 7.1].)

Corollary 4.12. Let A : X ⇒ X be cyclically monotone, and let f0 and f1 be
antiderivatives of A. Then P(f0, f1) is also an antiderivative of A.

Proof. By assumption, graA ⊆ gra ∂f0 and graA ⊆ gra ∂f1. Using Proposi-
tion 4.8, we see that both Prox(f0) and Prox(f1) extend JA. Thus, by Fact 4.11(iv),
Prox(P(f0, f1)) also extends JA. Utilizing Proposition 4.8 once more, we deduce that
P(f0, f1) is an antiderivative of A.

We are now ready for our main result.
Theorem 4.13 (symmetrization). Let m : A → Γ: A �→ mA be an intrinsic

method. Set

(104) m : A → Γ: A �→ P
(
mA,m

∗
A−1

)
.

Then m is a primal-dual symmetric intrinsic method.
Proof. Fix A ∈ A. Observe that Corollaries 2.12 and Corollary 4.12 imply that

mA is an antiderivative of A; thus, m is an intrinsic method. On the one hand, the
definitions and Fact 4.11(i) yield

(105) mA−1 = P
(
mA−1 ,m∗

(A−1)−1

)
= P

(
mA−1 ,m∗

A

)
= P

(
m∗

A,mA−1

)
.

On the other hand, Fact 4.11(ii) implies

(106) m
∗
A =

(
P
(
mA,m

∗
A−1

))∗
= P

(
m∗

A,m
∗∗
A−1

)
= P

(
m∗

A,mA−1

)
.

Altogether, we obtain that mA−1 = m∗
A. Therefore, m is primal-dual symmetric.

Example 4.14. Let m : A → Γ: A �→ mA be intrinsic, and set m : A → Γ: A �→
P(mA,m

∗
A−1). Let A ∈ A be such that graA ⊂ gra Id. Then mA = 1

2‖ · ‖2.
Proof. Since A = A−1, we have m∗

A = (P(mA,m
∗
A−1))∗ = (P(mA,m

∗
A))∗ =

P(m∗
A,m

∗∗
A ) = P(m∗

A,mA) = P(mA,m
∗
A) = P(mA,m

∗
A−1) = mA, and the result

follows.
Before we present further applications of Theorem 4.13, let us discuss a non-

intrinsic variant based on the original Rockafellar function.
Theorem 4.15. Let A : X ⇒ X∗ be cyclically monotone, and let (a, a∗) ∈ graA.

Set

(107) fA,(a,a∗) := P
(
RA,(a,a∗), R

∗
A−1,(a∗,a)

)
.

Then f∗
A,(a,a∗) = fA−1,(a∗,a) := P

(
RA−1,(a∗,a), R

∗
A,(a,a∗)

)
. Moreover,

(108) A is maximal cyclically monotone ⇒ fA,(a,a∗) = RA,(a,a∗) + 1
2 〈a, a

∗〉.

Proof. The proof of f∗
A,(a,a∗) = fA−1,(a∗,a) is analogous to the one of Theo-

rem 4.13. Now assume that A is maximal cyclically monotone. Since RA,(a,a∗) is an
antiderivative of A and RA−1,(a∗,a) is an antiderivative of A−1, there exists γ ∈ R

such that

(109) R∗
A−1,(a∗,a) = RA,(a,a∗) + γ.

Conjugating (109) followed by evaluating at a∗ yields 0 = R∗
A,(a,a∗)(a

∗)−γ = 〈a, a∗〉−
RA,(a,a∗)(a) − γ = 〈a, a∗〉 − γ. Hence

(110) R∗
A−1,(a∗,a) = RA,(a,a∗) + 〈a, a∗〉,
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and this readily implies that fA,(a,a∗) = P(RA,(a,a∗), RA,(a,a∗) + 〈a, a∗〉) = RA,(a,a∗) +
1
2 〈a, a∗〉.

If the intrinsic method m in Theorem 4.13 produces “nice” antiderivatives, then so
does sometimes the symmetrized method m. Before we state the corresponding result
more precisely, we recall the required properties of the proximal midpoint average.
Since these properties were stated in finite-dimensional Hilbert spaces, we assume
from now on that

(111) X is a finite-dimensional Hilbert space.

Recall that f ∈ Γ is piecewise linear-quadratic if dom f can be written as a finite union
of polyhedral sets on which f is of the form 〈x,Ax〉 + 〈x, b〉 + γ, where A : X → X is
linear, b ∈ X, and γ ∈ R. The piecewise linear-quadratic functions on X have many
nice properties; see [21, sections 10.E and 11.D].

Fact 4.16. Let f0 ∈ Γ, and let f1 ∈ Γ be such that f0 and f∗
1 have a full domain.

Then the following hold:
(i) P(f0, f1) and P(f∗

0 , f
∗
1 ) have a full domain.

(ii) If f0 and f1 are piecewise linear-quadratic, then so is P(f0, f1).
(iii) If f0 is differentiable and f1 is strictly convex, then both P(f0, f1) and its

conjugate are differentiable and strictly convex.
Proof. (i): See [5, Theorem 6.2.(i)]. (ii): The functions f0, f1, and 1

2‖ · ‖2 are
piecewise linear-quadratic. The operations employed to create P(f0, f1) do not lead
outside the class of piecewise linear-quadratic functions; consequently, P(f0, f1) is
piecewise linear-quadratic as well. (See also [15, Corollary 5.3].) (iii): This follows
from (i) and [5, Theorems 6.2.(ii) and 6.2.(iii)].

Corollary 4.17. Let m : A → Γ: A �→ mA be an intrinsic method that produces
antiderivatives with a full domain. Set

(112) m : A → Γ: A �→ P
(
mA,m

∗
A−1

)
.

Then m is a primal-dual symmetric intrinsic method, and the following hold:
(i) (∀A ∈ A) mA and m∗

A have a full domain.
(ii) If (∀A ∈ A) mA is piecewise linear-quadratic, then (∀A ∈ A) mA and m∗

A are
both piecewise linear-quadratic.

Proof. Theorem 4.13 states that m is primal-dual symmetric. Now fix A ∈ A, set
f0 := mA, and set f1 := m∗

A−1 . Then mA = P(f0, f1) and, by Fact 4.11(i) and (ii),
m∗

A = P(f∗
0 , f

∗
1 ) = P(f∗

1 , f
∗
0 ). (i): Since f0 and f∗

1 have a full domain, Fact 4.16(i)
(applied to f0 and f1 and to f∗

1 and f∗
0 ) implies that mA and m∗

A have a full domain.
(ii): This is clear from Fact 4.16(ii).

Remark 4.18. Consider Corollary 4.17. In general, antiderivatives are neither
differentiable nor strictly convex. However, if for a particularly nice instance A ∈ A
both mA and mA−1 are differentiable, then we deduce from Fact 4.16(iii) that mA and
m∗

A are both differentiable and strictly convex. Analogous comments can be made for
other symmetrizations of (not necessarily intrinsic) methods based on the proximal
midpoint average.

We are now able to provide two examples of primal-dual symmetric intrinsic
methods with very nice properties. These are in striking contrast to Proposition 4.7.

Example 4.19. Set m : A → Γ: A �→ max(a,a∗)∈graA RA,(a,a∗) and m : A →
Γ: A �→ P(mA,m

∗
A−1). Then m is a primal-dual symmetric intrinsic method, and for

every A ∈ A both mA and m∗
A have a full domain and are piecewise linear-quadratic

antiderivatives of A and A−1, respectively.
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Proof. For every A ∈ A, mA is a convex polyhedral (hence piecewise linear-
quadratic) antiderivative of A with full domain (Example 4.4). The conclusion is now
a consequence of Corollary 4.17.

Example 4.20. Set m : A → Γ: A �→ 1
nA

∑
(a,a∗)∈graA RA,(a,a∗), where nA is the

number of points in graA, and m : A → Γ: A �→ P(mA,m
∗
A−1). Then m is a primal-

dual symmetric intrinsic method, and for every A ∈ m both mA and m∗
A have a full

domain and are piecewise linear-quadratic antiderivatives of A and A−1, respectively.
Proof. For every A ∈ A, mA is a convex polyhedral (hence piecewise linear-

quadratic) antiderivative of A with a full domain (Example 4.5). The conclusion
follows from Corollary 4.17.

In the remainder of this section, we aim to extract further nice properties enjoyed
by these two methods. We require the following results on the proximal midpoint
average.

Proposition 4.21. Let f0 ∈ Γ, let f1 ∈ Γ, and set f := P(f0, f1). Suppose that
a∗ ∈ ∂f0(a) ∩ ∂f1(a). Then

(113)
(
∀x ∈ Ndom f0(a) ∩Ndom f∗

1
(a∗)

)
x + a∗ ∈ ∂f(x + a).

Proof. Take x ∈ Ndom f0
(a) ∩Ndom f∗

1
(a∗). Proposition 4.9 yields

(114) a = Prox(f0)(2x + a + a∗).

The same result (applied to f∗
1 ) shows that a∗ = Prox(f∗

1 )(2x + a∗ + a), which is
equivalent to a∗ = (Id−Prox(f1))(2x + a + a∗), i.e., to

(115) 2x + a = Prox(f1)(2x + a + a∗).

Add (114) and (115), divide the result by 2, and recall Fact 4.11(iv) to deduce that

(116) x + a = Prox(f)
(
(x + a) + (x + a∗)

)
.

The conclusion now follows from (102).
Theorem 4.22. Let f0 ∈ Γ, let f1 ∈ Γ, and set f := P(f0, f1). Suppose that a∗ ∈

∂f0(a)∩∂f1(a), and set N := (Ndom f0(a)∩Ndom f∗
1
(a∗))∪(Ndom f1(a)∩Ndom f∗

0
(a∗)).

Then the following hold:
(i) (∀y ∈ a + N) y + a∗ − a ∈ ∂f(y).
(ii) f is differentiable at every point y ∈ a + intN , with ∇f(y) = y + a∗ − a.
Proof. Proposition 4.21 implies (i). On a+ intN , we note that y �→ y + a∗ − a is

a continuous selection of ∂f ; therefore, ∇f(y) = y + a∗ − a by [18, Proposition 2.8],
and (ii) holds.

Corollary 4.23. Let m : A → Γ: A �→ mA be an instrinsic method such that,
for every A ∈ A, ran ∂mA ⊆ conv ranA. Set

(117) m : A → Γ: A �→ P
(
mA,m

∗
A−1

)
,

take A ∈ A, take (a, a∗) ∈ graA, and set N := Nconv domA(a)∩Nconv ranA(a∗). Then
the following hold:
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(i) (∀y ∈ a + N) y + a∗ − a ∈ ∂mA(y).
(ii) (∀y ∈ a + intN) mA is differentiable at y, with ∇mA(y) = y + a∗ − a.
Proof. Set f0 := mA, and set f1 := m∗

A−1 so that mA = P(f0, f1). Proposi-
tion 3.2 implies that dom f∗

0 = domm∗
A = conv ranA and that dom f1 = domm∗

A−1 =
conv ranA−1 = conv domA. The conclusion is therefore a consequence of Theo-
rem 4.22.

Remark 4.24. In view of Examples 4.4 and 4.5, we observe that Corollary 4.23
is applicable when m is either as in Example 4.19 or as in Example 4.20.

Example 4.25. Let m and m be as in Corollary 4.23, let (a, a∗) ∈ X × X, and
suppose that A : X ⇒ X is given by graA = {(a, a∗)}. Then there exists γ ∈ R such
that mA = 1

2‖ · ‖2 + 〈·, a∗ − a〉 + γ.
Proof. Indeed, the set N in Corollary 4.23 is the entire space X, and hence

item (ii) of that result implies that ∇mA : X → X : x �→ x + a∗ − a.
We observe next that, on the real line, the subdifferential extending A is actu-

ally single-valued—i.e., it corresponds to a gradient—with slope one outside the box
(conv domA) × (conv ranA).

Corollary 4.26. Suppose that X = R, let m and m be as in Corollary 4.23,
and let A : R ⇒ R have finite graph {(a1, a

∗
1), . . . , (an, a

∗
n)}, where a1 ≤ a2 ≤ · · · ≤ an

and a∗1 ≤ a∗2 ≤ · · · ≤ a∗n. Then

(118) (∀x < a1) m
′
A(x) = x−a1+a∗1 and (∀x > an) m

′
A(x) = x−an+a∗n.

Proof. Since conv domA = [a1, an] and conv ranA = [a∗1, a
∗
n], the result follows

from Corollary 4.23(ii) (applied at (a1, a
∗
1) and at (an, a

∗
n)).

Remark 4.27. Primal-dual symmetry and the “slope one” property of the exten-
sion of the cyclically monotone operator A in Corollary 4.26 were properties deemed
desirable by Rockafellar. In view of Remark 4.24, there exist two explicit methods that
generate antiderivatives with these desirable properties. Although not the product of
an intrinsic method, the function fA,(a,a∗) of Theorem 4.15 has the same properties.

We conclude this paper by numerically illustrating an antiderivative produced by
the primal-dual symmetric intrinsic method of Example 4.19.

Example 4.28. Define A : R ⇒ R via graA := {(a, exp(a)) | a ∈ {0,± 1
2 ,±1}}.

Because graA ⊂ gra(exp), the operator A is cyclically monotone. We interpret A
as a 5-point sample of the gradient of the exponential function. Let m and m be
as in Example 4.19. Figure 1 visualizes the exponential function, the antiderivative
mA, the antiderivative m∗

A−1 , and the antiderivative mA produced by the primal-dual
symmetric intrinsic method m. As predicted by Corollary 3.20, the function mA is
nonnegative on domA. In Figure 2, we visualized the derivative of the exponential
function, its 5-point sample corresponding to A, and the maximal cyclically monotone
extension ∂mA. Note that by Theorem 3.14 the Rockafellar functions are piecewise
linear, and hence their subdifferential operators have a “staircase” graph. On the other
hand, mA is piecewise linear-quadratric, and its subdifferential operator displays the
“slope one” property guaranteed by Corollary 4.26 outside the rectangle domA ×
ranA. Both plots were generated in Scilab utilizing software packages discussed in
[15]; further details on the numerical implementation will appear elsewhere.

Acknowledgments. The authors thank Jean-Baptiste Hiriart-Urruty for mak-
ing them aware of [14] and two referees for their pertinent comments.
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Fig. 1. The graph of the exponential function (thin black curve) and the 5 points (circled) on its
graph that led to the operator A, the antiderivative mA (dashed blue curve), the antiderivative m∗

A−1

(dashed-dotted green curve), and the proximal-average-based antiderivative mA (thick red curve) are
shown. Note that mA ≥ 0 on domA, in accordance with Corollary 3.20.
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Fig. 2. The finite graph operator A is shown as points (circled) on the graph of the exponential
function (thin black curve), which is the same as its derivative. The reconstructed subdifferential
operator ∂mA (thick red curve) stays inside the rectangles (dashed line) imposed on any monotone
extension of A. Note the “slope one” property of ∂mA outside the rectangle conv domA×conv ranA,
as guaranteed by Corollary 4.26.
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[13] P. Choné and H. V. J. Le Meur, Non-convergence result for conformal approximation of
variational problems subject to a convexity constraint, Numer. Funct. Anal. Optim., 22
(2001), pp. 529–547.

[14] D. Lambert, J.-P. Crouzeix, V. H. Nguyen, and J.-J. Strodiot, Finite convex integration,
J. Convex Anal., 11 (2004), pp. 131–146.

[15] Y. Lucet, H. H. Bauschke, and M. Trienis, The piecewise linear-quadratic model for com-
putational convex analysis, Comput. Optim. Appl., to appear.

[16] G. J. Minty, On the maximal domain of a monotone function, Michigan Math. J., 8 (1961),
pp. 135–137.
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Abstract. An algorithm is presented for the computation of the L1-norm of a linear time-
invariant continuous-time system. It is based on the numerical integration of the impulse response
and is shown to be quadratically convergent.
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1. Introduction. System norms are an established tool for measuring perfor-
mance and robustness of linear systems. Most important are the H∞-, H2-, and
L1-norms. Therefore, efficient and reliable algorithms for the computation of these
norms are required. The H2-norm is easiest to compute using appropriate Lyapunov
equations. The H∞-norm can be determined by analyzing the eigenvalues of an asso-
ciated Hamiltonian matrix, and a careful implementation of corresponding algorithms
works fine in most cases. See [2, 4, 6, 7, 9, 10, 14] and the references given therein. In
contrast to these results, almost nothing is known regarding the computation of the
L1-norm. For stable single-input single-output continuous-time linear systems

(1) Σ : ẋ = Ax + Bu, y = Cx

the L1-norm is given by

(2) ||Σ|| :=

∫ ∞

0

|CeAtB| dt.

To compute an estimate of the L1-norm, it is generally advised (see, e.g., [3]) to
numerically integrate the function |CeAtB| over a finite interval, where the discrete
function values are obtained by simulating the differential equation.

A straightforward implementation of this approach faces two main problems.
First, the integrand is nondifferentiable, so that rather slow convergence of stan-
dard numerical integration algorithms is expected [12]. Second, it is not clear how
the truncation error (obtained by integrating over a finite interval only) behaves.

This paper presents an efficient and reliable algorithm to compute the L1-norm
using the above “simulate and integrate” approach. More specifically, it is shown how
the standard trapezoidal rule of numerical integration can be modified to efficiently
handle the nondifferentiable integrand. It is shown that the new numerical integration
procedure converges quadratically. Moreover, the truncation error is estimated by a
computable L2-norm using the Hölder inequality. Finally, and most importantly for

∗Received by the editors August 16, 2004; accepted for publication (in revised form) May 29,
2007; published electronically December 5, 2007.

http://www.siam.org/journals/sicon/46-6/61348.html
†Control and Automation, Department of Electrical Engineering and Computer Science, Univer-

sity of Kassel, D-34109 Kassel, Germany (linnemann@uni-kassel.de).

2052



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING THE L1-NORM 2053

quick convergence in applications, very efficient bounds for the impulse response are
derived. These bounds can be employed to integrate without any error in many time
intervals, and with relatively small errors in other intervals.

The paper is organized as follows. In section 2, a basic algorithm is described to
compute an estimate of the L1-norm for given discretization points t1, t2, . . . , tN . The
details of the algorithm and the underlying theory are developed in sections 3 to 5.
Section 6 shows how to adaptively add discretization points to the list t1, t2, . . . , tN
in order to systematically improve the norm estimate. This results in a quadratically
convergent algorithm, which computes the L1-norm to any given accuracy in finitely
many steps. Section 7 provides an estimate of the computational cost, and section 8
presents some examples. Sections 2 to 8 are devoted to the single-input single-output
case. Extensions to multivariable systems with feedthrough are presented in section 9.
The proofs are collected in Appendices A to E. Appendix F contains a closed formula
for the L1-norm of second order systems.

2. The basic algorithm. In this section, an algorithm is described to compute
the L1-norm of a linear system Σ along with a guaranteed error bound. This means
that an estimate η for the norm and an error bound ε are computed such that

(3)
∣∣‖Σ‖ − η

∣∣ ≤ ε.

The algorithm is based on the numerical integration of the absolute value of the
impulse response

g(t) := CeAtB,

defined by the matrices A ∈ R
n×n, B ∈ R

n×1, and C ∈ R
1×n in (1). It is assumed

that the discretization points t1 = 0 < t2 < t3 < · · · < tN are given and fixed. The
multivariable case and an adaptive version of the algorithm, where the discretization
grid is automatically refined and enlarged, are presented later in this paper.

The basic algorithm consists of N parts, namely, to find η1, . . . , ηN−1 and ε1, . . . ,
εN−1 such that ∣∣∣∣ ∫ ti+1

ti

|g(t)| dt− ηi

∣∣∣∣ ≤ εi,

i = 1, 2, . . . , N − 1, and to find εN such that∫ ∞

tN

|g(t)| dt ≤ εN .

The norm estimate and the associated error in (3) are then given by η =
∑N−1

i=1 ηi and

ε =
∑N

i=1 εi, respectively. The numbers ε1, . . . , εN−1 and the number εN are bounds
for the so-called approximation and truncation errors, respectively.

The intervals [ti, ti+1], i = 1, . . . , N − 1, can be divided into two categories: The
first category consists of those intervals in which it can be guaranteed that g(t) does
not change sign. In these intervals, the integral can be exactly computed:

(4) ηi =
∣∣CA−1

(
eAti+1B − eAtiB

)∣∣ ; εi = 0.

The second category consists of those intervals which involve a possible sign change in
g(t). In these intervals, the estimate ηi can be computed using numerical integration
and εi is an associated error bound.
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To numerically exclude sign changes, lower and upper bounds Gi and Gi are
computed such that

(5) Gi ≤ g(t) ≤ Gi, t ∈ [ti, ti+1].

The tighter these bounds are, the more intervals exist where the integral is computed
using (4) without approximation error. Therefore, the efficiency of the algorithm de-
pends crucially on these bounds. A large part of this paper (section 3 and Appendices
A–C) is devoted to deriving new and efficient bounds Gi and Gi.

In the second category, the standard Newton–Cotes formulas of numerical integra-
tion cannot be applied, because the associated error bounds assume differentiability
of the integrand [12]. Therefore, in section 4 of this paper, the trapezoidal rule and
the associated error bounds are modified to be applicable to the possible nondiffer-
entiable integrand |g(t)|. They require bounds on g̈(t) = CA2eAtB, which can again
be computed using the results of section 3. The resulting bounds ε1, . . . , εN−1 for the
approximation error are new and computable. They are very efficient, since they are
either zero or proportional to (ti+1 − ti)

3.

The bound εN for the truncation error is determined in section 5 by relating the
L1-norm to the L2-norm using the Hölder inequality and exponential weighting [5].

3. Bounds for the impulse response. The performance of the algorithm pre-
sented in section 2 depends crucially on bounds Gi and Gi such that (5) is satisfied.
In this section, these bounds are derived by taking ideas from [11, 13]. These ref-
erences present various bounds for the sensitivity of the matrix exponential eA+Δ,
where Δ is an unstructured perturbation matrix of the same size as A. They show
that the tightest bounds are generally provided by the diagonal form, provided the
condition number ||S|| · ||S−1|| of the eigenvector matrix of A is not too large. For an
ill-conditioned eigenvector matrix or for multiple eigenvalues, the Schur form provides
tighter bounds; see [11, 13]. The advantages of both approaches (diagonal form and
Schur form) can be combined by considering a block-diagonal ordered upper-triangular
(BDOUT) form, which can be computed using an algorithm suggested in [1]. More
specifically, a matrix A ∈ C

n×n is said to be in BDOUT form if A = D + N , where
D is diagonal with eigenvalues ordered according to decreasing real parts and N is
strictly upper triangular and block diagonal. More specifically, for stable matrices A,

D =

⎡⎢⎢⎢⎢⎣
λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λn

⎤⎥⎥⎥⎥⎦ , λi = αi + jωi, ωi ∈ R, αn ≤ αn−1 ≤ · · · ≤ α1 < 0,

N =

⎡⎢⎢⎢⎢⎣
N1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Nk

⎤⎥⎥⎥⎥⎦ , Nj =

⎡⎢⎢⎢⎢⎣
0 aj12 · · · aj1nj

...
. . .

. . .
...

...
. . . aj,nj−1,nj

0 · · · · · · 0

⎤⎥⎥⎥⎥⎦ ∈ C
nj×nj .

Note that the diagonal form, the Jordan form, and the Schur form are special cases
of the BDOUT form. Reference [1] describes an algorithm to put a matrix A into
BDOUT form by similarity transformations, where the dimensions nj of the blocks
are as small as possible while avoiding ill-conditioned similarity transformations. Note
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that similarity transformations SAS−1, SB, CS−1 do not affect g(t), so that, without
loss of generality, it will be assumed that A is in BDOUT form.

The bounds Gi and Gi refer to a “perturbation” of the time t in the matrix
exponential eAt. Compared to the perturbations Δ in [11, 13] this means that Δ has
the very special structure Δ = Aτ , where τ is a scalar perturbation. It is clear that
much stronger results can be expected under this restricted perturbation class. This
is the topic of the present section.

For a (possibly complex) matrix X, let |X| be the real matrix of the same size
as X, which is obtained by taking the absolute value componentwise. Moreover, for
a (possibly complex) matrix A and a positive scalar T , let

δ(A, T ) := max{|eAt − I|; 0 ≤ t ≤ T},

where the maximum is taken componentwise. Thus, δ(A, T ) is a matrix of the same
size as A.

3.1. Using perturbation results. Taking T := ti+1 − ti, the following bounds
are obvious:

Gi := g(ti) − |C| · δ(A, T ) · |eAtiB|; Gi := g(ti) + |C| · δ(A, T ) · |eAtiB|.

“Pulling out” C and eAtiB componentwise using | · |, rather than in terms of norms,
generally results in tighter bounds, which can be seen from very simple examples like
C = [1 1], eAtiB = [1; 1], δ(A, T ) = [1 1; 1 0]. Since g(ti) and eAtiB are available
from the simulation, it remains to derive bounds for δ(A, T ).

If A is diagonal, then δ(A, T ) is also diagonal, with ith entry given by δ(λi, T ). If
λi is real, then δ(λi, T ) can be efficiently bounded by 1 − eλiT . The following lemma
handles complex λi’s. Its proof is given in Appendix A.

Lemma 1. Let λ = α + jω, α < 0, ω �= 0, and T > 0 be given. Let η be an
arbitrary number such that 0 ≤ η ≤ 1. Then δ(λ, T ) ≤ δ̂(λ, T, η), where

δ̂(λ, T, η) :=

⎧⎪⎨⎪⎩
e|λ|T − 1 if T ≤ t1,

max{η, (1 + e2αt1 − 2eαT cos(ωT ))
1
2 } if t1 ≤ T ≤ t2,

(1 + e2αt1 − 2eαt2 cos(ωt2))
1
2 if T ≥ t2,

and

t1 :=
ln(1 + η)

|λ| , t2 :=
1

|ω|

(
π + arctan

(
α

|ω|

))
.

Given λ, T , and η, the bound δ̂(λ, T, η) is quickly computed. The best bound is

obtained by minimizing δ̂(λ, T, η) over η. This does, however, considerably increase
the computational effort, and experiments suggest (see the discussion following the
proof in Appendix A) that the extra computational effort is not worth the improve-
ment as compared to η = 0.4. Thus, in the following, the bound

δ̂(λ, T ) :=

{
1 − eλT if λ is real,

δ̂(λ, T, 0.4) otherwise

will be employed.
In the general case, when A is in BDOUT form, then δ(A, T ) is also block diagonal

and the jth block is given by δ(Dj + Nj , T ), Dj and Nj being the jth blocks on the
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diagonal of D and N , respectively. Therefore, without loss of generality, it can be
assumed that the BDOUT form has one block only, i.e., k = 1.

The following theorem is the main result of this section. The proof is given in
Appendix B.

Theorem 1. Let A ∈ C
n×n and T > 0. Assume that A = D + N , where

D =

⎡⎢⎢⎢⎢⎣
λ1 0 · · · 0

0
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

⎤⎥⎥⎥⎥⎦ , N =

⎡⎢⎢⎢⎢⎣
0 a12 · · · a1n

...
. . .

. . .
...

...
. . . an−1,n

0 · · · · · · 0

⎤⎥⎥⎥⎥⎦ ,

λi = αi + jωi, ωi ∈ R, and αn ≤ αn−1 ≤ · · · ≤ α1 < 0. Define

δ̂(D,T ) :=

⎡⎢⎢⎢⎢⎣
δ̂(λ1, T ) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 δ̂(λn, T )

⎤⎥⎥⎥⎥⎦ ,

εk(λi, T ) :=

⎧⎨⎩
eαiTT k if T ≤ −k

αi
,(

−k
αi e

)k

else (e = 2.781 . . .),

εk(D,T ) :=

⎡⎢⎢⎢⎢⎣
εk(λ1, T ) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 εk(λn, T )

⎤⎥⎥⎥⎥⎦ ,

δ̂(A, T ) := δ̂(D,T ) +

n−1∑
k=1

εk(D,T ) · |N |k
k!

.

Then

δ(A, T ) ≤ δ̂(A, T ).

3.2. Using the second derivative. Theorem 1 can also be applied to the
second derivative of g, giving the bounds

Ki := g̈(ti) − |CA2| · δ̂(A, T ) ·
∣∣eAtiB

∣∣ ,(6)

Ki := g̈(ti) + |CA2| · δ̂(A, T ) ·
∣∣eAtiB

∣∣ ,(7)

satisfying

Ki ≤ g̈(t) ≤ Ki, t ∈ [ti, ti+1].

These bounds can be employed to estimate the approximation error in numerical
integration (see the following section). Additionally, they can be used to improve the
bounds Gi and Gi for g, as will be described next.

Proposition 1. Let g be twice differentiable in a neighborhood of [a, b] and let
K, K be such that

K ≤ g̈(t) ≤ K, t ∈ [a, b].
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3

Fig. 1. Impulse response g(t) of (8) along with upper and lower bounds determined using
Theorem 1.

Then

H ≤ g(t) ≤ H, t ∈ [a, b],

where

H :=

{
min{g(a), g(b)} if K ≤ 0 or τ(K) /∈ [a, b],

γ (K) else,

H :=

{
max{g(a), g(b)} if K ≥ 0 or τ(K) /∈ [a, b],

γ (K) else,

τ(K) :=
a + b

2
− g(b) − g(a)

K (b− a)
,

γ(K) :=
g(b) − g(a)

b− a
τ(K) +

g(a)b− g(b)a

b− a
+

K

2
(τ(K) − b) (τ(K) − a).

The proof of Proposition 1 is given in Appendix C.

3.3. Example. Consider the system given by

(8) A =

⎡⎣ −2 0 0
0 −1 1
0 0 −1

⎤⎦ , B =

⎡⎣ 1
1
1

⎤⎦ , C = [1 −1 1].

Figures 1 and 2 show the bounds for g(t) and g̈(t), respectively, obtained using the
results of section 3.1 for T = 0.5. The bounds in Figure 1 are quite poor, which moti-
vates the extension presented in section 3.2. The bounds on the curvature in Figure 2
are still quite rough, but lead to excellent results when combined with Proposition 1;
see Figure 3.
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Fig. 2. Second derivative g̈(t) of the impulse response of (8) along with upper and lower bounds
determined using Theorem 1.
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Fig. 3. Impulse response g(t) of (8) along with upper and lower bounds determined using
Proposition 1 and Theorem 1.

The bounds in Figure 3 fail to be tight only near the local extremum of g(t).
This property can be observed in many examples. In our algorithm, the bounds are
merely used to detect sign changes in g(t), so that nontight bounds near extrema are
generally no problem at all. In the present example, the bounds in Figure 3 restrict
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g(t)

g(ti+1)

ti ti+1

g(ti)

|g(ti+1)|

g(ti+1)

ti ti+1

g(ti)

|g(ti+1)|

Fig. 4. Standard trapezoidal rule for the absolute value function (left) and its modification
(right). The shaded area corresponds the approximation ηi for the exact integral (striped area).

sign changes to the interval 0.5 ≤ t ≤ 1, which is the best result that can be expected.
It should be noted that explicit bounds like those in Figure 1 are not employed in the
algorithm. Figure 1 is included in this paper merely for comparison with Figure 3.

4. A modified trapezoidal rule for |g(t)|. This section is devoted to the

computation of
∫ ti+1

ti
|g(t)| dt with guaranteed error bounds. The traditional estimate

∫ ti+1

ti

|g(t)| dt ≈ 1

2
(|g(ti)| + |g(ti+1)|) · (ti+1 − ti)

of the trapezoidal rule has two deficiencies, in case g(ti) and g(ti+1) have different
signs: First, the standard error bounds [12] are not applicable, since |g(t)| is not
differentiable, in general. Second, it is intuitively clear that a much better estimate
ηi is obtained if a straight line interpolating g(ti) and g(ti + 1) instead of |g(ti)| and
|g(ti+1)| is employed; see Figure 4.

Both deficiencies are removed by the following proposition. It shows that the
modified estimate ηi obeys the same error bounds as the trapezoidal rule for differen-
tiable functions. The proof is given in Appendix D.

Proposition 2. Let g be twice differentiable in a neighborhood of [a, b] and let
K be an upper bound for the second derivative, i.e., let K satisfy |g̈(t)| ≤ K for all

t ∈ [a, b]. Then |
∫ b

a
|g(t)| dt− η| ≤ ε, where

η :=

⎧⎪⎪⎨⎪⎪⎩
|g(a) + g(b)| · b− a

2
if g(a)g(b) ≥ 0,

g(a)2 + g(b)2

|g(a) − g(b)| · b− a

2
if g(a)g(b) < 0,

ε :=
K

12
(b− a)3.

As an example, consider the impulse response of the system given by (8) in the
interval [a, b] with a = 0.5, b = 1; see Figure 3. The second derivative obeys the
bound K = 4.5694; see Figure 2. Proposition 2 leads to η = 0.0490 and ε = 0.0476
(all numbers rounded to 4 digits). The results in section 3 exclude sign changes
outside [a, b] (see Figure 3). Thus, outside [a, b], the integral can be exactly computed

using (4). Hence we have |
∫ 10

0
|g(t)| dt− 0.9425| ≤ 0.0476.
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Proposition 2 shows that the modified trapezoidal rule gives rise to quadratic
convergence. This can be seen as follows. Suppose the interval [a, b] is subdivided
into m intervals of length (b − a)/m. The corresponding enhanced estimate for the
integral obeys the error bound

ε̃ =

m∑
i=1

K

12

(
b− a

m

)3

=
1

m2
ε,

which quadratically drops with 1/m.
Even faster convergence is possible if the bounds H, H, and K for g(t) and g̈(t)

are recomputed for each subinterval. First, the new bounds Ki will generally be
smaller than K. Second, more efficient bounds Hi and Hi will in general lead to lots
of intervals where the integral can be exactly computed (see the basic algorithm in
section 2).

5. The truncation error. As described in section 2, numerical integration will
be performed over a finite interval [0, Te], Te = tN , only. The resulting truncation
error E :=

∫∞
Te

|g(t)| dt tends to zero, as Te → ∞. The following proposition presents

a computable bound for E, based on an exponential weighting idea [5]. Its proof is
given in Appendix E.

Proposition 3. Let A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, and Te > 0 be given.

Assume that A is stable and denote by α(A) the spectral abscissa of A, i.e.,

α(A) := max {Re(λi) : λi eigenvalue of A} .

Choose λ ∈ R such that α(A) < −λ < 0 and let W ∈ R
n×n be the solution of the

Lyapunov equation

(A + λ I)TW + W (A + λ I) + CTC = 0.

Then

E ≤ E := (2λ)−
1
2

n∑
i=1

W
1
2
ii · |ξi|,

where Wii is the ith entry on the diagonal of W and ξi is the ith entry of eATeB.
In most cases, the “midpoint” λ = −α(A)/2 gives the best result. Note that W

depends on the problem data only and that ξi can be obtained from a simulation of
the system.

As an example, consider the system given by (8) along with Te = 10 (see Figure 3).
Proposition 3 leads to the bound E = 5.45 · 10−4 for the truncation error.

An alternative bound for the truncation error is obtained using Corollary 5.2
in [8]. In all examples generated so far, Proposition 3 has led to superior results.

6. The adaptive algorithm. The basic algorithm in section 2 assumes the
discretization points t1, . . . , tN to be given and leads to a corresponding overall error
ε = ε1 + · · · + εN . The finer the discretization, the smaller the discretization errors
εi. The greater the endpoint Te = tN , the smaller the truncation error eN .

In this section, a tolerance δ > 0 is assumed to be given, and it is shown how to
adaptively add discretization points such that ε < δ. The approach is to follow the
following steps.
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Adaptive algorithm.
Step 1: Based on rough estimates of the settling time of g(t), initial discretization

points t1, . . . , tN are determined (see section 6.1 for details).
Step 2: An estimate η for the norm and associated errors ε1, . . . , εN are computed

using the basic algorithm sketched in section 2.
Step 3: If εN > δ/2, i.e., the endpoint Te is too small, then a new endpoint Tnew

e

is determined based on εN , δ, and the bounds in section 5 (see section 6.2 for
details). The number N is increased and new discretization points are added
to the list obtained so far. The estimate η for the norm and the errors εi are
updated as in Step 2. Step 3 is repeated until εN ≤ δ/2.

Step 4: Let t1, . . . , tN be the discretization points and let ε1, . . . , εN be the asso-
ciated errors which are obtained so far. If ε ≥ δ, then intervals [ti, ti+1] with
large error εi are chosen. In these intervals, additional discretization points
are inserted such that the new error ε is reduced below δ; see section 6.3 for
details.

The adaptive algorithm is guaranteed to terminate after a finite number of steps. It
computes an estimate η of the L1-norm and an associated error in bound ε such that
ε < δ and (3) is satisfied.

Since |ξi| drops exponentially with increasing Te, Proposition 3 shows that Step 3
of the algorithm converges exponentially. Step 4 converges quadratically by Proposi-
tion 2. Thus the overall convergence of the algorithm is quadratic.

If a tolerance δrel for the relative error is given instead of the tolerance δ on
the absolute error, then the H∞-norm can be used to be translate δrel to δ, since
||Σ||H∞ ≤ ||Σ||L1 .

6.1. The initial grid. The initial discretization points t1, . . . , tN are chosen
linearly spaced between t = 0 and t = Te. The endpoint Te is determined from the
upper bound E of the truncation error in Proposition 3. Using the rough estimate
|ξi| ≈ eα(A)Te ||B|| and solving the aim E ≈ δ/2 for Te leads to

Te = max

{
1

α(A)
,

1

α(A)
ln

(
δλ

1
2

2
1
2 ||B||ΣW

1
2
ii

)}
.

The number N of initial discretization points is fixed to N = 300. Of course, more
efficient heuristics are possible to choose N depending on δ, Te, and the curvature of
g(t).

6.2. The new discretization endpoint. In Step 3 of the adaptive algorithm,
the truncation error εN is reduced by increasing the discretization endpoint Te. An
efficient strategy for increasing Te is obtained by using Proposition 3 as follows. From

the simulation in Step 2, the true values ξi = ξoldi and the true upper bound εN = E
old

are obtained for the old endpoint T old
e . If E

old
> δ/2, then the estimate |ξi| ≈

eα(A)Te ||B|| (see section 6.1) was too conservative. A better estimate is given by

|ξi| ≈ eα(A)Teβi, where βi is obtained from
∣∣ξoldi

∣∣ = eα(A)T old
e · βi. Using this new

approximation in the formula for E (see Proposition 3) and solving the aim E ≈ δ/2
for Te leads to the following new estimate Tnew

e for the discretization endpoint:

Tnew
e = T old

e +
1

α(A)
ln

(
δ

2E
old

)
.

If Tnew
e −T old

e is smaller than a threshold κ, then Tnew
e = T old

e +κ is chosen, in order
to guarantee convergence of the algorithm.
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6.3. Refinement of the discretization. In this section, the details of the re-
finement in Step 4 of the adaptive algorithm are elaborated. Without loss of generality
it is assumed that the intervals [ti, ti+1] are sorted such that ε1 ≥ ε2 ≥ · · · ≥ εN−1.
The idea is to choose k and m and to divide each of the intervals [ti, ti+1], 1 ≤ i ≤ k,
into m subintervals of length (ti+1 − ti)/m. This leads to new estimates η̃i and to
improved error bounds ε̃i, 1 ≤ i ≤ k.

The discussion following Proposition 2 shows that ε̃i = εi/m
2. The overall inte-

gration error is then given by

ε̃ :=
1

m2

(
k∑

i=1

εi

)
+

(
N∑

i=k+1

εi

)
.

Solving the requirement ε̃ ≤ δ for m leads to a lower bound for m depending on k.
An optimal k minimizing k ·m is easily obtained by direct search.

7. Numerical issues. To estimate the computational time, let M be the total
number of intervals to be analyzed by the algorithm and note that the computational
effort is dominated by those operations which are to be performed in each of the M
intervals. For the sake of a simplified presentation it is assumed that the discretization
points ti are equally spaced, i.e., ti+1 − ti = T .

The computations in the interval [ti, ti+1] involve the determination of

(9) xi+1 = eAti+1B = eATxi, x1 = B,

g(ti) = Cxi, g̈(ti) = CA2xi, and Ki, Ki (according to (6), (7)). This requires n2 +3n
multiplications. The computation of Hi and Hi according to Proposition 1 takes 3
to 13 multiplications, depending on which case applies. The estimate ηi (including εi)
according to Proposition 2 requires 1 to 4 multiplications, whereas the computation
of the exact value according to (4) takes n multiplications.

In summary, the total number of multiplications per discretization point ti is given
by n2 + 5n, where it is assumed that the mean number of multiplications according
to Propositions 1 and 2 are both smaller than n. Considering the fact that the
computation of the impulse response requires n2 +n multiplications per discretization
point, it can be concluded that the cost for the computation of the L1-norm and for
an accurate simulation of the impulse response are in the same order of magnitude.

In addition to the above estimates, the computational time is roughly proportional
to the number M of intervals to be analyzed. In the adaptive algorithm, this number
crucially depends on the shape of the impulse response: Smooth impulse responses
with few zeros generally lead to small M . The following section contains examples
with considerable oscillations in the impulse response, which is the “worst case” for
the adaptive algorithm.

When implemented in finite arithmetic, rounding errors are inevitable. A com-
plete rounding error analysis is beyond the scope of this paper. However, mostly
standard components of numerical linear algebra and integration are employed, whose
numerical properties are well understood: The rounding error analysis in [11] can be
applied to the computation of xi, g(ti), g̈(ti), Ki, Ki, and ηi according to (4). More-

over, the estimate η in Proposition 2 and the bound δ̂ in Theorem 1 can be reliably
computed, basically because no cancellation of leading digits is involved [12]. Fi-
nally, the numerical properties of the Lyapunov equation in Proposition 3 are well
known [11]. A complete error analysis of the algorithm, including the bounds Hi and
Hi according to Proposition 1, is still to be done.
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system order n

computed norm
upper bound
lower bound
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1.0001

Fig. 5. Computed L1-norm for Example 1.

8. Examples. In this section, the adaptive algorithm of section 6 is applied to
examples. The timing results refer to a MATLAB implementation on a 1.8 GHz PC.

Example 1. Consider a system given by the transfer function

G(s) =

n∏
i=1

1

Tis + 1
, Ti = i2.

Figure 5 shows the computed L1-norm along with the computed (guaranteed) upper
and lower bounds for n = 1, 2, . . . , 50 and tolerance δ = 10−4. Figure 6 shows the
corresponding computing time. It increases quadratically with n, as expected from
section 7. In summary, the algorithm works well for this medium-sized problem.

Example 2. Consider the system given by the transfer function

G(s) =
(s− 1)n

(s + 1)n+2

for n = 1, 2, . . . . This is a challenging example, because its BDOUT form (see sec-
tion 3) consists of one block only and its impulse response oscillates heavily (see
Figure 7). For n = 25, the L1-norm ||Σ|| = 3.2469 is computed within a relative
tolerance of δrel = 10−4 in 0.3 seconds. For n = 50, the computation of the L1-norm
||Σ|| = 4.3960 takes 14 seconds.

Example 3. Consider the second order system given by the transfer function

F (s) =
1

s2 + 2ds + 1
, d = 0.1.

Its L1-norm can be efficiently computed using the closed formulas in Appendix F.
Ignoring rounding errors, the computed norm is exact. This allows us to check the
result of the adaptive algorithm in section 6 for consistency. Figure 8 shows the rela-
tive error bound computed by the adaptive algorithm for various values of the relative
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system order n
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Fig. 6. Computing time for Example 1.
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Fig. 7. Impulse response of the system in Example 2 for n = 50.

tolerance δrel. The true relative error (computed using Appendix F) shows that the
algorithm works well even for small δrel. Figure 9 shows how the computing time
behaves towards the tolerance. Thus, for moderate values of δrel (δrel ≥ 10−6, say),
the computing time stays essentially constant. For smaller values of δrel, the comput-
ing time increases. As expected from the quadratic convergence of the algorithm, a
decrease of two decades in δrel results in a increase of one decade in computing time.
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Fig. 8. Relative error in Example 3.
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Fig. 9. Computing time in Example 3.

9. Multivariable systems. In this section, extensions to multivariable systems
with feedthrough are discussed. Accordingly, let the system be given by matrices
A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, and D ∈ R
p×m. Denoting the columns of B by

Bk, the rows of C by C�, and the entries of D by D�k, the L1-norm is given by

(10) ||Σ|| := max
�=1,...,p

m∑
k=1

(∫ ∞

0

|C�e
AtBk| dt + |D�k|

)
;
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see [3]. Thus the computation of the multivariable L1-norm amounts to m · p com-
putations for single-input single-output systems. By exploiting the structure of (10),
the computational cost can, however, be reduced. For the sake of illustration, two
possible savings are sketched in the following.

The first one is due to the fact that the computational effort is dominated by the
cost of determining xi+1 via (9), which does not depend on outputs. Assuming that
identical discretization points ti are employed for all outputs in Steps 1 and 2 of the
adaptive algorithm and following the reasoning in section 7, the computational cost
per discretization point and input can be reduced from p(n2 + 5n) to n2 + 5pn.

Another saving concerns Step 4 of the adaptive algorithm in the multivariable
case. This is due to the fact that the overall L1-norm is given by the maximum over
the L1-norms for the outputs; see (10). Suppose that, in some iteration of an adap-
tive algorithm, estimates for the p single-output multiple-input norms and associated
rough error bounds are available. Suppose further that the upper bound for the �th
output is smaller than the lower bound for the qth output. Under these assumptions,
the �th output can be discarded from further consideration. This reasoning gener-
ally leads, especially in applications which widely spread single-output norms, to a
considerable reduction of outputs to be handled.

10. Conclusions. The L2- and H∞-norms can be efficiently computed by ex-
ploiting their characterizations in terms of Lyapunov equations and Hamiltonian
matrices, respectively. Similar characterizations are not available for the L1-norm.
Therefore, the numerical computation of the L1-norm is more involved. The algo-
rithm of the present paper is based on the numerical integration of the absolute value
of the impulse response. It is shown to be quadratically convergent and appears to
be the first serious algorithm for the computation of the L1-norm.

Although the paper does not include a complete rounding error analysis, it is
expected that the algorithm is numerically reliable, because it is based on standard
components from numerical linear algebra and numerical integration. The examples
with state dimension up to 50 suggest that the algorithm works well for medium-sized
problems.

It is important to note that the algorithm also determines an associated guaran-
teed error bound for the computed norm. This is an extra feature as compared to
Hamiltonian algorithms for the computation of the H∞-norm.

As far as computational speed is concerned, the L1-algorithm of this paper cannot,
however, compete with algorithms for the computation of L2- and H∞-norms.

Appendix A. Proof of Lemma 1. The first inequality of the lemma follows
from

(11) |eλt − 1| ≤ |λ|t +
1

2
|λ|2 t2 + · · · ≤ e|λ|τ − 1, t ≤ τ.

As for the second inequality, note that t1 < t2 and consider the function

f(t) := |eλt − 1|2 = e2αt + 1 − 2eαt cos(ωt).

Using (11), it follows that f(t) ≤ (e|λ|t1 − 1)2 = η2, t ≤ t1. Moreover, for t1 ≤ t ≤ t2,
we have

f(t) ≤ f2(t) := e2αt1 + 1 − 2eαt cos(ωt).

This proves the second inequality, since f2 is monotonically increasing for 0 ≤ t ≤ t2.
The third inequality follows from f2(t) ≤ f2(t2), t ≥ t2.
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Fig. 10. Function |eλt − 1| (dotted) and bounds δ̂(λ, T, η) for η = 0.4 (solid) and η = 0.8 (dashed).

The idea behind Lemma 1 can be illustrated using the function f(t), which is
monotonically increasing between 0 and its first local maximum t′2. Since t′2 is also
the global maximum, the best bound is given by

δbest(λ, T ) :=

{
|eλT − 1|, T ≤ t′2,

|eλt′2 − 1|, T ≥ t′2.

Unfortunately, there is no analytical expression available for t′2. In the proof of
Lemma 1, f(t) is replaced by f2(t) using some fixed t1 and η = e|λ|t1 − 1. Decreasing
t1 improves the bound for values of T which are slightly above t1 but deteriorates the
bound for larger values of T . Figure 10 shows the function |eλt − 1| for λ = −1 + 10j
along with the bounds for η = 0.4 and η = 0.8. It shows that the compromise η = 0.4
leads to acceptable values for all T .

Appendix B. Proof of Theorem 1. Following along the same lines as those
in [13], it can be shown that |eAt − I| ≤ δ(D,T ) +

∑n−1
k=1 (|eDt|tk)|N |k/k!. Hence the

proof follows from Lemma 1 and

max
0≤t≤T

eαttk =

⎧⎪⎪⎨⎪⎪⎩
eαTT k if T ≤ k

−α
,(

k

−αe

)k

else,

which is valid for α < 0, T > 0, and k ≤ 1.

Appendix C. Proof of Proposition 1. The linear function

(12) p(t) =
g(b) − g(a)

b− a
t +

g(a)b− g(b)a

b− a
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interpolates g(t) at t = a and t = b. Therefore, using the standard representation of
the error in polynomial interpolation [12],

(13) g(t) = p(t) +
1

2
(t− a) (t− b) g̈(ξ),

where t, ξ ∈ [a, b]. Thus h(t) := p(t) + 1
2 (t− a)(t− b)K satisfies g(t) ≥ h(t), t ∈ [a, b].

Let t ∈ [a, b]. If K ≤ 0, then h(t) ≥ p(t) and hence g(t) ≥ p(t) ≥ min{g(a), g(b)}. If
K ≥ 0, then h(t) has an unique minimum at t = τ(K). If this minimum is outside
the interval [a, b], then again g(t) ≥ min{g(a), g(b)}, t ∈ [a, b]. If τ(K) ∈ [a, b], then
g(t) ≥ h(t) ≥ h(τ(K)), t ∈ [a, b], which proves the lower bound H. The upper bound
H can be derived along the same lines.

Appendix D. Proof of Proposition 2. Consider the function p(t) defined

in (12). Straightforward computations show that
∫ b

a
|p(t)| dt = η. By (13) the inte-

gration error can be estimated as follows:∣∣∣∣∣
∫ b

a

|g(t)| dt− η

∣∣∣∣∣ ≤
∫ b

a

|g(t) − p(t)| dt ≤ −K

2

∫ b

a

(t− a)(t− b) dt.

The proof now follows from the standard Newton–Cotes formula for the trapezoidal
rule [12].

Appendix E. Proof of Proposition 3. The triangle inequality implies

E ≤
n∑

i=1

(∫ ∞

0

∣∣CeAtei
∣∣ dt) |ξi|.

The identity eAt = e(A+λI)t · e−λt and the Hölder inequality lead to
∫∞
0

∣∣CeAtei
∣∣ dt ≤

N1 · N2, where N2
1 =

∫∞
0

∣∣Ce(A+λI)tei
∣∣2 dt and N2

2 =
∫∞
0

(e−λt)2 dt = 1/(2λ). Thus
the proof follows by expressing the L2-norm N1 in terms of the Lyapunov equation;
see, e.g., [14].

Appendix F. Second order systems. In this section, closed formulas for the
L1-norm of second order systems are derived. It is shown how to efficiently compute
the L1-norm while avoiding any simulations. The formulas depend on parameters
α1, α2, λ1, λ2, α, β, λ, ω of the impulse response (see below). It should be noted that
these parameters can be easily computed from a state-space model of the system. The
general case is separated into three cases as follows.

F.1. Real disjoint eigenvalues. In this case, the impulse response reads g(t) =
α1e

λ1t + α2e
λ2t, t ≥ 0, where α1 ∈ R, α2 ∈ R, λ1 < 0, λ2 < 0, λ1 �= λ2. Straight-

forward computations show that g(t) changes its sign if and only if α1 �= 0, α2 �= 0,
α1α2 < 0, t0 > 0, where t0 := ln(−α2

α1
)/(λ1 − λ2). If these conditions are satisfied, t0

is the unique zero of g(t) and the L1-norm is given by

||g||L1 =

∣∣∣∣∫ t0

0

g(t) dt

∣∣∣∣ +

∣∣∣∣∫ ∞

t0

g(t) dt

∣∣∣∣ =

∣∣∣∣a− α1

λ1
− α2

λ2

∣∣∣∣ + |a|,

where a := α1

λ1
eλ1t0 + α2

λ2
eλ2t0 . If g(t) does not change sign, then, obviously,

||g||L1 =

∣∣∣∣∫ ∞

0

g(t) dt

∣∣∣∣ =

∣∣∣∣α1

λ1
+

α2

λ2

∣∣∣∣ .
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F.2. Repeated eigenvalues. In this case, the impulse response reads g(t) =
αeλt + βteλt. Identifying the possible zero of this function as in section F.1, leads to
the result

||g||L1 =

⎧⎪⎪⎨⎪⎪⎩
|a| +

∣∣∣∣a− α

λ
+

β

λ2

∣∣∣∣ if β �= 0,
−α

β
> 0,∣∣∣∣αλ − β

λ2

∣∣∣∣ else,

where a := 1
λe

λt0
(
α + βt0 − β

λ

)
.

F.3. Complex eigenvalues. In this case, the impulse response reads g(t) =
eλt(α sin(ωt) + β cos(ωt)), where α ∈ R, β ∈ R, λ < 0, ω > 0. Without loss of
generality it is assumed that (α, β) �= 0. The function g(t) has infinitely many zeros
t0, t1, t2, . . . in [0,∞] of the form tk = s0 + kπ/ω, where

s0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π

2ω
if α = 0,

1

ω
arctan

(
−β

α

)
if α �= 0,

−β

α
≥ 0,

1

ω

(
arctan

(
−β

α

)
+ π

)
if α �= 0,

−β

α
< 0.

Thus

||g||L1 = |N0| +
∞∑
k=1

|Nk|,

where

N0 =

∫ s0

0

g(t) dt; Nk =

∫ tk

tk−1

g(t) dt, k = 1, 2, 3, . . . .

Elementary computations show that N0 = d − βλ−αω
λ2+ω2 and |Nk| = |d|(1 + q)qk−1,

k ≥ 1, where

d =
(αλ + βω) sin(ωs0) + (βλ− αω) cos(ωs0)

λ2 + ω2
eλs0 , q = eλπ/ω,

which implies

||g||L1 =

∣∣∣∣d− βλ− αω

λ2 + ω2

∣∣∣∣ + |d|1 + q

1 − q
.
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1. Introduction. Let Ω ⊂ RN be a strictly convex bounded domain with the
boundary ∂Ω ∈ C1. The assumption of strict convexity of Ω makes the arguments
simpler in many places, and in order to concentrate on the main issue, the exact
controllability, we make this assumption here. Let SN−1 ⊂ R

N be the unit sphere
and ν be the unit vector. Denote

W = Ω × SN−1 × (0, T ), Γ = Γ(T ) = ∂Ω × SN−1 × (0, T ),

Γ+ = Γ+(T ) = {(x, t, ν) ∈ Γ : (n(x), ν) > 0},

Γ− = Γ−(T ) = {(x, t, ν) ∈ Γ : (n(x), ν) ≤ 0},

where (, ) is the scalar product and n(x) is the unit outward normal vector to ∂Ω at x.
In this paper, we consider the homogeneous transport equation:

(1.1) Mu := ut + (ν,∇u) + a(x, t, ν)u−
∫
SN−1

g(x, t, ν, μ)u(x, t, μ)dσμ = 0 in W

(e.g., [3], [5]). Here ν ∈ SN−1 is the unit vector of particle velocity, u(x, t, ν) is the
density of particle flow, a is an absorption coefficient, and g is a scattering indicatrix.

In this publication, the exact controllability theorem for the time dependent trans-
port equation (1.1) is proved for the first time. The transport equation governs diffu-
sion processes, as long as they are linear ones, e.g., propagation of neutrons (see the
classic book of Case and Zweifel [3]). A particularly interesting example is propaga-
tion of the near infrared light (originated by lasers) in a diffuse background, such as
human tissues. The latter has applications in medical optical imaging; see, e.g., the
review papers by Das, Liu, and Alfano [4] and Wang, Li, and Jiang [37]. Therefore
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the transport equation plays an important role in the diffusion theory. We refer the
reader to such classical books of physics as the books of Case and Zweifel [3], Dautray
and Lions [5], Ishimaru [16], and Landau and Lifshitz [23]. See Larsen and Keller [24]
as well as [5] concerning the diffusion approximation. We also refer the reader to the
review paper of Ukai [36] and to his book [35]. It is stated in section 1.3 of [3] that the
transport equation is actually the equation of the balance and that it is a linearized
Boltzmann equation; see, e.g., [36] for the Boltzman equation. Moreover, one can
relate the transport equation to the equations of fluid dynamics such as the Euler and
the Navier–Stokes equations through an asymptotic expansion of a solution of the
Boltzmann equation; e.g., see pp. 42–44 in [36]. As for related physical backgrounds,
see [23], especially, p. 89, and [24]. Thus the exact controllability for the transport
equation is as important as it is for the equation of parabolic type.

There are many publications on the exact controllability, and the authors are
unable to review all of them here. The following is an incomplete list of publications,
and the reader can consult the references therein. The papers of Russell [32] and
Seidman [33] are early works. Lions has introduced the duality method in [27], [28],
[29] (also, see Komornik [22]). We can further list early works: for hyperbolic equa-
tions, see, e.g., Bardos, Lebeau, and Rauch [2], Lasiecka and Triggiani [25], Triggiani
[34], and, e.g., Zuazua [38] for a plate equation. Exact controllability results are ob-
tained for a variety of partial differential equations; see e.g., Eller and Masters [8] for
Maxwell’s equations, and Fursikov [9], Fursikov and Imanuvilov [10], Imanuvilov [14],
and Imanuvilov and Yamamoto [15] for parabolic equations.

Our proof of the exact controllability consists of two conventional stages. On the
first stage the so-called continuous observability estimate is established, i.e., the Lip-
schitz stability estimate for the time dependent transport equation with the lateral
boundary data on the lateral side of the time cylinder (Theorem 1.2). This estimate
is an important ingredient of the duality method, which is applied on the second
stage. The continuous observability estimate is proved using the method of Carleman
estimates. Note that, unlike other techniques, this method enables us to prove the
Lipschitz stability for a “transport inequality” (Theorem 1.3). This is because Carle-
man estimates enable one to “suppress” low order terms which depend on t (i.e., the
third and fourth terms in Mu given by (1.1)) by the principal part of the operator.
Although our proof is based on the two conventional stages, the execution of each
stage needs independent considerations.

First step. By integration by parts and the method of characteristics, one can
prove the continuous observability estimate in the case where a(x, t, ν) and g(x, t, ν, μ)
in (1.1) are independent of t and the proof is not difficult. Our Carleman estimate can
treat also the t-dependent case equally. In many cases, such as nuclear fission, since
the physical properties are changed in t, it is natural to assume that the coefficients
in (1.1) should depend on t. See [35], [36] for the related physical backgrounds.
Moreover, our method by a Carleman estimate can yield the continuous observability
estimate for the transport inequality, to which other methods in [2], [28], [29], etc.,
are not applicable. The continuous observability estimate for the transport inequality
should be discussed, for example, if the nonhomogeneous term cannot be determined
precisely, but we have to estimate the energy.

Second step. Naturally we have to consider the weak solution to the nonhomo-
geneous boundary value problem of (1.1). However, there are very few papers in
English treating this subject. Note that in Douglis [6] and Ukai [36], the homoge-
neous boundary value problem of (1.1) is mainly discussed. Bardos [1, pp. 205–208]
treats a nonhomogeneous boundary value problem, and the result in [1] may be able



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT CONTROLLABILITY FOR TRANSPORT EQUATION 2073

to shorten our argument at this step after some modification in the cylindrical do-
main Ω × (0, T ) in (x, t). However, here we define the weak solution in a way that is
different and more compatible with the duality argument, which is essential for the
exact controllability.

The Lipschitz stability estimate for the transport equation was recently estab-
lished by Klibanov and Pamyatnykh [20]. However, it is necessary to modify the
proof of [20] here for the following three reasons. The first and the most important is
linked with the weighted scalar product (1.9) in Theorem 1.2 with the weight function
| cos(n, ν)|. Weight functions were not considered in [20]. The delicacy here is due to
the fact that this weight function is vanishing at a set S ⊂ Γ−. It is well known, how-
ever, that the presence of zeros of weight functions in Hilbert spaces usually causes
complications in the analysis. Because of this, we need to carefully evaluate the
boundary terms in the pointwise Carleman estimate for the principal part of the dif-
ferential operator of the transport equation, which was not done in [20]. The second
reason is that the result of [20] was established for solutions u ∈ C1, whereas we need
to work with weak solutions u ∈ L2 of the transport equation. The latter causes
significant additional complications; see Remark 2.1. Third, the Lipschitz stability
estimate was proved in [20] in the entire time cylinder, and this estimate is similar
to estimate (1.10) in our case. However, in addition to (1.10), we need to obtain an
estimate at the top {t = T} of the time cylinder; see (1.11).

The method of Carleman estimates was applied for the proof of the continuous
observability estimate by Klibanov and Malinsky [18]. They have done this for the
case of hyperbolic equations with the constant principal part and low order terms,
wtt = Δw + lot, where “lot” stands for lower order terms. In Kazemi and Klibanov
[17], the idea of [18] was applied to a more general case of hyperbolic inequalities,
|wtt − Δw| ≤ A(|∇w| + |wt| + |w| + |f(x, t)|), A = const. > 0, and the case when
one boundary condition is given only at a part of the boundary was considered. One
of the auxiliary results of the book of Klibanov and Timonov [19] is an extension
of the method of [17] and [18] to the case of a more general hyperbolic inequality,
|a(x)wtt − Δw| ≤ A(|∇w| + |wt| + |w| + |f(x, t)|), with some restrictions imposed on
the positive function a(x). The method of [17] and [18] enabled one to establish the
exact controllability for the hyperbolic equations with lower order terms; see, e.g.,
the review paper of Gulliver et al. [11]. The previously applied method of multipliers
was working (at least at the time of [17] and [18]) only under the assumption lot = 0;
see Ho [12] for the first publication of the method of multipliers. Currently Carleman
estimates are widely used in control theory for proofs of continuous observability
results; see, e.g., [9], [10], [11], [14], and [15]. In this paper we modify the idea of [17],
[18], [19] for the case of the transport equation.

In order to take into account the nonzero boundary condition, we derive a point-
wise Carleman estimate, as was originated in the book of Lavrent’ev, Romanov, and
Shishatskǐi [26]. Another popular method of deriving of Carleman estimates is that
of Hörmander [13]. This method is well suited for the so-called unique continuation
theorems, which establishes that certain zero boundary conditions correspond only to
the zero solution. However, it cannot be applied in our case. The reason is that one
of the requirements of the method of [13] is the zero boundary condition, while our
goal is to estimate the solution via a nonzero boundary condition.

All functions considered in this paper are real valued. Thus, Hilbert spaces here
contain only real valued functions. Let z1, z2 ∈ Ω be two points such that

|z1 − z2| = max
x,y∈Ω

|x− y| .
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Without loss of generality we assume that 0 = (z1 + z2)/2. Clearly, 0 ∈ Ω. Denote

R = max
x∈Ω

|x| .

For a function g(x) with x ∈ R
N , denote gi = ∂g/∂xi whenever the differentiation is

appropriate.
In (1.1), we assume that

(1.2) a ∈ C1(W ), g ∈ C1(W × SN−1).

It seems that the weaker assumptions a ∈ C(W ), g ∈ C(W ×SN−1) may be sufficient.
Still, we prefer to use (for brevity) a little bit stronger assumption (1.2) to introduce
the definition of the weak solution, which in turn relies on Theorem 2.1. In this paper
we consider the following problem.

Exact controllability problem. Consider the zero initial condition

(1.3) u |t=0= 0

and the boundary condition

(1.4) u |Γ−= p(x, t, ν),

where p ∈ L2
cos(Γ−) (see below for the definition of the Hilbert space L2

cos(Γ−)). We
assume that the weak solution u ∈ C([0, T ];L2(Ω×SN−1)) of the problem (1.1)–(1.4)
can be defined (Theorem 2.2). Let uT (x, ν) ∈ L2(Ω×SN−1) be an arbitrary function.
Find a boundary condition (i.e., boundary control) p = p(uT ) ∈ L2

cos(Γ−) such that
the resulting function u(x, t, ν) is such that

(1.5) u(x, T, ν) = uT (x, ν).

Here we can interpret T as the “steering time.” Our main result is the following
theorem.

Theorem 1.1. Let Ω be a strictly convex bounded domain with ∂Ω ∈ C1 and
T > 2R. Then for any function uT (x, ν) ∈ L2(Ω × SN−1) there exists a control
function p = p(uT ) ∈ L2

cos(Γ−) such that if the function u is the weak solution of the
initial boundary value problem (1.1)–(1.4), then (1.5) holds.

In this paper, without loss of generality, we can assume that the initial value of the
controlled system (1.1) is zero. In fact, let Theorem 1.1 be proved and let u = u(x, t, ν)
be the weak solution to (1.1), (1.4) and u|t=0 = u0 for a u0 ∈ L2(Ω×Sn−1). For given
u0 and uT , we have to find a control function p ∈ L2

cos(Γ−) such that the function u
satisfies (1.5). Let v be the weak solution to Mv = 0 in W , v|t=0 = u0, and v|Γ− = 0.
Setting w = u − v, we have Mw = 0 in W , w|t=0 = 0 and w|Γ− = p. Therefore by
Theorem 1.1 in the case of the zero initial condition, which is assumed to be solved,
for w we can find p ∈ L2

cos(Γ−) such that w(x, T, ν) = uT (x, ν) − v(x, T, ν). This
control p steers u from u0 at t = 0 to uT at t = T .

Consider the weak solution of the adjoint transport equation

M∗v := vt + (ν,∇v) − a(x, t, ν)v +

∫
SN−1

g(x, t, μ, ν)v(x, t, μ)dσμ = 0 in W,(1.6)

v(x, T, ν) = v0(x, ν) ∈ L2(Ω × SN−1),(1.7)

v |Γ+= 0.(1.8)
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We introduce the weighted scalar product as

(1.9) 〈p, q〉 =

∫
Γ−

p(x, t, ν)q(x, t, ν) · | cos(n, ν)|dSxdtdσν .

By Lemma 2.1 (below), (1.9) is a scalar product which generates a Hilbert space,
which we denote by L2

cos(Γ−). Note that

L2(Γ−) ⊂ L2
cos(Γ−) and ‖p‖L2

cos(Γ−) ≤ ‖p‖L2(Γ−) ∀p ∈ L2(Γ−);

that is, the L2
cos(Γ−)− norm is weaker than the L2(Γ−)-norm. The necessity of the

introduction of the weighted space L2
cos(Γ−) can be seen from (3.13) (section 3). In

order to prove Theorem 1.1, we combine the duality argument with the following
continuous observability result.

Theorem 1.2. Assume that Ω is a strictly convex bounded domain with ∂Ω ∈ C1

and T > 2R. Let the function v be the weak solution of the adjoint problem (1.6)–(1.8)
in the sense of Definition 2.1. Let v |Γ− := (Kv0)(x, t, ν) ∈ L2

cos(Γ−) be the generalized
trace of the function v on Γ− (Definition 3.1). Then the following Lipschitz stability
estimates are valid:

‖v‖L2(W ) ≤ C‖Kv0‖L2
cos(Γ−),(1.10)

‖v0‖L2(Ω×Sn−1) ≤ C‖Kv0‖L2
cos(Γ−),(1.11)

where the positive constant C = C(Ω, T, ‖a‖C(W ), ‖g‖C(W×SN−1)) depends only on
numbers R, T and norms ‖a‖C(W ) and ‖g‖C(W×SN−1).

Theorem 1.2 is derived from the following theorem, which asserts a continuous
observability estimate for the corresponding transport inequality.

Theorem 1.3. Assume that Ω is a strictly convex bounded domain with ∂Ω ∈
C1 and T > 2R. Suppose that the function v ∈ C1

tνgrad(W ) satisfies the “transport
inequality”

(1.12) |vt + (ν,∇v)| ≤ M

[
|v| +

∫
SN−1

|v(x, t, μ)|dσμ + |f(x, t, ν)|
]

in W,

where M is a positive constant and the function f ∈ L2(W ). Then

‖v‖L2(W ) ≤ M1[‖v |Γ ‖L2
cos(Γ),+‖f‖L2(W )],(1.13)

‖v(x, t0, ν)‖L2(Ω×SN−1) ≤ M1[‖v |Γ ‖L2
cos(Γ),+‖f‖L2(W )] ∀t0 ∈ [0, T ],(1.14)

where the positive constant M1 = M1(Ω, T,M) depends only on numbers Ω, T, and
M .

The space C1
tνgrad(W ) is defined in subsection 2.2, and we note that C1

tνgrad(W ) 
⊂
C1(W ). For v ∈ C1(W ), the proof of the Carleman estimate can also be done in a
traditional way with the commutator, but in our case we need some device (see (4.6)).
Although the smoothness condition v ∈ C1

tνgrad(W ) of this theorem can be relaxed,
to save space we are not doing this here, because Theorem 1.2 is more important for
our goal. In this paper C = C(Ω, T, ‖a‖C(W ), ‖g‖C(W×SN−1)) and M1 = M1(Ω, T,M)
denote different positive constants depending on parameters listed. The conditions
of Theorem 1.1 are assumed to be satisfied below. In section 2 we introduce the
weak solutions of the problems (1.1)–(1.4) and (1.6)–(1.8). In section 3 we prove
Theorem 1.1, assuming that Theorem 1.2 is valid. In section 4 we prove Theorems 1.2
and 1.3.
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2. Strong and weak solutions.

2.1. The space L2
cos(Γ−) of controls. In this subsection we prove the follow-

ing lemma.
Lemma 2.1. L2

cos(Γ−) is a Hilbert space.
Proof. First, we have to prove that 〈p, p〉 = 0 ⇔ p = 0. We set Φ := {(x, ν) ∈

∂Ω × SN−1 : cos(n, ν) = 0}. It is sufficient to prove that

meas (Φ) = 0.

Since the boundary ∂Ω ∈ C1 class, we can locally represent ∂Ω by {x1 = 0} via
choosing suitable coordinates. Therefore, without loss of generality, we can assume
that ∂Ω = ∪J

j=1∂jΩ and in each Γj , we set n(x) = (1, 0, . . . , 0)
T

by changing variables.
Here the superscript “T” means the transpose. Then cos(n(x), ν) = 0 is equivalent to

ν = (0, ν2, . . . , νN )T with
∑N

j=2 ν
2
j = 1. Hence Φ∩ (∂jΩ×SN−1) ⊂ ∂jΩ×SN−2; that

is, Φ∩(∂jΩ×SN−1) is a (2N−3)-dimensional hypersurface in the (2N−2)-dimensional
space. Hence meas(Φ∩(∂jΩ×SN−1)) = 0. Therefore meas(Φ∩(∪J

j=1∂jΩ×SN−1)) =
meas(Φ) = 0. Thus we see that (1.9) defines a scalar product.

Second, we prove the completeness of L2
cos(Γ−). Let {pk}∞k=1 ⊂ L2

cos(Γ−) be a
Cauchy sequence in the norm of L2

cos(Γ−); that is, limk,�→∞ ‖pk − p�‖L2
cos(Γ−) = 0.

Then {pk| cos(n, ν)| 12 }∞k=1 is a Cauchy sequence in L2(Γ−). Hence, there exists a
function p̃ ∈ L2(Γ−) such that

lim
k→∞

∫
Γ−

|p̃− pk| cos(n, ν)| 12 |2dSxdtdσν = 0.

Denote

q =
p̃

| cos(n, ν)| 12
.

Hence, q ∈ L2
cos(Γ−). Therefore,

lim
k→∞

∫
Γ−

∣∣∣∣ p̃

| cos(n, ν)| 12
− pk

∣∣∣∣2 | cos(n, ν)|dSxdtdν = lim
k→∞

‖q − pk‖2
L2

cos(Γ−) = 0,

which proves the completeness of L2
cos(Γ−).

2.2. Strong solution. Consider the case when (1.3) is replaced with

(2.1) u |t=0= f(x, ν).

For the exact controllability, we need a weak solution. However, there are few
publications where weak solutions with nonzero boundary values in L2

cos(Γ−) are
introduced. For complete accounts, see Chapter 2 in Ukai [35], which is a monograph
in Japanese, and Bardos [1], whose argument can be modified in our case. As for
the weak solution with the homogenous boundary data, there are rich references, for
example, Bardos [1], Douglis [6], and Ukai [36]. In principle, the L2-solution of the
transport equation with nonhomogeneous boundary value in L2

cos(Γ−) can be defined
by the transposition method (see Chapter 3 in Lions and Magenes [30] or pp. 46–50 in
Lions [29]). However, it is convenient for our goal—the exact controllability to define
the weak solution via density arguments—and we give self-contained descriptions for
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completeness. For this, we use a result of Prilepko and Ivankov [31] about strong
solutions.

We first assume that

f ∈ C∞(Ω × SN−1) and f(x, ν) ∈ C∞
0 (Ω) ∀ν ∈ SN−1,(2.2)

p ∈ C∞(Γ−), p(x, t, ν) := px,ν(t) ∈ C∞
0 (0, T ) for every appropriate pair (x, ν).

(2.3)

Following [31], we introduce the functional space

C1
tνgrad(W ) =

{
u(x, t, ν) : u, ut,

d

ds
u(x + sν, t, ν) |s=0 ∈ C(W ) ∀ν ∈ SN−1

}
,

‖u‖C1
tνgrad(W ) = ‖u‖C(W ) + ‖ut‖C(W ) +

∥∥∥∥ d

ds
u(x + sν, t, ν) |s=0

∥∥∥∥
C(W )

.

Rewrite (1.1) in a different form:

ut +
d

ds
u(x + sν, t, ν) |s=0 + a(x, t, ν)u(2.4)

−
∫
SN−1

g(x, t, ν, μ)u(x, t, μ)dσμ = 0 in W.

Equations (1.1) and (2.4) are not equivalent. If, for example, the derivatives ut, ui ∈
C(W ) and the function u satisfies (2.4), then this function also satisfies (1.1). However,
if a function u ∈ C1

tνgrad(W ) satisfies (2.4), but not all of its derivatives ui exist, then
this function might not be a solution of (1.1). Therefore (2.4) is more general than
(1.1). Theorem 2.1 is a simplified version of Theorem 1.1 of [31].

Theorem 2.1. Let Ω ⊂ R
N be a strictly convex bounded domain with ∂Ω ∈ C1.

Assume that conditions (1.2), (2.2), and (2.3) hold. Then there exists unique solution
u ∈ C1

tνgrad(W ) of the problem (1.4), (2.1), (2.4).
Remark 2.1. In the view of our goal, a significant complication linked with

Theorem 2.1 is an insufficient smoothness guaranteed by this theorem. In other
words, we cannot work directly with the “individual” derivatives ui, because their
existence is not guaranteed. Rather, we need to work with the directional derivatives
du(x + sν, t, ν)/ds |s=0 . Furthermore, we cannot even claim that such a directional
derivative equals (ν,∇u). The key idea, which helps to overcome these complications,
is the introduction of an orthogonal matrix Aν0

in (2.6).
In this section we will relax smoothness conditions (2.2), (2.3). We need these

minimal conditions in order to introduce the weak solution. On the other hand, we
need the weak solution for the duality argument.

2.3. Weak solution.
Lemma 2.2 (energy conservation). Suppose that conditions (1.2), (2.2), and (2.3)

are fulfilled. Let the function u ∈ C1
tνgrad(W ) be a solution of the problem (1.4), (2.1),

(2.4). Denote

E(u, t) =

∫
Ω

∫
SN−1

|u(x, t, ν|2dσνdx.

Then there exists a positive constant C = C(Ω, T, ‖a‖C(W ), ‖g‖C(W×SN−1)) such that
for any two numbers t1, t2 ∈ [0, T ]

(2.5) E(u, t2) ≤ C[E(u, t1) + ‖p‖2
L2

cos(Γ−)].
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Proof. Fix an arbitrary vector ν0 ∈ SN−1. Let Aν0
= (aijν0

)Ni,j=1 be an orthogonal
matrix such that

(2.6) Aν0
ν0 = ν̃0 := (1, 0, 0, . . . , 0)T .

Let

(2.7) y = Aν0
x.

Denote Aν0
Ω = {y = Ax : x ∈ Ω}. Also, for any point y = Aν0

x ∈ ∂(Aν0
Ω) (hence,

x ∈ ∂Ω) let ñ(y) = Aν0n(x) be the unit outward normal vector at the point y. Denote

ũ(y, t, η) = u
(
A−1

ν0
y, t, A−1

ν0
η
)

∀η ∈ SN−1,(2.8)

ã(y, t, ν̃0) = a
(
A−1

ν0
y, t, A−1

ν0
ν̃0

)
,(2.9)

g̃(y, t, ν̃0, η) = g
(
A−1

ν0
y, t, A−1

ν0
ν̃0, A

−1
ν0

η
)

∀η ∈ SN−1.(2.10)

In the new coordinates, noting that ũ(y, t, ν̃0) = u(x, t, ν0) and

u(x + sν0, t, ν0) = u(A−1
ν0

(y + sν̃0), t, ν0) = ũ(y + sν̃0, t, ν̃0)

= ũ(y1 + s, y2, . . . , yn, t, ν̃0),

we have

(2.11)
d

ds
u(x + sν0, t, ν0) |s=0= ũy1

(y, t, ν̃0).

Hence, setting ν = ν0 in (1.1), we obtain

(2.12) (ũt + ũy1 + ãũ)(y, t, ν̃0) −
∫
SN−1

g̃(y, t, ν̃0, η)ũ(y, t, η)dση = 0.

Since u ∈ C1
tνgrad(W ), we have by (2.11)

(2.13) ũ(y, t, ν̃0), ũt(y, t, ν̃0), ũy1(y, t, ν̃0) ∈ C(Aν0Ω × [0, T ]).

Actually, the goal of the transformation (2.7)–(2.10) was to obtain (2.12) with
ũy1

(y, t, ν̃0) ∈ C(Aν0
Ω × [0, T ]).

Multiply both sides of (2.12) by the function ũ(y, t, ν̃0). We obtain for this vector
ν̃0

[(ũ2)t+(ũ2)y1 ](y, τ , ν0) = −2ãũ2(y, τ , ν0) + 2ũ(y, τ , ν0) ·
∫
SN−1

g̃(y, τ , ν̃0, η)ũ(y, τ , η)dση,

where τ ∈ (0, T ) . Integrating this equality with respect to (y, τ) ∈ Aν0
Ω × (t1, t),

t ∈ (t1, T ), we obtain∫
Aν0Ω

ũ2(y, t, ν̃0)dy +

∫ t

t1

∫
∂(Aν0Ω)

cos(ñ, y1)ũ
2(y, τ , ν̃0)dSydτ

=

∫
Aν0

Ω

ũ2(y, t1, ν̃0)dy − 2

∫ t

t1

∫
Aν0Ω

ãũ2(y, τ , ν̃0)dydτ

+ 2

∫ t

t1

∫
Aν0Ω

ũ(y, τ , ν̃0)

[∫
SN−1

g̃(y, τ , ν̃0, η)ũ(y, τ , η)dση

]
dydτ .
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Changing variables “backwards,” x = A−1
ν0

y, and noting that by (2.6) cos (ñ(y), y1) =
cos (n(x), ν0) , we obtain∫

Ω

u2(x, t, ν0)dx +

∫ t

t1

∫
∂Ω

cos(n, ν0)u
2(x, τ , ν0)dSxdτ(2.14)

=

∫
Ω

u2(x, t1, ν0)dx− 2

∫ t

t1

∫
Ω

(au2)(x, τ , ν0)dxdτ

+ 2

∫ t

t1

∫
Ω

u(x, τ , ν0)

[∫
SN−1

g(x, τ , ν0, η)u(x, τ , η)dση

]
dxdτ.

Let

Γ(t1, t) = Γ ∩ {(x, t, ν) : t ∈ (t1, t)},

Γ−(t1, t) = Γ− ∩ Γ(t1, t) and Γ+(t1, t) = Γ+ ∩ Γ(t1, t).

Recalling that ν0 ∈ SN−1 is an arbitrary vector, we can now integrate (2.14) with
respect to ν0 ∈ SN−1. We obtain∫

SN−1

∫
Ω

u2(x, t, ν)dxdσν +

∫
Γ(t1,t)

cos(n(x), ν)u2(x, τ , ν)dSxdσνdτ

=

∫
SN−1

∫
Ω

u2(x, t1, ν)dxdσν − 2

∫ t

t1

∫
SN−1

∫
Ω

(au2) (x, τ , ν) dxdσνdτ(2.15)

+ 2

∫ t

t1

∫
SN−1

∫
Ω

u(x, τ , ν)

[∫
SN−1

g(x, τ , ν, η)u(x, τ , η)dση

]
dxdσνdτ.

Since Γ(t1, t) = Γ−(t1, t) ∪ Γ+(t1, t), Γ−(t1, t) ⊂ Γ−(T ), and cos(n(x), ν) > 0 on
Γ+(t1, t), we have∫

Γ(t1,t)

cos(n, ν)u2(x, τ , ν)dSxdσνdτ ≥
∫

Γ−(t1,t)

cos(n, ν)u2(x, τ , ν)dSxdσνdτ

≥
∫

Γ−(T )

cos(n, ν)u2(x, τ , ν)dSxdσνdτ = −
∫

Γ−(T )

| cos(n, ν)|u2(x, τ , ν)dSxdσνdτ

= −‖u‖2
L2

cos(Γ−) = −‖p‖2
L2

cos(Γ−).

Also, ∣∣∣∣∫ t

t1

∫
SN−1

∫
Ω

u(x, τ , ν)

[∫
SN−1

g(x, τ , ν, η)u(x, t, η)dση

]
dxdσνdτ

∣∣∣∣
≤ C

∣∣∣∣∫ t

t1

∫
SN−1

∫
Ω

|u(x, τ , ν)|
(∫

SN−1

|u(x, t, η)|dση

)
dxdσνdτ

∣∣∣∣
= C

∫ t

t1

∫
Ω

(∫
SN−1

|u(x, τ , ν)|dσν ·
∫
SN−1

|u(x, τ , μ)|dσμ

)
dxdτ

≤ C

∫ t

t1

∫
Ω

∫
SN−1

u2(x, τ , ν)dσνdxdτ.
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At the last inequality, we used the Cauchy–Schwarz inequality. Hence we obtain from
(2.15)

E(u, t) ≤ E(u, t1) + ‖p‖2
L2

cos(Γ−) + C

∫ t

t1

E(u, τ)dτ.

Hence the Gronwall inequality leads to (2.5).

Theorem 2.2. Let Ω ⊂ R
N be a strictly convex bounded domain with ∂Ω ∈ C1

and let conditions (1.2) hold. Let f ∈ L2(Ω×SN−1) and p ∈ L2
cos(Γ−) be two arbitrary

functions. Consider two functional sequences {fk}∞k=1, {pk}∞k=1 satisfying conditions
(2.2) and (2.3) and such that

lim
k→∞

‖fk − f‖L2(Ω×SN−1) = lim
k→∞

∥∥∥pk − p
√

|cos (n, ν)|
∥∥∥
L2(Γ−)

= 0.

Let uk ∈ C1
tνgrad

(
W
)

be the solution of the boundary value problem (1.4), (2.1),
(2.4) with the initial condition fk and the boundary condition pk. Then there exists a
function u ∈ C([0, T ];L2(Ω×SN−1)) such that limk→∞ ‖uk − u‖C([0,T ];L2(Ω×SN−1)) =

0. Inequality (2.5) holds for this function u, and

(2.16) ‖u‖C([0,T ];L2(Ω×SN−1)) ≤ C
(
‖f‖L2(Ω×SN−1) + ‖p‖L2

cos(Γ−)

)
.

For any pair of functions f ∈ L2
(
Ω × Sn−1

)
and p ∈ L2

cos (Γ−) the resulting function
u is independent of functional sequences {fk}∞k=1 and {pk}∞k=1 .

Proof. The existence of a sequence {pk}∞k=1 satisfying conditions (2.3) and such

that limk→∞‖pk − p
√

cos(n, ν)‖L2(Γ−) = 0 follows from the fact that the function

p
√
| cos(n, ν)| ∈ L2(Γ−) and the set of functions satisfying (2.3) is dense in L2(Γ−).

Also, since the L2
cos(Γ−)-norm is weaker than the L2(Γ−)-norm and {pk}∞k=1 is a

Cauchy sequence in L2(Γ−), it follows that the sequence {pk}∞k=1 ⊂ L2
cos(Γ−) and it

is a Cauchy sequence in L2
cos(Γ−). Since functions uk ∈ C1

tνgrad

(
W
)
, it follows that

uk ∈ C([0, T ];L2(Ω × SN−1)). Thus, setting t1 = 0, u = uk − u�, f = fk − f�, and
p = pk − p� in (2.5) and taking the maximum in t, we see that {uk (x, t, ν)}∞k=1 is a
Cauchy sequence in the space C([0, T ];L2(Ω× SN−1)). Hence we define the function
u (x, t, ν) as u := limk → ∞uk in C([0, T ];L2(Ω × SN−1)). Since (2.5) holds for
functions uk, it also holds for the function u, which implies (2.16). The independence
of the function u on specific sequences {fk}∞k=1 and {pk}∞k=1 follows from (2.5).

Definition 2.1. Let Ω ⊂ R
N be a strictly convex bounded domain with ∂Ω ∈ C1

and let functions a and g satisfy conditions (1.2). Let the function u ∈ C([0, T ];L2(Ω×
SN−1)) be the one obtained as the limit described in Theorem 2.2. Then we call
this function u the weak solution of the initial boundary value problem (1.1), (1.4),
(2.1) with the initial condition f ∈ L2

(
Ω × SN−1

)
and the boundary condition p ∈

L2
cos (Γ−) .

By (2.16) the limit u is independent of choices of sequences fk, pk. Thus the
following theorem follows from Theorem 2.2 and Definition 2.1.

Theorem 2.3. Let Ω ⊂ R
N be a strictly convex bounded domain with ∂Ω ∈ C1

and let conditions (1.2) hold. Then for each pair of functions f ∈ L2
(
Ω × Sn−1

)
and

p ∈ L2
cos (Γ−) the weak solution u ∈ C([0, T ];L2(Ω × SN−1)) of the problem (1.1),

(1.4), (2.1) exists and is unique, and (2.16) holds.
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Consider now the adjoint problem (1.6)–(1.8). Similarly to (2.4) and following
the same considerations, we rewrite (1.6) as
(2.17)

vt +
d

ds
v (x + sν, t, ν) |s=0 −a(x, t, ν)v +

∫
SN−1

g(x, t, μ, ν)v(x, t, μ)dσμ = 0 in W.

The following result follows immediately from Lemma 2.2 and Theorems 2.1–2.3 via
the change of variables t ⇔ τ = T − t.

Theorem 2.4. Let Ω ⊂ R
N be a strictly convex bounded domain with ∂Ω ∈ C1

and let conditions (1.2) hold. Suppose that in (1.7) the function v0 ∈ C∞ (
Ω × SN−1

)
and v0(x, ν) ∈ C∞

0 (Ω) for all ν ∈ SN−1. Let the function v ∈ C1
tνgrad

(
W
)

be a
solution of the problem (1.7), (1.8), (2.17) (Theorem 2.1). Denote

E(v, t) =

∫
Ω

∫
SN−1

|v(x, t, ν|2 dνdx.

Then there exists a positive constant C = C
(
Ω, T, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
such

that for any two numbers t1, t2 ∈ [0, T ]

(2.18) E(v, t2) ≤ CE(v, t1).

Thus, the solution v ∈ C1
tνgrad

(
W
)

of the problem (1.7), (1.8), (2.17) both exists

and is unique. Next, assume that v0 ∈ L2
(
Ω × SN−1

)
is an arbitrary function. Let

{v0k}∞k=1 ⊂ C∞ (
Ω × SN−1

)
be a sequence such that v0k(x, ν) ∈ C∞

0 (Ω) for all ν ∈
SN−1 and limk→∞ ‖v0k − v0‖L2(Ω×SN−1) = 0. Let {vk}∞k=1 ∈ C1

tνgrad

(
W
)

be the se-

quence of solutions of the initial boundary value problem (1.7), (1.8), (2.17) with initial
conditions vk |t=0= v0k. Then there exists a function v = v (x, t, ν) ∈ C([0, T ];L2(Ω×
SN−1)) such that limk → ∞‖vk − v‖C([0,T ];L2(Ω×SN−1)) = 0. For any given func-

tion v0 ∈ L2
(
Ω × SN−1

)
the function v is independent of the functional sequence

{v0k}∞k=1 . Furthermore,

(2.19) ‖v‖C([0,T ];L2(Ω×SN−1)) ≤ C‖v0‖L2(Ω×SN−1).

Definition 2.2. We call the function v ∈ C([0, T ];L2(Ω × SN−1)) constructed
in Theorem 2.4 the “weak solution” of the adjoint problem (1.6)–(1.8).

Therefore, the following corollary follows from Theorem 2.4.
Corollary 2.1. For any function v0 ∈ L2

(
Ω × SN−1

)
there exists a unique

weak solution v ∈ C([0, T ];L2
(
Ω × SN−1

)
) to (1.6)–(1.8). Estimate (2.19) holds for

this function v.

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1, assuming
that Theorem 1.2 holds. By Theorem 2.3, for any function p ∈ L2

cos(Γ−) there exists
a unique weak solution u of the problem (1.1), (1.3), and (1.4). Also, by Corollary
2.1 for any function v0 ∈ L2(Ω × SN−1) there exists a unique weak solution v of the
problem (1.6)–(1.8).

3.1. Generalized trace of the weak solution of the adjoint problem
(1.6)–(1.8). For the weak solution v of the problem (1.6)–(1.8), we define in this
subsection a generalized trace of the function v |Γ−∈ L2

cos (Γ−). Consider the case
when the function p in (1.4) satisfies conditions (2.3). In addition, assume for a while
that the function v0 in (1.7) satisfies the following two conditions:

(3.1) v0 ∈ C∞ (
Ω × SN−1

)
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and

(3.2) v0(x, ν) ∈ C∞
0 (Ω) ∀ν ∈ SN−1.

Therefore, Theorems 2.1 and 2.3 guarantee that unique solutions u, v ∈ C1
tνgrad

(
W
)

exist for the following two initial boundary value problems:

ut +
d

ds
u (x + sν, t, ν) |s=0 + a(x, t, ν)u−

∫
SN−1

g(x, t, ν, μ)u(x, t, μ)dσμ = 0 in W,

(3.3)

u |t=0 = 0,(3.4)

u |Γ−= p(x, t, ν)(3.5)

and the adjoint problem

vt +
d

ds
v (x + sν, t, ν) |s=0 −a(x, t, ν)v +

∫
SN−1

g(x, t, μ, ν)v(x, t, μ)dσμ = 0 in W,

(3.6)

v(x, T, ν) = v0 (x, ν) , (x, ν) ∈ Ω × SN−1,(3.7)

v |Γ+= 0.(3.8)

By (3.4), we have

(3.9)

∫ T

0

utvdt = (uv) (x, T, ν) −
∫ T

0

uvtdt.

Fix an arbitrary vector ν0 ∈ SN−1. Let Aν0
be an orthogonal matrix satisfying

(2.6). Introduce again notations (2.7)–(2.10). In addition, let ṽ(y, t, ν̃0) = v(A−1
ν0

y, t,
A−1

ν0
ν0). Since in the new coordinates

d

ds
u (x + sν0, t, ν0) |s=0= ũy1 (y, t, ν̃0)

and

d

ds
v (x + sν0, t, ν0) |s=0= ṽy1 (y, t, ν̃0) ,

(3.3), (3.6), and (3.9) imply that∫
Aν0Ω

∫ T

0

{
(−ũy1 − ãũ) (y, t, ν̃0) +

∫
SN−1

g̃(y, t, ν̃0, η)ũ(y, t, η)dση

}
ṽ(y, t, ν̃0)dtdy

=

∫
Aν0

Ω

∫ T

0

{
(= ṽy1 − ãṽ) (y, t, ν̃0) +

∫
SN−1

g̃(y, t, η, ν̃0)ṽ(y, t, η)dση

}
ũ(y, t, ν̃0)dtdy

(3.10)

+

∫
Aν0

Ω

(ũṽ) (y, T, ν̃0)dy.
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For an arbitrary vector ν ∈ SN−1 denote

∂Ω− (ν) = {x ∈ ∂Ω : (n(x), ν) ≤ 0} , ∂Ω+ (ν) = {x ∈ ∂Ω : (n(x), ν) > 0} .

Hence, by (3.5) and (3.8)

(3.11) u(x, t, ν) = p(x, t, ν) for x ∈ ∂Ω− (ν) , v(x, t, ν) = 0 for x ∈ ∂Ω+ (ν) .

Let p̃ (y, t, ν̃0) = p
(
A−1

ν0
y, t, A−1

ν0
ν̃0

)
. Integrating by parts, we obtain for the two terms

in (3.10) ∫
Aν0

Ω

(−ũy1 · ṽ) (y, t, ν̃0)dy −
∫
Aν0

Ω

(ũ · ṽy1) (y, t, ν̃0)dy

= −
∫
∂(Aν0Ω)

(ũ · ṽ) (y, t, ν̃0) cos (ñ, y1) dSy.

Change variables “backwards” (y ⇔ x = A−1
ν0

y, ν0 = A−1
ν0

ν̃0) in the last integral and
note again that by (2.6) cos (ñ(y), y1) = cos (n(x), ν0) . Hence, using (3.11), we obtain

−
∫
∂(Aν0Ω)

(p̃ · ṽ) (y, t, ν̃0) cos (ñ, y1) dSy = −
∫
∂Ω

(u · v) (x, t, ν0) cos (n, ν0) dSx

= −
∫
∂Ω−(ν0)

(p · v) (x, t, ν0) cos (n, ν0) dSx.

Hence, integrating with respect to t ∈ (0, T ), we obtain∫ T

0

∫
Ω

(−ũy1
· ṽ) (y, t, ν̃0)dydt−

∫ T

0

∫
Ω

(ũ · ṽy1
) (y, t, ν̃0)dydt

= −
∫ T

0

∫
∂Ω−(ν0)

p(x, t, ν0)v(x, t, ν0) cos (n, ν0) dSxdt.(3.12)

Changing variables “backwards” in the rest of the integrals of (3.10), substituting
(3.12), integrating with respect to ν0 ∈ SN−1, and noting that∫

SN−1

∫ T

0

∫
∂Ω−(ν)

(. . . )dSxdtdσν =

∫
Γ−

(. . . )dSxdtdσν ,

we obtain
(3.13)

−
∫

Γ−

p(x, t, ν)v(x, t, ν) cos (n, ν) dSxdtdσν =

∫
SN−1

∫
Ω

u(x, T, ν)v(x, T, ν)dxdσν .

Since

− cos (n, ν) = |cos (n, ν)| on Γ−,

(1.9) implies that (3.13) can be rewritten as

(3.14) 〈p, v〉 =

∫
SN−1

∫
Ω

u(x, T, ν)v(x, T, ν)dxdσν .
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For all functions p ∈ L2
cos(Γ−), we define the linear operator L by

(3.15) Lp = u(x, T, ν) for (x, ν) ∈ Ω × SN−1,

where u ∈ C([0, T ];L2(Ω × SN−1)) is the weak solution of the problem (3.3)–(3.5)
(Theorem 2.3). Also, for all functions v0 satisfying conditions (3.2), we define the
linear operator K by

Kv0 = v(x, t, ν) for (x, t, ν) ∈ Γ−,

where the function v ∈ C1
tνgrad

(
W
)

is the strong solution of the boundary value
problem (3.6)–(3.8) (Theorem 2.1).

It follows from (3.15) and (2.16) that

‖u(x, T, ν)‖L2(Ω×SN−1) = ‖Lp‖L2(Ω×SN−1) ≤ C ‖p‖L2
cos(Γ−) ∀p ∈ L2

cos(Γ−).

Hence, the linear operator L : L2
cos(Γ−) → L2

(
Ω × SN−1

)
is bounded:

(3.16) ‖Lp‖L2(Ω×SN−1) ≤ ‖L‖ ‖p‖L2 cos(Γ−) ∀p ∈ L2
cos (Γ−) .

Let [, ] be the scalar product in the Hilbert space L2
(
Ω × SN−1

)
. Hence, it follows

from (3.7), (3.13), (3.14), and (1.9) that for all functions p ∈ L2
cos(Γ−) and all functions

v0 satisfying conditions (3.2) the following equality holds:

(3.17) 〈p,Kv0〉 = [Lp, v0] .

Let v0 (x, ν) be an arbitrarily given function satisfying conditions (3.1) and (3.2).
Denote p̃ = Kv0. Then by (3.17)

(3.18) ‖Kv0‖2
L2

cos(Γ−) = 〈Kv0,Kv0〉 = 〈p̃,Kv0〉 = [Lp̃, v0] .

Using (3.16), (3.18), and the Cauchy–Schwarz inequality, we obtain

‖Kv0‖2
L2

cos(Γ−) = 〈Kv0,Kv0〉 = [Lp̃, v0]

≤ ‖L‖ · ‖p̃‖L2
cos(Γ−) · ‖v0‖L2(Ω×SN−1)

= ‖L‖ · ‖Kv0‖L2
cos(Γ−) · ‖v0‖L2(Ω×SN−1) .

Hence

(3.19) ‖Kv0‖L2
cos(Γ−) ≤ ‖L‖ ‖v0‖L2(Ω×SN−1) .

Since the set of functions v0 satisfying conditions (3.1) and (3.2) is dense in
L2(Ω×SN−1), we can uniquely extend the bounded operator K, which was originally
defined on the set of functions satisfying (3.1) and (3.2), to the bounded operator
defined on the whole space L2(Ω × SN−1). We denote this extension by the same
notation: Kv0 = v|Γ− , where v is the weak solution of the initial boundary value
problem (3.6)–(3.8). Hence, it follows from (3.19) that K : L2(Ω×SN−1) → L2

cos(Γ−)
is a bounded linear operator.

Definition 3.1. Let v0 ∈ L2(Ω×SN−1) be an arbitrary function and let v be the
weak solution of the adjoint problem (3.6)–(3.8) (Definition 2.2). We call the function
Kv0 ∈ L2

cos (Γ−) the generalized trace of the function v on Γ−.
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3.2. Application of the theory of closed range operators. It follows from
the above that inequality (3.19) holds for any function v0 ∈ L2(Ω×SN−1). This means
that (3.17) holds for all functions p ∈ L2

cos (Γ−) and all functions v0 ∈ L2
(
Ω × SN−1

)
.

Therefore, (3.17) implies that

(3.20) L∗ = K.

We now apply estimate (1.11) of Theorem 1.2. By (1.11), we have ‖v0‖L2(Ω×SN−1) ≤
C‖Kv0‖L2

cos(Γ−). Hence, combining this estimate with (3.20), we obtain

(3.21) ‖v0‖L2(Ω×SN−1) ≤ C ‖L∗v0‖L2
cos(Γ−) ∀v0 ∈ L2(Ω × SN−1).

The estimate (3.21) implies that the operator L∗ = K is one-to-one and its range
R(L∗) = L∗(L2(Ω × SN−1)) ⊂ L2

cos(Γ−) is closed. It now follows immediately from
Lemma 3, p. 488, of the classic book of Dunford and Schwartz [7] that the operator
L : L2

cos(Γ−) → L2
(
Ω × SN−1

)
is surjective; i.e., its range is R(L) = L2(Ω × SN−1).

In other words, we have proved that for any function uT (x, ν) ∈ L2
(
Ω × SN−1

)
one can find a control function p ∈ L2

cos (Γ−) such that Lp = u(x, T, ν) = uT (x, ν),
where u(x, t, ν) ∈ C([0, T ];L2(Ω×SN−1)), is the weak solution of the initial boundary
value problem (3.3)–(3.5). Thus, the proof of Theorem 1.1 is complete.

4. Proofs of Theorems 1.2 and 1.3. Recall that by the definition of the
number R (see introduction)

(4.1) |x| ≤ R ∀x ∈ Ω.

4.1. Carleman estimate. Consider the function

(4.2) ψ(x, t) = |x|2 − α

(
t− T

2

)2

, α = const. ∈ (0, 1).

The Carleman weight function is defined as

ϕ(x, t) = exp[λψ(x, t)],

where λ > 1 is a parameter. Let c = const. ∈ (0, R). Denote

(4.3) Gc = {(x, t) ∈ Ω × R : ψ(x, t) > c2}.

Clearly,

(4.4) Gc1 ⊂ Gc2 if c1 > c2.

The boundary ∂Gc of the domain Gc consists of two parts, ∂Gc = ∂1Gc∪∂2Gc, where

(4.5) ∂1Gc = {(x, t) ∈ Ω × R : x ∈ ∂Ω } and ∂2Gc = Gc ∩
{
ψ(x, t) = c2

}
.

Hence, ∂1Gc is a part of the boundary ∂Ω × R of the time cylinder Ω × R, and ∂2Gc

is a part of the level surface (hyperboloid) of the function ψ(x, t).

Lemma 4.1. Let T > 2R. Denote α (R, T ) := (2R/T )
2
. Then for all α ∈

[α (R, T ) , 1) and for all c ∈ (0, R) the domain Gc 
= ∅ and Gc ⊂ Ω × (0, T ).
Proof. The following implication follows from (4.5):

∂1Gc ⊂ {∂Ω × (0, T )} ⇒ Gc ⊂ Ω × (0, T ).
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On the other hand, by (4.2), (4.3), and (4.5)

∂1Gc ⊂ {∂Ω × (0, T )} ⇔ max
∂Ω

[ψ(x, T )] < c2..

By (4.1) and (4.2)

R2 − α
T 2

4
< c2 ⇒ max

∂Ω
[ψ(x, T )] = max

∂Ω
[ψ(x, 0)] < c2..

Since T > 2R, the number α (R, T ) = (2R/T )
2 ∈ (0, 1) . On the other hand, for all

α ∈ [α (R, T ) , 1)

R2 − α
T 2

4
≤ R2 − α (R, T )

T 2

4
= R2 −

(
2R

T

)2
T 2

4
= 0 < c2.

Also, since all points of the segment of the straight line connecting points z1 and z2

belong to the domain Ω, it follows that for all c ∈ (0, R)

[Gc ∩ {t = T/2}] ∩ Ω = {x ∈ Ω : |x| > c} 
= ∅.

In any Carleman estimate for a differential operator, only the principal part of this
operator is considered. In other words, a Carleman estimate for a differential operator
is independent of its lower order terms including the integral term in (1.1), which is
the advantage of our method. As for the lower order terms, they are incorporated at
a later stage when either a uniqueness or stability result is proved for a corresponding
Cauchy problem. Hence, we denote

(4.6) L0u = ut +
d

ds
u (x + sν, t, ν) |s=0 ∀ν ∈ SN−1.

Because of the insufficient smoothness guaranteed by Theorem 2.1 (Remark 2.1), it
is convenient to formulate the Carleman estimate for the operator L0 in terms of the
above vector ν̃0 = (1, 0, 0, . . . , 0)

T
= Aν0ν0 in (2.6), where ν0 ∈ SN−1 is an arbitrarily

chosen unit vector.
Lemma 4.2 (pointwise Carleman estimate). Let T > 2R and in (4.2) let the

constant α ∈ [α (R, T ) , 1) (Lemma 4.1). Then for all values of the parameter λ > 1
and for all functions u ∈ C1

tνgrad

(
W
)
, the following pointwise Carleman estimate

holds:

(4.7) (L0u)2ϕ2 ≥ 2λ(1 − α)u2ϕ2 + ∇ · U + Vt ∀ (x, t) ∈ Gc, ∀ν ∈ SN−1,

where the vector function (U, V ) can be estimated as

(4.8) |(U, V )| ≤ Cλu2ϕ2

and the vector function U is such that

(4.9)

∣∣∣∣∫
∂1Gc

(U, n) dSxdt

∣∣∣∣ ≤ Cλ

∫
∂1Gc

|cos (n, ν)|u2ϕ2dSxdt ∀ν ∈ SN−1.

Proof. By Lemma 4.1, Gc ⊂ Ω × (0, T ). Fix an arbitrary vector ν0 ∈ SN−1. Let
Aν0 =

(
aijν0

)n
ij=1

be an orthogonal matrix such that (2.6) is fulfilled. Introduce again

notations (2.7) and (2.8). Then (4.2) and (4.6) imply that

L0ũ = ũt + ũy1 , ψ(y, t) = |y|2 − α

(
t− T

2

)2

, ϕ(y, t) = exp[λψ(y, t)].
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Hence, the resulting domain G̃c has the same form as the original domain Gc. Denote
v = ũ · exp [λψ(y, t)] = ũ · ϕ. Then

ũ = v exp

{
λ

[
α

(
t− T

2

)2

− |y|2
]}

,

ũy1 = (vy1 − 2λy1v) exp [−λψ(y, t)] ,

ũt =

[
vt + 2λα

(
t− T

2

)
v

]
exp [−λψ(y, t)] .

Hence, for this vector ν0

(L0u)2ϕ2 =

{
(vt + vy1) − 2λ

[
y1 − α

(
t− T

2

)]
v

}2

≥ −4λ

[
y1 − α

(
t− T

2

)]
v (vt + vy1)

=

{
−2λ

[
y1 − α

(
t− T

2

)]
v2

}
t

− 2λαv2

+

{
−2λ

[
y1 − α

(
t− T

2

)]
v2

}
y1

+ 2λv2

= 2λ (1 − α) ũ2ϕ2 + ∇y · Ũ + Vt.

Thus,

(4.10) (L0ũ)2ϕ2 ≥ 2λ (1 − α) ũ2ϕ2 + ∇y · Ũ + Ṽt,

where

(4.11) ∇y · Ũ =

{
−2λ

[
y1 − α

(
t− T

2

)]
ũ2ϕ2

}
y1

and

(4.12) Ṽt =

{
−2λ

[
y1 − α

(
t− T

2

)]
ũ2ϕ2

}
t

.

The backwards change of variables y → x will replace ∇y · Ũ with ∇x ·U and Ṽt with
Vt. Hence, (4.10) is equivalent to (4.6). It is clear from (4.11) and (4.12) that estimate
(4.8) holds for the vector function (U, V ).

Thus, in order to finish the proof, we now need to prove (4.9). Consider the
integral ∫

G̃c

∇y · Ũdydt.

Obviously, ∫
G̃c

∇y · Ũdydt =

∫
Gc

∇x · Udxdt.
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By the Gauss theorem, we have

(4.13)

∫
G̃c

∇y · Ũdydt =

∫
∂1G̃c

(
Ũ , ñ

)
dSy,t +

∫
∂2G̃c

(
Ũ , ñ

)
dSy,t.

In order to prove (4.9), we estimate from the above the first integral on the right-
hand side of (4.13). Using (4.11) and recalling again that by (2.6) cos (ñ(y), y1) =
cos (n(x), ν0), where x = A−1

ν0
y, we obtain∣∣∣∣∫

∂1G̃c

(
Ũ , ñ

)
dSydt

∣∣∣∣ =

∣∣∣∣2λ ∫
∂1G̃c

cos (ñ, y1)

[
y1 − α

(
t− T

2

)]
ũ2ϕ2dSydt

∣∣∣∣
≤ Cλ

∫
∂1G̃c

|cos (ñ, y1)| ũ2ϕ2dSydt = Cλ

∫
∂1Gc

|cos (n, ν0)|u2ϕ2dSydt.

On the other hand, ∫
∂1G̃c

(
Ũ , ñ

)
dSydt =

∫
∂1Gc

(U, n) dSxdt.

Hence, ∣∣∣∣∫
∂1Gc

(U, n) dSxdt

∣∣∣∣ ≤ Cλ

∫
∂1Gc

|cos (n, ν0)|u2ϕ2dSydt,

which proves (4.9) for ν = ν0. Since ν0 ∈ SN−1 is an arbitrary vector and (4.10)
holds, the proof is complete.

4.2. Proof of Theorem 1.3. Since T > 2R,
√

5R2 + T 2 > 3R. Hence, we
choose a number ε = ε (Ω) so small that

(4.14) 0 < ε ≤ min

(
R

3
,

√
5R2 + T 2 − 3R

4

)

and

(4.15) {|x| < 3ε} ⊂ Ω.

From now on we set α = [1 + α (R, T )] /2 in the function ψ in (4.2), for the sake of the

definiteness, where the number α (R, T ) = (2R/T )
2 ∈ (0, 1) was chosen in Lemma 4.1.

Choose the number δ = δ (ε) = ε/20. Since ε/2+3δ ∈ (0, R) , by Lemma 4.1 and (4.4)

(4.16) Gε/2+3δ 
= ∅ and Gε/2+3δ ⊂ Gε/2+2δ ⊂ Gε/2+δ ⊂ Gε/2 ⊂ Ω × (0, T ).

Introduce the “cut-off” function χ(x, t) ∈ C1(Ω × [0, T ]) such that 0 ≤ χ ≤ 1 and

(4.17) χ(x, t) =

{
1 in Gε/2+2δ,

0 in {Ω × (0, T )}\Gε/2+δ.

Let the function v ∈ C1
tνgrad

(
W
)

be a solution of the adjoint transport equation
(1.6). For (x, t, ν) ∈ Γ (T ) let the function q(x, t, ν) be its boundary value, v |x∈∂Ω:=
q(x, t, ν). Denote

(4.18) w(x, t, ν) = v(x, t, ν)χ(x, t).
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Then

L0w = wt +
d

ds
w (x + νs, t, ν) |s=0

= χ

(
vt +

d

ds
v (x + νs, t, ν) |s=0

)
+ v

(
χt +

n∑
i=1

νiχi

)
.

Therefore, using (1.12), we obtain∣∣∣∣wt +
d

ds
w (x + νs, t, ν) |s=0

∣∣∣∣ ≤ M1

[
|w| +

∫
SN−1

|w(x, t, μ)| dσμ + |f |
]

+M1 (1 − χ)

[
|v| +

∫
SN−1

|v(x, t, μ)| dσμ

]
.

Here and below M1 = M1 (M,Ω, T ) denotes different positive constants depending
only on M,Ω, and T. Square both sides of the latter equality, multiply by the function
ϕ(x, t), integrate over Gε/2, and apply the Carleman estimate of Lemma 4.2 to the
resulting left-hand side. Note that derivatives χt, χi, i = 1, . . . , n, are bounded and
differ from zero only in the domain Gε/2+δ\Gε/2+2δ . Hence, (4.8) implies that the
corresponding vector function (U, V ) = 0 on ∂2Gε/2. Also, V cos(n, t) = 0 on ∂1Gε/2.
Hence, the Gauss theorem and (4.9) imply that∣∣∣∣∣
∫
Gε/2

(∇ · U + Vt) dxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂1Gε/2

(U, n) dSxdt

∣∣∣∣∣ ≤ Cλ

∫
∂1Gε/2

|cos (n, ν)| v2ϕ2dSxdt

= Cλ

∫
∂1Gε/2

|cos (n, ν)| q2ϕ2dSxdt.

Thus, we obtain for all ν ∈ SN−1

2λ(1 − α)

∫
Gε/2

w2ϕ2dxdt(4.19)

≤ M1

[∫
Gε/2

(
|w|2 +

∫
SN−1

w2dσμ + f2

)
ϕ2dxdt

]

+ M1

∫
Gε/2

(1 − χ) v2ϕ2dxdt + M1

∫
Gε/2

(1 − χ)

∫
SN−1

v2 (x, t, μ) dσμ

+ Cλ

∫
∂1Gε/2

|cos (n, ν)| q2ϕ2dSxdt.

For each c ∈ (0, R) denote Hc = Gc × SN−1, Mc = ∂1Gc × SN−1, and dh = dxdtdσν .
Integrate (4.19) with respect to ν ∈ SN−1. Noticing that∫

Hε/2

(∫
SN−1

w2 (x, t, μ) dσμ

)
ϕ2dh = AN ·

∫
Hε/2

w2ϕ2dh,
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where AN is the area of the unit sphere SN−1, we obtain

2λ(1 − α)

∫
Hε/2

w2ϕ2dh ≤ M1

(∫
Hε/2

(
w2 + f2

)
ϕ2dh +

∫
Hε/2

(1 − χ)v2ϕ2dh

)(4.20)

+ M1λ

∫
Mε/2

|cos (n, ν)| q2ϕ2dSxdtdσν .

Choose λ0 = λ0 (C) > 1 such that C/(λ0(1 − α)) < 1. Then

M1

∫
Hε/2

w2ϕ2dh ≤ λ(1 − α)

∫
Hε/2

w2ϕ2dh ∀λ > λ0.

Hence, (4.20) leads to

λ

∫
Hε/2

w2ϕ2dh ≤ M1

∫
Hε/2

(1 − χ)v2ϕ2dh + M1λ

∫
Mε/2

|cos (n, ν)| q2ϕ2dSxdtdσν

(4.21)

+ M1

∫
Hε/2

f2ϕ2dh ∀λ > λ0.

Estimate from the below the left-hand side of inequality (4.21). By (4.17) and
(4.18) w = v in Hε/2+2δ. Also, by (4.16) Hε/2+3δ ⊂ Hε/2+2δ ⊂ Hε/2+δ ⊂ Hε/2 and

by (4.3) ϕ2(x, t) ≥ exp
[
2λ (ε/2 + 3δ)

2
]

in Hε/2+3δ. Hence,

λ

∫
Hε/2

w2ϕ2dh ≥ λ

∫
Hε/2+3δ

w2ϕ2dh = λ

∫
Hε/2+3δ

v2ϕ2dh(4.22)

≥ λ exp
[
2λ (ε/2 + 3δ)

2
] ∫

Hε/2+3δ

v2dh.

Estimate now the right-hand side of inequality (4.21) from the above. Since by (4.17)
1 − χ(x, t) = 0 in Gε/2+2δ, we have

sup
Hε/2

[
(1 − χ)ϕ2

]
≤ exp

[
2λ (ε/2 + 2δ)

2
]
.

Hence,

(4.23)

∫
Hε/2

∫
(1 − χ)v2ϕ2dh ≤ exp

[
2λ (ε/2 + 2δ)

2
] ∫

Hε/2

v2dh.

Therefore (4.21)–(4.23) imply that

λ exp
[
2λ (ε/2 + 3δ)

2
] ∫

Hε/2+3δ

v2dh ≤ M1 exp
[
2λ (ε/2 + 2δ)

2
]
·
∫
W

v2dh(4.24)

+ M1λ

∫
Γ

|cos (n, ν)|q2ϕ2dSxdtsσν + M1

∫
Hε/2

f2ϕ2dh.
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Let m = sup
Gε/2

[ψ(x, t)]. Then (4.24) leads to

λ exp
[
2λ (ε/2 + 3δ)

2
]
||v||2L2(Hε/2+3δ)

≤ M1 exp
[
2λ (ε/2 + 2δ)

2
]
||v||2L2(W )

+ M1λe
2λm||q||2L2

cos(Γ) + M1e
2λm ‖f‖2

L2(W ) ,

where the Hilbert space L2
cos (Γ) is defined similarly with L2

cos (Γ−) . Dividing this
inequality by λ exp

[
2λ(ε/2 + 3δ)2

]
, we obtain

(4.25)

||v||2L2(Hε/2+3δ)
≤ M1 exp [−2λδ (ε + 5δ)] ||v||2L2(W )+M1e

2λm
[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
.

An inconvenience of the domain Hε/2+3δ for our goal is that

Hε/2+3δ ∩ {t = T/2} ⊂
(
Ω × SN−1

)
, but

(
Ω × SN−1

)
�Hε/2+3δ ∩ {t = T/2} 
= ∅.

Thus, we now “shift” this domain. Choose an x0 such that |x0| = 3ε/2. By (4.15)
x0 ∈ Ω. Consider the domain

Gε/2(x0) =

{
(x, t) ∈ Ω × R : |x− x0|2 − α

(
t− T

2

)2

>
(ε

2

)2
}

(4.26)

=

{
(x, t) ∈ Ω × R : ψ (x− x0, t) >

(ε
2

)2
}
,

which is obtained by a shift of the domain Gε/2. We now prove that

(4.27) Gε/2(x0) ⊂ Ω × (0, T ) .

Indeed, since by (4.1)

max
x∈Ω

|x− x0| ≤ |x| + |x0| ≤ R +
3

2
ε,

using (4.2), we obtain

max
x∈∂Ω

[ψ(x− x0, T )] ≤
(
R +

3

2
ε

)2

− R2

2
− T 2

8
.

It follows from (4.14) that(
R +

3

2
ε

)2

− R2

2
− T 2

8
<
(ε

2

)2

.

Hence,

max
x∈∂Ω

[ψ(x− x0, T )] <
(ε

2

)2

,

which proves (4.27). Also since δ = δ (ε) = ε/20, it follows from (4.26) that (0, T/2) ∈
Gε/2+3δ(x0) ∩ {t = T/2} , which proves that

Gε/2+3δ(x0) ∩ [Ω × (0, T )] 
= ∅.
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Hence, the Carleman estimate of Lemma 4.2 is valid for the domain Gε/2(x0). Thus,
similarly to (4.25), we obtain

||v||2
L2(Hε/2+3δ(x0))

≤ M1 exp [−2λδ (ε + 5δ)] ||v||2L2(W )(4.28)

+ M1e
2λm

[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
,

where Hε/2+3δ (x0) = Gε/2+3δ(x0) × SN−1.
It follows from (4.2)–(4.4) and (4.26) that

(4.29) Gε/2+3δ ∩ {t = T/2} =
{
|x| > ε

2
+ 3δ

}
∩ Ω

and

(4.30) Gε/2+3δ (x0) ∩ {t = T/2} =
{
|x− x0| >

ε

2
+ 3δ

}
∩ Ω.

Consider the ball B (0, ε/2 + 4δ) ,

B
(
0,

ε

2
+ 4δ

)
=
{
x : |x| < ε

2
+ 4δ

}
=

{
x : |x| < 7

10
ε

}
= B

(
0,

7

10
ε

)
.

By (4.15) B (0, ε/2 + 4δ) ⊂ Ω. We now prove that B (0, ε/2 + 4δ) ⊂ Gε/2+3δ (x0) ∩
{t = T/2}. Let x ∈ B (0, ε/2 + 4δ) be an arbitrary point of the ball B. Then

|x− x0| ≥ |x0| − |x| =
3

2
ε− |x| > 3

2
ε− ε

2
− 4δ = ε− 4δ.

Since δ = ε/20, we have ε− 4δ > ε/2 +3δ. Hence,

|x− x0| > ε− 4δ >
ε

2
+ 3δ ∀x ∈ B

(
0,

ε

2
+ 4δ

)
.

Hence, by (4.30) B (0, ε/2 + 4δ) ⊂
{
Gε/2+3δ(x0) ∩ {t = T/2}

}
. Hence,

(4.31)
{
|x| ≤ ε

2
+ 3δ

}
⊂ B

(
0,

ε

2
+ 4δ

)
⊂
{
Gε/2+3δ(x0) ∩ {t = T/2}

}
.

Recall that by (4.16) and (4.26)

(4.32)
{
Gε/2+3δ ∩ {t = T/2}

}
⊂ Ω,

{
Gε/2+3δ(x0) ∩ {t = T/2}

}
⊂ Ω.

Therefore, (4.29)–(4.32) lead to

Ω =
(
Gε/2+3δ ∪Gε/2+3δ (x0)

)
∩ {t = T/2}.

Hence, there exists a number η ∈ (0, T/2) such that the layer

Eη =

{
(x, t) : x ∈ Ω,

∣∣∣∣t− T

2

∣∣∣∣ < η

}
⊂
(
Gε/2+3δ ∪Gε/2+3δ (x0)

)
.

Hence, estimates (4.25) and (4.28) imply that

||v||2L2(Eη×SN−1) ≤ M1 exp [−2λδ (ε + 5δ)] ||v||2L2(W )

+ M1e
2λm

[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
.
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Hence, by the mean value theorem there exists a number t1 ∈ (T/2 − η, T/2 + η) such
that

||v (x, t1, ν) ||2L2(Ω×SN−1) ≤
M1

2η
exp [−2λδ (ε + 5δ)] ||v||2L2(W )

+
M1

2η
e2λm

[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
.

That is, with a new constant M1

||v (x, t1, ν) ||2L2(Ω×SN−1) ≤ M1 exp [−2λδ (ε + 5δ)] ||v||2L2(W )(4.33)

+ M1e
2λm

[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
.

This inequality and the energy estimate (2.16) lead to (with a new constant M1)
(4.34)

||v||2L2(W ) ≤ M1 exp [−2λ (ε + 5δ)] ||v||2L2(W ) + M1e
2λm

[
||q||2L2

cos(Γ) + ‖f‖2
L2(W )

]
.

Choose λ ≥ λ0 such that C exp [−2λδ (ε + 5δ)] < 1/2. Then (4.34) implies that for
this λ

(4.35) ‖v‖L2(W ) ≤ M1

[
||q||L2

cos(Γ) + ‖f‖L2(W )

]
.

Using (4.33) and (4.35), we obtain that

‖v (x, t1, ν)‖L2(Ω×SN−1) ≤ M1

[
||q||L2

cos(Γ) + ‖f‖L2(W )

]
.

Hence, using (2.16), we obtain that

(4.36) ‖v (x, t0, ν)‖L2(Ω×SN−1) ≤ M1

[
||q||L2

cos(Γ) + ‖f‖L2(W )

]
∀t0 ∈ [0, T ] .

4.3. Proof of Theorem 1.2. Estimates (4.35) and (4.36) are valid for any
strong solution v ∈ C1

tνgrad

(
W
)

of the adjoint transport equation (1.6) with the
boundary condition v |x∈∂Ω= q(x, t, ν). Clearly, these estimates are also valid for any
strong solution u ∈ C1

tνgrad

(
W
)

of the original equation (1.1) with the boundary
condition u |x∈∂Ω= q(x, t, ν). Recall now that Theorem 1.2 is concerned with the
weak solution of the problem (1.6)–(1.8). Hence, by (1.8) we need to assume that
v |Γ+

= 0 and f = 0. Recalling that v |Γ− := (Kv0) (x, t, ν) , we see that (4.35) and
(4.36) lead to (1.10) and (1.11), respectively. Thus, Theorem 1.2 is valid for strong
solutions v ∈ C1

tνgrad(W ) of (1.6) with the boundary condition (1.8).

Consider now an arbitrary function v0 ∈ L2
(
Ω × SN−1

)
, and let the function

v ∈ L2 (W ) be the weak solution of the problem (1.6)–(1.8). Let {v0k}∞k=1 be a
sequence of functions satisfying conditions (3.1), (3.2) and such that

(4.37) lim
k→∞

‖v0 − v0k‖L2(Ω×SN−1) = 0.

Let {vk}∞k=1 ⊂ C1
tνgrad

(
W
)

be the corresponding sequence of solutions of the problem
(1.6)–(1.8) with the initial condition vk |t=T= v0k. Then by Theorem 2.4

lim
k→∞

‖v − vk‖L2(W ) = 0.
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In addition, functions pk := vk|Γ− := Kv0k ∈ L2
cos(Γ−), and by Definition 3.1 of the

generalized trace of the weak solution, we see that

(4.38) lim
k→∞

‖p− pk‖L2cos(Γ−) = 0.

Replacing v0 with v0k in estimates (1.10) and (1.11), we see that

(4.39) ‖vk‖L2(W ) ≤ C ‖Kv0k‖L2
cos(Γ−)

and

(4.40) ‖v0k‖L2(Ω×SN−1) ≤ C ‖Kv0k‖L2
cos(Γ−) .

Since K : L2(Ω×SN−1) → L2
cos(Γ−) is a bounded linear operator (see section 3 after

(3.19)), the passage to limits in (4.37)–(4.40) yields (1.10) and (1.11) for the weak
solution v.
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matical Physics and Analysis, AMS, Providence, RI, 1986.
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THE MULTI-AGENT RENDEZVOUS PROBLEM.
PART 1: THE SYNCHRONOUS CASE∗

J. LIN† , A. S. MORSE‡ , AND B. D. O. ANDERSON§

Abstract. This paper is concerned with the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all move in the plane. Each agent is able to
continuously track the positions of all other agents currently within its “sensing region,” where by
an agent’s sensing region we mean a closed disk of positive radius r centered at the agent’s current
position. The multi-agent rendezvous problem is to devise “local” control strategies, one for each
agent, which without any active communication between agents cause all members of the group
to eventually rendezvous at a single unspecified location. This paper describes a solution to this
problem consisting of individual agent strategies which are mutually synchronized in the sense that
all depend on a common clock.

Key words. cooperative control, distributed control, multi-agent systems
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1. Introduction. Current interest in cooperative control has led to the develop-
ment of a number of distributed control algorithms capable of causing large groups of
mobile autonomous agents to perform useful tasks [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
Of particular interest here are provably correct algorithms which solve what we shall
refer to as the “multi-agent rendezvous problem.” This problem, which was considered
previously in [19, 1], is concerned with the collective behavior of a group of n > 1 mo-
bile autonomous agents, labelled 1 through n, which can all move in the plane. Each
agent is able to continuously track the positions of all other agents currently within
its “sensing region,” where by an agent’s sensing region we mean a closed disk of
positive radius r centered at the agent’s current position. The multi-agent rendezvous
problem is to devise “local” control strategies, one for each agent, which without any
active communication between agents cause all members of the group to eventually
rendezvous at a single unspecified location.

In this paper, as in [1], we consider distributed strategies which guide each agent
toward rendezvous by performing a sequence of “stop-and-go” maneuvers. A stop-
and-go maneuver takes place within a time interval consisting of two consecutive
subintervals. The first, called a sensing period, is an interval of fixed length during
which the agent is stationary. The second, called a maneuvering period, is an interval
of variable length during which the agent moves from its current position to its next
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“way-point” and again comes to rest. Successive way-points for each agent are chosen
to be within rM units of each other, where rM is a prespecified positive distance no
larger than r. It is assumed that there has been chosen for each agent i a positive
number τMi , called a maneuver time, which is large enough so that the required
maneuver for agent i from any one way-point to the next can be accomplished in
at most τMi

seconds. Since our interest here is exclusively with devising high level
strategies which dictate when and where agents are to move, we will use point models
for agents and shall not deal with how maneuvers are actually carried out or with
how vehicle collisions are to be avoided.

In this paper we describe a family of stop-and-go strategies which solves the
problem. The family includes the specific strategies proposed in [1] and consists of
agent strategies which are mutually synchronized in the sense that all depend on a
common clock. In a sequel to this paper [12] we propose and analyze families of
strategies which also solve the problem, but without the need for synchronization.

In the synchronous case treated here, the kth maneuvering periods of all n agents
begin at the same time t̄k. The kth way-point of each agent is a function of the
positions of its “registered neighbors” at time t̄k. Agent i’s registered neighbors at
time t̄k are all those other agents positioned within its sensing region at time t̄k. This
notion of a neighbor induces a symmetric relation on the agent group since agent
j is a registered neighbor of agent i at time t̄k just in case agent i is a registered
neighbor of agent j at the same time. Because of this it is possible to characterize
neighbor relationships at time t̄k with a simple graph whose vertices represent agents
and whose edges represent existing neighbor relationships (see section 2.2). Although
the neighbor relation is symmetric, it is clearly not transitive. On the other hand, if
agent i is at the same position as neighbor j at time t̄k, then any registered neighbor
of agent j at time t̄k must certainly be a registered neighbor of agent i at the same
time. It is precisely because of this weak transitivity property that one can infer a
global condition of the entire agent group from a local condition of one agent and its
neighbors. In particular, if the graph characterizing neighbor relationships at time t̄k
is connected, and any one agent is at the same position as all of its neighbors, then
the weak transitivity property guarantees at once that all n agents have rendezvoused
at time t̄k.

One way to ensure that a neighbor graph is connected at time t̄k, assuming it is
connected when the rendezvousing process begins, is to constrain each agent’s way-
points to be positioned in such a way so that no agent can lose any of its registered
neighbors when it moves from one way-point to the next. This can be accomplished
using a clever idea taken from [1]. An immediate consequence is that each agent’s set
of registered neighbors is nondecreasing and, because of this, ultimately converges to
a fixed neighbor set for t̄k sufficiently large.

A second local constraint is to require the way-point of each agent i at the be-
ginning of its kth maneuvering period to lie in the “local” convex hull Hi(k) of agent
i’s own position at time t̄k and the sensed positions of its registered neighbors at the
same time. It is quite easy to prove that doing this causes the global convex hull
H(k + 1) of all n agent positions at time t̄k+1 to be contained in the corresponding
global convex hull H(k) at time t̄k.

A third constraint is to stipulate that for each i, the only condition under which
agent i’s kth way-point can be positioned at a corner of Hi(k) is when Hi(k) is a
single point. The global implication of doing this is that the diameter of H(k + 1)
must either be strictly smaller than the diameter of H(k) or every agent must be at
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the same position as all of its registered neighbors at time t̄k—and this is true whether
or not the graph characterizing neighbor relationships at time t̄k is connected.

In section 4, a more or less standard Lyapunov-based argument is used to prove
that if the preceding constraints are adopted by all agents and if the graph char-
acterizing initial neighbor positions is connected, then all n agents will eventually
rendezvous at a single point. Not surprisingly, the Lyapunov function used for this
purpose is the diameter of the global convex hull. However, although connectivity of
the graph characterizing initial neighbor positions is sufficient for rendezvousing, it
is not necessary. An example illustrating this is given in section 3.2. The example
deals with the situation when the initial neighbor graph consists of two connected
components, with one “encircling” the other in a suitably defined sense.

2. The synchronous agent system. In the synchronous case treated in this
paper, the maneuvering times for all agents are all the same positive value τM . Along
any trajectory of the system to be considered, the real time axis can be partitioned
into a sequence of consecutive time intervals [0, t1), [t1, t2), . . . [tk−1, tk), . . . , each of
length at least τM . Each interval consists of a sensing period followed by a maneu-
vering period of fixed length τM . All agents function in synchronization in the sense
that all are at rest during sensing periods and all can maneuver only during maneu-
vering periods. In particular, all agents actions are synchronized to the time sequence
t̄1, t̄2, . . . t̄k . . . , where t̄k denotes the real time tk − τM at which the kth maneuvering
period begins. Agent i’s registered neighbors at the beginning of its kth maneuvering
period, [t̄k, tk), are those agents, except for agent i, which are within agent i’s sensing
region at time t̄k. Note that this definition is a symmetric relation on the set of all
agents; i.e., if agent i is a registered neighbor of agent j at the beginning of maneu-
vering period k, then agent j is a registered neighbor of agent i at the beginning of
the same maneuvering period.

2.1. Pairwise motion constraint. A pair of agents which are registered neigh-
bors at the beginning of maneuvering period k are said to satisfy the pairwise motion
constraint during the period if the positions to which they move at time tk are both
within a closed disk of diameter r centered at the mean of their registered positions at
time t̄k. The definition implies that any two agents which are registered neighbors at
the beginning of maneuvering period k will be registered neighbors at the beginning
of maneuvering period k + 1 if they satisfy the pairwise motion constraint during the
kth maneuvering period. We are interested in strategies possessing this property and
accordingly make the following assumption.

Cooperation assumption. During each maneuvering period k, each pair of agents
which are registered neighbors at the beginning of the period restrict their motions
to satisfy the pairwise motion constraint.

Agent i’s kth way-point is the point to which agent i is to move at time tk. Thus
if xi(t) denotes the position of agent i at time t represented in a world coordinate
system, then xi(tk) and agent i’s kth way-point are one and the same. The rule
which determines each such way-point is a function depending only on the number
and relative positions of agent i’s registered neighbors. In particular, if agent i has
mi registered neighbors at time t̄k, positioned relative to agent i at points

zj
Δ
= xij (t̄k) − xi(t̄k), j ∈ {1, 2, . . . ,mi},(1)

then agent i’s kth way-point is

xi(tk−1) + umi(z1, z2, . . . , zmi),(2)
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where u0 = 0, um : D
m → DM , m ∈ {1, . . . , n − 1}, and D and DM are the closed

disks of radii r and rM , respectively, centered at the origin in R
2. In other words, if

agent i has no registered neighbors at time t̄k (i.e., mi = 0), it does not move during
the kth maneuvering period. On the other hand, if agent i has mi > 0 neighbors
at time t̄k with relative positions z1, z2, . . . , zmi , then agent i moves to the position
xi(tk−1) + umi

(z1, z2, . . . , zmi
) at time tk. Thus

xi(tk) = xi(tk−1)+umi(t̄k)(xi1(t̄k)−xi(t̄k), xi2(t̄k)−xi(t̄k), . . . , ximi(t̄k)
(t̄k)−xi(t̄k)).

(3)
In what follows we will explain how the um are defined. At the very least we will
require each to be a continuous function.

2.2. Definition of um. We have already defined u0 = 0. To define um for
m > 0 it is necessary to take into account the pairwise motion constraint. Toward
this end, for each z ∈ D, let C(z) denote the closed disk of diameter r centered at the
point 1

2z. More generally, for each {z1, z2, . . . , zm} ∈ D
m, let

C(z1, z2, . . . , zm) =

m⋂
j=1

C(zj).(4)

Note that 0 is in each C(zi) and, moreover, that each such C(zi) is closed and strictly
convex. Consequently C(z1, z2, . . . , zm) is either the singleton {0} or a strictly convex,
closed set containing 0. We can now define um to be any continuous function on D

m

satisfying

um(z1, z2, . . . , zm) ∈ DM∩C(z1, z2, . . . , zm)∩〈0, z1, z2, . . . , zm〉 ∀{z1, z2, . . . , zm} ∈ D
m,

(5)
where 〈0, z1, z2, . . . , zm〉 is the convex hull of the points 0, z1, z2, . . . , zm. The um are
further required to have the property that

um(z1, z2, . . . , zm) �= a corner1 of 〈0, z1, z2, . . . , zm〉(6)

unless z1 = z2 = · · · = zm = 0. In other words, um is required to be (i) a continuous
function on D

m which maps each {z1, z2, . . . , zm} ∈ D
m into DM ∩ C(z1, z2, . . . , zm)∩

〈0, z1, z2, . . . , zm〉 and (ii) a function with the property that um(z1, z2, . . . , zm) is not
a corner of 〈0, z1, z2, . . . , zm〉 unless z1 = z2 = · · · = zm = 0. Examples of functions
satisfying these conditions will be given in what follows.

2.3. Target points. One way to go about defining specific um which are contin-
uous and which satisfy (5) and (6) is by first defining what we shall refer to as a “target
point.” By a target point we mean a continuous function τ : D

m → 〈0, z1, z2, . . . , zm〉
defined in such a way that for each {z1, z2, . . . , zm} ∈ D

m for which 0 is a corner of
〈0, z1, z2, . . . , zm〉, the segment of the line from 0 to τ(z1, z2, . . . , zm) which lies within
C(z1, z2, . . . , zm) has positive length. For should it be possible to define such a τ , one
could satisfy (5) and (6) as well as the continuity requirement with a control of the
form

um = g(z1, z2, . . . , zm)τ(z1, z2, . . . , zm),

1Recall that a point x in a polytope P in R
m is a corner if the only points y and z in P for which

x is a convex combination are y = z = x.
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where g : D
m → R is any continuous, positive definite function satisfying

g < max
(0,1]

{
μ : μτ ∈ DM

⋂
C(z1, z2, . . . , zm)

}
.

Note that gτ ∈ 〈0, z1, z2, . . . , zm〉 for all g ∈ [0, 1] because 0 ∈ 〈0, z1, z2, . . . , zm〉. The
role of g is therefore to scale down the magnitude of τ enough to ensure that gτ is in
the constraint set DM

⋂
C(z1, z2, . . . , zm).

It might be thought that one could choose for τ the centroid of 〈0, z1, z2, . . . , zm〉
or perhaps the average of the zi and 0, namely

τ
Δ
=

1

m + 1

m∑
i=1

zi.

Both candidate definitions satisfy the requirement that τ(z1, z2, . . . , zm) must be a
point in 〈0, z1, z2, . . . , zm〉. Unfortunately, simple examples show that the centroid
definition does not necessarily yield a function which satisfies the continuity require-
ment, while the averaging definition may lead to a function which fails to satisfy the
requirement that when 0 is a corner of 〈0, z1, z2, . . . , zm〉, the segment of the line from
0 to τ(z1, z2, . . . , zm) which lies within C(z1, z2, . . . , zm) has positive length. For ex-
ample, the centroid of the convex hull of the points (0, 0), z1 = (0, 1), and z2 = (p, 1)
is at (p3 ,

2
3 ) for p > 0 and at (0, 1

2 ) for p = 0 so the centroid is discontinuous at p = 0.
As a counterexample to the use of coordinate averaging to define a target point, note
that the average of the four points located at (0, 0), z1 = (−r, 0), z2 = ( 2r

3 , r
2 ),

and z3 = ( r3 ,
r
2 ) is at (0, r

4 ), while the constraint set C(z1, z2, z3) determined by these
points must be contained in the constraint disk C(z1). Since the line L from (0, 0) to
(0, r

4 ) is tangent to this disk at the origin, the intersection of L with C(z1, z2, z3) is
just the point (0, 0) and consequently not a line segment of positive length.

In what follows we shall approach the problem of defining τ in a slightly dif-
ferent way. We begin by stating the following proposition which provides a simple
condition on τ(·), which, if satisfied, automatically implies satisfaction of the require-
ment that when 0 is a corner of 〈0, z1, z2, . . . , zm〉, the segment of the line from 0 to
τ(z1, z2, . . . , zm) which lies within C(z1, z2, . . . , zm) has positive length.

Proposition 1. Let z1, z2, . . . , zm be a set of m > 0 points in D which are not
all 0. If 0 is a corner of 〈0, z1, z2, . . . , zm〉 and z is any nonzero point in D within r
units of each point in {z1, z2, . . . , zm}, then the segment of the line from 0 to z which
lies in C(z1, z2, . . . , zm) has positive length.

The proofs of this and subsequent propositions and lemmas are in section 6.
Proposition 1 suggests the following approach for defining a target point. First,

for each z ∈ D, let D(z) denote a closed disk of radius r centered at z. More generally,
for any set of m > 0 points z1, z2, . . . , zm in D, write

D(z1, z2, . . . , zm) =

m⋂
i=1

D(zi).

By construction, each point in D(z1, z2, . . . , zm) is within r units of each point in
{z1, z2, . . . , zm} and conversely. Thus 0 ∈ D(z1, z2, . . . , zm) because zi ∈ D, i ∈
{1, 2, . . . ,m}.

Second, note that if z1, z2, . . . , zm is any set of m > 0 points in D which are not
all zero and for which 0 is a corner of 〈0, z1, z2, . . . , zm〉, then by Proposition 1 the
segment of the line from 0 to any nonzero point D ∩ D(z1, z2, . . . , zm) which lies in
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C(z1, z2, . . . , zm) must have positive length. It follows that any continuous function
τ : D

m → 〈0, z1, z2, . . . , zm〉 which satisfies

τ(z1, z2, . . . , zm) ∈ D

⋂
D(z1, z2, . . . , zm)

⋂
〈0, z1, z2, . . . , zm〉

and which is nonzero whenever 0 is a corner of 〈0, z1, z2, . . . , zm〉 and z1, z2, . . . , zm
are not all zero fulfills all the conditions required to be a target point. In what follows
we will show that there are at least two different ways to so define τ .

2.3.1. The centroid of D ∩ D(z1, z2, . . . , zm). In order for the centroid of
D ∩ D(z1, z2, . . . , zm) to be a target point, it must depend continuously on the zi
and, in addition, must have the property that it is nonzero for any set of m points
in D which are not all zero and for which 0 is a corner of 〈0, z1, z2, . . . , zm〉. These
properties are guaranteed by the following two propositions.

Proposition 2. Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all
0. Then the centroid of D ∩ D(z1, z2, . . . , zm) is in 〈0, z1, z2, . . . , zm〉. If, in addition,
0 is a corner of 〈0, z1, z2, . . . , zm〉, then D∩D(z1, z2, . . . , zm) has a nonempty interior,
and the centroid of D ∩ D(z1, z2, . . . , zm) cannot be at 0.

Proposition 3. The function which assigns to each set of m > 0 points z1, z2, . . . ,
zm in D the centroid of D ∩ D(z1, z2, . . . , zm) is continuous.

Examination of the proof of Proposition 3 given in section 6 reveals that the
continuity of the centroid of D ∩ D(z1, z2, . . . , zm) depends crucially on the fact that
the centroid is at 0 whenever the area of D ∩ D(z1, z2, . . . , zm) is zero. This property
is not shared by the centroid of 〈0, z1, z2, . . . , zm〉, and it is for this reason that the
centroid of 〈0, z1, z2, . . . , zm〉 is not a continuous function of the zi.

It turns out that Propositions 2 and 3 both hold if the set D ∩ D(z1, z2, . . . , zm)
is replaced throughout by the constraint set D∩C(z1, z2, . . . , zm). This can be shown
using essentially the same proofs of the propositions as those given in the appendix.
What this means then is that the centroid of D∩C(z1, z2, . . . , zm) is also a valid target
point.

2.3.2. The center of the smallest circle containing 〈0, z1, z2, . . . , zm〉.
It is also possible to define τ to be the center of the smallest circle containing
〈0, z1, z2, . . . , zm〉. To understand why this is so, let us note first that for any set

of points zi ∈ D, i ∈ {1, 2, . . . ,m}, the set of points Q Δ
= {0, z1, . . . , zm} is con-

tained in a circle of radius r centered at 0. It follows that the center of this circle
is at most r units from every point in Q. This suggests that one might choose for
τ(z1, z2, . . . , zm) the center τC(z1, z2, . . . zm) of the smallest circle containing Q or,
equivalently, 〈0, z1, z2, . . . , zm〉, since τC(z1, z2, . . . , zm) would have to be within r units
of every point in Q. It is known that there is such a smallest circle [17] and that if the
zi are not all zero, τC(z1, z2, . . . zm) is either the midpoint between two of the points
in Q or a point within the interior of a triangle formed from at least one set of three
points in Q [1]. In either case it is clear that τC(z1, z2, . . . zm) ∈ 〈0, z1, z2, . . . , zm〉 and,
if the zi are not all zero and 0 is a corner of 〈0, z1, z2, . . . , zm〉, that τC(z1, z2, . . . zm)
is nonzero as well. Furthermore it can be shown that τC(z1, z2, . . . zm) depends con-
tinuously on the zi [18]. In other words, τC(z1, z2, . . . zm) satisfies all the conditions
required to be a target point. This elegant choice for τ is the one proposed in [1].

3. Main results. Define t0 = 0. Note that because agents do not move during
sensing periods, for k ≥ 1 the position of each agent at time tk−1 is the same as its
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position at time t̄k. Thus (3) can be rewritten as

xi(tk) = xi(tk−1)(7)

+ umi(tk−1)(xi1(tk−1) − xi(tk−1), xi2(tk−1)

− xi(tk−1), . . . , ximi(tk−1)
(tk−1) − xi(tk−1)),

where mi(tk−1)
Δ
= mi(t̄k). Because of this, the system just defined admits the model of

a nonlinear discrete-time system with state x(tk) = column {x1(tk), x2(tk), . . . xn(tk)}
evolving on the time set t0, t1, . . . tk, . . . . Analysis of this system depends on the rela-
tionships between neighbors and how they evolve with time. These relationships can
be conveniently described by a simple, undirected graph with vertex set {1, 2, . . . , n}
which is defined so that (i, j) is one of the graph’s edges just in case agents i and j are
registered neighbors at the beginning of maneuvering period k. Since these relation-
ships can change from one maneuvering period to the next, so can the graph which
describes them. In what follows we use the symbol P to denote a suitably defined
set, indexing the class of all simple graphs Gp on n vertices. Let us partially order
the set {Gp : p ∈ P} by agreeing to say that Gp is contained in Gq if the edge set
of Gp is a subset on the edge set of Gq. It is natural then to define the union of a
collection of such graphs, {Gp1

,Gp2
, . . . ,Gpm

}, to be the simple graph G with vertex
set {1, 2, . . . , n} and edge set equaling the union of the edge sets of all of the graphs
in the collection.

Let σ(k) denote the index of the graph in {Gp : p ∈ P} which describes the
relationship between registered neighbors at the beginning of maneuvering period
k. Because of the cooperation assumption, we know that each agent keeps all of its
registered neighbors as the system evolves. What this means is the sequence of graphs
Gσ(1),Gσ(2), . . . ,Gσ(k), . . . forms the ascending chain

Gσ(1) ⊂ Gσ(2) ⊂ · · · ⊂ Gσ(k) ⊂ · · · .(8)

Because {Gp : p ∈ P} is a finite set, the chain must converge to the graph

G
Δ
=

∞⋃
k=1

Gσ(k)(9)

in a finite number of steps. Since the sequence of graphs stops changing in a finite
number of steps, rendezvousing at a single point can only occur if G is a complete
graph. There is, however, no a priori guarantee that, along a particular trajectory, G

will turn out to be complete. On the other hand, it is clear that G will always be at
least connected if the initial graph Gσ(1) in the ascending chain is. It turns out that
connectivity of Gσ(1) implies not only that G is connected but also that the types of
distributed control strategies just described actually cause all agents to rendezvous at
a single point.

3.1. Rendezvousing.
Theorem 1. Let u0 = 0 ∈ DM and for each m ∈ {1, 2, . . . , n−1}, let um : D

m →
DM be any continuous function satisfying (5) and (6). For each set of initial agent
positions x1(0), x2(0), . . . , xn(0), each agent’s position xi(t) converges to a unique
point pi ∈ R

2 such that for each i, j ∈ {1, 2, . . . , n}, either pi = pj or ||pi − pj || > r.
Moreover, if agents i and j are registered neighbors at any time t, then pi = pj.
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The proof of this theorem is given in section 4.
Theorem 1 states that the strategies under consideration cause all agents’ posi-

tions to converge to points in the plane with the property that each two such points
are either equal to each other or separated by a distance greater than r units. The
theorem further states that if two agents are ever registered neighbors of each other,
then their positions converge to the same point. We are led to the following corollary.

Corollary 1. If the graph characterizing registered neighbors at the beginning
of period 1 is connected, then the positions of all n agents converge to a common point
in the plane.

It is quite straightforward to extend these results to the leader-follower case when
the rendezvous point is specified at the outset. This can be accomplished by simply
fixing one additional agent (i.e., a virtual agent) at the desired rendezvous point and
letting the remaining n agents maneuver just as before. With initial graph connec-
tivity of all n + 1 agent positions, convergence to the position of the virtual agent is
then assured.

A more interesting case occurs when two virtual agents are fixed at distinct points
in the plane. In this case it can be shown that with initial connectivity of the (n+2)-
agent graph, all n agents will eventually move to positions on the line connecting the
two virtual agents and will distribute themselves in a predictable manner depending
on only the number of agents, r, and the distance between the two fixed, virtual
agents. This behavior will be explored in greater depth in another paper dealing with
forming formations using distributed control.

3.2. Trapping. While the graph connectivity hypothesis of Corollary 1 is suf-
ficient for rendezvousing, it is not necessary. For example, suppose that the Gσ(1)

has a connected component GC which contains a simple closed cycle whose vertices
are i1, i2, . . . , im. Then in the plane, the geometric form obtained by connecting by a
straight line the initial position of each agent ij ∈ {i1, i2, . . . , im} with its registered
neighbors with labels in {i1, i2, . . . , im} will be a simple, closed, polygon P. It turns
out that if the initial positions of all agents whose labels are not in the vertex set
of GC are within P, then rendezvous will necessarily occur. While this conclusion
might appear to be an obvious consequence of the established property that agents
ij ∈ {i1, i2, . . . , im} eventually rendezvous at a point, actually proving that this is true
is not so straightforward. There are two reasons for this. First, there is no guarantee
that the polygon P(k) formed by the positions at time tk of agents ij ∈ {i1, i2, . . . , im}
will remain simple as the system evolves, even if it is initially; thus just what it means
for an agent to be “inside” of P(k) requires a more sophisticated notion of interior
than the obvious one for a simple closed curve in the plane, and this in turn compli-
cates the analysis. Second, it is quite possible that an agent initially positioned inside
of P(0) will be outside of P(k) for some k > 0. In what follows we explain how to
overcome both of these difficulties and in so doing we establish a rendezvousing result
along the lines just described.

We begin by reviewing the concept of a “winding number” and what it means for
a point to be inside of a closed curve in R

2. Let κ : [0, 1] → R
2 be any continuous

closed curve and let y be any point in R
2 which does not lie on κ. The winding number

of y with respect to κ, written wn(κ, y), is the number of times a point p traversing
κ encircles y in a counterclockwise direction as p makes a full circuit of κ. Points
not on κ with nonzero winding numbers are inside of κ, while those with a winding
number of zero are outside of κ. There is a well-known formula for wn(κ, y), involving
the integral around a closed contour κ̃ : [0, 1] → C in the complex plane [15]. κ̃ is a
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representation of κ resulting from the assignment to each vector x = [ a b ]
′

in R
2

the associated complex number x̃
Δ
= a + jb. In this setting, wn(κ, y) is given by the

contour integral

wn(κ, y) =
1

2πj

∮
κ̃

dz

z − ỹ
.

We will use this formula in what follows to prove Lemma 8.
The closed curves of interest here are of a specific type determined by finite

point sets in R
2. In particular, let us note that any ordered set of m > 0 points

{y1, y2, . . . , ym} in R
2 uniquely determines a continuous, piecewise linear, closed curve

c : [0,m] → R
2 defined so that

c(t) = (t + 1 − i)yi+1 + (i− t)yi, i− 1 ≤ t ≤ i, i ∈ {1, 2, . . . ,m},

where ym+1 = y1. An ordered set {y1, y2, . . . , ym} of three or more such points is called
a cycle if ||yi+1 −yi|| ≤ r, i ∈ {1, 2, . . . ,m}; in what follows we denote such a cycle by
�y1, y2, . . . , ym. A point z ∈ R

2 is called an interior point of �y1, y2, . . . , ym if it is an
interior point of the closed, piecewise linear curve c determined by {y1, y2, . . . , ym}.

A point z ∈ R
2 is said to be linked to a nonempty set of vectors {y1, y2, . . . , ym}

in R
2 if for some i ∈ {1, 2, . . . ,m}, ||z − yi|| ≤ r. More generally, z is connected

to {y1, y2, . . . , ym} through a set of vectors {x1, x2, . . . , xn} in R
2 if there exists a

subset {xi1 , xi2 , . . . , xik} with xik ∈ {y1, y2, . . . , ym} such that ||z − xi1 || ≤ r and
||xis−1

− xis || ≤ r, i ∈ {2, 3, . . . k}. The following corollary to Theorem 1 will be
proved later in this section.

Corollary 2. Suppose that the set of initial positions {x1(0), x2(0), . . . , xn(0)}
of the n agents contains a cycle �xi1(0), xi2(0), . . . , xim(0). Then all agents initially
positioned inside the cycle eventually rendezvous at one point with all agents with
positions initially connected to the cycle through {x1(0), x2(0), . . . , xn(0)}.

In what follows we use the abbreviated notation C(k)
Δ
= �xi1(tk), xi2(tk), . . . ,

xim(tk), k ≥ 0, and say that a vector x is connected to C(k) whenever x is connected
to C(k) through {x1(tk), x2(tk), . . . , xn(tk)}. Note that Corollary 2 does not require
agents initially positioned inside of C(0) to be connected to C(0). It is natural to say
that such “disconnected” agents are ultimately trapped by those agents whose initial
positions comprise C(0). This particular group behavior is accordingly referred to as
“trapping.”

Consider the situation hypothesized in Corollary 2. We already know from Theo-
rem 1 that all agents with positions initially connected to C(0) eventually rendezvous
at a single point. So what remains to be shown is that all agents at initial positions
interior to C(0) but not connected to it also rendezvous at the same point. To do this
it is enough to show that each such initially disconnected internal agent eventually
moves at some finite time tK to a position which is connected to C(K)—for once
this happens, Theorem 1 can be applied with a start time of tK , thereby enabling
one to conclude that the agent under consideration will eventually rendezvous at the
same point as the agents with positions initially connected to C(0). Carrying out
this program relies on three key propositions which follow and which are proved in
section 6.

Proposition 4. The interior of any cycle �y1, y2, . . . , ym in R
2 is contained in

its convex hull 〈y1, y2, . . . , ym〉.
This proposition is used as follows. Note that because all agents initially posi-

tioned at points comprising C(0) eventually rendezvous at a single point, the diameter
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of the convex hull 〈xi1(tk), xi2(tk), . . . , xim(tk)〉 must eventually become smaller than
r and remain so for all future time. What this and Proposition 4 therefore imply is
that any agent whose position remains inside of C(k) for all time must at some finite
time tk̄ reach a position connected to C(k̄). Unfortunately not every agent initially
positioned at a point inside of and disconnected from C(0) can be counted on to be so
accommodating. We will deal with this situation by proving that when such an agent
first leaves C(k)—say at time tk̄—it automatically moves to a position connected to
C(k̄). Let A be the label of such an agent and let xA(tk̄) denote its position at time tk̄.
Below we shall argue using the following proposition that all of agent A’s registered
neighbors at the beginning of maneuvering period k̄−1 are inside of C(k̄−1) at time
tk̄−1.

Proposition 5. Let �y1, y2, . . . , ym be a cycle in R
2 which contains a point z

which is not linked to �y1, y2, . . . , ym. Then any point within r units of z is either
inside of �y1, y2, . . . , ym or is linked to �y1, y2, . . . , ym.

We’ve assumed that xA(tk̄) is not inside of C(k̄), and that xA(tk̄−1) is inside of
C(k̄ − 1) and not connected to C(k̄ − 1). Clearly xA(tk̄−1) is not linked to C(k̄ −
1). From Proposition 5 it follows that all of agent A′s registered neighbors at the
beginning of maneuvering period k−1 are at positions at time t̄k̄−1 {and consequently
time tk̄−1} which are either inside of C(k̄− 1) or linked to C(k̄− 1). If any registered
neighbor’s position were connected to C(k̄ − 1), then xA(tk̄−1) would be connected
to C(k̄ − 1), which we have explicitly assumed is not the case. Therefore none of
A’s registered neighbors is connected (or therefore linked) to C(k̄ − 1) at time tk̄−1;
moreover, all must be inside of C(k̄ − 1) because of Proposition 5.

To show that under these conditions, xA(tk̄) is necessarily connected to C(k̄), we
will make use of the following concept. Let us agree to call a cycle �ȳ1, ȳ2, . . . , ȳm a
successor of a given cycle �y1, y2, . . . , ym if, in addition to the cycle requirement that
||ȳi+1 − ȳi|| ≤ r, i ∈ {1, 2, . . . , n}, the inequalities ||ȳi− yi|| ≤ r, ||ȳi+1 − yi|| ≤ r, and
||ȳi− yi+1|| ≤ r all hold for i ∈ {1, 2, . . . ,m}. Observe that each cycle in the sequence
�y1, y2, . . . , ym, �ȳ1, y2, . . . , ym, �ȳ1, ȳ2, . . . , ym, . . . , �ȳ1, ȳ2, . . . , ȳm is a successor of
the cycle which precedes it. It is easy to verify that for each k ≥ 0, C(k + 1) is a
successor of C(k).

Proposition 6. Let �ȳ1, ȳ2, . . . , ȳm be a successor of a given cycle �y1, y2, . . . ,
ym in R

2. Suppose that z1, z2, . . . , zk are k > 0 interior points of �y1, y2, . . . , ym
which are not linked to �y1, y2, . . . , ym and which satisfy ||z1−zi|| ≤ r, i ∈ {2, 3, . . . , k}.
Then each point in the convex hull 〈z1, z2, . . . , zk〉 is either an interior point of �ȳ1, ȳ2,
. . . , ȳm or is linked to �ȳ1, ȳ2, . . . , ȳm.

Recall that the strategy under consideration puts xA(tk̄) at a point in the convex
hull of the set consisting of xA(tk̄−1) and the positions at time tk̄−1 of agent A’s
registered neighbors. Proposition 6 therefore implies that xA(tk̄) must be either inside
of C(k̄) or linked to it. Since we have ruled out the former by assumption, xA(tk̄)
is linked and therefore connected to C(k̄) as claimed. This completes the proof of
Corollary 2.

4. Analysis. The aim of this section is to establish the correctness of Theorem 1.
Towards this end, let {{x1(tk), x2(tk), . . . , xn(tk)} : k ≥ 1} be a system trajectory
determined by (7) and any initial set of agent positions. Let k∗ denote the value of k
for which the ascending chain shown in (8) converges to the limit graph G in (9). Thus
for tk ≥ tk∗ , the neighbors of each agent do not change. For each i ∈ {1, 2, . . . , n},
let {i1, i2, . . . , imi} denote the set of indices labelling the neighbors of agent i. For
simplicity, we will deal only with the case when each agent has at least one neighbor.
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This means that all mi are positive integers. These assumptions imply that for k ≥ k∗,
the system under consideration will have a state {x1(tk), x2(tk), . . . , xn(tk)} taking
values in the space

X = {{x1, x2, . . . xn} : ||xj − xi|| ≤ r, j ∈ {i1, i2, . . . , imi}, i ∈ {1, 2, . . . , n}}.(10)

4.1. Error system. To analyze system behavior it is convenient to introduce a
suitably defined “error system.” For {x1, x2, . . . , xn} ∈ X , define

ei = xi − xn, i ∈ {1, 2, . . . , n},(11)

and note that en = 0. Let e
Δ
= {e1, e2, . . . , en−1}. In view of (10) and the fact that

ej − ei = xj − xi for all i, j ∈ {1, 2, . . . , n}, we see that e takes values in the closed
space

E = {{e1, e2, . . . en−1} : en = 0, ||ej−ei|| ≤ r, j ∈ {i1, i2, . . . , imi}, i ∈ {1, 2, . . . , n}}.
(12)
Note that

xij (tk−1) − xi(tk−1) = eij (tk−1) − ei(tk−1), j ∈ {1, 2, . . . ,mi}, i ∈ {1, 2, . . . , n}.

It follows that the update equation (7) for xi can be written as

xi(tk) = xi(tk−1) + fi(e(k − 1)), k ≥ k∗,(13)

where fi : E → D is the continuous function

{e1, e2, . . . , en−1} �−→ umi
(ei1 − ei, ei2 − ei, . . . , eimi

− ei)|en= 0.

In view of (13) and the definition of the ei,

ei(tk) = ei(tk−1) + fi(e(tk−1)) − fn(e(tk−1)), k > k∗, i ∈ {1, 2, . . . , n− 1}.(14)

This enables us to define the error system

e(tk) = e(tk−1) + f(e(tk−1)), k > k∗,(15)

where f(e) = {f1(e) − fn(e), f2(e) − fn(e), . . . , fn−1(e) − fn(e)}.
4.2. Proving convergence in the style of Lyapunov. In what follows, we

will prove that under certain conditions e(tk) → 0 as k → ∞. We will do this using
the positive definite function V : E → R defined by

V (e) = dia{e1, e2, . . . , en−1, 0},(16)

where for any set of vectors y1, y2, . . . , ym in R
2, dia{y1, y2, . . . , ym} denotes the diame-

ter2 of 〈y1, y2, . . . , ym〉. The following proposition is central to the proof of Theorem 1.
Proposition 7. The difference function Δ : E → R defined by

Δ(e) = V (e + f(e)) − V (e)(17)

is negative semidefinite. Moreover, if G is connected, then Δ is negative definite.

2Recall that the diameter of a closed set S ⊂ R
2 is the maximum of ||s1 − s2|| over all s1, s2 ∈ S.
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Proof of Theorem 1. In general the graph G to which the ascending chain (8)
converges for some finite k = k∗ consists of a finite set of connected components.
Suppose that Gc is any one of these. To prove Theorem 1 it is enough to show
that the positions of those agents whose indices are the vertices of Gc converge to a
common point. For simplicity we will do this only for the case when Gc = G, since,
except for notation, the proof is essentially the same even if Gc �= G.

By hypothesis n > 1. Note that if e(tk) = 0 for some k = k̄, then all agents are
in the same position at time tk̄; moreover, any such position will remain fixed for all
t ≥ tk̄ because f(0) = 0. Therefore to complete the proof it is enough to show that
e(tk) tends to 0 as k → ∞.

Let V : E → R be defined as in (16). Note that

V (e(tk)) = dia{x1(tk), x2(tk), . . . , xn(tk)}(18)

because the diameter of a convex set in R
2 is invariant under translation of the set.

From this and Proposition 7, it follows that the difference function

Δ(e(tk)) = V (e(tk) + f(e(tk))) − V (e(tk))

is nonpositive for k ≥ k∗. Thus V (e(tk)) is a monotone nonincreasing function of k
for k ≥ k∗. Since for k ≥ k∗, V (e(tk)) is bounded above by V (e(tk∗)) and below by
0, there must exist a finite limit

V ∗ Δ
= lim

k→∞
V (e(tk)).

We claim that V ∗ = 0. To prove this claim, suppose that it is false. Then V ∗ > 0.
Let B denote the set of all points e ∈ E such that V ∗ ≤ V (e) ≤ V (e(tk∗)). Note
that B is closed and bounded because V (·) is continuous and E is closed. Moreover,
0 �∈ B because V (·) is positive definite and bounded away from zero on B. By Propo-
sition 7, Δ(·) is negative definite. Therefore for all e ∈ B, Δ(e) < 0. From this, the
compactness of B, and the continuity of Δ(·), it follows that

μ
Δ
= max

e∈B
Δ(e)

is a finite negative number. Since e(tk) ∈ B for k ≥ k∗, it must therefore be true that

V (e(tk+1)) − V (e(tk)) = Δ(e(tk)) ≤ μ, k ≥ k∗.

Thus by summing,

V (e(tk)) ≤ V (e(tk∗)) + (k − k∗)μ, k ≥ k∗.

Therefore, for k sufficiently large, V (e(tk)) must be negative because μ < 0. But this
is impossible because V (·) is positive definite. Hence V ∗ cannot be positive.

The proof just given is basically a standard Lyapunov argument3 applied to the
system (17). It is worth pointing out here that the continuity of Δ(·) is crucial to the
proof as is the fact that E is closed. If E were not a closed set, the preceding proof
would break down because one could not conclude that B is closed. The closure of E is

3It is worth noting that a similar proof could also be crafted using recent results by Moreau
which appeared in [16] after this paper was submitted in December, 2004.
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a direct consequence of the fact that sensing regions are defined to be closed sets. The
continuity of Δ(·) is a consequence of the requirement that the um(·) be continuous
functions. In summary, for the present analysis to go through, it is essential that
sensing regions be closed sets and that the um(·) be continuous functions. Whether or
not these requirements can be relaxed by approaching convergence differently remains
to be seen.

5. Concluding remarks. In this paper we have reconsidered the multi-agent
rendezvous problem originally posed in [1] and have described several alternate syn-
chronous solutions. We have provided an example which shows that rendezvousing can
in some cases be guaranteed to occur even if the graph characterizing initial relations
is not initially connected. In a sequel to this paper [12] we will explain how ren-
dezvousing can be achieved asynchronously, without assuming that the agents share
a common clock.

Since this paper and its sequel [12] were written, a number of papers on rendezvous
have appeared. We refer the reader to [3] for additional references and for interesting
new results on the rendezvous problem posed in higher dimensional spaces and with
more general assumptions about sensing and communications.

6. Appendix. The proof of Proposition 1 depends on the following lemma.
Lemma 1. Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all 0.

If 0 is a corner of 〈0, z1, z2, . . . , zm〉, then the constraint set C(z1, z2, . . . , zm) has a
nonempty interior.

Proof of Lemma 1. Suppose that C(z1, z2, . . . , zm) has an empty interior in which
case C(z1, z2, . . . , zm) is the singleton {0}. It will be enough to prove that 0 is not a
corner of 〈0, z1, z2, . . . , zm〉. In what follows we shall assume, without loss of generality,
that 0 is on the boundary of each disk in the intersection; for if there were any disks
in the intersection which contained the origin in their interiors, all such disks could
be removed from the intersection without changing what the intersection equals.

To proceed, let us note first that m > 1 because each C(zi) has a nonempty
interior and, by hypothesis, the intersection C(z1, z2, . . . , zm) does not. Next ob-
serve that since m > 1 and C(z1) has a nonempty interior, there must be a least

integer j ∈ {2, 3, . . . ,m} such that I Δ
=

⋂j−1
i=1 C(zj) has a nonempty interior and

I ∩ C(zj) contains just the origin. The intersection of any positive number of disks
from {C(z1), C(z2), . . . , C(zm)} is either the origin or a convex set with a nonempty
interior; moreover, the latter will always be a strictly convex set whose edges are arcs
from circles bounding disks in the intersection and whose corners are intersections of
such arcs. It follows that C(zj) must either be tangent at the origin to an arc which
is from a circle bounding some disk C(zk) ∈ {C(z1), C(z2), . . . , C(zj−1)} or C(zj)’s
boundary must pass through a corner of I at the origin. If the former is true, then
zk must equal −zj . Since zj �= 0, this means that the origin is halfway between zk
and zj on the line connecting these two points. Hence the origin cannot be a corner
of the polytope 〈0, z1, z2, . . . , zm〉.

Now suppose that the boundary of C(zj) passes through a corner of I at the origin.
Let C(zk) and C(zl) denote two disks in {C(z1), C(z2), . . . , C(zj−1)} whose intersection
at the origin determines this corner. Under these conditions, zk + zl �= 0—for if
zk +zl = 0, then C(zk) and C(zl) would be tangent, and I would consequently contain
just the origin. Moreover, the intersection C(zj) ∩ C(zk) ∩ C(zl) must consist of just
the origin—for if this were not so, then I ∩ C(zj) would have a nonempty interior
since I coincides locally, in an open neighborhood of 0, with C(zk) ∩ C(zl).
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Fig. 1. Three constraint disks whose intersection is the origin.

As illustrated in Figure 1, the requirement that C(zj)∩C(zk)∩C(zl) consist of just
the origin implies that C(zj) must be positioned in such a way so that it intersects
only at the origin with a cone of points determined by tangents to C(zk) and C(zl) at
the origin. This means that zj must lie within the opposing cone shown in grey in
Figure 1. Hence the origin is within the interior of the convex hull of zj , zk, and zl.
Therefore the origin cannot be a corner of 〈0, z1, z2, . . . , zm〉.

Proof of Proposition 1. Lemma 1 and the hypothesis that 0 is a corner of
〈0, z1, z2, . . . , zm〉 imply that C(z1, z2, . . . , zm) has a nonempty interior. From this and
the hypothesis that z �= 0, it follows that if 0 is an interior point of C(z1, z2, . . . , zm),
then a line segment with the required property must exist.

Suppose next that 0 is on the boundary of C(z1, z2, . . . , zm). To complete the
proof it is clearly enough to show that the line from 0 to z passes through the interior
of each disk C(zj) for which 0 is a boundary point. Let C(zj) be such a disk in which
case ||zj || = r. Suppose that the line from 0 to z does not pass through the interior
C(zj). This means that z′jz ≤ 0 and thus that ||z||2 − 2z′jz + ||zj ||2 ≥ ||z||2 + ||zj ||2.
Since ||z − zj ||2 = ||z||2 − 2z′jz + ||zj ||2 and ||zj || = r, it follows that

||z − zj ||2 ≥ ||z||2 + r2.

But ||z||2 > 0 because z �= 0, so

||z − zj || > r.

This contradicts the hypothesis that z is within r units of each point in {z1, z2, . . . , zm}.
Therefore the line from 0 to z must pass through the interior C(zj).

The proof of Proposition 2 depends on the following two lemmas.
Lemma 2. Let z1, z2, . . . , zm be a set of m > 0 points in D which are not all

zero. Let E(x, y) be an edge of 〈0, z1, z2, . . . , zm〉 with distinct corners x and y. Write
L(x, y) for the line passing through x and y, and let S(x, y) denote the closed half-
plane bounded by this line whose intersection with 〈0, z1, z2, . . . , zm〉 is E(x, y). If z
is any point in S(x, y) which is also in D ∩ D(z1, z2, . . . , zm), then the reflection of z
about L(x, y) is also in D ∩ D(z1, z2, . . . , zm).
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Proof of Lemma 2. Note that 〈0, z1, z2, . . . , zm〉 is contained in the half-plane
obtained by reflecting S(x, y) about L(x, y). Because of this, for each w ∈ S

||w̄ − q|| ≤ ||w − q|| ∀q ∈ 〈0, z1, z2, . . . , zm〉,

where w̄ is the reflection of w about L(x, y). In particular, this implies that

||z̄ − zi| ≤ ||z − zi||, i ∈ {0, 1, 2, . . . ,m},(19)

where z0 = 0 and z̄ is the reflection of z about L(x, y). But

||z − zi|| ≤ r, i ∈ {0, 1, 2, . . . ,m},(20)

because z ∈ D ∩ D(z1, z2, . . . , zm). From (19) and (20) it follows that z̄ ∈ D ∩
D(z1, z2, . . . , zm).

Lemma 3. Let L be a line in R
2 which divides a given closed set D into closed

subsets P and Q with Q convex. If the reflection of P about L is a subset of Q, then
the centroid of D is in Q.

Proof. Let P̄ denote the reflection of P about L. By hypothesis, P̄ ⊂ Q. Then
write Q − P̄ for the complement of P̄ in Q. By symmetry, the centroid of P ∪ P̄ is
in L ⊂ Q. Meanwhile, the centroid of Q− P̄ must also be in Q because Q is convex
and Q − P̄ ⊂ Q. Thus the centroid of D must be in Q because it is the average of
the centroids of P ∪ P̄ and Q− P̄ weighted by the areas of P ∪ P̄ and Q− P̄, respec-
tively.

Proof of Proposition 2. Write D for D ∩D(z1, z2, . . . , zm) and let {E1, E2, . . . , Ek}
denote the set of edges of 〈0, z1, z2, . . . , zm〉. For each such edge Ei, let Li denote
the line in R

2 containing Ei and write Si for the closed half-plane bounded by this
line whose intersection with 〈0, z1, z2, . . . , zm〉 is Ei. Let S̄i denote the reflection of Si

about Li. In view of Lemma 2,

Si ∩ D ⊂ D, i ∈ {1, 2, . . . , k},

where Si ∩ D is the reflection of Si ∩D about Li. Since Si ∩ D is also a subset of S̄i,

Si ∩ D ⊂ S̄i ∩ D, i ∈ {1, 2, . . . , k}.(21)

Moreover, by de Morgan’s rule

{Si ∩ D} ∪ {S̄i ∩ D} = D, i ∈ {1, 2, . . . , k},

because Si∪S̄i = R
2, i ∈ {1, 2, . . . , k}. Thus for each i ∈ {1, 2, . . .}, Li divides D into

two closed convex regions, namely Si ∩D and S̄i ∩D. From this, (21), and Lemma 3
it follows that

centroid{D} ∈ S̄i ∩ D, i ∈ {1, 2, . . . , k}.

Therefore

centroid{D} ∈
k⋂

i=1

{S̄i ∩ D}.(22)

But

k⋂
i=1

{S̄i ∩ D} = 〈0, z1, z2, . . . , zm〉
⋂

D(23)
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because

〈0, z1, z2, . . . , zm〉 =

k⋂
i=1

S̄i.

From (22) and (23) it follows that centroid{D} ∈ 〈0, z1, z2, . . . , zm〉.
Now suppose that 0 is a corner of 〈0, z1, z2, . . . , zm〉. Then in view of Lemma 1,

D∩C(z1, z2, . . . , zm) has a nonempty interior. To prove that D∩D(z1, z2, . . . , zm) also
has a nonempty interior, it is therefore enough to show that

C(z1, z2, . . . , zm) ⊂ D(z1, z2, . . . , zm).(24)

Recall that for z ∈ D, D(z) = {x : ||z − x|| ≤ r} and C(z) = {x : || 12z − x|| ≤ r
2}.

Thus for x ∈ C(z)

||z − x|| =

∥∥∥∥1

2
z − x +

1

2
z

∥∥∥∥ ≤
∥∥∥∥1

2
z − x

∥∥∥∥ +

∥∥∥∥1

2
z

∥∥∥∥ ≤ r

2
+

1

2
||z|| ≤ r;

thus x ∈ D(z). Hence C(z) ⊂ D(z), z ∈ D, from which (24) follows.
To prove that the centroid of D is not at 0, it is enough to show that it is not at

0 whenever it lies on an edge of 〈0, z1, z2, . . . , zm〉 which contains 0. Accordingly, let
Ej be an edge of 〈0, z1, z2, . . . , zm〉 which contains both 0 and the centroid of D. Since
the centroid of D lies in Lj , and both Sj ∩ D and S̄j ∩ D have nonempty interiors, it
must be true that

area{Sj ∩ D}d = area{S̄j ∩ D}d̄,

where d is the distance from the centroid of Sj ∩D to the point closest on Lj and d̄ is
correspondingly the distance from the centroid of S̄j ∩ D to the point closest on Lj .
But area{Sj ∩ D} = area{Sj ∩ D}, so

area{Sj ∩ D}d = area{S̄j ∩ D}d̄.(25)

We claim that

Sj ∩ D = S̄j ∩ D.(26)

To establish this claim, we first note that Sj ∩ D ⊂ S̄j ∩ D because (21) holds for all
i ∈ {1, 2, . . . , k}. Thus to prove (26) it is enough to show that the complement of
Sj ∩ D in S̄j ∩D, denoted by W, is empty. Towards this end, suppose that W is non-
empty and has a nonempty interior. Since S̄j ∩D = {Sj ∩ D}∪W and {Sj ∩ D}∩W
is empty, it must be true that

area {S̄j ∩ D}d̄ = area {Sj ∩ D}d1 + area {W}d2,

where d1 is the distance from the centroid of {Sj ∩ D} to the point closest on Lj and
d2 is correspondingly the distance from the centroid of W to the point closest on Lj .
But Sj ∩ D is the reflection of Sj ∩ D about Lj , and thus d1 = d. Therefore

area {S̄j ∩ D}d̄ = area {Sj ∩ D}d + area {W}d2.

This and (25) imply that area {W}d2 = 0. But d2 �= 0 because we have assumed that
W has a nonempty interior. This implies that area {W} = 0, which contradicts the
hypothesis that W has a nonempty interior. Therefore W has an empty interior.
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To show that W is actually empty or, equivalently, that (26) holds, it is enough
to prove that the interior of S̄j ∩ D is contained in Sj ∩ D. For if this is true, then
(26) holds, because both sets are closed and convex with nonempty interiors and

Sj ∩ D ⊂ S̄j ∩ D.
Suppose that the interior of S̄j ∩ D is not contained in Sj ∩ D. Then there must

be a point p in the interior of S̄j ∩D which is not in Sj ∩ D. Since {p} and Sj ∩ D are
disjoint and each is a closed, convex set, there must be a line L̄ which separates the
two and intersects neither. From this it is clear that there is an open set Np ⊂ S̄j ∩D
which contains p and which does not intersect L̄. It follows that Np and Sj ∩ D are
disjoint and thus that Np ⊂ W. But this is impossible because W has no interior.
Therefore W is empty. We have therefore proved that D is symmetric about Lj in
the sense that (26) holds.

Since D has a nonempty interior, its boundary consists of circular arcs resulting
from the intersection of m + 1 disks of radius r. Let A denote a circular arc of
positive length which lies in Sj and which comprises part of the boundary of D.
In view of D’s symmetry about Lj as defined by (26), the reflection of A about
Lj , namely Ā, must be a circular arc of positive length which lies in S̄j and which
comprises part of the boundary of D. Let x and y be points in {0, z1, z2, . . . , zm}
which define disks D(x) and D(y) whose boundaries contain A and Ā, respectively.
Clearly the reflection of D(x) about Lj must equal D(y), which implies that x̄ = y.
Thus x̄ ∈ 〈0, z1, z2, . . . , zm〉. Since either x̄ or x must be in Sj , at least one of these
two points must be in Sj∩〈0, z1, z2, . . . , zm〉, which is equal to Ej . This can only occur
if x̄ = x. In summary we have shown that if A is any circular arc of positive length
comprising part of the boundary of D, and if x is any point in {0, z1, z2, . . . , zm} which
defines a disk D(x) whose boundary contains A, then x must be in Ej .

Now let y be the nonzero endpoint of the edge Ej , let A be any circular arc of
positive length comprising part of the boundary of D, and let xA be any point in
{0, z1, z2, . . . , zm} which defines a disk D(xA) whose boundary contains A. As we
have just shown, xA ∈ Ej . This means there must be a number λ ∈ [0, 1] such that
xA = λy. Let z be any point in D∩D(y). Then by definition ||z|| ≤ r and ||y−z|| ≤ r.
Therefore

||xA − z|| = ||λy − z|| = ||λ(y − z) − (1 − λ)z||

≤ ||λ(y − z)|| + ||(1 − λ)z|| ≤ λ||y − z|| + (1 − λ)||z|| ≤ r,

so z ∈ D(xA). Since z was chosen arbitrarily,

D ∩ D(y) ⊂ D(xA).

This containment holds for each disk D(xA) whose boundary contains a circular arc
A of positive length comprising part of the boundary of D. Since the intersection of
the D(xA) over all such A is D, it must therefore be true that

D ∩ D(y) ⊂ D.(27)

On the other hand, D ⊂ D(y) since y ∈ 〈0, z1, z2, . . . , zm〉. Thus D ⊂ D ∩ D(y). This
and (27) thus imply that

D ∩ D(y) = D.

It follows that the centroid of D must be the centroid of D ∩ D(y). But the centroid
of two intersection disks with the same radius must be at the midpoint between their
centers. Therefore the centroid of D is at 1

2y which is not 0.
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Proof of Proposition 3. In what follows we write z for the n-tuple {z1, z2, . . . , zm} ∈
D

m, and S(z) for the intersection D ∩ D(z1, z2, . . . , zm). Thus for x, y ∈ D
m, S(x) ∩

S(y) = D∩D(x1, x2, . . . , xm)∩D(y1, y2, . . . , ym). For x ∈ D
m, let α(S(x)) and σ(S(x))

denote, respectively, the area and centroid of S(x). Note that σ(S(x)) = 0 whenever
α(S(x)) = 0. This crucial property (which is not true for polygons) is a consequence
of the fact that S(x) is either strictly convex with nonempty interior or the singleton
0.

It will first be shown that z �−→ σ(S(z)) is continuous at each point x ∈ D
m at

which α(S(x)) = 0. Let x be any such point. Clearly σ(S(x)) = 0. Let ε > 0 be fixed.
Since z �−→ diameter(S(z)) is continuous on D

m, there must be a number δ > 0 such
that diameter(S(z)) ≤ ε whenever ||z−x|| ≤ δ. But both 0 and σ(S(z)) are points in
S(z) for all z ∈ D

m. Hence ||σ(S(z))|| ≤ diameter(S(z)), z ∈ D
m; thus |σ(S(z))| ≤ ε

whenever ||z − x|| ≤ δ. Therefore z �−→ σ(S(z)) is continuous at each point x ∈ D
m

at which α(S(x)) = 0.
It will now be shown that z �−→ σ(S(z)) is continuous at each point x ∈ D

m at
which α(S(x)) > 0. Let x be such a point. Pick ε > 0 and define

ε̄ =
ε

ε + 4r
α(S(x)).(28)

Since z �−→ α(S(z)) and z �−→ α(S(x) ∩ S(z)) are continuous on D
m and α(S(x) ∩

S(x)) = α(S(x)), there must be a number δ > 0 such that

|α(S(x)) − α(S(z))| ≤ ε̄ and |α(S(x)) − α(S(x) ∩ S(z))| ≤ ε̄(29)

whenever ||z − x|| ≤ δ. Fix z at any such value. To complete the proof it is enough
to show that

||σ(S(x)) − σ(S(z))|| ≤ ε.(30)

From the first inequality in (29), α(S(z)) ≥ α(S(x))− ε̄. But from (28), α(S(x))−
ε̄ = 4rε̄

ε and thus

α(S(z)) ≥ 4rε̄

ε
.(31)

In general

S(x) = (S(x) ∩ S(z)) ∪ X and S(z) = (S(x) ∩ S(z)) ∪ Z,(32)

where X and Z are the complements of S(x)∩S(z) in S(x) and S(z), respectively. If
S(x)∩S(z) is a strictly proper subset of S(x) (respectively, S(z)), then X (respectively,
Z) is a subset with nonempty interior; in this case α(X ) and σ(X ) (respectively, α(Z)
and σ(Z)) are well defined. If, on the other hand, S(x)∩S(z) equals S(x) (respectively,
S(z)), then X (respectively, Z) is the empty set; in this case α(X ) (respectively, α(Z))
is zero, and σ(X ) (respectively, σ(Z)) is taken to be the 0 vector in R

2.
In view of (32)

α(S(x)) = α(S(x) ∩ S(z)) + α(X ),(33)

α(S(z)) = α(S(x) ∩ S(z)) + α(Z),(34)

α(S(x))σ(S(x)) = α(S(x) ∩ S(z))σ(S(x) ∩ S(z)) + α(X )σ(X ),(35)

α(S(z))σ(S(z)) = α(S(x) ∩ S(z))σ(S(x) ∩ S(z)) + α(Z)σ(Z).(36)
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Subtracting (33) from (34) and (35) from (36), one obtains

α(S(z)) − α(S(x)) = α(Z) − α(X )(37)

and

α(S(z))σ(S(z)) − α(S(x))σ(S(x)) = α(Z)σ(Z) − α(X )σ(X ),(38)

respectively. Using (37) to eliminate α(Z) from (38), there results

α(S(z))σ(S(z))−α(S(x))σ(S(x)) = α(X ){σ(Z)−σ(X )}+{α(S(z))−α(S(x))}σ(Z),

which can be rewritten as

σ(S(z)) − σ(S(x)) =
1

α(S(z))
(39)

×{α(X ){σ(Z) − σ(X )} + {α(S(z)) − α(S(x))}{σ(Z) − σ(S(x))}} .

Since the centroids of Z,X ,S(z), and S(x) are all in D, it must be true that the norm
of each is bounded above by r. This and (40) imply that

||σ(S(z)) − σ(S(x))|| ≤
∥∥∥∥ 1

α(S(z))

∥∥∥∥ {2r||α(X )|| + 2r||α(S(z)) − α(S(x))||} .(40)

But ‖ 1
α(S(z))‖ ≤ ε

4rε̄ because of (31); moreover, ||α(X )|| ≤ ε̄ because of (33) and the

second inequality in (29). From these inequalities, the first inequality in (29), and
(40), it follows that (30) is true.

Proof of Proposition 4. Note first that each point on the piecewise linear curve c
determined by the points y1, y2, . . . , ym is on a line connecting two of these points. It
follows that each point on c is contained in 〈y1, y2, . . . , ym〉. Let y be an interior point
of �y1, y2, . . . , ym; in other words, wn(y, c) �= 0. Because of this, c must encircle y
at least once. Since y is an interior point, any line of sufficient length which passes
through y must intersect c at a minimum of two distinct points. Since points on c are
in 〈y1, y2, . . . , ym〉, y must therefore be in 〈y1, y2, . . . , ym〉 as well.

The proof of Proposition 5 depends on the following fact.
Lemma 4. Let a, b, c, d be four points in the plane positioned so that the line from

a to b intersects the line from c to d, and so that ||a− b|| ≤ r and ||c− d|| ≤ r. Then

min{||a− d||, ||b− c||} ≤ r and min{||a− c||, ||b− d||} ≤ r.(41)

Proof of Lemma 4. Let e denote any point at which the line from a to b intersects
the line from c to d. Since a−d = (a−e)+(e−d) and c−b = (c−e)+(e−b), we can use
the triangle inequality to get ||a−d|| ≤ ||a−e||+||e−d|| and ||c−b|| = ||c−e||+||e−d||,
respectively. Adding these inequalities yields

||a− d|| + ||c− b|| ≤ ||a− e|| + ||e− d|| + ||c− e|| + ||e− b||.

But because a, b, and e are colinear and c, d, and e are colinear, ||a− e|| + ||e− b|| =
||a− b|| and ||c− e|| + ||e− d|| = ||c− d||, respectively. Therefore

||a− d|| + ||c− b|| ≤ ||a− b|| + ||c− d|| ≤ 2r.
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It follows that either ||a − d|| ≤ r or ||c − b|| ≤ r. By the same reasoning, either
||a− c|| ≤ r or ||d− b|| ≤ r. Therefore (41) is true.

Proof of Proposition 5. Suppose w is within r units of z and is not interior to
�y1, y2, . . . , ym. Then the line connecting z and w must intersect the line from yj to
yj+1 for some j ∈ {1, 2, . . . ,m}. Since ||yj − yj+1|| ≤ r, Lemma 4 can be applied with
a = z, b = w, c = yj , and d = yj+1. It follows from (41) that either z or w is linked
to �y1, y2, . . . , ym. Therefore w is so linked.

The proof of Proposition 6 depends on the following lemmas.
Lemma 5. Let a, b, and c be three points in the plane such that ||a− b|| ≤ r and

||a − c|| ≤ r. Any point in the convex hull of a, b, and c is within at most r units of
both a and either b or c.

Proof of Lemma 5. Let d = 1
2 (b+c). Since d−a = 1

2{(a−b)+(a−c)}, it must be
true that ||d− a|| ≤ 1

2{||a− b||+ ||a− c||}. From this and the hypotheses ||a− b|| ≤ r
and ||a− c|| ≤ r, it follows that ||d− a|| ≤ r. Moreover, from the triangle inequality,
||b− c|| ≤ ||b− a||+ ||a− c||. Therefore ||b− c|| ≤ 2r. Since d is the midpoint between
b and c, ||b − d|| ≤ r and ||c − d|| ≤ r. Thus the sets 〈a, b, d〉 and 〈a, c, d〉 each have
diameter no greater than r. Since 〈a, b, c〉 = 〈a, b, d〉 ∪ 〈a, c, d〉, it follows that any
point in 〈a, b, c〉 must be in 〈a, b, d〉 or 〈a, c, d〉 and consequently within r units of a
and either b or c.

Lemma 6. Suppose that z1, z2, . . . , zk are k > 0 interior points of a given cycle
�y1, y2, . . . , ym which are not linked to �y1, y2, . . . , ym and which satisfy ||z1−zi|| ≤ r,
i ∈ {2, 3, . . . , k}. Then each point in the convex hull 〈z1, z2, . . . , zk〉 is an interior point
of �y1, y2, . . . , ym.

Proof of Lemma 6. Note first that if there is any point z ∈ 〈z1, z2, . . . , zk〉 which
is not an interior point of [y1, y2, . . . , ym], then z would have to be either on or outside
of the piecewise linear curve c determined by y1, y2, . . . , ym; in either case this would
mean that the line connecting z to any point in {z1, z2, . . . , zk} would have to intersect
c since, by assumption, z1, z2, . . . , zk are interior points of c. Since any such line is
contained in 〈z1, z2, . . . , zk〉, the convex hull itself would have to intersect c. Thus to
prove the lemma it is enough to show that 〈z1, z2, . . . , zk〉 does not intersect c. To do
this it is sufficient to show that for each pair of points zi, zj ∈ {z1, z2, . . . , zk}, the line

ij from zi to zj does not intersect c. To do this we suppose the contrary, namely that
there is a pair of points zi, zj ∈ {z1, z2, . . . , zk} such that 
ij intersects c. Suppose
this intersection occurs on the line 
 between yq and yq+1.

First consider the case when either zi or zj equals z1 in which case ||zi − zj || ≤ r.
To prove that 
ij does not intersect 
, it is sufficient to prove that for any s ∈
{2, 3, . . . , k}, 
1s and 
 do not intersect. Suppose that for some such s such an inter-
section exists. Since ||yq−yq+1|| ≤ r and ||z1−zs|| ≤ r, Lemma 4 applies with a = z1,
b = zs, c = yq, and d = yq+1. It follows from (41) that either z1 or zs is within r units
of either yq or yq+1. This means that either z1 or zs is linked to �y1, y2, . . . , ym, which
is a contradiction. Therefore for any s ∈ {2, 3, . . . , k}, 
1s and 
 do not intersect. In
particular, 
ij does not intersect 
 if either zi or zj equals z1.

Now suppose that neither zi nor zj equals z1. From what has just been shown we
can conclude that 
 does not intersect either 
1i or 
1j . Since 
 is assumed to intersect

ij , either yq or yq+1 must be in the convex hull 〈z1, zi, zj〉. But ||z1 − zi|| ≤ r and
||z1 − zj || ≤ r; thus from Lemma 5 we can conclude that either yq or yq+1 must be
within r units of z1. But this is a contradiction of the hypothesis that z1 is not linked
to �y1, y2, . . . , ym. Hence 
ij and 
 do not intersect.

Lemma 7. For any four points a, b, c, d in R
2, the set 〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉

is convex.
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Proof of Lemma 7. For the case when d ∈ 〈a, b, c〉, the union 〈a, b, d〉 ∪ 〈a, c, d〉 ∪
〈b, c, d〉 equals 〈a, b, c〉 which is convex. Suppose therefore that d �∈ 〈a, b, c〉. Then
the line through at least one of the bounding edges of 〈a, b, c〉—say the edge from b
to c—must separate d and 〈a, b, c〉. We claim that the four- (or less) corner polygon
P = 〈a, b, d〉 ∪ 〈a, c, d〉 is convex. This certainly must be true if either c ∈ 〈a, b, d〉 or
b ∈ 〈a, c, d〉, since in either case P would be a polygon with at most three corners.
On the other hand, if neither of these cases holds, then the line segment from b to
c must lie totally within P. Thus in this case the line segment between any pair of
corners of P must lie completely within P. Since any four- (or less) corner polygon
in the plane with this property is necessarily convex, P is convex. Finally we note
that 〈b, c, d〉 ⊂ P because b, c, and d are in P. Thus 〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 = P so
〈a, b, d〉 ∪ 〈a, c, d〉 ∪ 〈b, c, d〉 is convex as claimed.

Lemma 8. Let κ : [0, 1] → R
2 be any continuous closed curve, and let a and b be

any two distinct points on κ. Let κ1 be the closed curve consisting of the segment of
κ from a to b together with the straight line segment from b to a. Let κ2 be the closed
curve consisting of the segment of κ from b to a together with the straight line segment
from a to b. Then for any point y ∈ R

2 which is not on κ or on the line from a to b,

wn(y, κ) = wn(y, κ1) + wn(y, κ2).(42)

Proof. Write φ1 and φ2 for the segments of κ from a to b and b to a, respectively,
and let 
1 and 
2 denote the line segments from a to b and b to a, respectively. Then

wn(y, κ1) + wn(y, κ2) =
1

2πj

{∮
κ̃1

dz

z − ỹ
+

∮
κ̃2

dz

z − ỹ

}

=
1

2πj

{∫
φ̃1

dz

z − ỹ
+

∫
�̃1

dz

z − ỹ
+

∫
φ̃2

dz

z − ỹ
+

∫
�̃2

dz

z − ỹ
+

}
.

But ∫
�̃1

dz

z − ỹ
+

∫
�̃2

dz

z − ỹ
= 0,

so

wn(y, κ1) + wn(y, κ2) =
1

2πj

{∫
φ̃1

dz

z − ỹ
+

∫
φ̃2

dz

z − ỹ

}
=

1

2πj

∮
κ̃

dz

z − ỹ

from which (42) follows.
Lemma 9. Let �y1, y2, . . . , ym and �ȳ1, y2, . . . , ym be cycles such that ||y1−ȳ1|| ≤

r. If z is an interior point of �y1, y2, . . . , ym, then either ||z − ȳ1|| ≤ r or z is an
interior point of �ȳ1, y2, . . . , ym or both.

Proof of Lemma 9. Suppose z is not an interior point of �ȳ1, y2, . . . , ym. It is
enough to prove that ||z− ȳ1|| ≤ r. Towards this end let c, c̄, c1, c2, and c̄2 denote the
piecewise linear closed curves determined by the ordered point sets {y1, y2, . . . , ym},
{ȳ1, y2, . . . , ym}, {y2, y3, . . . , ym}, {y1, y2, ym}, and {ȳ1, y2, ym}, respectively.

Suppose first that z is inside or on c2; that is, z ∈ 〈y1, y2, ym〉. By Lemma 7,
〈y1, y2, ȳ1〉∪〈y1, ym, ȳ1〉∪〈y2, ym, ȳ1〉 is a convex set. Thus 〈y1, y2, ym〉 ⊂ 〈y1, y2, ȳ1〉∪
〈y1, ym, ȳ1〉 ∪ 〈y2, ym, ȳ1〉 because y1, y2, and ym are all in the union. Therefore z ∈
〈y1, y2, ȳ1〉 ∪ 〈y1, ym, ȳ1〉 ∪ 〈y2, ym, ȳ1〉. We have assumed ||y1 − ȳ1|| ≤ r. Moreover,
||ȳ1 − y2|| ≤ r and ||ȳ1 − ym|| ≤ r because �ȳ1, y2, . . . , ym is assumed to be a cycle.
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Thus no matter whether z is in 〈y1, y2, ȳ1〉, 〈y1, ym, ȳ1〉, or 〈y2, ym, ȳ1〉, Lemma 5
applies, and it can be concluded that ||z − ȳ1|| ≤ r as claimed.

Consider next the case when z is outside of c2; in other words, wn(z, c2) = 0. Since
z is not on c2, it is clearly not on the line segment from y2 to ym. Therefore Lemma 8
can be applied to c, c1, and c2 providing that wn(z, c) = wn(z, c1) + wn(z, c2). But
by assumption z is an interior point of �y1, y2, . . . , ym, so wn(z, c) �= 0. Therefore

wn(z, c1) �= 0.(43)

By assumption, z is not an interior point of �ȳ1, y2, . . . , ym. Thus z must be either on
c̄ or outside of c̄. If z is on c̄, then it is linked to {ȳ1, y2, . . . , ym}. On the other hand,
if z is outside of c̄, then wn(z, c̄) = 0. Moreover, in this case wn(z, c̄) = wn(z, c1) +
wn(z, c̄2) because of Lemma 8. From this and (43), it follows that wn(z, c̄2) �= 0. Thus
z is inside of c̄2. But �ȳ1, y2, . . . , ym is a cycle, so ||ȳ1 − y2|| ≤ r and ||ym − ȳ1|| ≤ r.
From this and Lemma 5, it follows that ||z − ȳ1|| ≤ r as claimed.

Proof of Proposition 6. Consider the sequence of cycles �y1, y2, . . . , ym, �ȳ1, y2,
. . . , ym, �ȳ1, ȳ2, . . . , ym, . . . , �ȳ1, ȳ2, . . . , ȳm, each being a successor of the one before
it. Let z be any point in 〈z1, z2, . . . , zk〉. By Lemma 6, z is an interior point of
�y1, y2, . . . , ym. Therefore by Lemma 9, either ||z − ȳ1|| ≤ r or z is an interior point
of �ȳ1, y2, . . . , ym. If the former is true, then z is clearly linked to �ȳ1, ȳ2, . . . , ȳm.
On the other hand, if the latter is true, Lemma 9 can again be used, this time to reach
the conclusion that either ||z − ȳ2|| ≤ r or z is an interior point of �ȳ1, ȳ2, . . . , ym
which is not linked to �ȳ1, ȳ2, . . . , ym. Continuing this process a finite number of
times completes the proof.

The proof of Proposition 7 is a simple consequence of the following lemmas.
Lemma 10. Let S be a closed, bounded convex set in R

m. If x and y are vectors
in S for which

||x− y|| = diameter(S),(44)

then x and y are corners of S.
Proof of Lemma 10. Suppose (44) holds. It is enough to show that y is a corner

of S. Suppose that it is not. Then there must be distinct vectors x1 and x2 in S and
a number α ∈ (0, 1) for which y = αx1 + (1−α)x2. In view of (44) and the definition

of dia(S), the function f(λ)
Δ
= ||x − λx1 − (1 − λ)x2||2 must attain its maximum on

[0, 1] at the interior point λ = α. But this is impossible because f(λ) is a nonconstant,
convex function of λ. Therefore, by contradiction y must be a corner of S.

Lemma 11. Let {x1, x2, . . . , xn} ∈ X be fixed. Then

dia{x̄1, x̄2, . . . , x̄n} ≤ dia{x1, x2, . . . , xn},(45)

where for i ∈ {1, 2, . . . , n},

x̄i = xi + umi(xi1 − xi, xi2 − xi, . . . , ximi
− xi).(46)

Moreover, if G is connected, then either the inequality in (45) is strict or x1 = x2 =
· · · = xn.

Proof of Lemma 11. By definition, for m > 0, um(·) maps the vectors zi ∈ D, i ∈
{1, 2, . . . ,m}, into a point z̄ in the convex hull 〈0, z1, z2, . . . zm〉; moreover, z̄ is not
a corner of 〈0, z1, z2, . . . , zm〉 unless z1 = z2 = · · · = zm = 0. In the present context
this means that for i ∈ {1, 2, . . . , n}, xi + umi(·) maps the vectors xij − xi ∈ D, j ∈
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{1, 2, . . . ,mi}, into the point x̄i in the convex hull 〈xi, xi1 , xi2 , . . . , ximi
〉; moreover,

x̄i is not a corner of 〈xi, xi1 , xi2 , . . . , ximi
〉 unless xi = xi1 = xi2 = · · · = ximi

. Since
each 〈xi, xi1 , xi2 , . . . , ximi

〉 is a subset of 〈x1, x2, . . . , xn〉, it must be true that

〈x̄1, x̄2, . . . x̄n〉 ⊂ 〈x1, x2, . . . xn〉.(47)

Moreover, x̄i is not a corner of 〈x1, x2, . . . , xn〉 unless xi = xi1 = xi2 = · · · = ximi
.

Inequality (45) is a direct consequence of (47).
Now suppose that G is connected and that the xi are not all equal. Then for

each i ∈ {1, 2, . . . , n}, there is at least one ij ∈ {i1, i2, . . . , imi
} for which xij �= xi.

This means that it cannot be true that xi = xi1 = xi2 = · · · = ximi
for any value of

i ∈ {1, 2, . . . , n}. Therefore x̄i, i ∈ {1, 2, . . . , n}, is not a corner of 〈x1, x2, . . . , xn〉.
From this and Lemma 10 it follows that the inequality in (45) is strict.

It is worth noting that (47) establishes that the sequence of convex hulls of agent
positions generated on successive steps must form a descending chain of convex sets.
As a consequence, one can conclude at once that the sequence has a limit set H into
which all agents must eventually move and remain. While this fact does not depend
upon the um(·) being continuous, the fact that H is actually a single point does.

Proof of Proposition 7. Note that (11) implies that

dia{x1, x2, . . . , xn} = dia{e1, e2, . . . , en−1, 0}

because the diameter of a convex set is invariant under translation. Therefore

V (e) = dia{x1, x2, . . . , xn}.(48)

Next observe that Lemma 11 says that

dia{x1 + f1(e), x2 + f2(e), . . . , xn + fn(e)} ≤ dia{x1, x2, . . . , xn}(49)

with the inequality being strict if G is connected. But

dia{x1 + f1(e), x2 + f2(e), . . . , xn + fn(e)}

= dia{e1 + f1(e) − fn(e), e2 + f2(e) − fn(e), . . . , xn−1 + fn−1(e) − fn(e), 0}

= V (e + f(e)).

From this, (49), and (48) it is clear that

V (e + f(e)) − V (e)

is a negative semidefinite function and actually a negative definite function if G is
connected.
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Abstract. This paper is concerned with the collective behavior of a group of n > 1 mobile
autonomous agents, labelled 1 through n, which can all move in the plane. Each agent is able
to continuously track the positions of all other agents currently within its “sensing region,” where
by an agent’s sensing region we mean a closed disk of positive radius r centered at the agent’s
current position. The multi-agent rendezvous problem is to devise “local” control strategies, one
for each agent, which without any active communication between agents cause all members of the
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1. Introduction. This paper is concerned with the collective behavior of a group
of n > 1 mobile autonomous agents, labelled 1 through n, which can all move in the
plane. Each agent is able to continuously track the positions of all other agents
currently within its “sensing region,” where by an agent’s sensing region we mean a
closed disk of positive radius r centered at the agent’s current position. The multi-
agent rendezvous problem is to devise “local” control strategies, one for each agent,
which without any active communication between agents cause all members of the
group to eventually rendezvous at a single unspecified location.

The rendezvous problem, which is also sometimes called a “gathering problem,”
has been studied before assuming that all agents possess either unlimited visibility
(e.g., r = ∞) [4] or a common sense of direction [9, 5] or both; see [5] for additional
references. The problem has also been addressed before without making either of
these assumptions [1, 8]. This paper also treats the case in which individual agents
have limited visibility and distinct frames of reference. What distinguishes this work
from that in [1, 8] is that individual agents clocks are taken to be unsynchronized.
These three features, namely limited sensing, no common frame of reference or sense
of direction, and no common clock, are of obvious practical importance but have
apparently not been dealt with before at the same time as components of one multi-
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agent rendezvous problem.
As in [1, 8], we consider distributed strategies which guide each agent toward

rendezvous by performing a sequence of “stop-and-go” maneuvers. A stop-and-go
maneuver takes place within a time interval consisting of two consecutive subintervals.
The first, called a sensing period, is an interval of fixed length during which the agent
is stationary. The second, called a maneuvering period, is an interval of variable length
during which the agent moves from its current position to its next “way-point” and
again comes to rest. Successive way-points for each agent are chosen to be within rM
units of each other, where rM is a prespecified positive distance no larger than r. It is
assumed that there has been chosen for each agent i a positive number τMi , called a
maneuver time, which is large enough so that the required maneuver for agent i from
any one way-point to the next can be accomplished in at most τMi

seconds. Since
our interest here is exclusively with devising high level strategies which dictate when
and where agents are to move, we will use point models for agents and shall not deal
with how maneuvers are actually carried out or with how vehicle collisions are to be
avoided.

In the synchronous case treated in [1, 8], the kth maneuvering period of each agent
is synchronized to begin at the same time t̄k as the kth maneuvering period of every
other agent. Agent i’s registered neighbors at the beginning of its kth maneuvering
period are taken to be all those other agents positioned within agent i’s sensing
region at the beginning of the period. Because of synchronization, this notion of a
registered neighbor induces a symmetric relation on the agent group in that agent j
is a registered neighbor of agent i at the beginning of maneuvering period k just in
case agent i is a registered neighbor of agent j at the same time. As a result, it is
possible to characterize neighbor relationships at time t̄k with a simple graph whose
vertices represent agents and whose edges represent existing neighbor relationships [8].
Although the neighbor relation is symmetric, it is clearly not transitive. On the other
hand, if agent i is at the same position as neighbor j at time t̄k, then any registered
neighbor of agent j at time t̄k certainly must be a registered neighbor of agent i at
the same time. It is precisely because of this weak transitivity property that one can
infer a global condition of the entire synchronized agent group from a local condition
of one agent and its neighbors. In particular, if the graph characterizing neighbor
relationships at time t̄k is connected, and any one agent is at the same position as
all of its neighbors, then the weak transitivity property guarantees at once that all n
agents have rendezvoused at time t̄k.

Our aim in this paper is to relax the synchronization requirement. In particular
we will not require synchronization of the start times of the maneuvering periods of
different agents. To accomplish this it is necessary to modify somewhat what is meant
by a registered neighbor of agent i at time t̄ik where for the asynchronous case under
consideration, t̄ik denotes the time at which agent i’s kth maneuvering period begins.
Our definition is guided by considerations discussed above for the synchronous case.
For example, the new definition is crafted to retain versions of the symmetry and weak
transitivity properties of the registered neighbor relation inherent in the synchronous
case. Doing this is challenging, because unlike the synchronous case, the times each
agent registers its neighbors and its neighbors’ positions are not synchronized with
the times its neighbors do the same thing.

Exactly the same way-point update rules considered in the synchronous case [8]
are adopted for the asynchronous case. Thus the only functional differences between
the two cases are the definitions of registered neighbors and registered neighbor po-
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sitions. Of course in the asynchronous case, way-point updates are computed asyn-
chronously, whereas in the synchronous case they are not.

Not surprisingly, the analysis of the asynchronous version of the problem is con-
siderably more challenging than that of the synchronous version. For example, while
it is more or less obvious in the synchronous case that the proposed way-point update
rules causes all agents to retain their neighbors as the system evolves [8], proving that
this is also true in the asynchronous case involves a number of steps.

Just as in the synchronous case, it is possible to characterize neighbor relationships
with a graph. This is done in section 3 by first merging together into a single ordered
time set the distinct “event times” t̄ik, i ∈ {1, 2, . . . , n}, k ≥ 1, generated by all n
agents. The elements of this set are then relabelled as t1, t2, . . . in such a way so that
tj < tj+1, j ∈ {1, 2, . . .}. With this notation, agent i’s registered neighbors at its kth
event time t̄ik are its registered neighbors at time tPi(k), where Pi(k) denotes that
value of p for which tp = t̄ik. For each i ∈ {1, 2, . . . , n}, the domain of definition of
agent i’s registered neighbors is then extended from the set {tPi(k) : k ≥ 1} to the set
{tp : p ≥ Pi(1)} by stipulating that for values of tp which are between two successive
event times of agent i, say between t̄ik and t̄i(k+1), agent i’s registered neighbors are
the same as its registered neighbors at time t̄ik. This means that registered neighbors

of each agent are defined at each time tp ≥ tp̄, where p̄
Δ
= max{P1(1), P2(1), . . . Pn(1)}.

Because of this, it is possible to describe neighbor relationships with a directed graph
with vertex set {1, 2, . . . , n} and directed edge set defined so that (i, j) is a directed
edge from vertex i to vertex j just in case agent j is a registered neighbor of agent i
at event time ts. The main result of this paper (Corollary 1) is that if this graph is
ever strongly connected, then rendezvous of all n agents will eventually occur.

Establishing the correctness of Corollary 1 requires the analysis of the asymptotic
behavior of the asynchronous process which describes the n-agent system. Despite the
apparent complexity of this process, it is possible to capture its salient features using
a suitably defined synchronous discrete-time, hybrid dynamical system S. We call the
sequence of steps involved in defining S analytic synchronization. Analytic synchro-
nization is applicable to any finite family of continuous or discrete-time dynamical
processes {P1,P2, . . . ,Pn} under the following conditions. First, each process Pi must
be a dynamical system whose inputs consist of functions of the states of the other
processes as well as signals which are exogenous to the entire family. Second, each pro-
cess Pi must have associated with it an ordered sequence of event times {ti1, ti2, . . .}
defined in such a way so that the state of Pi at event time ti(ki+1) is uniquely de-
termined by values of the exogenous signals and states of the Pj , j ∈ {1, 2, . . . , n},
at event times tjkj which occur prior to ti(ki+1) but in the finite past. Event time
sequences for different processes need not be synchronized. Analytic synchronization
is a procedure for creating a single synchronous process for purposes of analysis which
captures the salient features of the original n asynchronously functioning processes.
As a first step, all n event time sequences are merged into a single ordered sequence of
even times T . This clever idea has been used before in [2] to study the convergence of
totally asynchronous iterative algorithms. Second, the “synchronized” state of Pi is
then defined to be the original of Pi at Pi’s event times {ti1, ti2, . . .} plus possibly some
additional state variables; at values of t ∈ T between event times tiki and ti(ki+1), the
synchronized state of Pi is taken to be the same as the value of its original state at
time tik. Although it is not always possible to carry out all of these steps, in this case
it is. What ultimately results is a synchronous dynamical system evolving on T with
a state composed of the synchronized states of the n individual processes under con-
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sideration. The definition of S in section 4.1 illustrates the analytic synchronization
procedure.

2. The asynchronous agent system. The strategy analyzed in [1, 8] cannot
be regarded as truly distributed because each agent’s decisions must be synchronized
to a common clock shared by all other agents in the group. In what follows we
redefine the strategies so that a common clock is not required. To do this it will
be necessary to modify somewhat what is meant by a registered neighbor and by a
registered neighbor’s position.

For each agent i, the real time axis can be partitioned into a sequence of time
intervals [0, ti1), [ti1, ti2), . . . , [ti(k−1), tik), . . . , each of length at most τD + τMi , where
τD is a number greater than τMi called a dwell time. Each interval [ti(k−1), tik) consists
of a sensing period [ti(k−1), t̄ik) of fixed length τD during which agent i is stationary,
followed by a maneuvering period [t̄ik, tik) of length at most τMi during which agent
i moves from its current position to its next way-point. Although all agents use the
same dwell time, they operate asynchronously in the sense that the time sequences
ti1, ti2, . . . , i ∈ {1, 2, . . . , n}, are uncorrelated. Thus each agent’s strategy can be
implemented independent of the rest, without the need for a common clock.

2.1. Registered neighbors. Because of the asynchronous nature of the control
strategies under consideration, care must be exercised in defining what is meant by
a registered neighbor if one is to end up with something similar to the symmetry
property of the neighbor relationship defined in the synchronous case. For the asyn-
chronous case, agent i’s registered neighbors at time t̄ik (i.e., at the beginning of its
kth maneuvering period [t̄ik, tik)) are taken to be those agents which are fixed at one
position within agent i’s sensing region for at least τS > 0 seconds during agent i’s

kth sensing period Si(k)
Δ
= [ti(k−1), t̄ik). Here τS is a positive number called a sensing

time. For reasons to be made clear below, we shall require τS to satisfy

τS ≤ 1

2
(τD − τMi) ∀i ∈ {1, 2, . . . , n}.(1)

Note that this implies that τD > τMi , i ∈ {1, 2, . . . , n}, which means that the n agents
spend more time between successive way-points sensing their neighbors’ positions than
they do maneuvering between successive way-points. For any agent j, there may be
more than one distinct interval of length at least τS within Si(k) during which agent
j is stationary. Let t∗ denote the end time of the last of these. For purposes of
calculation, agent i takes the registered position of agent j at the beginning of its kth
maneuvering period to be the actual position of agent j at registration time t∗. To
attain a symmetry-like property for the asynchronous case, it is necessary to make sure
that the registration interval [t∗ − τS , t

∗) lies within one of agent j’s sensing periods.
One way to guarantee this is to require each agent to keep moving during each of its
maneuvering periods except possibly for brief periods which are each shorter than τS .
Another way is to equip each agent with a signaling device (such as a light in the case
of visual sensing) which is on just in case the agent is in one of its sensing periods. In
what follows we will assume that registration of each agent j during one of agent i’s
sensing periods always occurs at the end of a registration interval [t∗ − τS , t

∗) which
also lies within one of agent j’s sensing periods. Note that this and the requirement
that agent j be stationary during its sensing periods together imply that agent j’s
registered position xj(t

∗) is equal to xj(t̄jk∗), where k∗ is the sensing/maneuvering
interval of agent j during which registration takes place.
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2.1.1. Neighbor characterization. Prompted by the preceding, let us agree
to say that for each i, j ∈ {1, 2, . . . , n}, agent j’s pth sensing period Sj(p) strongly
overlaps agent i’s kth sensing period Si(k) if the overlap Sj(p) ∩ Si(k) is a nonempty
interval of length at least τS seconds. In what follows we write Sj(p) ∩ Si(k) � τS
whenever Si(k) and Sj(p) strongly overlap. Let us note that because all sensing
periods of all agents are τD seconds long, the largest number of sensing periods of
any one agent which a given sensing period of agent i can overlap is two. On the
other hand, each sensing period of agent i must strongly overlap at least one sensing
period of every other agent. To understand why this is so, note first that the maximal
possible amount of time between two successive sensing periods of agent j is τMj , but
τMj is bounded above by τD−2τS because of (1). Thus the maximal possible amount
of time between two successive sensing periods of agent j is no greater than τD −2τS .
Given this and the fact that all sensing periods are τD seconds long, it follows that
each sensing period of agent i must strongly overlap at least one sensing period of
each agent j.

It is possible to be more explicit about which sensing periods of agent j overlap
Si(k). For each i, j ∈ {1, 2, . . . , n} and each k ≥ 1, let 	t̄ik
j denote the smallest
integer q such that t̄jq ≥ t̄ik. In other words, 	t̄ik
j is the unique integer for which
t̄ik ∈ (t̄j(q−1), t̄jq]. Set q = 	t̄ik
j . In view of the definition of 	·
j and the preceding
discussion it is clear that the only sensing periods of agent j which Si(k) can overlap
are Sj(q − 1) and Sj(q); moreover, Si(k) must strongly overlap one of these. There
are three possible situations which might occur. In the first, shown in Figure 1(a),
the only sensing period of agent j which overlaps Si(k) is Sj(q − 1); in this case the
length of the overlap is τD − (t̄ik − t̄j(q−1)), and this length will always be greater
than or equal to τS . Therefore in this situation, Si(k) and Sj(q− 1) strongly overlap.
For the second situation, shown in Figure 1(b), the only sensing period of agent j
which overlaps Si(k) is Sj(q); in this case the length of the overlap is τD − (t̄jq − t̄ik),
and this length will also always be greater than or equal to τS . Therefore in this
situation Si(k) and Sj(q) strongly overlap. The only other possible situation that can
occur, which is shown in Figure 1(c), is when Si(k) is overlapped by both Sj(q − 1)
and Sj(q). In this case the lengths of the first and second overlapping intervals are
τD − (t̄j(q−1) − t̄ik) and τD − (t̄ik − t̄jq), respectively, and at least one of these lengths
will always be greater than or equal to τS . Thus in this situation, Si(k) strongly
overlaps Sj(q − 1) or Sj(q) or both. We summarize.

Lemma 1 (overlaps). Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be
fixed and define q = 	t̄ik
j. The only possible sensing periods of agent j which Si(k)
can overlap are Sj(q − 1) and Sj(q); moreover, Si(k) must strongly overlap at least
one of these. In addition,

1. Si(k) ∩ Sj(q) � τS if and only if t̄jq − t̄ik ≤ τD − τS;
2. Si(k) ∩ Sj(q − 1) � τS if and only if t̄ik − t̄j(q−1) ≤ τD − τS.

Note that for agent j to be a registered neighbor of agent i at the beginning of
agent i’s kth maneuvering period, it is necessary and sufficient that agent j be “within
range of agent i” (i.e., within agent i’s sensing region) during a sensing period of agent
j which strongly overlaps Si(k). Consider again Figure 1 where q = 	t̄ik
j . In the
situation depicted in Figure 1(a), agent j will be a registered neighbor of agent i just
in case ||xi(t̄ik) − xj(t̄j(q−1))|| ≤ r; moreover, if this condition holds, xj(t̄j(q−1)) will
be the registered position of agent j. Similarly in the situation shown in Figure 1(b),
agent j will be a registered neighbor of agent i just in case ||xj(t̄jq) − xi(t̄ik)|| ≤ r;
moreover, if this condition holds, xj(t̄jq) will be the registered position of agent j.
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Fig. 1. Sensing period overlaps.

The remaining situation shown in Figure 1(c) is slightly more complicated. If, on
the one hand, the length of the second overlap is greater than or equal to τS and
||xj(t̄jq) − xi(t̄ik)|| ≤ r, then agent j will be a registered neighbor of agent i with
registered position xj(t̄jq). If either of these two conditions fails to hold, if the length
of the first overlap is greater than or equal to τS , and if ||xi(t̄ik)−xj(t̄j(q−1))|| ≤ r, then
agent j will be a registered neighbor of agent i, and xj(t̄j(q−1)) will be its registered
position. The following proposition summarizes these observations.

Proposition 1 (neighbor characterization). Let i, j ∈ {1, 2, . . . , n} and t̄ik be
fixed and let q = 	t̄ik
j. Then agent j is a registered neighbor of agent i at the beginning
of agent i’s kth maneuvering period if and only if at least one of the following is true.

(A) Si(k) ∩ Sj(q) � τS and ||xj(t̄jq) − xi(t̄ik)|| ≤ r.
(B) Si(k) ∩ Sj(q − 1) � τS and ||xi(t̄ik) − xj(t̄j(q−1))|| ≤ r.

Moreover, if (A) is true, then xj(t̄jq) is the registered position of agent j at the be-
ginning of agent i’s kth maneuvering period, and if (A) is not true while (B) is,
then xj(t̄j(q−1)) is the registered position of agent j at the beginning of agent i’s kth
maneuvering period.

2.1.2. Neighbor relationship symmetry. The definition of a registered neigh-
bor determines a relationship between agents similar to the symmetric relationship
determined by the definition of a registered neighbor in the synchronous case [8].
Suppose that agent j is a registered neighbor of agent i at the beginning of agent i’s
kth maneuvering period. In view of Proposition 1, either condition (A) or condition
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(B) must hold. Suppose first that condition (A) is true. Then Si(k) strongly overlaps
Sj(q), and agent i is in range of agent j during the overlap. There are two cases
to consider. First, it is possible that Si(k + 1) also strongly overlaps Sj(q) for at
least τS time units and agent i is in range of agent j during this overlap; in this case
agent i would be a registered neighbor of agent j at time t̄jq, and xi(t̄i(k+1)) would be
its registered position. Second, it is possible either that Si(k + 1) does not strongly
overlap Sj(q) or that agent i is not in range of agent j during this overlap; in this
case agent i would be a registered neighbor of agent j at time t̄jq, and xi(t̄ik) would
be its registered position. Thus in summary, if condition A is true, then agent i will
be a registered neighbor of agent j at time t̄jq with registered position which could
be either xi(t̄ik) or xi(t̄i(k+1)).

Suppose next that condition (A) does not hold. In view of Proposition 1, condition
(B) must hold. In other words, Si(k) must strongly overlap Sj(q − 1), and agent i
must be in range of agent j during this overlap. In view of Lemma 1, this must be
the last sensing period of agent i with these properties because we have assumed that
condition (A) does not hold. Therefore agent i must be a registered neighbor of agent
j at time t̄j(q−1), and xi(t̄ik) must be its registered position. We summarize.

Proposition 2 (neighbor relationship symmetry). Suppose that agent j is a
registered neighbor of agent i at the beginning of agent i’s kth maneuvering period.
Let q = 	t̄ik
j. If condition (A) of Proposition 1 holds, then agent i is a registered
neighbor of agent j at the beginning of agent j’s qth maneuvering period with either
xi(t̄ik) or xi(t̄i(k+1)) as its registered position. If condition (A) of Proposition 1 does
not hold, then condition (B) must hold and agent i is a registered neighbor of agent
j at the beginning of agent j’s (q − 1)st maneuvering period with registered position
xi(t̄ik).

2.1.3. Motion constraint. In the synchronous case treated in [1], each agent’s
way-points are constrained to positions defined in such a way so that no agent can lose
any of its neighbors as it moves from one way-point to the next. This is accomplished
by adopting a clever idea proposed in [1] which we call the pairwise motion constraint.
Neighbor retention can also be achieved in the asynchronous case by enforcing the
following constraint. Agent i is said to satisfy the motion constraints induced by its
neighbors if for each j ∈ {1, 2, . . . , n} for which j �= i and each k ∈ {1, 2, . . .} for which
agent j is a registered neighbor of agent i at the beginning of maneuvering period k,
the position to which agent i moves at the end of the period is within a closed disk of
diameter r centered at the mean of agent i’s position at the beginning of the period
(i.e., at time t̄ik) and the registered position of agent j at the beginning of the period.
As mentioned, in the synchronous case, satisfaction of the pairwise motion constraint
by agent i and neighbor j causes each to retain the other as a neighbor. The following
proposition implies that essentially the same thing is true in the asynchronous case
when the induced motion constraints are satisfied by agents i and j.

Proposition 3 (neighbor retention). Suppose that agents i and j satisfy the
motion constraints induced by their registered neighbors. If agent j is a registered
neighbor of agent i at the beginning of agent i’s kth maneuvering period, then agent j is
also a registered neighbor of agent i at the beginning of agent i’s (k+1)st maneuvering
period.

In proving Proposition 3 and several subsequent claims we will make use of the
inequalities

t̄j(q+p) − t̄jq ≥ pτD, p ∈ {0, 1, 2, . . .}, q ∈ {1, 2, . . .}, j ∈ {1, 2, . . . , n},(2)
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and

t̄i(k+1) − t̄ik ≤ 2(τD − τS), k ∈ {1, 2, . . .}, i ∈ {1, 2, . . . , n},(3)

which are both direct consequences of the definitions of the sensing and maneuver
periods and (1). To justify (2), let us first recall that for each integer s ≥ 1, t̄js is at
the end of agent j’s sth sensing period. In addition, agent j’s sensing periods do not
intersect and are each of length τD. It follows that t̄j(s+1)− t̄js ≥ τD, s ≥ 1, and thus
that (2) is true. To justify (3), note that t̄i(k+1) can be written as t̄i(k+1) = t̄ik+τD+τ ,
where τ is the length of agent i’s kth maneuvering period. Since τ is constrained to
satisfy τ ≤ τMi , we can write t̄i(k+1) ≤ t̄ik + τD + τMi . From this and (1) it follows
that t̄i(k+1) ≤ t̄ik + τD + (τD − 2τS) and thus that (3) is true.

To prove Proposition 3, we will make use of the two conditions characterizing a
registered neighbor in Proposition 1. Each of these conditions in turn involves both an
overlap requirement and a range requirement. The next lemma provides the needed
facts about the way in which two agents’ sensing periods overlap. This is followed by
Lemma 3 which provides the range information needed to prove Proposition 3 and
subsequent claims.

Lemma 2. Let i and j be distinct integers in {1, 2, . . . , n}. Let t̄ik be fixed and
define q = 	t̄ik
j. Then

	t̄i(k+1)
j ∈ {q, q + 1, q + 2}.(4)

1. If 	t̄i(k+1)
j = q, then Si(k + 1) ∩ Sj(q) � τS.

2. If 	t̄i(k+1)
j = q+1, then Si(k+1)∩Sj(q) � τS or Si(k+1)∩Sj(q+1) � τS.

3. If 	t̄i(k+1)
j = q + 2, then Si(k) ∩ Sj(q) � τS and Si(k + 1) ∩ Sj(q + 1) � τS.
Moreover, if 	t̄i(k+1)
j ∈ {q + 1, q + 2}, then Si(k) and Si(k + 1) are the only sensing
periods of agent i which can strongly overlap Sj(q).

Proof of Lemma 2. It will be shown first that (4) is true. Since t̄ik ∈ (t̄j(q−1)− t̄jq]
and t̄i(k+1) > t̄ik, it must be true that t̄i(k+1) > t̄j(q−1). Thus 	t̄i(k+1)
 ≥ q. To prove
that 	t̄i(k+1)
j ≤ q + 2, we use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤
2(τD− τS)+ t̄jq. In view of (2) (with p = 1), 2(τD− τS)+ t̄jq ≤ τD + t̄j(q+1) ≤ t̄j(q+2).
Therefore t̄i(k+1) ≤ t̄j(q+2). This means that 	t̄i(k+1)
j ≤ q + 2. Thus (4) is true.

To prove assertion 1, we use (2) with i substituted for j and p = 1 to write
t̄i(k+1) ≥ t̄ik + τD. In view of the definition of q, t̄ik > t̄j(q−1). Therefore t̄i(k+1) −
t̄j(q−1) > τD > τD − τS . The hypothesis 	t̄i(k+1)
 = q implies that Lemma 1 holds
with k + 1 substituted for k. Thus Si(k + 1) and Sj(q − 1) cannot overlap because
of the lemma’s last claim. Since the lemma also states that Si(k + 1) must strongly
overlap either Sj(q − 1) or Sj(q), it must be true that Si(k + 1) strongly overlaps
Sj(q). Therefore assertion 1 is true.

Assertion 2 assumes that 	t̄i(k+1)
j = q + 1. Lemma 1 thus applies with k + 1
and q + 1 replacing k and q, respectively. From this it follows that the only sensing
periods of agent j which can overlap S1(k + 1) are Sj(q) and Sj(q + 1); moreover,
S1(k + 1) must strongly overlap at least one of these. Thus assertion 2 is true.

Assertion 3 assumes that 	t̄i(k+1)
j = q+2. Thus t̄j(q+1) < t̄i(k+1). But t̄jq+τD ≤
t̄j(q+1) because of (2) (with p = 1), and t̄i(k+1) ≤ t̄ik + 2(τD − τS) because of (3).
Therefore t̄jq ≤ t̄ik+τD−2τS . It follows that t̄jq− t̄ik+τD−τS . Therefore by the first
assertion of Lemma 1, Si(k) and Sj(q) must strongly overlap. It remains to be shown
that Si(k+1)∩Sj(q+1) � τS if 	t̄i(k+1)
j = q+2. Since 	t̄i(k+1)
j = q+2, Lemma 1
applies with k+1 and q+2 replacing k and q, respectively. Thus, to prove that Si(k+1)
and Sj(q+1) also strongly overlap, it is enough to show that t̄i(k+1)−t̄j(q+1) ≤ τD−τS .
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To do this, we first use (3) and the fact that t̄ik ≤ t̄jq to write t̄i(k+1) ≤ t̄jq+2(τD−τS).
From this and (2) with p = 1 there follows t̄i(k+1) ≤ t̄j(q+1) + τD − 2τS . Therefore
t̄i(k+1) ≤ t̄j(q+1) + τD − τS . Thus Si(k + 1) ∩ Sj(q + 1) � τS , so assertion 3 is true.

Now suppose that 	t̄i(k+1)
j ∈ {q + 1, q + 2}. Then in either case t̄jq ≤ t̄i(k+1).
Therefore t̄ik ≤ t̄jq ≤ t̄i(k+1). If t̄ik �= t̄jq, then t̄ik < t̄jq ≤ t̄i(k+1), which means
that 	t̄jq
 = t̄i(k+1); thus Lemma 1 applies with k and q replaced by q and k + 1,
respectively. Therefore in this case Si(k) and Si(k + 1) are the only sensing periods
of agent i which can strongly overlap Sj(q). Now suppose that t̄ik = t̄jq. This means
that 	t̄jq
 = t̄ik; thus Lemma 1 applies with k and q interchanged. Therefore in this
case Si(k − 1) and Si(k) are the only sensing periods of agent i which can strongly
overlap Sj(q). To complete the proof, it is enough to show that Si(k − 1) cannot
strongly overlap Sj(q). Towards this end, first note that t̄ik ≥ t̄i(k−1) + τD because of
(2). Thus t̄jq ≥ t̄i(k−1) + τD, so t̄jq − t̄i(k−1) > +τD − τS . Therefore Si(k− 1) cannot
strongly overlap Sj(q) because of Lemma 1.

Lemma 3. Let q = 	t̄ik
j. Suppose that agents i and j satisfy the motion con-
straints induced by their registered neighbors. If agent j is a registered neighbor of
agent i at the beginning of agent i’s kth maneuvering period, then

||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤ r,(5)

||xi(t̄i(k+1)) − xj(t̄j(q∗+1)|| ≤ r,(6)

where q∗ = q if condition (A) of Proposition 1 is true and q∗ = q − 1 if it is not.
Moreover, in either case

||xi(t̄ik) − xj(t̄jq)|| ≤ r.(7)

Proof of Lemma 3. First suppose that agent j is a registered neighbor of agent i
at the beginning of maneuvering period k. Thus by Proposition 1, xjq∗ is agent j’s
registered position, and

||xi(t̄ik) − xj(t̄jq∗)|| ≤ r,(8)

where q∗ = q if condition A holds and q∗ = q − 1 if it does not. The positions of
agent i at the beginning and end of its kth maneuvering period are xi(t̄ik) and xi(tik),
respectively. Therefore since agent i satisfies the motion constraint induced by agent
j during this period, ||xi(tik) − 1

2{xi(t̄ik) + xj(t̄jq∗)}|| ≤ r
2 . But xi(t̄i(k+1)) = xi(tik)

because agent i does not move during sensing period [tik, t̄i(k+1)). This enables us to
rewrite the preceding inequality as∥∥∥∥xi(t̄i(k+1)) −

1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥ ≤ r

2
.(9)

Observe that

xi(t̄i(k+1)) − xj(t̄jq∗) = xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)} −

1

2
(xj(t̄jq∗) − xi(t̄ik)) .

Hence

||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤
∥∥∥∥xi(t̄i(k+1)) −

1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥
+

∥∥∥∥1

2
(xj(t̄jk∗) − xi(t̄ik))

∥∥∥∥ .
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From this, (8), and (9) there follows ||xi(t̄i(k+1)) − xj(t̄jq∗)|| ≤ r
2 + r

2 = r. Therefore
(5) is true.

It will now be shown that (6) is also true. By Proposition 2, agent i is a registered
neighbor of agent j at the beginning of agent j’s q∗th maneuvering period, where
q∗ = q if condition (A) of Proposition 1 holds and q∗ = q − 1 if it does not. Thus by
Proposition 1

||xj(t̄jq∗) − x̄i|| ≤ r,(10)

where x̄i denotes the registered position of agent i at t̄jq∗ . The positions of agent j
at the beginning and end of its q∗th maneuvering period are xj(t̄jq∗) and xj(tjq∗),
respectively. Therefore since agent j satisfies the motion constraint induced by agent
i during this period, ||xj(tjq∗) − 1

2{xj(t̄jq∗) + x̄i}|| ≤ r
2 . But xj(t̄j(q∗+1)) = xj(tjq∗)

because agent j does not move during sensing period q∗ + 1. Therefore∥∥∥∥xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + x̄i}

∥∥∥∥ ≤ r

2
.(11)

In view of Proposition 2, x̄i could be either xi(t̄ik) or xi(t̄i(k+1)) if condition A of
Proposition 1 holds, while x̄i = xi(t̄ik) if it does not. Consider first the case when
x̄i = xi(t̄ik). It is then possible to rewrite (11) as∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥ ≤ r

2
.(12)

But

||xi(t̄i(k+1)) − xj(t̄j(q∗+1))|| =

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)}

−(xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)})

∥∥∥∥
≤

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xi(t̄ik) + xj(t̄jq∗)}

∥∥∥∥
+

∥∥∥∥xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥ .
From this, (9), and (12) it follows that ||xi(t̄i(k+1))− xj(t̄j(q∗+1))|| ≤ r and thus that
(6) holds.

It will now be shown that (6) also holds for the case when x̄i = xi(t̄i(k+1)) which
only occurs when q∗ = q. Assuming this possibility, (11) can be written as∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

∥∥∥∥ ≤ r

2
.(13)

Observe that it is possible to write

xj(t̄j(q∗+1)) − xi(t̄i(k+1)) = xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

− 1

2

(
xi(t̄i(k+1)) −

1

2
{xj(t̄jq∗) + xi(t̄ik)}

)

+
1

4
(xj(t̄jq∗) − xi(t̄ik)) .
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Clearly

||xj(t̄j(q∗+1)) − xi(t̄i(k+1))|| ≤
∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄i(k+1))}

∥∥∥∥
+

1

2

∥∥∥∥xi(t̄i(k+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥
+

1

4
‖xj(t̄jq∗) − xi(t̄ik)‖ .

Using (8), (9), and (13) we thus obtain ||xj(t̄j(q∗+1)) − xi(t̄i(k+1))|| ≤ r
2 + r

4 + r
4 = r.

Thus (6) holds in this case too.
In view of (8), (7) is true if q∗ = q. To prove that (7) also holds if q∗ = q − 1, we

first write

xj(t̄j(q∗+1)) − xi(t̄ik) = xj(t̄j(q∗+1)) −
1

2
{xj(t̄jq∗) + xi(t̄ik)} −

1

2
(xi(t̄ik) − xj(t̄jq∗)) .

Therefore

||xj(t̄j(q∗+1)) − xi(t̄ik)|| ≤
∥∥∥∥xj(t̄j(q∗+1)) −

1

2
{xj(t̄jq∗) + xi(t̄ik)}

∥∥∥∥(14)

+

∥∥∥∥1

2
(xi(t̄ik) − xj(t̄jq∗))

∥∥∥∥ .
But if q∗ = q − 1, both (8) and (12) hold. From these inequalities and (14) it follows
that ||xj(t̄j(q∗+1)) − xi(t̄ik)|| ≤ 1

r + 1
r = r and therefore that (7) is true.

Proof of Proposition 3. Consider first the case when 	t̄i(k+1)
 = q. If condition
(A) of Proposition 1 holds, then q∗ = q and

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r(15)

because of (5). On the other hand, if condition (A) of Proposition 1 does not hold,
then q = q∗ − 1 and (15) still holds, in this case because of (6). Since 	t̄i(k+1)
 = q, it
must be true that Si(k + 1) ∩ Sj(q) � τS because of Lemma 2. This and (15) mean
that condition (A) of Proposition 1 is satisfied with k+1 substituted for k. Therefore
agent j is a registered neighbor of agent i at t̄i(k+1).

Now suppose that 	t̄i(k+1)
 ∈ {q+1, q+2}. Consider first the case when condition
(A) of Proposition 1 holds. Then Lemma 3 applies with q∗ = q, so

||xi(t̄i(k+1)) − xj(t̄j(q+1))|| ≤ r(16)

and

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r.(17)

If 	t̄i(k+1)
 = q + 1, then Si(k + 1) must strongly overlap either Sj(q) or Sj(q + 1)
because of Lemma 2. In view of (16) and (17), condition (A) of Proposition 1 is
satisfied in either situation with k + 1 substituted for k and q + 1 substituted for q.
Therefore agent j is a registered neighbor of agent i at t̄i(k+1). If 	t̄i(k+1)
 = q + 2,
then Si(k+1) and Sj(q+1) still must strongly overlap because of Lemma 2. Thus in
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this case condition (B) of Proposition 1 is satisfied with k + 1 substituted for k and
q+2 substituted for q. Therefore agent j is a registered neighbor of agent i at t̄i(k+1).

Consider finally the case when condition (A) of Proposition 1 does not hold.
Since (7) holds, Si(k) and Sj(q) cannot overlap. Therefore 	tik
 �= q + 2 because of
statement 3 in Lemma 2. Thus 	tik
 = q + 1. In addition, Lemma 2 states that
the only sensing periods of agent i which can strongly overlap Sj(q) are Si(k) and
Si(k + 1). Since Sj(q) must strongly overlap at least one sensing period of agent i, it
must be true that

Sj(q) ∩ Si(k + 1) � τS .(18)

Since condition (A) of Proposition 1 does not hold, condition (B) must hold, because
agent j is a neighbor of agent i at t̄ik. Thus Lemma 3 applies with q∗ = q − 1, so by
(6),

||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r.(19)

Since 	t̄i(k+1)
 = q + 1, (19) and (18) show that condition (B) of Proposition 1 is
satisfied with k + 1 and q + 1 substituted for k and q, respectively.

2.2. Unsynchronized agent strategies. We are interested in strategies which
cause agents to retain their registered neighbors. We therefore make the following
assumption.

Cooperation assumption. Each agent i satisfies the motion constraints induced
by each of its registered neighbors.

Suppose that the cooperation assumption is satisfied. Proposition 3 states that
if agent j is a registered neighbor of agent i during maneuvering interval k, then it
will also be a registered neighbor of agent i during maneuvering interval k + 1. In
other words, if the cooperation assumption is satisfied, each agent retains all of its
prior registered neighbors as the system evolves. Thus if Ni(k) denotes the set of
labels of agent i’s neighbors at the beginning of its kth maneuvering period, then
Ni(k) ⊂ Ni(k + 1), k ≥ 1.

Agent i’s kth way-point x̄i(k) is the point to which agent i moves at the end of
its kth maneuvering period. Thus if xi(t) denotes the position of agent i at time t
represented in a world coordinate system, then xi(tik) and agent i’s kth way-point
are one and the same. The rule which determines x̄i(k) is essentially the same as
that considered previously for the synchronous case in [1, 8], except that now x̄i(k)
depends on agent i’s own position at the beginning of its kth maneuvering period and
the registered (relative) positions of agent i’s registered neighbors at the beginning
of the period. In particular, if agent i has mik registered neighbors at time t̄ik with
registered positions z1, z2, . . . , zmik

relative to agent i’s, then agent i moves to the
position x̄i(k) = xi(ti(k−1)) + umik

(z1, . . . , zmik
) at the end of the period where

zj = xiij (t̄ik) − xi(ti(k−1)), j ∈ {1, 2, . . . ,mik},(20)

and xiij (t̄ik) is the registered position of neighbor ij at time t̄ik. As in [8], u0 = 0,
and for m ∈ {1, . . . , n − 1}, um is a continuous control law mapping D

m into DM ,
where D and DM are the closed disks of radii r and rM , respectively, centered at
the origin in R

2. For m > 0, um is defined so that the aforementioned neighbor
motion constraint is satisfied and, in addition, so that for each {z1, z2, . . . , zm} ∈ D

m,
um(z1, z2, . . . , zn) is in the convex hull of {0, z1, z2, . . . , zm}, but not at a corner unless
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z1 = z2 = · · · = zm = 0. Examples of um(·) satisfying these control law requirements
can be found in [1, 8].

Since each agent is assumed to move to its kth way-point at the end of its kth
maneuvering period, agent i’s position at time tik is given by

xi(tik) = xi(ti(k−1))

+ umik
(xii1(t̄ik) − xi(ti(k−1)), . . . , xiimik

(t̄ik) − xi(ti(k−1))).(21)

In view of Proposition 1 and (7), the formulas for the xij(t̄ik) can be written as

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) � τS

xj(t̄j(q−1)) otherwise

}
, j ∈ Ni(k),(22)

where q = 	t̄ik
j and

Ni(k) = {j : ||xi(t̄ik) − xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) � τS}⋃
{j : ||xi(t̄ik) − xj(t̄i(q−1))|| ≤ r and Si(k) ∩ Sj(q − 1) � τS}.(23)

The expressions for the xij(t̄ik) in (22) are a direct consequence of the characterization
of registered positions in Proposition 1, the fact that (7) holds whenever j ∈ Ni(k),
and the implication of Lemma 1 that Si(k)∩Sj(q−1) � τS whenever Si(k)∩Sj(q) �� τS .
Of course the neighbor set Ni(k) and the registration positions xij , j ∈ Ni(k), all
depend on i and k.

3. Main results. Note that because agents do not move during sensing periods,
for each i ∈ {1, 2, . . . , n} the positions of agent i at times ti(k−1) and tik are the same
as at times t̄ik and t̄i(k+1), respectively. Thus (21) can also be written as

xi(t̄i(k+1)) = xi(t̄ik) + umik
(xii1(t̄ik) − xi(t̄ik), . . . , xiimik

(t̄ik) − xi(t̄ik)).(24)

The n equations given by (24) for i ∈ {1, 2, . . . , n} together with (22) and (23) com-
pletely describe the evolution of the positions of the n agents under consideration as
each maneuvers from way-point to way-point. Just as in the synchronous case, the
analysis of these equations depends on the relationships between registered neighbors
and how these relationships evolve with time. To characterize these relationships, we
first extend the domain of definition of each agent’s registered neighbors from its set
of maneuvering period start times to a suitably defined set of “event times” common
to all n agents. By an event time is meant any time t̄ik at which any maneuvering
period [t̄ik, tik) of any agent begins. Let {t̄ik : i ∈ {1, 2, . . . , n}, k ≥ 1} denote the
set of all distinct event times. Label this set’s elements as t1, t2, . . . , tp, . . . in such a
way that tp < tp+1, j ∈ {1, 2, . . .}. For i ∈ {1, 2, . . . , n}, let Pi denote that strictly
monotone function from the set of positive integers I to I which assigns to k ∈ I that
value of p ∈ I for which tp = t̄ik. Thus with this notation, tPi(k) = t̄ik, so agent i’s
registered neighbors at its kth event time tPi(k) are its registered neighbors at time t̄ik.
For each i ∈ {1, 2, . . . , n} we extend the domain of definition of agent i’s registered
neighbors from the set {tPi(k) : k ≥ 1} to the set {tp : p ≥ Pi(1)} by stipulating that
for values of tp which are between two successive event times of agent i, say between
tik and ti(k+1), agent i’s registered neighbors are the same as its registered neighbors
at time tik.
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Let T Δ
= {tp̄, tp̄+1, tp̄+2, . . .} denote the set of all event times greater than or equal

to tp̄, where p̄
Δ
= max{P1(1), P2(1), . . . Pn(1)}. Note that the registered neighbors of

each agent are defined at each time tp in T . For each p ≥ p̄, it is therefore possible to
describe neighbor relationships using a directed1 graph Gp with vertex set {1, 2, . . . , n}
and directed edge set defined so that (i, j) is a directed edge from vertex i to vertex
j just in case agent j is a registered neighbor of agent i at event time tp.

Let us partially order the set of all directed graphs with vertex set {1, 2, . . . , n}
by agreeing to say that G is contained in Ḡ if the edge set of G is a subset on the edge
set of Ḡ. It is natural then to define the union of a collection of such graphs to be
the directed graph with vertex set {1, 2, . . . , n} and edge set equaling the union of the
edge sets of all of the graphs in the collection. Because of the cooperation assumption
and Proposition 3, we know that each agent keeps all of its registered neighbors as
the system evolves. What this means is the sequence of graphs Gp̄,Gp̄+1, . . . ,Gp, . . .
forms the ascending chain

Gp̄ ⊂ Gp̄+1 ⊂ · · ·Gp · · · .(25)

Because the set of directed graphs on vertices {1, 2, . . . , n} is a finite set, the chain
must converge to the graph

G
Δ
=

∞⋃
p=p̄

Gp(26)

in a finite number of steps. More is true. Suppose that agent i has agent j as a
registered neighbor at the beginning of one of agent i’s maneuvering periods. Then
because of Proposition 2, agent i must be a registered neighbor of agent j at the
beginning of one of agent j’s maneuvering periods. These observations together with
the cooperation assumption imply that agents i and j must both eventually become
and remain registered neighbors of each other. As a consequence, there must be
directed arcs in G from vertex i to vertex j as well as from vertex j to vertex i.
Clearly G must be a directed graph with the property that for each distinct pair of
vertices—say i and j—either there is no directed arc connecting one to the other or
there are two directed arcs, one from vertex i to vertex j and the other from vertex j
to vertex i. Directed graphs with this property are usually regarded as simple graphs
whose edges represent such pairs of directed arcs [6]. In what follows we shall adopt
this viewpoint and refer to G as a simple graph. Our main result is as follows.

Theorem 1. Let u0 = 0 ∈ DM and for each m ∈ {1, 2, . . . , n−1}, let um : D
m →

DM be any continuous function satisfying the aforementioned control law require-
ments. For each set of initial agent positions x1(0), x2(0), . . . , xn(0), each agent’s po-
sition xi(t) converges to a unique point πi ∈ R

2 such that for each i, j ∈ {1, 2, . . . , n},
either πi = πj or ||πi−πj || > r. Moreover, if agent j is a registered neighbor of agent
i at the beginning of one of agent i’s maneuvering periods, then πi = πj.

This theorem will be proved in section 4.
Theorem 1 states that the strategies under consideration cause all agents’ po-

sitions to converge to points in the plane with the property that each pair of such
points are either equal to each other or separated by a distance greater than r units.

1It will soon be clear that the aforementioned symmetry of the neighbor relationship will ulti-
mately enable us to characterize neighbor relationships with a simple, undirected graph as in the
synchronous case.
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The theorem further states that if one agent is ever a registered neighbor of another,
then both converge to the same point. Thus all n agents’ positions will converge to
a single point if any one directed graph in the ascending chain is strongly connected.
We are led to the following corollary.

Corollary 1. If at any event time tp ≥ tp̄, the directed graph Gp characterizing
registered neighbors is strongly connected, then positions of all n agents converge to a
common point in the plane.

4. Analysis. The aim of this section is to establish the correctness of Theorem 1.
This requires the analysis of the asymptotic behavior of the asynchronous process
described by (22) and (24) for i ∈ {1, 2, . . . , n}. Despite the apparent complexity of
this process, it is possible to capture its salient features for ts sufficiently large using a
suitably defined synchronous discrete-time, hybrid dynamical system S. The process
of constructing a synchronous process to model the behavior of an asynchronous
process is called analytic synchronization and has been outlined in the introduction
to this paper. In what follows we demonstrate the utility of this idea by applying it
to the problem at hand.

4.1. A synchronous model of the asynchronous agent system. It is suffi-
cient to analyze the behavior of the n-agent system for times beyond the time at which
each agent’s neighbor set stops changing. Analytic synchronization would thus have
us define S to be a synchronous system evolving on the event time set {tp : p ∈ P}
where P = {p; p ≥ p∗} and p∗ is the smallest value of p ≥ p̄ for which the ascending
chain shown in (25) has converged to the limit graph G in (26). To reduce clutter
we will instead define S to be a synchronous discrete-time dynamical system evolving
on the index set P. Thus for p ∈ P, the registered neighbors of each agent do not
change. For simplicity, we will only deal with the case when each agent has at least
one neighbor for tp ≥ tp∗ . The position update equation (24) for agent i can thus be
written as

xi(t̄i(k+1)) = xi(t̄ik) + umi(xii1(t̄ik) − xi(t̄ik), . . . , xiimi
(t̄ik) − xi(t̄ik)),(27)

where mi is a positive number and Ni
Δ
= {i1, i2, . . . , imi} is the set of indices labelling

agent i’s registered neighbors. Just as before,

xij(t̄ik) =

{
xj(t̄jq) if Si(k) ∩ Sj(q) � τS ,

xj(t̄j(q−1)) otherwise,
(28)

and

Ni = {j : ||xi(t̄ik) − xj(t̄iq)|| ≤ r and Si(k) ∩ Sj(q) � τS}⋃
{j : ||xi(t̄ik) − xj(t̄i(q−1))|| ≤ r and Si(k) ∩ Sj(q − 1) � τS},(29)

where q = 	t̄ik
j . Note that it must be true that

||xj(t̄jq) − xi(t̄ik)|| ≤ r(30)

because of (7). In view of (29) it also must be true that

||xj(t̄j(q−1)) − xi(t̄ik)|| ≤ r if Si(k) ∩ Sj(q) �� τS .(31)

Inequalities (30) and (31) are consequences of the assumption that j ∈ Ni. These
inequalities will translate into constraints on the state of S.
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4.1.1. Definition of S. We will take as the state space of S the space X of all
lists {y1, y2, . . . , yn, w1, w2, . . . , wn} satisfying

yi, wi ∈ R
2,

||yi − yj || ≤ r

}
, j ∈ Ni, i ∈ {1, 2, . . . , n}.(32)

In what follows we often write y for {y1, y2, . . . , yn} and w for {w1, w2, . . . , wn}. We
sometimes refer to {yi, wi} as the state of “node” i. For i ∈ {1, 2, . . . , n} let P−1

i be
a left inverse of Pi and let Pi = P ∩ image Pi. We now define S to be a time-varying
system with state {y, w}; for each i ∈ {1, 2, . . . , n}, the state of node i evolves on P
according to update equations defined for p ∈ Pi by

yi(p + 1) = yi(p) + umi
(vii1(p) − yi(p), . . . , viimi

(p) − yi(p)),(33)

wi(p + 1) = yi(p),(34)

where

vij(p) =

{
yj(p) if Si(P

−1
i (p)) ∩ Sj(	tp
j) � τS ,

wj(p) otherwise

}
, j ∈ Ni,(35)

and by

yi(p + 1) = yi(p),(36)

wi(p + 1) = wi(p)(37)

for p �∈ Pi. We require that yi satisfies the neighbor constraints

||yi(p) − wj(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj(	tp
j) �� τS , p ∈ Pi, j ∈ Ni.(38)

Note that these constraint requirements together with the definition of X and vij
ensure that ||vij − yi(p)|| ≤ r whenever p ∈ Pi. This in turn is necessary for (33) to
make sense because the domain of umi is D

mi .
The preceding defines S to be a synchronous discrete-time dynamical system with

state constraints given by (38). The definition depends on the Ni as well as the n
event time sequences {t̄ik; k ≥ 1}. We have assumed that the Ni are nonempty; in
addition, Ni ⊂ {1, 2, . . . , i − 1, i + 1, . . . , n}. As a consequence of Proposition 2 and
the assumption that neighbors stop changing, the Ni all have the following symmetry
property: If j ∈ Ni, then i ∈ Nj . Because of the symmetry property we can associate
with the Ni a simple graph G with vertex set {1, 2, . . . , n} and edge set defined in
such a way that (i, j) is in the edge set just in case i ∈ Nj and j ∈ Ni. Note that this
is precisely the same as the simple graph mentioned just before Theorem 1. As for
event times, recall that each event time sequence is strictly monotone increasing and
that together they all satisfy Lemma 1, (2), and (3). In defining S, these are the only
properties of the Ni and the event times which are assumed.

4.1.2. Validation of S. We claim that S provides a synchronous model of the
asynchronous agent system describe by (27)–(31). The first step in justifying this
claim is to define

yi(p) = xi(t̄ik),

wi(p) = xi(t̄i(k−1))

}
, Pi(k − 1) < p ≤ Pi(k), k ∈ P−1

i (P),(39)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2136 J. LIN, A. S. MORSE, AND B. D. O. ANDERSON

for i ∈ {1, 2, . . . , n}. Note that yi has been defined so that it is constant between
agent i’s event times and agrees with xi whenever p is such that tp is within one of
agent i’s sensing periods.

To justify the claim that S models (27)–(31), we need to prove that with the yi(p)
and wi(p) defined by (39), {y(p), w(p)} ∈ X , p ∈ P, and (33)–(38) are satisfied. In
view of (30) and the definition of the yi(p) in (2), it is clear that for i ∈ {1, 2, . . . , n},
||yi(p)− yj(p)|| ≤ r, j ∈ Ni, p ∈ P. Therefore {y(p), w(p)} ∈ X , p ∈ P. It remains to
be shown that (33)–(38) are satisfied. To accomplish this, fix p ∈ P and suppose that
k is that value for which Pi(k) ≤ p < Pi(k + 1). Set p1 = Pi(k) and p2 = Pi(k + 1).
By definition,

yi(p1) = xi(t̄ik),(40)

wi(p1) = xi(t̄i(k−1)),(41)

yi(p2) = xi(t̄i(k+1)),(42)

wi(p2) = xi(t̄ik),(43)

yi(s) = yi(p2), p1 < s ≤ p2,(44)

wi(s) = wi(p2), p1 < s ≤ p2.(45)

Suppose first that p �∈ Pi or, equivalently, that p1 < p < p2. Then p1 < p + 1 ≤ p2,
so yi(p + 1) = yi(p2) and wi(p + 1) = wi(p2) because of (44) and (45), respectively.
But yi(p) = yi(p2) and wi(p) = wi(p2) also because of (44) and (45), respectively. It
follows that (36) and (37) are true.

Now suppose that p ∈ Pi or, equivalently, that p = p1. Then p1 < p + 1 ≤ p2, so
yi(p + 1) = yi(p2) and wi(p + 1) = wi(p2) because of (44) and (45), respectively. It
follows from (42) and (43) that

yi(p + 1) = xi(t̄i(k+1))(46)

and

wi(p + 1) = xi(t̄ik).(47)

But

xi(t̄ik) = yi(p)(48)

because of (40); thus (34) is true.
Fix j ∈ Ni and set q = 	tp
j . To justify (38) and (33) we will need to express

xj(t̄iq), xj(t̄i(q−1)), and k in terms of yj , wj , and p, respectively. Note first that
tp = t̄ik because p = p1. Thus

q = 	t̄ik
j ,(49)

so t̄j(q−1) < t̄ik ≤ t̄jq. This means that Pj(q − 1) < Pi(k) ≤ Pj(q) and thus that
Pj(q − 1) < p ≤ Pj(q). But by definition yj(s) = xj(t̄jq) and wj(s) = xj(t̄j(q−1)) for
Pj(q − 1) < s ≤ Pj(q). Therefore

xj(t̄jq) = yj(p),(50)

xj(t̄j(q−1)) = wj(p).(51)
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Finally note that

k = P−1
i (p)(52)

because Pi(k) = p1 = p. It is now clear from (40), (51), and (52) that the inequality
in (31) translates into neighbor constraint (38).

In addition, examination of (48)–(52) together with the definitions of xij(t̄ik) and
vij(p) in (28) and (35), respectively, reveals that

xij(t̄ik) = vij(p).(53)

From this and (48) it follows that the expression for xi(t̄i(k+1)) in (27) can be written
as

xi(t̄i(k+1)) = yi(p) + umi
(vii1(p) − yi(p), . . . , viimi

(p) − yi(p)).

This and (46) thus finally justify (33).
By a trajectory of S is meant a sequence of states {{y(p), w(p)} : p ∈ P} which

satisfy (33)–(37) as well as the neighbor constraints (38). The preceding proves that
the family of such trajectories is nonempty and contains the trajectory which repre-
sents the actual agent system under consideration. It turns out that the trajectory
representing the actual agent system has an additional property which we will exploit
later.

Lemma 4. For i ∈ {1, 2, . . . , n}, let yi(p) and wi(p) be defined by (39). Let
i ∈ {1, 2, . . . , n} and s ∈ Si be fixed. Suppose that for some j ∈ {1, 2, . . . , n} and
p ∈ Pi,

||yi(p + 1) − yj(p)|| ≤ r,(54)

||wi(p + 1) − yj(p)|| ≤ r.(55)

Then j ∈ Ni.
Proof of Lemma 4. Since p ∈ Pi and Pi is strictly monotone, there is a unique

integer k for which p = Pi(k). Let q = 	t̄ik
. As noted previously in the development
leading to (46)–(50), yi(p+1) = xi(t̄i(k+1)), wi(p) = xi(t̄ik), and yj(p) = xj(t̄jq). Thus
(54) and (55) translate into ||xi(t̄i(k+1)) − xj(t̄jq)|| ≤ r and ||xi(t̄ik) − xj(t̄jq)|| ≤ r,
respectively. Moreover, Lemma 1 states that Si(k) must strongly overlap either Sj(q)
or Sj(q − 1). If the former is true, then condition (A) of Proposition 1 is satisfied
and thus j ∈ Ni. Suppose next that Si(k) does not strongly overlap Sj(q). Then
t̄i(k+1) ∈ {q, q + 1} because of (4) and condition 3 in Lemma 2. If t̄i(k+1) = q, then
Si(k + 1) ∩ Sj(q) ≥ τS because of condition 1 in Lemma 2. Thus condition (A) of
Proposition 1 is satisfied when k + 1 is substituted for k; thus in this case j ∈ Ni.
Suppose t̄i(k+1) = q + 1. In view of Lemma 2, Si(k) and Si(k + 1) are the only
sensing periods of agent i which can strongly overlap Sj(q). Since Sj(q) must be
strongly overlapped by at least one of agent i’s sensing periods, it must be true that
Si(k+1)∩Sj(q) ≥ τS . Thus condition (B) of Proposition 1 is satisfied with k+1 and
q + 1 substituted for k and q, respectively. Therefore j ∈ Ni.

Conditions (54) and (55) do not necessarily imply that j ∈ Ni for every trajectory
of S. The claim of Lemma 4 is that the implication does indeed hold if the trajectory
in question is the one which models the actual agent system.

4.2. Properties of S. In section 4.1 we defined S and proved that it faithfully
models the actual agent system. In this section we derive several important properties
of S.
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4.2.1. Local convex hulls. In what follows we denote the convex hull of a given
set of points x1, x2, . . . , xq in R

2 by 〈x1, x2, . . . , xq〉. We write Hi(p) for the ith local
convex hull

Hi(p) = 〈yi(p), yi1(p), . . . , yimi
(p), wi(p), wi1(p), . . . , wimi

(p)〉,

where {i1, i2, . . . , imi
} = Ni. We also write H(p) for the (global) convex hull

H(p) = 〈y1(p), y2(p), . . . , yn(p), w1(p), w2(p), . . . , wn(p)〉,

and K(p) for the set of corners of H(p). Clearly

Hi(p) ⊂ H(p), i ∈ {1, 2, . . . , n}, p ∈ P.(56)

This fact plays a role in the proof of the following lemma which establishes a funda-
mental property of S.

Lemma 5.

H(p + 1) ⊂ H(p), p ∈ P.(57)

Proof of Lemma 5. Fix i ∈ {1, 2, . . . , n} and note that (33) and the control law
requirement that um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉, zi ∈ D, imply that yi(p + 1) ∈
Hi(p), p ∈ Pi; thus yi(p + 1) ∈ H(p), p ∈ Pi, because of (56). Moreover, yi(p + 1)
is also in H(p) for p �∈ Pi because of (36). Therefore yi(p + 1) ∈ H(p) for all p ∈ P.
Similarly, wi(p+ 1) ∈ H(p), p ∈ P, because of (34) and (37). Thus {yi(p+ 1), wi(p+
1)} ⊂ H(p), p ∈ P. Since this holds for all i ∈ {1, 2, . . . , n}, (57) is true.

4.2.2. Stationary nodes. Let us agree to say that node i is stationary at time
p ∈ Pi if

yi(p) = vii1(p) = · · · = viimi
(p).

The terminology is prompted by the fact that if node i is stationary at p, then yi(p+
1) = yi(p); this can be seen from (33) and the control law requirements imposed
on umi . In addition, the requirement that um(z1, z2, . . . , zm) not be a corner of
〈0, z1, . . . , zm〉 unless z1 = z2 = · · · = zm = 0 implies that if yi(p + 1) is a corner
of 〈yi(p), vii1(p), . . . , viimi

(p)〉, then node i must be stationary at p. The following
lemma implies that this is also true if yi(p + 1) is a corner of H(p).

Lemma 6. Fix i ∈ {1, 2, . . . , n} and p̄ ∈ Pi. If yi(p̄ + 1) ∈ K(p̂) for some p̂ ≤ p̄,
then node i must be stationary at each p ∈ Pi ∩ {p : p̂ ≤ p ≤ p̄} and

yi(p) = yi(p̄ + 1)(58)

for all such p.
Proof of Lemma 6. Let p1, p2, . . . , pm denote the elements of the set Pi ∩ {p : p̂ ≤

p ≤ p̄}, ordered so that p1 < p2 < · · · < pm = p̄. To prove the lemma it is sufficient
to show that the following statements hold for k ∈ {1, 2, . . . ,m}:

(i) Node i is stationary at pk, pk+1, . . . , pm.
(ii) yi(pk) = yi(pk+1) = · · · = yi(pm) = yi(p̄ + 1).
Let H̄(ps) = 〈yi(ps), vii1(ps), . . . , viimi

(ps)〉, s ∈ {1, 2, . . . ,m}. Note that um

must satisfy the control law requirement um(z1, z2, . . . , zm) ∈ 〈0, z1, . . . , zm〉. In view
of (33), it must therefore be true that

yi(ps + 1) ∈ H̄(ps), s ∈ {1, 2, . . . ,m}.(59)
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Note next that the definition of vij in (35) implies that vij(ps) ∈ {yj(ps), wj(ps)}, s ∈
{1, 2, . . . ,m}. Therefore H̄(ps) ⊂ Hi(ps). But Hi(ps) ⊂ H(ps); moreover, H(ps) ⊂
H(p̂) because of Lemma 5. Thus H̄(ps) ⊂ H(p̂). This implies that

H̄(ps) ∩ K(p̂) ⊂ K̄(ps), s ∈ {1, 2, . . . ,m},(60)

where K̄(ps) is the corner set of H̄(ps).
Recall that pm = p̄. By assumption, yi(p̄+1) ∈ K(p̂). These facts and (59) imply

that yi(pm +1) ∈ H̄(pm)∩K(p̂). Thus yi(pm +1) ∈ K̄(pm) because of (60). Therefore
node i is stationary at pm, and because of this, yi(pm +1) = yi(pm). Thus statements
(i) and (ii) above are true for k = m. If m = 1, the proof is complete.

Suppose next that m > 1 and that statements (i) and (ii) hold for all k ∈ {q +
1, . . . ,m} where q is some integer satisfying 1 < q + 1 ≤ m. In view of (36), yi(p) =
yi(pq+1) for pq < p ≤ pq+1. Therefore

yi(pq + 1) = yi(pq+1).(61)

By hypothesis, (ii) holds for k = q + 1; thus yi(pq + 1) = yi(p̄ + 1). Therefore
yi(pq + 1) ∈ K(p̂). But yi(pq + 1) ∈ H̄(pq) because of (59). Therefore yi(pq + 1) ∈
H̄(pq) ∩ K(p̂). From this and (60) it follows that yi(pq + 1) ∈ K̄(pq). Therefore node
i is stationary at pq, and because of this yi(pq + 1) = yi(pq). Hence yi(pq) = yi(pq+1)
because of (61). Thus statements (i) and (ii) above are true for k = {q, q+ 1, . . . ,m}.
By induction, statements (i) and (ii) must hold for all k ∈ {1, 2, . . . ,m}.

4.2.3. Equilibrium states. By an equilibrium state of S we mean a state which
does not change under the action of (33)–(37) under any conditions for every value of
p ∈ P. It is easy to see that equilibrium states are precisely those states {y, w} ∈ X
for which

yi = yii1 = · · · = yiimi
= wi = wii1 · · · = wiimi

∀i ∈ {1, 2, . . . , n}.

Note that each equilibrium state is invariant under the action of (33)–(37) under any
and all possible conditions. It is clear that if S is in an equilibrium state at p, then
each node of S is stationary at p. It is also not difficult to see that if each node of S

is stationary at p, then S is at an equilibrium state at time p + 1.

4.2.4. Locally rendezvoused nodes. In what follows we will say node i ∈ {1,
2, . . . , n} has locally rendezvoused at time p if Hi(p) is a single point, i.e., if yi(p) =
yi1(p) = · · · = yimi

(p) = wi(p) = wi1(p) = · · · = wimi
(p). Note that if a node

has locally rendezvoused at p, it must be stationary at p. The following proposition
provides a criterion for a node of S to be locally rendezvoused.

Proposition 4. Let p1 < p2 < p3 < p4 be four consecutive values of p in Pi. If
yi(p4 + 1) ∈ K(p1), then node i is locally rendezvoused at p = p3.

The proof of Proposition 4 depends on the following lemmas.
Lemma 7. Let p1 and p2 be two consecutive values of p in Pi. Suppose for some

i ∈ {1, 2, . . . , n} that yi(p2 + 1) ∈ K(p1). Then

yi(p1) = yj(p1), j ∈ Ni.(62)

Proof of Lemma 7. By hypothesis, yi(p2 + 1) ∈ K(p1). Therefore by Lemma 6,
yi(p1) = yi(p2) and node i is stationary at both p1 and p2. Because node i is stationary
at p2, yi(p2) = vij(p2), j ∈ Ni. Therefore

yi(p1) = vij(p2), j ∈ Ni.(63)
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To justify (62) it is therefore enough to show that

vij(p2) = yj(p1), j ∈ Ni.(64)

For this fix j ∈ Ni and define k = P−1
i (p1) and q = 	t̄ik
j . Since p1 = Pi(k) and

t̄j(q−1) < t̄ik ≤ t̄jq,

Pj(q − 1) < p1 ≤ Pj(q).(65)

Let q̄ = 	t̄i(k+1)
j . Since p2 = Pi(k + 1) and t̄j(q̄−1) < t̄i(k+1) ≤ t̄jq̄,

Pj(q̄ − 1) < p2 ≤ Pj(q̄).(66)

By Lemma 2, q̄ ∈ {q, q + 1, q + 2}. We claim that no matter which value q̄ takes,

vij(p2) ∈ {yj(Pj(q)), yj(Pj(q + 1)), yj(Pj(q + 2))}.(67)

To justify this claim, consider first the case when q̄ = q. Then Si(k + 1)∩ Sj(q) � τS
because of Lemma 2. In general q̄ = 	tp2
j because tp2 = t̄i(k+1). Thus in this case

q = 	tp2
j . In addition k + 1 = P−1
i (p2). Therefore Si(P

−1
i (p2)) ∩ Sj(	tp2
j) � τS .

From this and (35) it follows that vij(p2) = yj(p2). In view of (36), yj(p) = yj(Pj(q))
for all values of p in the range Pj(q − 1) < p ≤ Pj(q). But Pj(q − 1) < p2 ≤ Pj(q)
because of (66). Therefore yj(p2) = yj(Pj(q)). Thus vij(p2) = yj(Pj(q)) which proves
that (67) holds in this case.

Now suppose that q̄ = {q + 1, q + 2}. In this case vij(p2) equals either yj(p2) or
wj(p2) because of (35). In view of (36), yj(p) = yj(Pj(q̄)) for Pj(q̄ − 1) < p ≤ Pj(q̄).
From this and (66) it follows that yj(p2) = yj(Pj(q̄)). Thus if vij(p2) = yj(p2), then
vij(p2) = yj(Pj(q̄)). Since q̄ ∈ {q + 1, q + 2}, (67) must hold in this situation. To
prove that (67) also holds in the alternative situation, when vij(p2) = wj(p2), we
exploit the relation wj(Pj(q̄ − 1) + 1) = yj(Pj(q̄ − 1)) which is valid because of (34).
In view of (37), wj(p) is constant for p in the range Pj(q̄ − 1) < p ≤ Pj(q̄). But p2

is in this range because of (66); clearly Pj(q̄ − 1) + 1 is as well. Therefore wj(p2) =
wj(Pj(q̄ − 1) + 1). It follows that wj(p2) = yj(Pj(q̄ − 1)). Thus if vij(p2) = wj(p2),
then vij(p2) = yj(Pj(q̄− 1)). Since q̄ ∈ {q + 1, q + 2}, (67) must hold in this situation
too. Thus (67) holds under all conditions.

It will now be shown that

vij(p2) = yj(Pj(q)).(68)

Consider first the situation when vij(p2) = yj(Pj(s)), where s is fixed at either value
in {q + 1, q + 2}. Since node i is stationary at p2, vij(p2) = yi(p2 + 1). Thus
yj(Pj(s)) = yi(p2 + 1). By hypothesis, yi(p2 + 1) ∈ K(p1). Thus yj(Pj(s)) ∈ K(p1).
Moreover, p1 ≤ Pj(q) because of (65). Thus by Lemma 6, yj(Pj(s)) = yj(Pj(q)).
Therefore (68) holds when vij(p2) = yj(Pj(s)) for s ∈ {q + 1, q + 2}. In view of (67),
the only other possibility is vij(p2) = yj(Pj(q)). Therefore (68) is true under all
conditions.

It remains to be shown that (64) holds. In view of (36), yj(p) = yj(Pj(q)) for
p in the range Pj(q − 1) < p ≤ Pj(q). But (65) shows that p1 is in this range so
yj(p1) = yj(Pj(q)). From this and (68) it follows that (64) holds.

Lemma 8. For any integers i ∈ {1, 2, . . . , n} and k ≥ 1,

Pi(k + 1) − Pi(k) ≤ 2(n− 1).(69)
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Moreover, for any integer j ∈ {1, 2, . . . , n} which is not equal to i, there are at most
two successive positive integers s, s + 1 such that

Pi(k) ≤ Pj(s) < Pj(s + 1) ≤ Pi(k + 1).(70)

Proof of Lemma 8. Fix i, j ∈ {1, 2, . . . , n} and k > 0. Let s and p be positive
integers such that t̄ik ≤ t̄js < t̄j(s+p) ≤ t̄i(k+1). These inequalities imply that t̄j(s+p)−
t̄js < t̄i(k+1) − t̄ik. But pτD ≤ t̄j(s+p) − t̄js because of (2) and t̄i(k+1) − t̄ik < 2τD
because of (3). Therefore pτD < 2τD, so p = 1. Thus there are at most two successive
event times t̄js and t̄j(s+1) for which t̄ik ≤ t̄js < t̄j(s+1) ≤ t̄i(k+1). Moreover, since
{j : j ∈ {1, 2, . . . , n}, j �= i} contains n − 1 integers, it therefore follows that the
number of distinct event times in the set {t̄js : j ∈ {1, 2, . . . , n}, j �= i, s ≥ 1} which
satisfy t̄ik ≤ t̄js ≤ t̄i(k+1) does not exceed 2(n − 1). But Pi(·) and Pj(·) are strictly
monotone increasing, and t̄iq = tPi(q), t̄jq = tPj(q) for all q ≥ 1. Therefore (69) is true,
and there are at most two successive integers s, s + 1 for which (70) holds.

Proof of Proposition 4. By hypothesis, yi(p4 +1) ∈ K(p1), and p1 < p2 < p3 < p4.
Therefore by Lemma 6,

yi(p2) = yi(p3) = yi(p4) = yi(p4 + 1),(71)

and node i is stationary at p3 and p4. In view of (34), wi(p2 + 1) = yi(p2). But
wi(p) = wi(p3) for p2 < p ≤ p3 because of (37), so wi(p2 + 1) = wi(p3). Therefore
yi(p2) = wi(p3). From this and (71) it follows that

yi(p3) = wi(p3).(72)

By hypothesis yi(p4 + 1) ∈ K(p1). In addition, yi(p4 + 1) ∈ H(p3) because of (71).
Thus yi(p4 + 1) ∈ K(p1) ∩ H(p3). In view of Lemma 5, H(p3) ⊂ H(p1). Thus
K(p1) ∩H(p3) ⊂ K(p3). Therefore yi(p4 + 1) ∈ K(p3). Hence by Lemma 7,

yi(p3) = yj(p3), j ∈ Ni.(73)

In view of (72) and (73), node i will be rendezvoused at p3 provided that

yj(p3) = wj(p3), j ∈ Ni.(74)

It will now be shown that this is true.
Fix j ∈ Ni and let q = 	t̄ik
j , where k = P−1

i (p3). Equivalently, q is the unique
integer for which Pj(q − 1) < p3 ≤ Pj(q). In view of (36) and (37), yj(p) and wj(p)
are constant for p in the range Pj(q−1) < p ≤ Pj(q). Since both p3 and Pj(q−1)+1
are in this range,

yj(p3) = yj(Pj(q − 1) + 1) and wj(p3) = wj(Pj(q − 1) + 1).(75)

Note next that yi(p4 + 1) = yi(p4) because node i is stationary at p4. From this and
(71) and (73) it follows that yi(p4 + 1) = yj(p3). Thus yi(p4 + 1) = yj(Pj(q− 1) + 1).
Since yi(p4 + 1) ∈ K(p1) it must be true that

yj(Pj(q − 1) + 1) ∈ K(p1).(76)

In view of Lemma 8, there can be at most two consecutive integers in Pj which are
in the set {p : Pj(q − 1) ≤ p ≤ Pj(q)}. Since p3 is one such integer, it must be true
that p1 is not in the set. Therefore p1 < Pj(q − 1). From this, (76), and Lemma 6 it
follows that yj(Pj(q− 1) + 1) = yj(Pj(q− 1)). But wj(Pj(q− 1) + 1) = yj(Pj(q− 1))
because of (34), so wj(Pj(q−1)+1) = yj(Pj(q−1)+1). From this and (75) it follows
that wj(p3) = yj(p3). Therefore (74) is true.
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4.3. Error system. To analyze system behavior it is helpful to use a suitably
defined error system S̄ derived from S. Towards this end, for each p ∈ P let

ȳi(p) = yi(p) − wn(p),

w̄i(p) = wi(p) − wn(p)

}
, i ∈ {1, 2, . . . , n}.(77)

Note that

w̄n(p) = 0, p ∈ P.(78)

Using (33)–(37) we obtain the update equations for {ȳi, w̄i} defined for p ∈ Pi by

ȳi(p + 1) = ȳi(p) + umi
(v̄ii1(p) − ȳi(p), . . . , v̄iimi

(p) − ȳi(p)) − ω(p)ȳn(p),(79)

w̄i(p + 1) = ȳi(p) − ω(p)ȳn(p),(80)

where

v̄ij(p) =

{
ȳj(p) if Si(P

−1
i (p)) ∩ Sj(	tp
j) � τS ,

w̄j(p) otherwise

}
, j ∈ Ni,(81)

and by

ȳi(p + 1) = ȳi(p) − ω(p)ȳn(p),(82)

w̄i(p + 1) = w̄i(p) − ω(p)ȳn(p)(83)

for p �∈ Pi. Here ω(p) = 1 if p ∈ Pn and ω(p) = 0 otherwise. In terms of error
variables, the neighbor constraints given by (38) can be written as

||ȳi(p) − w̄j(p)|| ≤ r if Si(P
−1
i (p)) ∩ Sj(	tp
j) �� τS , p ∈ Pi j ∈ Ni.(84)

In what follows S̄ denotes the error system defined by (79)–(84). Note that the state
of S̄, namely {ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)}, takes values in the closed space
X̄ of all lists {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1} satisfying

ȳi, w̄i ∈ R
2,

||ȳi − ȳj || ≤ r

}
, j ∈ Ni, i ∈ {1, 2, . . . , n}.(85)

It is possible to describe the preceding state update equations concisely as

x̄(p + 1) = f(p, x̄(p)), p ∈ P,

where x̄ is the state {ȳ1, . . . , ȳn, w̄1, . . . , w̄n−1}, f(p, ·) : X̄ (p) → X̄ is the next state
map defined by (79)–(83), and X̄ (p) is the set of states in X̄ for which the neighbor
constraints (84) hold at time p. It is important to recognize that even though there
are infinitely many possible values of p, there are only finitely many distinct X̄ (p)
and finitely many distinct f(p, ·). Moreover, each X̄ (p) is closed because of (84), and
each f(p, ·) is continuous on its domain because each um(·) is. The following lemma
summarizes these observations.

Lemma 9. There exist a finite index set Q and a finite set of continuous functions
Fq : Xq → X̄ with closed domains such that the following statement is true. For any
p ∈ P there is a q ∈ Q such that X̄ (p) = Xq and Fq(·) = f(p, ·).
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The implication of Lemma 9 is that if {x̄(p) : p ∈ P} is a trajectory of S̄, then
there are indices q(p) ∈ Q, p ∈ P such that

x̄(p) = Fq(p)Fq(p−1) · · ·Fq(τ+1)(x̄(τ)), p > τ, p, τ ∈ P.(86)

Here Fq(p)Fq(p−1) · · ·Fq(τ+1) is a “composed function,” where by the composition of
functions Fs and Fq we mean the function FqFs : Xqs → X̄ , whose domain Xqs is the
inverse image of Xq under Fs, and whose action on x̄ is x̄ �−→ Fq(Fs(x̄)). Composition
is an associative operation, and because of this, the operation extends unambiguously
to finite families of Fq. Note that any such composed function F = Fq1Fq2 · · ·Fqk has
a closed domain on which it is continuous.

Suppose that p̄ > 0 is fixed. If follows from the preceding that there are q(p) ∈ Q
such that

x̄(p + p̄) = Fq(p+p̄)Fq(p+p̄−1) · · ·Fq(p+1)(x̄(p)), p ∈ P.(87)

It is important to recognize that even though the composed function Fq(p+p̄)Fq(p+p̄−1)

· · ·Fq(p+1)(x̄(p)) depends on p, there can be only a finite number of such composed
functions. This is because the family of maps {Fq : q ∈ Q} is a finite set and because
the composed functions in question are all compositions of exactly p̄ maps in the
family. The following proposition summarizes these observations.

Proposition 5. Let p̄ > 0 be fixed. There exist a finite index set Q̄, a finite set
of closed subsets X̄q ⊂ X̄ , and a finite set of continuous maps Dq : X̄q → X̄ , q ∈ Q̄,

with the following property. For each trajectory {x̄(p) : p ∈ P} of S̄, and each p ∈ P,
there is a q ∈ Q̄ such that

x̄(p̄ + p) = Dq(x̄(p)).(88)

4.4. Global rendezvous. It is natural to say that the n nodes of S have (glob-
ally) rendezvoused at time p if H(p) is a single point, i.e., if y1(p) = y2(p) = · · · =
yn(p) = w1(p) = w2(p) = · · · = wn(p). In view of the definitions of tp and the yi
and wi in (39), it is clear that the rendezvousing of all n nodes at time p implies the
rendezvousing of all n agents at time tp. It is also clear that the rendezvousing of all
n nodes at time p implies that each node has locally rendezvoused at p. Under certain
conditions the converse is also true.

Lemma 10. Suppose G is a connected graph. Suppose in addition that {{y(p),
w(p)} : p ∈ P} is the trajectory of S defined by (39). If for some i ∈ {1, 2, . . . , n}
and p ∈ Pi, node i is locally rendezvoused, then the n nodes of S have globally
rendezvoused.

Proof of Lemma 10. Suppose node i is locally rendezvoused at p ∈ Pi. Then
yi(p) = yj(p) and wi(p) = yj(p), j ∈ Ni. Moreover, since node i is locally ren-
dezvoused at p, it must be stationary at p. Therefore yi(p + 1) = yi(p); in addition,
wi(p+1)) = yi(p) because of (34). Thus yi(p+1) = yj(p) and wi(p+1) = yj(p), j ∈
Ni. Fix j ∈ Ni and k ∈ Nj . Then ||yj(p) − yk(p)|| ≤ r because of the definition
of X . Therefore ||yi(p + 1) − yk(p)|| ≤ r and ||wi(p + 1) − yk(p)|| ≤ r. It follows
from Lemma 4 that k ∈ Ni. Since this holds for every k ∈ Nj , it must be true that
Nj ⊂ Ni. Since j is arbitrary, this must be true for all j ∈ Ni. Since G is connected,
this can happen only if G is complete. Thus Ni = {1, 2, . . . , n} which means that
Hi(p) = H(p). By hypothesis Hi(p) is a single point. Therefore Hi(p) is also a single
point, so the n nodes of S have globally rendezvoused.

Establishing the preceding result requires one to be able to conclude that if for
some i, j ∈ {1, 2, . . . , n} and some p ∈ Pi, nodes i and j are in the same “position” in
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the sense that yi(p) = yj(p) = wi(p), then Nj ⊂ Ni. In words, what this is roughly
saying is that if node j is in the same position as node i, then node j’s “neighbors”
must also be neighbors of node i. This transitivity property is not true in general, but
it is true if y(p) and w(p) are defined by (39). This is a consequence of Lemma 4.

The following proposition shows that if H does not change for a sufficiently long
period of time, then the n nodes have rendezvoused.

Proposition 6. Suppose that G is a connected graph. Suppose in addition that
{y(p), w(p) : p ∈ P} is the trajectory of S defined by (39). Suppose that pa and pb are
values in P for which pb − pa ≥ 8n and

dia{H(pa)} = dia{H(pb)}.(89)

Then the n nodes of S have rendezvoused at p = pb.
Proof of Proposition 6. Choose i ∈ {1, 2, . . . , n} so that for some z ∈ H(pb),

||yi(pb)−z|| = dia{H(pb)}. Then yi(pb) ∈ K(pb). In view of Lemma 5, H(pb) ⊂ H(pa).
Therefore yi(pb), z ∈ H(pa). Moreover, ||yi(pb) − z|| = dia{H(pa)} because of (89);
thus

yi(pb) ∈ K(pa).(90)

Let p4 be the largest value of p ∈ Pi such that p4 < pb. Define k = P−1
i (p4) − 3 so

that Pi(k + 3) = p4. Then p4 < pb ≤ Pi(k + 4). By (69),

pb − p4 ≤ 2(n− 1).(91)

In view of (36), yi(p) is constant for p in the range p4 < p ≤ Pi(k + 4). Since both
p4 + 1 and pb are in this range, yi(p4 + 1) = yi(pb). Thus

yi(p4 + 1) ∈ K(pa).(92)

Define p1 = Pi(k), p2 = Pi(k + 1), and p3 = Pi(k + 2). Clearly p1 < p2 < p3 <
p4. Moreover, pj+1 − pj ≤ 2(n − 1), j ∈ {1, 2, 3}, because of (69). From these
inequalities and (91) it follows that pb − p1 ≤ 8(n− 1). By hypothesis, pb − pb ≥ 8n.
Therefore pa < p1. In view of Lemma 5, H(p4) ⊂ H(p1) and H(p1) ⊂ H(pa).
Therefore H(p1) ∩ K(pa) ⊂ K(p1). But H(p4 + 1) ⊂ H(p1) because of Lemma 5;
thus yi(p4 + 1) ∈ H(p1). This and (92) imply that yi(p4 + 1) ∈ H(p1) ∩ K(pa).
Therefore yi(p4 + 1) ∈ K(p1). From this and Proposition 4 it follows that node i has
locally rendezvoused at p3. Therefore by Lemma 10, the n nodes of S are rendezvoused
at p3.

The following theorem is our main convergence result concerning S. The main
result of this paper, Theorem 1, is an immediate consequence.

Theorem 2. Let {{y(s), w(s)} : p ∈ P} be the trajectory of S defined by (39). If
G is a connected graph, then

lim
s→∞

dia〈y1(s), y2(s), . . . , yn(s), w1(s), w2(s), . . . , wn(s)〉 = 0.(93)

Proof of Theorem 2. In what follows we write x(p) for {y1(p), . . . , yn(p), w1(p), . . . ,
wn(p)} and x̄(p) for the error vector {ȳ1(p), . . . , ȳn(p), w̄1(p), . . . , w̄n−1(p)} defined by
(77). Let V : X → R denote the diameter function x �−→ dia〈y1, y2, . . . , yn, w1, w2,
. . . , wn〉. Similarly, let V̄ : X̄ → R denote the diameter function x̄ �−→ dia〈ȳ1, ȳ2,
. . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉. Note that

V (x(p)) = V̄ (x̄(p)).(94)
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Note in addition that because 0 ∈ 〈ȳ1, ȳ2, . . . , ȳn, w̄1, w̄2, . . . , wn−1, 0〉, V̄ is radially
unbounded, whereas V is not.

As a consequence of Lemma 5, V (x(p)) is a monotone nonincreasing function of
p. Clearly V (x(p)) is bounded below by 0. Moreover, V (x(p)) is bounded above by
V (x(0)) because V (·) is continuous. Therefore there must exist a finite limit

V ∗ = lim
p→∞

V (x(p)).

We claim that V ∗ = 0. To prove this claim, suppose it is false. Then V ∗ > 0.
This means that the trajectory {x(p) : p ∈ P} cannot contain any points in the set
E = {x : V (x) = 0}. To proceed, fix s̄ > 8n and let Δ(x(p)) denote the difference

Δ(x(p)) = V (x(p̄ + p)) − V (x(p)).(95)

Since V (x(p)) is monotone nonincreasing, Δ(x(p)) ≤ 0, p ∈ P. In the light of Propo-
sition 6 and the fact that E has no points in common with {x(p) : p ∈ P}, one can
conclude that Δ(x(p)) �= 0, p ∈ P. Therefore

Δ(x(p)) < 0, p ∈ P.(96)

Define Δ̄(x̄(p)) as

Δ̄(x̄(p)) = V̄ (x̄(p̄ + p)) − V̄ (x̄(p)).(97)

In view of (94)

Δ(x(p)) = Δ̄(x̄(p)).(98)

Therefore

Δ̄(x̄(p)) < 0, p ∈ P.(99)

According to Proposition 5, for each p ∈ P there is a continuous function Dq such
that x̄(p + p̄) = Dq(x(p)). Let Wq denote the set of state pairs (x̄(p + p̄), x̄(p)) along
the given trajectory of S̄ for which this formula holds. It follows that

{(x(s + s̄), x(s)) : s ∈ S} =
⋃
q∈Q

Wq

and that each Wq is a closed set. We claim that each Wq is bounded as well. This is in
fact so because of (94), because V̄ is radially unbounded, and because 0 ≤ V (x(p)) ≤
V (x(0)) < ∞.

For (x̂, x̄) ∈ Wq define Δq : Wq → R so that (x̂, x̄) �−→ V̄ (Dq(x̂)) − V (x̄). Note
that Δq is a continuous function on Wq whose value at each point (x̂, x̄) ∈ Wq agrees
with Δ̄(x̄(p)) for some p. It follows from (99) that

Δq(x̂, x̄) < 0, (x̂, x̄) ∈ Wq.

Define

μq = sup
(x̂,x̄)∈Wq

Δq(x̂, x̄).
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Since Wq is compact and Δq is negative and continuous on Wq, it must be true that
μq < 0. Let

μ = max
q∈Q

μi.

Since Q is finite, μ < 0. Clearly

Δq(x̂, x̄) ≤ μ, (x̂, x̄) ∈ Wq, q ∈ Q.(100)

Note that by construction, for each p ∈ S there must be a q ∈ Q such that Δ̄(x̄(p)) =
Δq(x̄(p + p̄), x̄(p)). From this and (100) it follows that

Δ̄(x̄(p)) ≤ μ, p ∈ P.

Therefore

Δ(x(p)) ≤ μ, p ∈ P,

because of (98). Note that

V (x(p + p̄)) − V (x(p)) = Δ(x(p)) ≤ μ, p ∈ P.

Thus by summing,

V (x(p + kp̄)) ≤ V (x(p)) + kμ, k ≥ 1.

Therefore, for k sufficiently large V (x(p + kp̄)) must be negative because μ < 0. But
this is impossible because V (·) is positive semidefinite. Hence V ∗ cannot be positive.
This concludes the proof.

5. Concluding remarks. The analysis used in this paper exploits ideas which
appear to have much in common with the embedding process discussed in Chapter 7
of [2] for analyzing “partially asynchronous iterative algorithms.” This suggests that
the tools developed in [2] may be helpful in further understanding the asynchronous
system considered in this paper.

The asynchronous multi-agent rendezvous problem we have considered serves as
an example of the type of problem to which the idea of analytic synchronization can be
applied. The asynchronous version of the flocking problem considered in [3] provides
another. Despite these examples, there are several unsettled issues concerning the
analytic synchronization idea. First, it is not clear what the general process is for
choosing a state vector. Second, it is also not clear what the exact conditions are on
an asynchronously interacting set of dynamical systems for analytic synchronization
to be possible. The examples provided by this paper and by [3] may help to more
precisely formulate these issues and to lead to their resolution.
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Abstract. The problem of exact null-controllability is considered for a wide class of linear
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moment problem approach and the theory of the basis property of exponential families. A complete
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1. Introduction. Many applied problems from physics, mechanics, biology, and
other fields can be described by partial differential equations or delay differential
equations. This leads to the construction and study of the infinite-dimensional system
theory concerning also the systems with control. In this context the problem of
controllability for distributed parameter systems leads to the study of the abstract
controllability problem in infinite-dimensional spaces, which may be formulated in
Hilbert spaces as follows. Consider the abstract system

ẋ = Ax + Bu,(1.1)

where x(t) ∈ X,u(t) ∈ U, X and U being Hilbert spaces, A is the generator of a C0-
semigroup eAt, and B ∈ L(U,X) is a bounded operator. The problem of controllability
is to find all the states xT that can be reached from a fixed initial state (say 0) at a
finite time T by the choice of the controls u(·) ∈ L2(0, T ;U). The mild solution of the
system (1.1) is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ.

The reachability set from 0 at time T is defined by

RT =

{
x : x =

∫ T

0

eAtBu(t)dt, u(·) ∈ L2(0, T ;U)

}
.
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†IRCCyN, UMR CNRS 6597, École des Mines de Nantes, 4 rue Alfred Kastler, BP 20722 44307

Nantes Cedex 3, France (rabah@emn.fr).
‡Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70451 Szczecin, Poland

(sklar@univ.szczecin.pl).

2148



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT CONTROLLABILITY OF NEUTRAL-TYPE SYSTEMS 2149

For finite-dimensional systems the natural concept of controllability is when RT =
X (Kalman). For infinite-dimensional systems, as has been pointed out by several
authors (Fattorini, Triggiani, Russel, Balakrishnan, and others), this concept is not
realistic. It is easy to show that RT1 ⊂ RT2 as T1 < T2. In general, there is no
universal time T0 such that RT0 = RT for all T > T0. However, for several classes of
systems important for application this property holds (hyperbolic-type and neutral-
type systems). In these cases, a natural way to formulate the controllability problem
is the following setting:

(i) to find the maximal possible set RT (depending on T ),
(ii) to find the minimal T for which the set RT becomes the maximal possible.
In order to obtain more profound and precise results by using this approach, it

is important to consider a concrete class of systems and to use the specificity of this
class. In this paper, we consider the problem of controllability for a general class of
neutral systems with distributed delays given by the equation{

d

dt
[z(t) −Kzt] = Lzt + Bu(t), t ≥ 0,

z0 = f,
(1.2)

where zt : [−1, 0] → C
n is the history of z defined by zt(s) = z(t + s). The difference

and delay operators K and L, respectively, are defined by

Kf = A−1f(−1) and Lf =

∫ 0

−1

A2(θ)
d

dθ
f(θ) dθ +

∫ 0

−1

A3(θ)f(θ) dθ

for f ∈ H1([−1, 0],Cn), where A−1 is a constant n × n matrix, A2, A3 are n × n
matrices whose elements belong to L2(−1, 0), and B is a constant n× r matrix.

We consider the operator model of the neutral-type system (1.2) introduced by
Burns, Herdman, and Stech [3] in product spaces (see also [5]). The state space is
M2(−1, 0; Cn) = C

n × L2(−1, 0; Cn), shortly M2, and (1.2) can be reformulated as

ẋ(t) = Ax(t) + Bu(t), x(0) =

(
y
f

)
, B =

(
B
0

)
, A =

(
0 L
0 d

dθ

)
,(1.3)

with D(A) = {(y, z(·)) ∈ M2 : z ∈ H1([−1, 0]; Cn), y = z(0) −A−1z(−1)}.
In the particular case when A2(θ) = A3(θ) = 0, which corresponds to L = 0, we

will use the notation Ã for A.
Suppose that the initial condition for the system (1.2) is z(t) = z0(t), t ∈ [−1, 0],

and let us put zt(θ) = z(t+ θ), θ ∈ [−1, 0], and y = z(0)−A−1z(−1). The semigroup
generated by A is given by

eAt

(
y

z0(·)

)
=

(
zt(0) −A−1zt(−1)

zt(·)

)
=

(
z(t) −A−1z(t− 1)

z(t + ·)

)
.

It can be shown that the reachability set RT is such that RT ⊂ D(A) for all T > 0.
This is a consequence of the fact that for all u(·) ∈ L2 the corresponding solution of
(1.2) is in H1 and then the solution of (1.3) is in D(A) (see [5, Proposition 2.2] for
the existence of the solution and [5, Corollary 2.7] for the property of the reachability
subset). This naturally leads to the following definition of exact controllability.

Definition 1.1. The system (1.3) is exactly null-controllable by controls from
L2 at the time T if RT = D(A). This means that the set of solutions of the system
(1.2), {z(t), t ∈ [T − 1, T ]}, coincides with H1([T − 1, T ]; Cn).
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This problem was the focus of attention of several authors in the 1970s and 1980s.
The main results were devoted to systems with one or several discrete delays. This
may be explained by the fact that the explicit, in this case, form of solutions is known
and, as a result, the semigroup describing the solutions of (1.2) is known explicitly.

The main result for the system

ż(t) −A−1ż(t− h) = A0z(t) + A1z(t− h) + Bu

is that the exact controllability holds if and only if (see [9, 12])
(i) rank ( Δ(λ) B ) = n,
(ii) rank (B A−1B · · · An−1

−1 B ) = n,
where Δ(λ) = λI−λA−1e

−λh−A0−A1e
−λh. For the particular case of scalar control

(B is n× 1 matrix) the time of exact controllability is given in [6]: T > nh, where h
is the delay. For the general case, it is shown in [2] that the reachability set cannot
increase for T > nh.

The case of noncommensurate delays with a distributed term was precisely studied
in the paper by Yamamoto [16]. General conditions were given using the input-output
technique. Conditions of approximate controllability (in [16], quasi reachability) in
the time domain were explicitly given for a system without distributed delay (see also
[8]).

In contrast to the above-mentioned works, we consider the model with distributed
delays (1.2). In this case, we know only that the solution of (1.2) exists but the cor-
responding semigroup is not explicitly known. Then the technique using the explicit
form of the solution, via an expression of the semigroup, cannot be used. So one needs
another tool to analyze the controllability. In the similar situation of the controllabil-
ity problems for hyperbolic systems, the powerful technique of the moment problem
has been proved to be useful. It is caused by the fact that the operators corresponding
to hyperbolic systems are as a rule skew-adjoint or close to skew-adjoint and then they
possess a basis of eigenvectors. The expansion of the steering conditions in this basis
allows the controllability problem for these systems to be reduced to a trigonometric
problem with respect to some families of exponentials. Thus, the further analysis con-
cerns the solvability of the non-Fourier trigonometric moment problem and is based
on the profound theory of the Riesz bases of exponentials. This theory, originated by
the famous Paley–Wiener theorem, has essentially been developed in the last decades
(see monographs by Avdonin and Ivanov [1] and by Young [17] and the references
therein).

The main idea of our work is to apply the moment problem method to the analysis
of controllability of neutral-type systems. Note in this context that the case of neutral-
type systems differs essentially from those mentioned above since the operator A of the
system is not skew-adjoint and, moreover, may not have a basis of eigenvectors or even
generalized eigenvectors. The first element of our consideration is the spectral analysis
of the operator model (1.3) given in our previous works, together with Rezounenko
[10, 11]. In these papers, it is shown that, under the condition that the matrix A−1

is not singular, the operator A (even if it does not verify the Riesz basis property)
possesses a Riesz basis of finite-dimensional invariant subspaces. This allows the
construction of a special Riesz basis in the space M2 in which the steering conditions(

yT
zT (·)

)
=

∫ T

0

eA(T−τ)Bu(τ)dτ(1.4)

take the form of a moment problem quadratically close to some special non-Fourier
moment problems with respect to a family of quasi polynomials. These questions are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT CONTROLLABILITY OF NEUTRAL-TYPE SYSTEMS 2151

considered in sections 2 and 3. Let us notice that the detailed attention accorded to
the construction of the needed Riesz basis is essentially motivated by the fact that, in
the general case, the operator A may not possess a spectral Riesz basis. Otherwise,
for example, if the eigenvalues of the matrix A−1 are simple, our construction would
be much simpler. The main tool of the analysis of solvability of the obtained moment
problem is based on the theory of families of exponentials [1, 17]. The basic elements
of this approach used in our paper are given in section 4. Below we give a complete
analysis of the controllability problem for neutral-type systems. In the course of the
main part of the work, we consider the case when detA−1 �= 0. In this case, the
controllability of system (1.2) is equivalent to the solvability of the moment problem
obtained in section 3. We consider first the single input case in section 5 and give
not only the conditions of exact null-controllability but also determine the time of
controllability. These results are an extension of the result obtained in [6]. In section 6,
we consider the solvability of the moment problem for the multivariable case (dimB =
n× r, r > 1). We introduce some special indices m1 and m which enable the moment
problem to be characterized. We show that the exact null-controllability holds for
time T > m and does not hold for T < m1. Finally, we complete the results on
controllability by getting rid of the assumption detA−1 �= 0 in section 7. We then
obtain the precise time of controllability using the first controllability index of the pair
(A−1, B), say n1 (cf., for example, [15, Chapter 5]). Our main result is the following.

Theorem 1.2. The system (1.3) is exactly null-controllable if and only if the
following conditions are verified.

(i) There is no λ ∈ C and y ∈ C
n, y �= 0, such that Δ∗

A(λ)y = 0 and B∗y = 0,
where

Δ∗
A(λ) = λI − λe−λA∗

−1 − λ

∫ 0

−1

eλsA∗
2(s)ds−

∫ 0

−1

eλsA∗
3(s)ds,

or equivalently rank ( ΔA(λ) B ) = n for all λ ∈ C.
(ii) There is no μ ∈ σ(A−1) and y ∈ C

n, y �= 0, such that A∗
−1y = μ̄y and

B∗y = 0, or equivalently rank (B A−1B · · · An−1
−1 B ) = n.

If conditions (i) and (ii) hold, then the system is controllable at the time T > n1 and
not controllable at the time T ≤ n1, where n1 is the controllability index of the pair
(A−1, B).

If the delay is h instead of 1, the time of exact controllability is T = n1h.

2. The choice of the basis. In this section, we assume that the matrix A−1 is
not singular, detA−1 �= 0.

Let us recall [10] that the spectrum of Ã (the state operator corresponding to the
case A2 = A3 = 0) consists of only the eigenvalues that are the roots of the equation
det ΔÃ(λ) = det(λI − λe−λA−1) = 0, i.e.,

σ(Ã) = {λ(k)
m = ln |μm| + i(argμm + 2kπ)} ∪ {0},

where {μm,m = 1, . . . , �} = σ(A−1).

The operator Ã possesses a Riesz basis of generalized eigenvectors which may be
characterized as follows (see [10, 11]).

Let νm be the number of Jordan blocks corresponding to μm ∈ σ(A−1) and let
pm,j , j = 1, . . . , νm, be the dimension of the corresponding blocks; then
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1. to any λ
(k)
m �= 0 and to any j = 1, . . . , νm there corresponds a Jordan chain

of generalized eigenvectors of Ã, noted {ϕ̃j,1
m,k, ϕ̃

j,2
m,k, . . . , ϕ̃

j,pm,j

m,k } such that

Ãϕ̃j,1
m,k = λ(k)

m ϕ̃j,1
m,k, (Ã − λ(k)

m I)ϕ̃j,s
m,k = ϕ̃j,s−1

m,k , s = 2, . . . , pm,j ;

2. the root space of Ã corresponding to 0 ∈ σ(Ã) is of dimension

n + dim Ker(A−1 − I)n.

If 1 = μg ∈ σ(A−1), g ∈ {1, . . . , �}, then for any j ∈ {1, . . . , νg} there exists

a Jordan chain {ϕ̃j,1
0 , ϕ̃j,2

0 , . . . , ϕ̃
j,pg,j+1
0 } such that

Ãϕ̃j,1
0 = 0, Ãϕ̃j,s

0 = Ãϕ̃j,s−1
0 , s = 2, . . . , pm,j + 1,

and, besides, there exist n − νg linearly independent eigenvectors ϕ̃j
0, j =

νg + 1, . . . , n, such that Ãϕ̃j
0 = 0;

3. any collection {ϕ̃j,s
m,k, s = 1, . . . , pm,j , j = 1, . . . , νm} forms a basis in the

space Ker(Ã − λ
(k)
m I)n, λ

(k)
m �= 0. The collection

{ϕ̃j,s
0 , s = 1, . . . , pm,j + 1, j = 1, . . . , νm}

⋃
{ϕ̃j

0, j = νg + 1, n}

forms a basis in KerÃn.
In the following, we refer to this basis as {ϕ̃} omitting the indices when they are
not necessary. The concrete form of interest to us is that which corresponds to the
nonzero eigenvalues and then takes the form

ϕ̃j,s
m,k =

(
0

eλ
(k)
m tP j,s

m (θ)

)
(2.1)

with

P j,s
m (θ) =

s∑
r=1

Dr
m,j

s−r∑
i=0

βi,s
r

θi

i!
.(2.2)

The constant vectors Di
m,j form a basis in C

n designed from the Jordan chains of the

matrices A−1. These vectors and the constants βi,s
q in the polynomials P (θ) do not

depend on k.
This gives that, in particular,

inf{‖ϕ̃j,s
m,k‖, k ∈ Z} = ρ > 0, sup{‖ϕ̃j,s

m,k‖, k ∈ Z} = R < ∞.(2.3)

The corresponding biorthogonal basis to {ϕ̃} will be denoted by {ψ̃}.
Proposition 2.1. For any m, k the vectors of the biorthogonal basis {ψ̃} form

the following Jordan chain with respect to the adjoint operator Ã∗:

(Ã∗ − λ̄(k)
m I)ψ̃

j,pm,j

m,k = 0, (Ã∗ − λ̄(k)
m I)ψ̃j,s

m,k = ψ̃j,s+1
m,k , s = 0, . . . , pm,j − 1,

where λ̄ is the complex conjugate of λ.
Proof. To prove the statement we need to observe that〈

(Ã − λ(k)
m I)ϕ̃, ψ̃

j,pm,j

m,k

〉
= 0 ∀ϕ̃ ∈ {ϕ̃}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT CONTROLLABILITY OF NEUTRAL-TYPE SYSTEMS 2153

Hence ψ̃
j,pm,j

m,k ∈ D(Ã∗) and (Ã∗ − λ̄
(k)
m I)ψ̃

j,pm,j

m,k = 0. Next, for s = 0, . . . , pm,j − 1 we
have 〈

(Ã − λ̃(k)
m I)ϕ̃, ψ̃j,s

m,k

〉
= 0 ∀ϕ̃ ∈ {ϕ̃}\{ϕ̃j,s+1

m,k }

and 〈
(Ã − λ(k)

m I)ϕ̃j,s+1
m,k , ψ̃j,s

m,k

〉
= 1.

This means that ψ̃j,s
m,k ∈ D(Ã∗) and (Ã∗ − λ̄

(k)
m I)ψ̃j,s

m,k = ψ̃j,s+1
m,k .

Let us give the concrete form of elements ψ̃j,s
m,k corresponding to the nonzero

eigenvalues.
Proposition 2.2. Let

{
C1

m,j , . . . , C
pm,j

m,j

}
be the jth Jordan chain of A∗

−1 corre-
sponding to μ̄m:

A∗
−1C

1
m,j = μ̄mC1

m,j , (A∗
−1 − μ̄mI)Cs

m,j = Cs−1
m,j , s = 2, . . . , pm,j .

Then the vectors ψ̃
j,pm,j−r
m,k are of the form

ψ̃
j,pm,j−i
m,k =

(
1

λ̄
(k)
m

∑i
s=0 q

i,1+s
m,j C1+s

m,j

e−λ̄(k)
m θ

∑i
s=0 q̃

i,1+s
m,j (θ)C1+s

m,j

)
,(2.4)

where i = 0, . . . , pm,j − 1 and the coefficients q and q̃(θ) do not depend on k.
In particular, the eigenvectors are given by

ψ̃
j,pm.j

m,k = βj
m,k

(
1

λ̄
(k)
m

C1
m,j

eλ̄
(k)
m θC1

m,j

)
, βj

m,k ∈ C.(2.5)

Proof. The proof may be obtained by a simple calculation.
Let us now recall [10] that the space M2 possesses a Riesz basis of A-invariant

finite-dimensional subspaces {V } = {V (k)
m , |k| > N, m = 1, . . . , �} ∪ {V̂N}, where

V (k)
m = P (k)

m M2, P (k)
m =

1

2πi

∫
L

(k)
m

R(λ,A)dλ,

where L
(k)
m are circles of fixed radius r < r0 = 1

3 min{|λk
m − λj

i |, (m, k) �= (i, j)},
centered at λk

m, and V̂N is the subspace spanned on all the generalized eigenvectors

of A whose eigenvalues are located outside the circles L
(k)
m , |k| > N, m = 1, . . . , �,

with dim V̂N = 2(N + 1)n. Let us remark that this Riesz basis property is valid for
all sufficiently large N ≥ N0. Moreover, it is shown in [10] that

∑
k∈Z

�∑
m=1

∥∥∥P (k)
m − P̃ (k)

m

∥∥∥2

< ∞,(2.6)

where

P̃ (k)
m =

1

2πi

∫
L

(k)
m

R(λ, Ã)dλ, ImP̃ (k)
m = Ker(Ã − λ(k)

m I)n.
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So, in this sense, the basis {V } is asymptotically quadratic close to the spectral basis

of Ã. Consider now the biorthogonal to {V } basis of subspaces

{W} = {W (k)
m , |k| > N, m = 1, . . . , �} ∪ {ŴN},

i.e., the basis that may be defined by

W (k)
m =

⎛⎜⎝ ∑
(i,j)�=(m,k)

|i|>N,j=1,...,�

V
(i)
j + V̂N

⎞⎟⎠
⊥

, m = 1, . . . , �, |k| > N,

and

ŴN =

⎛⎜⎝ ∑
|i|>N

j=1,...,�

V
(i)
j

⎞⎟⎠
⊥

.

One can easily check that the basis {W} consists of A∗-invariant subspaces and,
besides,

W (k)
m = P (k)∗

m M2, P (k)∗
m =

1

2πi

∫
L̄

(k)
m

R(λ,A∗)dλ, |k| > N, m = 1, . . . , �,

where L̄
(k)
m are the complex conjugate circles to L

(k)
m .

The finite-dimensional operator A∗
|ŴN

has the spectrum σ(A∗
|ŴN

) which is the

complex conjugate of the spectrum σ(A|V̂N
). Let us consider this relation in more

detail. Let λ̂m, m = 1, . . . , �N , be the eigenvalues of A|V̂N
, and ν̂m the number of

Jordan blocks corresponding to λ̂m ∈ σ(A|V̂N
) with the dimension of blocks p̂m,j , j =

1, . . . , ν̂m. Let ϕ̂j,s
m , j = 1, . . . , ν̂m; s = 1, . . . , p̂m,j , be a Jordan basis of generalized

vectors of A|V̂N
, i.e.,

Aϕ̂j,1
m = λ̂mϕ̂j,1

m , (A− λ̂mI)ϕ̂j,s
m = ϕ̂j,s−1

m , s = 2, . . . , p̂m,j ,(2.7)

for the subspace V̂N .
We can now formulate the following statement.
Proposition 2.3. The family

{ψ̂j,s
m , m = 1, . . . , �N ; j = 1, . . . , ν̂m; s = 1, . . . , p̂m,j} ⊂ ŴN

biorthogonal to {ϕ̂j,s
m }, i.e., 〈ϕ̂j,s

m , ψ̂i,k
r 〉 = δ{(m,j,s),(r,i,k)}, forms a Jordan basis of

generalized eigenvectors of A∗
|V̂N

:

A∗ψ̂j,p̂m,j
m =

¯̂
λmψ̂j,p̂m,j

m , (A∗ − ¯̂
λmI)ψ̂j,s

m = ψ̂j,s+1
m , s = 0, . . . , p̂m,j − 1,

for the subspace ŴN .
Proof. The proof is analogous to the proof of Proposition 2.1.
Now we have all the elements to define the Riesz basis that we will use for the

analysis of the steering condition (1.4).
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We consider the spectral, with respect to the operator Ã, basis {ϕ̃} described

above and the corresponding biorthogonal basis {ψ̃}. For a given N > N0 we put

ψj,s
m,k = P (k)∗

m ψ̃j,s
m,k, |k| > N, m = 1. . . . , �; j = 1, . . . , νm; s = 1, . . . , pm,j .(2.8)

Then we complete the collection (2.8) by the set

{ψ̂j,s
m ; m = 1, . . . , �N ; j = 1, . . . , ν̂m; s = 1, . . . , p̂m,j},

which contains 2(N + 1)n vectors forming a Jordan basis in ŴN (Proposition 2.3).
Theorem 2.4. Let the condition (2.3) be satisfied and let N be sufficiently large.

Then the collection

{ψ} = {ψj,s
m,k} ∪ {ψ̂j,s

m },

where ψj,s
m,k are given by (2.8) and ψj,s

m are defined in Proposition 2.3, constitutes a
Riesz basis of M2.

Proof. We start with the fact that under condition (2.3) the collection {ψ̃} forms

a Riesz basis in M2. In particular, this implies that the collection {ψ̃j,s
m,k, |k| > N}

forms a Riesz basis in the closure of its linear span

Cl Lin{ψ̃j,s
m,k, |k| > N} = Cl

∑
|k|>N

�∑
m=1

Ker
(
Ã∗ − λ̄(k)

m I
)max

j
pm,j

.

On the other hand, from (2.6) and (2.8) we have∑
|k|>N

∑
m,j,s

∥∥∥ψj,s
m,k − ψ̃j,s

m,k

∥∥∥2

=
∑

|k|>N

∑
m,j,s

∥∥∥P (k)∗
m − P̃ (k)∗

m

∥∥∥2 ∥∥∥ψ̃j,s
m,k

∥∥∥2

.

This implies that for any ε > 0 there exists a large N1 such that if N > N1, then∑
|k|>N

∑
m,j,s

∥∥∥ψj,s
m,k − ψ̃j,s

m,k

∥∥∥2

< ε.(2.9)

Hence for this N , the family {ψj,s
m,k}|k|>N is quadratically close to {ψ̃j,s

m,k}|k|>N and,
therefore, forms a Riesz basis in the closure of its linear span

Cl Lin{ψj,s
m,k, |k| > N} = Cl

∑
|k|>N

�∑
m=1

W (k)
m .

Since, due to Proposition 2.3, the set {ψ̂j,s
m } is a basis in ŴN and

Cl
∑

|k|>N

�∑
m

W (k)
m + ŴN = M2,

the union

{ψj,s
m,k, |k| > N} ∪ {ψ̂j,s

m }
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is a Riesz basis in M2. This ends the proof.
By {ϕ} we denote the Riesz basis biorthogonal to the basis {ψ} in Theorem 2.4.

Remark 2.5. The elements of the basis {ϕ} which correspond to the part {ψ̂j,s
m }

are the generalized eigenvectors {ϕ̂j,s
m } of the operator A (see (2.7)). So,

{ϕ} = {ϕj,s
m,k, |k| > N} ∪ {ϕ̂j,s

m }.

Moreover, it is easy to show that there exists N1 such that for any given N > N1 and

m = 1, . . . , � the collection {ϕj,s
m,k, j = 1, . . . , νm; s = 1, . . . , pm,j} is a basis of V

(k)
m .

The chosen basis {ϕ} will be used in our further analysis of the steering conditions
by the moment problem method. In this context, we notice that the construction of
a proper basis becomes rather complicated only in the case when the spectrum of the
matrix A−1 is not simple and, as a consequence, the operator A may not possess a
spectral Riesz basis. If all eigenvalues of A−1 are simple, the basis {ϕ} constructed
in this section coincides with a spectral basis of A.

3. Expansion of the steering condition in the Riesz basis. In order to use
the results of section 2, we assume that the matrix A−1 is not singular.

Let us expand the steering condition (1.4) with respect to the basis {ϕ} and to
the biorthogonal basis {ψ}. Consider a state x =

(
y

z(·)
)
∈ M2; this state is reachable

at time T if and only if∑
ϕ∈{ϕ}

〈x, ψ〉ϕ =
∑

ϕ∈{ϕ}

∫ T

0

〈
eAtBu(t), ψ

〉
dtϕ, u(·) ∈ L2(−1, 0; Cr).

Then the steering condition (1.4) can be substituted by the following system of equal-
ities:

〈x, ψ〉 =

∫ T

0

〈
eAtBu(t), ψ

〉
dt, ψ ∈ {ψ}, u(·) ∈ L2(−1, 0; Cr).(3.1)

Let {b1, . . . , br} be an arbitrary basis in ImB, the image of the matrix B and bi =(
bi
0

)
∈ M2, i = 1, . . . , r (more precision on the choice of this basis will be given in

section 6). Then the right-hand side of (3.1) takes the form∫ T

0

〈
eAtBu(t), ψ

〉
dt =

r∑
i=1

∫ T

0

〈
eAtbi, ψ

〉
ui(t)dt.(3.2)

Let us omit the index i for bi and for any b ∈ {b1, . . . ,br} transform the term〈
eAtbu(t), ψ

〉
, ψ ∈ {ψj,s

m,k, |k| > N} as follows:〈
eAtb, ψj,s

m,k

〉
=

〈
eAtb, P

(k)∗
m ψ̃j,s

m,k

〉
=

〈
P

(k)
m eAtb, ψ̃j,s

m,k

〉
=

〈
P̃

(k)
m eÃtb, ψ̃j,s

m,k

〉
+

〈
(P

(k)
m eAt − P̃

(k)
m eÃt)b, ψ̃j,s

m,k

〉
.

(3.3)

Lemma 3.1. There exists a sequence {αk},
∑

|k|>Nα2
k < ∞, such that for all

m = 1, . . . , �; j = 1, . . . , νm, and s = 1, . . . , pm,j the following estimates hold:∣∣∣〈(P (k)
m eAt − P̃ (k)

m eÃt)b, ψ̃j,s
m,k

〉∣∣∣ ≤ αk

|k| , |k| > N, t ∈ [0, T ].(3.4)
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Proof. Let us denote by R(λ,A) and R(λ, Ã) the resolvents of the operators A
and Ã. Taking into account the relation (2.3) we can write∣∣∣〈(P (k)

m eAt − P̃ (k)
m eÃt)b, ψ̃j,s

m,k

〉∣∣∣
=

∣∣∣∣∣
〈

1
2πi

∫
Lk

m

eλt
(
R(λ,A) −R(λ, Ã)

)
dλ · b, ψ̃j,s

m,k

〉∣∣∣∣∣
= 1

2π

∣∣∣∣∣
∫
Lk

m

eλt
〈(

R(λ,A) −R(λ, Ã)
)
b, ψ̃j,s

m,k

〉
dλ

∣∣∣∣∣
≤ 1

2π

∫
Lk

m

∣∣eλt∣∣ ∥∥∥(
R(λ,A) −R(λ, Ã)

)
b
∥∥∥∥∥∥ψ̃j,s

m,k

∥∥∥ |dλ|

≤ C

∫
Lk

m

∣∣eλt∣∣ ∥∥∥(
R(λ,A) −R(λ, Ã)

)
b
∥∥∥ |dλ|

(3.5)

with C > 0. Now we need to estimate ‖(R(λ,A) − R(λ, Ã))b‖. In order to do that,

we need to use an explicit expression for the resolvents of the operators A and Ã given
in [10, Proposition 2.2] (for the proof see [11] and also [5]). We obtain

(
R(λ,A) −R(λ, Ã)

)
b =

⎛⎝ (I −A−1e
−λ)

(
Δ−1

A (λ) − Δ−1

Ã (λ)
)
b

eλθ
(
Δ−1

A (λ) − Δ−1

Ã (λ)
)
b

⎞⎠ ,

where

ΔA(λ) = λI − λe−λA−1 + λ

∫ 0

−1

eλsA2(s)ds−
∫ 0

−1

eλsA3(s)ds,

and, from that, ΔÃ(λ) = λI − λe−λA−1. From the relation

Δ−1

Ã (λ) − Δ−1
A (λ) = Δ−1

A (λ)

(
λ

∫ 0

−1

eλsA2(s)ds +

∫ 0

−1

eλsA3(s)ds

)
Δ−1

Ã (λ),

and using the estimates [11, formulas (25), (26)],∥∥∥Δ−1

A or Ã(λ)
∥∥∥ ≤ C1|λ|−1, C1 > 0, λ ∈ L(k)

m , |k| > N, m = 1, . . . , �,

we get the inequality

(3.6)∥∥∥(
R(λ,A) −R(λ̃,A)

)
b
∥∥∥ ≤ C2

|λ|2

(
|λ|

∥∥∥∥∫ 0

−1

eλsA2(s)ds

∥∥∥∥ +

∥∥∥∥∫ 0

−1

eλsA3(s)ds

∥∥∥∥)
.

For λ ∈ L
(k)
m we can put λ = λ̃+2kπi, where λ̃ ∈ L

(0)
m = {ξ : |ξ−ln |μm|+i argμm| = r}.

This yields ∥∥∥∥∫ 0

−1

eλsA2(s)ds

∥∥∥∥ =

∥∥∥∥∫ 0

−1

eλ̃sA2(s)e
2πiksds

∥∥∥∥ = C
(k)
2 (λ̃),∥∥∥∥∫ 0

−1

eλsA3(s)ds

∥∥∥∥ =

∥∥∥∥∫ 0

−1

eλ̃sA3(s)e
2πiksds

∥∥∥∥ = C
(k)
3 (λ̃),

(3.7)
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where ∑
|k|>N

[
C

(k)
j (λ̃)

]2

≤
∫ 0

−1

|eλ̃s|2‖Aj(s)‖2ds, j = 2, 3.

Since for all values of the parameter

λ̃ ∈
�⋃

m=1

L(0)
m

the L2-norm of the matrix functions eλ̃sAj(s), j = 2, 3, on the interval [−1, 0] are
uniformly bounded, then there exists δ > 0 such that∑

|k|>N

(
C

(k)
j (λ̃)

)2

≤ δ < ∞, j = 2, 3, λ̃ ∈
�⋃

m=1

L(0)
m .(3.8)

Finally, from (3.6) and (3.7), for λ̃ ∈ L
(k)
m we obtain

(3.9)∥∥∥(
R(λ,A) −R(λ, Ã)

)
b
∥∥∥ ≤ C2

|λ̃ + 2kπi|

(
|λ̃ + 2kπi|C(k)

2 (λ̃) + C
(k)
3 (λ̃)

)
, λ̃ ∈ L(0)

m .

Then the inequalities (3.5), (3.6), and (3.9) give the validity of (3.4). The proof is
complete.

Let us consider the first term on the right-hand side of (3.3). Since ψ̃j,s
m,k ∈ W

(k)
m

and due to Proposition 2.1, we have〈
P̃

(k)
m eÃtb, ψ̃j,s

m,k

〉
=

〈
b, eÃ

∗tP̃
(k)∗
m ψ̃j,s

m,k

〉
=

〈
b, eÃ

∗tψ̃j,s
m,k

〉
=

(
〈b, ψ̃j,pm,j

m,k 〉 tpm,j−s

(pm,j−s)! + · · · + 〈b, ψ̃j,s
m,k〉

)
eλ

(k)
m t.

(3.10)

Lemma 3.2. There exists a constant δ1 such that∣∣∣〈b, ψ̃j,s
m,k

〉∣∣∣ ≤ δ1
|k|(3.11)

for all |k| > N , m = 1, . . . , �, j = 1, . . . , νm, s = 1, . . . , pm.j. Moreover, we have〈
b, ψ̃

j,pm.j

m,k

〉
=

1

λ̄
(k)
m

〈
b, C1

m,j

〉
,

where C1
m,j are the eigenvectors of A−1 corresponding to μ̄m and ψ̃

j,pm.j

m,k are as in the

formula (2.5) in Proposition 2.2 with βj
m,k = 1.

Proof. Taking into account (2.3), we get∣∣∣〈b, ψ̃j,s
m,k〉

∣∣∣ =
∣∣∣〈b, P̃ (k)∗

m ψ̃j,s
m,k〉

∣∣∣
=

∣∣∣〈P̃ (k)
m b, ψ̃j,s

m,k〉
∣∣∣

= 1
2π

∣∣∣∣∫
L

(k)
m

〈R(λ, Ã)b, ψ̃j,s
m,k〉dλ

∣∣∣∣
≤ C

∫
L

(k)
m

∥∥∥R(λ, Ã)b
∥∥∥dλ, C > 0,

(3.12)
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where C is a constant. The explicit expression of the resolvent R(λ, Ã) is given by
(see [10, 11])

R(λ, Ã)b =

(
(I −A−1e

−λ)Δ−1

Ã (λ)b

eλθΔ−1

Ã (λ)b

)
.

Since ‖Δ−1

Ã ‖ ≤ C1|λ|−1 with C1 > 0 and for λ ∈ L
(k)
m , |k| > N, m = 1, . . . , �, we

obtain the estimate ∥∥∥R(λ, Ã)b
∥∥∥ ≤ C2

|k| , C2 > 0, λ ∈ L(k)
m .

This, together with (3.12), leads to (3.11).

The second statement follows directly:〈
b, ψ̃

j,pm.j

m,k

〉
=

〈(
b
0

)
, ψ̃

j,pm.j

m,k

〉
=

1

λ̄
(k)
m

〈
b, C1

m,j

〉
.

This completes the proof.

Lemma 3.3. Assume that
〈
b, Cs

m,j

〉
= 0, s = 1, . . . , r, r < pm,j ; then

〈
b, ψ̃

j,pm,j−r
m,k

〉
=

qrm,j

λ̄
(k)
m

〈
b, Cr+1

m,j

〉
,(3.13)

where the coefficients qrm,j do not depend on k.

Proof. This is a direct consequence of the relation (2.4).

Let us denote by qj,s,dm,k (t) the polynomials

qj,s,dm,k (t) = k

⎛⎝
〈
bd, ψ̃

j,pm,j

m,k

〉
(pm,j − s)!

tpm,j−s +

〈
bd, ψ̃

j,pm,j−1
m,k

〉
(pm,j − s− 1)!

tpm,j−s−1 + · · · +
〈
bd, ψ̃

j,s
m,k

〉⎞⎠
(3.14)

and by f j,s,d
m,k (t) the functions

f j,s,d
m,k (t) = k

〈(
P (k)
m eAt − P̃ (k)

m eÃt
)
bd, ψ̃

j,s
m,k

〉
.(3.15)

With these notations (and also due to (3.2), (3.3), and (3.10)), the infinite part of the
system (3.1) corresponding to ψ ∈ {ψj,s

m,k}, |k| > N , reads as

k

〈(
yT

zT (·)

)
, ψj,s

m,k

〉
=

r∑
d=1

∫ T

0

(
eλ

(k)
m tqj,s,dm,k (t) + f j,s,d

m,k (t)
)
ud(t)dt.(3.16)

Moreover, due to Lemmas 3.1, 3.2, and 3.3, the functions (3.14) and (3.15) verify the
following properties:

(P1) the coefficients of the polynomials {q(t)} are uniformly bounded as |k| > N ;
(P2) the set of leading coefficients of the nontrivial polynomials {q(t)} does not

have a limit point at 0;
(P3)

∑
|k|>N |f j,s,d

m,k (t)|2 < α < ∞, t ∈ [0, T ], α > 0.
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Next we observe that if ψ = ψ̂j,s
m , m = 1, . . . , �N , j = 1, . . . , μ̂m, s = 1, . . . , p̂m,j , then〈
eAtbd, ψ

〉
, =

〈
bd, e

A∗tψ
〉

= q̂j,s,dm (t)eλ̂mt,

where

q̂j,s,dm (t) =

⎛⎝
〈
bd, ψ̂

j,pm,j

m,k

〉
(p̂m,j − s)!

tp̂m,j−s +

〈
bd, ψ̂

j,p̂m,j−1
m,k

〉
(p̂m,j − s− 1)!

tp̂m,j−s−1 + · · · +
〈
bd, ψ̂

j,s
m,k

〉⎞⎠ .

Therefore, the finite part of the system (3.1) corresponding to ψ ∈ {ψ̂j,s
m } reads as〈(

yT
zT (·)

)
, ψ̂j,s

m

〉
=

r∑
d=1

∫ T

0

eλ̂mtq̂j,s,dm,k (t)ud(t)dt.(3.17)

Thus, we observe that the state
(

yT

zT (·)
)
∈ M2 is reachable from 0 at the time T > 0 if

and only if the equalities (3.16) and (3.17) hold for some controls ud(·) ∈ L2(0, T ), d =
1, . . . , r. These equalities pose a kind of moment problem, which is the main object
of our further analysis.

4. The problem of moments and the Riesz basis property. In this section,
we recall the general properties of the problem of moments that will be applied to the
analysis of the problem (3.16)–(3.17) given in section 3.

Consider a collection of functions {gk(t), t ∈ [0,∞[}k∈N assuming that for any
k ∈ N, T > 0, gk(·) ∈ L2(0, T ), and consider the following problem of moments:

sk =

∫ T

0

gk(t)u(t)dt, k ∈ N.(4.1)

We start with the following well-known fact, which is a consequence of Bari theorem
[4, Chapter 6] and [17, Chapter 4] (see also [14] for a direct proof and the references
therein).

Proposition 4.1. The following statements are equivalent:
(i) For the scalars sk, k ∈ N, the problem (4.1) has a solution u(·) ∈ L2(0, T ) if

and only if {sk} ∈ �2, i.e.,
∑

k∈N
s2
k < ∞;

(ii) the family {gk(t)}k∈N, t ∈ [0, T ], forms a Riesz basis in the closure of its
linear span

Cl Lin{gk(t), k ∈ N}.

Using this proposition, we can prove the following result.
Proposition 4.2. Let us denote by L(0, T ) the closed subspace

Cl Lin{gk(t), k ∈ N} ⊂ L2(T0, T ).

Let us suppose that for some T1 > 0 the functions {gk(t)}k∈N, t ∈ [0, T1], form a Riesz
basis in L(0, T1) ⊂ L2(0, T1) and codimL(0, T1) < ∞. Then for any 0 < T < T1, there
exists an infinite-dimensional subspace �T ⊂ �2 such that the problem of moments (4.1)
is unsolvable for {sk} ∈ �T if {sk} �= {0}.
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Proof. We introduce for all T > 0 the operator QT : L2(0, T ) → �2 given by

QTu(·) =

{∫ T

0

gk(t)u(t)dt

}
k∈N

.(4.2)

This gives QT1
(L2(0, T1)) = �2 by Proposition 4.1. The operator QT1 is bounded due

to the closed graph theorem. It is easy to see that the adjoint operator Q∗
T1

acts as

Q∗
T1
{sk}k∈N =

∑
k∈N

skgk(t) ∈ L(0, T1).

Let us denote now by Q1 : L(0, T1) → �2 the one-to-one operator defined as follows:

Q1u(·) = {ck} for u(·) =
∑
k∈N

ckgk(·), {ck},∈ �2.

Now consider the decomposition L2(0, T1) = X1 ⊕X2, where

X1 = {u(·) : u(t) ≡ 0, t ∈ [0, T ]}, X2 = {u(·) : u(t) ≡ 0, t ∈ [T, T1]},

and observe that since codimL(0, T1) < ∞, then the intersection X = X1 ∪ L(0, T1)
is an infinite-dimensional subspace in L2(0, T1). Finally, let us denote �T = Q1(X).
The above considerations prove that this subspace is infinite dimensional. Taking
u(·) ∈ X2 and {sk} ∈ �T , we obtain

〈QT1
u(·), {sk}〉 = 〈u(·), Q∗

T {sk}〉 =

∫ T

0

u(t)
∑
k∈N

skgk(t)dt = 0,

because
∑

k∈N
skgk(t) ∈ X1. Thus QT1(X2) ⊥ �T and, therefore, (4.1) is unsolvable

for {sk} ∈ �T if {sk} �= {0}.
Proposition 4.3. Let us consider the moment problem

sk =

r∑
d=1

∫ T

0

gdk(t)ud(t)dt, k ∈ N,(4.3)

with the assumption

∑
k∈N

∫ T

0

|gdk(t)|2dt < ∞, d = 1, . . . , r.(4.4)

Then the set S0,T of sequences {sk} for which problem (4.3) is solvable is a nontrivial
submanifold of �2, i.e., S0,T �= �2.

Proof. Let us introduce the operator Qr
T : Lr

2(0, T ) → �2 defined by

Qr
Tu(·) = {sk}k∈N

=

{
r∑

d=1

∫ T

0

gdk(t)ud(t)dt

}
k∈N

, u(·) = (u1(·), . . . , ur(·)) .
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Then, if ‖u(·)‖ ≤ 1, we obtain

∞∑
k=N

|sk|2 =

r∑
d=1

∞∑
k=N

∣∣∣∣∣
∫ T

0

gdk(t)ud(t)

∣∣∣∣∣
2

dt

≤
r∑

d=1

∞∑
k=N

∫ T

0

|gdk(t)|2dt,

and then
∑∞

k=N |sk|2 → 0 as N → ∞. This means that the set {Qr
Tu(·), ‖u(·)| ≤ 1}

satisfies the criterion of compactness in �2 (see, for example, [7, Chapter 5]). Hence
Qr

T is a compact operator and therefore ImQr
T �= �2.

In the following, our analysis will be based on the theory of families of exponential
developed by Avdonin and Ivanov in [1]. We are particularly interested in the basis
properties of such families.

Let δ1, . . . , δ� be different, modulus 2πi, complex numbers, and let m1, . . . ,m�

and N be natural integers. Let us denote by ẼN the family

ẼN =
{

e(δs+2πik)t, te(δs+2πik)t, . . . , tms−1e(δs+2πik)t
}

|k|>N
s=1,...,�

.

Next, let ε1, . . . , εr be another collection of different complex numbers such that εj �=
δs +2πik, j = 1, . . . , r; s = 1, . . . , �; |k| > N , and let m′

1, . . . ,m
′
r be positive integers.

Let us denote by E0 the collection

E0 =
{

eεjt, teεjt, . . . , tm
′
s−1eεjt

}
j=1,...,r

.

The following theorem is the main tool of our further analysis.
Theorem 4.4. (i) If

∑r
j=1 m

′
j = (2N + 1)

∑�
s=1ms, then the family E = ẼN ∪ E0

constitutes a Riesz basis in L2(0,
∑�

s=1ms).

(ii) If T >
∑�

s=1ms, then independently of the number of elements in E0, the
family E forms a Riesz basis of the closure of its linear span in the space L2(0, T ).

Proof. (i) We make use of [1, Theorem II.4.23]. According to this theorem, let us
consider the complex function

f(z) = e
iz
2

∑�
s=1 ms

�∏
s=1

(
sin

(
z

2
− δs

2

))ms

R(z),

where

R(z) =
r∏

j=1

(z − εj)
m′

j

⎛⎜⎝ ∏
s=1,...,�
|k|≤N

(z − δs − 2πik)ms

⎞⎟⎠
−1

→ 1 as z → ∞.

One can easily verify that f(z) extended to the points δs+2πik, s = 1, . . . , �, |k| ≤ N ,
by continuity, is an entire function of the sine type (see [1, Definition II.1.27] and also
[17, section 4.5]). Representing

�∏
s=1

(
sin

(
z

2
− δs

2

))ms

=

�∏
s=1

(
e

iz
2 e

−iδs
2 − e

−iz
2 e

iδs
2

2i

)ms

,
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we get

�∏
s=1

(
sin

(
z

2
− δs

2

))ms

= C0e
iz
2

∑�
s=1 ms + C1e

−iz
2

∑�
s=1 ms +

N0∑
j=2

Cje
izqj ,

where Cj are constants and qj ∈ {− 1
2

∑�
s=1 ms,

1
2

∑�
s=1 ms}, j = 2, . . . , N0. And

then the growth indicator of the function f (see [1, Paragraph II.1.4.2]) is of the form

hf (φ) = lim
ρ→∞

sup
1

ρ
ln |f(ρeiφ)|

= lim
ρ→∞

sup
1

ρ
ln

∣∣∣∣∣∣C0e
iz

∑�
s=1 ms + C1 +

N0∑
j=2

Cje
iz(qj+

1
2

∑�
s=1 ms)

∣∣∣∣∣∣
=

⎧⎪⎨⎪⎩
0, φ ∈ [0, π],

−
�∑

s=1

ms sinφ, φ ∈ [−π, 0].

Therefore, the indicator diagram is Gf =
[
− i

∑�
s=1 ms, 0

]
. Finally, observe that the

set of zeros of f is exactly

{δs + 2πik} s=1,...,�
|k|>N

⋃
{εj}j=1,...,r,

the roots δs + 2πik are of multiplicity ms, and the roots εj are of multiplicity m′
j . To

summarize, we conclude that f(z) is a generating function (see [1, Definition II.4.21])

of the family E on the interval [0,
∑�

s=1 ms] and, therefore, this family is a Riesz basis

of L2(0,
∑�

s=1 ms). The statement is proved.

(ii) Let us denote γ = T −
∑�

s=1 ms > 0 and choose a complex number μ such
that

μ +
2πim

γ
�= δs + 2πik and μ +

2πim

γ
�= εj

for all m, k ∈ Z, s = 1, . . . , �, j = 1, . . . , r. Let us put m′ =
∑r

j=1 m
′
j and

E(m′)
1 =

{
e(μ+ 2πim

γ )t
}
m∈Z\{1,...,m′}

,

ẼN =
{

e(δs+2πik)t, te(δs+2πik)t, . . . , tms−1e(δs+2πik)t
}

|k|>N
s=1,...,�

and consider the family

ẼN ∪ E0 ∪ E(m′)
1 .

Now let us introduce a complex function of the sine type given by

f1(z) = ei( z
2

∑�
s=1 ms+γ)

�∏
s=1

(
sin

(
z

2
− δs

2

))ms

R1(z) sin γ
(z

2
− μ

2

)
,

where

R1(z) =

r∏
j=1

(z − εj)
m′

j

⎛⎝ m′
j∏

m=1

(
z − μ− 2πim

γ

)⎞⎠−1

→ 1 as z → ∞.
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Then, by arguments analogous to those given in the proof of part (i), it follows that

f1(z) is a generating function of ẼN ∪ E0 ∪ E(m′)
1 on the interval [0, T ]. Therefore,

this family forms a Riesz basis of L2(0, T ). Now, since E ⊂ ẼN ∪ E0 ∪ E(m′)
1 , this

means that E forms a Riesz basis in Cl LinE ⊂ L2(0, T ). The proof of the theorem is
complete.

Now we apply Theorem 4.4 to the collection of functions appearing in (3.16). Let
us fix d ∈ {1, . . . , r} and choose an arbitrary subset L ⊂ {1, . . . , �}. Next, for any
m ∈ L we choose j(m) ∈ {1, . . . , νm} and denote J(L) = {j(m)}m∈L. Finally, for any

couple (m, j(m)), m ∈ L, we put πm,j(m) = deg q
j(m),1,d
m,k (t) + 1. Let us recall that

from (3.14) and Lemmas 3.2 and 3.3 it follows that this degree does not depend on k.
Theorem 4.5. For any choice of d, L, J(L), for any p′m,j(m), such that 1 ≤

p′m,j(m) ≤ πm,j(m), and for any T ≥ n′ =
∑

m∈L p′m,j(m) the collection of functions

Φ1 =
{

eλ
(k)
m tq

j(m),s,d
m,k (t), |k| > N ; m ∈ L; s = πm,j(m) − p′m,j(m) + 1, . . . , πm,j(m)

}
constitutes a Riesz basis of Cl LinΦ1 in L2(0, T ).

If in addition N is large enough, then the family

Φ2 =
{

eλ
(k)
m tq

j(m),s,d
m,k (t) + f

j(m),s,d
m,k (t)

}
|k|>N ; m∈L; s=πm,j(m)−p′

m,j(m)+1,...,πm,j(m)

also forms a Riesz basis of Cl LinΦ2 in L2(0, T ).
If T = n′, the subspaces Cl LinΦ1 and Cl LinΦ2 are of finite codimension (2N +

1)n′ in L2(0, n
′).

Proof. Consider the linear operator T : Lin Φ1 → Lin Φ1 defined on the elements
of Φ1 by the equalities

T (eλ
(k)
m tq

j(m),s,d
m,k (t)) = eλ

(k)
m ttp

′
m,j(m)−s

for |k| > N ; m ∈ L; s = πm,j(m) − p′m,j(m) + 1, . . . , πm,j(m). It follows from the

properties (P1) and (P2) (see section 3) and Theorem 4.4 that the operator T is
bounded in the sense of L2(0, T ) and its extension to L = Cl Lin Φ1 is a bounded
one-to-one operator from L to L. Hence, since the images of the elements of Φ1 form
a Riesz basis of L (Theorem 4.4), then Φ1 is also a Riesz basis of this subspace of
L2(0, T ).

Next, let us introduce in L2(0, T ) an equivalent norm ‖ · ‖1 in which the system
Φ1 becomes orthonormal. Let Φc

1 be an orthonormal complement of the basis Φ1 to a
basis of L2(0, T ). Now using the property (P3), we choose the scalar N large enough
so that ∑

|k|>N
m∈L
s∈Im

‖f j(m),s,d
m,k ‖2

1 ≤ C
∑

|k|>N
m∈L
s∈Im

‖f j(m),s,d
m,k ‖2

L2
< 1,

where Im = πm,j(m) −p′m,j(m) +1, . . . , πm,j(m). Then Φ2 ∪Φc
1 is quadratically close in

‖ · ‖1 to the orthonormal system Φ1 ∪ Φc
1 with a quadratic distance less than 1. This

means that Φ2 ∪Φc
1 forms also a Riesz basis in L2(0, T ) (see Gohberg and Krein [4]).

As a consequence, Φ2 is a Riesz basis in Cl Lin Φ2.
Finally, let us observe that in the case T = n′ the space L, which is also presented

as

L = Cl Lin
{

eλ
(k)
m ttp

′
m,j(m)−s, |k| > N ;m ∈ L, s = πm,j(m) − p′m,j(m) + 1, . . . , πm,j(m)

}
,
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is of codimension (2N + 1)n′ in L2(0, T ) (see Theorem 4.4). Then Φc
1 consists of

exactly (2N + 1)n′ elements. The proof is complete.

5. Analysis of the controllability for a single control. Let us study the
solvability of the systems of equalities (3.16) and (3.17). We assume again that the
matrix A−1 is not singular, detA−1 �= 0.

Consider the sequence of functions{∫ T

0

eλ
(k)
m tq

j(m),s,d
m,k (t) + f

j(m),s,d
m,k (t)dt

}

=

{∫ T

0

eλ
(k)
m tq

j(m),s,d
m,k (t)dt +

∫
0

T

f
j(m),s,d
m,k (t)dt

}(5.1)

for |k| > N, s = 1, . . . , pm,j(m), and any fixed d,m, j and u(·) ∈ L2(0, T ). It follows
from Theorem 4.5 that all nonzero functions of the collection{

eλ
(k)
m tq

j(m),s,d
m,k (t), |k| > N ; s = 1, . . . , pm,j

}
form a Riesz basis of their linear span in L2(0, T

′) if T ′ is large enough. Therefore,
by Proposition 4.1, the first term of (5.1) belongs to the class �2. On the other hand,
the second term also belongs to �2 due to Proposition 4.3. This gives the following
proposition.

Proposition 5.1. If the state
(

yT

zT (·)
)

is reachable from 0 by the system (1.3),

then it satisfies the following equivalent conditions:

(C1)
∑

|k|>N
m,j,s

k2|〈
(

yT

zT (·)
)
, ψj,s

m,k〉|2 < ∞,

(C2)
∑

|k|>N
m=1,...,�

k2‖P (k)
m

(
yT

zT (·)
)
‖2 < ∞,

(C3)
(

yT

zT (·)
)
∈ D(A).

Proof. The condition (C1) follows from the previous consideration. Note that
actually the validity of (C1) does not depend on the choice of the basis {ψ}. In fact,
we can observe that

P (k)
m

(
yT

zT (·)

)
=

∑
j=1,...,νm

s=1,...,pm,j

〈(
yT

zT (·)

)
, ψj,s

m,k

〉
φj,s
m,k.

From here and since {ψ} is a Riesz basis [14], we deduce that there exist two constants
c and C (independently of m and k) such that

c2
∑
j,s

∣∣∣∣〈(
yT

zT (·)

)
, ψj,s

m,k

〉∣∣∣∣2 ≤ ‖P (k)
m

(
yT

zT (·)

)
‖2 ≤ C2

∣∣∣∣〈(
yT

zT (·)

)
, ψj,s

m,k

〉∣∣∣∣2(5.2)

and this gives the equivalence between (C1) and (C2). Let us show now that (C1)
and (C2) are equivalent to (C3).

First of all, we notice that from the explicit form of the resolvent R(λ,A) given
in [11, Proposition 1] and by arguments and estimates given in the proof of [11,
Theorem 2.9], it follows that there exists a constant C such that

‖R(λ,A)| ≤ C, λ ∈ L(k)
m , |k| > N, m = 1, . . . , �.(5.3)
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Let A(k)
m : V

(k)
m → V

(k)
m be the restriction of the operator A to its invariant

subspace V
(k)
m . Then due to (5.3) we have

‖A(k)
m v‖ ≤

∫
L

(k)
m

|λ|‖R(λ,A)‖‖v‖|dλ| ≤ C1|k|‖v‖,∥∥∥∥(
A(k)

m

)−1

v

∥∥∥∥ ≤
∫
L

(k)
m

1

|λ| ‖R(λ,A)‖‖v‖|dλ| ≤ C′
1

|k|‖v‖,

where v ∈ V
(k)
m and the constants C1, C

′
1 do not depend on m, k. From this, one can

obtain for v ∈ V
(k)
m the inequality

1

C ′
1

‖v‖ ≤ 1

k
‖A(k)

m v‖ ≤ C1‖v|.(5.4)

With our notations, the condition (C3) is obviously equivalent to

∑
|k|>N

m=1,...,�

∥∥∥∥A(k)
m P (k)

m

(
yT

zT (·)

)∥∥∥∥2

< ∞.

But, on the other hand, due to (5.4) this condition is equivalent to (C2). This com-
pletes the proof.

From Proposition 5.1 it follows once more, as was pointed out in the introduction
(see also [5]), that the set RT of the states reachable from 0 by virtue of the system
(1.3) and controls from L2(0, T ) is always a subset of D(A). This justifies also Defini-
tion 1.1 given in the introduction: the system (1.3) is said to be null-controllable at the
time T if RT = D(A). Next, we give the necessary conditions of null-controllability.

Theorem 5.2. Assume that the system (1.3) is null-controllable by controls from
L2(0, T ) for some T > 0. Then the following two conditions hold.

(i) There is no λ ∈ C and y ∈ C
n, y �= 0, such that Δ∗

A(λ)y = 0 and B∗y = 0,
where

Δ∗
A(λ) = λI − λe−λA∗

−1 − λ

∫ 0

−1

eλsA∗
2(s)ds−

∫ 0

−1

eλsA∗
3(s)ds,

or equivalently rank ( ΔA(λ) B ) = n for all λ ∈ C.
(ii) There is no μ ∈ σ(A−1) and y ∈ C

n, y �= 0, such that A∗
−1y = μ̄y and

B∗y = 0, or equivalently rank (B A−1B · · · An−1
−1 B ) = n.

First we prove the following lemma.
Lemma 5.3. Condition (i) of Theorem 5.2 is equivalent to the following condition:
(i′) There is no eigenvector g of the adjoint operator A∗ belonging to KerB∗.
Proof of Lemma 5.3. We make use of the following explicit form of A∗:

A∗
(

y
z(·)

)
=

(
A∗

2(0)y + z(0)
− d

dθ (z(θ) + A∗
2(θ)y) ,+A∗

3(θ)y

)
with the domain

D(A∗) =
{
( y, z(·) ) ∈ M2 : z(θ) + A∗

2(θ)y ∈ H1([−1, 0],Cn),

(A∗
−1A

∗
2(0) −A∗

2(−1))y = z(−1) −A∗
−1z(0)

}
.
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From this expression of the adjoint operator, one can show that A∗g = λg if and only
if

g =

(
y(

λe−λθI −A∗
2(θ) + λe−λθ

∫ θ

0
eλsA∗

2(s)ds + e−λθ
∫ θ

0
eλsA∗

3(s)ds
)
y

)
,

where y ∈ Ker Δ∗(λ). Since B∗g = B∗y, the proof of the lemma is complete.
Proof of Theorem 5.2. Let (i) be false. Then by Lemma 5.3 there exists a vector

g �= 0 such that A∗g = λg and g ∈ KerB∗. Consider an arbitrary state
(

yT

zT (·)
)
∈ RT ,

i.e., which is of the form (1.4). This gives〈(
yT

zT (·)

)
, g

〉
=

∫ T

0

〈
u(t),B∗eA

∗tg
〉

dt = 0.

This means that RT is not dense in M2 and so cannot be equal to D(A) which is
dense in M2 because A is an infinitesimal generator. Hence null-controllability is
impossible.

Now let condition (ii) not hold, i.e., there exists a nonzero vector y ∈ C
n such

that

A∗
−1y = μ̄my and B∗y = 0.(5.5)

With our notations, we can represent y as

y =

νm∑
j=1

αjC
1
m,j ,

where C1
m,j is a basis of the eigenspace of A∗

−1 corresponding to the eigenvalue μ̄m.
Among the moment equalities (3.16) we can extract those corresponding to s = pm,j

(for fixed m and j = 1, . . . , νm), i.e.,

(5.6)

sjk = k

〈(
yT

zT (·)

)
, ψ

j,pm,j

m,k

〉
=

r∑
d=1

∫ T

0

(
eλ

(k)
m tq

j,pm,j ,d
m,k (t) + f

j,pm,j ,d
m,k (t)

)
ud(t)dt

for |k| > N, j = 1, . . . , νm. From (3.14) and Lemma 3.2 we have

q
j,pm,j ,d
m,k (t) = k

〈
bd, ψ̄

j,pm,j

m,k

〉
=

k

λ̄
(k)
m

〈
bd, C

1
m,j

〉
.(5.7)

Let us show that the moment problem (5.6) cannot be solved for all {sjk} ∈ �2.
Assume the opposite; then the problem

s̃jk =

νm∑
j=1

ᾱjs
j
k =

r∑
d=1

∫ T

0

νm∑
j=1

ᾱj

(
eλ

(k)
m tq

j,pm,j ,d
m,k (t) + f

j,pm,j ,d
m,k (t)

)
ud(t)dt

is also solvable for all {s̃jk} ∈ �2. On the other hand, (5.5) and (5.7) imply

νm∑
j=1

ᾱje
λ(k)
m tq

j,pm,j ,d
m,k (t) = eλ

(k)
m t k

λ̄
(k)
m

〈
bd,

νm∑
j=1

αjC
1
m,j

〉
= 0.
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Hence the latter moment problem reads as

s̃jk =

r∑
d=1

∫ T

0

gdk(t)ud(t)dt,(5.8)

where gdk(t) =
∑νm

j=1 ᾱjf
j,pm,j ,d
m,k (t), |k| > N , and, due to the property (P3), these

functions satisfy

∑
|k|>N

∫ T

0

|gdk(t)|2dt < ∞.

However, by Proposition 4.3 it follows that the set of solvability of (5.8) is a linear
submanifold �′ ⊂ �2, �′ �= �2. From the obtained contradiction, we conclude that
there exist sequences {sjk} |k|>N

j=1,...,νm

for which (5.6) is not solvable. This means that

there exist states
(

yT

zT (·)
)

that satisfy (C1) but are not reachable from 0 by the system

(1.3). Thus RT �= D(A).
The following results will be used to prove the main results on controllability.

They are also of independent interest.
Lemma 5.4. Assume that for an abstract system (1.1) the following conditions

hold:
(a) RT ⊂ D(A) for all T > 0,
(b) for some T0 > 0 the set RT0 is a closed subspace of finite codimension in the

space XA = D(A), with the standard graph norm ‖x‖A =
√
‖x‖2 + ‖Ax‖2.

Then for all T ≥ T0 we have RT = L, where L is a subspace of D(A) invariant
by the semigroup eAt and 0 < codimL ≤ codimRT0 < ∞.

Proof. Taking into account the inclusion RT1
⊂ RT2

as T1 ⊂ T2 we infer from
assumptions (a) and (b) that there exists ε > 0 such that

RT = L, T ∈]T0, T0 + ε],(5.9)

where L is a subspace such that 0 ≤ codimL ≤ codimRT0 . Let us show that the
relation (5.9) holds also for all T > T0. To do that it is enough to prove that

RT0+
3
2 ε

= L.(5.10)

Let us put

RT1

T2
=

{
x : x =

∫ T2

T1

eAtBu(t)dt, u ∈ L(T1, T2;U)

}

and R0
T = RT . Let us prove first that

RT0+ε
T0+

3
2 ε

⊂ L.(5.11)

In fact, it is easy to see that RT0+ε
T0+

3
2 ε

= eA
ε
2RT0+

ε
2

T0+ε . On the other hand, it follows from

(5.9) that L = RT0+ε = RT0+
ε
2

and hence RT0+
ε
2

T0+ε ⊂ RT0+ε = L. Therefore

eA
ε
2RT0+

ε
2

T0+ε ⊂ eA
ε
2L = eA

ε
2RT0+

ε
2

= R
ε
2

T0+ε ⊂ RT0+ε = L.
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Now from (5.11) and from the obvious relation

RT0+
3
2 ε

= RT0+ε + RT0+ε
T0+

3
2 ε
,

we infer that

L ⊂ RT0+
3
2 ε

= RT0+ε + RT0+ε
T0+

3
2 ε

⊂ L + L = L,

which proves (5.10).
Thus (5.9) is valid for all T > T0. Then L = ∪T>0RT , and, therefore, it is an

invariant subspace for the semigroup {eAt}t≥0. The lemma is proved.
In the following, we denote by XA the space D(A) ⊂ M2 with the graph norm.
Theorem 5.5. For the system (1.3) let there exist a natural N and T0 > 0 such

that the moment problem (3.16) for T = T0 and |k| > N is solvable for all the vectors{
k

〈(
yT

zT (·)

)
, ψj,s

m,k

〉}
|k|>N

satisfying the condition (C1). Then, from the condition (i′) of Lemma 5.3, it follows
that RT = D(A) as T > T0.

Proof. Let us denote by LN ⊂ D(A) the subspace

LN = ClXA

∑
|k|>N

m=1,...,�

V (k)
m

and by PN a projector onto LN in XA. From the assumption on solvability of the
problem (3.16), it follows that PNRT0 = LN . This, in particular, means that RT0

is a
subspace of finite codimension: codimLN = (2N +1)n in D(A). Then by Lemma 5.4
we conclude that RT = L as T > T0, where L ⊂ D(A) is invariant with respect to{
eAt

}
t≥0

and codimL ≤ (2N + 1)n. Let us prove that under the condition (i′) we

have in fact L = D(A).
Assume the contrary. Then let us consider the dual space X∗

A and denote by
L⊥ ⊂ X∗

A the subspace of functionals on XA which are 0 on L. Obviously L⊥ is
finite dimensional. Denote by A∗

1 the infinitesimal extension of A∗ to the space X∗
A

generating the semigroup eA
∗
1t. Since, due to Lemma 5.4, L is invariant with respect

to
{
eAt

}
t≥0

, and then L⊥ is invariant with respect to
{
eA

∗
1t

}
t≥0

. Taking into account

the finite dimensionality of L⊥, we conclude that L⊥ ⊂ D(A∗
1) and there exists an

eigenvector g of the operator A∗
1 that lies in L⊥. Let us notice now that the collection

of subspaces {V (k)
m ,m = 1, . . . , �; |k| > N} is a Riesz basis also for the space XA and

all these subspaces are invariant for the operator A1 = A|D(A)
. This implies that the

collection {W (k)
m ,m = 1, . . . , �; |k| > N ; ŴN} is a Riesz basis of invariant subspaces

for A∗
1 in the space X∗

A. From this, we infer that all the eigenvectors of A∗
1 lie in⋃

m,k

W (k)
m

⋃
ŴN ⊂ D(A∗)

and, therefore, g is also an eigenvector for A∗. Since g ∈ L⊥, then〈∫ T

0

eAtBu(t)dt, g

〉
= 0, u(·) ∈ L2(0, T ;U).
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If we put u(t) ≡ u ∈ U, t ∈ [0, T ], the latter relation brings

0 =

∫ T

0

〈
u,B∗eA

∗tgdt
〉

=

∫ T

0

〈u,B∗g〉 eμtdt = 〈u,B∗g〉
∫ T

0

eμtdt

for all u ∈ U , where A∗g = μ̄g. This implies g ∈ KerB∗, which contradicts (C1).
That completes the proof.

Now we are ready to prove the first important result of our work.
Theorem 5.6. Let conditions (i) and (ii) of Theorem 5.2 hold. Then
(i) the system (1.3) is null-controllable at the time T as T > n;
(ii) if the system (1.3) is of single control (r = 1), then the estimation of the time

of controllability in (i) is exact, i.e., the system is not controllable at time
T = n.

If the delay is h instead of 1, the time of exact controllability is T = nh.
Proof. Here we prove (i) for the case of a single control. In the case of multivariable

control we obtain a more precise estimate for the time of controllability in section 6.
First of all, let us observe that conditions (i) and (ii) of Theorem 5.2 imply, in the

case of single control, that all the eigenspaces of A∗ and Ã∗ are one dimensional. In
fact, otherwise we will have that there exists an eigenvector g of A∗ or Ã∗ such that
〈b, g〉 = 0. But we know that g has the form

g =

(
y

z(θ)

)
,

where y is a nonzero eigenvector for the pencil Δ∗(λ) (that is, Δ∗(λ0)y = 0 for some
λ0) or of the matrix A∗

−1, respectively. Since 〈b, g〉 = 0 gives 〈b, y〉 = 0 we arrive at a
contradiction with the conditions of Theorem 5.2.

Thus, equalities (3.16) and (3.17) take, in our case, the form

k

〈(
yT

zT (·)

)
, ψ1,s

m,k

〉
=

∫ T

0

(
eλ

(k)
m tq1,s

m,k(t) + f1,s
m,k(t)

)
u(t)dt,(5.12)

where |k| > N, m = 1, . . . , �, s = 1, . . . , pm,1, and〈(
yT

zT (·)

)
, ψ̂1,s

m

〉
=

∫ T

0

eλ̂mtq̂1,s
m (t)u(t)dt,(5.13)

where m = 1, . . . , �N , s = 1, . . . , p̂m,1. From Lemmas 3.2 and 5.3, it follows that all

polynomials {q(t)}, {q̂(t)} are nontrivial and deg q1,s
m,k(t) = pm,1 − s, deg q̂1,s

m (t) =
p̂m,1 − s. This gives

�∑
m=1

p′m,1 =

�∑
m=1

(
deg q1,1

m,k + 1
)

=

�∑
m=1

pm,1 = n.

Applying Theorem 4.5, we find that for a large enough N , the collection

Φ =
{

eλ
(k)
m tq1,s

m,k(t) + f1,s
m,k(t)

}
|k|>N

m=1,...,�
s=1,...,pm,1

⋃ {
eλ̂mtq̂1,s

m (t)
}

m=1,...,�N
s=1,...,p̂m,1

forms a Riesz basis in Cl Lin Φ ⊂ L2(0, T ). Then by Proposition 4.1 the moment
problem (5.12) is solvable if and only if (C1) holds. Due to Theorem 5.5, this yields
RT = D(A) for T > n.
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To prove (ii) we first recall that the total number of elements of the family

Φ̂ =
{

eλ̂mtq̂1,s
m (t), m = 1, . . . , �N ; s = 1, . . . , p̂m,1

}
equals

∑�
m=1 p̂m,1 = (2N + 2)n. Since

∑�
m=1 pm,1 = n, we have

�∑
m=1

p̂m,1 = (2N + 1)

�∑
m=1

pm,1 + n.

On the other hand, it follows from Theorem 4.5 that in L2(0, n) we have

codim Cl Lin Φ1 = (2N + 1)n = (2N + 1)

�∑
m

pm,1,

where

Φ1 =
{

eλ
(k)
m tq1,s

m,k(t) + f1,s
m,k(t), |k| > N, m = 1, . . . , �, s = 1, . . . , pm,1

}
.

This means that the family Φ = Φ1 ∪ Φ̂ contains at least n functions, which are pre-
sented as linear combinations of the others. As a consequence, the set of reachability
RT for T = n cannot be equal to D(A). More precisely, the codimension of RT in
D(A) satisfies the estimation n ≤ codimRT < ∞. The theorem is proved.

Remark 5.7. It is clear that the system (1.3) is also uncontrollable at time T < n.
Moreover, it follows from Proposition 4.2 that, in this case, the set ClRT is of infinite
codimension in XA.

6. Controllability in the multivariable case. Let us now consider the multi-
variable case: dimB = r with also the assumption that the matrix A−1 is not singular,
detA−1 �= 0.

Let {b1, . . . , br} be an arbitrary basis noted β. Let us introduce a set of integers.
We denote Bi = ( bi+1, . . . , br ) , i = 0, 1, . . . , r − 1, which gives in particular B0 = B
and Br−1 = ( br ) and we put formally Br = 0. We need in the following the integers

mβ
i = rank (Bi−1 A−1Bi−1 · · · An−1

−1 Bi−1 ) − rank (Bi A−1Bi · · · An−1
−1 Bi )

(6.1)

corresponding to the basis β. Let us denote

m1 = max
β

mβ
1 , m = min

β
max

i
mβ

i ,(6.2)

for all possible choices of a basis β. It is easy to show that for all β, there exists i such
that mβ

i ≥ m1 and then m ≥ m1. Indeed, assume that m1 is realized on the basis
β = {b1, . . . , br}, and consider an arbitrary basis β0 = {b01, . . . , b0r}. Then there exists
i such that Lin {b0i , . . . , b0r} ⊂/ Lin {b2, . . . , br} but Lin {b0i+1, . . . , b

0
r} ⊂ Lin {b2, . . . , br}.

For this integer i we have mβ0

i ≥ m1.
Now we can formulate the main result of this section.
Theorem 6.1. Let conditions (i) and (ii) of Theorem 5.2 hold. Then
(i) the system (1.3) is null-controllable at the time T > m;
(ii) the system (1.3) is not controllable at the time T < m1.
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If the delay is h instead of 1, then in (i) and (ii) m and m1 must be replaced by
mh and m1h, respectively.

Proof. We show first that the system is not controllable at the time T < m1.

Assume that the system is controllable. Let the basis where m1 is realized be
{b1, . . . , br}. Consider now the relation (3.16) together with (3.14) and (3.15) given

by the controllability problem. The basis {ψ̃} arising in (3.14) and (3.15) is given by
(2.4) and expressed via the rootvectors Cs

m,j of the matrix A∗
−1.

Let us choose the vectors Cs
m,j . Consider the subspace

Im (B1 A−1B1 · · · An−1
−1 B1 ) ,

where B1 = ( b2 b3 · · · br ). Then the subspace

N1 = {Im (B1 A−1B1 · · · An−1
−1 B1 )}⊥ =

n−1⋂
i=0

KerB∗
1A

∗
−1

i

is invariant by A∗
−1. The condition of controllability gives that A∗

−1|N1

has, for each

eigenvalue μ, only one Jordan chain. Indeed, on the contrary, if there are two chains in
N1, then there are two independent eigenvectors corresponding to the same eigenvalue
in N1 ⊂ KerB∗

1 , i.e., both these vectors are orthogonal to b2, . . . , br. Then there exists
a linear combination of these eigenvectors, which is orthogonal also to b1 and, as a
consequence, belongs to KerB∗. This contradicts the controllability condition.

Note also that dimN1 = n − dim Im (B1 A−1B1 · · · An−1
−1 B1 ) = m1. We

take the corresponding vectors Cs
m,j in N1. This implies〈

Cs
m,j , bi

〉
= 0, i = 2, . . . , r.

This means that m is chosen such that μm is an eigenvalue of A∗
−1|N1

, j is the number

of the unique Jordan chain in N1, and s is the index of the vectors in the Jordan chain.

Let ΩN1
be the set of indices of the eigenvalues μm ∈ σ(A∗

−1|N1

). For each

m ∈ ΩN1 we have a Jordan chain, say with the number j(m) in N1. The indices of
the corresponding generalized eigenvectors are

s ∈
{
pm,j(m), pm,j(m) − 1, . . . , pm,j(m) − p′m,j(m) + 1

}
= Im,

the length of the Jordan chain is p′m,j(m), and C
pm,j(m)

m,j(m) is an eigenvector. For m ∈
ΩN1 , j(m) and s ∈ Im we consider the relation (3.16) which is the expression of the
controllability condition. As Cs

m,j(m) ∈ N1, we get

k

〈(
yT

zT (·)

)
, ψ

j(m),s
m,k

〉
=

∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt +

r∑
d=1

∫ T

0

f j,s,d
m,k (t)ud(t)dt

(6.3)
for |k| > N . From the hypothesis of controllability at the time T , it follows that the
left-hand side gives an arbitrary element of �2, and then the relation (6.3) may be
represented by the expression

x = [Q1 + F ]u(·), x ∈ �2,(6.4)
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where the operators Q1 and F are linear bounded operators from L2(0, T ) to �2 defined
by

Q1u(·) =

{∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt; m ∈ ΩN1 , |k| > N, s ∈ Im

}
,

Fu(·) =

{
r∑

d=1

∫ T

0

f
j(m),s,d
m,k (t)ud(t)dt; m ∈ ΩN1 , |k| > N, s ∈ Im

}
.

We now need the following lemmas.
Lemma 6.2. The operator F is compact.
Proof. By (P3) the operator F is compact in the same way as Qr

T is compact in
Proposition 4.3.

Lemma 6.3. The image of the operator Q1 is of infinite codimension.
Proof. Let us recall that m1 = dimN1. Then for each k, the sum of the length of

Jordan chains of the operator Ã corresponding to the Jordan chains in N1 is m1:∑
m∈ΩN1

p′m,j(m) = m1.

Let us first show that the family{
eλ

(k)
m tq

j(m),s,1
m,k (t), m ∈ ΩN1

, |k| > N, s ∈ Im

}
(6.5)

forms a Riesz basis of the closure of its linear span in the space L2(0,m1). In order
to do that, we have to consider the family{

eλ
(k)
m t, eλ

(k)
m tt, . . . , eλ

(k)
m ttpm,j(m)−1; m ∈ ΩN1

, |k| > N,
}
.(6.6)

This family forms a Riesz basis of the closure of its linear span in L2(0,m1)
by Theorem 4.4. Moreover, the closure of its linear span is of finite codimension
(2N + 1)m1 since it may be completed by a family of (2N + 1)m1 functions to get
a Riesz basis of L2(0,m1). The relation between the families (6.5) and (6.6) may be
written as

T (eλ
(k)
m tq

j(m),s,1
m,k (t)) = eλ

(k)
m ttpm,j(m)−s,

where T is a linear bounded invertible operator in the closure of the linear span of
the family (6.5). This implies that this family forms a Riesz basis in the closure of its
linear span, which is of finite codimension. Then, from Proposition 4.2, the problem
of moments

s
j(m),s
m,k =

∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt

is not solvable in a subspace of infinite codimension and this implies that ImQ1 is of
infinite codimension. Lemma 6.3 is proved.

Let us now show that, from the fact that ImQ1 is of infinite codimension and F
is a compact operator, we have Im [Q1 + F ] �= �2.

The necessary and sufficient condition of the equality Im [Q1 +F ] = �2 is (cf., for
example, [13, Theorem 4.13])

∃γ > 0 ∀x ∈ �2, ‖[Q1 + F ]∗x‖ ≥ γ‖x‖.
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We know that KerQ∗
1 = (ImQ1)

⊥
is an infinite-dimensional closed subspace. This

implies that

∀x ∈ KerQ∗
1, ‖F ∗x‖ ≥ γ‖x‖

for the same scalar γ, and this is impossible because F is a compact operator. Hence
Im [Q1 + F ] �= �2 and this implies that (6.4) is not possible for all x ∈ �2.

Then the relation (6.3) is not possible for all (yT , zT (·)) ∈ D(A) if T < m1. Part
(ii) of the theorem is proved.

Let us now prove part (i) of the theorem.

First we choose a basis for the relation (3.16). Let β = {b1, . . . , br} be an arbitrary

basis of ImB and T > max{mβ
i , i = 1, . . . , r}. Consider now the subspaces

Ni =

n−1⋂
j=0

KerB∗
i A

∗
−1

j ,

where Bi = ( bi+1 · · · br ) , i = 1, . . . , r − 1, B0 = B, and Br = 0. We have N0 = 0,
Nr = C

n, and Ni ⊂ Ni+1 for i = 0, . . . , r−1. The subspaces Ni are invariant by A∗
−1.

In order to construct the basis {ψ} corresponding to |k| > N , we first choose a basis
of generalized eigenvectors of A∗

−1 in the following way. Let us take a basis in N1 as
in the first part of the proof. Then we complete this basis up to a basis of N2 by
extending some Jordan chains from N1 and by adding Jordan chains corresponding
to some other eigenvalues. In the same way, we extend our basis up to the basis of
N3, . . . ,Nr = C

n.

Remark 6.4. The part of the obtained basis of Ni not belonging to Ni−1, i =
1, . . . , r, does not contain two chains corresponding to the same eigenvalue. We have
already proved that in N1 there do not exist two chains with the same eigenvalue.
Suppose now that N2 contains the end of the first chain and the beginning of the
second chain corresponding to the same eigenvalue. Let yo

1 ∈ N2, y
o
1 /∈ N1 be the

continuation of the first chain from N1. If the maximal order of the rootvectors in N1

is p, then the order of yo
1 is p+ 1. Let yn

2 be a new eigenvector in the second chain of
N2 corresponding to the same eigenvalue. Let us consider the vector y = αyo

1 + βyn
2 .

We know that yo
1 is not orthogonal to b2, because if yo

1 ⊥ b2, then yo
1 ∈ N1. Then one

can choose α, β such that y ⊥ b2. Then, for this choice of α and β, y ∈ N1 and it is
a rootvector of higher order than p in N1, which contradicts the construction of N1

(the maximal order in N1 is p− 1). This proves the remark for i = 2. For i > 2, the
proof is the same.

We have then a basis in C
n of Jordan chains of A∗

−1 formed by successive bases
of

N1 ⊂ N2 ⊂ · · · ⊂ Nr = C
n.

Let us denote by ΩNi/Ni−1
, i = 1, . . . , r (ΩN1/N0

= ΩN1), the set of the indices m of
the eigenvalues of the matrix A∗

−1 for which there exists chains in Ni not belonging to
Ni−1. Since for any m ∈ ΩNi/Ni−1

such a chain is unique we can denote its number
by j(m).

Using the constructed basis, we obtain a basis {ψ} by the relation (2.4). In this
basis, the relations (3.16) may be written as follows, and noted as (Ri, i = 1, . . . , r).
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The first family (R1) is

(R1)

k

〈(
yT

zT (·)

)
, ψ

j(m),s
m,k

〉
=

∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt

+

r∑
d=1

∫ T

0

f
j(m),s,d
m,k (t)ud(t)dt

(6.7)

for m ∈ ΩN1 , s = pm,j(m) − p1′
m,j(m) + 1, . . . , π1

m,j(m), pm,j(m) − 1, |k| > N , π1
m,j(m) =

pm,j(m).
The second family (R2) is

(R2)

k

〈(
yT

zT (·)

)
, ψ

j(m),s
m,k

〉
=

∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt

+

∫ T

0

eλ
(k)
m tq

j(m),s,2
m,k (t)u2(t)dt

+

r∑
d=1

∫ T

0

f
j(m),s,d
m,k (t)ud(t)dt

(6.8)

for m ∈ ΩN2/N1
, s = π2

m,j(m) − p2′
m,j(m) + 1, . . . , π2

m,j(m), |k| > N , where π2
m,j(m) and

p2′
m,j(m) are some integer.

The last one (Rr) being

(Rr)

k

〈(
yT

zT (·)

)
, ψ

j(m),s
m,k

〉
=

r∑
d=1

∫ T

0

eλ
(k)
m tq

j(m),s,d
m,k (t)ud(t)dt

+

r∑
d=1

∫ T

0

f j,s,d
m,k (t)ud(t)dt

(6.9)

for m ∈ ΩNr/Nr−1
, j = j(m), s = πr

m,j(m) − pr′m,j(m) + 1, . . . , πr
m,j(m), |k| > N , with

some integer πr
m,j(m) and pr′m,j(m).

For each |k| > N the number of equalities (Ri, i = 1, . . . , r) is exactly mβ
i (see

the definition of this number in (6.1)).
Remark 6.5. Let us specify that in the collections (Ri, i = 1, . . . , r), for each k

there exists only one group of quasi polynomials corresponding to the given exponent.
Moreover, for each i, . . . , r, the quasi polynomials corresponding to d = i have degrees
0, 1, . . . , pi′, as follows from (2.4), (3.14), and Lemma 3.3.

Before solving the problems (Ri, i = 1, . . . , r) we solve first the same problems

with f j,s,d
m,k = 0, noted (R0

i , i = 1, . . . , r).

Lemma 6.6. The problems (R0
i , i = 1, . . . , r) obtained from (Ri, i = 1, . . . , r) by

the assumption that f j,s,d
m,k = 0 with T > max{mβ

i , i = 1, . . . , r} are solvable if and
only if the left-hand side is an element of �2.

Proof. Consider the problem (R0
1) obtained from (6.7) with the assumption

f j,s,d
m,k = 0. This problem is solvable if and only if the left-hand side is �2 by The-

orem 4.5. If this problem is not solvable, then the problems (R0
i ) are not solvable. If

(R0
1) is solvable, then we can find a solution u1(t). Then, in the problem (R0

2) the
term ∫ T

0

eλ
(k)
m tq

j(m),s,1
m,k (t)u1(t)dt
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on the right-hand side is determined and may be moved to the left-hand side. Hence
(R0

2) is a new moment problem with unknown function u2(t). It is solvable if and
only if the left-hand side is in �2.

Repeating this argumentation up to (R0
r), we obtain that the global problem

(R0
i , i = 1, . . . , r) is solvable if and only if the right-hand side in (6.7)–(6.9) is in �2.

The proof of Lemma 6.6 is complete.
Let us now return to the general problem (Ri, i = 1, . . . , r) given in (6.7)–(6.9).

One can represent the equalities (Ri, i = 1, . . . , r) in the following operator form:

x = QNu(·) + FNu(·), x ∈ �2, u(·) ∈ L2(0, T ; Cr),

with N the integer for which the problem is considered (|k| > N). We shall prove
that there exists N sufficiently large such that

ImQN = �2 =⇒ Im [QN + FN ] = �2,

and the last equality means that (Ri, i = 1, . . . , r) is solvable if (R0
i , i = 1, . . . , r) is

solvable, i.e., if the left-hand sides in (6.7)–(6.9) are in �2.
Suppose that ImQN = �2; then there exists a constant γN > 0 such that ‖Q∗

Nx‖ ≥
γN‖x‖ for all x ∈ �2 (see, for example, [13, Theorem 4.13]). Let N > N0 and let us
denote by �N2 the Hilbert space �2(N) = {sk, |k| > N :

∑
|k|N |sk|2 < ∞}; then

QN = PQN0 where P : �N0
2 → �N2 is the projector defined by

P ({sk, |k| > N0}) = {sk, |k| > N}.

Then Q∗
N = Q∗

N0
P ∗ and ‖P ∗x‖ = ‖x‖. This gives

‖Q∗
Nx‖ = ‖Q∗

N0
P ∗x‖ ≥ γN0

‖x‖.

This means that for all N > N0, ‖Q∗
Nx‖ ≥ γ‖x‖ for all x ∈ �2, where γ = γ0.

Consider now the operator FN . By the property (P3) (section 3) we have ‖FN‖ →
0 when N → ∞. Hence the norm ‖QN −QN −FN‖ = ‖FN‖ can be made arbitrarily
small, say ‖FN‖ ≤ γ

2 . This gives that the operator QN +FN is also surjective because

‖[Q∗
N + F ∗

N ]x‖ ≥ ‖Q∗
Nx‖ − ‖F ∗

Nx‖ ≥ γ‖x‖ − γ

2
‖x‖ =

γ

2
‖x‖.

Then from Lemma 6.6 it follows that if T > max{mβ
i , i = 1, . . . , r}, the moment

problem (Ri, i = 1, . . . , r), |k| > N , is solvable for all left-hand sides in �2.
Applying now Theorem 5.5, we conclude that RT = D(A). The proof of the

theorem is complete.

7. Controllability in the general case. In the previous section, we use the
assumption that the system (1.2) is a pure neutral-type system (detA−1 �= 0). How-
ever, this condition is in fact a technical assumption that allows the use of the Riesz
basis of eigenspaces of the operator A in M2 and the moment problem approach.

In this section, we show that conditions (i) and (ii) of Theorem 5.2 are necessary
and sufficient for exact controllability for the general neutral systems (A−1 may be a
singular matrix). We obtain also the precise time of controllability. From Theorem
6.1 it is not clear what happens if the time T is such that m1 ≤ T ≤ m even
if the conditions of controllability are satisfied. In this section, the exact time of
controllability is given. In order to do that, we need the classical concept of the
controllability indices.
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Recall that the first index n1 may be defined as the minimal integer ν such that
(see, for example, [15, Chapter 5])

rank (B,A−1B, . . . , A−1
ν−1B ) = n.

Lemma 7.1. Assume that the pair (A−1, B) is controllable. Let n1 be the index
of controllability of the couple (A−1, B) and let m,m1 be defined by (6.2). Then
m1 ≤ n1 ≤ m.

Proof. Let β = {b1, . . . , br} be an arbitrary basis of ImB. Then

An1b1 ∈ Im (B AB · · · An1−1B ) = Im (B AB · · · An−1B ) .

This may be written as

An1b1 ∈ Lin {b1, Ab1, . . . , A
n1−1b1} + Im (B1 AB1 · · · An1−1B1 ) .

This gives that mβ
1 ≤ n1 for all β. Hence m1 ≤ n1.

Let us now consider the indices mβ
1 , · · · ,mβ

r . By the definition of the integers mβ
i

we get that {
b1, . . . , A

m1
β−1b1, b2, . . . , A

m2
β−1b2, . . . , br, . . . , A

mr
β−1br

}
is a basis in C

n. This may be verified remarking first that, by definition, the vectors

br, . . . , A
mβ

r−1br are linearly independent and

Lin {br, . . . , Amβ
r−1br} = Lin {br, . . . , An−1br}.

Then we have to consider the previous step, i.e., mβ
r−1, and state that{

br−1, . . . , A
mβ

r−1br−1, br, . . . , A
mr−1br

}
are also linearly independent and

Lin
{
br−1, . . . , A

mβ
r−1−1br−1, br, . . . , A

mr
β−1br

}
= Lin

{
br−1, . . . , A

n−1br−1, br, . . . , A
n−1br

}
and so on.

We have then mβ
1 + · · · + mβ

r = n and then rank
(
B AB · · · Amβ−1B

)
= n,

where max{mβ
i , i = 1, . . . , r}. This gives n1 ≤ mβ for all β and hence n1 ≤ m. This

completes the proof of the lemma.
It is well known that in contrast to indices m1,m, the controllability index n1

is invariant under feedback. This means that n1 is the same for all couples (A−1 +
BP,B), where P is an r×n matrix. Then one can choose a feedback matrix P and a
basis in C

n such that A−1 + BP take the following form (see [15, Theorem 5.10 and
Corollary 5.3]):

F = diag{F1, . . . , Fr},

where

Fi =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ai1 ai2 ai3 · · · aini

⎞⎟⎟⎟⎟⎠
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and B becomes

G = diag{g1, . . . , gr},

where gi = ( 0 0 · · · 1 )
T
, the dimension being ni × 1. It is easy to check that

m(F,G) = m1(F,G) = n1. Moreover, the spectrum of F may be chosen arbitrarily
by means of an appropriate choice of P .

Let us now return to the controllability problem for the system (1.2) (or equiva-
lently (1.3)). We first give a preliminary result.

Lemma 7.2. The system (1.2) is exactly null-controllable at the time T if and
only if the perturbed system

(7.1)

ż(t) = (A−1 + BP )ż(t− 1) +

∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ + Bu

is exactly null-controllable at the same time T .

Proof. Obviously it is enough to prove one implication only. Assume that the
system (1.2) is controllable at the time T . It means that for any function f(t) ∈
H1(T − 1, T ; Cn) there exists a control u(t) ∈ L2(0, T ; Cn) such that the solution of
the equation

ż(t) = A−1ż(t− 1) +

∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ + Bu(t),(7.2)

with the initial condition z(t) = 0, t ∈ [−1, 0], verifies z(t) = f(t), t ∈ [T − 1, T ]. Let
us rewrite (7.2) in the form

ż(t) = (A−1 + BP )ż(t− 1) +

∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ + Bv(t),

where v(t) = u(t) − P ż(t − 1), t ∈ [0, T ]. Since z(t − 1) ∈ H1([0, T ]; Cn), then
v(t) ∈ L2(0, T ; Cn). Thus, the control v(t) transfers the state z(t) = 0, t ∈ [−1, 0], to
the state z(t) = f(t), t ∈ [T − 1, T ], by virtue of the perturbed system. This means
that it is also controllable at the time T .

We have the following result, which concludes our considerations.

Theorem 7.3. Let the neutral-type system (1.2) be in the general form, i.e., with-
out the assumption detA1 �= 0. Conditions (i) and (ii) of Theorem 5.2 are necessary
and sufficient for the exact controllability of the system. Under these conditions, the
precise time of controllability is T = n1. This means that the system is not controllable
for T ≤ n1 and is controllable for T > n1.

If the delay is h instead of 1, then the exact time of controllability is n1h.

Proof. According to Theorem 5.2, the proof of necessity is needed for the case
when detA1 = 0. Let us first show that condition (ii) holds. Assume that (ii) is not
verified. Then there exist vectors z0 �= 0 such that A∗

−1z0 = λ0z0 and B∗z0 = 0.
If for all such vectors λ0 �= 0, then one can find P0 such that A−1 + BP0 is not
singular. Then, according to Lemma 7.2, the perturbed system (7.1) with P = P0

is exactly null-controllable. This gives that the pair (A−1 + BP0, B) is controllable,
which contradicts the existence of such vectors z0.
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Suppose that for some vector z0 �= 0, we have A∗
−1z0 = 0 and B∗z0 = 0. Then,

multiplying (1.2) by z0 we get

〈ż(t), z0〉 =

〈
A−1ż(t− 1) +

∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ + Bu(t), z0

〉
and the exact null-controllability definition means that this relation holds for an arbi-
trary function 〈ż(t), z0〉 ∈ L2(T −1, T ). As 〈A−1ż(t− 1), z0〉 = 0 and 〈Bu(t), z0〉 = 0,
this gives, after a change of variables,

〈ż(t), z0〉 =

〈∫ 0

−1

A2(θ)ż(t + θ)dθ +

∫ 0

−1

A3(θ)z(t + θ)dθ, z0

〉
=

〈∫ t

t−1

A2(s− t)ż(s)ds +

∫ t

t−1

A3(s− t)z(s)ds, z0

〉
= (K2(z0) K3(z0) )

(
ż(·)
z(·)

)
,

where Kj : L2((T − 2, T ); Cn) −→ L2(T − 1, T ), j = 2, 3, are linear operators defined
by

(Kj(z0)w) (t) =

∫ t

t−1

Aj(s− t)w(s)ds =

∫ T

T−1

Âj(s− t)w(s)ds,

and

Âj(s) =

{
Aj(s), s ∈ [−1, 0],

0, s /∈ [−1, 0].

The operators Kj , j = 2, 3, are clearly compact operators because∫ T

T−1

(∫ T

T−2

‖Âj(s− t)‖2ds

)
dt =

∫ T

T−1

(∫ 0

−1

‖Aj(θ)‖2dθ

)
dt < ∞;

see, for example, [7, Chapter 6]. Then the image of the operator (K2(z0) K3(z0) )
cannot coincide with L2(T − 1, T ). Thus, such a vector z0 does not exist. This gives
that condition (ii) is necessary.

Let us now prove the necessity of condition (i). If A−1 is nonsingular, it is proved
in Theorem 5.2. Assume now that A−1 is singular. Then (since we have proved (ii))
we can choose a matrix P such that A−1 +BP is not singular. According to Lemma
7.2, the perturbed system (7.1) is still exactly null-controllable. Using Theorem 5.2,
we have the following statement: there do not exist λ ∈ C and y ∈ C

n such that[
λI − λe−λ

(
A∗

−1 + P ∗B∗) − λ

∫ 0

−1

eλsA∗
2(s)ds−

∫ 0

−1

eλsA∗
3(s)ds

]
y = 0

and B∗y = 0. This gives condition (i).
Now we prove the sufficiency. Assume that conditions (i) and (ii) are verified.

Then they are also verified for the perturbed system. From condition (ii) we can choose
a matrix P such that A−1 + BP is nonsingular and m(A−1 + BP,B) = m1(A−1 +
BP,B) = n1. And this gives that the perturbed system is exactly null-controllable at
the time T > n1 and is not controllable at the time T < n1. By Lemma 7.2 we infer
that our system (1.2) satisfies the same condition.
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Moreover, it is easy to prove, arguing as in the proof of Theorem 5.6, that the
system (1.2) is also not controllable at the time T = n1. More precisely, the codimen-
sion of Rn1 in XA is finite and not less than n1. For T < n1, the codimension of RT

is infinite.

8. Conclusion and perspectives. The main goal of this paper is to demon-
strate how the moment problem approach can be used in the controllability problem
for delay systems of neutral type. To this end, we chose a quite general model (1.2)
with distributed delays in the function and its derivative, a pointwise neutral term
determined by a matrix A−1, and the control term by a matrix B. Using our ap-
proach, we have given a complete analysis of the exact null-controllability for this
model. Namely,

(i) we showed that the maximal possible set of the states reachable from 0 by
the system at some time T > 0 is the space H1;

(ii) we found the conditions of the parameters of the system under which this set
of reachability can be maximally possible (the conditions of exact controlla-
bility);

(iii) we proved that, under the above conditions, the system is exactly controllable
at the time T if and only if T > n1, where n1 is the first controllability index
of the couple (A−1, B) (the time of exact controllability).

As a perspective, we consider the extension of our approach to systems with several
pointwise neutral terms and to the general case of distributed neutral-type delay,

Kf =

∫ 0

−1

dμ(θ)f(θ), f ∈ C([−1, 0],Cn),

where μ is a matrix-valued function of bounded variation and continuous at zero.
One can prove that, for this class of systems, the generalized Riesz basis property
of the model operator A is preserved. However, the immediate spectral analysis of
this operator is more complex. In the case when the delays in the neutral terms are
commensurable, the results on exact controllability are expected to be similar to those
obtained in the present paper. In the general case, the formulation and the proofs
may be much more complicated. This problem is to be considered in our forthcoming
works.

REFERENCES

[1] S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in
Controllability Problems for Distributed Parameter Systems, Cambridge University Press,
Cambridge, UK, 1995.

[2] H. T. Banks, M. Q. Jacobs, and C. E. Langenhop, Characterization of the controlled states

in W
(1)
2 of linear hereditary systems, SIAM J. Control, 13 (1975), pp. 611–649.

[3] J. A. Burns, T. L. Herdman, and H. W. Stech, Linear functional differential equations as
semigroups on product spaces, SIAM J. Math. Anal., 14 (1983), pp. 98–116.

[4] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Oper-
ators, Transl. Math. Monogr. 18, AMS, Providence, RI, 1969.

[5] K. Ito and T. J. Tarn, A linear quadratic optimal control for neutral systems, Nonlinear
Anal., 9 (1985), pp. 699–727.

[6] M. Q. Jacobs and C. E. Langenhop, Criteria for function space controllability of linear
neutral systems, SIAM J. Control Optim., 14 (1976), pp. 1009–1048.

[7] L. A. Liusternik and V. J. Sobolev, Elements of Functional Analysis, Russian Monographs
and Texts on Advanced Mathematics and Physics, 5, Hindustan Publishing, Delhi, Gordon
and Breach Publishers, New York, 1961.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT CONTROLLABILITY OF NEUTRAL-TYPE SYSTEMS 2181

[8] A. Manitius and R. Triggiani, Function space controllability of linear retarded systems: A
derivation from abstract operator conditions, SIAM J. Control Optim., 16 (1978), pp. 599–
645.

[9] D. A. O’Connor and T. J. Tarn, On the function space controllability of linear neutral
systems, SIAM J. Control Optim., 21 (1983), pp. 306–329.

[10] R. Rabah, G. M. Sklyar, and A. V. Rezounenko, Generalized Riesz basis property in the
analysis of neutral type systems, C. R. Math. Acad. Sci. Paris, 337 (2003), pp. 19–24.

[11] R. Rabah, G. M. Sklyar, and A. V. Rezounenko, Stability analysis of neutral type systems
in Hilbert space, J. Differential Equations, 214 (2005), pp. 391–428.

[12] H. Rivera Rodas and C. E. Langenhop, A sufficient condition for function space controlla-
bility of a linear neutral system, SIAM J. Control Optim., 16 (1978), pp. 429–435.

[13] W. Rudin, Functional Analysis, 2nd ed., McGraw–Hill, New York, 1991.
[14] D. Ullrich, Divided differences and systems of nonharmonic Fourier series, Proc. Amer.

Math. Soc., 80 (1980), pp. 47–57.
[15] W. M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, New York,

1985.
[16] Y. Yamamoto, Reachability of a class of infinite-dimensional systems: An external approach

with applications to general neutral systems, SIAM J. Control Optim., 27 (1989), pp. 217–
234.

[17] R. Y. Young, An Introduction to Nonharmonic Analysis, Academic Press, New York, 1980.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 46, No. 6, pp. 2182–2198

ON THE GENERICITY OF THE DIFFERENTIAL OBSERVABILITY
OF CONTROLLED DISCRETE-TIME SYSTEMS∗

SABEUR AMMAR† , MOHAMED MABROUK‡ , AND JEAN-CLAUDE VIVALDA§

Abstract. In this paper, we prove the genericity of the differential observability for discrete-time
systems with more outputs than inputs.

Key words. observability, nonlinear systems, discrete-time systems, transversality theory

AMS subject classifications. 93B07, 93B29, 93C55

DOI. 10.1137/060677938

1. Introduction. In this paper, we study the genericity of the differential obser-
vability for discrete-time controlled nonlinear systems such that

(1)

⎧⎪⎨⎪⎩
xk+1 = f(xk, uk),

yk = h(xk, uk),

xk ∈ X, uk ∈ U, yk ∈ R
p,

where
(i) X and U are C∞ compact connected second-countable manifold with dimen-

sions n and m, respectively;
(ii) f : X × U → X is a parametrized diffeomorphism: that is to say, for every

u ∈ U , the mapping f(·, u) is a C∞ diffeomorphism; we denote by DiffU(X) the set
of all parametrized diffeomorphisms;

(iii) h : X × U → R
p is a C∞ mapping.

To be more specific, we shall introduce some notations. Given f ∈ DiffU(X) and
h ∈ C∞(X × U,Rp), we denote by uN the finite sequence (u0, . . . , uN−1) of elements
of U , and we define recursively fk(x, uk) by

f1(x, u1) = f(x, u0),

fk+1(x, uk+1) = f(fk(x, uk), uk) for k ≥ 1.

Let us recall the notion of observability investigated in this paper.
Definition 1. Two initial conditions x0 and x̄0 and an input u (i.e., a sequence

(uk)k≥0 of elements of U) being given, xk and x̄k denote the points xk = fk(x0, uk)
and x̄k = fk(x̄0, uk).

System (1) is said to be observable for input u if for any initial conditions x0 �= x̄0,
there exists an index k (possibly depending on the initial conditions) such that xk �= x̄k.
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System (1) is said to be observable if it is observable for each input.
Below, we are introducing a stronger notion of observability. We consider the

mapping Θf,h
2n+1 from X × U2n+1 to R

(2n+1)p × U2n+1 defined by

Θf,h
2n+1(x, u2n+1) = (h(x, u0), h(f1(x, u1), u1), . . . , h(f2n(x, u2n), u2n), u2n+1).

Notice that this mapping is the discrete-time analogous of the mapping SΦΣ
k defined

in [4].
Definition 2. We shall say that system (1) is strongly observable if the related

mapping Θf,h
2n+1 defined above is one-to-one.

In [3], we proved that system (1) is generically strongly observable as long as
p > dimU ; more precisely, we proved that the set of pairs (f, h) which make the

mapping Θf,h
2n+1 one-to-one is a residual.

In this article, we deal with a stronger notion of observability.
Definition 3. We shall say that system (1) is strongly differentially observable

if, for every fixed sequence u2n+1, the mapping Θ̄f,h
2n+1 from X to R

(2n+1)p defined by

Θ̄f,h
2n+1(x) = (h(x, u0), h(f1(x, u1), u1), . . . , h(f2n(x, u2n), u2n))

is an embedding.
In the continuation of [3], the goal of this paper is to prove that system (1) is

strongly differentially observable as long as p > dimU .
On this subject, one has to mention first the important work from Gauthier and

Kupka. In a first paper, also with Hammouri (see [5]), the authors investigated the
genericity of observability for uncontrolled continuous-time systems. This work was
generalized by Gauthier and Kupka in [6, 4], where the authors proved the genericity
of differential observability for systems with more outputs than inputs. To be more
precise, in their paper, the authors consider the set, denoted by O , of systems Σ such
that the mapping SΦN

Σ (analogous, for continuous time systems, to mapping Θf,h
2n+1)

is an embedding; they show that, provided that a bound on the derivative of the
control is given, this set is O open and dense. When this condition is not assumed,
the authors prove that this set is residual (and therefore dense) but the openness
property remains an open problem. In our case, we assume that the controls belong
to a compact manifold, so this difficulty disappears. Also, we do not have to consider
the case of nonsmooth controls. Nevertheless, there are some other difficulties; for
example, we have to pay special attention to periodic points of fu. As far as we are
concerned by discrete-time systems, we have to cite several papers on the subject of
the genericity of the observability: first, a paper written by Aeyels [2] in which the
author considers uncontrolled continuous-time systems and the discrete-time systems
obtained by discretizing the continuous ones. In [2], the author introduced the notion
of P -observability. The system

(2)

{
ẋ = f(x),

y = h(x)

is said to be P -observable if, given a time T > 0 and a finite subset P of [0, T ],
for every pair (x, y) of distinct elements in X2, there exists a ti ∈ P such that
h◦Φti(x) �= h◦Φti(y), where Φ denotes the flow of f . One of the results in this paper
is the proof of the existence of an open and dense set of vector fields such that (a
vector field f in this set being fixed) the subset of functions h belonging to Cr(X,R)
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such that the system (f, h) is P -observable is open and dense in Cr(X,R). This is
true for almost any finite subset P of (2 dimX + 1) points in [0, T ].

To an uncontrolled discrete-time system such that

(3)

⎧⎪⎨⎪⎩
xk+1 = f(xk),

yk = h(xk),

xk ∈ M , compact manifold, yk ∈ R ,

is attached a map analogous to the map Θf,h
2n+1 defined above: consider

Φ : M −→ R
2n+1

x �−→ (h(x), h ◦ f(x), . . . , h ◦ f2n(x)),

where n is the dimension of manifold M . In [10], the proof that, generically, Φ is
an embedding is sketched, while in [8] and [11] the same result is proved in greater
detail (see also the concluding remarks of [2]). In the case of controlled discrete-time
systems, in [9], the authors investigate controlled discrete-time systems and obtained
some results which are similar (but not identical) to the one presented here; namely,
they present a result of genericity of the observability, but it is not a result about
observability for every input. As in the present paper, the tools used in the work of
these authors belong to the transversality theory.

Before going straight to the point, we want to add some words about the fact that
the observation function h depends on u. This situation is not common in automatic
control theory, but the opposite assumption leads to clumsy statements. Nevertheless,
as explained in the conclusion of [3], the result of genericity can also be proved for
systems where h does not depend on u. The paper is organized as follows: in the
next section, some facts from transversality theory are recalled; in section 3, the main
result is stated together with some definitions and lemmas; in section 4, our result is
proved through the demonstration of five lemmas.

2. Some facts from transversality theory. In this section we recall some
theorems from differential topology which will be intensively used in the proof of the
main result of this paper. For details on the C∞ Whitney topology, the reader is
referred to the book “Stable Mappings and their Singularities” [7].

If X and Y are two smooth manifolds, then Jk(X,Y ) will denote, as usual, the set
of k-jets from X to Y , α : Jk(X,Y ) → X is the source map, and β : Jk(X,Y ) → Y
is the target map; moreover, we denote by Cr(X,Y ) (1 ≤ r ≤ +∞) the set of Cr

maps from X to Y . If f is in C∞(X,Y ), then jkf denotes the k-jet of f . Recall that
the set C∞(X,Y ) endowed with the Whitney topology is a Baire space and so every
residual set of C∞(X,Y ) (i.e., every countable intersection of open dense subsets) is
dense.

The notion of transversality is of paramount importance for our purpose, and we
recall its definition below.

Definition 4. Let f be a smooth mapping between two smooth manifolds X and
Y, W a submanifold of Y, and x a point in X. We shall say that f intersects W
transversely at x if either

(i) f(x) �∈ W or
(ii) f(x) ∈ W and Tf(x)Y = Tf(x)W + dfx(TxX),

with TxX denoting the tangent space to X at x and dfx the Jacobian of f at x. We
shall say that f intersects W transversely if it intersects W transversely at x for all
x in W . We shall use the symbol � to denote the transversality.
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The following theorem states a result of genericity [7].
Theorem 1 (Thom transversality theorem). Let X and Y be smooth manifold,

W a submanifold of Jk(X,Y ), and let

TW = {f ∈ C∞(X,Y ) | jkf � W}.

Then TW is a residual subset of C∞(X,Y ) in the C∞ topology. Moreover, if W is
closed, then TW is open.

The following result generalizes the above theorem to multijet spaces. We first
define the set X(s) = { (x1, . . . , xs) ∈ Xs | xi �= xj for 1 ≤ i < j ≤ s } and the map-
ping

αs :
(
Jk(X,Y )

)s −→ Xs

(σ1, . . . , σs) �−→
(
α(σ1), . . . , α(σs)

)
,

and we let Jk
s (X,Y ) = (αs)−1(X(s)), notice that Jk

s (X,Y ) is a submanifold of
(Jk(X,Y ))s.

For f ∈ C∞(X,Y ), we can define

jks f : X(s) −→ Jk
s (X,Y )

(x1, . . . , xs) �−→
(
jkf(x1), . . . , j

kf(xs)
)
.

Theorem 2 (multijet transversality theorem). Let W be a submanifold of Jk
s (X,Y ),

and let

TW = {f ∈ C∞(X,Y ) | jks f � W}.

Then TW is a residual subset of C∞(X,Y ) in the C∞ topology. Moreover, if W is
compact, then TW is open.

We shall use also a transversality theorem due to Abraham (see [1]). Let A, X,
and Y be Cr manifolds and ρ a map from A to Cr(X,Y ).

For a ∈ A, we write ρa, the Cr map

ρa : X −→ Y

x �−→ ρa(x) = ρ(a)(x),

and we say that ρ is a Cr representation if the evaluation map

evρ : A×X −→ Y

(a, x) �−→ ρa(x) = ρ(a)(x)

is a Cr map from A×X to Y .
Theorem 3 (Abraham transversal density theorem). Let A, X, Y be Cr mani-

folds, ρ : A → Cr(X,Y ) a Cr representation, W ⊂ Y a submanifold (not necessarily
closed), and evρ : A×X → Y the evaluation map. Define AW ⊂ A by

AW = {a ∈ A | ρa � W}.

Assume that
1. X has a finite dimension n and W has a finite codimension q in Y ;
2. A and X are second countable;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2186 S. AMMAR, M. MABROUK, AND J.-C. VIVALDA

3. r > max(0, n− q);
4. evρ � W .

Then AW is residual in A.
Notice that manifold A is not necessarily finite dimensional; it may be a Banach

space or an open subset of a Banach space.
Finally, we shall need the following theorem that can also be found in [1].
Theorem 4 (openness of transversal intersection). Let A, X, and Y be Cr

manifolds with X finite dimensional, W ⊂ Y a closed Cr submanifold, K a compact
subset of X, and ρ : A → Cr(X,Y ) a Cr representation. Then the subset AKW ⊂ A
defined by

AKW = {a ∈ A | ρa �x W for x ∈ K }
is open.

3. Main result. We state here our main result and some lemmas used in the
proof of our theorem. Our framework is the set DiffU(X)×C∞(X ×U,Rp) equipped
with the Whitney topology; obviously, DiffU(X) is open in C∞(X × U,X) for this
topology. In the theorem below, we assume that dimU < p.

Theorem 5. The set of mappings (f, h) ∈ DiffU(X)×C∞(X ×U,Rp) such that

the mapping Θ̄f,h
2n+1 is an embedding is open and dense in DiffU(X)×C∞(X ×U,Rp)

equipped with the Whitney topology.
We begin by proving the easiest part of this result: the openness of the set of

mappings (f, h) such that Θf,h
2n+1 is an embedding.

Proof. Consider the mapping

Φ : X × U2n+1 −→ C∞(X × U2n+1, (Rp)
2n+1 × U2n+1)

(f, u2n+1) �−→ (Θf,h
2n+1, u2n+1) ,

which is obviously continuous for the Whitney topology. Clearly, Φ(f, u2n+1) is an

embedding iff the mapping Θf,h
2n+1(·, u2n+1) is an embedding for every finite sequence

u2n+1 ∈ U2n+1. Now, since X and U are compact manifolds, the set of embeddings

from X × U2n+1 to (Rp)
2n+1 × U2n+1 is open for the Whitney topology, so, due to

the continuity of Φ, the set of mappings Θf,h
2n+1(·, u2n+1), which are embeddings for

every u2n+1, is open.
We shall now prove the density part of the theorem. Notice that in the continuous-

time case, the set of pairs (f, h) (with f a parametrized vector field) is a Banach space
for the Cr topology (r < +∞), but this is not the case for the set of pairs (f, h),
where f is a parametrized diffeomorphism. So, it is not possible to copy directly the
reasoning of [6]. The proof of this theorem will be somewhat awkward and will be
based on several technical lemmas. Before stating these lemmas, we describe below
our global strategy.

Suppose that P1(f, h) and P2(f, h) are two properties depending on (f, h) ∈
DiffU(X) × C∞(X × U,Rp) whose conjunction is equivalent to the fact that Θ̄f,h

2n+1

is an immersion. In Proposition 1, we shall prove that, for a given f ∈ DiffU(X), a
given integer r ≥ 1, and for every integer l there exists a subset Ur

l (f) of C∞(X ×
U,Rp), open and dense for the Cr topology, such that if h belongs to the intersection⋂

l≥0 U
r
l (f), then the pair (f, h) satisfies property P1. Moreover, we shall prove that,

for every integer l, the set

U r
l =

⋃
f∈DU

{f} × Ur
l (f)
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(DU open dense set of DiffU) is open dense in DiffU(X) × C∞(X × U,Rp) equipped
with the Cr topology. In Proposition 2, we shall prove that the set

E = { (f, h) ∈ DiffU(X) × C∞(X × U,Rp) | P2(f, h) is true }

contains a residual set of DiffU(X) × C∞(X × U,Rp). Hence, clearly, the set E ∩
(
⋂

k≥0r≥1 U r
k ) contains a residual set for the C∞ topology and a pair (f, h) belonging

to this set satisfies both properties P1 and P2.
We shall give the definition of periodic points before stating our propositions.
Definition 5. Let f ∈ DiffU(X). We shall say that the point (x, u2n+1) ∈

X × U2n+1 is periodic for f if there exist two different integers s′ < s in {0, . . . , 2n}
such that fs′(x, us′) = fs(x, us). If (x, u2n+1) is a periodic point, then its period is
the smallest integer s such that the above equality is satisfied.

Notations. We denote by Pf the set of all periodic points of f ; obviously, Pf

is a closed subset of X × U2n+1. We denote also by Pc
f the set complement of Pf :

Pc
f = X × U2n+1

� Pf .
First, we want to state a lemma about a property of continuity of the sets of

periodic points; before that, we recall the definition of the Hausdorff distance between
sets.

Definition 6. Let (E, d) be a metric space, if A and B are subsets of E, then
the Hausdorff distance between A and B is defined by

δ(A,B) = sup
x∈A

d(x,B) + sup
y∈B

d(y,A).

We suppose that X and U are equipped with distances which are compatible with
their topologies, so we can speak of the Hausdorff distance on X × U2n+1, and we
state the following lemma.

Lemma 1. There exists an open and dense set in DiffU(X), denoted by DU, such
that for each f ∈ DU,

(i) if Pf = ∅, then Pg = ∅ for every g in some neighborhood of f ;
(ii) if Pf �= ∅, then δ(Pf ,Pg) tends to 0 as g tends to f for the C∞ topology.

Property P1(f, h) is related to the periodic points of f and is the object of the
following proposition.

Proposition 1. Let f ∈ DU be given. For each r > 0 there exists a sequence
(Ur

l (f))l≥1 of open and dense sets for the Cr topology included in C∞(X × U,Rp)

such that for every mapping h in ∩l≥1U
r
l (f), the mapping Θ̄f,h

2n+1 is an immersion at
each point of Pc

f .
Moreover, for every nonzero integer l, the set

U r
l =

⋃
f∈DU

{f} × Ur
l (f)

is open and dense in DiffU(X) × C∞(X × U,Rp) for the Cr topology.
The second proposition is concerned with property P2(f, h); before stating it,

we introduce some sets of covectors. We denote by π the canonical projection from
T ∗X, the cotangent bundle of X to X, and, given an integer k > n, we define the set
(T ∗X)

⊗k
by

(T ∗X)
⊗k

= { (p1, . . . , pk) ∈ (T ∗X)
k | π(p1) = · · · = π(pk) }
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and the set V (k, T ∗X) by

V (k, T ∗X) = { (p1, . . . , pk) ∈ (T ∗X)
⊗k | rank(p1, . . . , pk) < n }.

Clearly, (T ∗X)
⊗k

is a submanifold of (T ∗X)
k

and V (k, T ∗X) is a finite union of sub-

manifolds of (T ∗X)
⊗k

whose codimension (the codimension of the highest dimensional
submanifold of the union) is equal to k − n + 1 (see [5]).

We state now our second proposition.
Proposition 2. The set of pairs (f, h) ∈ DiffU(X) × C∞(X × U,Rp) such that

the mapping Θ̄f,h
2n+1 is an immersion at each point of Pf is residual.

Notation. If p is a point of a manifold M , then, hereafter, we shall denote by
TpM the tangent space to M at p.

4. Proof of the main result.

4.1. Proof of Lemma 1. For the proof of this result, we need the following
lemma.

Lemma 2. There exists a residual subset, denoted by R, of DiffU(X) such that if
f is in this subset, then Pf is either the empty set or a finite union of submanifolds
of X × U2n+1 of codimension greater than or equal to n.

Proof. Let f be in DiffU(X) and s be a positive integer less than or equal to 2n.
Consider the following mapping:

j0
sf : (X × U)

(s) −→ J0
s (X × U,X)

((x0, u0), . . . , (xs−1, us−1)) �−→
(
(x0, u0, f

1(x0, u1)), . . . ,

(xs−1, us−1, f
1(x0, us))

)
.

Let s′ be a nonnegative integer less than s, and, in (X × U ×X)
s
, consider the sub-

manifold Ws′,s defined as

Ws′,s = { ((x0, u0, z0), . . . , (xs−1, us−1, zs−1)) | xi = zi−1 for

i = 1, . . . , s− 1 and zs−1 = zs′−1 }.

Notice that the codimension of Ws′,s is equal to sn. By applying the multijet transver-
sality theorem, we can assert that the set of diffeomorphisms f in DiffU(X) transverse

to Ws′,s is a residual, so, generically, Vs′,s = (j0
sf)

−1
(Ws′,s) is either empty or a sub-

manifold of (X × U)
(s)

(and also of (X × U)
s
) of codimension s n. Denoting by π

the projection from (X × U)
s

to X × Us, it follows that π(Vs′,s) is either empty or
a submanifold of codimension greater or equal to s n − (s − 1)n = n from which we
deduce that generically the set of periodic points of f with period equal to s is either
empty or a finite union of submanifold of X ×U2n+1 of codimensions greater than or
equal to n.

We have now proved that, generically, Pf is not equal to the whole space X ×
U2n+1. We are now ready to prove Lemma 1; hereafter, we shall denote by fu the
diffeomorphism x �→ f(x, u), the control u being fixed.

For the existence of DU , we shall prove that, in fact, the set R of the above
lemma is open. Take f in R and suppose that Pf is empty. Let d be a distance on
X which is compatible with the topology of X. For every pair (s′, s) of integers such
that 0 ≤ s′ < s ≤ 2n, we define βs′,s as

βs′,s = inf{ d(fs′(x, us′), f
s(x, us)) | (x, u2n+1) ∈ X × U2n+1 }.
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Due to the compactness of X×U2n+1, the real numbers βs′,s are all positive; otherwise

there would exist (x, u2n+1) such that fs′(x, us′) = fs(x, us), which contradicts the
emptiness of Pf . Take now ε > 0 and consider a neighborhood V of f such that if g is
in this neighborhood, then d(fk(x, uk), g

k(x, uk)) < ε for all (x, u2n+1) ∈ X × U2n+1

and all k = 1, . . . , 2n. If g is in V , then we have

d(fs′(x, us′), f
s(x, us)) ≤ d(fs′(x, us′), g

s′(x, us′)) + d(gs
′
(x, us′), g

s(x, us))

+d(gs(x, us), f
s(x, us)

≤ 2ε + d(gs
′
(x, us′), g

s(x, us)).

This inequality implies that

(4) βs′,s ≤ 2ε + d(gs
′
(x, us′), g

s(x, us))

for all (x, u2n+1) in X ×U2n+1 and all pair (s′, s). So if (x, u2n+1) is a periodic point

for g, there exists a pair (s′, s) such that d(gs
′
(x, us′), g

s(x, us)) = 0, and from (4),
we then have

βs′,s ≤ 2ε.

If ε is chosen small enough, then this last inequality is not possible and so a diffeo-
morphism g belonging to V cannot have periodic points.

Suppose now that f is such that Pf is nonempty. Then we shall prove the
existence of a neighborhood V of f such that if g is in V , then j0

sg is transverse to the
submanifolds W ′

s, s defined in the proof of Lemma 2. We reason by contradiction; for
every positive integer k, take the neighborhood Vk of f constituted by the mappings
g such that d(f(x, u), g(x, u)) < 1/k and d′(j1f(x, u), j1g(x, u)) < 1/k (d′ denotes a
distance on J1(X × U,X)). Suppose the existence of a sequence of diffeomorphisms
gk ∈ Vk and elements vk ∈ X × U2n+1 such that vk = (xk, u

k
2n+1) is a periodic point

(with period sk) of gk at which the mapping j0
sk
gk is not transverse to the submanifold

Ws′k,sk
defined in the proof of the above lemma. As X × U2n+1 is compact, we can

assume that the sequence (vk)k≥1 is convergent with limit v and can also assume that
s′k and sk do not depend on k. First, we shall see that v = (x, u2n+1) is a periodic
point for f ; we have

d(fs′(x, us′), f
s(x, us)) ≤ d(fs′(x, us′), f

s′(xk, u
k
s′)) + d(fs′(xk, u

k
s′), g

s′

k (xk, u
k
s′))

+d(gs
′

k (xk, u
k
s′), g

s
k(xk, u

k
s)) + d(gsk(xk, u

k
s), f

s(xk, u
k
s))

+d(fs(xk, u
k
s), f

s(x, us))

≤ 2/k + d(fs′(x, us′), f
s′(xk, u

k
s′)) + d(fs(xk, u

k
s), f

s(x, us)).

So, due to the continuity of f , for every ε > 0, we have

d(fs′(x, us′), f
s(x, us)) ≤ 2/k + ε,

provided that k is chosen large enough. This proves that fs′(xus′) = fs(x, us). Now
at point v, j0f is transverse to Ws′,,s and, if k is large enough, this is still true for gk
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at point vk: a contradiction. We proved the existence of an open and dense set DU

such that if f belongs to this set, Pf is either empty or a finite union of submanifolds
of codimensions at least n.

Now take f in DU and assume that Pf is nonempty; for every ε > 0, due
to the compactness of set Pf , we can cover it with a finite union of open balls:
Pf ⊂ ∪N

i=1B(vi, ε), the vi being elements of Pf . Let K be the complement in
X × U2n+1 of this union of open balls, as Pf is a finite union of n-dimensional
submanifolds, and K is nonempty if ε is small enough; in this case, we define the
numbers βs′,s as follows:

βs′,s = inf{ d(fs′(x, us′), f
s(x, us)) | (x, u2n+1) ∈ K }.

Obviously, due to the compactness of K, all the βs′,s’s are positive, and, if g belongs
to a sufficiently small neighborhood of f , by reasoning as above, we can obtain the
inequality (4) for all (x, u2n+1) ∈ K. Consequently, if g belongs to a sufficiently small
neighborhood of f , then the periodic points of g cannot belong to K and are all
located in the union ∪B(vi, ε), which implies that the distance d(v,Pf ) is less than
ε for every v in Pg.

The proof that, for every w ∈ Pf , the distance d(w,Pg) can be made arbitrarily
small for g in a sufficiently small neighborhood of f is a little harder. Take f in
DU and let (x0, u

0
2n+1) be a periodic point of f such that fs(x0, u

0
s) = fs′(x0, u

0
s′);

then we can regard fs′(x0, u
0
s′) as a fixed point of the map fu0

s−1
◦ · · · ◦ fu0

s′
and, for

i = s′, . . . , s − 1, we shall prove the existence of functions x �→ ui(x), defined in a
neighborhood of fs′(x0, u

0
s′), such that the function fs′,s(x) defined as

fs′,s(x) = f(f . . . (f(x, us′(x)), us′+1(x)), . . . , us−1(x))

has a fixed point at fs′(x0, u
0
s′) and is transverse to ΔX � { (x, x) | x ∈ X } at this

fixed point. To this end, we exploit the fact that the mapping j0
sf is transverse to

Ws′,s at w = ((x0, u
0
0), . . . , (x

0
s−1, u

0
s−1)) (where x0

i = f(x0
i−1, u

0
i−1) = f i(x0, ui) for

i = 1, . . . , s− 1). Given a tangent vector of (X × U ×X)s at j0
sf(w) represented by

the finite sequence (l0,m0, l
′
0), . . . , (ls−1,ms−1, l

′
s−1), where li ∈ TxiX, mi ∈ Tu0

i
U ,

and l′i ∈ Txi+1X, consider the two following sequences:
(i) (t0, μ0), . . . , (ts−1, μs−1) with ti ∈ TxiX μi ∈ TuiU , which represents a

tangent vector of (X × U)(s) at w;
(ii) and (t̄0, μ̄0, t̄1), (t̄1, μ̄1, t̄2) . . . , (t̄s−1, μ̄s−1, t̄s) with t̄i ∈ TxiX, μ̄i ∈ TuiU ,

and t̄s = t̄s′ , which represents a tangent vector of Ws′,s at j0
sf(w). The union of these

two sequences gives a solution of the following system:

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 + t̄0 = l0,

μ0 + μ̄0 = m0,

A0t0 + B0μ0 + t̄1 = l′0,

...
...

ts−1 + t̄s−1 = ls−1,

μs−1 + μ̄s−1 = ms−1,

As−1ts−1 + Bs−1μs−1 + t̄s = l′s−1,

where t̄s = t̄s′ , and Ai denotes the partial derivative with respect to x of f at point
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(x0
i , u

0
i ) and Bi the partial derivative with respect to u of f at the same point. Ma-

nipulating the equalities of system (5), we get the formula

As−1As−2 · · ·As′ · ts′ +

s−s′∑
i=1

(i−1∏
j=1

As−j

)
Bs−i · μs−i

= l′s−1 +

s−s′∑
i=2

(i−1∏
j=1

As−j

)
· l′s−i −

s−s′−1∑
i=1

( i∏
j=1

As−j

)
· ls−i − t̄s.

Taking into account that t̄s = t̄s′ = ls′ − ts′ , we get

As−1As−2 · · ·As′ · ts′ − ts′ +

s−s′∑
i=1

(i−1∏
j=1

As−j

)
Bs−i · μs−i

= l′s−1 +

s−s′∑
i=2

(i−1∏
j=1

As−j

)
· l′s−i −

s−s′−1∑
i=1

( i∏
j=1

As−j

)
· ls−i − ls′ .(6)

Consider now the mapping fs′,s(x) with the smooth mappings x �→ ui(x) chosen in
such a way that ui(x

0
s′) = u0

i , the derivative of this mapping at x0
s′ , is given by the

formula

dfs′,s(x0
s′) = As−1As−2 · · ·As′ +

s−s′∑
i=1

(s−s′−i∏
j=1

As−j

)
Bs′+i−1Ks′+i−1,

where the Kj ’s denote the derivatives of the mappings uj(x) at point x0
s′ . Now, as

is well known [7], the mapping fs′,s is transverse to ΔX at point x0
s′ iff the following

equation of unknown t

(7) dfs′,s(x0
s′).t− t = l

has a solution for all vectors l belonging to the tangent space to X at x0
s′ . If the linear

mapping As−1 · · ·As′ does not admit 1 as an eigenvalue, it suffices to choose the ui’s
such that their derivatives vanish at x0

s′ and, in this case, (7) will have a solution for
every t.

In the case where As−1 · · ·As′ does not have this property, we can suppose that
ts′ is nonzero. As a matter of fact take τs′ �= 0 such that As−1 · · ·As′ · τs′ = τs′

and define recursively the τi’s by τi+1 = Aiτi for i = s′, . . . , s − 1 and τi = A−1
i τi+1

for i = 0, . . . , s′ − 1; obviously, we have t̄s − τs = t̄s′ − τs′ and, if we replace ti by
ti + τi (i = 0, . . . , s − 1) and t̄i by t̄i − τi (i = 0, . . . , s), then equalities (5) remain
satisfied and, obviously, we have ts′ �= 0 or ts′ + τs′ �= 0. Since ts′ can be assumed
to be nonzero, it is possible to design the mappings x �→ ui(x) in such a way that
Kj · ts′ = μj , as the right-hand member of (6) can be chosen arbitrarily; we can see
that (7) admits always a solution. We can reformulate this property of transversality
of fs′,s by saying that the submanifold Vf , constituted by the points (x, fs′,s(x)) and
locally defined around the point x0

s′ , intersects ΔX at (x0
s′ , x

0
s′) and is transverse to

ΔX at this point. Now, if we take a mapping g close to f , then gs
′,s will be close to

fs′,s and the submanifold Vg constituted by the points (x, gs
′,s(x)) will be close from

Vf , and since Vf , Vg, and ΔX are n-dimensional submanifolds of the manifold X×X
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of dimension 2n since the intersection between Vf and ΔX is nonempty, the same is
true for the intersection Vg ∩ ΔX provided that Vg is close enough to Vf ; moreover,
the intersection points in Vg ∩ ΔX will be close to x0

s′ . Now let x̄0
s′ be a point in the

intersection Vg ∩ ΔX, a fixed point of gs
′,s, and be regarded as the image of a point

(x̄0, ūs′) by the mapping gs
′
. Now this last point is closed to (x0, us′) if g is close to

f and is a periodic point of g.

4.2. Proof of Proposition 1. We denote by hu the mapping x �→ h(x, u) and
by dfu(x) (resp., dhu(x)) the derivative of fu (resp., hu) at x; subsequently, we shall
regard the p components of dhu(x) as covectors of T ∗

xX.

Consider the representation ρ from C∞(X × U,Rp) to C∞(Pc
f , (T

∗X)
⊗(2n+1)p

)
defined through the following evaluation map evρ:

evρ : C∞(X × U,Rp) × Pc
f −→ (T ∗X)

⊗(2n+1)p

(h, x, u2n+1) �−→
(
dhu0

(x), d(hu1
◦ fu0

)(x), . . . ,

d(hu2n ◦ fu2n ◦ . . . ◦ fu0
)(x)

)
.

We shall prove the existence of a residual set in C∞(X×U,Rp) such that if h belongs
to this set, then ρh is transverse to V ((2n + 1)p, T ∗X); we shall do this thanks
to the Abraham transversal density theorem with A = C∞(X × U,Rp), endowed

with the Cr topology (A is a Banach space), X = Pc
f , Y = (T ∗X)

⊗(2n+1)p
, and

W = V ((2n + 1)p, T ∗X) (notice that W is closed).

Clearly, the first three hypotheses of this theorem are satisfied for every r large
enough and to prove that evρ � W , it is sufficient to prove that the evaluation map
is a submersion. The point (x0, u2n+1) being given, the mapping evρ(·, x0, u2n+1)

from C∞(X × U,Rp) to (T ∗M)
⊗(2n+1)p

is linear and so is equal to its derivative;
hence, in order to prove that evρ is a submersion it is sufficient to prove that for every

(p0, . . . , p2n) ∈ (T ∗M)
⊗(2n+1)p

there exists h ∈ C∞(X × U,Rp) such that

(8)

{
p0 = dhu0(x0),

pi = d(hui
◦ fui−1

◦ · · · ◦ fu0
)(x0) for i = 1, . . . , 2n.

But, letting xi = f i(x0, ui), d(hui ◦ fui−1
◦ · · · ◦ fu0

)(x0) = dhui
(xi) ◦ d(fui−1

◦ · · · ◦
fu0)(x0), the pairs (xi, ui) being mutually different, it is always possible to find h ∈
C∞(X × U,Rp) such that the relations (8) are satisfied.

So we can apply the Abraham transversal density theorem: the set of mappings
h in C∞(X × U,Rp) such that the mapping ρh is transverse to V ((2n + 1)p, T ∗X)
is a residual set denoted by Rr(f); now the intersection of the Rr(f)’s gives a set
R(f) which is residual for the C∞ topology. Now notice that the codimension of
V ((2n+1)p, T ∗X) is greater than or equal to (2n+1)p−n+1, which is greater than
n+(2n+1)m, the dimension of Pc

f , so saying that ρh is transverse to V ((2n+1)p, T ∗X)
is equivalent to saying that the range of ρh does not intersect V ((2n+1)p, T ∗X), which

is equivalent to saying that Θ̄f,h
2n+1 is an immersion at each point of Pc

f . At this stage,
we have proven the existence of a residual set R(f) included in C∞(X × U,Rp) such

that for every h in R(f) the mapping Θ̄f,h
2n+1 is an immersion at each point of Pf .

For the sake of readability, we shall denote by the same letter, d, distances defined
on X or on X × U which are compatible with the topologies of these spaces.
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Given f ∈ DU , for every positive integer l consider the compact Kl(f) defined by

Kl(f) =

{
X × U2n+1 if Pf is empty,

{ v ∈ X × U2n+1 | d(v,Pf ) ≥ 1/l } if Pf �= ∅.

Endow C∞(X × U,X) with the Cr topology and consider the sets Ur
k (f) defined as

Ur
l (f) = {h ∈ C∞(X × U,Rp) | ρh �x W for x ∈ Kl(f) }.

Using Theorem 4, we can see that Ur
l (f) is open for the Cr topology, and, since Rr(f)

is obviously included in Ur
l (f), it is also dense. Proving that the set

U r
l =

⋃
f∈DU

{f} × Ur
l (f)

is open is quite a delicate task.
We first prove that, given ε > 0 and f0 ∈ DU , there exists a neighborhood Vf0

of f0 such that if f belongs to this neighborhood, then for all v in Kl(f), we have
d(v,Kl(f0)) < ε. To prove this point, we will reason by contradiction. We take
neighborhoods (in the C0 topology) of f0 under the form

Vn = { f ∈ DU | d(f0(x, u), f(x, u)) < 1/n for all (x, u) ∈ X × U }.

Assume the existence of a positive real number ε0 such that, for every positive integer
n, there exist fn ∈ Vn and vn ∈ Kl(fn) such that d(vn,Kl(f0)) > ε0. For each vn let
v̄n ∈ Pf0 such that d(vn, v̄n) = d(vn,Pf0). Due to the compactness of X×U , we can
suppose that all of these sequences are convergent, and consequently, the sequence
dn � d(vn,Pf0) is convergent. Assume that limn→∞ dn < 1/l; then there exists an
α > 0 such that dn < 1/l−α for every positive n. In this case, there exist wn in Pfn

such that d(v̄n, wn) tends to 0 as n tends to infinity and we have

d(vn, wn) ≤ d(vn, v̄n) + d(v̄n, wn)

< 1/l − α + d(v̄n, wn)

< 1/l − α/2 for all n large enough.

This last inequality is in contradiction with the appurtenance of vn to Kl(fn).
In the case where limn→∞ dn = 1/l, let v be the limit of vn. We then have

d(v,Pf0
) = 1/l and so v is in Kl(f0); therefore, d(vn,Kl(f0)) ≤ d(vn, v) and this last

quantity becomes less than ε0 if n is large enough: a contradiction.
Now, let (f0, h0) be in U r

l . Then take a neighborhood Vf0 of f0 for the Cr

topology such that if f belongs to this neighborhood, then the distance d(v,Kl(f0))
is less than ε for every v in Kl(f). If ε is chosen small enough, then there exists
a neighborhood Wh0 of h0 such that if the pair (f, h) belongs to Vf0 × Wh0 , then

the representation ρfh related to the pair (f, h) is such that its evaluation map is a
submersion at every point of Kl(f).

4.3. Proof of Proposition 2. In order to prove this result, we need three
lemmas. Let x0 be a periodic point of order s ≤ 2n, that is to say there exists s′ < s
such that fs′(x0, us′) = fs(x0, us) and f i(x0, ui) �= f j(x0, uj) if i, j < s; we denote
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by xi the iterated of x0 by f , to be more precise, xi = f i(x0, ui), and we also put
zi,= f(xi, ui) and yi = h(xi, ui). We consider the list L,

(x0, u0, z0, y0), . . . , (x2n, u2n, z2n, y2n),

and we say that two elements (xi, ui, zi, yi) and (xj , uj , zj , yj) are equivalent if (xi, ui) =
(xj , uj). In each equivalence class, we retain the term of the least index and obtain
the following list L′ extracted from L:

(xi0 , ui0 , zi0 , yi0), . . . , (xir , uir , zir , yir )

with i0 < i1 < · · · < ir (necessarily i0 = 0). We then claim the following lemma.
Lemma 3. In the list L′ above, we can find r + 1 equalities between the terms xi

and zi.
Proof. Let j be an index less than r. We consider two cases:

1. If ij+1 = ij + 1, then we have zij = xij+1 = xij+1 ;
2. if ij+1 > ij +1, then the term of index ij +1 was removed from list L because

there exists an index k < ij + 1 such that (xk, uk) = (xij+1, uij+1); hence in the list
L′, there exists an index il ≤ ij such that xil = xij+1 = zij .

To sum up, for each index i0, . . . , ir, we can write zij = xil with il = ij + 1 or
il ≤ ij . Thus, we can write r equalities between the xi’s and the zi’s.

Now, to show the existence of a (r + 1)th equality, we consider two cases:
1. The term (xs, us, zs, us) belongs to the list L′ and in this case we have the

additional equality xs = xs′ (notice that the term (xs′ , us′ , zs′ , ys′) cannot be removed
from list L because there does not exist an index i < s such that xs′ = xi).

2. The term (xs, us, zs, us) does not belong to the list L′ and in this case we have
(xs, us) = (xs′ , us′) because there exists an index i < s such that (xs, us) = (xi, ui)
and this index i is necessarily equal to s′.

If ir < s, then ir + 1 ≤ 2n and there exists an index k ≤ r such that xir+1 = xik

but xir+1 = zir .
If s < ir, then let k0 be the least index such that s < ik0

. We also have

xik0
= zik0

−1

= f(xik0
−1, uik0

−1),

but the term of index ik0 −1 does not belong to list L′ and so there exists ij such that
ij < ik0 − 1 and (xik0

−1, uik0
−1) = (xij , uij ), so xik0

= zij . This last equality has not
been taken into account above because ik0 ≥ s+ 1 and s ≥ ij + 1 and so ik0 ≥ ij + 2.
We then have ik0 > ij and cannot have ik0 = ij + 1.

The next two lemmas are concerned with the derivatives of the components of
Θf,h

2n+1.
Lemma 4. Let r be a given nonnegative integer and (i0, . . . , in−1) be a given

sequence of indices in {0, . . . , r}. Given r + 1 matrices (A0, . . . , Ar) in GL(n,R), we
consider the related sequence of matrices (Ã0, . . . , Ãn−1), where

(i) Ã0 = A0;
(ii) for j ≥ 1, Ãj = Aij Ãj−1.

Let 1 ≤ k ≤ n − 1 and consider the subset Wk of GL(n,R)r+1 × P
n−1 (Pn−1 is the

projective space of dimension n − 1) constituted by the elements (A0, . . . , Ar, l) such
that, with (Ã0, . . . , Ãn−1) being the sequence related to (A0, . . . , Ar),

(i) the family (l, Ã0l, . . . , Ãk−2l) is linearly independent (this family reduces to
(l) if k = 1);
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(ii) the family (l, Ã0l, . . . , Ãk−1l) is linearly dependent.
The set Wk is a submanifold of GL(n,R)r+1×Pn−1

f with codimension equal to n−k.
Proof. Denote by Vk the set of sequences (v0, . . . , vn−1) of n elements of R

n such
that

(i) the family (v0, . . . , vk−1) is linearly independent;
(ii) the family (v0, . . . , vk) is linearly dependent;

then Vk is a submanifold of R
n2

of codimension n− k. This claim is a particular case
of a more general proposition concerned with codimension of sets of linear homomor-
phisms; its proof can be found in [7, Prop. 5.3 p. 60].

We consider the domains of charts Ui, i = 1, . . . , n of P
n−1, where Ui is the set

of lines of R
n generated by (x1, . . . , xn) with xi �= 0; we shall define mappings ϕi

(i = 1, . . . , n) from Ui to R
n2

. In what follows, the computations will be made only
with ϕ1, the reasoning being the same for the other mappings ϕi with i ≥ 2.

We define ϕ1 by

ϕ1 : GL(n,R)r+1 × P
n−1 −→ R

n2

(A0, . . . , Ar, l) �−→ (l̄, Ã0 l̄, . . . , Ãn−1 l̄),

where l̄ is the element of R
n which represents l and whose first component is equal to

1. Clearly Wk ∩ U1 = ϕ−1
1 (Vk) and we shall show that ϕ1 is transverse to Vk which

will prove that the codimension of Wk is the same as the one of Vk: n− k.
To this end we begin by the characterization of the tangent space of Vk; let

(v0, . . . , vn−1) be an element of Vk, and from the matrix M whose columns are the
vectors vi (i = 0, . . . , n − 1) we can extract a squared k × k nonsingular submatrix,
without loss of generality. We can assume that this submatrix is constituted by the
k first lines and columns of M , and we write the n × (k + 1) matrix whose columns
are the vectors (v0, . . . , vk) as follows:(

A B
C D

)
with A a squared matrix of order k, C a (n− k) × k matrix, and the column (BD)T

the vector Ãk−1 l̄. The sequence (v0, . . . , vn−1) belongs to Vk iff D − CA−1B = 0 [7,
p. 60], so a vector (t0, . . . , tn−1) is tangent to Vk at (v0, . . . , vn−1) iff

(9) L′ −H ′A−1B + CA−1HA−1B − CA−1L = 0,

where H is a square matrix of order k, H ′ is a (n − k) × k matrix, L is a column
matrix with k lines, and L′ is a column matrix with n−k lines such that the columns
of the matrix (

H L
H ′ L′

)
are constituted by the vectors (t0, . . . , tk); notice that this equality can be written as

(10)
(
−CA−1 In−k

){(
L
L′

)
−
(
H
H ′

)
A−1B

}
= 0.

Let e = (A0, . . . , Ar, l) be an element of GL(n,R)r+1×P
n−1 such that ϕ1(e) ∈ Vk.

We shall consider only the derivative with respect to Aik−1
. We then have

dϕ1(e).(0, . . . , 0,M, 0, . . . , 0)

= (0, ψ0(M, l̄0), . . . , ψk−2(M, l̄0),MÃk−2 l̄0 + Aik−1
ψk−2(M, l̄0), . . . ),
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where ψi(M, l̄0) is the expression obtained by replacing successively each occurrence
of Aik−1

in Ãi by M ; obviously, if Ãi does not contain Aik−1
, then ψi(M, l̄0) is zero.

Denote by w0, . . . , wk−2 the vectors l̄0, Ã0 l̄0, . . . , Ãk−3 l̄0. The expression ψi(M, l̄0) is
either zero or a sum of terms of the form BjMwj with 0 ≤ j ≤ k − 2, the vectors
w0, . . . , wk−2 being linearly indépendent, and we can find a matrix M such that
Mwj = 0 for j = 0, . . . , k − 2; moreover, the term MÃk−2 l̄0 can be made equal to
an arbitrary vector. By replacing in the right-hand member of (10), (H,H ′)T and
(L,L′)T by the corresponding components of dϕ1(e), we find the expression(

−CA−1 In−k

)
MÃk−2 l̄0,

which can be made nonzero. In conclusion, we can find n − k (the codimension of
Vk) independent matrices M such that dϕ1(e)(0, . . . ,M, . . . , 0) does not belong to the
tangent space of Vk.

We first introduce a definition.
Definition 7. Consider r+1 matrices A0, . . . , Ar in GL(n,R) and r+1 matrices

C0, . . . , Cr in Mp,n(R). We say that the finite sequence of n matrices D0, . . . , Dn−1

is differentially related to the family (A0, C0, A1, C1, . . . , Ar, Cr) if
(i) D0 = C0 and for j ≥ 1, each Dj is equal to Cij Ãj−1, where ij ∈ { 0, . . . , r },

and Ãj−1 is a product of j matrices taken in the set {A0, . . . , Ar };
(ii) if Dj = Cij Ãj−1, then Dj+1 has the form Dj+1 = Cij+1

Aij Ãj−1;
(iii) each matrix C0, . . . , Cr is involved at least one time in the Di’s; to be more

precise, there exist indices 0 ≤ i0 < · · · < ir−1 such that Cij = Cj.
For the sake of readability, hereafter, we shall denote by M the set GL(n,R) ×

Mp,n(R).
Lemma 5. Take r + 1 matrices A0, . . . , Ar in GL(n,R) and r + 1 matrices

C0, . . . , Cr in Mp,n(R) and D0, . . . , Dr−1 a sequence differentially related to the family
(A0, C0, . . . , Ar, Cr). Consider the set

W = { (A0, C0, A1, C1, . . . , Ar, Cr) ∈ M r+1 | ∃x ∈ R
n, D0x = D1x = · · · = Dr̄x = 0 },

where r̄ = max(r, n−1). We claim that W is a submanifold of M r+1 with codimension
greater than (r + 1)m.

Proof. We denote by P
n−1 the n − 1-dimensional real projective space, and for

k = 0, . . . , n− 1 we consider the sets Mk of elements

(A0, C0, . . . , Ar, Cr, �) ∈ M r+1 × P
n−1

such that the family (�, Ã0�, . . . , Ãk−1�) is linearly independent (if k = 0, this family
reduces to (�)). Obviously, the sets Mk are open in M r+1 × P

n−1; remark also that
if E is the subset of matrices of {C0, . . . , Cr } involved in the terms D0, . . . , Dk and
if cardE < r + 1, then there exist r′ matrices Dj1 , . . . , Djr′ whose indices j1, . . . , jr′

are greater than k and such that {Cij1
, . . . , Cij

r′
} is the set complement of E in

{C0, . . . , Cr }.
We also define the sets Nk as the subsets of elements (A0, C0, . . . , Ar, Cr, �) of Mk

such that
(i) if k < n− 1, then the family (�, Ã0�, . . . , Ãk−1�, Ãk�) is linearly dependent;
(ii) D0� = D1� = · · · = Dk� = Dj1� = · · · = Djr′ � = 0.

If we denote by π the projection from M r+1 × P
n−1 to M r+1, then obviously

W ⊂ ∪n−1
k=0π(Nk). Clearly, the codimension of Nk is equal to n− (k+1)+(k+1+r′)p
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and so the codimension of π(Nk) is greater than or equal to n− (k + 1) + (k + 1 + r′)
p − (n − 1) = (k + 1 + r′)p − k. As W is included in the union of the projections of
the Nk’s, its codimension is greater than or equal to min0≤k≤n−1 codim(Nk) but

(k + 1 + r′)p− k ≥ (k + 1 + r′)(m + 1) − k since p > m

= (k + 1 + r′)m + r′ + 1

≥ (r + 1)m + r′ + 1

> (r + 1)m.

The proof will result from an application of the multijet transversality theorem.
To fix s ≤ 2n, we shall prove that the set of pairs (f, h) such that the mapping Θf,h

2n+1

is an immersion at each periodic point x of f is residual as a finite intersection of
residual sets.

If x0 is a s-periodic point for f ∈ DiffU(X), as shown in the proof of Lemma 3,
then we can find a list of r + 1 equalities between the xi’s and the zi’s.

We consider the mapping

j1
r+1(f, h) : (X × U)

(r+1) −→ J1
r+1(X × U,X × R

p)

(ξ0, υ0, . . . , ξr, υr) �−→ (j1(f, h)(ξ0, υ0), . . . , j
1(f, h)(ξr, υr)),

and we shall define a submanifold W of J1
r+1(X ×U,X ×R

p). Let (Oi ×Ui, (ϕi, ψi))
be a chart of X × U at (xi, ui), and the local expression of the above mapping is
given by

j̄ : ϕ0(O0) × ψ0(U0) × · · · × ϕr(Or) × ψr(Ur) −→ E0 × · · · ×Er

(ξ̄0, ῡ0 . . . , ξ̄r, ῡr) �−→ (β0, . . . , βr)

with

Ei = ϕi(Oi) × ψi(Ui) × GL(n,R) × Mp,n(R),

βi = (ξ̄i, ῡi, f̄(ξ̄i, ῡi), h̄(ξ̄i, ῡi), df̄(ξ̄i, ῡi), dh̄(ξ̄i, ῡi)),

and ξ̄i, ῡi, f̄ , and h̄ the local expressions of ξi, υi, f , and h, respectively. We put
Ai = df̄(ξ̄i, v̄i) and Ci = dh̄(ξ̄i, v̄i). We define locally the submanifold W defined
by one of the sets of the r + 1 equalities shown in the proof of Lemma 3 and by the
relations between matrices Ai and Ci as shown in Lemma 5. We shall give an estimate
of codim(W ).

To this end, we denote by W1 the submanifold containing W which is defined
only by the equalities bearing on matrices Ai and Ci and by π the projection from the
Cartesian product E � E0×· · ·×Er to (GL(n,R) × Mp,n(R))

r+1
; the codimension of

W in E is equal to the codimension of W as a submanifold of W1 plus the codimension
of W1 in E. The codimension of W as a submanifold of W1 is equal to (r+1)n and the
codimension of W1 in E is greater than or equal to the codimension of its projection
W2 � π(W1). Applying Lemma 5, we can say that the codimension of a set of
matrices as W2 is greater than (r + 1)m, so the codimension of W is greater than

(r + 1)(n + m), which is the dimension of (X × U)
(r+1)

. Thus j̄ is transverse to W
iff j̄(ξ̄0, ῡ0, . . . , ξ̄r, ῡr) /∈ W for all (ξ̄0, ῡ0, . . . , ξ̄r, ῡr).
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For each r from 0 to 2n, we consider a countable family F of charts covering
(X × U)

r+1
and consider the application of the Thom transversality theorem to each

chart of F as explained previously. If (f, h) ∈ DiffU(X)×C∞(X,Rp) and (x0, u2n+1)
is a periodic point of f with period no greater than 2n, then starting from x0 we
consider the list L′ as in Lemma 3; the element (x0, u0, . . . , xir , uir ) constituting L′

belongs to one of the charts of the family F , and together with the zi’s satisfy r + 1
equalities as explained in Lemma 3. Moreover, the above reasoning shows that the set
of pairs (f, h), such that Θf,h

2n+1 is an immersion at each periodic point of f lying in
one of the charts of family F , is residual by considering the (countable) intersection
of all the residual sets related to the charts of F ; Proposition 2 is then proven.

5. Conclusion. Let us denote by O1 the set of pairs (f, h) ∈ DiffU(X)×C∞(X×
U,Rp) such that the mapping Θf,h

2n+1 is an immersion; the conjunction of Propositions 1
and 2 proves that O1 is residual. Let us denote by O2 the set of pairs (f, h) ∈
DiffU(X)×C∞(X × U,Rp) such that the mapping Θf,h

2n+1 is one-to-one; in [3], under
the assumption that X and U are compact, we proved that O2 is also residual. Let us
denote by O3 the set of pairs (f, h) ∈ DiffU(X)×C∞(X×U,Rp) such that the mapping

Θf,h
2n+1 is an embedding; we can conclude that O3 is residual as the intersection of O1

and O2. Moreover, we also proved the openness of O3; therefore we can assert that
O3 is open and dense.
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AN INTRODUCTION TO QUANTUM FILTERING∗
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Abstract. This paper provides an introduction to quantum filtering theory. An introduction to
quantum probability theory is given, focusing on the spectral theorem and the conditional expectation
as a least squares estimate, and culminating in the construction of Wiener and Poisson processes
on the Fock space. We describe the quantum Itô calculus and its use in the modeling of physical
systems. We use both reference probability and innovations methods to obtain quantum filtering
equations for system-probe models from quantum optics.
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1. Introduction. Since even before the industrial revolution, feedback control
has played a major role in the development of technology. Nowadays, many machines
and devices that make up our everyday lives use feedback to provide efficient and
reliable performance despite ever increasing complexity and miniaturization, and a
rich control theory has been developed to aid in the design of feedback controllers
based on device models from classical physics. As microtechnology is making way
for nanotechnology, however, we are now rapidly approaching the boundary of the
classical world past which the effects of quantum mechanics cannot be neglected.

The laws of quantum mechanics tell us that any description of the phenomena
at small scales is inherently nondeterministic in nature. This opens new areas of
application for stochastic control theory, which could play a role in a future generation
of technology. In particular, as observations of quantum systems are inherently noisy,
the theory of filtering—the extraction of information from a noisy signal—forms an
integral part of quantum feedback control theory.

Quantum filtering was already implicit in early work on quantum measurement
theory by Davies in the 1960s [24, 25]. In its modern form, the study of quantum
filtering and control was pioneered by Belavkin in a series of articles dating back to the
early 1980s [9, 10, 11, 12, 13]. The theory developed by Belavkin provides an essential
foundation for statistical inference in, e.g., quantum optical systems, and much of
what we will discuss in the second half of this article is based on his work. The theory
gained popularity in the physics community after it was independently developed on
a more heuristic level by Carmichael in the early 1990s [22] under the name “quantum
trajectory theory” and has since been widely applied in the description of quantum
optical experiments and as a computational tool.
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Based on the foundations of quantum filtering theory, methods from classical
nonlinear and stochastic control can be developed and applied to design feedback
control laws for quantum systems. These methods may be optimal in some sense or
otherwise designed with relevant considerations in mind (e.g., stability). The resulting
controllers are intended to be implemented with some classical technology (e.g., digital
or analog electronics). Recent experiments implementing quantum feedback controls
[3, 35, 58, 21] have led to renewed interest in the field, which is now rapidly expanding
[10, 64, 28, 27, 17, 43, 15, 61, 16, 44, 37, 30, 60, 62, 18]. We believe that a fruitful
interaction between stochastic control and theoretical and experimental physics will
be essential in paving the way towards the engineering of quantum technologies.

This paper provides an introduction to quantum filtering theory. There are three
key ingredients that are required for the development of the theory. First, we need
to capture both classical probability and quantum mechanics within the framework
of a generalized probability theory, called noncommutative or quantum probability
theory. The central object in this theory, the spectral theorem, provides a link between
quantum systems and the associated probabilistic measurement outcomes. Second,
we need a noncommutative generalization of the concept of conditional expectations.
As in classical probability, we will find that a suitably restricted definition of the
quantum conditional expectation is none other than a least squares estimator, which
elucidates its role in quantum filtering theory. Finally, we need a noncommutative
analog of stochastic calculus and quantum stochastic differential equations (QSDEs).
This provides a broad class of models for which we can obtain filtering equations.

A typical physical scenario, to which the theory that we will develop can be
applied, is illustrated schematically in Figure 5.1. A cloud of (usually cold, trapped)
atoms interacts with the electromagnetic field in free space; this can be coherent light
from a laser, or even the vacuum. Depending on their internal state the atoms can,
for example, emit radiation into the field. If we detect this radiation using an optical
detection setup, we can try to infer some information on the internal state of the
atoms—this is precisely the goal of quantum filtering theory. If we wanted to control
the state of the atoms, we could then feed back some function of the state estimates
through a suitable actuator. Recent laboratory experiments (e.g., [58]) implement
precisely such a setup and provide a motivating example for the theory.

We begin in section 2 by providing some background for quantum filtering. This
includes a discussion of the quantum mechanics and quantum probability in the sim-
plest, finite-dimensional context. In section 3 quantum probability is developed in
detail. Then in section 4 we show how Wiener and Poisson processes emerge in a
particular quantum probabilistic model based on the Fock space, and how these can
be used to develop a noncommutative stochastic calculus. In section 5 we introduce
a class of system-observation models that describe typical experiments in quantum
optics. Section 6 deals with the derivation of quantum filtering equations using the
reference probability approach, while section 7 gives an alternative derivation using
the innovations or martingale method.

Scope. It has been our aim to make quantum probability and filtering the-
ory accessible, modulo a set of technicalities, to readers with a minimal number of
prerequisites. We (only) presume some familiarity with probability theory and elemen-
tary functional analysis. We have put an emphasis on introducing the mathematical
structures of quantum probability theory and on demonstrating their significance and
their use. As a consequence we do not everywhere achieve the highest level of rigor;
we are particularly lax in the use of unbounded operators and their domains. It is
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our hope that skimming over these technicalities has enabled us to paint a clearer
picture of the pillars of the theory and of the essential techniques involved. That
being said, we should point out that many of the tools described in this paper are
applied regularly and successfully by physicists without paying any attention to the
technical issues involved; the reader should not hesitate to get his feet wet!

It is an ambitious project to introduce an unfamiliar probability theory, a new
stochastic calculus, and to even solve a nontrivial problem (filtering) within the con-
fines of about 40 pages. Though we have tried to give a pedagogical treatment, the
explanations are sometimes necessarily terse; we hope that the reader will be suf-
ficiently compelled to work his way through the paper. Needless to say there are
many omissions; one that particularly deserves mention is the linear case: indeed, the
quantum Kalman filter, and the corresponding theory of quantum LQG control, can
be developed along similar lines to the filters we will discuss. We have chosen to omit
this topic in order to avoid the technicalities of QSDEs with unbounded coefficients,
but refer instead to [30] and the references therein.

Notation. The sets of natural, real, and complex numbers are denoted N, R,
and C, respectively. In general, script symbols (e.g., Y ) are used for von Neumann
algebras, while calligraphic symbols (e.g., Y) stand for σ-algebras. B is the Borel σ-
algebra on R. Classical probability spaces are denoted as (Ω,F ,P), and EP denotes
the expectation with respect to the measure P. Blackboard symbols (e.g., P) denote
states on von Neumann algebras. Sans serif symbols (e.g., H) are used for Hilbert
spaces. Hilbert space adjoints, as well as the scalar complex conjugate, are indicated
by ∗, and the Hilbert space inner product is denoted by 〈·, ·〉. The commutator of two
bounded operators is denoted by [X,Y ] = XY − Y X. I is the identity operator.

2. Background and motivation. In this article we adopt a modern quantum
probability formulation of quantum mechanics. Quantum probability is the noncom-
mutative counterpart of Kolmogorov’s axiomatic characterization of classical probabil-
ity theory. In addition to the natural interpretation and mathematical tools provided
by Kolmogorov’s formalism, one of its major successes is that conditioning is a derived
concept rather than an additional axiom. The situation is much the same in quan-
tum probability; in particular, the conditioning axiom or “projection postulate,” as
it is traditionally posed in quantum mechanics, can emerge as a consequence of con-
ditional expectation and the physical idea that in a single experiment one only has
direct access to information contained in a commutative subalgebra of observables.

Considering the success of the classical (Kolmogorov) theory, it should come as
no surprise that the mathematical abstraction provided by the framework of quantum
probability pays off significantly (as we will see throughout the article). Introductory
physics textbooks on quantum mechanics rarely use such a description, however. In
this section we introduce the basic concepts of quantum probability in their simplest
form and attempt to provide contact with ideas about quantum mechanics that readers
may be familiar with. This is intended to provide a reference point for interpreting
the quantum probabilistic framework used in this paper.

2.1. Some textbook quantum mechanics. According to the textbook by
Merzbacher [51, p. 1], “Quantum mechanics is the theoretical framework within which
it has been found possible to describe, correlate, and predict the behavior of a vast
range of physical systems, from particles through nuclei, atoms, and radiation to
molecules and condensed matter.” Central to quantum mechanics are the notions of
observables, which are mathematical representations of physical quantities that can
(in principle) be measured, and states, which summarize the status of physical systems
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and permit the calculation of statistical quantities (such as probabilities, expectations,
correlations) of observables.

Indeed, the reader may be familiar with the Schrödinger wavefunction ψ(q, t)
for a particle of mass m moving in a force field V (q) (dependent on position q, in
one dimension for simplicity). If Q is the observable representing position (defined
in Example 3.9), the expected position of the particle when in a state described by
ψ(q, t) at time t is defined to be

(2.1) 〈Q〉 =

∫
q|ψ(q, t)|2dq.

The wavefunctions are normalized to one
∫
|ψ(q, t)|2dq = 1, so that |ψ(q, t)|2 could be

interpreted as the probability density of the position of the particle. The dynamics of
the particle are described by the famous Schrödinger wave equation

(2.2) i�
∂ψ(q, t)

∂t
= − �

2

2m

∂2ψ(q, t)

∂q2
+ V (q)ψ(q, t),

where � = h/2π, h is Planck’s constant, and i2 = −1.
The key distinction between classical (i.e., nonquantum) and quantum mechanics

is that quantum mechanics is noncommutative, meaning that there exist observables
that do not commute, a fact which has deep implications. The momentum observable
P (defined in Example 3.9) does not commute with the position observable Q; in
fact [Q,P ] = QP − PQ = i� I. The most famous implication of this failure of
commutativity is Heisenberg’s uncertainty relation, which asserts that

(2.3) ΔQΔP ≥ 1

2
|〈i[Q,P ]〉| =

�

2
,

where the variances are defined by ΔQ = (〈Q2〉 − 〈Q〉2)1/2, ΔP = (〈P 2〉 − 〈P 〉2)1/2.
Naive interpretation of the Heisenberg uncertainty relation can be misleading; we
will discuss its precise meaning in the following section. Nonetheless, it evidently
implies that there is a fundamental irreducible randomness in quantum mechanics.
This is in contrast to classical randomness, which in principle can be eliminated with
enough effort and information. Experimental evidence has repeatedly confirmed the
irreducible randomness of quantum mechanical observations.

Let us make this somewhat vague discussion a little more precise. For simplicity,
we will work in this section only in a finite-dimensional setting (in which observations
can only take a finite number of values; i.e., they are finite-state random variables).
First, recall that if A = A∗ is a self-adjoint operator on a finite-dimensional Hilbert
space H = Cn, it has at most n (distinct) real eigenvalues. The set spec(A) = {aj}
of eigenvalues of A is called the spectrum of A, and A can be written as

(2.4) A =
∑

a∈spec(A)

aPa,

where Pa is the projection operator onto the subspace of H spanned by vectors with
eigenvalue a. The projections resolve the identity

∑
a∈spec(A) Pa = I.

In this finite-dimensional setting, the following operational characterization of
quantum mechanical models (often referred to as the “postulates” of quantum me-
chanics) can be found in most introductory textbooks.
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Observables. Physical quantities like position, momentum, spin, etc. are rep-
resented by self-adjoint operators on the Hilbert space H and are called observables.
These are the noncommutative counterparts of random variables.

States. A state is meant to provide a summary of the status of a physical system
that enables the calculation of statistical quantities associated with observables. A
generic state is specified by a density matrix ρ, which is a self-adjoint operator on
H that is positive ρ ≥ 0 and normalized Tr[ρ] = 1. This is the noncommutative
counterpart of a probability density.

Measurement. A measurement is a physical procedure or experiment that pro-
duces numerical results related to observables. In any given measurement, the allow-
able results take values in the spectrum spec(A) of a chosen observable A. Given the
state ρ, the value a ∈ spec(A) is observed with probability Tr[ρPa]. Consequently,
the expectation of an observable A is given by 〈A〉 = Tr[ρA].

Conditioning. Suppose that a measurement of A gives rise to the observation
a ∈ spec(A). Then we must condition the state in order to predict the outcomes of
subsequent measurements by updating the density matrix ρ using

(2.5) ρ �→ ρ′[a] =
PaρPa

Tr[ρPa]
.

This is known as the “projection postulate.”
Evolution. A closed (i.e., isolated) quantum system evolves in a unitary fashion:

a physical quantity that is described at time t = 0 by an observable A is described at
time t > 0 by A(t) = U(t)∗AU(t), where U(t) is a unitary operator for each time t.
The unitary is generated by the Schrödinger equation

(2.6) i�
d

dt
U(t) = H(t)U(t),

where the (time-dependent) Hamiltonian H(t) is a self-adjoint operator for each t.
Before continuing, we make the following remarks.
Remark 2.1. Pure states. The set of density matrices ρ is convex; we can thus

wonder what are the extremal points in this set, i.e., those that correspond to the
most informative states. It is not difficult to show that the set of extremal density
matrices is the set of projections onto one-dimensional subspaces. Thus we can specify
any extremal state uniquely (up to a phase factor eiϕ) by a single unit vector ψ ∈ H in
the corresponding subspace, and Tr[ρX] = 〈ψ,Xψ〉 for any operator X. In classical
probability theory, the set of probability measures is also convex and the extremal
measures are deterministic (Dirac) measures. In the quantum mechanical setting, on
the other hand, the Heisenberg uncertainty relation implies that even extremal states
do not give deterministic measurement outcomes for all observables.

Historically, and in most textbooks, quantum mechanics is first formulated in
terms of the extremal states (called pure states) and the description is later generalized
to density matrices (mixed states). The Schrödinger wavefunction ψ(q, t) is an example
of a pure state vector in an infinite-dimensional Hilbert space setting.

Remark 2.2. Heisenberg vs. Schrödinger picture. In the above description of
time evolution we work with a fixed state while the observables change in time. This
conforms to the usual treatment in classical probability theory, where the underlying
probability measure is fixed at the outset and the random variables are time dependent
(stochastic processes). In quantum mechanics this is known as the Heisenberg picture;
equally (or perhaps more) popular is the Schrödinger picture, in which the observables
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are considered fixed and the density matrix evolves as ρ(t) = U(t)ρU(t)∗. The two
pictures are essentially equivalent as Tr[ρA(t)] = Tr[ρ(t)A] for any observable A.

Note that if we start in a pure state, then unitary evolution preserves this prop-
erty; in terms of the state vector, ψ(t) = U(t)ψ. Intuitively, this enforces the physical
idea that no information is lost from an isolated system. Together with (2.6) we obtain
the traditional Schrödinger equation for ψ(t), of which (2.2) is a special case (for a
specific choice of H, in infinite dimensions). We will always work in the Heisenberg
picture, however, as we will be dealing with (quantum) stochastic processes.

As a basic illustration we discuss the following simple example.
Example 2.3. One of the classic experimental demonstrations of the necessity

of quantum mechanics was performed in 1922 by Stern and Gerlach. A silver atom
is subjected to an inhomogeneous magnetic field. The atom possesses an intrinsic
magnetic moment and hence experiences a force that is proportional to the component
of its magnetic moment in the direction of the field gradient. As Stern and Gerlach
did not prepare the atom in a particular orientation, they expected it to be deflected
randomly in a continuous range of directions corresponding to a random orientation
of the magnetic moment. Repeated runs of the experiment showed, however, that the
atom is randomly deflected into two discrete directions only—the reason being that
in quantum mechanics the intrinsic magnetic moment (or spin) observable is discrete,
rather than continuous. Atoms deflected in the upper direction are said to have “spin
up,” while those in the lower direction have “spin down.”

A simple model of a spin is as follows. Let H = C2, and consider the observable

(2.7) σz =

(
1 0
0 −1

)
representing spin in the z direction. We have spec(σz) = {−1, 1}, which correspond
to spin down and spin up, respectively. In terms of the eigenprojections

Pz,1 =

(
1 0
0 0

)
, Pz,−1 =

(
0 0
0 1

)
,

we can write σz = Pz,1−Pz,−1. The next step is to introduce a state. Consider a pure
state, given by the vector ψ = (c1 c−1)

T with |c1|2 + |c−1|2 = 1. If we observe σz, we
obtain the outcome 1 (spin up) with probability 〈ψ, Pz,1ψ〉 = |c1|2, or the outcome
−1 with probability 〈ψ, Pz,−1ψ〉 = |c−1|2.

2.2. A first look at quantum probability. The description of quantum me-
chanics in the previous section contains the rudiments of a viable probability theory.
We will now formalize these ideas, once again restricting ourselves to the finite-
dimensional case for simplicity (the general theory, which will be discussed in section
3, is conceptually very similar). Two key ideas, which we elaborate on below, form
the essence of the formalism: the first is that a set of measurements made in a single
realization1 of a quantum experiment corresponds to a particular choice of a commu-
tative algebra of observables; and the second is that any such commutative algebra is
entirely equivalent to a classical (Kolmogorov) probability model.

A classical probability model is described by a probability space (Ω,F ,P). Here
Ω, the sample space, is not of essential importance; the basic ingredients of the theory

1By a realization or an experiment we mean that random variables are assigned a definite value,
as is the case if we perform measurements on a single physical system. In classical probability this
corresponds to the choice of a sample point ω ∈ Ω; the quantum case is a little more subtle.
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are the events that can occur, contained in the σ-algebra F , and their probabilities,
which are determined by the measure P. Equivalently, we could describe an event F ∈
F by a random variable χF which takes the value 1 if F occurs and 0 otherwise (the
indicator function on F ), and the probability of the event is simply the expectation
of χF . We have already encountered such objects in the previous section: events are
precisely those observables that are projection operators (P = P ∗ = P 2), and the
probability of an event P is given by P(P ) = Tr[ρP ]. Thus the set of projections,
together with the linear map P, play much the same role as the classical pair F ,P.

We run into trouble in the quantum case when we try to ascribe joint probabilities
to certain events. This is always possible in classical probability theory: the joint
probability of the events A and B is P(A∩B) = EP(χAχB). But given two projection
operators P,Q, the operator PQ is not guaranteed to be a projection or even an
observable ((PQ)∗ = QP ), unless P and Q commute. This simple observation is no
coincidence; it has the following physical interpretation: in a single realization of a
quantum probability model, we can only verify the truth of a set of commuting events.
This is in contrast with classical probability where in every realization any event is
either true or false, whether we choose to observe it or not. In quantum probability
we can a priori choose to verify the truth of an arbitrary event, but subsequently some
of the other events (those that do not commute with the observed event, said to be
incompatible) become meaningless within the same realization.

The incompatibility of events is a significant conceptual departure from classical
probability and requires a little getting used to. In many ways, however, this is the
only essential departure from classical probability theory. We now begin to construct
the mathematical formalism of quantum probability, and we will show that it is indeed
very close to Kolmogorov’s theory.

Consider the following idea. Suppose we decide to measure an observable A and
obtain a particular outcome a ∈ spec(A). Then we do not need to perform another
measurement to know that any function f(A) would give the outcome f(a); in essence,
this is merely a relabeling of the measurement outcomes of A. Indeed,

(2.8) A =
∑

a∈spec(A)

aPa =⇒ f(A) =
∑

a∈spec(A)

f(a)Pa,

and all such operators commute with each other. Thus measuring A “automatically”
measures all functions f(A). The set of operators A = {X : X = f(A), f : R → C}
forms a commutative ∗-algebra, i.e., arbitrary (complex) linear combinations, prod-
ucts, and adjoints of operators in A are still in A , I ∈ A , and all elements of A
commute. We will call A the ∗-algebra generated2 by A. A linear map P : A → C
that is positive (P(A) ≥ 0 if A ≥ 0) and normalized (P(I) = 1) is called a state on A
(clearly we can always write such a state as A �→ Tr[ρA] for some density matrix ρ).
Note that the projections P ∈ A are precisely those events that we can distinguish
by measuring A, and P(P ) gives their probabilities. We can similarly generate the
commutative ∗-algebra of functions of an arbitrary set of commuting observables.

The algebraic structure we have introduced is of fundamental importance as it
provides us with a direct connection to the classical theory, as follows.

Theorem 2.4 (spectral theorem, finite-dimensional case). Let A be a commuta-
tive ∗-algebra of operators on a finite-dimensional Hilbert space, and let P be a state

2In fact, it is the smallest ∗-algebra of operators that contains A.
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on A . Then there are a probability space (Ω,F ,P) and a map ι from A onto the
set of measurable functions on Ω that is a ∗-isomorphism, i.e., a linear bijection with
ι(AB) = ι(A)ι(B) (pointwise) and ι(A∗) = ι(A)∗, and moreover P(A) = EP(ι(A)).

Proof. The proof is an elementary exercise in linear algebra. As the Hilbert space
H has dimension n < ∞, we can, without loss of generality, suppose that H = Cn and
that A is a commutative ∗-algebra of complex n× n matrices. As all the elements of
A commute, we can find a unitary matrix U such that U∗AU is a diagonal matrix for
every A ∈ A . Let Ω = {1, . . . , n}. Define ι(A) : Ω → C by ι(A)(i) = (U∗AU)ii for
every A ∈ A . Next, define F = σ{ι(A) : A ∈ A }. Finally, define P(S) = P(ι−1(χS))
for every S ∈ F . We have now explicitly constructed (Ω,F ,P) and ι.

Evidently the commutative ∗-algebra structure is completely equivalent to clas-
sical probability theory; by simultaneously diagonalizing all the operators in the al-
gebra, we obtain an explicit representation of measurable random variables as the
functions on the diagonals. We also note the following. Suppose we are given some
(large) commutative ∗-algebra A , and consider a subalgebra B ⊂ A generated by a
single element B ∈ A . If we apply the map ι to B, we obtain precisely the subset of
functions on Ω that are measurable with respect to σ{ι(B)}. Thus subalgebras play
the same role in quantum probability as sub-σ-algebras in classical probability; they
allow us to keep track of particular subsets of information.

We do not a priori have a basis for specifying a particular commutative ∗-algebra;
given a quantum system, we could decide to measure any of a large set of incompatible
observables. The discussion up to this point motivates the following definition.

Definition 2.5 (quantum probability space, finite-dimensional case). A pair
(N ,P), where N is a (not necessarily commutative) ∗-algebra of operators on a
finite-dimensional Hilbert space and P is a state on N , is called a (finite-dimensional)
quantum probability space.

Usually we will choose N to be the set of all (bounded) operators B(H) on
some underlying Hilbert space H. The principles of quantum probability now amount
to the following. In each realization, we must make a choice of commutative ∗-
subalgebra A ⊂ N which fixes the observations. Every statistic that pertains to
these observations (e.g., the statistics compiled by repeating the experiment many
times with the same choice of A ) is now described by the classical probability model
obtained through the spectral theorem. The reader should convince himself that the
operational description given in the previous section fits neatly within this model
(with the exception of conditioning, which we discuss in section 2.4).

Notice that in contrast to a classical probability space (Ω,F ,P), there are no
sample points ω ∈ Ω in a quantum probability space. The sample points emerge
through the spectral theorem after the choice of a commutative ∗-subalgebra.

Example 2.6. Let us reformulate Example 2.3. Set H = C2 and choose N =
B(H) = M2, the ∗-algebra of 2 × 2 complex matrices. The pure state is defined by
P(A) = 〈ψ,Aψ〉 = ψ∗Aψ (recall that ψ = (c1 c−1)

T with |c1|2 + |c−1|2 = 1).

The observable σz, used to represent spin measurement in the z direction, gener-
ates a commutative ∗-subalgebra Az ⊂ N . It is not difficult to see that Az is simply
the linear span of the events Pz,1 and Pz,−1. Let us now apply the spectral theorem;
we obtain the probability space (Ω,F ,P) where Ω = {1, 2}, F = {∅, {1}, {2},Ω},
P({1}) = |c1|2, etc., and ι(Pz,1) = χ{1}, ι(Pz,−1) = χ{2}. In particular, the random
variable ι(σz) : (1, 2) �→ (1,−1) has precisely the right properties.

Now suppose we do not wish to measure the intrinsic angular momentum (spin)
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in the z direction, but in the x direction. This corresponds to the observable

(2.9) σx =

(
0 1
1 0

)
,

which has the spectral decomposition σx = Px,1 − Px,−1 with

Px,1 =
1

2

(
1 1
1 1

)
, Px,−1 =

1

2

(
1 −1
−1 1

)
.

The observable σx also generates a commutative ∗-subalgebra Ax = span{Px,1, Px,−1}
to which we can apply the spectral theorem. However, as σx and σz do not commute,
they cannot be jointly represented on a classical probability space through the spectral
theorem. In other words, σx and σz are incompatible and their joint statistics are
undefined; hence they cannot both be observed in the same realization.

To conclude this section, let us say a few words about the interpretation of the
Heisenberg uncertainty relation. The relation says that the product of the variances
of two noncommuting observables is bounded from below by a positive constant. It
is important to realize, however, that the two observables cannot be measured in
the same realization as they are incompatible—in particular, the covariance of the
observables is undefined. Rather, the uncertainty relation is a statement about the
properties of quantum states: for any state, the statistics of the two observables, com-
piled in the course of separate realizations in each of which only one of the observables
is measured, must obey the Heisenberg inequality.3

2.3. Composite systems. We will often wish to form a composite probability
model from two separate probability spaces. In classical probability theory, two prob-
ability spaces (Ω1,F1,P1) and (Ω2,F2,P2) can be merged into a single probability
space (Ω1 × Ω2,F1 × F2,P1 × P2) where P1 × P2 is the product measure. We now
briefly describe the noncommutative counterpart.

Consider a composite system constructed from two quantum probability spaces
(N1,P1), (N2,P2) of operators on the Hilbert spaces H1 and H2, respectively. The
composite quantum probability space consists of operators on the tensor product
Hilbert space H1 ⊗ H2; for vectors ψ1, φ1 ∈ H1 and ψ2, φ2 ∈ H2, the inner product on
H1 ⊗ H2 is given by

〈ψ1 ⊗ ψ2, φ1 ⊗ φ2〉 = 〈ψ1, φ1〉〈ψ2, φ2〉,

which is extended by linearity to any vector in the tensor product space. The algebra
N1 ⊗ N2 is generated by elements of the form

(A1 ⊗A2)(ψ1 ⊗ ψ2) = A1ψ1 ⊗A2ψ2,

where A1 ∈ N1 and A2 ∈ N2. Finally, the product state is defined by

(P1 ⊗ P2)(A1 ⊗A2) = P1(A1)P2(A2)

3In the physics literature one often find statements to the effect that the Heisenberg uncertainty
relation limits the precision with which we can “imperfectly” observe two noncommuting observables
simultaneously, i.e., within the same realization. This is a misconception. Though the idea of
an imperfect measurement can be implemented rigorously (see, e.g., [38]), this gives rise to an
uncertainty relation which is different from Heisenberg’s uncertainty relation [4].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2208 LUC BOUTEN, RAMON VAN HANDEL, AND MATTHEW R. JAMES

and is extended by linearity. The quantum probability space (N1 ⊗ N2,P1 ⊗ P2)
of operators on the Hilbert space H1 ⊗ H2 describes the composite system. The
reader should verify that if N1 and N2 are commutative, then applying the spectral
theorem to the composite system is equivalent to applying the spectral theorem to
the individual subsystems, then forming the composite classical probability space.

2.4. Conditional expectations. Let us recall for a moment the Stern–Gerlach
experiment of Examples 2.3 and 2.6. We have introduced the observables σz and σx,
corresponding to spin in the z and x directions. These observables are incompatible,
so we cannot measure them in the same realization. Recall that in order to measure
σz, Stern and Gerlach apply a field gradient in the z direction; the atom then acquires
momentum in that direction proportional to σz, and we can determine the value of σz

in that realization by observing whether the atom is deflected up (1) or down (−1).
Similarly, σx is measured by orienting the field gradient along the x axis.

We would not be measuring both σz and σx by applying both field gradients
simultaneously, but rather as magnetic fields add vectorially, this would measure
the spin in some other direction in the x-z plane whose observable commutes with
neither σz nor σx. On the other hand, we could first apply the field gradient in the z
direction until we can resolve σz, then turn this field off and switch on a field in the
x direction to resolve σx. It is a characteristic feature of quantum mechanics that the
measurement outcomes in such a procedure can differ drastically depending on what
order we apply the fields. It is thus of crucial importance to specify precisely how
such measurements are performed by including in the quantum probability space a
model of the measurement apparatus (or probe).

We defer the discussion of the Stern–Gerlach measurement with magnetic fields
until we have developed the necessary machinery in section 3. For the sake of example,
we develop in this section a simpler probe model which shows the main features of the
procedure. We will see that this probe model, together with the concept of conditional
expectations, reproduces precisely the traditional projection postulate of section 2.1.

Let us begin by discussing conditional expectations in the noncommutative con-
text. The key observation we need is the following. The conditional probability of
an event B given an event A is the probability that B is true given that A is true
in the same realization. Hence the concept of conditioning inherently makes sense
only in the context of quantities that can be observed in the same realization of an
experiment. This means that we can only define conditional expectations in commu-
tative subalgebras of a quantum probability space; but as long as we are restricted
to the commutative case, the spectral theorem allows us to define any probabilistic
operation directly in terms of the associated classical probability space (see [18]).

To be more precise, let (N ,P) be a quantum probability space, A ⊂ N be
a commutative subalgebra, and B ∈ N be a self-adjoint element that commutes
with every A ∈ A . Then B and A generate a larger commutative subalgebra C ⊂
N , to which we can apply the spectral theorem to obtain a ∗-isomorphism ι. The
conditional expectation is now simply inherited from the classical space as P(B|A ) =
ι−1(EP(ι(B)|σ{ι(A )})). Note, however, that if B,C are two self-adjoint operators
that commute with every A ∈ A , this does not necessarily imply that B and C
commute. The set A ′ = {B ∈ N : AB = BA ∀A ∈ A }, the commutant of A
(in N ), is the largest ∗-subalgebra of operators that can be conditioned on A . The
conditional expectation is defined as above for its self-adjoint elements, and extends
to all of A ′ by linearity.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN INTRODUCTION TO QUANTUM FILTERING 2209

From this discussion and the definition of the classical conditional expectation,
we extract the following definition directly in terms of the quantum probability space.

Definition 2.7 (conditional expectation, finite-dimensional case). Let (N ,P)
be a finite-dimensional quantum probability space and let A ⊂ N be a commutative ∗-
subalgebra. Then P(·|A ) : A ′ → A is called (a version of) the conditional expectation
from A ′ onto A if P(P(B|A )A) = P(BA) for all A ∈ A , B ∈ A ′.

As we will see in section 3, the discussion above generalizes directly to the infinite-
dimensional case. In finite dimensions it is convenient to give an explicit expression
for the conditional expectation. Note that a finite-dimensional ∗-algebra is a finite-
dimensional linear space. Then 〈A,B〉P = P(A∗B) turns the algebra into a pre-Hilbert
space; i.e., it is a Hilbert space except that A �→ 〈A,A〉P = ‖A‖2

P
may have a nontrivial

null space. In particular, the fundamental property P(P(B|A )A) = P(BA) for all
A ∈ A is precisely that of orthogonal projection from A ′ onto the linear subspace A ,
which in a pre-Hilbert space is uniquely determined up to an event of zero probability.
Note that the classical characterization of P(B|A ) as the least mean square estimate
of B in A follows immediately. We will elaborate on this point in section 3.

An explicit expression for P(B|A ) is easily obtained if we find an orthogonal
basis for A . Any commutative ∗-algebra in finite dimensions is spanned by a set of
projections that resolve the identity. This is easily seen: in n dimensions any self-
adjoint operator is a linear combination of at most n projections that resolve the
identity, and as all the operators in the ∗-algebra commute they must be expressible
as linear combinations of the same projections. Let A = span{Pa} for some set of
orthogonal projections Pa resolving the identity. Then a version of the conditional
expectation is given by

(2.10) P(B|A ) =
∑

P∈{Pa}:P(P ) �=0

P

‖P‖P

〈
P

‖P‖P

, B

〉
P

=
∑

P∈{Pa}:P(P ) �=0

P(PB)

P(P )
P.

Note what could happen if we naively fill in some B �∈ A ′. Then 〈P,B〉P �= 〈B,P 〉P

for some P ∈ {Pa}, which implies that we obtain complex coefficients in the sum even
if B is an observable. Hence the expression does not make sense unless B ∈ A ′.

Example 2.8. This example serves to illustrate conditional expectations; it is not
meant to represent a particular physical scenario. Consider H = C3, N = M3, and
P(X) = 〈ψ,Xψ〉 with ψ = (1 1 1)T /

√
3. Define A,B ∈ N by

A =

⎛⎝ 4 0 0
0 4 0
0 0 5

⎞⎠ = 4

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠+ 5

⎛⎝ 0 0 0
0 0 0
0 0 1

⎞⎠ , B =

⎛⎝ 0 1 0
1 0 0
0 0 2

⎞⎠ .

Let A be the ∗-algebra generated by A. Then

A ′ =

⎧⎨⎩
⎛⎝ a b 0

c d 0
0 0 x

⎞⎠ : a, b, c, d, x ∈ C

⎫⎬⎭ .

Note that A ′ is not a commutative algebra, despite that every element of A ′ com-
mutes with every element of A . As B ∈ A ′, we can use (2.10) to calculate

P(B|A ) =

⎛⎝ 1 0 0
0 1 0
0 0 2

⎞⎠ = 1

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠+ 2

⎛⎝ 0 0 0
0 0 0
0 0 1

⎞⎠ ∈ A .
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The observable P(B|A ) is the orthogonal projection of B onto A with respect to the
inner product 〈A,B〉P = P(A∗B). By the projection theorem, P(B|A ) is an element
of A that minimizes the mean square error ‖B − P(B|A )‖P.

We now proceed to develop a simple probe model that reproduces the projection
postulate. Recall that the conditional probability of an event P given a commuting
event Q is simply given by P(PQ)/P(Q). This is equivalent to P(A ∩ B)/P(B) by
the spectral theorem, where A and B are the sets corresponding to P and Q.

Example 2.9. Simple probe model. We will work in a generic n-dimensional
setting, n < ∞. Let H = Cn, N = Mn (the set of n × n complex matrices), and
let P(X) = Tr[ρX] be some state on N . Let A,B be two observables in N that do
not commute. Hence we cannot measure A and B directly in the same realization.
However, we can have the system interact with an external probe system, in such a way
that the observable A is copied to some probe observable A′ after the interaction. If
A′ commutes with B, we interpret this procedure (like in the Stern–Gerlach example)
as an (indirect) measurement of A followed by a (direct) measurement of B.

The strategy is simple. First, we describe the probe system by a separate probe
quantum probability space (Np,Pp) and form the composite space (N ⊗Np,P⊗Pp).
Next, we introduce an interaction. Recall from section 2.1 that the evolution of an
isolated system is described by a unitary transformation. Hence, we will choose a
probe observable I⊗A′ and construct a suitable unitary operator U so that the probe
observable U∗(I ⊗A′)U after the interaction gives the same outcome as A⊗ I would
have before the interaction. Note that, by construction, the system observable B ⊗ I
commutes with I ⊗ A′ after the interaction, [U∗(I ⊗ A′)U,U∗(B ⊗ I)U ] = 0. Hence
we can measure them within the same realization.

We now fill out the details of this model. Let A =
∑

a∈spec(A) aPa, and we

denote by m the number of elements in spec(A) (the number of possible measurement
outcomes). For the probe algebra, we choose Hp = Cm, Np = Mm. Now fix an
observable A′ ∈ Np that has the same spectrum as A. A′ =

∑
a∈spec(A) aP

′
a and

that P ′
a are projections onto one-dimensional subspaces of Hp; hence we can fix an

orthonormal basis of vectors ψa ∈ Hp such that P ′
a = ψaψ

∗
a. Now define the operator

X ′
ab = ψbψ

∗
a + ψaψ

∗
b +

∑
c�=a,b ψcψ

∗
c ∈ Np for a �= b, and X ′

aa = I; these operators
switch the events P ′

a and P ′
b in the sense X ′

abP
′
aX

′
ab = P ′

b, X ′
abP

′
bX

′
ab = P ′

a, and
X ′

abP
′
cX

′
ab = P ′

c for c �= a, b. Finally, set Pp(X) = Tr[XP ′
p] where we have fixed some

p ∈ spec(A) at the outset.

Now consider the operator U ∈ N ⊗ Np defined by U =
∑

a∈spec(A) Pa ⊗ X ′
ap.

As (X ′
ap)

2 = I it follows that U∗U = UU∗ = U2 = I; i.e., U is unitary. Note that
U∗(I ⊗ P ′

c)U = Pc ⊗ P ′
p + (1 − Pc) ⊗ P ′

c if c �= p, U∗(I ⊗ P ′
p)U =

∑
a Pa ⊗ P ′

a. We
calculate (P ⊗ Pp)(U

∗(I ⊗ P ′
c)U(Pc ⊗ I))/(P ⊗ Pp)(Pc ⊗ I) = 1 for every c; i.e., the

conditional probability that U∗(I ⊗ A′)U gives the outcome c, given that we have
observed A ⊗ I with outcome c, is one. Thus the unitary interaction U precisely
copies the system observable A onto the probe observable A′.

We can now measure the system observable B after interaction with the probe.
In particular, let us calculate the expectation of B conditioned on the probe measure-
ment. Define A as the commutative ∗-algebra generated by U∗(I ⊗ A′)U , and note
that U∗(B ⊗ I)U ∈ A ′. Thus we can use (2.10) to calculate

(P ⊗ Pp)(U
∗(B ⊗ I)U |A ) =

∑
c

(P ⊗ Pp)(U
∗(B ⊗ P ′

c)U)

(P ⊗ Pp)(U∗(I ⊗ P ′
c)U)

U∗(I ⊗ P ′
c)U
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=
∑
c

P(PcBPc)

P(Pc)
U∗(I ⊗ P ′

c)U =
∑
c

Tr[ρcB]U∗(I ⊗ P ′
c)U,

where ρc = PcρPc/Tr[ρPc]. This is precisely the projection postulate of section 2.1.

This example may be somewhat bewildering, and we encourage the reader to
work through the procedure for a particular model (e.g., that of Example 2.8), paying
particular attention to which operators do and do not commute. The reader should
convince himself that different answers are obtained if one first measures B then A.

Finally, we note that though we have here measured A through a probe and B
directly, there is no reason to stop here. If, in addition to A and B, we want to measure
an observable C that does not commute with B, we would introduce a second probe to
measure B as well. Now suppose that C = A. If we first measure A through the probe,
then measure A again, we would (obviously) obtain the same outcome. However, if
we first probe A, then probe B, and then measure A, we obtain a different outcome
from that of the first measurement of A! The reader is encouraged to work out also
this case. The reason for this phenomenon is that the interaction with the probe that
is used for the observation of B disturbs the system in such a way that its value of A
is changed. This effect is known as “measurement back action.”

The previous example, in particular the construction of the probe and the cor-
responding interaction, may seem rather ad hoc, and indeed we have only chosen
this rather artificial example to reproduce the projection postulate. This is not a
shortcoming of the theory we have outlined, however, but rather highlights the im-
portance of including a reasonable model of the probe in the quantum probability
space. Indeed, most realistic measurement setups are not of this type and the projec-
tion postulate of section 2.1 cannot be used to describe such systems. For example,
we will see in section 3 that the Stern–Gerlach measurement is only approximately
described by the projection postulate. Later we will describe even more complicated
optical measurements in which we wish to condition system observables based on the
observation of stochastic processes in continuous time (the signal from a photodetec-
tor). It is the latter, most practically useful case where we need quantum filtering
theory.

Remark 2.10. It is important to realize that statements like the projection pos-
tulate do not really implement the notion of conditioning; they consist of a pure
conditioning component and of a particular physical probe model which has no sta-
tistical significance. One also finds in the literature generalizations of the projection
postulate, called instruments, which implement different types of probes [25, 40]. In
the quantum probability context of this paper it is most natural to separate the two
parts; we will take existing probe models from physics and concentrate on the calcu-
lation of the associated conditional expectations (filtering).

3. Noncommutative probability theory. In the finite-dimensional case, we
have seen in section 2 that quantum mechanics can be modeled as a noncommutative
probability theory. In this section we present a general formulation for quantum prob-
ability that has wide applicability. We give a general definition of quantum probability
space, prove the existence and uniqueness of conditional expectations, and prove a
quantum version of Bayes’ rule that is very helpful for quantum filtering.

Almost all of the features of the full theory can already be seen in the finite-
dimensional case discussed in section 2; the main difficulties in the general case are
the technicalities involved in the theory of infinite-dimensional Hilbert spaces. This
parallels the difficulties in classical probability theory—though finite-state random
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variables can be treated by almost trivial (counting, combinatoric) methods, the
description of continuous random variables requires us to upgrade our machinery
using methods of real analysis. Similarly, the elementary linear algebra that underlies
finite-dimensional quantum probability must be upgraded to functional analysis if we
wish to treat the infinite-dimensional case. Conceptually, however, the two cases are
very similar, and the reader is encouraged to develop an intuitive understanding of the
finite-dimensional case before tackling the full formalism. For a thorough introduction
to functional analysis we refer the reader to the excellent textbook [56].

3.1. Quantum probability spaces. Let H be a complex Hilbert space, and
denote by B(H) the set of all bounded (linear) operators on H. We restrict ourselves
(for the time being) to bounded operators as we wish to construct ∗-algebras of such
operators: attempting to do this with unbounded operators would get us into no end
of trouble, as we would surely run into domain problems. Recall that for A ∈ B(H),
the usual Hilbert space adjoint A∗ ∈ B(H) is defined by 〈ψ,Aφ〉 = 〈A∗ψ, φ〉 ∀ψ, φ ∈ H.
With this involution B(H) is a ∗-algebra in the sense of section 2.

We wish to introduce a structure that plays the same role as a ∗-algebra in the
finite-dimensional case. It turns out, however, that the ∗-algebra structure in itself
is not sufficient in the infinite-dimensional case; we need to impose an additional
technical condition in order to be able to prove an infinite-dimensional version of the
spectral theorem (Theorem 2.4). The additional condition has a natural interpretation
which we will discuss below; however, the reader should not be too worried about this
technicality, particularly if he is not familiar with nets or locally convex topologies.
In practice we will rarely need to verify this property directly.

Definition 3.1. A positive linear functional μ : B(H) → C is said to be normal
if μ(supα Aα) = supα μ(Aα) for any upper bounded increasing net {Aα} of positive
elements in B(H). The locally convex topology on B(H) defined by the family of
seminorms {A �→ |μ(A)| : μ normal} is called the normal topology.

For a detailed discussion of nets, locally convex topologies, etc., see [56].
Definition 3.2 (von Neumann algebra). A von Neumann algebra N is a ∗-

subalgebra of B(H) that is closed in the normal topology. A state P on N is normal
if it is the restriction to N of a normal state on B(H).

We can now extend the spectral theorem to the infinite-dimensional case, es-
sentially showing that commutative von Neumann algebras with normal states are
equivalent to classical probability spaces. See, e.g., [57, Proposition 1.18.1] for a proof.
Conceptually, we are guided by the finite-dimensional case; Theorem 3.3 extends the
idea of simultaneous diagonalization to infinite-dimensional operators. Though tech-
nically much more involved, the flavor of the procedure remains the same.4

Theorem 3.3 (spectral theorem). Let C be a commutative von Neumann algebra.
Then there is a measure space (Ω,F , μ) and a ∗-isomorphism ι from C to L∞(Ω,F , μ),
the algebra of bounded measurable complex functions on Ω up to μ-a.s. equivalence.
Moreover, a normal state P on C defines a probability measure P, which is absolutely
continuous with respect to μ such that P(C) = EP(ι(C)) for all C ∈ C .

Before we continue, let us demonstrate the significance of the additional technical
conditions on a von Neumann algebra. First, we give an example of a ∗-subalgebra

4The additional measure μ that shows up in the theorem has no direct physical significance; its
job is to identify “enough” null sets in L∞(Ω) so we can construct the ∗-isomorphism ι. We can
generally not use P for this purpose as there may be projections P ∈ C with P(P ) = 0; if ι were
to map to L∞(Ω,F ,P), then necessarily ι(P ) = 0 and hence ι would not be invertible. The precise
details of the construction are never an issue, as we will never use μ and only prove results P-a.s.
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of B(H) that is not a von Neumann algebra.
Example 3.4. Let H = L2([0, 1]) and A = C([0, 1]), the commutative algebra of

continuous functions on the unit interval. We can consider A ∈ A as an operator on
H under pointwise multiplication; i.e., (Aψ)(x) = A(x)ψ(x) for every ψ ∈ H. Then A
satisfies all the requirements of a von Neumann algebra except that it is not closed in
the normal topology. Indeed, one can construct, for example, an increasing sequence
of continuous functions that converges to χ[0,1/2], which is discontinuous.

The problem is that the only indicator functions in A are χ∅ and χ[0,1]: all other
indicator functions on [0, 1] are discontinuous. Hence from a probabilistic point of view
A defines a trivial theory, as the only events in A are the trivial ones. Nonetheless A
is much larger than the algebra C that is generated by χ∅ and χ[0,1]. Hence A cannot
be ∗-isomorphic to the set of measurable functions on some measure space. The role
of normal closure is to avoid this complication. Indeed, this property guarantees that
any von Neumann algebra is generated by its projections [45].

Like normal closure, normality of the state is also required in order for the spectral
theorem to hold. Note that for normal states the expectation of an increasing set of
observables converges to the expectation of their least upper bound; i.e., the monotone
convergence property holds. This corresponds to the more basic property of countable
additivity. In the following example we construct a state which is not normal.

Example 3.5. Let H = �2(N) and A = �∞(N), acting on H by pointwise multi-
plication. A is closed in the normal topology; i.e., it is a commutative von Neumann
algebra. Now introduce a state on A which is given by the expression5

(3.1) P(A) = lim
N→∞

1

N

N∑
n=1

A(n), A ∈ D ⊂ A ,

on a suitably chosen linear subspace D . P is not a normal state; to see this, let us
introduce the events Pn ∈ A defined by (Pnψ)(k) = ψ(k) if k ≤ n, and zero otherwise.
{Pn} is an increasing sequence of projections in A whose least upper bound is the
identity P∞ = I. However, straightforward calculation shows that P(Pn) = 0 for any
finite n, whereas P(I) = 1. We conclude that the state P is not normal.

Note that what we have constructed is precisely the classical model of a uniform
distribution over the natural numbers N. This does not give rise to a well-defined
probability model in the sense of Kolmogorov, however, as the uniform distribution
on N does not obey the property that the probability of a countable union of disjoint
events is the sum of the probabilities of these events (which is exactly what went
wrong above). Requiring that the state be normal is equivalent to requiring that it
gives rise to a countably additive measure [46], which rules out our example.

Remark 3.6. Definition 3.2 is one of many equivalent definitions of a von Neumann
algebra. We have emphasized normality as it is close to the probabilistic notion of
monotone convergence. Normal closure turns out to be equivalent to closure in several
other topologies, notably the weak and strong operator topologies on B(H). We will
not concern ourselves with topological issues in this article; see, e.g., [20, section 2.4].

The following definition should come as no surprise.
Definition 3.7 (quantum probability space). A quantum probability space is a

pair (N ,P), where N is a von Neumann algebra and P is a normal state.

5Equation (3.1) does not by itself define a state, as there are many A ∈ A for which the limit
does not exist. However, note that (3.1) is well defined on a linear subspace, e.g., D = {A ∈ A : ∃c ∈
C s.t. limn→∞ A(n) = c}. Now P can be extended from D to A using the Hahn–Banach theorem.
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The structure has precisely the same interpretation as in section 2, of which we
briefly remind the reader. In each realization we must choose a commutative von
Neumann subalgebra A ⊂ N which fixes the observations. Every statistic that
pertains to these observations is then described by the classical probability model
obtained by applying the spectral theorem to (A ,P). The equivalence between com-
mutative quantum probability spaces and classical probability spaces is the foundation
of the theory; a commutative quantum probability model is a classical probabilistic
model, and we will often implicitly identify these two pictures.

In this article we will only use three types of von Neumann algebras. We list
these below; they will be used throughout without comment.

(i) A = B(H) is a von Neumann algebra. Moreover, any vector state on A
(P(A) = 〈ψ,Aψ〉 for fixed ψ ∈ H), or any convex combination of vector states, is a
normal state. Many models from quantum mechanics are described by such a model.

(ii) A = L∞(Ω,F ,P), acting on H = L2(Ω,F ,P) by pointwise multiplication, is a
commutative von Neumann algebra. Moreover, any state of the form P(X) = EP(X)
is a normal state. This is a classical probability model.

(iii) Given S ⊂ B(H), recall that S ′ = {X ∈ B(H) : XS = SX ∀S ∈ S } is
called the commutant of S in B(H). The following theorem (see [45, Theorem 5.3.1]
for a proof) allows us to construct von Neumann subalgebras of B(H).

Theorem 3.8 (double commutant theorem). Let S ⊂ B(H) be any self-adjoint
set, i.e., S ∈ S ⇒ S∗ ∈ S . Then A = S ′′ is the smallest von Neumann subalgebra
of B(H) that contains S . In particular, S is a von Neumann algebra iff S = S ′′.

Given any S ⊂ B(H), we call vN(S ) = (S ∪ S ∗)′′ the von Neumann algebra
generated by S . We will repeatedly use this construction in the following. For ex-
ample, suppose that we decide to measure in one realization some commuting set of
observables A1, . . . , An. Then A = vN(A1, . . . , An) is a commutative von Neumann
algebra which, through the spectral theorem, describes the associated classical prob-
ability model. A is the quantum probability equivalent of the σ-algebra generated
by a set of random variables.

3.2. Random variables. Now that we have a general definition of a quantum
probability space, we can develop some tools to deal with random variables. Recall
from section 2 that any self-adjoint element of a quantum probability space can be
decomposed into events using (2.4), which gives its interpretation as an observable
(random variable). Let us show how to do this in the infinite-dimensional case.

Let (N ,P) be a quantum probability space and consider an element A ∈ N which
is self-adjoint A = A∗. Then A = vN(A) ⊂ N is a commutative von Neumann
algebra. By the spectral theorem, there is a probability space (Ω,F ,P) and a ∗-
isomorphism ι that maps A to some (measurable) random variable a : Ω → R. We
can now apply classical probability theory; in particular, for any Borel set B ∈ B we
have the event [a ∈ B] = {ω ∈ Ω : a(ω) ∈ B} = a−1(B) ∈ F . To map this event
back to A we simply invert ι; the projection corresponding to [a ∈ B] is denoted by
PA(B) = ι−1(χ[a∈B]), and we call the map PA from B to the projections in N the
spectral measure of A. But this object is a familiar one from functional analysis [56];
in fact, it is well known that we can express A in terms of its spectral measure by

(3.2) A =

∫
R

λPA(dλ),

where the integral is defined in a suitable sense [56, sections 7.3 and 8.3]. Equation
(3.2) is precisely the infinite-dimensional counterpart of (2.4). We emphasize the
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physical interpretation of PA(B): it is the event [A takes a value in B], which occurs
with probability P(PA(B)).

This would be all there is to it, were it not for the fact that our algebras contain
only bounded operators (recall that unbounded operators cannot be defined on the
entire Hilbert space, and hence cannot be added or multiplied at will). Evidently we
did not lose much by this choice, as the probabilistic model is already contained in
an algebra of bounded operators by the spectral theorem. An unfortunate side effect,
however, is that self-adjoint operators in the algebra can only represent bounded ran-
dom variables, whereas many observations of interest are quite naturally unbounded
(think of a Gaussian random variable). This means that we need to deal with un-
bounded observables separately. We briefly discuss one way of doing this.

Consider a von Neumann algebra N ⊂ B(H). In general, an observable is defined
by a (not necessarily bounded) self-adjoint operator A on some dense domain in H. We
need to relate the unbounded operator A to N . The trick we use is remarkably simple:
we compute a bounded function of A. Define TA = (A+iI)−1. By elementary spectral
theory [56], any self-adjoint A has a real spectrum, and hence A+ iI is invertible with
bounded inverse. We say that A is affiliated to N if TA ∈ N . This is the equivalent
of the classical notion of a random variable that is measurable with respect to some
σ-algebra G. Note that every self-adjoint A is affiliated to B(H), and if A is also
bounded, then A is affiliated to N iff A ∈ N .

We wish to represent A as a classical (unbounded) random variable. To this
end, define the von Neumann algebra generated by A as vN(A) = vN(TA). Now
note that TA commutes with its adjoint, and hence vN(A) is a commutative von
Neumann algebra to which we can apply the spectral theorem. All we need to do is to
“package” A into TA, apply ι, and “unpack” it on the other end; in other words, we
define ι(A) = ι(TA)−1 − i. Once we have done this, we can define a spectral measure
PA for A in the usual way, and indeed (3.2) still holds even for unbounded A [56].
We remark that A being affiliated to N corresponds to the fact that PA(B) ∈ N for
every B ∈ B; this is precisely the classical notion of measurability.

Unbounded operators are a nuisance, but unfortunately they are a fact of life
in mathematical physics. In this article, particularly in the later sections, we will
occasionally add and multiply unbounded operators without justification; a detailed
analysis of the operator domains is beyond our scope. Though this does not often
cause trouble, the reader should keep in mind that a fully rigorous treatment must
verify that any addition or multiplication of unbounded operators is indeed well de-
fined. We quote one useful result: operators affiliated to a commutative von Neumann
algebra can be added and multiplied at will (see [45, Theorem 5.6.15] and [54]).

Example 3.9. We take H = L2(R) and N = B(H). The vector

ψ ∈ H, ψ(x) = (2π)−1/4σ−1/2 exp

(
− (x− μ)2

4σ2

)
defines the (pure) state P(X) = 〈ψ,Xψ〉. Now consider the self-adjoint operators

(Qψ)(x) = xψ(x), (Pψ)(x) = −i�
d

dx
ψ(x),

which are prototypical observables for the position Q and momentum P of a quantum
particle. Both are unbounded observables, but their domains include at least the set
of smooth functions with compact support which is dense in L2(R).
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What random variables do these represent? We can read off from the definition
that Q is a Gaussian random variable with mean μ and variance σ2—as Q is already
in “diagonal” form (Q is affiliated to L∞(R) ⊂ N ), its spectral measure is given by

(PQ(B)ψ)(x) = χB(x)ψ(x)

and it is evident that P(PQ(B)) is a Gaussian measure with mean μ and variance
σ2. Alternatively, consider the characteristic function q(k) = P(eikQ) of Q. Unlike Q,
eikQ is a bounded operator, and we can directly compute

q(k) = 〈ψ, eikQψ〉 = (2π)−1/2σ−1

∫ ∞

−∞
eikx e−(x−μ)2/2σ2

dx = eikμ−k2σ2/2

which is the characteristic function of a Gaussian random variable with mean μ and
variance σ2. Similarly, eikP is a bounded operator, and we compute

p(k) = P(eikP ) = 〈ψ, eikPψ〉 =

∫ ∞

−∞
ψ(x)ψ(x + �k) dx = e−�

2k2/8σ2

which is the characteristic function of a Gaussian random variable with mean zero
and variance �

2/4σ2. Thus both Q and P are Gaussian random variables, but their
joint distribution is undefined as they do not commute. Note that we cannot choose
σ so that both Q and P have arbitrarily small variance: this is a manifestation of the
Heisenberg uncertainty relation (compare (2.3)).

The following example plays a central role in the physics of harmonic oscilla-
tors; we will encounter a very similar construction later for continuous-time quantum
stochastic processes. We will need the following classic result (see, e.g., [45] for a
proof).

Theorem 3.10 (Stone’s theorem). Let N be a von Neumann algebra and let
{Ut}t∈R ⊂ N be a group of unitary operators that is strongly continuous. Then there
is a unique self-adjoint A affiliated to N , the Stone generator, such that Ut = eitA.

Example 3.11. Let H = �2(N) and N = B(H). Define the complete orthonormal
basis {ψn, n = 0, 1, . . .} ⊂ H, where ψn(k) = 1 if k = n and ψn(k) = 0 otherwise.
Moreover, we define for every α ∈ C the exponential vector e(α) ∈ H by e(α)(k) =
αk/

√
k!, and we remark that the linear span D of all exponential vectors is dense in

H. The normalized exponential vectors e(α)e−|α|2/2 are called coherent vectors and

can be used to define the coherent states Pα(X) = 〈e(α), Xe(α)〉 e−|α|2 .
The simplest random variable we can investigate is defined by (λψ)(k) = kψ(k)—

i.e., this is the natural diagonal operator affiliated to �∞(N) ⊂ N . The spectral
measure of λ is given by (Pλ(B)ψ)(k) = χB(k)ψ(k), from which we obtain directly

Pα(Pλ(B)) = 〈e(α), Pλ(B)e(α)〉 e−|α|2 =
∑
k∈B

e−|α|2(|α|2)k
k!

.

Thus, evidently, λ is a Poisson-distributed random variable with intensity |α|2.
Can we find other interesting observables affiliated to N ? In many cases, physi-

cally relevant observables are found to be the Stone generators of particular unitary
symmetry groups; see, e.g., [38] for a lucid discussion. Let us try to implement this
procedure with the two-dimensional translation group. As a first attempt, let us define
a translation operator by Dγe(α) = e(α + γ) e|α|

2/2−|α+γ|2/2 for γ ∈ C; the constant
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factor ensures that ‖Dγe(α)‖ = ‖e(α)‖, as must be the case for any unitary operator.
Unfortunately, Dγ is not in fact unitary; a straightforward calculation shows

〈e(β), D∗
γDγe(α)〉 = 〈Dγe(β), Dγe(α)〉 = eβ

∗αei Im(β∗γ)−i Im(α∗γ)

which contradicts unitarity D∗
γDγ = I, i.e., 〈e(β), D∗

γDγe(α)〉 = 〈e(β), e(α)〉 = eβ
∗α.

To fix this, define the Weyl operator

Wγe(α) = e(α + γ) e|α|
2/2−|α+γ|2/2ei Im(α∗γ) = e(α + γ) e−γ∗α−|γ|2/2.

The Weyl operator is unitary and provides a projective unitary representation [38] in
the sense that WαWβ = Wα+βe

i Im(β∗α). Note that it is sufficient to define the action
of Wα only on exponential vectors; we can then extend to D by linearity, and as D is
dense and Wα is bounded the Weyl operators are uniquely extended to all of H.

Now fix β ∈ C and consider the unitary group {Wtβ}t∈R. This group is con-
tinuous (Wtβe(γ) → e(γ) as t → 0) and hence by Stone’s theorem, there exists a
self-adjoint operator Bβ such that Wtβ = eitBβ . Finding the distribution of the ob-
servable Bβ is straightforward, as the characteristic function of Bβ is given by

bβ(k) = Pα(Wkβ) = 〈e(α), e(α + kβ)〉 e−kβ∗α−k2|β|2/2−|α|2 = e2ik Im(α∗β)−k2|β|2/2.

Hence Bβ is a Gaussian random variable with mean 2 Im(α∗β) and variance |β|2.
Our next task is to obtain an explicit representation of Bβ . We proceed as follows:

Bβe(α) =
1

i

d

dt
Wtβe(α)

∣∣∣∣
t=0

= iβ∗α e(α) − i
d

dt
e(α + tβ)

∣∣∣∣
t=0

.

One can verify explicitly that this expression makes sense, i.e., Bβe(α) ∈ H. Note
that we cannot extend Bβ to all of H, as Bβ is unbounded. However, we see that the
domain of Bβ contains at least the exponential domain D.

Let us introduce the following notation. Define q = Bi, p = B−1, and a =
(q + ip)/2. Note that q and p are self-adjoint by Stone’s theorem, whereas a has the
adjoint a∗ = (q − ip)/2. Moreover, we find that a e(α) = α e(α). But then

(a e(α))(k) = α
αk

√
k!

=
√
k + 1

αk+1√
(k + 1)!

=
√
k + 1 e(α)(k + 1).

This implies that we can extend the domain of a to include also the {ψn} by defining
aψk+1 =

√
k + 1ψk (where aψ0 = 0). Furthermore, from

〈ψm, a∗ψk〉 = 〈aψm, ψk〉 =
√
mδ(m−1)k =

√
k + 1 δm(k+1)

we can read off a∗ψk =
√
k + 1ψk+1. a

∗ is known as the creation (or raising) operator
and a as the annihilation (or lowering) operator.

Finally, note that λ = a∗a. From a classical probability point of view this is very
remarkable indeed. Not only do both Poisson and Gaussian random variables emerge
from the same state Pα, but there is even a continuous map q, p �→ (q−ip)(q+ip)/4 = λ
that transforms two Gaussian random variables into a Poisson random variable. One
could never continuously transform a continuous classical random variable into a
discrete classical random variable; however, we get away with it here because p, q,
and λ do not commute with one another. Thus in each realization we can choose to
measure either a discrete or a continuous random variable, but not both.
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Remark 3.12. Though presented rather differently, the last two examples are
in fact ∗-isomorphic in the case that σ2 = 1

2 in the first example. For example, if

α ∈ R, we can map p �→ 21/2
�
−1P , q �→ 21/2Q, and Pα �→ Pμ=21/2α,σ=2−1/2 . From the

expression for bβ(k) we see that in a coherent state both p and q must have the same
variance. In the first example we allowed for the variance of Q to shrink, though this
necessarily increases the variance of P . This results in a “squeezed state” which can
also be introduced in the context of the second example. We will not construct such
states here; in the following, we will only use coherent states.

3.3. Conditional expectation. We now consider conditional expectations, fol-
lowing the treatment of [18]. The following definition is identical to the one in
section 2.

Definition 3.13 (conditional expectation). Let (N ,P) be a quantum probability
space and let A ⊂ N be a commutative von Neumann subalgebra. Then the map
P(·|A ) : A ′ → A is called (a version of) the conditional expectation from A ′ onto
A if P(P(B|A )A) = P(BA) for all A ∈ A , B ∈ A ′.

We briefly recall the significance of A ′. A is the algebra generated by our ob-
servations: it must be commutative, as we cannot observe incompatible events in a
single experiment. We now wish to find the conditional statistics of an observable
B that is not affiliated to A . However, as we have already observed A , this is only
sensible if B commutes with every element in A —there would be no physical way to
test our predictions if we could not subsequently measure B in the same realization.

Remark 3.14. Recall that if B = B∗, we can use the spectral theorem to obtain
explicitly P(B|A ) = ι−1(EP(ι(B)|σ{ι(A )})). This representation extends even to
the case that B is an unbounded self-adjoint operator that is affiliated to A ′. For
simplicity we will discuss below the properties of P(B|A ) assuming that B is bounded,
but with suitable care the treatment extends also to the unbounded case.

Remark 3.15. A more general definition (see, e.g., [59]), of which Definition
3.13 is a special case, is often used in quantum probability. Unlike our definition,
which is motivated by statistical inference and filtering, the more general “conditional
expectation” allows for conditioning on noncommutative algebras and does not have a
direct statistical interpretation. The more general definition is used, e.g., in the theory
of noncommutative Markov processes [47]. We will not dwell on this further.

Theorem 3.16. The conditional expectation of Definition 3.13 exists and is
unique with probability one (any two versions P and Q of P(B|A ) satisfy ‖P −Q‖P =
0, where ‖X‖2

P
= P(X∗X)). Moreover, P(B|A ) is the least mean square estimate of

B given A in the sense that ‖B − P(B|A )‖P ≤ ‖B −A‖P for all A ∈ A .
Proof. (i) Existence. We have already established that for self-adjoint B ∈ A ′,

we can explicitly define a P(B|A ) that satisfies the conditions of Definition 3.13 using
the spectral theorem. The classical conditional expectation exists, and moreover the
conditional expectation of a bounded random variable is bounded. Hence P(B|A )
exists in A for self-adjoint B ∈ A ′. But any B ∈ A ′ can be written as B = B1 + iB2

with self-adjoint B1 = (B+B∗)/2 and B2 = i(B∗−B)/2. As P(B1|A ) and P(B2|A )
exist and P(B|A ) = P(B1|A ) + iP(B2|A ) satisfies the conditions of Definition 3.13,
existence is proved.

(ii) Uniqueness with probability one. Define the pre-inner product 〈X,Y 〉 =
P(X∗Y ) on A ′ (it might have nontrivial kernel). Then 〈A,B−P(B|A )〉 = P(A∗B)−
P(A∗

P(B|A )) = 0 for all A ∈ A and B ∈ A ′, i.e., B − P(B|A ) is orthogonal to A .
Now let P and Q be two versions of P(B|A ). It follows that 〈A,P − Q〉 = 0 for all
A ∈ A . But P −Q ∈ A , so 〈P −Q,P −Q〉 = ‖P −Q‖2

P
= 0.
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(iii) Least squares. Let P be a version of P(B|A ). Then for all K ∈ A

‖B −K‖2
P

= ‖B − P + P −K‖2
P

= ‖B − P‖2
P

+ ‖P −K‖2
P
≥ ‖B − P‖2

P
,

where, in the second step, we used that (B − P(B|A )) ⊥ (P(B|A ) −K) ∈ A .
Remark 3.17. The usual elementary properties of classical conditional expec-

tations and their proofs [63] carry over directly. In particular, we have linearity,
positivity, invariance of the state P(P(B|A )) = P(B), invariance of A (P(B|A ) = B
if B ∈ A ), the tower property P(P(B|A )|C ) = P(B|C ) if C ⊂ A , the module prop-
erty P(AB|C ) = B P(A|C ) for B ∈ C , etc. As an example, let us prove linearity. It
suffices to show that Z = αP(A|C )+β P(B|C ) satisfies P(ZC) = P((αA+βB)C) for
all C ∈ C . But this is immediate from the linearity of P and Definition 3.13.

3.4. The Bayes formula. In section 2 we were able to calculate conditional
expectations explicitly as all algebras were finite-dimensional. In most physical situ-
ations, however, at least the probe (and often the system as well) admits continuous
observables and therefore we must deal with infinite-dimensional algebras. In this case
it is usually not so simple to calculate the conditional expectations directly; however,
the following Bayes-type formula will be of considerable assistance.

Lemma 3.18 (Bayes formula [18]). Let C be a commutative von Neumann sub-
algebra and let C ′ be equipped with a normal state P. Choose V ∈ C ′ such that V ∗V >
0 and P(V ∗V ) = 1. Then we can define a new state on C ′ by Q(A) = P(V ∗AV ) and

Q(X|C ) =
P(V ∗XV |C )

P(V ∗V |C )
, X ∈ C ′.

Proof. Let K be an element of C . For all X ∈ C ′, we can write

P(P(V ∗XV |C )K) = P(V ∗XKV ) = Q(XK) = Q(Q(X|C )K)

= P(V ∗V Q(X|C )K) = P(P(V ∗V Q(X|C )K|C )) = P(P(V ∗V |C )Q(X|C )K).

As this holds for all K ∈ C , and as by construction the conditional expectations
are elements of C , we conclude that ‖P(V ∗XV |C ) − P(V ∗V |C )Q(X|C )‖P = 0, or
equivalently, P(V ∗XV |C ) = P(V ∗V |C )Q(X|C ) P-a.s.

We now have sufficient tools to deal with the Stern–Gerlach experiment described
in section 2. Though the following example is not of much practical importance, it
demonstrates the use of the Bayes theorem in a concrete setting. We will use a very
similar “reference probability method” to obtain filtering equations later on.

Example 3.19. Stern–Gerlach experiment. Consider an atom with two degrees of
freedom: a spin degree of freedom Nμ = B(C2) carrying the observables σx, σz etc.,
and a single spatial degree of freedom Nx = B(�2(N)) with the affiliated position q
and momentum p observables defined6 in Example 3.11 (we use the notations of that
example). The total algebra describing the atom is then N = Nμ ⊗ Nx. Initially
the spin and position/momentum of the atom are uncorrelated; hence we work with
the state P = Pμ ⊗ P0, where Pμ is an arbitrary spin state and P0(X) = 〈ψ0, Xψ0〉 =
〈e(0), Xe(0)〉. The latter implies that initially I⊗ q and I⊗p (which we will interpret
as position and momentum in the z direction) have zero mean and unit variance.

6We saw in Remark 3.12 that this description is ∗-isomorphic to the usual definition of position
and momentum up to some numerical constants. These are not of essence, however, as they just
correspond to a change of units in which we measure position and momentum. A little more care
must be taken if we wish to make quantitative predictions on the outcomes of actual experiments;
we will not worry about this, however, and work in arbitrary units.
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To measure the spin, we apply a magnetic field gradient that is linear in q for some
fixed period of time. The resulting force on the particle will cause its momentum to
change; an observation of the momentum of the particle after the interaction should
thus provide a measurement of its spin σz. In other words, the atomic spatial degree
of freedom acts as a probe for the atomic spin degree of freedom. The action of the
magnetic field is described by the unitary7

U = exp(iκ σz ⊗ q) = Pz,1 ⊗ eiκq + Pz,−1 ⊗ e−iκq = Pz,1 ⊗Wiκ + Pz,−1 ⊗W−iκ,

where κ ∈ R is the field gradient. Let us thus begin by calculating the characteristic
function of U∗(I ⊗ p)U , the momentum of the atom after the interaction:

P(eik U∗(I⊗p)U ) = P(U∗(I ⊗W−k)U) = Pμ(Pz,1) P0(W−iκW−kWiκ)

+ Pμ(Pz,−1) P0(WiκW−kW−iκ) = Pμ(Pz,1) e
2iκk−k2/2 + Pμ(Pz,−1) e

−2iκk−k2/2.

Hence the momentum of the atom after the interaction is distributed as a sum of two
Gaussians of unit variance and means 2κ and −2κ, which are weighted, respectively,
by Pμ(Pz,1) and Pμ(Pz,−1). Note that we cannot perfectly resolve the spin-up and
down states using a Stern–Gerlach measurement; as the tails of the two Gaussians
overlap, there is always a nonzero probability that we assign the wrong spin to the
atom by looking, e.g., at the sign of the observed momentum. However, the error
probability becomes very small when the gradient κ is large.

After the interaction, we may want to measure a spin observable σ ∈ Nμ that
does not necessarily commute with σz (e.g., σx). To describe this, let us calculate
P(U∗(σ⊗ I)U |vN(U∗(I ⊗ p)U)), the conditional expectation of the spin observable σ
after the interaction given our observation of the momentum of the atom.

We begin by using the following elementary property: if U is a unitary operator
and we define the state Q(X) = P(U∗XU), then P(U∗XU |U∗CU) = U∗

Q(X|C )U
(this can be verified directly using Definition 3.13). Thus we obtain

P(U∗(σ ⊗ I)U |vN(U∗(I ⊗ p)U)) = U∗
Q(σ ⊗ I|vN(I ⊗ p))U.

We would like to apply the Bayes rule to Q(σ⊗I|vN(I⊗p)). As U does not commute
with I ⊗ p, however, the Bayes rule does not apply in this form.

Fortunately, we can circumvent this problem using the following trick. Using the
Baker–Campbell–Hausdorff formula, we can rewrite eiκq as

eiκq = eiκ(a+a∗) = e−κ2/2eiκa
∗
eiκa.

Beware that the Baker–Campbell–Hausdorff formula technically only holds for expo-
nentials of bounded operators; thus here and below there will be domain issues, but
these can be resolved with suitable care. As aψ0 = 0, we can write

eiκqψ0 = e−κ2/2eiκa
∗
eiκaψ0 = e−κ2/2eiκa

∗
ψ0 = e−κ2/2eiκa

∗
e−iκaψ0 = e−κ2

eκpψ0.

We obtain

P0(e
−iκqXeiκq) = 〈eiκqψ0, Xeiκqψ0〉 = e−2κ2〈eκpψ0, Xeκpψ0〉 = e−2κ2

P0(e
κpXeκp).

7This is the solution of (2.6) at some fixed time t for a suitable interaction Hamiltonian H.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN INTRODUCTION TO QUANTUM FILTERING 2221

It follows that we can equivalently replace U by V :

Q(X) = P(U∗XU) = P(V ∗XV ), V = e−κ2

eκσz⊗p = e−κ2

(Pz,1⊗eκp+Pz,−1⊗e−κp).

V is not unitary, but it does commute with I ⊗ p. Hence the Bayes rule gives

P(U∗(σ ⊗ I)U |vN(U∗(I ⊗ p)U)) =
U∗

P(V ∗(σ ⊗ I)V |vN(I ⊗ p))U

U∗P(V ∗V |vN(I ⊗ p))U
.

We can now use the module property and independence of σ⊗ I and I⊗ p under P to
calculate explicitly the numerator and denominator; elementary manipulations give

P[U∗(σ ⊗ I)U |vN(U∗(I ⊗ p)U)]

=
Pμ(Pz,1σPz,1)e

2κU∗(I⊗p)U + Pμ(Pz,−1σPz,−1)e
−2κU∗(I⊗p)U + 2 Re Pμ(Pz,−1σPz,1)

Pμ(Pz,1)e2κU∗(I⊗p)U + Pμ(Pz,−1)e−2κU∗(I⊗p)U
.

By definition, P(U∗(σ ⊗ I)U |vN(U∗(I ⊗ p)U)) is affiliated to vN(U∗(I ⊗ p)U), and
indeed the expression above is simply a function of U∗(I ⊗ p)U . If we observe U∗(I ⊗
p)U and obtain the value p̃, then the spectral theorem tells us that the conditional
expectation takes the value given by the expression above if we simply substitute p̃ for
U∗(I⊗p)U . Note that the formula is not equivalent to the one given by the projection
postulate for a measurement of σz. For large κ, however, we obtain approximately
the projection postulate expression, and this becomes exact as κ → ∞.

4. Stochastic processes and quantum Itô calculus. After a general intro-
duction to quantum probability, we now turn to one particular quantum probability
space which we will use throughout the remainder of the article. In section 5 we shall
argue that this model appropriately describes the quantum electromagnetic field and
its interaction with matter. In the laboratory, the electromagnetic field can be mea-
sured by devices like photodetectors which can produce an electric current or even a
discrete photocount. The statistics of data records from such experiments are well
approximated by the model considered here. The model is rich and we will discover
that it contains many interesting classical stochastic processes, i.e., a whole family of
Poisson and Wiener processes. However, these processes do not commute with each
other. An extension of the Itô calculus, due to Hudson and Parthasarathy [42], unites
all these processes in one noncommutative stochastic calculus.

4.1. Poisson processes on Fock space. The theory we are about to discuss
can be approached from many sides; here we have chosen to get started by finding
a quantum probability space that naturally admits a Poisson process, and build the
theory from there. As we have a particular classical process in mind, the general theory
gives a hint as to how we could proceed. First, we define the process on a classical
space (Ω,F ,P); equivalently, we can form the algebra A = L∞(Ω,F ,P) acting on
H = L2(Ω,F ,P) by pointwise multiplication, with a suitable state P, and represent the
process as a family of observables affiliated to A . To create a noncommutative model,
we could now broaden our horizon and consider N = (B(H),P) rather than just A .
Obviously such a construction does not necessarily carry a physical interpretation;
this must be considered separately; see section 5. For the time being, however, we
will use this convenient construction to provide us with a rich quantum stochastic
model. The following discussion is heavily inspired by the work of Maassen [50].

Consider a classical Poisson process on a finite time interval [0, T ]. We wish to
describe the space of paths Ω. This is not difficult; a Poisson process on a finite time
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interval has (a.s.) finitely many jumps n. Hence we can specify every relevant path
by specifying its jump times. Let us thus introduce

(4.1) Ω =
∞⋃

n=0

Ωn, Ω0 = {∅}, Ωn = {{t1, . . . , tn} : t1 < t2 < · · · < tn ∈ [0, T ]}.

In other words, Ω is the set of ordered sequences in [0, T ] with a finite number of
elements. We still need to introduce a σ-algebra F and a measure P. To this end,
consider Ωn as a subset of the cube ([0, T ]n, e−Tμn) where μn is the Lebesgue measure,
so that Ωn inherits a σ-algebra Fn and a measure Pn from the cube. Under Pn the
jump times t1, . . . , tn are uniformly distributed (as must be the case for a Poisson
process with fixed rate) and Pn(Ωn) = Tne−T /n!. The measure P induced on Ω is
precisely the probability measure of a Poisson process with unit rate.

We now introduce the Hilbert space F = L2(Ω,F ,P). It is called the symmetric
or Boson Fock space and plays a central role in the following. We will also need the
spaces Ft], F[t, and F[s,t], defined identically to F except that the interval [0, T ] is
replaced by [0, t], [t, T ], and [s, t], respectively. It is not difficult to see that for any
0 < s < t < T we have8 Ω = Ωs] × Ω[s,t] × Ω[t, and as the Poisson process has
independent increments the measure splits up similarly. It follows that

(4.2) F = Fs] ⊗ F[s,t] ⊗ F[t ∀ 0 < s < t < T.

This important property is known as a continuous tensor product structure; it will
play a key role in the definition of quantum stochastic integrals, as it gives a natural
notion of adaptedness. Indeed, the algebra W = B(F) splits up accordingly,

(4.3) W = Ws] ⊗ W[s,t] ⊗ W[t = B(Fs]) ⊗ B(F[s,t]) ⊗ B(F[t).

A process of operators {Xt} affiliated to W is said to be adapted if Xt is affiliated to
Wt] for every t; equivalently, Xt is of the form Xt] ⊗ I as an operator on Ft] ⊗ F[t.

Next, let us introduce a set of interesting vectors. The reader should keep in mind
Example 3.11 which is conceptually quite similar. Let f ∈ L∞([0, T ]) be a complex
Lebesgue measurable function. Then we can define the exponential vector

(4.4) e(f)(∅) = 1, e(f)(τ) =
∏
t∈τ

f(t), f ∈ L∞([0, T ]), τ ∈ Ω.

It is not difficult to verify that e(f) ∈ F, as

〈e(g), e(f)〉 =

∞∑
n=0

e−T

n!

(∫ T

0

g∗(t)f(t) dt

)n

= exp

[∫ T

0

(g∗(t)f(t) − 1) dt

]
,

hence 〈e(f), e(f)〉 = e‖f‖
2
2−T < ∞ for any f ∈ L∞([0, T ]). We define D, the expo-

nential domain, as the linear span of all e(f), f ∈ L∞([0, T ]), and we note that D is
dense in F. The exponential vectors have the important property that they factorize
over the continuous tensor product structure (4.2): indeed, it is evident from (4.4)
that e(f) = e(fs]) ⊗ e(f[s,t]) ⊗ e(f[t) where ft] is the restriction of f to [0, t], etc.

8A more precise statement would be something like Ω = Ωs] × Ω(s,t] × Ω(t; however, the only
paths for which this makes a difference are those that have jumps exactly at times s or t, which is a
set of P-measure zero. For notational simplicity, we are free to always use closed time intervals [s, t].
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We are now ready to define a Poisson process. Let us first define it as a random
variable on Ω; we simply write Nt(τ) = |τ ∩ [0, t]|, where |τ | denotes the number of
elements in the set τ ∈ Ω. The random variable Nt counts the number of jumps up to
time t, and hence {Nt} is by construction a Poisson process with unit rate under the
measure P. We now turn this into an operator process by pointwise multiplication:

(4.5) (Λtψ)(τ) = Nt(τ)ψ(τ) = |τ ∩ [0, t]|ψ(τ), ψ ∈ F, τ ∈ Ω, t ∈ [0, T ].

{Λt} is called the gauge process; it is not difficult to see that though Λt is an unbounded
operator,9 it is affiliated to Wt] and hence the gauge process is adapted; in fact, the
increments Λt −Λs are even affiliated to W[s,t]. Furthermore, Λs and Λt commute for
all s, t ∈ [0, T ], and indeed vN(Λt, t ∈ [0, T ]) = L∞(Ω,F ,P) ⊂ W is commutative.
Hence we could use the spectral theorem to map Λt back to a classical stochastic
process. It is somewhat futile to diagonalize the operators using the spectral theorem,
however, as we have already constructed them in diagonal form.

We have yet to introduce a state; a particularly interesting class of states are
the coherent states Pf (X) = 〈e(f), X e(f)〉 eT−‖f‖2

2 . Because of the continuous tensor
product property, the coherent states split up as follows:

(4.6) X = Xs] ⊗X[s,t] ⊗X[t, Pf (X) = Pfs](Xs]) Pf[s,t]
(X[s,t]) Pf[t

(X[t).

But as Λt − Λs is affiliated to W[s,t], it follows that under the state Pf the gauge
process has independent increments. Furthermore, if we denote by PΛt−Λs

(B) the
spectral measure of Λt − Λs, then we have

Pf (PΛt−Λs
(B)) = Pf[s,t]

(χB(|τ ∩ [s, t]|)) =
∑
n∈B

e−
∫ t
s
|f(r)|2 dr

n!

(∫ t

s

|f(r)|2 dr
)n

.

Evidently, Λt is an inhomogeneous Poisson process with rate |f(t)|2 under the state
Pf . Note in particular that as e(1)(τ) = 1, we have for any X ∈ L∞(Ω,F ,P) the
relation P1(X) = 〈1, X 1〉 = EP(X); hence the fact that under P1 the gauge process
is a Poisson process with unit rate is exactly what we expect from the definition of P.
Under P0, on the other hand, the gauge process does not register any counts; P0 = φ
is called the vacuum state, and e(0) = Φ is called the vacuum vector.

4.2. Weyl operators and Wiener processes. We have now exhausted the
diagonal observables affiliated to the space (L∞(Ω,F ,P),Pf ): every such observable
is some functional of the Poisson process Λt with rate |f |2. Let us thus explore whether
we can find interesting observables affiliated to W that do not commute with Λt. To
this end, we follow again essentially Example 3.11. Given f, g ∈ L∞([0, T ]) we look for
a unitary operator W (f) that implements the translation group W (f)e(g) ∝ e(f +g).
A calculation identical to the one in Example 3.11 shows that we should define

(4.7) W (f)e(g) = e−
∫ T
0 (f∗(t)g(t)+ 1

2 f
∗(t)f(t)) dte(f + g) = e−〈f,g〉2−‖f‖2

2/2 e(f + g).

The unitary operator W (f) is called a Weyl operator and provides a projective unitary
representation in the sense that W (f)W (g) = W (f + g) ei Im〈g,f〉2 . Note that it is

9As can be verified by explicit computation, the domain of Λt contains at least D, the exponential
domain. The reader may ask himself why we have only defined exponential vectors e(f) for f ∈
L∞([0, T ]) rather than f ∈ L2([0, T ]): this is because the latter may not be in the domain of Λt.
Our domain D is sometimes called the restricted exponential domain in the literature.
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sufficient to define the action of W (f) only on exponential vectors; we can extend
to D by linearity, and as D is dense and W (f) is bounded the Weyl operators are
uniquely extended to all of F. An important property, which follows immediately
from the definition of W (f) and the continuous tensor product property, is that

(4.8) W (f)e(g) = W (fs])e(gs]) ⊗W (f[s,t])e(g[s,t]) ⊗W (f[t)e(g[t).

In particular, we see that W (fχ[0,t]) is an adapted operator process.
Now fix f ∈ L∞([0, T ]) and consider the unitary group {W (kf)}k∈R; this group

is in fact continuous [55], and hence by Stone’s theorem (Theorem 3.10) there exists
a self-adjoint B(f) such that W (kf) = eikB(f). The operators B(f), f ∈ L∞([0, T ]),
are called field operators. Finding the distribution of the observable B(f) is straight-
forward, as the characteristic function of B(f) (under the coherent state Pg) is given
by

bf (k) = Pg(W (kf)) = 〈e(g), e(g+kf)〉eT−‖g‖2
2−k〈f,g〉2−k2‖f‖2

2/2 = e2ik Im〈g,f〉2−k2‖f‖2
2/2.

Hence B(f) is a Gaussian random variable with mean 2 Im〈g, f〉2 and variance ‖f‖2
2.

In the vacuum, i.e., g = 0, the mean vanishes; for simplicity, we will restrict ourselves
to the vacuum case in the following.

Consider the operator process {Bϕ
t = B(eiϕχ[0,t]) : t ∈ [0, T ]} for some fixed,

real function ϕ ∈ L∞([0, T ]). Bϕ
t is adapted, as we have already established that

W (fχ[0,t]) is adapted for any f ; moreover, B(eiϕχ[s,t]) = Bϕ
t − Bϕ

s is affiliated to
W[s,t] due to (4.8). This immediately tells us two important things. First, Bϕ

t and
Bϕ

s commute for all s, t ∈ [0, T ]; indeed, Bϕ
t − Bϕ

s must commute with Bϕ
s − Bϕ

0 ,
and commutativity follows from Bϕ

0 = 0. This means that vN(Bϕ
t , t ∈ [0, T ]) is

a commutative algebra and hence we can represent Bϕ
t for every t as a classical

random variable on the same probability space (Ωϕ,Fϕ,Pϕ); in particular, ι(Bϕ
t ) is a

classical stochastic process. Second, (4.6) implies that the process Bϕ
t has independent

increments. But we have established Bϕ
t −Bϕ

s is (in the vacuum) a mean zero Gaussian
random variable with variance t− s, and as Bϕ

t has independent increments we have
established that ι(Bϕ

t ) is precisely a Wiener process on (Ωϕ,Fϕ,Pϕ).
Let us introduce the following notation. Define Qt = B(iχ[0,t]), Pt = B(−χ[0,t]),

and At = (Qt + iPt)/2. Note that Qt and Pt are self-adjoint by Stone’s theorem,
whereas At has the adjoint A∗

t = (Qt − iPt)/2. We now compute

B(f)e(g) =
1

i

d

dk
W (kf)e(g)

∣∣∣∣
k=0

= i〈f, g〉2 e(g) − i
d

dk
e(g + kf)

∣∣∣∣
k=0

.

Evidently Ate(g) = 〈χ[0,t], g〉2 e(g) =
∫ t

0
g(s)ds e(g). But then we can write

(Ate(g))(τ) =

∫ t

0

g(s) ds
∏
r∈τ

g(r) =

∫ t

0

g(s)
∏
r∈τ

g(r) ds =

∫ t

0

e(g)(τ ∪ {s}) ds.

In particular, this formula extends to any ψ ∈ F for which the integral on the right-
hand side (with e(g) replaced by ψ) defines a normalizable vector. At is called the Fock
space annihilation operator, as it generalizes the corresponding notion introduced in
Example 3.11. The reader should verify that its adjoint can be expressed as

(A∗
tψ)(τ) =

∑
s∈τ∩[0,t]

ψ(τ\{s})
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on a sufficiently large domain. Not surprisingly, A∗
t is called the creation operator. It

is conventional in quantum stochastic calculus to use At and its adjoint rather than
Qt and Pt; we shall conform to this standard.

In summary, we have constructed a quantum probability space (W , φ) that admits
an entire family (indexed by ϕ) of Wiener processes. Note, however, that these pro-
cesses do not necessarily commute for different ϕ; in fact, it is not difficult to establish
that [B(f), B(g)]ψ = 2i Im〈f, g〉2 ψ on a suitably large domain (e.g., ψ ∈ D). There-
fore, even though every Bϕ

t defines a Wiener process, these cannot be represented on
the same classical probability space for different ϕ1,2 unless Im(ei(ϕ1−ϕ2)) = 0.

We have also defined a Poisson process Λt, but unfortunately it vanishes in the
vacuum. Consider, however, the process Λt(f) = W (f)∗ΛtW (f); for any Borel func-
tion b we can write φ(b(Λt1(f), . . . ,Λtn(f))) = Pf (b(Λt1 , . . . ,Λtn)). Evidently Λt(f)
has the same statistics in the vacuum as does Λt under the coherent state Pf . This
shows that we can define even a whole family of Poisson processes in the vacuum. We
do not lose much by restricting ourselves to the vacuum as an underlying state (as we
will do in the remainder of the article), as we can always transform to a coherent state
by “sandwiching” with Weyl operators. Note that like the family Bϕ

t , the processes
Λt(f) do not commute amongst each other. We see that the quantum probability
space (W , φ) gives rise to a rich family of incompatible stochastic processes.

4.3. Quantum stochastic calculus. Now that we have obtained Wiener and
Poisson processes, we can try to develop stochastic integrals with respect to these
processes and an associated stochastic calculus. Note that if we were only interested
in, e.g., integrating with respect to Qt an adapted process which commutes with Qt,
then we could simply use the classical Itô integral definition through the spectral
theorem. This will not suffice for our purposes, however, as we will want to consider
stochastic differential equations that are driven simultaneously by the noncommuting
noises Qt and Pt (and even Λt). Moreover, we would like to have an Itô rule that tells
us how to multiply stochastic integrals with respect to Qt and Pt.

Our motivation for developing generalized quantum stochastic calculus is that
this allows us to rigorously define and manipulate Schrödinger equations, as in (2.6),
with a white-noise Hamiltonian formally defined by H(t) = H0 + H1 Q̇t + H2 Ṗt. In
section 5 we will see that such models emerge naturally in applications. In this section
we sketch the development of quantum stochastic calculus as it was introduced in a
seminal paper by Hudson and Parthasarathy [42]. For a full development of this
calculus we refer the reader to [42, 41, 55]. The Hudson–Parthasarathy approach has
some technical issues, not surprisingly involving the unboundedness of operators, the
full extent of which is still being explored. Though we cannot go into detail here, we
will attempt to sketch some of the issues and give references to recent literature.

We work in the following setting. We wish to integrate processes against the three
noises At, A∗

i , and Λt (the fundamental noises); i.e., we want to define
∫ t

0
Ls dMs

where Mt is one of the fundamental noises. The noises are defined on the quantum
probability space (W , φ), but we will want to couple these noises to an external
quantum system, the initial system,10 with which they interact. To this end, let us
introduce the initial Hilbert space h, B = B(h), and the associated initial quantum

10This name has the following origin. Recall from section 2 that observables X evolve in time
as Xt = U∗

t XUt (we will define a unitary evolution Ut in section 5). We would like to think of
X ⊗ I ∈ B ⊗ W as describing the external system; however, U∗

t (X ⊗ I)Ut will not be of the form
Y ⊗ I except at t = 0. Hence the initial system observable X ⊗ I describes the external system at
the initial time t = 0.
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probability space (B, ρ). We will choose our integrands Lt to be adapted processes
on (B ⊗ W , ρ⊗ φ); i.e., each Lt is affiliated to B ⊗ Wt] and acts as I on W[t.

As usual, we begin with simple processes. Given s < t, recall that for the funda-
mental processes Mt−Ms is affiliated to W[s,t], whereas for adapted processes Ls is af-
filiated to B⊗Ws]; hence we can naturally write Ls(Mt−Ms) = Ls⊗(Mt−Ms). In par-
ticular, the increment Mt−Ms commutes with Ls, and we have no problems with op-
erator multiplication of these unbounded operators. Let {ti : i = 0, . . . , n, ti < ti+1}
be a sequence of times with t0 = 0 and tn = T . By definition, we set

Lt =

n−1∑
i=0

Ltiχ[ti,ti+1)(t) =⇒
∫ t

0

Ls dMs =

n−1∑
i=0

Lti ⊗ (Mti+1∧t −Mti∧t).

This definition makes sense as long as the operators Lt and Mt have a sufficiently
large common dense domain that the sum is well defined. To enforce this, we will
require that the domain of every Lt contains at least the exponential domain D.

Now comes the hard part in any integration theory: given a quadruple of suitably
restricted adapted processes (E,F,G,H), such that these admit simple approxima-
tions (En, Fn, Gn, Hn), we wish to define the integral

(4.9) It =

∫ t

0

(Et dΛt + Ft dAt + Gt dA
∗
t + Ht dt)

as a limit, in some sense, of the corresponding integrals Int over the simple processes.
Recall that in the classical theory, the Itô isometry allows us to define the stochastic
integral as a mean square limit of simple processes, and a little more work shows
that every square-integrable process admits a mean square approximation by simple
processes. Things are not quite so “simple” in the noncommutative case, however.

To see what goes wrong, consider for simplicity the case h = C so that we can
forget about the initial state ρ. We already encountered the noncommutative L2

(semi)norm ‖X‖2
φ = φ(X∗X) when we discussed conditional expectations. We are

thus looking for a suitable unbounded operator It such that we have mean square
convergence, ‖It − Int ‖2

φ = 〈(It − Int )Φ, (It − Int )Φ〉 → 0 as n → ∞. But this is a very
ill-defined problem, as it only depends on the action of It on the vacuum vector Φ; in
particular, what do we choose as the domain of It, and how do we define It on vectors
orthogonal to Φ? There could be a large number of inequivalent ways of doing this,
giving rise to limiting operators with very different properties.11

The solution of Hudson and Parthasarathy works as follows. First of all, we fix
the domain of It at the outset: every stochastic integral will have h⊗D as its domain
(one could choose a dense domain in h as well; we will not worry about this). To
specify It as a limit of simple integrals Int , we choose It as the unique operator on
h ⊗ D such that 〈(It − Int ) v ⊗ ψ, (It − Int ) v ⊗ ψ〉 → 0 for every ψ ∈ D, v ∈ h (it
is sufficient to verify this for ψ = e(f), f ∈ L∞([0, T ])). In essence this is like a
mean square limit, but simultaneously for every coherent state. A suitable estimate
replaces the Itô isometry [42, Corollary 1] and shows that this limit exists as long

as
∫ T

0
‖(Es − En

s ) v ⊗ ψ‖2ds → 0 as n → ∞ for every ψ ∈ D, v ∈ h (and similarly
for F,G,H), independent of the approximation. Finally, [42, Proposition 3.2] shows

11This was not a problem for the definition of conditional expectations; as all versions of the
conditional expectation are affiliated to a single commutative algebra, they are a.s. equivalent by the
spectral theorem. On the other hand, various “versions” of It that satisfy ‖It − Int ‖φ → 0 need not
even commute, and such operators are fundamentally inequivalent.
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that every square-integrable process, i.e.,
∫ T

0
‖Es v⊗ψ‖2ds < ∞ for all ψ ∈ D, v ∈ h,

admits a suitable approximation by simple processes. We thus arrive at the following.
Definition 4.1 (quantum Itô integral). An operator process {Xt} is stochasti-

cally integrable if it is adapted and square integrable. Given a quadruple (E,F,G,H)
of such processes, the stochastic integral (4.9) is uniquely defined as the limit of simple
approximations on the domain h ⊗ D.

Remark 4.2. It is often convenient to denote an expression of the form

Xt = X +

∫ t

0

(Es dΛs + Fs dAs + Gs dA
∗
s + Hs ds),

symbolically as

dXt = Et dΛt + Ft dAt + Gt dA
∗
t + Ht dt, X0 = X.

Both notations are used interchangeably in the literature.
A property that we will exploit in future is ΛtΦ = AtΦ = 0. It is immediate

from the definition that stochastic integrals with respect to At and Λt acting on Φ
vanish. Hence the vacuum expectations of stochastic integrals with respect to At and
Λt vanish as well. Furthermore, as 〈Φ, A∗

tΦ〉 = 〈AtΦ,Φ〉 = 0, we see that at least for
simple processes (and indeed this holds for any integrand) the vacuum expectation of
stochastic integrals with respect to A∗

t vanish. Note, however, that A∗
tΦ �= 0.

Our next task is to develop a stochastic calculus; the integrals defined above
are not of much use, unless we have an Itô product rule with which they can be
manipulated. Once again we run into unpleasant problems. If It and Jt are integrals
of the form (4.9), there is no reason to expect that their product ItJt is a well-defined
operator on the domain h⊗D. The idea of Hudson and Parthasarathy is inspired by
the identity 〈ψ′, X∗Y ψ〉 = 〈Xψ′, Y ψ〉 for bounded operators; rather than finding an
expression for ItJt, they calculate 〈It v′ ⊗ ψ′, Jt v ⊗ ψ〉 for every v, v′ ∈ h, ψ,ψ′ ∈ D,
which is always well defined. One finds explicitly a lengthy expression [42, Theorems
4.3 and 4.4], which is essentially the quantum Itô rule expressed in terms of h ⊗ D-
matrix elements.

In practice, however, we are mostly interested in calculating actual operator prod-
ucts ItJt. We will need the concept of an adjoint pair; two operators X and X† are
said to be an adjoint pair if 〈v′⊗ψ′, X v⊗ψ〉 = 〈X† v′⊗ψ′, v⊗ψ〉 for every v, v′ ∈ h,
ψ,ψ′ ∈ D. It is not difficult to verify that if (E,F,G,H) and (E†, F †, G†, H†) are

adjoint pairs, then It and I†t form an adjoint pair, where

(4.10) I†t =

∫ t

0

(E†
t dΛt + F †

t dA∗
t + G†

t dAt + H†
t dt).

In essence, the adjoint † replaces the Hilbert space adjoint ∗ on the domain h ⊗ D.
Now suppose that we can verify explicitly that the product ItJt is well defined; then
we can read off an expression for ItJt from the matrix elements 〈I†t v′ ⊗ ψ′, Jt v ⊗ ψ〉.
This gives the following explicit form of the quantum Itô rule.

Theorem 4.3 (quantum Itô rule [55, Proposition 25.26]). Let (F,G,H, I),
(B,C,D,E), and (B†, C†, D†, E†) be quadruples of stochastically integrable processes
such that the latter two quadruples are adjoint pairs. Define the stochastic integrals

dXt = Bt dΛt + Ct dAt + Dt dA
∗
t + Et dt,

dYt = Ft dΛt + Gt dAt + Ht dA
∗
t + It dt,
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and suppose that we have verified that the product XtYt is well defined and that
XtFt, . . . , XtIt, BtYt, . . . , EtYt, and BtFt, BtGt, . . . , EtIt are well defined and stochas-
tically integrable. Then the process XtYt satisfies the relation

d(XtYt) = Xt dYt + (dXt)Yt + dXt dYt,

where Xt dYt = XtFt dΛt + XtGt dAt + XtHt dA
∗
t + XtIt dt, (dXt)Yt = BtYt dΛt +

CtYt dAt + DtYt dA
∗
t + EtYt dt, and dXt dYt = BtFt dΛt + CtFt dAt + BtHt dA

∗
t +

CtHt dt are evaluated according to the following quantum Itô table.

dX \ dY dAt dΛt dA∗
t dt

dAt 0 dAt dt 0
dΛt 0 dΛt dA∗

t 0
dA∗

t 0 0 0 0
dt 0 0 0 0

In particular, the theorem holds if Bt, Ct, Dt, Et, and Xt are bounded processes [42], in
which case the adjoints B†, C†, etc. are simply taken to be the Hilbert space adjoints
B∗, C∗, etc., and Xt extends uniquely to a bounded operator in Wt].

Remark 4.4. The choice to restrict attention to a fixed domain h ⊗ D allowed
Hudson and Parthasarathy [42] to develop a viable quantum stochastic calculus. This
choice, however, has quite a few drawbacks; we highlight one of the problems. Suppose
X is self-adjoint; implicit in this statement is that the domains of X and X∗ coincide.
It can happen that if we restrict the domain of X, then the restricted operator admits
many inequivalent self-adjoint extensions; see [56, pages 257–259] for an example.
Hence the restriction to a fixed domain can become a real, physical problem, that
prevents us from uniquely interpreting unbounded operators on h⊗D as observables.

Such problems have prompted the development of alternative approaches to quan-
tum stochastic integration, and the topic is still under active investigation. In a signif-
icant recent achievement Attal and Lindsay [5], building on several earlier approaches
(see, e.g., [52, 14] and the references therein), develop a theory in which the integrals
achieve their maximal domains. Unfortunately, the theory is very technical and a
little daunting for everyday use. A different approach that even precedes Hudson and
Parthasarathy is that of Barnett, Streater, and Wilde [8]. Their theory is attractive
as it is completely algebraic in nature (the Hilbert space and its domains do not play
a fundamental role), but lacks a satisfactory Itô rule.

Despite these issues, the Hudson–Parthasarathy approach works quite well. In
practice one usually works with a “noisy Schrödinger equation” (5.2), the solution
of which is unitary and thus bounded. As long as the integrals and integrands are
bounded, they are uniquely defined by their specification on a dense domain. In this
article, in keeping with our attitude towards unbounded operators, we will not worry
about such issues and assume that we can apply the quantum Itô rules.

Example 4.5. In section 5 we will encounter quantum stochastic differential
equations (QSDEs), the treatment of which proceeds along the same lines as the
classical theory. We claim that the Weyl operator W (ft]) is the solution of the QSDE

(4.11) dW (ft]) =
{
f(t) dA∗

t − f(t)∗ dAt −
1

2
|f(t)|2 dt

}
W (ft]).

In particular, one can verify the Weyl relation W (f)W (g) = W (f + g) ei Im〈g,f〉2
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directly using the quantum Itô rule. From (4.11) and W (kf) = eikB(f) we obtain

B(f) =

∫ T

0

(if(t)∗ dAt − if(t) dA∗
t ).

Hence dBϕ
t = ie−iϕ(t) dAt − ieiϕ(t) dA∗

t , and the quantum Itô rules reduce to the
classical Itô rule (dBϕ

t )2 = dt. Finally, recall that we defined Poisson processes
Λt(f) = W (f)∗ΛtW (f) = W (ft])

∗ΛtW (ft]) (the latter equality is due to W (f) =
W (ft]) ⊗ W (f[t) and the fact that W (f[t) ∈ W[t is unitary and commutes with the
adapted process Λt). Using the quantum Itô rule we obtain the explicit representation

(4.12) dΛt(f) = dΛt + f(t)∗ dAt + f(t) dA∗
t + |f(t)|2 dt,

for which the quantum Itô rules reduce to the classical product rule (dΛt(f))2 =
dΛt(f) for a Poisson process.

5. The filtering problem in quantum optics. Many realistic physical sce-
narios are very well described by quantum stochastic differential equations driven by
the processes At, A

∗
t , and Λt discussed in the previous section. Of course, as in the

classical theory, white-noise systems are only an idealization of physical interactions;
a Markov limit of wide-band noise in the spirit of Wong and Zakai (see [36] for de-
tails) gives stochastic models in the Itô form. For a large class of quantum systems,
particularly those arising in the field of quantum optics, such approximations are
extremely good and describe laboratory experiments essentially to experimental pre-
cision. Though a detailed discussion of the physics involved in the modelling of such
systems is beyond the scope of this article, we here very briefly describe the physical
origin of the equations that are widely used in the physics community [34], describe
the measurements that are made, and set up the quantum filtering problem to be
solved.

5.1. The quantum optics model. The basic model of quantum optics consists
of some fixed physical system, e.g., a collection of atoms, in interaction with the
electromagnetic field. The atomic observables are self-adjoint operators on a Hilbert
space h. The description of the electromagnetic field and its interaction with the
atoms follows from basic physical arguments (see the excellent monograph [23] for a
thorough treatment of this theory, known as quantum electrodynamics). It turns out
that the free electromagnetic field, i.e., an optical field in empty space, is described
by a stationary Gaussian (noncommutative) wide-band noise ã(t, r) that propagates
through space at the speed of light c; i.e., if we restrict ourselves to a single spatial
dimension, ã(t + τ, z) = ã(t, z − cτ). If we now place the atoms at the origin z = 0,
then the quantum dynamics is given by a Schrödinger equation of the form

(5.1)
d

dt
Ũ(t) = [−iH + L ã∗(t, 0) − L∗ ã(t, 0)] Ũ(t), Ũ(0) = I,

where L ∈ B is an atomic (dipole) operator and H ∈ B is an atomic Hamiltonian, H
being self-adjoint. This equation, which follows directly from the physical model, has
wide-band right-hand side. Note that we have set � = 1 for convenience, a convention
ubiquitous in physics (the only consequence is a change of units).

We now want to approximate the wide-band noise by white noise. This can be
done in a rigorous way [1, 2, 36], but we will not detail the procedure here (a brief
sketch can be found in [62]). Suffice it to say that one arrives at the following QSDE:

(5.2) dUt =
{
LdA∗

t − L∗ dAt −
1

2
L∗Ldt− iH dt

}
Ut, U0 = I,
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which is driven by the noncommuting white-noise processes At and A∗
t . Note that

this is almost precisely of the same form as (5.1), except that we have added the Itô
correction term − 1

2L
∗LUt dt. A Picard iteration argument [42, 55] ensures existence

and uniqueness of the solution. The adjoint U∗
t satisfies

dU∗
t = U∗

t

{
L∗ dAt − LdA∗

t −
1

2
L∗Ldt + iH dt

}
, U∗

0 = I.

Using the quantum Itô rule we can calculate d(U∗
t Ut) = d(UtU

∗
t ) = 0; i.e., the solution

Ut is unitary for all t (as the solution of a Schrödinger equation should be).
Henceforth we will take (5.2) as our physical model. Ut defines the time evolution

or flow jt : X �→ U∗
t (X ⊗ I)Ut of every atomic observable X ∈ B (recall the time

evolution in section 2.1); i.e., an observation of X ∈ B at time t is described by the
observable Xt = jt(X). Using the Itô rules, we find an explicit dynamical equation

(5.3) djt(X) = jt(LL,H(X)) dt + jt([L
∗, X]) dAt + jt([X,L]) dA∗

t , X ∈ B,

where the so-called Lindblad generator [48] is given by

LL,H(X) = i[H,X] + L∗XL− 1

2
(L∗LX + XL∗L), X ∈ B.

In quantum probability, this object plays the same role as the infinitesimal generator
of a Markov diffusion in classical probability theory.

Remark 5.1. Though it is unusual, one could use a very similar notation in
classical stochastic models. Suppose some system is described by an underlying con-
figuration xt that obeys dxt = b(xt) dt + σ(xt) dWt. Then the “observables” in
the theory, i.e., things we could try to measure, are functions f of the configura-
tion of the system. The observable f at time t is described by the random variable
jt(f) = f(xt). Using the classical Itô rules, we get djt(f) = jt(Lf) dt + jt(Σf) dWt

where Lf(x) =
∑

i b
i(x)∂if(x) + 1

2

∑
ij σ

i(x)σj(x)∂i∂jf(x) is the generator of the

Markov diffusion xt, and Σf(x) =
∑

i σ
i(x)∂if(x). This expression is the classi-

cal analog of (5.3); the sample paths xt do not have a quantum counterpart, how-
ever.

5.2. Measurements. Having described the system and its interaction with the
field, let us now turn to the observations that we can perform. Unlike in classical
models, where one observes the system directly (with the addition of some corrupting
noise), in quantum models an observation is generally performed in the field. From the
system’s perspective, the interaction with the field looks like an (albeit noncommuta-
tive) noisy driving force. Similarly, however, the field is perturbed by its interaction
with the atoms and carries off information as it propagates away after the interaction.
By performing a measurement in the field, then, we can attempt to perform statistical
inference of the atomic observables. The entire setup is depicted in Figure 5.1.

To calculate the perturbation of the field by the atoms we once again calculate
U∗
t Y Ut, where now, however, Y is a field observable. The field observable of interest

depends on the type of measurement we choose to perform. Without entering into the
details, we mention two types of measurement that are extremely common in quantum
optics: direct photodetection (photon counting), for which the observation at time t
is given by Y Λ

t = U∗
t ΛtUt, and homodyne detection, for which Y W

t = U∗
t (At + A∗

t )Ut

(more generally Y W
t = U∗

t (e−iϕAt + eiϕA∗
t )Ut). We refer the reader to [6, 7] for a

detailed treatment of quantum optical measurements. Using the Itô rules we obtain

(5.4) dY Λ
t = dΛt + jt(L) dA∗

t + jt(L
∗) dAt + jt(L

∗L) dt,
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Fig. 5.1. Diagram of the quantum filtering setup in quantum optics. An optical field, described
by the field operators At, A∗

t , interacts with a system, e.g., a cloud of atoms. After the atom-field
interaction the field operators, as well as system operator, X, are rotated by the unitary Ut. The
field is detected, giving rise to the observation Yt. Finally, the quantum filter (implemented on a
classical signal processor) estimates atomic observables based on the field observations.

(5.5) dY W
t = jt(L + L∗) dt + dAt + dA∗

t .

Intuitively, it would appear that Y Λ
t is like a Poisson process whose intensity is con-

trolled by jt(L
∗L) (recall Example 4.5), whereas Y W

t looks like a noisy observation
of jt(L+L∗). One should be careful with this conclusion, however, as jt(L) need not
commute with At or A∗

t , nor with itself at different times.
It is essential, however, that the observation process commutes with itself at

different times and is hence equivalent to a classical stochastic process through the
spectral theorem. An observation process that does not obey this property cannot be
observed in a single realization of an experiment and is physically meaningless. Let
us show that the observations processes we have defined above do obey this property,
which is called the self-nondemolition property. Let Z be any operator of the form
I ⊗ Zs] ⊗ I on h ⊗ Fs] ⊗ F[s and let t ≥ s. Then the Itô rules give directly

U∗
t ZUt = U∗

sZUs +

∫ t

s

U∗
τLL,H(Z)Uτ dτ +

∫ t

s

U∗
τ [L∗, Z]Uτ dAτ +

∫ t

s

U∗
τ [Z,L]Uτ dA

∗
τ .

Now let Z = As + A∗
s or Z = Λs. In both cases LL,H(Z) = [Z,L] = 0 as L and H

are system observables and Z is a field observable. Hence Y W
s = U∗

t (As +A∗
s)Ut and

Y Λ
s = U∗

t ΛsUt for all t ≥ s. It is now easily verified, using the unitarity of Ut and the
fact that As +A∗

s and Λs are commutative processes, that [Y W
t , Y W

s ] = [Y Λ
t , Y Λ

s ] = 0
for all t, s. We denote by Y W

t and Y Λ
t the commutative von Neumann algebras

generated by the observation processes Y W
s and Y Λ

s , s ≤ t, respectively. Do note,
however, that Y W

t and Y Λ
t do not commute with each other; in any experiment, we

can choose to perform only one of these measurements. Once we have made this
choice, however, we can use the spectral theorem to represent the observations Yt as
a classical stochastic process ι(Yt) on a probability space.

5.3. Statement of the filtering problem. Moving on to the next step in our
program, we now wish to use the information gained from the measurement process to
infer something about the system. To find a least mean square estimate of a system
observable X ∈ B at time t, given the observations Yt up to this time, we must
calculate the conditional expectation

(5.6) πt(X) = P(jt(X)|Yt),
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where Yt = vN(Ys : 0 ≤ s ≤ t). The remainder of this article is devoted to find-
ing a recursive equation for πt(X) (the filtering equation). Recall, however, that the
conditional expectation is only defined if jt(X) is in the commutant of Yt, the inter-
pretation being that statistical inference of an observable is only physically meaningful
if the conditional statistics could possibly be tested through a compatible experiment.
Through an entirely identical procedure to the one used to show the self-nondemolition
property, we can show that jt(X) is in the commutant of Yt for any X ∈ B. This is
known as the nondemolition property, which can be written as

(5.7) [jt(X), Ys] = 0 ∀s ≤ t, X ∈ B.

We note that we have now obtained a system-theoretic model of our system and
observations, defined on the quantum probability space (B ⊗ W ,P = ρ⊗ φ) by

djt(X) = jt(LL,H(X)) dt + jt([L
∗, X]) dAt + jt([X,L]) dA∗

t ,(5.8)

dYt = jt(L + L∗) dt + dAt + dA∗
t(5.9)

in the case of homodyne detection, or by (5.8), and

(5.10) dYt = dΛt + jt(L) dA∗
t + jt(L

∗) dAt + jt(L
∗L) dt

in the case of counting observations. These equations define a system-observation
model in direct analogy to such models used throughout classical nonlinear filtering
and stochastic control theory.

Remark 5.2. Unlike in a classical filtering scenario, we have not added any inde-
pendent corrupting noise to the observations. Nonetheless, the filtering problem does
not reduce to a problem with complete observations because the system is driven
by noise that does not commute with the observations. Hence the problem of partial
observations is intrinsic to quantum measurement theory. The quantum filtering prob-
lem considered here is the simplest possible one; one could add additional corrupting
noise as in the classical case, have the system interact with multiple fields (some of
which are observed, others unobserved), etc. These are not essential complications,
however, and filters for such models are obtained much in the same way.

6. The reference probability method. The goal of this section is to derive
the quantum filtering equation, a recursive equation for πt(X), using a method that is
close to the classical reference probability method of Duncan [29], Mortensen [53], and
Zakai [66]. We consider first the homodyne detection case, then the photon counting
case. In section 7 we will rederive the filtering equation for the homodyne detec-
tion case using martingale methods; the chief advantage of the reference probability
method is that it is somewhat simpler to apply. The following approach is based on
[18].

6.1. Homodyne detection. Let us briefly recall the classical reference proba-
bility procedure; for an introduction see, e.g., [32]. In order to simplify the filtering
problem, one starts by introducing a new probability measure, using a Girsanov trans-
formation [49, section 6.3], under which the measurement record is a Wiener process.
Then various (elementary) properties of the conditional expectation allow the filtering
problem to be expressed, and solved, with respect to the new measure. We now apply
this logic to the quantum filtering problem. Note that we have already applied the
method in Example 3.19; the following is essentially a continuous time version of that
example.
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We consider the homodyne detection setup given by (5.8) and (5.9). We could
try to find a new state under which Yt is a Wiener process; however, it will be more
convenient to work not in terms of Yt but in terms of Zt = At +A∗

t , as it is very easy
to manipulate Zt using the methods of section 4. Thus before we really start filtering,
let us transform the problem in terms of Zt. Introduce the state Q

t defined by

(6.1) Q
t(X) = P(U∗

t XUt),

with Ut as in section 5, and we fix from now on P = ρ⊗ φ. Now recall from Example
3.19 that Q(X) = P(U∗XU) implies P(U∗XU |U∗CU) = U∗

Q(X|C )U (this is easily
checked using the definition of the conditional expectation). Thus we have

(6.2) P(jt(X)|Yt) = U∗
t Q

t(X|Ct)Ut, X ∈ B,

where Ct = vN(Zs : 0 ≤ s ≤ t). Note that Yt = U∗
t CtUt follows from the fact

that U∗
sZsUs = U∗

t ZsUt for t ≥ s, the property we used in section 5.2 to prove self-
nondemolition of Yt. The ease with which we will now be able to manipulate Q

t(X|Ct)
highlights the usefulness of the transformation (6.2).

Our strategy will be as follows. We wish to calculate Q
t(X|Ct); however, the

state P has the nice property that Zs≤t, which generates Ct, is a P-Wiener process.
We want to use the Bayes formula, Lemma 3.18, in order to express Q

t(X|Ct) in
terms of P-conditional expectations. We run into a problem, however, as the “change
of measure” operator Ut that relates P with Q

t does not satisfy the requirement of
Lemma 3.18 that12 Ut ∈ C ′

t . To solve this problem, we will replace Ut by a different
operator Vt which is affiliated to C ′

t , but which still defines the same state in the sense
that P(U∗

t XUt) = P(V ∗
t XVt) for every X. The following technique, to our knowledge,

first appeared in [39]; it replaces Girsanov’s theorem in the quantum context.
Lemma 6.1. Let Vt be the solution of the QSDE

(6.3) dVt =
{
L (dA∗

t + dAt) −
1

2
L∗Ldt− iH dt

}
Vt.

Then Vt is affiliated to C ′
t and Q

t(X) = P(V ∗
t XVt) for all X ∈ B ⊗ W .

Proof. Let us assume for simplicity that the state ρ on B is pure; we can always
obtain a mixed state later by taking convex combinations. Then P(X) = 〈ψ⊗Φ, X ψ⊗
Φ〉 for some vector ψ ∈ h (and Φ ∈ F is the vacuum vector). To show that P(U∗

t XUt) =
P(V ∗

t XVt), it is thus sufficient to show that

(6.4) Ut ψ ⊗ Φ = Vt ψ ⊗ Φ.

Note that
〈
(Ut − Vt)ψ ⊗Φ, (Ut − Vt)ψ ⊗Φ

〉
=
〈
ψ ⊗Φ, (Ut − Vt)

∗(Ut − Vt)ψ ⊗Φ
〉
. A

simple application of the quantum Itô rule and the fact that vacuum expectations of
stochastic integrals vanish show that

〈
ψ⊗Φ, (Ut−Vt)

∗(Ut−Vt)ψ⊗Φ
〉

= 0 and (6.4)
holds.

Note that the only difference between the equation for Ut, (5.2), and the equation
for Vt, (6.3), is that we have modified the coefficient in front of dAt. In principle, we
could change the integrand of the At-integral arbitrarily without affecting how the
QSDE acts on the vacuum; essentially this is due to the fact that any integral with
respect to At vanishes when acting on the vacuum, as remarked after Remark 4.2.

12If this were the case, then we could calculate Yt = U∗
t ZtUt = ZtU∗

t Ut = Zt; i.e., the observations
would carry no information about the system and the filtering problem would be trivial.
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In Lemma 6.1 we exploit this fact to modify Ut precisely so that it is in the commutant
of Ct; indeed, (6.3) is driven only by the noise Zt = At +A∗

t and its coefficients are in
B ⊂ C ′

t . We are now ready to apply the Bayes formula, Lemma 3.18. Together with
Lemma 6.1 and (6.2), we immediately obtain the following result.

Theorem 6.2 (noncommutative Kallianpur–Striebel). Define for any system
operator X ∈ B the unnormalized conditional expectation

(6.5) σt(X) = U∗
t P(V ∗

t XVt|Ct)Ut ∈ Yt.

Then the conditional expectation (5.6) is given by

(6.6) πt(X) =
σt(X)

σt(I)
∀X ∈ B.

We now obtain an explicit expression for σt(X).
Theorem 6.3 (unnormalized quantum filtering equation). The unnormalized

conditional expectation σt(X) satisfies the following linear QSDE:

(6.7) dσt(X) = σt(LL,H(X)) dt + σt(L
∗X + XL) dYt.

To obtain (6.7) we will need to take conditional expectations of quantum Itô in-
tegrals. Let us briefly show how to do this. First, we claim that if Kt is an adapted
process with Ks affiliated to C ′

s, then P(Ks|Ct) = P(Ks|Cs) for s ≤ t. This follows
from the fact that Ct = Cs ⊗ C[s,t] and that Ks is independent from C[s,t] by adapt-
edness. Second, conditional expectations and integrals can be exchanged as follows:

P

(∫ t

0

Ks ds

∣∣∣∣Ct

)
=

∫ t

0

P(Ks|Cs) ds, P

(∫ t

0

Ks dZs

∣∣∣∣Ct

)
=

∫ t

0

P(Ks|Cs) dZs.

These properties are immediate if Kt is a simple process, and a proof of the general
case is not difficult.

Proof. Using the quantum Itô rules we have

V ∗
t XVt = X +

∫ t

0

V ∗
s LL,H(X)Vs ds +

∫ t

0

V ∗
s (L∗X + XL)Vs d(As + A∗

s).

We next take conditional expectations of the terms in this expression; we obtain

P(V ∗
t XVt|Ct) = P(X) +

∫ t

0

P(V ∗
s LL,H(X)Vs|Cs) ds

+

∫ t

0

P(V ∗
s (L∗X + XL)Vs|Cs) d(As + A∗

s).

Another application of the quantum Itô rules now yields (6.7).
By applying the Itô rules to the noncommutative Kallianpur–Striebel formula

(6.6), we obtain an expression for the normalized conditional state

(6.8)

dπt(X) = πt(LL,H(X))dt+
(
πt(L

∗X+XL)−πt(L
∗+L)πt(X)

)(
dYt−πt(L

∗+L) dt
)
.

This (normalized) quantum filtering equation is a quantum analog of the classical
Kushner–Stratonovich equation of nonlinear filtering. Note that this is a classical
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stochastic differential equation by the spectral theorem: it is a recursive equation that
is only driven by the (commutative) observations Yt. Hence it can be implemented
on a classical (digital) signal processor, as depicted in Figure 5.1.

Remark 6.4. Equation (6.8) is expressed in terms of the conditional state πt(X),
where X ∈ B. Now recall from section 2 that any state on a finite-dimensional
Hilbert space can be expressed as Tr[ρX] for some density matrix ρ. Similarly, if h
(and hence B) is finite dimensional, then we can always write πt(X) = Tr[ρtX] where
ρt, the conditional density matrix, is a (random) density matrix that is a function of
the observations up to time t. From (6.8) we obtain explicitly

dρt = −i[H, ρt] dt+(LρtL
∗− 1

2L
∗Lρt− 1

2ρtL
∗L) dt+(Lρt+ρtL

∗−Tr[(L+L∗)ρt]ρt) dWt,

where dWt = dYt − Tr[(L + L∗)ρt] dt. In section 7 we will see that Wt is a Wiener
process. It is this representation that is usually found in the physics literature.

6.2. Photon counting measurements. We now consider the photon counting
setup given by (5.8) and (5.10). We would like to follow the same procedure as for
homodyne detection. The following lemma, which replaces Lemma 6.1, suggests how
to proceed. The proof is identical to that of Lemma 6.1.

Lemma 6.5. Let U ′
t be the solution of the QSDE

dU ′
t =

{
L′ dA∗

t − L′∗ dAt −
1

2
L′∗L′ dt− iH ′ dt

}
U ′
t

and let V ′
t be the solution of

dV ′
t =

{
L′(dΛt + dA∗

t + dAt + dt) − 1

2
L′∗L′ dt− L′ dt− iH ′ dt

}
V ′
t .

Then V ′
t is affiliated to vN(Λs +A∗

s +As + s : s ≤ t)′ and P(U ′
t
∗
XU ′

t) = P(V ′
t
∗
XV ′

t ).
Define Zt = Λt + A∗

t + At + t and Ct = vN(Zs : 0 ≤ s ≤ t). Lemma 6.5 directly
provides us with a nondemolition change of measure, provided that we rotate our
problem so that Yt = U ′

t
∗CtU

′
t using a suitable unitary operator U ′

t . Then, defining
σt(X) = U ′

t
∗

P(V ′
t
∗
XV ′

t |Ct)U
′
t , the Kallianpur–Striebel formula holds for σt(X).

Define Rt as the solution of the QSDE

dRt = (dAt − dA∗
t − 1

2dt)Rt.

Recall Example 4.5; evidently Rt is a Weyl operator, and in particular Λt = R∗
tZtRt.

But recall that Yt = U∗
t ΛtUt = U∗

t R
∗
tZtRtUt; thus U ′

t = RtUt is our rotation of choice.
Using the quantum Itô rules we obtain

dU ′
t =

{
(L− I) dA∗

t − (L∗ − I) dAt −
1

2
(L∗L + I − 2L + 2iH) dt

}
U ′
t ,

which corresponds to the nondemolition change of measure

dV ′
t =

{
(L− I) dZt −

1

2
(L∗L− I + 2iH) dt

}
V ′
t .

For X ∈ B, using the quantum Itô rules we obtain

dVt
′∗XV ′

t = V ′
t
∗(LL,H(X)

)
V ′
t dt + V ′

t
∗
(L∗XL−X)V ′

t (dZt − dt).
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Finally, using the definition of σt and the quantum Itô rules we obtain

dσt(X) = σt(LL,H(X)) dt +
(
σt(L

∗XL) − σt(X)
)(
dYt − dt

)
,

which is the unnormalized quantum filtering equation for counting observations.
Using the Kallianpur–Striebel formula πt(X) = σt(X) / σt(I) we can now obtain

an expression for the normalized conditional state

dπt(X) = πt(LL,H(X)) dt +

(
πt(L

∗XL)

πt(L∗L)
− πt(X)

)(
dYt − πt(L

∗L) dt
)
,

which is the normalized quantum filtering equation for photon counting.

7. The innovations method. In this section we rederive the filtering equation
for homodyne detection, (6.8), using martingale methods that are analogous to the
classical case [13, 17]. We follow the classical treatment as in [33], [31, Chapter 18],
and [65, Chapter 7]. Martingale methods have enjoyed wide and successful application
in classical stochastic theory. The procedure is less straightforward than the reference
probability method, however, and some familiarity with classical filtering theory would
be helpful (see, e.g., [26] for an excellent introduction).

Let ξt, βt, λt, μt be adapted processes affiliated to Y ′
t , where

(7.1) ξt = ξ0 +

∫ t

0

βs ds + mt = ξ0 +

∫ t

0

βs ds +

∫ t

0

(λs dAs + μs dA
∗
s).

The measurement process Yt is given by (5.9), and in what follows we write ht =

jt(L + L∗) and Zt = At + A∗
t . Note that the conditional expectation ξ̂t = P(ξt|Yt) is

well defined, and similarly for the coefficients βt, λt, and μt.
The main filtering result for a process of the form (7.1) is the following.
Theorem 7.1 (noncommutative Fujisaki–Kallianpur–Kunita). Under the above

assumptions, the filtered process ξ̂t satisfies the QSDE

(7.2) dξ̂t = β̂t dt + (λ̂t + ξ̂tht − ξ̂tĥt) dWt,

where r̂t ≡ P(rt|Yt) for any rt affiliated to Y ′
t , and dWt = dYt − ĥt dt defines the

Yt-Wiener process (with respect to P) Wt, called the innovations process.
The filtering expression (7.2) is formally identical to the classical case [31, Theo-

rem 18.11] and [65, Proposition 3.2]. Before we prove Theorem 7.1, we will show how
to obtain the quantum filtering equation (6.8) using this result.

Corollary 7.2. The conditional state πt(X) is given by (6.8).
Proof. We set λt = −jt([X,L∗]), μt = jt([X,L]), βt = jt(LL,H(X)), and ξt =

jt(X). Then ξ̂tht = πt(X(L + L∗)), ξ̂tĥt = πt(X)πt(L + L∗), λ̂t = −πt([X,L∗]), and

β̂t = πt(LL,H(X)). Hence using (7.2), (6.8) follows.

Proof of Theorem 7.1. Step 1. We first show that the process

Mt = ξ̂t − ξ̂0 −
∫ t

0

β̂s ds

is a Yt-martingale, i.e., P(Mt|Ys) = Ms for all s ≤ t. This property is equivalent to
P((Mt −Ms)K) = 0 for all K ∈ Ys, or equivalently

P

[(
ξ̂t − ξ̂s −

∫ t

s

β̂r dr

)
K

]
= P

[(
ξt − ξs −

∫ t

s

βr dr

)
K

]
= P[(mt −ms)K] = 0
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for all K ∈ Ys, where we have used Definition 3.13 in the first step. But as K ∈ Ys ⊂
B ⊗ Ws],

P[(mt −ms)K] = P

[
K

∫ t

s

(λr dAr + μr dA
∗
r)

]
= P

[∫ t

s

(Kλr dAr + Kμr dA
∗
r)

]
= 0,

where we have used that the vacuum expectation of quantum Itô integrals vanishes.
Thus we have demonstrated that Mt is a Yt-martingale.

Step 2. We now show that Wt is a Wiener process under P. We begin by verifying
that the innovations process

(7.3) Wt = Yt −
∫ t

0

ĥs ds

is a Yt-martingale. We need to show that P[(Wt − Ws)K] = 0 for any s ≤ t and
K ∈ Ys. This is equivalent to

P

[(
Yt − Ys −

∫ t

s

ĥr dr

)
K

]
= P

[(
Yt − Ys −

∫ t

s

hr dr

)
K

]
= 0

for all K ∈ Ys, where the second expression follows from the definition of the condi-
tional expectation. But from (5.9) we obtain

P

[(
Yt − Ys −

∫ t

s

hr dr

)
K

]
= P[(Zt − Zs)K] = 0

as K ∈ Ys ⊂ B⊗Ws], (Zt−Zs) ∈ W[s,t], and hence P[(Zt−Zs)K] = P(K) P(Zt−Zs) =
0. Thus Wt is a Yt-martingale.

From (7.3) we read off the Itô rule dW 2
t = dt; classically, a process that obeys this

property and is a martingale must be a Wiener process by Lévy’s theorem (e.g., [31,
Lemma 18.7]). But we can simply apply the classical result, as Wt is a commutative

process (note that ĥt ∈ Yt for s ≤ t by construction) and is hence equivalent to the
corresponding classical process obtained through the spectral theorem.

Now that we have shown that Wt is a Wiener process, we can try to represent the
martingale Mt as a stochastic integral with respect to Wt. As usual in filtering theory
the ordinary martingale representation theorem does not suffice for this purpose, but
the representation theorem of Fujisaki–Kallianpur–Kunita (e.g., [49, Theorem 5.20])
allows us to conclude nonetheless that

(7.4) Mt =

∫ t

0

γs dWs =⇒ ξ̂t = ξ̂0 +

∫ t

0

β̂s ds +

∫ t

0

γs dWs

for some adapted process γt ∈ Yt.

Step 3. We next obtain a first expression for ξ̂tYt:

(7.5) ξ̂tYt =

∫ t

0

[β̂sYs + ξ̂shs + λ̂s]ds + M1(t),

where M1(t) is a Yt-martingale. As before, it suffices to show that

P((M1(t) −M1(s))K) = P

[(
ξtYt − ξsYs −

∫ t

s

[βsYs + ξshs + λs]ds

)
K

]
= 0
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for all K ∈ Ys, where we have used the definition of the conditional expectation. But

d(ξtYt) = (dξt)Yt + ξtdYt + dξtdYt

= (βtdt + dmt)Yt + ξt(hdt + dZt) + dmtdZt

= (βtYt + ξtht + λt)dt + (Ytλt + ξt)dAt + (Ytμt + ξt)dA
∗
t .

Hence exactly as before, it follows that M1(t) is a Yt-martingale.

Step 4. Next, we derive a second expression for ξ̂tYt:

(7.6) ξ̂tYt =

∫ t

0

[β̂sYs + ξ̂sĥs + γs]ds + M2(t),

where M2(t) is a Yt-martingale. To show this, note that ξ̂tYt = ξ̂tYt. By Itô’s rules,

d(ξ̂tYt) = (dξ̂t)Yt + ξ̂tdYt + dξ̂tdYt

= (β̂tdt + γtdWt)Yt + ξ̂t(ĥtdt + dWt) + γtdWtdWt

= (β̂tYt + ξ̂tĥt + γt)dt + (γtYt + ξ̂t)dWt

which establishes (7.6).
Step 5. We can now identify γt. From (7.5) and (7.6) we have two representations

for ξ̂tYt. By uniqueness, it follows that the finite variation terms are equal, namely,

β̂sYs + ξ̂shs + λ̂s = β̂sYs + ξ̂sĥs + γs.

Therefore γs = ξ̂shs + λ̂s − ξ̂sĥs as required.

8. Conclusion. In this article we have provided an introduction to quantum
filtering. Our goal has been to emphasize the mathematical structures of quantum
probability and to show their use in system-probe models from quantum optics. We
have seen that the techniques employed in quantum filtering theory closely mirror
their analogs in the classical theory of nonlinear filtering. As in the classical theory,
an important role is played by the conditional expectation as the mean least square
estimate of the system given the observations thus far.

The spectral theorem provides a one-to-one correspondence between commuta-
tive von Neumann algebras equipped with normal states and classical (Kolmogorov)
probability spaces. This enabled us to represent commuting observables (self-adjoint
operators acting on a Hilbert space) as random variables on a single classical proba-
bility space. For an observable X that commutes with all members of a commutative
family of observables Y , we can define the conditional expectation of X onto Y by
pulling back the classical conditional expectation of X onto Y , both represented on a
classical probability space via the spectral theorem. For this procedure to work, it is
crucial that the family Y is commutative, the self-nondemolition property, and that
X commutes with Y , the nondemolition property.

As a model for the quantum electromagnetic field we introduced the algebra W
of bounded operators on the Boson Fock space equipped with the vacuum state φ.
We studied families of commuting operators affiliated to W , and by representing
these commuting operators on a classical probability space, we found that (W , φ)
contains families of Wiener and Poisson processes, all of which can be written as linear
combinations of the so-called fundamental noises Λt (gauge process), A∗

t (creation
process), and At (annihilation process). These families of operators do not necessarily
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commute with each other, and therefore the different Wiener and Poisson processes
in (W , φ) cannot be represented on the same classical probability space. Physically,
these processes can all be observed with a suitable measurement setup (e.g., homodyne
detection or photon counting); however, these observations cannot be made in a single
realization of the experiment, as the different families do not commute.

Although the noncommuting processes affiliated to (W , φ) cannot be represented
on the same probability space, it is still possible to capture them within a single
stochastic calculus. Stochastic integrals with respect to the fundamental noises can
be defined as operators affiliated with W , and a quantum Itô rule (integration by
parts rule) based on a quantum Itô table for the fundamental noises can be shown
to hold [42]. The interaction of some fixed system, e.g., a cloud of atoms, with the
electromagnetic field in a Markov limit [1, 36] is given by a unitary Ut that satisfies a
quantum stochastic differential equation, i.e., a stochastic differential equation given
in terms of quantum stochastic integrals with respect to the fundamental noises.
Note that the equation for Ut can therefore be driven by different noises that do not
necessarily commute with each other.

Given the unitary Ut, the Heisenberg evolution of the observables of the system
(e.g., a cloud of atoms) is given by jt(X) = U∗

t XUt. Instead of directly observ-
ing the system at time t, we only had access to field observables up to time t, e.g.,
Ys = U∗

s (As + A∗
s)Us, 0 ≤ s ≤ t (homodyne detection) or Ys = U∗

s ΛsUs, 0 ≤ s ≤ t
(photon counting). We showed that these system-observation pairs satisfy the nonde-
molition requirements that are necessary for the existence of the conditional expecta-
tion P(jt(X)|Yt) of a system observable jt(X) at time t onto the observations thus far.
The quantum filtering equation recursively propagates the conditional expectation,
our best estimate of system observables, in time. In close analogy with the classical
case, we derived the quantum filtering equation in two ways, once using a change of
measure technique and once using martingales and martingale representation.

There are many points we did not touch upon in this introduction to quantum
filtering. Some noteworthy omissions are the linear theory [30] and models in discrete
time with discrete observables [19]. Another notable omission is how the filtering
equations can be used when controlling a quantum system [10, 11, 28, 18]. As in the
classical case, a separation theorem can be shown to hold [18]. This means that the
optimal controller will depend on the observation history only through the filter. This
separates the control problem into an estimation step (filtering) and a control step
based on the estimates only.
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Abstract. This paper gives the sufficient and necessary conditions which guarantee the existence
of a diffeomorphism in order to transform a nonlinear system without inputs into a canonical normal
form that is output dependent. Moreover, we extend our results to a class of systems with inputs.
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1. Introduction. Since Luenberger’s work [9], the design of an observer for
observable linear systems with linear outputs has been a well-known concept. In order
to use the same observer for nonlinear systems, the so-called observability linearization
problem for nonlinear systems was born. The sufficient and necessary conditions
which guarantee the existence of a diffeomorphism and of an output injection to
transform a single output nonlinear system without inputs into a linear one with an
output injection were firstly addressed in [12]. Then, for a multi-output nonlinear
system without inputs, the linearization problem was partially solved in [13]. The
complete solution to the linearization problem was given in [16]. Another approach
was introduced for the analytical systems in [11] by assuming that the spectrum of
the linear part must lie in the Poincaré domain, and it was generalized in [14] by
assuming that the spectrum of the linear part must lie in the Siegel domain. These
assumptions are not generically fulfilled. Other approaches using quadratic normal
forms were given in [1] and [3]. All these approaches enable us to design an observer
for a larger class of nonlinear systems.

Meanwhile, other researchers worked directly on designing nonlinear observers,
such as high-gain observers [6], [4], [7]. Nevertheless, even if the conditions which
guarantee the linearization method to design an observer were not generically fulfilled,
this method would still remain important for the nonlinear observer design because
(1) it works well for nonanalytic systems, and (2) because it could be used not only
in adaptive theory but also for the observation of systems with unknown inputs. All
these reasons explain why researchers continue to investigate this matter.

In [10], the author gave the sufficient and necessary geometrical conditions to
transform a nonlinear system into a so-called output-dependent time scaling linear
canonical form, while the author of [5] gave the dual geometrical conditions of [10].

In this paper, as an extension of [17], we will propose a method to deduce the
geometrical conditions which are sufficient and necessary to guarantee the existence
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†INRIA Rhône Alpes, 655 Avenue de l’Europe, 38334 St Ismier Cedex, France (gang.zheng@

inrialpes.fr).
‡LVR ENSI, 10 Boulevard de Lahitolle, 18020 Bourges, France (driss.boutat@ensi-bourges.fr).
§ECS ENSEA, 6 Avenue du Ponceau, 95014 Cergy-Pontoise, and Project ALIEN, INRIA-Futur,

Orsay, France (barbot@ensea.fr).

2242



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SINGLE OUTPUT-DEPENDENT OBSERVABILITY NORMAL FORM 2243

of a local diffeomorphism z = φ (x) which transforms the locally observable dynamical
system

(1.1)

{
ẋ = f(x),
y = h(x),

where x ∈ U ⊂ R
n, f : U ⊂ R

n → R
n and h : U ⊂ R

n → R are sufficiently smooth,
into the form

(1.2)

{
ż = A(y)z + β(y),
y = zn = Cz,

where

A(y) =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 0 0

α1(y) · · · 0 0 0
...

. . .
. . . · · ·

...
0 · · · αn−2(y) 0 0
0 · · · 0 αn−1(y) 0

⎞⎟⎟⎟⎟⎟⎠ , β(y) =

⎛⎜⎜⎜⎜⎜⎝
β1(y)
β2(y)

...
βn−1(y)
βn(y)

⎞⎟⎟⎟⎟⎟⎠ ,

and where αi(y) �= 0 for y ∈ ]−a, a[ and a > 0. This kind of linearization is called the
single output-dependent observability (SODO) normal form.

For dynamical systems in the form of (1.2) we may, for example, apply the fol-
lowing high-gain observer [2]:

(1.3)

{
˙̂z = A(y)ẑ + β(y) − Γ−1 (y)R−1

ρ CT (Cẑ − y),
0 = −ρRρ − ĀTRρ −RρĀ + CTC,

where Γ(y) is the n× n diagonal matrix

Γ(y) = diag

[
n−1∏
i=1

αi(y),

n−1∏
i=2

αi(y), . . . , αn−1(y), 1

]
,

and Ā is the n× n matrix defined as

Ā =

⎛⎜⎜⎜⎝
0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎞⎟⎟⎟⎠ .

Indeed, here the output of system (1.2) is considered as an input of (1.3). Setting
e = z − ẑ, we see that the observation error can be obtained as follows:

ė =
(
A (y) − Γ−1 (y)R−1

ρ CTC
)
e.

The convergence of such an observer is proved in [2], and thus in section 4 we simply
highlight the design of such an observer for systems in the form (1.2).

Moreover, we generalize our result to a class of systems with inputs. Then we
discuss some useful corollaries in order to deal with affine systems and the so-called
left invertibility problem.

This paper is organized as follows. The next section addresses notations and
technical results which are key to proving our main result. In section 3, we present
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our method to deduce the geometrical conditions for a nonlinear system without in-
puts in order to transform it into a SODO normal form. Section 4 is devoted to the
generalization of our results to a class of systems with inputs. Also in section 4, some
practical cases are studied, including the state affine systems and the left invertibil-
ity problem. Throughout this paper, examples are shown in order to highlight our
theoretical results.

2. Notations and technical results. Throughout this article, we denote by
Li−1
f h for 1 ≤ i ≤ n the (i− 1)th Lie derivative of output h in the direction of f, and

we set θi = dLi−1
f h as its differential. Assume that system (1.1) is locally observable,

and thus that θ = (θ1, . . . , θn)
T

is a basis of the cotangent bundle T ∗U of U . Then
we also consider the vector field τ1 defined in [12] as

(2.1)

{
θi (τ1) = 0 for 1 ≤ i ≤ n− 1,
θn (τ1) = 1,

and by induction we define

(2.2) τk = (−1)
k−1

adk−1
f (τ1) for 2 ≤ k ≤ n.

It is clear that {τ1, . . . , τn} is a basis of the tangent bundle TU of U .

Let us recall a famous result from [12].

Theorem 2.1. The following conditions are equivalent:

(i) There exist a diffeomorphism and an output injection which transform system
(1.1) into normal form (1.2) with αk(y) = 1 for 1 ≤ k ≤ n− 1.

(ii) [τ i, τ j ] = 0 for 1 ≤ i, j ≤ n.

If for some 1 ≤ k ≤ n− 1 the functions αk(y) in the form (1.2) are not constant,
then (ii) of Theorem 2.1 is not fulfilled. Consequently, the rest of this section is devoted
to using [τ i, τn] in order to determine all the functions αi(y) for 1 ≤ i ≤ n− 1.

Lemma 2.2. For a system in the form (1.2) we have for 1 ≤ k ≤ n− 1,

(2.3)

τk =
1

πk

∂

∂zk
+
(
Ak

k−1 (zn) zn−1 + ηkk−1 (zn)
) ∂

∂zk−1

+

k−2∑
i=1

⎛⎝Ak
i (zn) zn−k+i +

n−1∑
j=n−k+i+1

n−1∑
l=j

T k
j,l (zn) zjzl

⎞⎠ ∂

∂zi

+

k−2∑
i=1

⎛⎝ n∑
j=n−k+i+1

ηki (zn) zj + O[3]
zn (zn−k+i+1, . . . , zn−1)

⎞⎠ ∂

∂zi
,

where πn = 1 and πk−1 = πkαk−1 for 2 ≤ k ≤ n; ηki (zn) and T k
j,l (zn) are some

smooth functions of zn; O
[3]
zn (zn−k+2, . . . , zn−1) represents the residue higher than

order 2 with a coefficient which is a function of zn; and

Ak
i (zn) = (−1)

k−i+1

×

⎛⎝Sk
k−i,1

π′
i

π2
i

+

k−1∑
m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

π2
k−m

⎛⎝ m∏
j=k−i+1

αk−j

⎞⎠⎞⎠πn−k+i,(2.4)
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where Sk
k−i,1 and Sk

k−i,m−k+i+1 are defined as

(2.5) Sk
j,1 = 1, Sk

j,l = Sk−1
j−1,l +Sk−1

j,l−1 for 2 ≤ k ≤ n, 1 ≤ j ≤ k− 1, and 1 ≤ l ≤ k− j,

and Sk
0,l = Sk

i,0 = 0.

Proof. For a system in the (1.2) form, (2.1) gives τ1 = 1
π1

∂
∂z1

. Then we use (2.2)
to obtain

τ2 =
1

π2

∂

∂z2
+

(
π′

1

π2
1

πn−1zn−1 +
π′

1

π2
1

βn

)
∂

∂z1
,

and

τ3 =
1

π3

∂

∂z3
+

((
π′

1

π2
1

α1 +
π′

2

π2
2

)
πn−1zn−1 +

(
π′

1

π2
1

α1 +
π′

2

π2
2

)
βn

)
∂

∂z2

−
(
π′

1

π2
1

πn−2zn−2 +

(
π′

1

π2
1

πn−1

)′
πn−1z

2
n−1

)
∂

∂z1

−
(((

π′
1

π2
1

πn−1

)′
βn + πn−1β

′
n

)
zn−1 +

π′
1

π2
1

πn−1βn−1 + βnβ
′
n

)
∂

∂z1
.

Then by an induction, for 3 < k ≤ n, we get

τk =
1

πk

∂

∂zk
+
(
Ak

k−1 (zn) zn−1 + ηkk−1 (zn)
) ∂

∂zk−1

+

k−2∑
i=1

⎛⎝Ak
i (zn) zn−k+i +

n−1∑
j=n−k+i+1

n−1∑
l=j

T k
j,l (zn) zjzl

⎞⎠ ∂

∂zi

+

k−2∑
i=1

⎛⎝ n∑
j=n−k+i+1

ηki (zn) zj + O[3]
zn (zn−k+i+1, . . . , zn−1)

⎞⎠ ∂

∂zi
,

where

Ak
i (zn) = (−1)

k−i+1

×

⎛⎝Sk
k−i,1

π′
i

π2
i

+

k−1∑
m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

π2
k−m

⎛⎝ m∏
j=k−i+1

αk−j

⎞⎠⎞⎠πn−k+i,

with the coefficients Sk
i given by the rule (2.5).

In order to determine the αi(y) for 1 ≤ i ≤ n− 1, we impose that

∂

∂zi
h ◦ φ−1 =

{
0 for 1 ≤ i ≤ n− 1,
1 when i = n.

Now we are ready to state a set of differential equations which enables us to
compute functions αi for 1 ≤ i ≤ n− 1.

Proposition 2.3. If there exists a diffeomorphism which transforms system (1.1)
into form (1.2), then

[τk, τn] = λk(y)τk + G[1]
n + R for 1 ≤ i ≤ n− 1,
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where

G[1]
n =

k−2∑
i=1

(
1

πk
T k
k,n−k+izn−k+i

)
∂

∂zi
+

1

πk
T k
k,kzk

∂

∂z2k−n
,

and

R =
k−2∑
i=1

⎛⎝ n∑
j=n−k+i+1

η̄ki (zn) + O[2]
zn (zn−k+i+1, . . . , zn−1)

⎞⎠ ∂

∂zi

and

(2.6) λk(y) = diag{δk1(y), . . . , δki (y), . . . , δ
k
k(y), 0, . . . , 0} for 1 ≤ i ≤ k − 1,

where δkk = An
k +

π′
k

πk
and δki = An

i −An
n−k+i−

(Ak
i )

′

Ak
i

for 1 ≤ i ≤ k−1, and Ak
i is given

as in (2.4).

Proof. According to (2.3), for 1 ≤ k ≤ n− 1 we have

[τk, τn] =

(
An

k +
π′
k

πk

)
1

πk

∂

∂zk

+

k−2∑
i=1

((
An

i −An
n−k+i −

(
Ak

i

)′
Ak

i

)
Ak

i zn−k+i +
1

πk
T k
k,n−k+izn−k+i

)
∂

∂zi

+
1

πk
T k
k,kzk

∂

∂z2k−n

+

k−2∑
i=1

⎛⎝ n∑
j=n−k+i+1

η̄ki (zn) + O[2]
zn (zn−k+i+1, . . . , zn−1)

⎞⎠ ∂

∂zi
.

Set λk(y) = diag{δk1(y), . . . , δki (y), . . . , δ
k
k(y), 0, . . . , 0}, where δkk = An

k +
π′
k

πk
and δki =

An
i −An

n−k+i −
(Ak

i )
′

Ak
i

for 1 ≤ i ≤ k − 1. Then

(2.7) [τk, τn] = λk(y)τk + G[1]
n + R.

Remark 1. In (2.7), λk(y) could be uniquely determined since G
[1]
n might be

separated according to the coefficients of second-order terms in τn.

Finally, the following result enables us to determine all the functions αi(y) for all
1 ≤ i ≤ n− 1.

Proposition 2.4. If there exists a diffeomorphism which transforms system (1.1)
into form (1.2), then αi = πi

πi+1
for 1 ≤ i ≤ n− 2, and αn−1 = πn−1, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πi = ci exp

[∫ (
exp

∫ (
δii − δn−1

i − δi+1
i+1

)
dy − B̄n−1

i

)
dy

]
for 1 ≤ i ≤ n− 2,

πn−1 = cn−1 exp

(∫ (
δn−1
n−1 − Ān

n−1

2

)
dy

)
,
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with B̄k
1 = 0, and for 1 ≤ i, k ≤ n− 1, and 1 ≤ i ≤ n− 1,

(2.8) B̄k
i =

k−1∑
m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

πk−m
.

Proof. Define

(2.9) Bk
i =

π′
i

πi
+ B̄k

i .

According to (2.4), for 1 ≤ i, k ≤ n− 1,(
Ak

i

)′
Ak

i

=

(
Bk

i

)′
Bk

i

− π′
i

πi
+

π′
n−k+i

πn−k+i
.

As δkk = An
k +

π′
k

πk
, hence we have

δn−1
i = An

i −An
1+i−

(
Bn−1

i

)′
Bn−1

i

+
π′
i

πi
−
π′

1+i

π1+i
= δii−δ1+i

1+i−
(
π′
i

πi
+ B̄n−1

i

)′ /(
π′
i

πi
+ B̄n−1

i

)
,

which yields

πi = ci exp

[∫ (
exp

∫ (
δii − δn−1

i − δ1+i
1+i

)
dy − B̄n−1

i

)
dy

]
for 1 ≤ i ≤ n− 2,

where B̄n−1
i is defined as in (2.8) and ci ∈ R, ci �= 0.

As δn−1
n−1 = 2

π′
n−1

πn−1
+ Ān

n−1, where

Ān
n−1 =

n−1∑
m=2

Sn
1,m

π′
n−m

πn−m
,

then

πn−1 = cn−1 exp

(∫ (
δn−1
n−1 − Ān

n−1

2

)
dy

)
.

Remark 2. For system (1.2), if we set αi = s(y) for 1 ≤ i ≤ n− 1, then

δn−1
n−1 = An

n−1 +
π′
n−1

πn−1
= 2

π′
n−1

πn−1
+

n−1∑
i=2

π′
n−i

πn−i
.

By the definition of πi for 1 ≤ i ≤ n− 1, we have πk = sn−k for 1 ≤ k ≤ n− 1, and
therefore

δn−1
n−1 = 2

s′

s
+

n−1∑
i=2

i
s′

s
= ln

s′

s
,

where ln = n(n−1)
2 + 1. In such a way, we obtain the same result as the one stated in

[10].
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3. Main result. If there exists a diffeomorphism which transforms system (1.1)
into form (1.2), then (2.8) of Proposition 2.4 gives all αi for 1 ≤ i ≤ n− 1. Therefore,
let us consider a new family of vector fields defined as follows:

(3.1) τ̃1 = π1τ1 and τ̃ i+1 =
1

αi
[τ̃ i, f ] for 1 ≤ i ≤ n− 1.

Set

θ(τ̃1, · · · , τ̃n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

0
... · · · πn−1 l̃2,n

... · · · . . . · · ·
...

... π2 · · · · · ·
...

π1 l̃n,2 · · · · · · l̃n,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
:= Λ̃,

where

l̃k,j = θk(τ̃ j) for 2 ≤ k ≤ n and n− k + 2 ≤ j ≤ n.

Consider the Rn-valued form ω,

(3.2) ω = Λ̃−1θ := (ω1, ω2, . . . , ωn)
T
,

where, for 1 ≤ s ≤ n, we have

(3.3) ωs =

n∑
m=1

rs,mθm.

Then the following algorithm gives all the components of ω.
Algorithm 1.

For 1 ≤ j ≤ n,
rn,j = · · · = rn−j+2,j = 0 and rn−j+1,j = 1.

For 2 ≤ k ≤ n− 1 and 1 ≤ j ≤ n,

rn−k,j = −
k∑

i=2

l̃k,n−k+i−(j−1)rn−k+i−(j−1),j .

Then (3.3) becomes

ωs =

n−s+1∑
m=1

rs,mθm.

Theorem 3.1. The following conditions are equivalent:
(1) There exists a diffeomorphism which transforms system (1.1) into a SODO

normal form (1.2).
(2) There exists a family of functions αi(y) for 1 ≤ i ≤ n − 1 such that the

family of vector fields τ̃ i for 1 ≤ i ≤ n defined in (3.1) satisfies the following
commutativity conditions:

(3.4) [τ̃ i, τ̃ j ] = 0 for 1 ≤ i, j ≤ n.
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(3) There exists a family of functions αi(y) for 1 ≤ i ≤ n − 1 such that the
Rn-valued form ω defined in (3.2) satisfies the following condition:

(3.5) dω = 0.

Proof. Assume that there exists a diffeomorphism which transforms system (1.1)
into form (1.2). Then we compute αi(y) for 1 ≤ i ≤ n − 1 from (2.8) in Proposition
2.4. Thus, it is easy to show that τ1 = 1

π1

∂
∂z1

, which yields that τ̃1 = ∂
∂z1

, and then

by construction we obtain τ̃ i = ∂
∂zi

for 2 ≤ i ≤ n. Consequently, we have [τ̃ i, τ̃ j ] = 0
for 1 ≤ i, j ≤ n.

Reciprocally, assume that there exists αi > 0 for 1 ≤ i ≤ n − 1 such that
[τ̃ i, τ̃ j ] = 0 for 1 ≤ i, j ≤ n. Then we know (see [8], [15]) that we can find a local
diffeomorphism φ = z such that

φ∗(τ̃ i) =
∂

∂zi
.

As φ∗(τ̃ i) = ∂
∂zi

is constant, hence we have

∂

∂zi
φ∗(f) = φ∗ ([τ̃ i, f ]) = αiφ∗(τ̃ i+1) = αi

∂

∂zi+1
,

and thus ∂
∂zi

φ∗(f) = αi
∂

∂zi+1
for 1 ≤ i ≤ n−1. Consequently, by integration we obtain

φ∗(f) = A(y)z + β(y).
Moreover, as dh◦ τ̃ i = 0 for 1 ≤ i ≤ n−1 and dh◦ τ̃n = 1, we obtain h◦φ−1 = zn.
Finally, in order to prove that in Theorem 3.1 condition (2) is equivalent to

condition (3), it is sufficient to prove that (3.4) is equivalent to (3.5).
Recall that for any two vector fields X,Y, we have

dω(X,Y ) = LX (ω(Y )) − LY (ω(X)) − ω([X,Y ]).

Setting X = τ̃ i and Y = τ̃ j , we obtain

dω(τ̃ i, τ̃ j) = Lτ̃ i
ω(τ̃ j) − Lτ̃j

ω(τ̃ i) − ω([τ̃ i, τ̃ j ]).

As ω(τ̃ j) and ω(τ̃ i) are constant, then we have

dω(τ̃ i, τ̃ j) = −ω([τ̃ i, τ̃ j ]).

Because ω is an isomorphism and (τ̃ i)1≤i≤n is a basis of TU, then (3.4) is equivalent
to (3.5).

Remark 3. (i) The Rn-valued form ω can be viewed as an isomorphism TUn →
U × R

n which brings each τ̃ i to the canonical vector basis ∂
∂zI

. Moreover, dω = 0
means that there is a local diffeomorphism φ : U → U such that ω is the tangent map
of φ.

(ii) The diffeomorphism φ(x) = z is determined by ω = φ∗(x), which can be given
locally as

zi = φi(x) =

∫
γ

ωi + φi(0) for 1 ≤ i ≤ n,

where γ is a smooth path from 0 to x lying in a neighborhood V0 ⊆ U of 0.
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The following simple example is studied in order to illustrate Theorem 3.1.
Example 1. Let us consider the following system

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
γ(y)

1 + x4
x1x3,

ẋ2 =
β(y)

1 + x4
x1,

ẋ3 = μ(y)x2,
ẋ4 = γ(y)x3,
y = x4,

which gives⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ1 = dx4,
θ2 = γdx3 + γ′x3dx4,

θ3 = γμdx2 + 2γ′γx3dx3 +
(
(γμ)

′
x2 + (γ′γ)

′
x2

3

)
dx4,

θ4 = γμ
β

1 + x4
dx1 +

(
2γ′μ + (γμ)

′)
γx3dx2

+
(
2γ′γμx2 + γ (γμ)

′
x2 + 3γ (γ′γ)

′
x2

3

)
dx3 + O[2] (x1, x2, x3) θ1.

Then we have τ1 = 1+x4

γμβ
∂

∂x1
. Consequently, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ2 = 1
γμ

∂
∂x2

+ (1 + x4) γ
(γμβ)′

(γμβ)2
x3

∂
∂x1

,

τ3 = 1
γ

∂
∂x3

− γμ (1 + x4)
(γμβ)′

(γμβ)2
x3

∂
∂x2

+
(

(γμ)′

(γμ)2
+ β (γμβ)′

(γμβ)2

)
γx2

∂
∂x1

+ R1,3τ1,

τ4 = ∂
∂x4

+
(

γ′

γ + (γμ)′

(γμ) + (γμβ)′

(γμβ)

)
x3

∂
∂x3

−
(

(γμ)′

(γμ) + 2 (γμβ)′

(γμβ)

)
x2

∂
∂x2

+
(

1
1+x4

+ (γμβ)′

γμβ

)
x1

∂
∂x1

+ R1,4 (z3, z2) τ1 + R2,3(z
2
3)τ2.

A straightforward computation gives

δ1
1 = 2

(γμβ)
′

γμβ
, δ2

2 = −2
(γμβ)

′

γμβ
, δ3

3 = 2
γ′

γ
+

(γμ)
′

γμ
+

(γμβ)
′

γμβ
,

δ3
1 = 4

(γμβ)
′

(γμβ)
−
[
(γμβ)

′

(γμβ)

]′ /[
(γμβ)

′

(γμβ)

]
,

δ3
2 = −

(
2
γ′

γ
+

(γμ)
′

γμ
+ 3

(γμβ)
′

γμβ

)
−
(

(γμ)
′

γμ
+

(γμβ)
′

γμβ

)′ /(
(γμ)

′

γμ
+

(γμβ)
′

γμβ

)
.

According to (2.8) in Proposition 2.4, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π1 = c1 exp

[∫ (
exp

∫ (
δ1
1 − δ3

1 − δ2
2

)
dy

)
dy

]
= c1γμβ,

π2 = c2 exp

[∫ (
exp

∫ (
δ2
2 − δ3

2 − δ3
3

)
dy − π′

1

π1

)
dy

]
= c2γμ,

π3 = c3 exp

(∫ (
1

2

(
δ3
3 −

π′
1

π1
− π′

2

π2

))
dy

)
= c3γ.

Thus α1 = π1

π2
= c1

c2
β, α2 = π2

π3
= c2

c3
μ, and α3 = π3

π4
= c3γ, so the new vector fields

are

τ̃1 = c1 (1 + x4)
∂

∂x1
, τ̃2 = c2

∂

∂x2
, τ̃3 = c3

∂

∂x3
, τ̃4 =

∂

∂x4
+

x1

1 + x4

∂

∂x1
.
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It is clear that [τ̃ i, τ̃ j ] = 0 for all 1 ≤ i, j ≤ 4. Therefore, according to Theorem
3.1, system (3.6) can be transformed into SODO normal form (1.2).

Moreover, as

Λ̃ =

⎛⎜⎜⎝
0 0 0 1
0 0 γ γ′x3

0 γμ 2γ′γx3 (γμ)′ x2 + 2 (γ′γ)′ x2
3

γμβ
(
2γ′μ + (γμ)′

)
γx3 2γ′γμx2 + γ (γμ)′ x2 + 6γ (γ′γ)′ x2

3 γ x1
(1+x4)2

μβ + R

⎞⎟⎟⎠ ,

where R = O
[2]
x4 (x1, x2, x3), a straightforward computation gives

ω = Λ̃−1θ =

(
d

x1

c1(1 + x4)
, d

(
x2

c2

)
, d

(
x3

c3

)
, dx4

)T

.

As ω = dφ, thus the diffeomorphism which transforms system (3.6) into SODO normal
form (1.2) is

φ(x) = z =

(
x1

c1 (1 + x4)
,
x2

c2
,
x3

c3
, x4

)T

,

with which system (3.6) could be transformed into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż1 = 0,

ż2 =
c1
c2

β(y)z1,

ż3 =
c2
c3

μ(y)z2,

ż4 = c3γ(y)z3.

So far in this paper, we have considered only systems without inputs. The next
section is devoted to systems that are also driven by an input term.

4. Extension to systems with inputs. Consider a system with inputs in the
form

(4.1)

{
ẋ = f(x) + g(x, u),
y = h(x),

where x ∈ U ⊂ R
n, f : U ⊂ R

n → R
n, g : U × R

m → R
n, and h : U ⊂ R

n → R are
analytic functions and where g(x, 0) = 0 for x ∈ U .

For system (4.1), the SODO normal form along its output trajectory y(t) is

(4.2)

{
ż = A(y)z + β(y) + η(y, u),
y = zn = Cz,

where A(y) and β(y) are given as in (1.2), and η(y, u) = [ η1(y, u), η2(y, u), . . . , ηn(y, u) ]
T
.

Theorem 4.1. System (4.1) can be transformed into SODO normal form (4.2)
by a diffeomorphism if and only if

(i) one of the conditions in Theorem 3.1 is fulfilled.
(ii) [g, τ̃ i] = 0 for 1 ≤ i ≤ n− 1.
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Proof. From Theorem 3.1, we can state that there exists a diffeomorphism φ such
that

φ∗(f) = A(y)z + β(y).

For 1 ≤ i ≤ n− 1, because φ∗ (τ̃ i) = ∂
∂zi

is constant, hence we have

∂

∂zi
φ∗(g) = φ∗([g, τ̃ i]) = 0.

Therefore φ∗(g) = η(y, u). Thus, we obtain the form (4.2).
Remark 4. If g(x, u) = g1(x)u1 + · · ·+ gm(x)um, and both conditions (i) and (ii)

of Theorem 4.1 are fulfilled, then

η(y, u) = B1(y)u1 + · · · + Bm(y)um.

Let us now study some special cases of the term η(y, u).
Corollary 4.2. Assume that conditions (i) and (ii) of Theorem 4.1 are fulfilled.
(a) If [g, τ̃n] = 0, then

η(y, u) = η(u).

(b) If g(x, u) = g1(x)u1 + · · · + gm(x)um and

[gk, τ̃ i] = 0 for 1 ≤ i ≤ n and 1 ≤ k ≤ m,

then

η(y, u) = B1u1 + · · · + Bmum,

where Bi are constant vector fields.
Example 2. Let us consider the system

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
γ(y)

1 + x3
x1x2 +

x1

1 + x3
u,

ẋ2 =
μ(y)

1 + x3
x1,

ẋ3 = γ(y)x2 + u,
y = x3.

A straightforward computation gives

τ1 =
1 + x3

γμ

∂

∂x1
, τ2 =

1

γ

∂

∂x2
+

(
(1 + x3)

(γμ)
′

γμ2

)
x2

∂

∂x1
,

τ3 =
∂

∂x3
+

(
(μγ)

′

(μγ)
+

γ′

γ

)
x2

∂

∂x2
+

(
1

1 + x3
− (γμ)

′

γμ

)
x1

∂

∂x1
.

Then we obtain

δ1
1 = 0, δ2

2 = 2
γ′

γ
+

(μγ)
′

(μγ)
, δ2

1 = − (μγ)
′

(μγ)
− 2

γ′

γ
−
(

(μγ)
′

(μγ)

)′ /(
(μγ)

′

(μγ)

)
.
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Then according to (2.8), we have⎧⎪⎪⎨⎪⎪⎩
π1 = c1 exp

[∫ (
exp

∫ (
δ1
1 − δ2

1 − δ2
2

)
dy

)
dy

]
= c1γμ,

π2 = c2 exp

(∫ (
1

2

(
δ2
2 −

π′
1

π1

))
dy

)
= c2γ,

which yields α1 (y) = c1
c2
μ (y) and α2 (y) = c2γ (y) . Therefore, we obtain τ̃1 =

c1 (1 + x3)
∂

∂x1
, τ̃2 = c2

∂
∂x2

, and τ̃3 = ∂
∂x3

+ x1

1+x3

∂
∂x1

.

As g = x1

1+x3

∂
∂x1

+ ∂
∂x3

= τ̃3, then [g, τ̃1] = [g, τ̃2] = 0, and system (4.3) is
transformed into

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ż1 = 0,

ż2 =
c1
c2

μ (y) z1,

ż3 = c2γ (y) z2 + u,
y = z3

by the diffeomorphism

φ(x) = z =

(
x1

c1 (1 + x3)
,
x2

c2
, x3

)T

.

Following the proposed high-gain observer in the form (1.3), the corresponding
observer for system (4.4) can be designed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂z1 = − ρ3

γμ
(ẑ3 − z3) ,

˙̂z2 =
c1
c2

μ (y) ẑ1 − 3
ρ2

γ
(ẑ3 − z3) ,

˙̂z3 = c2γ (y) ẑ2 − 3ρ (ẑ3 − z3) + u,

where ρ is the tunable gain. For a more specific, yet simple, simulation, choose
c1 = c2 = 1, u (t) = 1, μ (y) = 1+y2, and γ (y) = 2+cos(y). Its simulation results are
presented in Figures 4.1, 4.2, and 4.3 which, respectively, present the convergences of
the system’s states and their estimations.

In addition, in order to solve the left invertibility problem, the observability
matching condition (OMC) for system (4.1) with m = 1 is{

LgL
i−1
f h = 0 ∀x ∈ U, 1 ≤ i ≤ n− 1,

LgL
n−1
f h �= 0.

Corollary 4.3. Assume conditions (i) and (ii) of Theorem 4.1 are fulfilled and
that the OMC is verified. Then

η(y, u) = [η1(y, u), 0, . . . , 0]
T
.

Remark 5. The OMC for system (4.1) with m = 1 is equivalent to g ∈ span{τ̃1}.
We give another example in order to highlight Corollary 4.3.
Example 3. Consider the system

(4.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ1 = u,

ẋ2 = μ(y)x1 + μ(y)x2
1 +

x2

1 + x1
u,

ẋ3 = γ(y)
x2

1 + x1
,

y = x3.
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Fig. 4.1. Observation error between z1 and ẑ1.
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Fig. 4.2. Observation error between z2 and ẑ2.
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Fig. 4.3. Observation error between z3 and ẑ3.

A straightforward computation gives τ1 = 1
γμ

∂
∂x1

+ 1
γμ

x2

1+x1

∂
∂x2

. From (2.8) in Propo-

sition 2.4, we can determine α1 (y) = c1
c2
μ (y) and α2 (y) = c2γ (y). Thus, we

have τ̃1 = c1
∂

∂x1
+ c1

x2

1+x1

∂
∂x2

, τ̃2 = c2 (1 + x1)
∂

∂x2
, and τ̃3 = ∂

∂x3
.

As g ∈ span{τ̃1}, then the OMC condition is fulfilled, therefore system (4.5)
could be transformed by the diffeomorphism

φ(x) = z =

(
x1

c1
,

x2

c2 (1 + x1)
, x3

)T
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into ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż1 =

u

c1
,

ż2 =
c1
c2

μ (y) z1,

ż3 = c2γ (y) z2,
y = z3.

5. Conclusion. In this paper, we have put forward the geometrical conditions
which allow us to determine whether a nonlinear system can be transformed locally
into the SODO normal form by means of a diffeomorphism and of an output injection.
In our main result we state two equivalent ways to check these conditions. In the first
one, we used Lie brackets commutativity, and the second one was based on the one
forms. Moreover, an extension of our results is stated for a class of nonlinear systems
with inputs.

Acknowledgments. We are deeply grateful to the anonymous reviewers for
valuable comments and helpful suggestions that enabled us to improve the presen-
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CONTROLLABILITY OF A CLASS OF NEWTONIAN FILTRATION
EQUATIONS WITH CONTROL AND STATE CONSTRAINTS∗

XU LIU† AND HANG GAO‡

Abstract. This paper addresses a study of the controllability of a class of Newtonian filtra-
tion equations, with nonnegative constraints on the control and state variables. When the control
enters the system through the whole domain where the equation evolves, we characterize the set of
nonnegative targets which are approximately controllable at any time T > 0. The proof combines
the Fenchel–Rockafellar duality theory and a fixed point argument. When the control is restricted
to be active in a proper open subset of the whole domain, we prove a negative controllability result
by means of a localization technique which reflects the underlying obstruction phenomenon in the
system.

Key words. Newtonian filtration equation, approximate controllability, Fenchel–Rockafellar
duality theory, obstruction phenomenon
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1. Introduction and main results. Consider the following controlled system
governed by a Newtonian filtration equation:

(1.1)

⎧⎨⎩
yt(x, t) − (ym)xx(x, t) = χωu(x, t), (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

where Q = (−1, 1) × (0, T ), 1 < m < 3, χω denotes the characteristic function of
a domain ω ⊆ (−1, 1), u is a nonnegative control function, and y0 is a given initial
value.

Newtonian filtration equations, as an important class of quasilinear degenerate
parabolic equations, come from a variety of diffusion phenomena as a net action of
matters. They are suggested as mathematical models of physical problems in many
fields such as filtration, phase transition, biochemistry, and dynamics of biological
groups. For example, for a homogeneous, isotropic, and rigid porous medium filled
with a fluid, the flow is governed by the continuity equation

θt + div
−→
V = 0

and Darcy’s law

−→
V = −K(θ)∇ϕ,

where θ denotes the volumetric moisture content,
−→
V the macroscopic velocity of the

fluid, K(θ) the hydraulic conductivity, and ϕ the total potential. If absorption and
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chemical, osmotic, and thermal effects are ignored, then, after a necessary change of
variables, for horizontal flow, we have

θt = �θm.

We shall focus our attention on the simple case—the one-dimensional case. Note
that system (1.1) is degenerate whenever m > 1. Compared to linear equations
and quasilinear equations without degeneracy, such equations, to a certain extent,
reflect more exactly the physical reality. Indeed, when m = 1, (1.1) becomes the
heat equation. In this case the solution possesses the property of infinite speed of
propagation of disturbances; i.e., any nontrivial nonnegative initial data implies the
positivity of the solution after the initial time. If m > 1, (1.1) is degenerate. In this
case, the solution possesses the property of finite speed of propagation of disturbances.
On the other hand, the appearance of degeneracy makes the problem more difficult.
Therefore, in the last four decades the study in this direction has attracted a large
number of researchers, and great progress has been made (see [1], [4], [9], [21], and
the references cited therein).

The goal of this paper is to study the controllability and noncontrollability of
system (1.1). Many papers have been devoted to the controllability of semilinear
nondegenerate parabolic systems without control/state constraints. We mention here
an incomplete list of related works: [2], [10], [11], [13], [17], [19], [20], and the rich
references cited therein. However, as far as we know, only a few papers have been
published on the controllability of degenerate parabolic equations. In [5] and [6], the
authors study the null controllability of linear degenerate parabolic equations. In
[14] and [15], the authors discuss the approximate controllability of quasilinear de-
generate p-Laplacian equations. In [8] the authors prove an obstruction phenomenon,
which implies that system (1.1) with 0 < m < 1 is not approximately controllable
under a local control at any time. We notice that in the above mentioned papers,
the authors do not put any constraint on the control or state variables. Meanwhile,
very little is known about the controllability of parabolic equations with control/state
constraints. In [18], the constrained controllability problem for the abstract evolution
equation is studied. In [23], the author establishes a criterion for approximate con-
trollability of a heat equation under a nonnegative step boundary control function.
In [7], the authors prove that the semilinear parabolic equation is approximately con-
trollable with a nonnegative constraint on the control, provided that the nonlinearity
is a nondecreasing continuous function. The authors prove this result by means of
a cancellation technique, which consists in modifying the control associated to the
linear case by means of a perturbation which cancels the nonlinearity appearing in
the equation and guarantees the nonnegativity of control function.

In this paper we shall discuss the controllability and noncontrollability with
nonnegative constraints on the control and state variables for system (1.1) with
1 < m < 3, which is a degenerate quasilinear parabolic equation. To the best of
our knowledge, no reference has addressed this controllability problem before. In con-
trast to the case of unconstrained controllability problems, constraint on the control
introduces essential difficulties, even if the control acts in the whole domain. Indeed,
it is well known that in the case without constraint, for most linear systems, the ap-
proximate controllability and null controllability may hold simultaneously. However,
in [18] the authors point out that this is not true for the constrained case, even for
linear evolution systems.

In [7], by virtue of the monotonicity of the nonlinearity, the key point in deriv-
ing the desired controllability is to show the existence of a nonnegative control for
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the linearized system. However, it seems that this technique does not work for our
quasilinear problem. In fact, since the nonlinearity (ym)xx of system (1.1) has no
monotonicity, we could not construct a nonnegative control function directly as in [7].
Instead, we shall make use of the Fenchel–Rockafellar duality theory to represent the
nonnegative control with minimal energy for the linearized system and further solve
our quasilinear controllability problem by means of a fixed point argument. Also, since
the principal part of system (1.1) is nonlinear, we cannot use the method developed
in [11] and [7] to prove the uniform boundedness of control functions, which is critical
when employing the fixed point method (see Remark 3.1). Rather, following [12], we
shall use two functionals and suitable key estimates for the solution of the linearized
system to establish the desired uniform boundedness. On the other hand, in order to
show a negative controllability result for system (1.1), we shall prove an obstruction
phenomenon for this system by means of a localization technique.

In order to state our main results, we need to introduce some definitions. First,
due to the degeneracy of system (1.1), we are interested only in the generalized solution
of system (1.1) in the following sense.

Definition 1.1. A function y is called a nonnegative generalized solution of
system (1.1) if

(1) y ≥ 0 a.e. in Q, y ∈ C([0, T ];L2(−1, 1)), and ym ∈ L1(Q), and
(2) for any ϕ ∈ C2(Q) with ϕ(−1, t) = ϕ(1, t) = ϕ(x, T ) = 0, the following

equality holds:∫∫
Q

[y(x, t)ϕt(x, t) + ym(x, t)ϕxx(x, t)]dxdt +

∫∫
Q

χωu(x, t)ϕ(x, t)dxdt

= −
∫ 1

−1

y0(x)ϕ(x, 0)dx.

It is well known that, for each y0 ∈ L2(−1, 1) with y0 ≥ 0 a.e. in (−1, 1) and
u ∈ L2(Q) with u ≥ 0 a.e. in Q, system (1.1) admits one and only one nonnegative
generalized solution in the sense of Definition 1.1 (see [1], [4], and [9]). Moreover, the
unique generalized solution y satisfies

‖y‖C([0,T ];L2(−1,1)) ≤ ‖y0‖L2(−1,1) +

∫ T

0

‖u(·, t)‖L2(−1,1)dt.

Next, set

L2
+(−1, 1) = {ξ ∈ L2(−1, 1); ξ ≥ 0 a.e. in (−1, 1)},

L2
+(Q) = {ξ ∈ L2(Q); ξ ≥ 0 a.e. in Q},

L2
+(−1, 1) + Yd = {y + Yd; y ∈ L2

+(−1, 1)},

where Yd ∈ L2(−1, 1) is the value at time T of the solution of system (1.1) with u = 0.
We need the following notions.

Definition 1.2. Target y1 ∈ L2
+(−1, 1) is said to be approximately controllable

with a nonnegative constraint on the control if for each ε > 0 and y0 ∈ L∞(−1, 1)
with y0 ≥ 0 a.e. in (−1, 1), there exists a nonnegative control function u ∈ L2

+(Q)
such that the corresponding solution y of system (1.1) satisfies

‖y(·, T ;u) − y1‖L2(−1,1) < ε.
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Definition 1.3. System (1.1) is said to be approximately controllable with a non-
negative constraint on the control if any target y1 ∈ L2

+(−1, 1) + Yd is approximately
controllable.

Remark 1.4. Since the solution of system (1.1) reaches Yd at time T without
any control input, by the comparison principle, if we add a nonnegative control to
this system, then the value at time T of the solution of system (1.1) belongs to
L2

+(−1, 1) + Yd. This is the reason to choose this space as the target set.
Now, the main results in this paper are stated as follows.
Theorem 1.5. If ω = (−1, 1), then system (1.1) is approximately controllable

with a nonnegative constraint on the control at any time T > 0.
Remark 1.6. If system (1.1) is replaced by

(1.2)

⎧⎨⎩
yt(x, t) − (|y|m−1y)xx(x, t) = u(x, t), (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

we do not need to study the nonnegative solution. The unconstrained approximate
controllability of system (1.2) is obvious. Indeed, by the well-known results, for each
ε > 0, y0 sufficiently smooth and y1 ∈ L2(−1, 1), there exist two regular functions y
and v satisfying ⎧⎨⎩

yt(x, t) − yxx(x, t) = v(x, t), (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

such that

(1.3) ‖y(·, T ) − y1‖L2(−1,1) < ε.

If choosing u = v+yxx− (|y|m−1y)xx ∈ L∞(Q), then y and u satisfy system (1.2) and
(1.3). By density, for any y0 ∈ L2(−1, 1), system (1.2) is approximately controllable.

Combining Theorem 1.5 and energy estimates for system (1.1), it is easy to show
that any nonnegative target y1 ∈ L2

+(−1, 1) is approximately controllable with a
nonnegative constraint on the control for a long time, i.e.,

Corollary 1.7. Suppose ω = (−1, 1). Then for each ε > 0, y0 ∈ L∞(−1, 1)
with y0 ≥ 0 a.e. in (−1, 1) and target y1 ∈ L2

+(−1, 1), there exist a time T > 0 and
a nonnegative control function u ∈ L2

+(Q) such that the corresponding solution y of
system (1.1) satisfies

‖y(·, T ;u) − y1‖L2(−1,1) < ε.

Theorem 1.5 tells us that when the control is active in the whole domain (ω =
(−1, 1)), any target y1 ∈ L2

+(−1, 1) + Yd is approximately controllable at any time.
But when the control is restricted to act in a proper subdomain ω of (−1, 1), one
could not expect the same result. Indeed, we have the following negative result.

Theorem 1.8. If ω ⊆ (−1, 1) and ω 
= (−1, 1), then there exists a time T ∗ > 0
such that for any 0 < T < T ∗, one can find a target in L2

+(−1, 1) + Yd which is not
approximately controllable at time T .

The rest of this paper is organized as follows. In section 2 we study the con-
strained approximate controllability of linearized system. Section 3 is devoted to the
proof of the approximate controllability of system (1.1). In section 4 we discuss the
noncontrollability for this system when the control is locally acted.
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2. Constrained controllability of the linearized system. In this section,
we study the approximate controllability of the linearized system with nonnegative
constraints on the control and state.

First, for each z ∈ K := {ξ ∈ L2(Q); ‖ξ‖L∞(0,T ;L2(−1,1)) ≤ C∗
1 , 0 ≤ ξ ≤ C∗

2

a.e. in Q} (C∗
1 and C∗

2 are two constants to be determined in section 3), we consider
the system

(2.1)

⎧⎨⎩
yt −

[
( 1
k + mzm−1)yx

]
x

= u, (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

where k is an arbitrary fixed positive integer and y0 ∈ L∞(−1, 1) with y0 ≥ 0 a.e. in
(−1, 1). Set

E = {y(·, T ;u); u ∈ L2
+(Q)}.

Then we have the following known result (see [7]).
Lemma 2.1. E is dense in L2

+(−1, 1) + y(·, T ; 0), where y(·, T ; 0) denotes the
value at time T of the solution of system (2.1) with u = 0.

Next, we are ready to find a nonnegative control with minimal norm. The method
is based on the following Fenchel–Rockafellar duality theory (see [3]).

Lemma 2.2. Let X and Y be real Banach spaces. Let F : X → (−∞,+∞] and
G : Y → (−∞,+∞] be two proper, convex, and lower semicontinuous functionals. Let
L : X → Y be a linear continuous operator. We suppose that there exists a u0 ∈ X
such that F (u0) < +∞ and G is continuous at Lu0. Set

J(u) = F (u) + G(Lu)

and

Ĵ(ϕT ) = F ∗(L∗ϕT ) + G∗(−ϕT ).

Then we have

(2.2) inf
u∈X

{J(u)} = − inf
ϕT∈Y ∗

{Ĵ(ϕT )},

where L∗ denotes the adjoint operator of L, F ∗(ϕ) := supu∈X{(ϕ, u)X∗,X − F (u)}
∀ϕ ∈ X∗, and similarly for G∗ defined in Y ∗. Moreover, if u∗ ∈ X and ϕ∗

T ∈ Y ∗ are

the minimizers of the functionals J and Ĵ , respectively, then

(2.3) 0 ∈ ∂F (u∗) − L∗ϕ∗
T ,

where ∂F denotes the subdifferential of F .
For each ε > 0 and yd ∈ L2

+(−1, 1), consider the following functional defined on
L2(Q):

J(u) =
1

2

∫∫
Q

u2(x, t)dxdt +

{
0 if ‖y(·, T ;u) − y1‖L2(−1,1) ≤ ε and u ≥ 0 in Q,
+∞ otherwise,

where y(·, ·;u) denotes the solution of system (2.1) associated to u and y1 = yd +
y(·, T ; 0).
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By Lemma 2.1, J(u) 
≡ +∞. At the same time, by classical control theory, there
exists a unique u∗ ∈ L2(Q) such that

J(u∗) = inf{J(u); u ∈ L2(Q)}.

We rewrite the functional J as

J(u) =
1

2

∫∫
Q

u2(x, t)dxdt +

{
0 if u ≥ 0 in Q,
+∞ otherwise

+

{
0 if ‖y(·, T ;u) − y1‖L2(−1,1) ≤ ε,
+∞ otherwise

and apply Lemma 2.2 with X = L2(Q) and Y = L2(−1, 1).
Taking

F (u) =
1

2

∫∫
Q

u2(x, t)dxdt +

{
0 if u ≥ 0 in Q,
+∞ otherwise,

G(ξ) =

{
0 if ‖ξ − yd‖L2(−1,1) ≤ ε,
+∞ otherwise,

and

L(u) = ỹ(·, T ;u),

where ỹ denotes the solution of system (2.1) with y0 = 0, we can easily prove that
the conditions of Lemma 2.2 are satisfied.

We consider the system

(2.4)

⎧⎨⎩
ϕt +

[
( 1
k + mzm−1)ϕx

]
x

= 0, (x, t) ∈ Q,
ϕ(−1, t) = ϕ(1, t) = 0, t ∈ (0, T ),
ϕ(x, T ) = ϕT (x), x ∈ (−1, 1),

where ϕT ∈ L2(−1, 1).
For any ϕT ∈ L2(−1, 1) and u ∈ L2(Q), multiplying the first equation of system

(2.4) by ỹ(·, ·;u) and integrating on Q, we get∫ 1

−1

ϕT (x)ỹ(x, T )dx =

∫∫
Q

ϕ(x, t)u(x, t)dxdt,

which implies

L∗(ϕT ) = ϕ ∀ϕT ∈ L2(−1, 1),

where ϕ is the corresponding solution of system (2.4). Moreover,

G∗(−ϕT ) = sup

{
−
∫ 1

−1

ϕT (x)ξ(x)dx; ξ ∈ L2(−1, 1), ‖ξ − yd‖L2(−1,1) ≤ ε

}
= ε‖ϕT ‖L2(−1,1) −

∫ 1

−1

ϕT (x)yd(x)dx
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and

F ∗(L∗ϕT ) = sup

{∫∫
Q

ϕ(x, t)u(x, t)dxdt− 1

2

∫∫
Q

u2(x, t)dxdt; u ∈ L2
+(Q)

}
= sup

{
1

2

∫∫
Q

ϕ2(x, t)dxdt− 1

2

∫∫
Q

[u(x, t) − ϕ(x, t)]2dxdt; u ∈ L2
+(Q)

}
=

1

2

∫∫
Q

ϕ2
+(x, t)dxdt,

where w+ := max{w, 0}. Thus by (2.2), we have

inf
u∈L2(Q)

J(u) = − inf
ϕT∈L2(−1,1)

Ĵ(ϕT ),

where

Ĵ(ϕT ) =
1

2

∫∫
Q

ϕ2
+(x, t)dxdt + ε‖ϕT ‖L2(−1,1) −

∫ 1

−1

ϕT (x)yd(x)dx.

By classical control theory, there exists a unique ϕ∗
T ∈ L2(−1, 1) such that

Ĵ(ϕ∗
T ) = inf{Ĵ(ϕT ); ϕT ∈ L2(−1, 1)}.

At the same time, by (2.3), we get∫∫
Q

(
ϕ∗ − u + u∗

2

)
(u∗ − u)dxdt ≥ 0 ∀u ∈ L2

+(Q),

where ϕ∗ is the solution of system (2.4) with ϕT = ϕ∗
T . The above inequality implies

(2.5) u∗ = ϕ∗
+ in Q.

Thus the linearized system (2.1) is approximately controllable with nonnegative
constraints on the control and state, and the control with minimal norm satisfies (2.5).

3. Constrained controllability of system (1.1). First, we consider the con-
strained approximate controllability of the quasilinear system

(3.1)

⎧⎨⎩
yt −

[
( 1
k + mym−1)yx

]
x

= u, (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

where k is an arbitrary fixed positive integer and y0 ∈ L∞(−1, 1) with y0 ≥ 0 a.e. in
(−1, 1).

For each z ∈ K = {ξ ∈ L2(Q); ‖ξ‖L∞(0,T ;L2(−1,1)) ≤ C∗
1 , 0 ≤ ξ ≤ C∗

2 a.e. in Q}
(C∗

1 and C∗
2 will be specified later) and ϕT ∈ L2(−1, 1), we denote by ϕ the corre-

sponding solution of system (2.4). For any fixed yd ∈ L2
+(−1, 1), denote by ϕ∗

T the
minimizer of the functional defined on L2(−1, 1),

Ĵ(ϕT ) =
1

2

∫∫
Q

ϕ2
+(x, t)dxdt + ε‖ϕT ‖L2(−1,1) −

∫ 1

−1

ϕT (x)yd(x)dx,

and denote by ϕ∗ the solution of system (2.4) with ϕT = ϕ∗
T .
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Noting that ϕ∗
T and ϕ∗ depend on z ∈ K, we define the operator

L : K → L2(Q),

z �→ y,

where y = L(z) denotes the solution of system (2.1) with u∗ = ϕ∗
+. From the discus-

sion of section 2, the definition of L is reasonable, and for each z ∈ K, we have

‖y(·, T ;u∗) − yd − Y z
d ‖L2(−1,1) ≤ ε,

where Y z
d denotes the value at time T of the solution of system (2.1) with u = 0.

In the following, we shall prove that L has a fixed point by Schauder’s fixed point
theorem, which yields the approximate controllability of system (3.1).

Step 1. We prove that L(K) ⊆ K. First, we shall establish the uniform bound-
edness of {ϕ∗

+} for z ∈ K. For any z ∈ K and ϕT ∈ L2(−1, 1), we denote by ϕ the
corresponding solution of system (2.4). Consider the following two functionals defined
on L2(−1, 1):

Ĵ(ϕT ) =
1

2

∫∫
Q

ϕ2
+(x, t)dxdt + ε‖ϕT ‖L2(−1,1) −

∫ 1

−1

ϕT (x)yd(x)dx,

J̄(ϕT ) =
1

2

∫∫
Q

ϕ2
+(x, t)dxdt−

∫ 1

−1

ϕ(x, T − δ)yd(x)dx,

where δ > 0 is a constant to be determined later. Denote by ϕ∗
T the minimizer of

the functional Ĵ . We shall show that there exists a suitable δ > 0 such that, for any
z ∈ K and ϕT ∈ L2(−1, 1),

(3.2) ε‖ϕT ‖L2(−1,1) −
∫ 1

−1

[ϕT (x) − ϕ(x, T − δ)] yd(x)dx ≥ 0.

This leads to

J̄(ϕ∗
T ) ≤ Ĵ(ϕ∗

T ) ≤ 0.

Thus

(3.3)

∫∫
Q

ϕ∗2
+ (x, t)dxdt ≤ 2

∫ 1

−1

ϕ∗(x, T − δ)yd(x)dx ≤ 2

∫ 1

−1

ϕ∗
+(x, T − δ)yd(x)dx.

Here we use the fact that yd ≥ 0 a.e. in (−1, 1). Since ϕ∗ solves

(3.4)

⎧⎨⎩
ϕ∗
t +

[
( 1
k + mzm−1)ϕ∗

x

]
x

= 0, (x, t) ∈ Q,
ϕ∗(−1, t) = ϕ∗(1, t) = 0, t ∈ (0, T ),
ϕ∗(x, T ) = ϕ∗

T (x), x ∈ (−1, 1),

multiplying the first equation of system (3.4) by ϕ∗
+ and integrating on (−1, 1) ×

(T − δ, t), where t ∈ (T − δ, T ), we get∫ 1

−1

ϕ∗2
+ (x, T − δ)dx ≤

∫ 1

−1

ϕ∗2
+ (x, t)dx.
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Integrating the above inequality with respect to t on (T − δ, T ), it follows that

(3.5)

∫ 1

−1

ϕ∗2
+ (x, T − δ)dx ≤ 1

δ

∫∫
Q

ϕ∗2
+ (x, t)dxdt.

Taking into account (3.3) and (3.5), we have

(3.6) ‖ϕ∗
+‖L2(Q) ≤

2

δ1/2
‖yd‖L2(−1,1),

which means that {ϕ∗
+} is uniformly bounded in L2(Q) if inequality (3.2) is valid.

Next, we shall specify constants C∗
1 and C∗

2 in the definition of set K. For any
z ∈ K, multiplying by y the first equation of system (2.1) with u = ϕ∗

+ and integrating
with respect to x on (−1, 1), we get

1

2

d

dt

∫ 1

−1

y2(x, t)dx ≤
∫ 1

−1

ϕ∗
+(x, t)y(x, t)dx.

By Gronwall’s inequality and (3.6), we have

‖y‖L∞(0,T ;L2(−1,1)) ≤ eT/2(‖y0‖L2(−1,1) + ‖ϕ∗
+‖L2(Q))

≤ eT/2(‖y0‖L2(−1,1) +
2

δ1/2
‖yd‖L2(−1,1))

:= C∗
1 .

(3.7)

At the same time, using the weak maximum principle (see [16]) for system (2.1)
with u = ϕ∗

+, by (3.6), we get that there exists a constant C = C(k) > 0 independent
of z such that

‖y‖L∞(Q) ≤ ‖y0‖L∞(−1,1) + C‖ϕ∗
+‖L2(Q)

≤ ‖y0‖L∞(−1,1) +
2C

δ1/2
‖yd‖L2(−1,1)

:= C∗
2 .

With the choice of C∗
1 and C∗

2 , we get that L(K) ⊆ K.

Now, we show that inequality (3.2) holds for some δ > 0. Without loss of gener-
ality, we suppose yd ∈ C1

0 (−1, 1). Multiplying the first equation of system (2.4) by yd
and integrating on (−1, 1) × (T − δ, T ), we get∫ 1

−1

[ϕT (x) − ϕ(x, T − δ)]yd(x)dx−
∫ T

T−δ

∫ 1

−1

(
1

k
+ mzm−1

)
ϕx(x, t)ydx(x)dxdt = 0.

It suffices to show that there exists a δ > 0 such that, for any z ∈ K and ϕT ∈
L2(−1, 1),

(3.8)

∫ T

T−δ

∫ 1

−1

(
1

k
+ mzm−1

)
|ϕx(x, t)ydx(x)|dxdt ≤ ε‖ϕT ‖L2(−1,1).

By Hölder’s inequality and inequality (3.7), we estimate the term on the left-hand
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side of inequality (3.8):∫ T

T−δ

∫ 1

−1

( 1
k + mzm−1)|ϕx(x, t)ydx(x)|dxdt

≤ ‖ydx‖L∞(−1,1)‖( 1
k + mzm−1)1/2ϕx‖L2(Q)‖( 1

k + mzm−1)1/2‖L2((−1,1)×(T−δ,T ))

≤ ‖ydx‖L∞(−1,1)‖ϕT ‖L2(−1,1)‖(1 + mzm−1)1/2‖L2((−1,1)×(T−δ,T ))

≤ ‖ydx‖L∞(−1,1)‖ϕT ‖L2(−1,1)

{
2δ + 2(3−m)/2mδ‖z‖m−1

L∞(0,T ;L2(−1,1))

}1/2

≤ ‖ydx‖L∞(−1,1)‖ϕT ‖L2(−1,1) ·{
2δ + 2(3−m)/2mδ

[
eT/2

(
‖y0‖L2(−1,1) +

2

δ1/2
‖yd‖L2(−1,1)

)]m−1
}1/2

.(3.9)

Since 1 < m < 3, we can choose a sufficiently small constant δ > 0, such that
inequality (3.8) is valid and δ depends only on y0, yd, and ε.

Thus inequality (3.2) is valid. At the same time, we also conclude that {‖ϕ∗
+‖L2(Q)}

is uniformly bounded and L(K) ⊆ K.
Remark 3.1. From the above discussion, a critical point to the proof of Step 1 is

the uniform boundedness of {ϕ∗
+}, i.e., estimate (3.6). Taking into account that the

principal part of system (3.1) is nonlinear, we cannot use the same method as that in
[11, Proposition 2.3] and in [7, Proposition 15] to prove it. Indeed, for any z ∈ K, we
fail to get the uniform boundedness of the minimizer {ϕ∗

T } of Ĵ(ϕT ). The uniform
boundedness of {ϕ∗

T } implies that of {ϕ∗
+}. The latter is enough for our discussion.

Here we make use of two functionals Ĵ(ϕT ) and J̄(ϕT ) introduced in [12] and suitable
estimates for the linearized system to prove (3.6).

Step 2. We prove the continuity of L. Let {zn} be any convergent sequence in
K, say,

zn → z0 strongly in L2(Q).

Denote by Ĵn and Ĵ0 the functional Ĵ with z = zn and z = z0 in (2.4), respectively.
Let ϕn be the solution of system (2.4) with z = zn and ϕT = ϕTn, where ϕTn is the
minimizer of Ĵn. Let yn be the solution of system (2.1) with z = zn and u = ϕn+.
Then we have the following result.

Lemma 3.2. There exists a constant C > 0 independent of zn such that

‖ϕTn‖L2(−1,1) ≤ C.

Proof. Suppose that there exists a subsequence of {zn} (still denoted by {zn})
such that ‖ϕTn‖L2(−1,1) → +∞, n → +∞. Let

ϕ̂n =
ϕn

‖ϕTn‖L2(−1,1)
, ϕ̂Tn =

ϕTn

‖ϕTn‖L2(−1,1)
.

Then

Ĵ(ϕTn)

‖ϕTn‖L2(−1,1)
=

1

2

∫∫
Q

ϕ̂2
n+(x, t)dxdt‖ϕTn‖L2(−1,1) + ε−

∫ 1

−1

ϕ̂Tn(x)yd(x)dx.

If lim infn→+∞
1
2

∫∫
Q
ϕ̂2
n+(x, t)dxdt > 0, then

(3.10) lim inf
n→+∞

Ĵ(ϕTn)

‖ϕTn‖L2(−1,1)
≥ ε.
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On the other hand, suppose that

(3.11) lim inf
n→+∞

1

2

∫∫
Q

ϕ̂2
n+(x, t)dxdt = 0.

Since ‖ϕ̂Tn‖L2(−1,1) = 1, we can extract a subsequence (still denoted by {ϕ̂Tn}) which
weakly converges to some element ϕ̂T in L2(−1, 1). Since zn → z0 strongly in L2(Q)
and 0 ≤ zn ≤ C∗

2 a.e. in Q, we can extract a subsequence (still denoted by {zn})
which converges to z0 in Lp(Q) for any 0 < p < +∞. Thus ϕ̂n converges to some
element ϕ̂ strongly in L2(Q) and weakly in L2(0, T ;H1

0 (−1, 1)). We can easily verify
that ϕ̂ is the solution of system (2.4) with z = z0 and ϕT = ϕ̂T . By (3.11), we get

ϕ̂+ = 0 a.e. in Q.

Thus

ϕ̂T (x) ≤ 0 a.e. in (−1, 1).

Moreover, noticing that yd ≥ 0 a.e. in (−1, 1), we have

(3.12) lim inf
n→+∞

Ĵ(ϕTn)

‖ϕTn‖L2(−1,1)
≥ ε−

∫ 1

−1

ϕ̂T (x)yd(x)dx ≥ ε.

But Ĵ(ϕTn) ≤ Ĵ(0) = 0, which is a contradiction to (3.10) and (3.12). This completes
the proof.

By (3.9), there exist a subsequence of {ϕTn} (still denoted by itself) and ϕ̂T ∈
L2(−1, 1) such that

(3.13) ϕTn → ϕ̂T weakly in L2(−1, 1).

Thus {ϕn} and {yn} have subsequences (still denoted by themselves) which satisfy,
respectively,

(3.14)

ϕn → ϕ̂ strongly in L2(Q),

yn → y weakly in L2(0, T ;H1
0 (−1, 1)),

yn → y strongly in L2(Q),

where ϕ̂ is the solution of system (2.4) with z = z0 and ϕT = ϕ̂T and y is the solution
of system (2.1) with z = z0 and u = ϕ̂+. Since

Ĵn(ϕTn) ≤ Ĵn(ϕT ) ∀ϕT ∈ L2(−1, 1),

by (3.13) and (3.14), we have

lim
n→+∞

Ĵn(ϕT ) = Ĵ0(ϕT ), Ĵ0(ϕ̂T ) ≤ lim inf
n→+∞

Ĵn(ϕTn).

This implies

Ĵ0(ϕ̂T ) ≤ Ĵ0(ϕT ) ∀ϕT ∈ L2(−1, 1);

that is, ϕ̂T is the minimizer of Ĵ0. Thus L is a continuous operator.
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Step 3. We prove the compactness of L. Taking into account the uniform bound-
edness of {ϕ∗

+} in L2(Q) for z ∈ K, if we denote by y the solution of system (2.1)
with u = ϕ∗

+, then

‖y‖L2(0,T ;H1
0 (−1,1)) + ‖yt‖L2(0,T ;H−1(−1,1)) ≤ C

with C independent of z. By Aubin’s compact theorem, L(K) is a compact subset of
L2(Q). Thus L is a compact operator.

By Schauder’s fixed point theorem, the above discussion implies that L has a fixed
point. Thus system (3.1) is approximately controllable with nonnegative constraints
on the control and state; that is, for each ε > 0 and yd ∈ L2

+(−1, 1), there exists a
nonnegative control function uk ∈ L2

+(Q) such that the corresponding nonnegative
solution yk of system (3.1) satisfies

(3.15) ‖yk(·, T ;uk) − yd − yk(·, T ; 0)‖L2(−1,1) <
ε

2
,

where yk(·, ·; 0) denotes the solution of system (3.1) with u = 0.
Next, we discuss the constrained approximate controllability of system (1.1).
Proof of Theorem 1.5. By (3.6), {uk} can be chosen such that

‖uk‖L2(Q) ≤ C,

with C independent of k. Thus there exist a subsequence of {uk} (still denoted by
{uk}) and a nonnegative function u∗ ∈ L2

+(Q) such that

uk → u∗ weakly in L2(Q).

Using Moser’s iteration and a similar method used in the proof of Lemma 5 in [1],
we have that there exists a constant C > 0 independent of k such that

‖yk‖L∞(Q)∩C([0,T ];L2(−1,1)) ≤ C, ‖y(m−1)/2
k ykx‖L2(Q) ≤ C,

‖ymk (x + h, t) − ymk (x, t)‖L2(Qh) ≤ C|h|, ‖ymk (x, t + h) − ymk (x, t)‖2
L2(Qh) ≤ C|h|1/2,

where h is a real parameter and Qh := {(x, t) ∈ Q; (x + h, t) ∈ Q, (x, t + h) ∈ Q}.
Thus there exist a subsequence of {yk} (still denoted by itself) and w ∈ L∞(Q)

such that for any p > 1

ymk → w strongly in Lp(Q).

Define y := w1/m. Then there exists a subsequence of {yk} such that

yk → y a.e. in Q.

By the Lebesgue dominated convergence theorem, this yields that for any p > 1

yk → y strongly in Lp(Q).

By (3.1), for any test function ϕ ∈ C2(Q) satisfying the conditions of Defini-
tion 1.1, yk satisfies the following integral equality:∫∫

Q

[
yk(x, t)ϕt(x, t) +

1

k
yk(x, t)ϕxx(x, t) + ymk (x, t)ϕxx(x, t)

]
dxdt

= −
∫∫

Q

uk(x, t)ϕ(x, t)dxdt−
∫ 1

−1

y0(x)ϕ(x, 0)dx.
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Letting k → +∞, we get∫∫
Q

[y(x, t)ϕt(x, t) + ym(x, t)ϕxx(x, t)]dxdt

= −
∫∫

Q

u∗(x, t)ϕ(x, t)dxdt−
∫ 1

−1

y0(x)ϕ(x, 0)dx.

Thus y is the nonnegative generalized solution of system (1.1) with u = u∗.
At the same time,

(3.16) yk(·, T ;uk) → y(·, T ;u∗) weakly in L2(−1, 1).

Similarly, there exists a subsequence of {yk(·, ·; 0)} (still denoted by itself) such
that for any p > 1

(3.17)
yk(·, ·; 0) → y(·, ·; 0) strongly in Lp(Q),

yk(·, T ; 0) → y(·, T ; 0) weakly in L2(−1, 1),

where y(·, ·; 0) is the generalized solution of system (1.1) with u = 0.
By (3.16) and (3.17), for each ε > 0, there exists a K > 0 such that

‖y(·, T ;u∗) − yd − y(·, T ; 0)‖L2(−1,1) ≤ ‖yK(·, T ;uK) − yd − yK(·, T ; 0)‖L2(−1,1) +
ε

2
.

Taking into account (3.15), we have

‖y(·, T ;u∗) − yd − y(·, T ; 0)‖L2(−1,1) ≤ ε,

which means that system (1.1) is approximately controllable with nonnegative con-
straints on the control and state. We complete the proof of Theorem 1.5.

Combining Theorem 1.5 and energy estimates for system (1.1), we also get that
any nonnegative target is approximately controllable for a long time.

Proof of Corollary 1.7. Taking into account the proof of Theorem 1.5, we can
easily get that for each ε > 0 and y1 ∈ L2

+(−1, 1), there exists a constant γ > 0
such that if y0 ∈ L∞(−1, 1) satisfies ‖y0‖L2(−1,1) < γ, then we can find a nonnegative
control function u ∈ L2

+(Q) satisfying

‖y(·, T ;u) − y1‖L2(−1,1) < ε,

where y denotes the corresponding solution of system (1.1).
For any y0 ∈ L∞(−1, 1) with y0 ≥ 0 a.e. in (−1, 1), denote by ȳ the solution of

system (1.1) with u = 0. Multiplying the first equation of system (1.1) with u = 0 by
ȳm and integrating with respect to x on (−1, 1), we have

(3.18)
1

m + 1

d

dt

∫ 1

−1

ȳm+1(x, t)dx +

∫ 1

−1

(ȳm)2x(x, t)dx = 0.

By Poincáre’s inequality, there exists a constant C > 0 such that∫ 1

−1

ȳ2m(x, t)dx ≤ C

∫ 1

−1

(ȳm)2x(x, t)dx.
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Set

C1 =
m + 1

C
2

1−m
1+m .

By Hölder’s inequality and (3.18), we get

d

dt

∫ 1

−1

ȳm+1(x, t)dx + C1

[∫ 1

−1

ȳm+1(x, t)dx

] 2m
m+1

≤ d

dt

∫ 1

−1

ȳm+1(x, t)dx + C12
m−1
m+1

∫ 1

−1

ȳ2m(x, t)dx

≤ d

dt

∫ 1

−1

ȳm+1(x, t)dx + (m + 1)

∫ 1

−1

(ȳm)2x(x, t)dx = 0.

Hence
∫ 1

−1
ȳm+1(x, t)dx is less than or equal to the solution of the following problem:

H ′(t) + C1H
2m/(m+1)(t) = 0,

H(0) =

∫ 1

−1

ym+1
0 (x)dx.

This implies

∫ 1

−1

ȳm+1(x, t)dx ≤ H(t) =

⎡⎣C1
m− 1

m + 1
t +

(∫ 1

−1

ym+1
0 (x)dx

) 1−m
1+m

⎤⎦
1+m
1−m

.

On the other hand,

‖ȳ(·, t)‖L2(−1,1) ≤ 2
m−1
2m+2 ‖ȳ(·, t)‖Lm+1(−1,1).

Thus

(3.19) ‖ȳ(·, t)‖L2(−1,1) ≤ 2
m−1
2m+2

⎡⎣C1
m− 1

m + 1
t +

(∫ 1

−1

ym+1
0 (x)dx

) 1−m
1+m

⎤⎦
1

1−m

.

Taking into account (3.19) and m > 1, we can find a sufficiently large T1 > 0 such
that

‖ȳ(·, T1)‖L2(−1,1) < γ.

Therefore, for any T > T1, we can find a nonnegative control function u defined on
(−1, 1) × (T1, T ) such that y1 is approximately controllable at time T .

We choose

ũ(x, t) =

{
0, (−1, 1) × (0, T1),
u(x, t), (−1, 1) × (T1, T ),

and denote by y the solution of system (1.1) with u = ũ; then

‖y(·, T ; ũ) − y1‖L2(−1,1) < ε.

This implies that for any nonnegative target y1 ∈ L2
+(−1, 1), we can find a time

T > 0 and a nonnegative control function ũ ∈ L2
+(Q) such that y1 is approximately

controllable. We complete the proof of Corollary 1.7.
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4. Noncontrollability of system (1.1) under a local control. In this sec-
tion, we consider the control system

(4.1)

⎧⎨⎩
yt(x, t) − (ym)xx(x, t) = χωu(x, t), (x, t) ∈ Q,
y(−1, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (−1, 1),

where ω is a nonempty strict open subset of (−1, 1). First, using a technique of local
estimates, we shall prove an L∞-obstruction phenomenon to the solution of system
(4.1). We need the following iteration lemma.

Lemma 4.1 (see [21]). Let {yn} (n = 0, 1, 2, · · · ) be a sequence of positive numbers
satisfying

yn+1 ≤ Cbny1+α
n ,

where C > 0, b > 1 and α > 0 are constants. If

y0 ≤ C−1/αb−1/α2

,

then

lim
n→+∞

yn = 0.

In what follows, for a fixed x0 ∈ (−1, 1)\ω and a positive constant R > 0 satisfying
B2R(x0) = (x0 − 2R, x0 + 2R) ⊆ (−1, 1)\ω, define

φ(t, ρ) = sup
τ∈(0,t)

τ1/(m+1) sup
ρ≤r≤2R

‖y(·, τ)‖L∞(Br(x0))

r2/(m−1)
,

K(t, ρ) = t−1 + t(1−m)/(1+m)φm−1(t, ρ),

ψ(t, ρ) = sup
τ∈(0,t)

sup
ρ≤r≤2R

r(1+m)/(1−m)

∫
Br(x0)

y(x, τ)dx,

where 0 < t ≤ T and 0 < ρ < R.
We now prove the following lemma.
Lemma 4.2. There exists a constant C > 0 such that for any 0 < t ≤ T ,

0 < ρ < R, and any control function u ∈ L2
+(ω × (0, T )), the solution of system (4.1)

satisfies

(4.2) ‖y(·, t)‖L∞(Bρ(x0)) ≤ C [K(t, ρ)]
3/(3m+1)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

.

Proof. For n = 0, 1, 2, . . . , denote

tn =
t

2
− t

2n+2
, ρn = ρ +

ρ

2n
, ρ̄n =

1

2
(ρn + ρn+1),

Bn = Bρn(x0), B
′
n = Bρ̄n(x0),

Qn = Bn × (tn, t), Q
′
n = B′

n × (tn+1, t),

kn = k − k

2n
,
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where k > 0 will be specified later. Obviously

Q′
n+1 ⊆ Qn+1 ⊆ Q′

n ⊆ Qn.

Let ξn be a smooth function defined on Qn, satisfying

0 ≤ ξn ≤ 1 in Qn, ξn = 1 in Q′
n,

ξn = 0 on {x0 ± ρn} × (tn, t) ∪Bn × {tn},

|ξnx| ≤
2n+2

ρ
, 0 ≤ ξnt ≤

2n+3

t
.

Multiplying the first equation of (4.1) by (y − kn)m+ ξ2
n and integrating on Qn, by

Höder’s inequality, we get

1

m + 1

∫
Bn

(y − kn)m+1
+ (x, t)ξ2

n(x, t)dx + m2

∫∫
Qn

(y − kn)m−1
+ ym−1y2

xξ
2
ndxdτ

=
2

m + 1

∫∫
Qn

(y − kn)m+1
+ ξnξnτdxdτ − 2m

∫∫
Qn

(y − kn)m+ym−1yxξnξnxdxdτ

≤ C2n

t

∫∫
Qn

(y − kn)m+1
+ dxdτ +

1

2
m2

∫∫
Qn

(y − kn)m−1
+ ym−1y2

xξ
2
ndxdτ

+ C

∫∫
Qn

(y − kn)m+1
+ ym−1ξ2

nxdxdτ

≤ C2n

t

∫∫
Qn

(y − kn)m+1
+ dxdτ +

1

2
m2

∫∫
Qn

(y − kn)m−1
+ ym−1y2

xξ
2
ndxdτ

+
C4n

ρ2
sup

tn≤τ≤t
‖y(·, τ)‖m−1

L∞(Bn)

∫∫
Qn

(y − kn)m+1
+ dxdτ ;

(4.3)

here and hereafter C denotes a different constant. Moreover,∫∫
Qn

(y − kn)m−1
+ ym−1y2

xξ
2
ndxdτ ≥

∫∫
Qn

(y − kn)2m−2
+ y2

xξ
2
ndxdτ

=
1

m2

∫∫
Qn

[
(y − kn)m+

]2
x
ξ2
ndxdτ.

(4.4)

Hence if we denote

wn = (y − kn)m+ ,

then by (4.3) and (4.4) we have

(4.5) sup
tn+1≤τ≤t

∫
B′

n

w
m+1
m

n (x, τ)dx +

∫∫
Q′

n

w2
nxdxdτ ≤ C4nK(t, ρ)

∫∫
Qn

w
m+1
m

n dxdτ.

Let ξ̄n be another smooth function defined on B′
n, satisfying

0 ≤ ξ̄n ≤ 1, ξ̄n = 1 in Bn+1, |ξ̄nx| ≤
2n+2

ρ
.
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By the Gagliardo–Nirenberg embedding inequality, we get∫∫
Qn+1

w
(4m+2)/m
n+1 dxdτ ≤

∫∫
Q′

n

(wn+1ξ̄n)(4m+2)/mdxdτ

≤
∫∫

Q′
n

(wnξ̄n)(4m+2)/mdxdτ

≤ C

∫∫
Q′

n

(w2
nx + w2

nξ̄n
2
x)dxdτ

·
[

sup
tn+1≤τ≤t

∫
B′

n

w(m+1)/m
n (x, τ)dx

]2

.

(4.6)

We notice that the definition of wn and φ(t, ρ) implies∫∫
Q′

n

w2
nξ̄n

2
xdxdτ ≤ C4n

ρ2

∫∫
Q′

n

(y − kn)2m+ dxdτ

≤ C4n

ρ2
sup

tn+1≤τ≤t
‖(y − kn)+‖m−1

L∞(B′
n)

∫∫
Q′

n

(y − kn)m+1
+ dxdτ

≤ C4nK(t, ρ)

∫∫
Q′

n

(y − kn)m+1
+ dxdτ.

(4.7)

Substituting (4.5) and (4.7) into (4.6) and estimating its right-hand side, we obtain

(4.8)

∫∫
Qn+1

w
(4m+2)/m
n+1 dxdτ ≤ C43nK3(t, ρ)

[∫∫
Qn

(y − kn)m+1
+ dxdτ

]3

.

Set

An = {(x, τ) ∈ Qn; y(x, τ) > kn}, |An| = measAn.

By Hölder’s inequality and (4.8), we get

∫∫
Qn+1

(y − kn+1)
m+1
+ dxdτ ≤

[∫∫
Qn+1

(y − kn+1)
4m+2
+ dxdτ

] m+1
4m+2

|An+1|
3m+1
4m+2

≤ 4
3m+3
4m+2n[K(t, ρ)]

3m+3
4m+2 |An+1|

3m+1
4m+2

·
[∫∫

Qn

(y − kn)m+1
+ dxdτ

] 3m+3
4m+2

.

(4.9)

On the other hand, we notice that∫∫
Qn

(y − kn)m+1
+ dxdτ ≥

∫∫
Qn+1

(kn+1 − kn)m+1dxdτ

=
km+1

2(n+1)(m+1)
|An+1|.

(4.10)

Thus we derive from (4.9) and (4.10) that∫∫
Qn+1

(y − kn+1)
m+1
+ dxdτ ≤ C4nβ12nβ2kβ3Kβ4(t, ρ)

[∫∫
Qn

(y − kn)m+1
+ dxdτ

] 3m+2
2m+1

,
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where β1 = (3m+3)/(4m+2), β2 = (m+1)(3m+1)/(4m+2), β3 = −(m+1)(3m+
1)/(4m+ 2), and β4 = (3m+ 3)/(4m+ 2). Applying Lemma 4.1, we conclude that if∫∫

Q0

ym+1dxdτ ≤ Ck(3m+1)/2K−3/2(t, ρ),

then ∫ t

t
2

∫
Bρ(x0)

(y − k)m+1
+ dxdτ = 0.

Therefore, if we take

k = C[K(t, ρ)]3/(3m+1)

(∫∫
Q0

ym+1dxdτ

)2/(3m+1)

,

then

‖y(·, t)‖L∞(Bρ(x0)) ≤ k;

that is,

‖y(·, t)‖L∞(Bρ(x0)) ≤ C[K(t, ρ)]3/(3m+1)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

.

We get the conclusion of Lemma 4.2.
Lemma 4.3. There exist two positive constants C1 and C2 such that for any

t > 0,

(4.11) φ(t, ρ) ≤ C1

∫ t

0

τ (1−m)/(1+m)φm(τ, ρ)dτ + C2[ψ(t, ρ)]2/(m+1).

Proof. Denote

Φ(t, ρ) = t1/(m+1)
‖y(·, t)‖L∞(Bρ(x0))

ρ2/(m−1)
.

Multiplying (4.2) by t1/(m+1)ρ2/(1−m), we get

φ(t, ρ) ≤ Ct1/(m+1)ρ2/(1−m)[K(t, ρ)]3/(3m+1)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

≤ Ct1/(m+1)ρ2/(1−m)
[
t−1 + t(1−m)/(1+m)φm−1(t, ρ)

]3/(3m+1)

·
(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

≤ Ct−2/[(m+1)(3m+1)]ρ2/(1−m)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

+ Ct4/[(m+1)(3m+1)]ρ2/(1−m) [φ(t, ρ)]
(3m−3)/(3m+1)

·
(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

.

(4.12)
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Denote

H1 = t−2/[(m+1)(3m+1)]ρ2/(1−m)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

,

H2 = t4/[(m+1)(3m+1)]ρ2/(1−m)[φ(t, ρ)](3m−3)/(3m+1)

(∫ t

t
4

∫
B2ρ(x0)

ym+1dxdτ

)2/(3m+1)

.

By the definition of φ(t, ρ) and ψ(t, ρ), we have

H1 =

[∫ t

t
4

t−1/(m+1)

∫
B2ρ(x0)

ρ(3m+1)/(1−m)ym+1dxdτ

]2/(3m+1)

≤ C

[
t−1

∫ t

t
4

τ
m

m+1

‖y(·, τ)‖mL∞(B2ρ(x0))

ρ2m/(m−1)
ρ

1+m
1−m

∫
B2ρ(x0)

ydxdτ

]2/(3m+1)

≤ C[φ(t, ρ)]2m/(3m+1)[ψ(t, ρ)]2/(3m+1)

≤ 1

4
φ(t, ρ) + C[ψ(t, ρ)]2/(m+1)

(4.13)

and

H2 = [φ(t, ρ)](3m−3)/(3m+1)

(∫ t

t
4

∫
B2ρ(x0)

t
2

m+1 ρ
3m+1
1−m ym+1dxdτ

)2/(3m+1)

≤ C[φ(t, ρ)](3m−3)/(3m+1)

[∫ t

t
4

τ (1−m)/(1+m) 1

ρ

·
∫
B2ρ(x0)

τ
‖y(·, τ)‖m+1

L∞(B2ρ(x0))

ρ2(m+1)/(m−1)
dxdτ

]2/(3m+1)

≤ C[φ(t, ρ)](3m−3)/(3m+1)

[∫ t

t
4

τ (1−m)/(1+m)Φm+1(τ, 2ρ)dτ

]2/(3m+1)

≤ C[φ(t, ρ)](3m−1)/(3m+1)

[∫ t

t
4

τ (1−m)/(1+m)φm(τ, ρ)dτ

]2/(3m+1)

≤ 1

4
φ(t, ρ) + C

∫ t

0

τ (1−m)/(1+m)φm(τ, ρ)dτ.

(4.14)

Now the conclusion of Lemma 4.3 follows from (4.12), (4.13), and (4.14).
Lemma 4.4. ψ(t, ρ) and φ(t, ρ) satisfy

ψ(t, ρ) ≤ C

{∫ t

0

τ−m/(1+m)[φ(τ, ρ)](m−1)/2ψ(τ, ρ)dτ

+

∫ t

0

τ (2−m)/(1+m)[φ(τ, ρ)](3m−3)/2ψ(τ, ρ)dτ

}
+ |‖y0‖|ρ,

(4.15)

where |‖y0‖|ρ = supρ≤r≤2R r(1+m)/(1−m)
∫
Br(x0)

y0(x)dx.
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Proof. We choose a smooth function ξ defined on B2ρ(x0) such that

0 ≤ ξ ≤ 1, ξ = 1 in Bρ(x0), |ξx| ≤
1

ρ
.

Multiplying the first equation of (4.1) by τ1/2y(m−1)/2ξ2 and integrating on B2ρ(x0)×
(0, t), we get

2

m + 1

∫
B2ρ(x0)

t1/2[y(x, t)](m+1)/2ξ2(x)dx

+
m(m− 1)

2

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−5)/2y2
xξ

2dxdτ

=
1

m + 1

∫ t

0

∫
B2ρ(x0)

τ−1/2y(m+1)/2ξ2dxdτ − 2m

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−3)/2yxξξxdxdτ

≤ 1

m + 1

∫ t

0

∫
B2ρ(x0)

τ−1/2y(m+1)/2ξ2dxdτ + C

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−1)/2ξ2
xdxdτ

+
m(m− 1)

4

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−5)/2y2
xξ

2dxdτ.

Thus we have∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−5)/2y2
xξ

2dxdτ ≤ C

∫ t

0

∫
B2ρ(x0)

τ−1/2y(m+1)/2dxdτ

+
C

ρ2

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−1)/2dxdτ.

(4.16)

Denote

L(t) =
1

ρ2

∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−1)/2dxdτ,

J2(t) =

∫ t

0

∫
B2ρ(x0)

τ−1/2y(m+1)/2dxdτ.

Then we can derive

J2(t) ≤
∫ t

0

τ−1/2ρ
1+m
m−1 ‖y(·, τ)‖(m−1)/2

L∞(B2ρ(x0))
ρ

1+m
1−m

∫
B2ρ(x0)

y(x, τ)dxdτ

≤ C

∫ t

0

τ
−m
m+1 ρ

2m
m−1

[
τ1/(m+1)

‖y(·, τ)‖L∞(B2ρ(x0))

ρ2/(m−1)

]m−1
2

ψ(τ, ρ)dτ

≤ Cρ2m/(m−1)

∫ t

0

τ−m/(m+1)[φ(τ, ρ)](m−1)/2ψ(τ, ρ)dτ

(4.17)

and

L(t) ≤ 1

ρ2

∫ t

0

τ1/2ρ
1+m
m−1 ‖y(·, τ)‖

3m−3
2

L∞(B2ρ(x0))

∫
B2ρ(x0)

ρ
1+m
1−m y(x, τ)dxdτ

≤
∫ t

0

ρ
2m

m−1 τ
2−m
m+1

[
τ1/(m+1)

‖y(·, τ)‖L∞(B2ρ(x0))

ρ2/(m−1)

](3m−3)/2

ψ(τ, ρ)dτ

≤ Cρ2m/(m−1)

∫ t

0

τ (2−m)/(m+1)[φ(τ, ρ)](3m−3)/2ψ(τ, ρ)dτ.

(4.18)
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Substituting (4.17) and (4.18) into (4.16), we get∫ t

0

∫
B2ρ(x0)

τ1/2y(3m−5)/2y2
xξ

2dxdτ

≤ Cρ2m/(m−1)

∫ t

0

τ−m/(m+1)[φ(τ, ρ)](m−1)/2ψ(τ, ρ)dτ

+ Cρ2m/(m−1)

∫ t

0

τ (2−m)/(m+1)[φ(τ, ρ)](3m−3)/2ψ(τ, ρ)dτ.

(4.19)

Multiplying the first equation of (4.1) by ξ2 and integrating on B2ρ(x0) × (0, t), we
have ∫

Bρ(x0)

y(x, t)dx ≤
∫
B2ρ(x0)

y0(x)dx + 2m

∫ t

0

∫
B2ρ(x0)

ym−1yxξξxdxdτ

≤
∫
B2ρ(x0)

y0(x)dx

+
C

ρ

(∫ t

0

∫
B2ρ(x0)

τ1/2y
3m−5

2 y2
xξ

2dxdτ

)1/2

·
(∫ t

0

∫
B2ρ(x0)

τ−1/2y
m+1

2 dxdτ

)1/2

.

(4.20)

Taking into account (4.17) and (4.19), in (4.20), we get∫
Bρ(x0)

y(x, t)dx ≤
∫
B2ρ(x0)

y0(x)dx

+ Cρ(1+m)/(m−1)

∫ t

0

τ−m/(m+1)[φ(τ, ρ)](m−1)/2ψ(τ, ρ)dτ

+ Cρ(1+m)/(m−1)

∫ t

0

τ (2−m)/(m+1)[φ(τ, ρ)](3m−3)/2ψ(τ, ρ)dτ.

Multiplying both sides of the above inequality by ρ(1+m)/(1−m), we get (4.15).
Lemma 4.5. There exist constants γ1, γ2, γ3, and t∗ > 0 such that

(4.21) φ(t, ρ) ≤ γ1|‖y0‖|2/(m+1)
ρ , ψ(t, ρ) ≤ γ2|‖y0‖|ρ,

where t < min
{
t∗, T, γ3|‖y0‖|1−m

ρ

}
.

Proof. Since ψ(·, ρ) is increasing, by (4.11), it follows that for any fixed t∗ > 0,

φ(t, ρ) ≤ C1

∫ t

0

τ (1−m)/(1+m)φm(τ, ρ)dτ + C2[ψ(t∗, ρ)]2/(m+1), t < t∗.

Hence φ(t, ρ) is less than or equal to the solution of the following problem:

H ′(t) = C1t
(1−m)/(1+m)Hm(t),

H(0) = C2[ψ(t∗, ρ)]2/(m+1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTONIAN FILTRATION EQUATIONS 2277

This implies

φ(t, ρ) ≤ H(t) = C2[ψ(t∗, ρ)]
2

m+1

[
1 − C1(1 + m)(m− 1)

2C1−m
2

(tψm−1(t∗, ρ))
2

1+m

]1/(1−m)

,

provided that the value in the bracket is positive.
If we take t∗ such that

1 − C1(1 + m)(m− 1)

2C1−m
2

(t∗ψm−1(t∗, ρ))2/(1+m) > 0,

then

φ(t, ρ) ≤ C2[ψ(t, ρ)]
2

m+1

[
1 − C1(1 + m)(m− 1)

2C1−m
2

(tψm−1(t, ρ))
2

1+m

]1/(1−m)

for t < t∗.
Thus there exist positive constants δ1 and δ2 such that

(tψm−1(t, ρ))2/(1+m) ≤ δ1,(4.22)

φ(t, ρ) ≤ δ2[ψ(t, ρ)]2/(1+m)(4.23)

for t < t∗.
Substituting (4.22) and (4.23) into (4.15), we obtain

ψ(t, ρ) ≤ C

∫ t

0

τ−m/(1+m)[ψ(τ, ρ)]2m/(1+m)dτ

+ C

∫ t

0

τ (2−m)/(1+m)[ψ(τ, ρ)](4m−2)/(1+m)dτ + |‖y0‖|ρ

≤ C

∫ t

0

τ−m/(1+m)[ψ(τ, ρ)]2m/(1+m)
(
1 + τ

2
1+m [ψ(τ, ρ)]2(m−1)/(1+m)

)
dτ

+ |‖y0‖|ρ

≤ C

∫ t

0

τ−m/(1+m)[ψ(τ, ρ)]2m/(1+m)dτ + |‖y0‖|ρ

for t < t∗.
Hence ψ(t, ρ) is less than or equal to the solution of the following problem:

M ′(t) = Ct−m/(1+m)[M(t)]2m/(1+m),

M(0) = |‖y0‖|ρ.

This implies

ψ(t, ρ) ≤ M(t) = |‖y0‖|ρ

[
1 − C(m− 1)t1/(1+m)

|‖y0‖|(1−m)/(1+m)
ρ

](1+m)/(1−m)

,

provided that

1 − C(m− 1)t1/(1+m)

|‖y0‖|(1−m)/(1+m)
ρ

> 0.
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Thus there exist two constants γ2 and γ3 such that if t < min
{
t∗, γ3|‖y0‖|1−m

ρ

}
, then

ψ(t, ρ) ≤ γ2|‖y0‖|ρ.

Furthermore, by (4.23), there exists a constant γ1 > 0 such that

φ(t, ρ) ≤ γ1|‖y0‖|2/(1+m)
ρ .

Thus we get the conclusion of Lemma 4.5.
The above inequality implies that

(4.24) ‖y(·, t)‖L∞(Bρ(x0)) ≤ γ1t
−1/(1+m)ρ2/(m−1)|‖y0‖|2/(1+m)

ρ

for t < min
{
t∗, T, γ3|‖y0‖|1−m

ρ

}
:= T ∗.

By (4.24), for any time T < T ∗ and initial value y0 ∈ L∞(−1, 1) with y0 ≥ 0 a.e. in
(−1, 1), we can always find a target y1 ∈ L2

+(−1, 1) + Yd satisfying ‖y1‖L∞(Bρ(x0)) >

γ1T
−1/(1+m)ρ2/(m−1)|‖y0‖|2/(1+m)

ρ + 1 such that for any u ∈ L2
+(ω × (0, T )), the

corresponding solution y of system (4.1) satisfies

‖y(·, T ;u) − y1‖L2(−1,1) >
1

2
,

which shows that y1 is not approximately controllable at time T . The above result
implies the conclusion of Theorem 1.8.

Remark 4.6. Using the same method as that in [22], we can prove that the
solution of system (4.1) has the property of finite speed of propagation for each non-
negative control. However, by this result, we cannot explain why system (1.1) is not
approximately controllable at small time, unlike the case of a hyperbolic system. In-
deed, the method used in [22] determines that the speed of propagation of solution
depends on the control function closely. Here we use a technique of local estimates to
prove an obstruction phenomenon, which leads to a negative controllability result. In
fact, inequality (4.24) implies the finite speed of propagation of solution for system
(4.1).

Acknowledgment. The authors thank all reviewers for their constructive com-
ments.
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ROBUST CONTROL APPROACH TO OPTION PRICING:
A REPRESENTATION THEOREM AND FAST ALGORITHM∗
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Abstract. The so-called interval model for security prices, together with a robust control
approach, allows one to construct a consistent theory of option pricing, including discrete time
trading and arbitrary transaction costs. In this context, a new representation theorem for the
viscosity solution of the relevant Isaacs (differential) quasi-variational inequality leads to simple
formulas and fast numerical algorithms to compute a hedging portfolio. We argue that in spite of a
less satisfactory market model, the overall theory is not much less realistic than the classical Black
and Scholes theory but rather only that it shifts from the portfolio model to the market model the
place where the model is violated when sudden large price changes occur on the market. As such,
and subject to a more detailed validation, the new theory might be the basis of a possible alternative
as a normative theory whenever transaction costs or discrete time trading are the main concerns.

Key words. option pricing, hedging, transaction costs, robust control, impulse control
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1. Introduction.

1.1. The robust control approach to option pricing. In [7, 8, 11], we in-
troduced a robust control approach to option pricing, and more specifically to the
design of a hedging portfolio and management strategy, using the so-called interval
model for the market and a robust control approach to hedging.

The main claims of that new approach are, on the one hand, the possibility
of constructing a consistent theory of hedging portfolios with either continuous or
discrete time trading paradigms, the former being the limit of the latter for vanishing
time steps, with one and the same (continuous time) market model, and, on the other
hand, to accommodate transaction costs and closing costs in a natural way, with a
nontrivial hedging portfolio.

We postpone until the last section the discussion of the drawbacks of the “interval
model” as compared to the classical Samuelson geometric diffusion. But we dispel at
once one criticism, that it does not make use of probabilistic knowledge on the price
trajectories. Indeed, it is now known that Black and Scholes formula can be recovered
via a purely deterministic scheme. Cox, Ross, and Rubinstein [13] and Kolokol’tsov
[16] derive it in passing to the limit as the step size vanishes in a discrete time model.
In their model, though, the underlying market model changes with the step size, in a
way so as to generate a random walk in the limit. In [7] we obtain that same formula
directly with a continuous time model of price evolution and continuous trading but
still without endowing the set of possible price histories with a probability law.

Here, after summarizing some previous results, we show a new representation of
the solution of the problem at hand—and thus of the pricing function—in terms of
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the solution of a pair of simple coupled first order linear PDEs in two variables. This
yields a fast algorithm to compute both the seller’s price and the hedging strategy,
thus alleviating the computational complexity that could heretofore be considered a
drawback of that approach. Also, we provide a more detailed comparison of the new
pricing paradigm with the classical Black and Scholes formula than in the previous
papers on that topic and some numerical evaluations of the robustness of the new
theory to violations of its market model.

At this point, we wish to stress two things: on the one hand, we do not claim
a kind of overall superiority of the new theory over that of Black and Scholes. We
claim only that this is a possible approach that may, concerning certain problems, be
interesting to use in comparison with the more classical ones.

On the other hand, if we can convince the reader of this fact, he will accept that,
concerning a new theory, it is not as yet as well documented as the long-standing
Black and Scholes theory, nor as well understood in all its implications.

Among other shortcomings at this time, we do not yet have detailed and compar-
ative validation data. And, in contrast with [16, 21, 22] and most of the literature on
superreplication, we have investigated only the seller’s price of our model, i.e., the
price that the seller must charge to make sure to always hedge his costs, that is, as
long as the market does not violate the hypotheses of the model.

1.2. Related contributions. Among previous uses of this type of model, let
us quote the following.

McEneaney [18] may have been the first to replace the stochastic framework with
a robust control approach. He derives the so-called stop loss strategy for bounded
variation trajectories. He also recovers the Black and Scholes theory, but this is done
at the price of artificially modifying the portfolio model with no other justification
than recovering the Itô calculus and the Black and Scholes PDE.

As already noted, Cox, Ross, and Rubinstein [13] introduced a nonstochastic
approach to the theory of option pricing in a discrete time setting. Their market
model is related to ours in that where we allow for an interval of possible future stock
prices, they allow only the end points of such an interval. This model clearly involves
no claim of being realistic for any finite time step. Its only objective is to converge,
as the time step vanishes, to a continuous random walk, to recover either the Black
and Scholes theory or another one with possible price jumps, depending on how the
market model behaves in that limiting process.

Kolokol’tsov [16, 17] generalizes the approach of Cox, Ross, and Rubinstein by
allowing the same “interval model” as we use here. He notices, as we do in [6],
the coincidence with Cox, Ross, and Rubinstein’s theory when the final payment
is convex. He expands that theory to “rainbow” options, based on several common
stocks, and performs a limiting operation similar to that of Cox, Ross, and Rubinstein
to derive an equivalent of the Black and Scholes formula for these options. In the
case of the interval model, the author points out that the strategy proposed leads to
superreplication, so that the trader might have a positive result. This leads him to
define a range of “reasonable” or “fair” prices and a mean price. (In this setting, we
consider here only his upper bound, i.e., a seller’s price.)

In [7], we recover both the stop-loss strategy and the complete Black and Scholes
theory without any probability in the model, without having to artificially modify the
portfolio model, simply by choosing carefully the set of admissible underlying stock
price trajectories and using a weak version of a lemma of Föllmer [15]. The model
used there is not an interval model. To the contrary, it uses a set of trajectories
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in which the trajectories of Samuelson’s model almost surely lie. This explains why
we recover the Black and Scholes theory while in the present setting we arrive at a
different set of formulas.

A special quotation must be made for the amazing book by Shafer and Vovk
[24]. They start from the same analysis of hedging as we do in terms of a game
against “nature.” But where we conclude that we can do without probability theory,
they claim that this is probability theory. Or rather they claim that this can be
an alternative to Kolmogorov’s measure-theoretical foundation of probability theory,
and they proceed to recover many results, such as asymptotic and ergodic theorems,
from this new viewpoint. Our seller’s price is their “upper expectation” (of which
they claim that it is the price likely to be found on the market). Yet, they are more
interested in recovering classical probabilities and elaborating on the classical Black
and Scholes theory than in providing alternative models and tackling the problems
of transaction costs and discrete trading that we consider. We did not find hints to
something like the interval model in this fascinating book, but the relationship of that
theory with our model deserves further thinking.

Pujal [20] and Aubin, Pujal, and Saint-Pierre [2] have also adopted the robust
control approach (they call it “tychastic” approach), with a market model which is
a more general version of our model, since it applies a priori to rainbow options as
well. Yet, they do not allow jumps in the content of the portfolio, limiting its rate
of change. Saint-Pierre [23] has done efficient implementations of that theory with
exactly the interval market model that we use below. He has a fast algorithm which
bears a strong resemblance to ours, although precisely asserting their relationship is
made difficult by the fact that since their portfolio model is more restrictive than
ours, the value function cannot coincide. And our fast algorithm is based upon a
representation theorem for our value function.

Similar thoughts are developed by Olsder [19], although this is only a preliminary
analysis as stated by the author. And very similar ideas have been developed by
Dupire [14] in the context of what he calls “dominance” theory. Barles and Soner [3]
developed a different approach to option pricing that let them deal with transaction
costs, but then, the price they arrive at depends on the rest of the trader’s portfolio.

We took the phrase “interval model” from Roorda, Engwerda, and Schumacher
[21, 22], where the authors adopt a viewpoint close to that of robust control. In
particular their definition of a market model is the same as ours: a set of possible
price trajectories. Their analysis is somewhat different from ours, as they do endow
the set of possible trajectories with a probability law. Yet, because they have an
interval model, they also run into a superreplication problem and, in a fashion similar
to Kolokol’tsov, define a range of “fair” prices.

1.3. Paper outline. In the next section, we present the interval model, both in
the continuous trading formalism and in its discretized form, and the portfolio model
we adopt, which includes transaction costs and closing costs at will. The consideration
of closing costs obliges us to distinguish the cases where the closing is “in kind” or
“in cash,” because the closing costs born by the trader are not the same.

Section 3 is devoted to the continuous trading problem. We recall the main results
we have obtained so far, stressing the case of simple call and put. Next we show a
new representation theorem of the solution of the pricing problem. The complete
proof of this theorem, and its main use, relies on results of the next section. We also
investigate the optimal trading strategies, which have a simple form.

In section 4, we investigate the discrete trading theory. We provide a discrete
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time version of the representation theorem and derive from it a new fast algorithm
to compute the seller’s price. And as we have a convergence theorem of the discrete
trading seller’s price toward the continuous trading one as the time step vanishes [11],
this is also a discretization algorithm for the continuous problem.

Finally, having displayed what can be achieved with this new model, we discuss
in the final section its relative strengths and weaknesses compared with the classical
Black and Scholes theory. As the main weakness of the new theory is in the unrealistic
assumption of the market model, this discussion is mostly based upon an investigation
of the robustness of our hedging strategies to violations of that hypothesis. In that
discussion, we take a normative view of our theory, i.e., as a decision aid, rather than
the positive view of a predictive theory which is more common in economical thinking.

2. Interval model.

2.1. Riskless interest rate. We assume a fixed, known, riskless interest rate
ρ characteristic of that economy. In a classical fashion, all monetary values will be
assumed to be expressed in end-time value computed at that fixed riskless rate, so
that, without loss of generality, the riskless rate can be taken as (seemingly) zero. (It
reappears in the theory of American options, but we have not covered it here for lack
of space.)

2.2. Market. We share with Roorda, Engwerda, and Schumacher [21, 22] the
view that a market model is a set Ω of possible price trajectories. Our model is defined
by two real numbers τ− < 0 and τ+ > 0, and Ω is the set of all absolutely continuous
functions u(·) such that for any two time instants t1 and t2,

(1) eτ
−(t2−t1) ≤ u(t2)

u(t1)
≤ eτ

+(t2−t1) .

The notation τε will be used to handle both τ+ and τ− at a time. Hence, in that
notation, it is understood that ε ∈ {−,+}, sometimes identified to {−1,+1}.

In the continuous trading theory, we shall use the equivalent characterization

(2) u̇ = τu , τ ∈ [τ−, τ+] .

In that formulation, τ(·) is a measurable function, which plays the role of the “control”
of the market. We shall let Ψ denote the set of measurable functions from [0, T ] into
[τ−, τ+]. It is equivalent to specify a u(·)∈Ω or a (u(0), τ(·))∈R

+ × Ψ. This is an
a priori unknown time function. The concept of nonanticipative strategies embodies
that fact.

In the discrete trading theory, we shall call h our time step with T = Kh, K being
an integer. The hypothesis (1) translates into1

u(t + h) ∈ [eτ
−hu(t), eτ

+hu(t)] .

For convenience, we let

(3) u(t + h) = (1 + τ(t))u(t) , τ(t) ∈ [τ−h , τ+
h ]

with

(4) τεh = eτ
εh − 1 , ε = ± .

1It does not translate into u(t+h) ∈ {eτ−hu(t), eτ
+hu(t)} as in the Cox–Ross–Rubinstein theory.
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Alternatively, we shall write, for any integer k, u(kh) = uk, so that (3) also reads

(5) uk+1 = (1 + τk)uk , τk ∈ [τ−h , τ+
h ],

and we let Ψ denote the set of such sequences {τk}.
The case where h goes to zero will be of interest also. But, contrary to the classical

limit process in the Cox–Ross–Rubinstein theory, we keep the underlying continuous
time model, hence here τ+ and τ−, fixed. Then τ εh behaves as hτ ε.

2.3. Portfolio. A (hedging) portfolio will be composed of an amount v (in end-
time value) of underlying stock, and an amount y of riskless bonds, for a total worth of
w = v + y. In the normalized (or end-value) representation, the bonds are seemingly
with zero interest.

2.3.1. Buying and selling. We let ξ(t) be the buying rate (a sale if ξ(t) < 0),
which is the trader’s control. Therefore we have, in continuous time,

(6) v̇ = τv + ξ .

However, there is no reason to restrict the buying/selling rate, so that there is no
bound on ξ. To avoid mathematical ill-posedness, we explicitly admit “infinite” buy-
ing/selling rate in the form of instantaneous block buy or sale of a finite amount of
stock at time instants chosen by the trader together with the amount. Thus the con-
trol of the trader also involves the choice of finitely many time instants tk and trading
amounts ξk, and the model must be augmented with

(7) v(t+k ) = v(tk) + ξk ,

meaning that v(·) has a jump discontinuity of size ξk at time tk. Equivalently, we
may keep formula (6) but allow for impulses ξkδ(t− tk) in ξ(·).

We shall therefore let ξ(·) ∈ Ξ, the set of real time functions (or rather distribu-
tions) defined over [0, T ] which are the sum of a measurable function ξc(·) and a finite
number of weighted translated Dirac impulses ξkδ(t− tk).

2.3.2. Transaction costs. We assume that there are transaction costs. In this
paper, we assume that they are proportional to the transaction amount. But we allow
for different proportionality coefficients for a buy or a sale of underlying stock. Hence
let C+ be the cost coefficient for a buy, and −C− for a sale, so that the cost of a
transaction of amount ξ is Cεξ with ε = sign(ξ). We have chosen C− negative, so
that, as it should, that formula always gives a positive cost.

We shall use the convention that when we write Cε(expression), and except if
otherwise specified, the symbol ε in Cε stands for the sign of the expression.

Our portfolio will always be assumed self-financed ; i.e., the sale of one of the
commodities, underlying stock or riskless bonds, must exactly pay for the buy of the
other one and the transaction costs. It is a simple matter to see that the worth w of
the portfolio then obeys

(8) ẇ = τv − Cεξ ,

and at jump instants,

(9) w(t+k ) = w(t−k ) − Cεkξk.

This is equivalent to

(10) w(t) = w(0) +

∫ t

0

(τ(s)v(s) − Cεξ(s)) ds−
∑

k|tk<t

Cεkξk .
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2.3.3. Discrete trading. The discrete trading case can be seen as a sequence
of jumps at prescribed time instants tk = kh, k ∈ K = {0, 1, . . .K−1} ⊂ N, and h ∈ R

+

a prescribed time step, such that Kh = T . Writing uk, vk, wk for u(kh), v(kh), w(kh),
it leads to

vk+1 = (1 + τk)(vk + ξk) ,(11)

wk+1 = wk + τk(vk + ξk) − Cεkξk .(12)

We shall use the explicit form

(13) wn = w0 +

n−1∑
k=0

(τk(vk + ξk) − Cεkξk) .

A dynamic portfolio will be a pair of time functions (v(·), w(·)), whether time is
continuous or discrete, also denoted ({vk}, {wk})k∈K in the latter case.

2.4. Hedging.

2.4.1. Strategies. The initial portfolio is to be created at step 0. As a con-
sequence the seller’s price is obtained taking v(0) = 0. Then, formally, admissible
hedging strategies will be functions ϕ : Ω → Ξ which enjoy the property of being
nonanticipative:

∀(u1(·), u2(·)) ∈ Ω × Ω, [u1|(0,t) = u2|(0,t)] ⇒ [ϕ(u1(·))|[0,t] = ϕ(u2(·))|[0,t]].

(It is understood here that the restriction of δ(t−tk) to a closed interval not containing
tk is 0, and its restriction to a closed interval containing tk is an impulse.)

In practice, we shall find optimal hedging strategies made of a jump at initial
time, followed by a state feedback law ξ(t) = φ(t, u(t), v(t)).

In discrete time, the situation is much simpler. We need only a nonanticipative
strategy ϕ : Ω → R

T giving ξk = ϕk(u0, u1, . . . , uk). Again, we shall find it in the
form of a state feedback ξk = φk(uk, vk).

Yet, these are only nonanticipative laws, the equivalent of stochastic adapted
strategies. We have shown in [11] how to handle strictly nonanticipative strategies,
the equivalent of the stochastic predictable strategies.

We shall call Φ the set of admissible trading strategies.

2.4.2. Closing costs. The idea of a hedging portfolio is that at exercise time,
the writer is going to close off its position after abiding by its contract, buying or selling
some of the underlying stock according to the necessity. We assume that it sustains
proportional costs on this final transaction. We allow for the case where these costs
would be different from the running transaction costs because compensation effects
might lower them and also allow for the case without closing costs just by making
their rate 0. Therefore let c+ ≤ C+ and −c− ≤ −C− be these rates.

It is a simple matter to see that, in order to cover both cases where the buyer does
or does not exercise its option, the portfolio worth at final time should be N(u, v),
given for a call and a closure in kind by

N(u, v) = max{cε(−v) , u−K + cε(u− v)} ,

where the notation convention for cε(expression) holds. We expect that on a typical
optimum hedging portfolio for a call, 0 ≤ v(T ) ≤ u(T ). Hence

(14) N(u, v) = max{−c−v , u−K + c+(u− v)} .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2286 P. BERNHARD, N. EL FAROUQ, AND S. THIERY

In the case of a put, where −u(T ) ≤ v(T ) ≤ 0, we need to replace the above expression
by

(15) N(u, v) = max{−c+v , K − u− c−(u + v)}.

The case of a closure in cash is similar but leads to less appealing mathematical
formulas in later developments. The details can be found in [10].

2.4.3. Hedging portfolio. An initial portfolio (v(0), w(0)) and an admissible
trading strategy ϕ, together with a price history u(·), generate a dynamic portfolio.
We set the following.

Definition 2.1. An initial portfolio (v(0) = 0, w(0) = w0) and a trading strategy
ϕ constitute a hedge at u0 if for any u(·) ∈ Ω such that u(0) = u0 (equivalently, for
any admissible τ(·)), the dynamic portfolio thus generated satisfies

(16) w(T ) ≥ N(u(T ), v(T )) .

Now, we may use (10) at time T to rewrite this:

∀τ(·) ∈ Ψ , N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt +

∑
k

Cεkξk − w0 ≤ 0 .

This in turn is clearly equivalent to

w0 ≥ sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt +

∑
k

Cεkξk

]
.

We further set the following.
Definition 2.2. The seller’s price of the option at u0 is the worth of the cheapest

hedging portfolio at u0.
The seller’s price at u0 is therefore

(17)

P (u0) = inf
ϕ∈Φ

sup
τ(·)∈Ψ

[
N(u(T ), v(T )) +

∫ T

0

(
−τ(t)v(t) + Cεξ(t)

)
dt +

∑
k

Cεkξk

]
,

where it is understood that v(0) = 0 and that ξ(·) = ϕ(u0, τ(·)).
In the case of discrete trading, we get similarly as the seller’s price at u0

(18) P (u0) = min
ϕ∈Φ

sup
{τk}∈Ψ

[
N(uK , vK) +

K−1∑
k=0

(
−τk(vk + ξk) + Cεkξk

)]
.

3. Continuous trading.

3.1. The differential game. We are therefore led to the investigation of the
impulse control differential game whose dynamics are given by (2), (6), and (7) and
the criterion by (17). In a classical fashion we introduce its Isaacs value function:
(19)

W (t, u, v) = inf
ϕ∈Φ

sup
τ(·)∈Ψ

⎡⎣N(u(T ), v(T ))+

∫ T

t

(
−τ(s)v(s)+Cεξ(s )

)
ds +

∑
k|tk≥t

Cεkξk

⎤⎦,
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where the dynamics are integrated from u(t) = u, v(t) = v. Hence the seller’s price is
P (u0) = W (0, u0, 0).

There are new features in that game, in that, on the one hand, impulse controls
are allowed, and hence an Isaacs quasi-variational inequality (or QVI; see Bensoussan
and Lions [4]) should be at work, but, on the other hand, impulse costs have a
zero infimum. As a consequence, that QVI is degenerate, and no general result is
available. In Bernhard, El Farouq, and Thiery [11], we introduce the so-called Joshua
transformation that lets us show the following fact.

Theorem 3.1. The function W defined by (19) is a continuous viscosity solution
of the following “differential QVI”:

(20)

0 = min

{
∂W

∂t
+ max

τ∈[τ−,τ+]
τ

[
∂W

∂u
u +

(
∂W

∂v
− 1

)
v

]
,

∂W

∂v
+ C+ , −

(
∂W

∂v
+ C−

)}
,

W (T, u, v) = N(u, v) .

This PDE in turn lends itself to an analysis, either along the lines of the Isaacs–
Breakwell theory through the construction of a field of characteristics for a trans-
formed game (see [11]) or using the theory of viscosity solutions and the representa-
tion theorem as outlined hereafter. The solution we seek is further characterized by
its behavior at infinity. Yet its uniqueness does not derive from the classical results
on viscosity solutions. We have to take this into account in our proof of Theorem 3.2
below.

3.2. Simple call or put.

3.2.1. Representation formula. We give here a new theory of (20). We in-
troduce two functions v̌(t, u), a representation of the singular manifold, and w̌(t, u),
the restriction of W to that manifold, handled jointly as

V(t, u) =

(
v̌(t, u)

w̌(t, u)

)
.

That pair of functions is entirely defined by a linear PDE that involves the following
two matrices (q− and q+ are defined hereafter in (22)):

S =

(
1 0
1 0

)
and T =

1

q+ − q−

(
τ+q+ − τ−q− τ+ − τ−

−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
,

and it seems to play a very important role in the overall theory. Namely,

(21) Vt + T (Vuu− SV) = 0 .

The definitions of q+ and q−, as well as the terminal conditions at T for (21),
depend on the type of option considered. For a simple call or put, and a closure in
kind, we have

(22)
q−(t) = max{(1 + c−) exp[τ−(T − t)] − 1 , C−} ,

q+(t) = min{(1 + c+) exp[τ+(T − t)] − 1 , C+} .
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Notice that qε = Cε for t ≤ tε, with

(23) T − tε =
1

τε
ln

1 + Cε

1 + cε
.

The terminal conditions are given, for a call, by

(24) Vt(T, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( 0 0 ) if u <
K

1 + c+
,

(1 + c+)u−K

c+ − c−
( 1 − c− ) if

K

1 + c+
≤ u <

K

1 + c−
,

(u u−K ) if u ≥ K

1 + c−

and symmetric formulas for a put. (All combinations call/put, closure in kind/in
cash, are detailed in [10]).

We claim the following fact.
Theorem 3.2. The function W defined by (19) is given by

(25) W (t, u, v) = w̌(t, u) + qε(v̌(t, u) − v) , ε = sign(v̌ − v) ,

where qε is given by formula (22) (for a simple call or put), and (v̌ w̌) = Vt is given
by (21) and the terminal conditions (24) for a call (and symmetrical formulas for a
put).

Proof. The proof is done by checking first that the function (25) is indeed a
viscosity solution of (20). That complete check is rather lengthy, as it involves checking
the viscosity condition on many manifolds where ∇W may be discontinuous. It is
given in the appendix.

Then we notice that the function W thus constructed has (in the Joshua trans-
formed form of [11]) the regularity required2 by the classical verification theorem in
its detailed form of [5] (replacing “lower value” by “upper value”). The viscosity con-
ditions imply the satisfaction of the old corner conditions, as developed in that paper.
Thus the verification theorem applies, and that function is indeed the value function
of the original differential game. (Let us add that numerical integration supports that
claim with great accuracy.)

It can also be shown that the solution of (21) is nontrivial only in the region
where the option may end either in the money or out of the money, i.e., the region

(26)
K

1 + c+
e−τ+(T−t) ≤ u ≤ K

1 + c−
e−τ−(T−t) .

Outside of this region, it keeps the form of the terminal condition.
Corollary 3.3. The seller’s price of a call is w̌(0, u0) + q+(0)v̌(0, u0), with v̌

and w̌ initialized as in (24) (and symmetrically for a put).

3.2.2. Optimal trading strategy. A hedging strategy is ξ = 0 (does no trad-
ing) as long as w ≥ W (t, u, v). When w = W (t, u, v), it is defined in terms of
ε = sign(v̌(t, u) − v) and is ξ = 0 if t ≥ tε, a positive jump towards v̌ if ε = +1 and
t < t+, and a negative jump towards v̌ if ε = −1 and t < t−. On the manifold v = v̌,

2It is continuous, which is more than required by the theorem, piecewise C2 in domains defined
by C2 manifolds on which it has simple gradient discontinuities.
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we have shown that there is a control, depending on τ , that keeps w(t) on or “above”
the graph of W .

The dependence of the control ξ(t) on the instantaneous rate τ(t) is undesirable. It
is not implementable as such and is not an admissible causal strategy. (Accepting such
strategies would create arbitrage opportunities.) However, the convergence theorem
of [11], recalled in the next section, provides a practical solution: use the discrete
time theory with whatever time step is feasible. It gives an exact (within our model)
admissible hedging strategy for a portfolio value close to the optimum one.

4. Discrete trading.

4.1. The multistage game. In the case of discrete trading, we have to inves-
tigate the game whose dynamics are given by (5) and (11), and the criterion by (18).
This is a completely classical dynamic game. Let Wh(kh, u, v) = Wh

k (u, v) be its
Isaacs value function. We immediately obtain its Isaacs equation and the following
theorem.

Theorem 4.1. The value function Wh is given by the recursion

(27)

∀k < K,∀(u, v) , Wh
k (u, v)

= min
ξ

max
τ∈[τ−

h ,τ+
h ]

[Wh
k+1((1+τ)u, (1+τ)(v+ξ)) − τ(v + ξ) + Cεξ],

∀(u, v) , Wh
K(u, v) = N(u, v) .

Finally, the main theorem of [11], and a central result in that theory, is the
following convergence theorem. Let Wh(t, u, v) be the function obtained by linear
interpolation in time between Wh

k (u, v) and Wh
k+1(u, v) with t ∈ [kh, (k + 1)h].

Theorem 4.2. The functions Wh converge uniformly on every compact towards
the function W (of the continuous trading theory) when the step h goes to zero (in a
dyadic fashion: h = T/(2n), n → ∞).

Optimal hedging strategy. An important consequence of this theorem is that, even
if we are almost in a “continuous trading” situation, the optimal portfolio and trading
strategy can be approached by a discrete trading strategy. However, the optimal
discrete trading strategy does not make use of τk to compute ξk. Thus it alleviates
the problem of the dependence of the optimal strategy on τ in the continuous time
theory.

As a matter of fact, one computes a sequence of v̌hk (u) (see the next paragraph),
and let ε = sign(v̌hk (uk) − vk). The optimal discrete time hedging strategy is just to
do nothing if tk ≥ tε (see (23))—but for most realistic value of the parameters, this
is immaterial because T − tε < h—and for all other discrete time instants to jump to
v = v̌hk (uk), which therefore plays the role of an optimum portfolio composition.

4.2. A fast algorithm. We propose here a new fast algorithm to compute the
solution of (27), which, in view of Theorem 4.2, also yields a fast algorithm to approx-
imate a solution of the continuous trading problem. It can be viewed as a particular
difference scheme for (21).

Define the following recursion:

(28)

qεK = cε ,

qε
k+ 1

2

= (1 + τεh)qεk+1 + τεh ,

qεk+1 = εmin{εqε
k+ 1

2

, εCε} ,
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and let, for every integer 
,

(29) Qε
� = ( qε� 1 ) and Vh

� (u) =

(
v̌h� (u)

w̌h
� (u)

)
.

Take v̌hK(u) = v̌(T, u), w̌h
K(u) = w̌(T, u) as given by (24) for a call (symmetrically for

a put) and

(30) Vh
k (u) =

1

q+
k+ 1

2

− q−
k+ 1

2

(
1 −1

−q−
k+ 1

2

q+
k+ 1

2

)(
Q+

k+1Vh
k+1((1+τ+)u)

Q−
k+1Vh

k+1((1+τ−)u)

)
.

We leave to the reader the tedious, but straightforward, task to check that this is
indeed a consistent finite difference scheme for (21).

We claim the following.
Theorem 4.3. The solution of (27) is given by (28), (29), (30), and (24) for a

call, as

Wh
k (u, v) = w̌h

k (u) + qεk(v̌
h
k (u) − v) = Qε

kVh
k (u) − qεkv, ε = sign(v̌hk (u) − v).

The proof is given in appendix, together with that of the equivalent “continuous”
theorem, Theorem 3.2.

Corollary 4.4. The seller’s price of a call is Q+
0 Vh

0 (u0) with Vh
K initialized as

in (24) (a symmetric form holds for a put.)
The important fact, of course, is that we now have two sequences of functions of

one variable to compute, {v̌hk (·)} and {w̌h
k (·)}, instead of one sequence of functions of

two variables {Wh
k (·, ·)}. This is a major saving in computer time and memory. We

have typically discretized u and v with 300 to 3000 points each. Therefore the saving
is in a ratio of 1:100 to 1:1000. This algorithm has been programmed.3 The results
were indeed identical to those obtained with the straightforward discretization of the
Isaacs equation but much faster and with the above reduction in memory space.

5. Discussion. We wish to discuss here the strengths and weaknesses of this new
theory as compared to the classical Black and Scholes theory [12] and related work.
While we have no pretense to a global superiority of the new theory over the classical
one, we wish to show that it might for some purposes be a possible alternative, given
more experience and validation work.

Let us first notice that for a put or call option, and for small transaction costs,
the general appearance of our seller’s price as a function of u(0) is very similar to that
of the classical Black and Scholes theory. (Some curves are published in [7].) This
can be understood as a consequence of the convergence theorem, Theorem 4.2, and
of the fact that for such a convex terminal payoff, our discrete transaction price with
zero transaction costs coincides with that of Cox, Ross, and Rubinstein, which itself is
close to a Black and Scholes price curve for small time steps. The difference between
the two theories is likely to show up more for digital options, which we are currently
investigating. Indeed, our PDE is first order, and as a consequence the discontinuity
in the boundary value—the terminal payment—propagates backward in time, while
the second order Black and Scholes PDE would yield a smooth solution for any time
less than exercise time. (But in the absence of transaction costs and in continuous

3This was done by Laurent Fischer and Löıc Maitrehut, students at ESSI whose contribution we
acknowledge.
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time, the optimal hedging portfolio is bound to go to infinity in the neighborhood of
the discontinuity. Our theory avoids that difficulty.)

To go further in a comparison, one must distinguish what the mathematics
strictly say, and what is practically possible beyond the mathematically grounded
facts, thanks to some robustness in the theory.

5.1. Strict mathematical properties. Clearly, a major weakness of our model
is that it rules out from the start very fast price variations in the market. If we try
to take τ− and τ+ so large that the model is (essentially) always satisfied, then we
will end up with too large a price. This is a classical fact that because our market
model is incomplete we have to resort to superreplication, potentially ending up with
an unrealistically large price. Hence we shall get a reasonable premium only by
tolerating some violations of the market model.

Now, the Black and Scholes theory has its own theoretical shortcomings. On the
one hand, it fundamentally assumes that trading is continuous and with no delay.
It is impossible, within Samuelson’s model, to achieve hedging if the trading is not
done continuously, except with the trivial—and too expensive—portfolio v = u. On
the other hand, within Samuelson’s model, there is no nontrivial hedging portfolio
for option pricing with transaction costs [25]. The first problem arises from the fact
that Samuelson’s model may display arbitrarily large variations in any finite time,
the second one from the closely related fact that it has almost surely trajectories of
unbounded total variation. (This in itself could be considered as not very realistic.)

Let us concentrate on the continuous versus discrete trading issue. Real trading
has to be discrete, forcing a discrepancy between real trading and the Black and
Scholes theory. This is of little consequence as long as the price of the underlying
stock does not change too quickly. But when it does, that discrepancy becomes
potentially fatal.

Hence both theories fail under the same circumstances: when there are unusually
fast variations of the price of the underlying stock on the market. In our theory the
market model is violated; in that of Black and Scholes, it is the portfolio model which
fails.

Mathematically, it is impossible to reconcile a model that allows for arbitrarily
large stock price variations within one time step with discrete time hedging. Hence a
mathematical theory has to give up one of the two features. The Black and Scholes
theory gives up the (theoretical) ability to do discrete trading. We wanted to develop
a theory of discrete trading, the discrete time market model being consistent with
(i.e., the time sampling of) a continuous time underlying market model, kept fixed
as the time step is decreased. Thus we had to give up a model that would allow for
arbitrarily large price variations in one step of time. Yet we wanted a model less
idealized than that of Cox, Ross, and Rubinstein—and not dependent on the time
step. Thus we were forced to invent the interval model, at the price of giving up
market completeness. And it is no surprise that other authors came up with the same
model.

Turning now to the transaction costs issue, they are a natural ingredient of our
theory. Indeed we were forced to introduce them to avoid the naive “stop loss” strat-
egy, which is the only solution of the hedging problem in the absence of transaction
costs. While we view our ability to deal with transaction costs, even large ones, as a
strength of the new theory, the fact that in their absence the only solution is the naive
one may be viewed as a limitation of any model with bounded variation trajectories.
In contrast, it takes the difficult theory of diffusion limits to deal approximately with
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small transaction costs in the Black and Scholes theory.
Finally, once transaction costs are introduced, it is only natural to assume that

there are closing costs as well. The introduction of those costs creates a difference
between closure in kind or closure in cash. Yet, if this difference is deemed annoying,
closing costs may be removed, just by setting c− and c+ to zero, this time with no
detrimental effect on the theory.

5.2. Robustness. Now, it is well known that in practice, the Black and Scholes
theory, and the derived hedging strategy, can be used with discrete transactions,
provided that they are frequent enough. Also, small transaction costs can be tolerated,
and furthermore, an approximation of perfect hedging can be developed with the
concept of diffusion limits (see [1]), although this does not contradict the claim of [25].
These are features of robustness of that theory to small violations of the hypotheses
used to derive it.

The new theory also seems to exhibit a fair degree of robustness, as displayed by
the following numerical experiments. In all these experiments, the exercise price K is
taken as the unit of monetary value.

5.2.1. Theoretical average payments. In a first series of experiments, we
assumed that the ratio τ = (uk+1 − uk)/uk obeys a probability law with compact
support [σ−, σ+] but that this compact is strictly larger than the range [τ−, τ+] used
to compute the hedging strategy of our theory. And we computed the expected overall
cost to a trader using that hedging strategy under this hypothesis. This was done
with the help of the discrete Kolmogorov equation which gives us an “exact” (up to
the precision of the numerical computation) expected value, in contrast with a Monte
Carlo simulation.4

For the law of τ , we used either a uniform law over [σ−, σ+], a rather pessimistic
case, or a “hat” law, with a piecewise affine density, null at the end points and maximal
at τ = 0. And we used σε = (1 + Δ)τε, with Δ > 0. In all the simulations, we used
the formulas for a closure in cash (deemed more realistic) and the following set of
parameters:

τ− τ+ C− C+ c− c+ K
−5% 3% −.7% .7% −.35% .35% 44

In Figures 1 and 2, we have plotted the premium P (u0) computed with the hypothesis
τ ∈ [τ−, τ+] and, on the same graphics, the total expected expense QΔ(u0) computed
with the same data as P , except that τ is distributed over [σ−, σ+], for various values
of Δ. Figure 1 corresponds to a uniformly distributed τ and Figure 2 to a “hat” law.
The curve QΔ(·) with Δ = .85 in the first case (Δ = 162 in the second) can hardly
be distinguished from the curve P (·).

In Figure 3, we plot the difference P (K) − QΔ as a function of Δ for the two
probability laws of σ: uniform or “hat.” The conclusion is that for a “spillover” up
to 85% in the case of the uniform law, and 162% in the case of the “hat” law, the
expected result is still positive for the trader.

5.2.2. Simulations with price series. In a second set of experiments, we
started from stock price time series. We computed sets of intervals [τ−, τ+] aimed to
contain a variable fraction, say p, of the realizations of τ on this sample and to be
centered, i.e., chosen such that the number of occurrences of τ less than τ− is the

4These computations were done by M’hamed Oumouhou during an internship.
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Fig. 1. Total expense compared with computed premium as a function of u0 for various values
of the spillover ratio Δ. Case τ uniformly distributed.
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Fig. 2. Total expense compared with computed premium as a function of u0 for various values
of the spillover ratio Δ. Case of the “hat” law.

same as the number of occurrences above τ+. With each of these intervals [τ−, τ+],
we computed the premium and the hedging strategy advocated by our theory. Then
we simulated the effect of that hedging strategy if it had been used by the trader to
hedge an option and computed the total cost to the trader. When this cost ends up
higher than the premium, it means that the trader using this interval [τ−, τ+] and
acting according to our theory would have lost money.
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Fig. 3. The difference P (K) −QΔ(K) as a function of Δ.

As a complement to that test, we compute an empirical (a posteriori) historical
volatility of the underlying price, compute the Black and Scholes theoretical premium
for that volatility, and see for which [τ−, τ+], if any, our theory gives approximately
the same premium. Remember, though, that our theory always assumes non zero
transaction costs, contrary to that of Black and Scholes. Therefore to make a more
significant comparison, in the incurred cost of the simulations, we separated the trans-
action costs from those due to price variations.

We ran that experiment both with real stock price series and for simulated “log-
normal” price series, a situation ideally favorable to the Black and Scholes theory
since it is the hypothesis it is based upon.

Figures 4–7 show the result of four of these experiments, typical of the many
we performed. We plot our premium and the cost incurred by the trader excluding
transaction costs against the fraction p of points lying outside of the interval [τ−, τ+]
used. We also show on the same graph the Black and Scholes premium for K = u0.
The conclusion is that, for transaction costs less than 1%, for many simulations, taking
an interval [τ−, τ+] that excludes up to 30% of the observed τk’s yields a premium
larger than or equal to the total cost, but excluding transaction costs, the coincidence
happens at a higher exclusion ratio and close to the Black and Scholes premium. Some
simulations, mainly at low volatilities, show a Black and Scholes premium significantly
less than ours. More investigations are needed to completely understand these cases.

5.3. Conclusion. A careful analysis shows that it is rather natural to resort to
such “interval models,” and this explains why several authors developed that idea
independently. To this remark, we add that for the strict problem of hedging a
contingent claim, the robust control approach, also used by several of these authors,
whether explicitly or implicitly, allows us to proceed without endowing the set of
admissible stock price trajectories with a probability law. This is so since what is
sought is a hedge for every possible trajectory. (And this remark carries over to the
Black and Scholes theory if one carefully picks the set of admissible trajectories, as
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Fig. 4. Premium and costs incurred as a function of the fraction p; AirFrance series, August
18, 1998 to October, 20, 1998 (volatility � .03).
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Fig. 5. Premium and total cost as a function of p; CAC40 series, March 6, 1998 to May 8,
1998 (volatility � .01).

shown in [7].)
The resulting theory exhibits a strong mathematical structure, that can be ex-

ploited to get semiexplicit formulas via a fast algorithm transaction costs, whether
in discrete trading or continuous trading. The latter is the limit of the former with
vanishing step size; this, we stress, keeps the same continuous time model for the
underlying price trajectories. Thus the discrete trading strategy, which is very simple
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Fig. 6. Premium and total cost as a function of p; log-normal series, σ = .1.

to implement, is a good approximation of the theoretical continuous strategy.

The seller’s prices computed qualitatively and quantitatively resemble the Black
and Scholes prices, although the presence of transaction costs makes them larger.

The hedging strategies derived from the theory exhibit a fair degree of robustness
to violations of the market model. Our simulations show that picking an interval con-
taining 70% of the actual relative price variations often leads to a premium comparable
to the Black and Scholes premium and an effective hedging. Yet, these simulations
were ran using a posteriori “statistical” information on the price series. If an ap-
proach based upon the interval model is to be routinely used, one must also develop
new statistical tools to inform it.

This robustness analysis is carried out in a normative perspective, to show that
this theory can be used on the actual market as a decision aid. We have at this
point no claim to a positive theory that would explain premiums actually used by the
operators, less so that the current market is overwhelmingly dominated by the Black
and Scholes theory, which is, in that respect, self-enforcing.

We feel that the results provided so far point to the conclusion that this theory
might be useful in some situations, for instance, when transaction costs are too high
to be neglected or when time discretization is critical.

In any extent, this is by all means a young theory. There remains a large work of
sensitivity analysis, simulations, and validation to perform. We hope to have proved
that it is worthwhile pursuing.

Appendix A. Proof of Theorems 3.2 and 4.3.

A.1. Theorem 4.3. We make the proof in the case of a call. The argument for
a put is completely similar.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST OPTION PRICING: A REPRESENTATION FORMULA 2297

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p

excluding transaction costs
total cost
premium P(u(0))
B&S premium

Fig. 7. Premium and total cost as a function of p; log-normal series, σ = .01.

It is useful to notice an alternate, “two-stage” form of the recursion (27):

Wh
k+ 1

2
(u, v) = max

τ∈[τ−
h ,τ+

h ]
[Wh

k+1((1 + τ)u, (1 + τ)v) − τv] ,(31)

Wh
k (u, v) = min

ξ
[Wh

k+ 1
2
(u, v + ξ) + Cεξ] .(32)

This form shows that the convexity of N is preserved, and the Wh
k are convex.5

Note that the formula of the theorem is correct at final time, k = K. Assume it is
correct at time k+1. Consider the step (31). Because Wh

k+1 is convex, the maximum

is reached either at τ−h or at τ+
h . For each u, the function to be maximized in τ is

piecewise affine in v, and its graph as a function of v can be represented as two wedges
with one branch sloping downwards (see Figure 8), one for each τ ε. These can be
written as

W+
k+ 1

2

:= w̌+
k+ 1

2

+ qε(v̌+
k+ 1

2

− v) ,

W−
k+ 1

2

:= w̌−
k+ 1

2

+ qε(v̌−
k+ 1

2

− v) ,

where v̌+
k+ 1

2

, v̌−
k+ 1

2

, w̌+
k+ 1

2

, and w̌−
k+ 1

2

are easily written in terms of v̌hk+1 and w̌h
k+1

evaluated at (1 + τ+)u and (1 + τ−)u.
As a result, v̌k is obtained as the abscissa of the intersection of the two wedges in

this graph. (In the figure, v̌ε stands for v̌ε
k+ 1

2

= v̌k+1((1+τε)u)/(1+τε), ε = ±.)

Now, we claim the following fact.
Proposition A.1. We have for all (k, u)

1

1 + τ−h
v̌hk+1((1 + τ−h )u) ≤ v̌hk (u) ≤ 1

1 + τ+
h

v̌hk+1((1 + τ+
h )u) .

5Hence, from the convergence theorem, so is W (t, ·, ·).
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Fig. 8. Four possible configurations.

Proof. Assume that the left-hand inequality does not hold. Then a decrease of
the price of the underlying stock (by a factor 1 + τ−) would result in the cheapest
hedging portfolio having a larger content (in number of shares) in this stock than
the previous one, a contradiction for a call (and for any option with an increasing
payment function).

Only the first possibility in the figure is consistent with the proposition, and
it results in the max being again a simple wedge. Its minimum is achieved at the
intersection of the right branch of the graph with τ− and the left branch of the graph
with τ+. This gives the formulas (30). (One needs to notice that the qεk as given by
(28) coincide with qε(kh) as defined by (22).)

Their remains to carry out (32). It is an inf convolution with a wedge function
acting on the v variable only. It leaves unchanged branches with a slope between
−C+ and −C− (and the min is then reached at ξ = 0) and replaces steeper slopes by
these two limit ones, hence the min or max operations in (22).

A.2. Theorem 3.2. We have to show that formula (25), where ε = sign(v̌− v),
qε is given by (22), and V(t, u) is the solution of the PDE (21), is the (regular) viscosity
solution of (20). Let

(33)
H(t, u, v,DW, τ) := Wt + τ [Wuu + (Wv − 1)v] ,

H̄(t, u, v,DW ) := maxτ∈[τ−,τ+] H(t, u, v,DW, τ) .

Then (20) reads

(34) min{H̄(t, u, v,DW ) ,Wv + C+ ,−Wv − C−} = 0 .

Define Qε = (qε 1) and 1l = ( 1
1 ).

A.2.1. Preliminary propositions. The proof of the theorem is by checking
that formula (25) indeed provides a (sufficiently regular) viscosity solution of (34). We
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therefore review the manifolds where our formula allows for a gradient discontinuity
of V.

We first stress a simple fact, as a consequence of the definition (22).
Proposition A.2. For ε = 1 and ε = −1,
• if t ≤ tε, q

ε = Cε;
• if t > tε, q

ε ∈ [cε, Cε] and

(35) q̇ε = −τε(qε + 1).
We also claim the following important fact.
Proposition A.3. For all (t, u, v) ∈ [0, T ] × R

+ × R,

(36) QεVt ≤ 0 , or equivalently sign[Qε(Vuu− 1lv̌)] = ε.

Proof. The equivalence of the two forms of the claim comes from the fundamental
PDE (21) and the the fact that

(37) QεT = τεQε .

Simple geometry shows that Proposition A.1 implies

(38) w̌+
k+ 1

2

+ q−
k+ 1

2

(v̌+
k+ 1

2

− v̌−
k+ 1

2

) ≤ w̌−
k+ 1

2

≤ w̌+
k+ 1

2

+ q+
k+ 1

2

(v̌+
k+ 1

2

− v̌−
k+ 1

2

) .

In the limit as h → 0, Wh → W , but also Vh → V that satisfies the PDE (21). And
since the defining recursion (30) is a consistent discretization scheme for (21), the
differentials converge, and, as a tedious but simple calculation shows, (38) converges
to (36).

For a given (t, u, v), let ε = sign(v̌(t, u) − v). As a consequence of (36), and
keeping in mind that qε + 1 > 0,

(39) sign[(w̌u + qεv̌u)u− (qε + 1)v] = ε ,

so that the max in H̄ is reached at τ = τε.

A.2.2. Differentiable case. We first investigate regions of (t, u, v) space where
our formula (25) gives a differentiable function. The partials of (25) are given by

Wt = QεVt + q̇ε(v̌ − v) , Wu = QεVu , Wv = −qε ,

where QεVt = −τεQεVuu+ τε(1+ qε)v̌ using (21) with (37). Replacing these partials
in (33) with property (39), it follows that

H̄(t, u, v,DW ) =
(
q̇ε + τε(1 + qε)

)
(v̌ − v) .

If t > tε, Proposition A.2 leads to H̄ = 0, while the other two terms in (34) are
positive because of Proposition A.2.

If t < tε, H̄(t, u, v̌,DW ) = 0 and

H̄(t, u, v,DW ) = τ ε(1 + Cε)(v̌(t, u) − v) ≥ 0

since τ+ > 0 and τ− < 0, so that ε = sign(v̌− v) is also the sign of τε and 1+Cε > 0
by hypothesis. Moreover, according to Proposition A.2, one of the other two terms in
(34) is zero and the other one positive.
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A.2.3. The singular manifold v = v̌. On the manifold v = v̌(t, u), formula
(25) for W is nondifferentiable. It has a nonvoid subdifferential, obtained by replacing
qε by q = λq+ + (1 − λ)q− in the formulas for the partial derivatives in either of the
regions ε = −1 or ε = 1. This is so because these partials are affine in qε.

Now, for each ε, the maximum in τ in H̄, reached at τ ε, is 0. Therefore, for τ−ε,
H ≤ 0. Hence, as an affine function of q (for fixed τ) which ranges from 0 to a negative
number, H is nonpositive for all possible q’s. Hence so is its max in τ , H̄. The other
two terms in (34) are trivially nonpositive for all λ. Therefore the minimum of the
three terms is nonpositive, and this is the viscosity condition.

A.2.4. Boundaries of the nontrivial region. We adapt and complete here a
result of [11] (Proposition 8.1).

Proposition A.4. Along the manifolds u = K exp(−τε(T − t)), the gradients
of V may be discontinuous, with discontinuities δVt and δVu satisfying δVt = −τεδVu

and (q−ε 1)δVu = 0.
Proof. Let (t̂, û) be a tangent to a manifold bearing a gradient discontinuity of

a continuous solution of (21). Let (δVt, δVu) be that discontinuity. Continuity of V
imposes that

t̂δVt + ûδVu = 0 .

Now, because V satisfies (21) in both open half spaces on each side of the manifold,
it follows that

δVt + T δVuu = 0 .

Hence, combining the two equations, we get(
1

u

û

t̂
I − T

)
δVu = 0 ,

which is possible with a nonzero δVu if and only if û/ut̂ is an eigenvalue of T , hence
either τ− or τ+. Therefore, the gradient discontinuity has to be born by a curve of
the form u = uT exp(−τε(T − t)), and in this formula, we have to choose uT = K to
embed the gradient discontinuity of N(u, v) in that curve.

Then δVu has to be the eigenvector of T associated with the corresponding eigen-
value, i.e., (1 − q−ε), as is easily checked

Assume we are hedging a call, thus with 0 ≤ v ≤ u. On the left boundary
u = K exp(−τ+(T − t)), we have ε = −1, and the discontinuities of the gradient of
our function W are given by (δWt, δWu, δWv) = (Q−δVt, Q

−δVu, 0) = 0. Therefore
the function (25) is smooth. A similar argument applies along the boundary u =
K exp(−τ−(T − t)). And symmetric arguments hold for a put.

A.2.5. Boundaries of the jump regions. Finally, one has to check the two
manifolds t = tε, where Vt is discontinuous, because qεt is. It can be seen that the
superdifferential of W is nonempty there, and is made of all the vectors (QεVt +
δ,Wu,−Cε) with δ ∈ [−τε(1 +Cε)(v̌− v), 0], and notice that −τ ε(1 +Cε)(v̌− v) < 0
(which shows that it is the superdifferential which is nonempty). As a consequence,
the viscosity condition reads

∀δ ∈ [−τε(1 + Cε)(v̌ − v), 0] , QεVt + δ + τε[QεVuu− (Cε + 1)v] ≥ 0 .

However, we have already seen that this quantity is zero for δ at the lower end of the
interval. And thus the inequality does hold, ending the proof.
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Remark A.1.

1. It can be noted that this direct check confirms only the fact that the field
of extremal trajectories constructed in [11] satisfies the relevant corner con-
ditions as developed in the Isaacs–Breakwell theory. Yet, here we have an
explicit formula that guarantees that there are no other singular surfaces in
the state space. This is difficult to ascertain with the previous theory.

2. We have shown in [9] further relationships between (20) on the one hand and
(21) and (25) on the other hand.
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[20] D. Pujal, Évaluation et gestion dynamiques de portefeuilles, Thesis, Paris Dauphine Univer-
sity, Paris Cedex, France, 2000.

[21] B. Roorda, J. Engwerda, and H. Schumacher, Performance of hedging strategies in interval
models, Kybernetica, 41 (2005), pp. 575–592.

[22] B. Roorda, J. Engwerda, and H. Schumacher, Coherent acceptability measures in multi-
period models, Math. Finance, 15 (2005), pp. 589–612.

[23] P. Saint-Pierre, Viable capture basin for studying differential and hybrid games, Int. Game
Theory Rev., 6 (2004), pp. 109–136.

[24] G. Shafer and V. Vovk, Probability and Finance: It’s Only a Game, Wiley, New York, 2001.
[25] H. M. Soner, S. E. Shreve, and J. Cvitanic, There is no non-trivial hedging portfolio for

option pricing with transaction costs, Ann. Appl. Probab., 5 (1995), pp. 327–355.


	SJCODC_V46_i1_p0001
	SJCODC_V46_i1_p0014
	SJCODC_V46_i1_p0035
	SJCODC_V46_i1_p0061
	SJCODC_V46_i1_p0084
	SJCODC_V46_i1_p0116
	SJCODC_V46_i1_p0143
	SJCODC_V46_i1_p0156
	SJCODC_V46_i1_p0176
	SJCODC_V46_i1_p0210
	SJCODC_V46_i1_p0231
	SJCODC_V46_i1_p0253
	SJCODC_V46_i1_p0274
	SJCODC_V46_i1_p0288
	SJCODC_V46_i1_p0308
	SJCODC_V46_i1_p0332
	SJCODC_V46_i1_p0356
	SJCODC_V46_i2_p0379
	SJCODC_V46_i2_p0395
	SJCODC_V46_i2_p0427
	SJCODC_V46_i2_p0445
	SJCODC_V46_i2_p0468
	SJCODC_V46_i2_p0496
	SJCODC_V46_i2_p0541
	SJCODC_V46_i2_p0562
	SJCODC_V46_i2_p0585
	SJCODC_V46_i2_p0604
	SJCODC_V46_i2_p0630
	SJCODC_V46_i2_p0655
	SJCODC_V46_i2_p0683
	SJCODC_V46_i2_p0694
	SJCODC_V46_i2_p0714
	SJCODC_V46_i2_p0738
	SJCODC_V46_i2_p0750
	SJCODC_V46_i3_p0775
	SJCODC_V46_i3_p0792
	SJCODC_V46_i3_p0816
	SJCODC_V46_i3_p0839
	SJCODC_V46_i3_p0877
	SJCODC_V46_i3_p0900
	SJCODC_V46_i3_p0930
	SJCODC_V46_i3_p0952
	SJCODC_V46_i3_p0983
	SJCODC_V46_i3_p0999
	SJCODC_V46_i3_p1022
	SJCODC_V46_i3_p1052
	SJCODC_V46_i3_p1080
	SJCODC_V46_i3_p1098
	SJCODC_V46_i3_p1116
	SJCODC_V46_i3_p1133
	SJCODC_V46_i4_p1155
	SJCODC_V46_i4_p1180
	SJCODC_V46_i4_p1211
	SJCODC_V46_i4_p1239
	SJCODC_V46_i4_p1277
	SJCODC_V46_i4_p1299
	SJCODC_V46_i4_p1323
	SJCODC_V46_i4_p1368
	SJCODC_V46_i4_p1398
	SJCODC_V46_i4_p1431
	SJCODC_V46_i4_p1461
	SJCODC_V46_i4_p1483
	SJCODC_V46_i4_p1518
	SJCODC_V46_i5_p1539
	SJCODC_V46_i5_p1562
	SJCODC_V46_i5_p1578
	SJCODC_V46_i5_p1615
	SJCODC_V46_i5_p1637
	SJCODC_V46_i5_p1664
	SJCODC_V46_i5_p1683
	SJCODC_V46_i5_p1705
	SJCODC_V46_i5_p1726
	SJCODC_V46_i5_p1754
	SJCODC_V46_i5_p1779
	SJCODC_V46_i5_p1802
	SJCODC_V46_i5_p1831
	SJCODC_V46_i5_p1849
	SJCODC_V46_i5_p1882
	SJCODC_V46_i5_p1897
	SJCODC_V46_i6_p1923
	SJCODC_V46_i6_p1942
	SJCODC_V46_i6_p1972
	SJCODC_V46_i6_p1995
	SJCODC_V46_i6_p2013
	SJCODC_V46_i6_p2031
	SJCODC_V46_i6_p2052
	SJCODC_V46_i6_p2071
	SJCODC_V46_i6_p2096
	SJCODC_V46_i6_p2120
	SJCODC_V46_i6_p2148
	SJCODC_V46_i6_p2182
	SJCODC_V46_i6_p2199
	SJCODC_V46_i6_p2242
	SJCODC_V46_i6_p2256
	SJCODC_V46_i6_p2280

